File size: 863 Bytes
3c2ed55
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
import gradio as gr
from icevision.all import *
import PIL
class_map = ClassMap(['raccoon'])
model = models.torchvision.faster_rcnn.model(backbone=models.torchvision.faster_rcnn.backbones.resnet50_fpn(pretrained=True), num_classes=len(class_map))
state_dict = torch.load('modelResnet50raccoon.pth')
model.load_state_dict(state_dict)
size = 384
infer_tfms = tfms.A.Adapter([*tfms.A.resize_and_pad(size),tfms.A.Normalize()])
def predict(img):
  # img = PIL.Image.open(img)
  np.int = int
  img = PIL.Image.fromarray(img)

  pred_dict = models.torchvision.faster_rcnn.end2end_detect(img, infer_tfms, model.to("cpu"), class_map=class_map, detection_threshold=0.5)
  return pred_dict['img']

# Creamos la interfaz y la lanzamos.
gr.Interface(fn=predict, inputs=["image"], outputs=["image"], examples=['raccoon-106.jpg','raccoon-129.jpg']).launch(share=True,debug=True)