Spaces:
Runtime error
Runtime error
File size: 9,560 Bytes
a57c6eb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 |
from einops import rearrange
import requests
from io import BytesIO
from typing import Literal, Union
import math
from PIL import Image
import numpy as np
from diffusers.utils import load_image
import cv2
import torch
from mmcm.vision.utils.data_type_util import convert_images
from transformers.models.clip.image_processing_clip import to_numpy_array
from ..utils.vision_util import round_up_to_even
def get_image_from_input(image: Union[str, Image.Image]) -> Image.Image:
if isinstance(image, str):
if "http" in image:
image = BytesIO(requests.get(image).content)
image = Image.open(image).convert("RGB")
else:
image = Image.open(image).convert("RGB")
else:
image = image.convert("RGB")
assert type(image) == Image.Image
return image
def dynamic_resize_image(
image: Image.Image,
target_height: int,
target_width: int,
image_max_length: int = 910,
) -> Image.Image:
"""对图像进行预处理,目前会将短边resize到目标长度,同时限制长边长度
Args:
image (Image.Image): _description_
target_height (int): _description_
target_width (int): _description_
image_max_length (int): _description_
Returns:
Image.Image: _description_
"""
w, h = image.size
if w > h:
target_width = min(math.ceil(w * target_height / h), image_max_length)
target_height = math.ceil(target_width / w * h)
else:
target_height = min(math.ceil(h * target_width / w), image_max_length)
target_width = math.ceil(target_height / h * w)
target_width = round_up_to_even(target_width)
target_height = round_up_to_even(target_height)
image = image.resize((target_width, target_height))
return image
def dynamic_crop_resize_image(
image: Image.Image,
target_height: int,
target_width: int,
resample=None,
) -> Image.Image:
"""获取图像有效部分,并resize到对应目标宽度和高度。
如果图像宽高比大于 target_width / target_height,则保留全部高,截取宽的中心部位;
如果图像宽高比小于 target_width / target_height,则保留全部宽,截取高的中心部位;
最后,将截取的图像resize到目标宽高
Args:
image (Image.Image): 输入图像
target_height (int): 目标高
target_width (int): 目标宽
Returns:
Image.Image: 动态截取、resize生成的图像
"""
w, h = image.size
image_width_heigt_ratio = w / h
target_width_height_ratio = target_width / target_height
if image_width_heigt_ratio >= target_width_height_ratio:
y1 = 0
y2 = h - 1
x1 = math.ceil((w - h * target_width / target_height) / 2)
x2 = math.ceil(w - (w - h * target_width / target_height) / 2)
else:
x1 = 0
x2 = w - 1
y1 = math.ceil((h - w * target_height / target_width) / 2)
y2 = math.ceil(h - (h - w * target_height / target_width) / 2)
x1 = max(0, x1)
x2 = min(x2, w - 1)
y1 = max(0, y1)
y2 = min(y2, h - 1)
image = image.crop((x1, y1, x2, y2))
image = image.resize((target_width, target_height), resample=resample)
return image
def get_canny(
image: np.ndarray, low_threshold: float, high_threshold: float
) -> np.ndarray:
image = cv2.Canny(image, low_threshold, high_threshold)
image = image[:, :, None]
image = np.concatenate([image, image, image], axis=2)
return image
def pad_matrix(matrix, target_shape):
h, w, c = matrix.shape
h1, w1 = target_shape
if h1 < h or w1 < w:
raise ValueError("Target shape must be larger than original shape.")
