Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -7,11 +7,60 @@ repo_id = "ancebuc/grapes-segmentation"
|
|
7 |
learner = from_pretrained_fastai(repo_id)
|
8 |
labels = learner.dls.vocab
|
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
# Definimos una funci贸n que se encarga de llevar a cabo las predicciones
|
11 |
def predict(img):
|
12 |
-
|
13 |
-
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
# Creamos la interfaz y la lanzamos.
|
17 |
gr.Interface(fn=predict, inputs=gr.inputs.Image(shape=(128, 128)), outputs=gr.outputs.inputs.Image(shape=(128, 128)),examples=['color_158.jpg','color_157.jpg']).launch(share=False)
|
|
|
7 |
learner = from_pretrained_fastai(repo_id)
|
8 |
labels = learner.dls.vocab
|
9 |
|
10 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
11 |
+
model = torch.jit.load("unet.pth")
|
12 |
+
model = model.cpu()
|
13 |
+
model.eval()
|
14 |
+
|
15 |
+
import torchvision.transforms as transforms
|
16 |
+
def transform_image(image):
|
17 |
+
my_transforms = transforms.Compose([transforms.ToTensor(),
|
18 |
+
transforms.Normalize(
|
19 |
+
[0.485, 0.456, 0.406],
|
20 |
+
[0.229, 0.224, 0.225])])
|
21 |
+
image_aux = image
|
22 |
+
return my_transforms(image_aux).unsqueeze(0).to(device)
|
23 |
+
|
24 |
# Definimos una funci贸n que se encarga de llevar a cabo las predicciones
|
25 |
def predict(img):
|
26 |
+
img = PILImage.create(img)
|
27 |
+
|
28 |
+
image = transforms.Resize((480,640))(img)
|
29 |
+
tensor = transform_image(image=image)
|
30 |
+
|
31 |
+
with torch.no_grad():
|
32 |
+
outputs = model(tensor)
|
33 |
+
|
34 |
+
outputs = torch.argmax(outputs,1)
|
35 |
+
|
36 |
+
mask = np.array(outputs.cpu())
|
37 |
+
mask = np.reshape(mask,(480,640))
|
38 |
+
|
39 |
+
# A帽adimos una dimesionalidad para colocar color
|
40 |
+
mask = np.expand_dims(mask, axis=2)
|
41 |
+
|
42 |
+
# Y a帽adimos los tres canales
|
43 |
+
mask = np.repeat(mask, 3, axis=2)
|
44 |
+
|
45 |
+
# Creamos las m谩scaras
|
46 |
+
uvas = np.all(mask == [1, 1, 1], axis=2)
|
47 |
+
hojas = np.all(mask == [2, 2, 2], axis=2)
|
48 |
+
poste = np.all(mask == [3, 3, 3], axis=2)
|
49 |
+
madera = np.all(mask == [4, 4, 4], axis=2)
|
50 |
+
|
51 |
+
# Uvas
|
52 |
+
mask[uvas] = [255, 255, 255]
|
53 |
+
|
54 |
+
# Hojas
|
55 |
+
mask[hojas] = [0, 255, 0]
|
56 |
+
|
57 |
+
# Poste
|
58 |
+
mask[poste] = [0, 0, 255]
|
59 |
+
|
60 |
+
# Madera
|
61 |
+
mask[madera] = [255, 0, 0]
|
62 |
+
|
63 |
+
return Image.fromarray(mask.astype('uint8'))
|
64 |
|
65 |
# Creamos la interfaz y la lanzamos.
|
66 |
gr.Interface(fn=predict, inputs=gr.inputs.Image(shape=(128, 128)), outputs=gr.outputs.inputs.Image(shape=(128, 128)),examples=['color_158.jpg','color_157.jpg']).launch(share=False)
|