pad_h = (h1 - h) // 2
pad_w = (w1 - w) // 2
padded_matrix = np.zeros((h1, w1, c))
padded_matrix[pad_h : pad_h + h, pad_w : pad_w + w, :] = matrix
return padded_matrix
def pad_tensor(tensor, shape):
"""
将输入的numpy array tensor进行0填充,直到其尺寸达到目标尺寸shape。
参数:
tensor: numpy array,输入的tensor
shape: tuple,目标尺寸
返回值:
numpy array,填充后的tensor
"""
# 获取tensor的尺寸
tensor_shape = tensor.shape
# 计算需要填充的尺寸
pad_shape = tuple(
np.maximum(np.zeros_like(shape), np.array(shape) - np.array(tensor_shape))
)
# pad_shape = (np.max(0, shape[i] - tensor_shape[i]) for i in range(len(shape)))
# 构造填充后的tensor
pad_shape_ = ((0, x) for x in pad_shape)
padded_tensor = np.pad(
tensor,
((0, pad_shape[0]), (0, pad_shape[1]), (0, pad_shape[2]), (0, pad_shape[3])),
# pad_shape_,
mode="constant",
)
return padded_tensor
def batch_dynamic_crop_resize_images_v2(
images: Union[torch.Tensor, np.ndarray],
target_height: int,
target_width: int,
mode=Image.Resampling.LANCZOS,
) -> np.ndarray:
"""获取图像中心有效部分,并resize到对应目标宽度和高度。
如果图像宽高比大于 target_width / target_height,则保留全部高,截取宽的中心部位;
如果图像宽高比小于 target_width / target_height,则保留全部宽,截取高的中心部位;
最后,将截取的图像resize到目标宽高
Args:
image (Image.Image): 输入图像
target_height (int): 目标高
target_width (int): 目标宽
Returns:
Image.Image: 动态截取、resize生成的图像
"""
ndim = images.ndim
if ndim == 4:
b, c, h, w = images.shape
elif ndim == 5:
b, c, t, h, w = images.shape
images = rearrange(images, "b c t h w->(b t) c h w")
else:
raise ValueError(f"ndim only support 4, 5 but given {ndim}")
images = convert_images(
images, data_channel_order="b c h w", return_type="pil", input_rgb_order="rgb"
)
images = [
dynamic_crop_resize_image(
image,
target_height=target_height,
target_width=target_width,
resample=mode,
)
for image in images
]
images = [to_numpy_array(x) for x in images]
images = np.stack(images, axis=0)
images = rearrange(images, "b h w c-> b c h w")
if ndim == 5:
images = rearrange(images, "(b t) c h w->b c t h w", b=b, t=t)
return images
def batch_dynamic_crop_resize_images(
images: Union[torch.Tensor, np.ndarray],
target_height: int,
target_width: int,
mode: Literal[
"nearest", "linear", "bilinear", "bicubic", "trilinear", "area", "nearest-exact"
] = "bilinear",
# ] = "nearest",
align_corners=False,
) -> torch.TensorType:
"""获取图像中心有效部分,并resize到对应目标宽度和高度。
如果图像宽高比大于 target_width / target_height,则保留全部高,截取宽的中心部位;
如果图像宽高比小于 target_width / target_height,则保留全部宽,截取高的中心部位;
最后,将截取的图像resize到目标宽高
Warning: 该方法对于 b c t h w t=1时 会出现图像像素错位问题,所以新增了个使用Image.Resize的V2版本
Args:
image (Image.Image): 输入图像
target_height (int): 目标高
target_width (int): 目标宽
Returns:
Image.Image: 动态截取、resize生成的图像
"""
if isinstance(images, np.ndarray):
images = torch.from_numpy(images)
ndim = images.ndim
if ndim == 4:
b, c, h, w = images.shape
elif ndim == 5:
b, c, t, h, w = images.shape
images = rearrange(images, "b c t h w->(b t) c h w")
else:
raise ValueError(f"ndim only support 4, 5 but given {ndim}")
image_width_heigt_ratio = w / h
target_width_height_ratio = target_width / target_height
if image_width_heigt_ratio >= target_width_height_ratio:
y1 = 0
y2 = h - 1
x1 = math.ceil((w - h * target_width / target_height) / 2)
x2 = math.ceil(w - (w - h * target_width / target_height) / 2)
else:
x1 = 0
x2 = w - 1
y1 = math.ceil((h - w * target_height / target_width) / 2)
y2 = math.ceil(h - (h - w * target_height / target_width) / 2)
x1 = max(0, x1)
x2 = min(x2, w - 1)
y1 = max(0, y1)
y2 = min(y2, h - 1)
images = images[:, :, y1:y2, x1:x2]
images = torch.nn.functional.interpolate(
images,
(target_height, target_width),
mode=mode, # align_corners=align_corners
)
if ndim == 5:
images = rearrange(images, "(b t) c h w->b c t h w", b=b, t=t)
return images
def his_match(src: np.ndarray, dst: np.ndarray) -> np.ndarray:
src = src * 255.0
dst = dst * 255.0
src = src.astype(np.uint8)
dst = dst.astype(np.uint8)
res = np.zeros_like(dst)
cdf_src = np.zeros((3, 256))
cdf_dst = np.zeros((3, 256))
cdf_res = np.zeros((3, 256))
kw = dict(bins=256, range=(0, 256), density=True)
for ch in range(3):
his_src, _ = np.histogram(src[:, :, ch], **kw)
hist_dst, _ = np.histogram(dst[:, :, ch], **kw)
cdf_src[ch] = np.cumsum(his_src)
cdf_dst[ch] = np.cumsum(hist_dst)
index = np.searchsorted(cdf_src[ch], cdf_dst[ch], side="left")
np.clip(index, 0, 255, out=index)
res[:, :, ch] = index[dst[:, :, ch]]
his_res, _ = np.histogram(res[:, :, ch], **kw)
cdf_res[ch] = np.cumsum(his_res)
return res / 255.0
|