File size: 22,187 Bytes
a57c6eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
import random

import torch
from torch import nn
import torch.nn.functional as F
import ffmpeg
import numpy as np
import cv2
from moviepy.editor import VideoFileClip

from .utils import get_frames


class TransNetV2(nn.Module):
    def __init__(self, F=16, L=3, S=2, D=1024):
        super(TransNetV2, self).__init__()
        self.SDDCNN = nn.ModuleList(
            [
                StackedDDCNNV2(
                    in_filters=3, n_blocks=S, filters=F, stochastic_depth_drop_prob=0.0
                )
            ]
            + [
                StackedDDCNNV2(
                    in_filters=(F * 2 ** (i - 1)) * 4, n_blocks=S, filters=F * 2**i
                )
                for i in range(1, L)
            ]
        )

        # 帧相似网络
        self.frame_sim_layer = FrameSimilarity(
            sum([(F * 2**i) * 4 for i in range(L)]),
            lookup_window=101,
            output_dim=128,
            similarity_dim=128,
            use_bias=True,
        )

        # 颜色相似网络
        self.color_hist_layer = ColorHistograms(lookup_window=101, output_dim=128)

        # dropout
        self.dropout = nn.Dropout(0.5)

        output_dim = ((F * 2 ** (L - 1)) * 4) * 3 * 6  #
        output_dim = output_dim + 128  # 使用了帧相似网络, 维度需要加128
        output_dim = output_dim + 128  # 使用了颜色相似网络, 维度需要再加128

        self.fc1 = nn.Linear(output_dim, D)
        self.cls_layer1 = nn.Linear(D, 1)
        self.cls_layer2 = nn.Linear(D, 1)

    def forward(self, inputs):
        # 输入必须为torch.uint8, (h,w)=(27,48)的图片batch样本
        #         assert isinstance(inputs, torch.Tensor) and list(inputs.shape[2:]) == [27, 48, 3] and inputs.dtype == torch.uint8, "incorrect input type and/or shape"

        # uint8 of shape [B, T, H, W, 3] to float of shape [B, 3, T, H, W]
        with torch.autograd.set_detect_anomaly(True):
            x = inputs.permute([0, 4, 1, 2, 3]).float()
            x = x.div_(255.0)

            # 收集每一层的SDDCNN特征图
            block_features = []
            for block in self.SDDCNN:
                x = block(x)
                block_features.append(x)

            x = x.permute(0, 2, 3, 4, 1)  # 把维度从[B, 通道数, T, H, W] 转化为 [B, T, H, W, 通道数]
            x = x.reshape(x.shape[0], x.shape[1], -1)

            x = torch.cat(
                [self.frame_sim_layer(block_features), x], 2
            )  # 在最后一维度cat上block_features输出的特征
            x = torch.cat(
                [self.color_hist_layer(inputs), x], 2
            )  # 在最后一维度cat上color_hist_layer输出的特征

            x = F.relu(self.fc1(x))
            x = self.dropout(x)

            one_hot = self.cls_layer1(x)
            many_hot = self.cls_layer2(x)
            return one_hot, many_hot

    # 预测MP4文件转换帧,并给出对应帧位置
    def predict_video(
        self,
        mp4_file,
        cache_path="",
        c_box=None,
        width=48,
        height=27,
        input_frames=100,
        overlap=30,
        sample_fps=30,
        threshold=0.3,
    ):
        """
        mp4_file: ~/6712566330782010632.mp4
        cache_path: ~/视频单帧数据_h48_w27
        return: [x,x,...] 点位时间
        """
        assert overlap % 2 == 0
        assert input_frames > overlap
        # fps = eval(ffmpeg.probe(mp4_file)['streams'][0]['r_frame_rate']) # 获取视频的视频帧率
        # total_frames = int(ffmpeg.probe(mp4_file)['streams'][0]['nb_frames']) # 获取视频的总帧数
        # duration = float(ffmpeg.probe(mp4_file)['streams'][0]['duration']) # 获取视频的总时长
        video = VideoFileClip(mp4_file)
        # video = video.subclip(0, 60 * 10)
        fps = video.fps
        duration = video.duration
        total_frames = int(duration * fps)
        w, h = video.size
        print(fps, duration, total_frames, w, h)

        if c_box:
            video.crop(*c_box)

        frame_iter = video.iter_frames(fps=sample_fps)
        sample_total_frames = int(sample_fps * duration)
        frame_list = []
        for i in range(sample_total_frames // (input_frames - overlap) + 1):
            # if i==1:
            #     break
            frame_list = frame_list[-overlap:]
            start_frame = i * (input_frames - overlap)
            end_frame = min(start_frame + input_frames, sample_total_frames)
            print("start_frame & end_frame: ", start_frame, end_frame)
            for frame in frame_iter:
                frame = cv2.resize(frame, (width, height))
                frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
                frame_list.append(frame)
                if len(frame_list) == end_frame - start_frame:
                    break
            frames = torch.Tensor(frame_list)  # 获得帧
            if frames.shape[0] < end_frame - start_frame:
                # 原视频的视频时长比音频时长短,体现出来的是原视频最后有声音没画面
                print(
                    "total_frames is wrong: ",
                    total_frames,
                    "-->",
                    start_frame + frames.shape[0],
                )
                # sample_total_frames = start_frame + frames.shape[0]
                # fps = total_frames / duration
            frames = frames.cuda()
            # single_frame_pred和all_frame_pred都是输出window_size长的是否转场概率,
            single_frame_pred, all_frame_pred = self.forward(
                frames.unsqueeze(0)
            )  # 前向推理
            # single_frame_pred = F.softmax(single_frame_pred, dim=-1) # 获得每一帧对应的类别概率
            # single_frame_pred = torch.argmax(single_frame_pred, dim=-1).reshape(-1)
            single_frame_pred = torch.sigmoid(single_frame_pred).reshape(-1)
            all_frame_pred = torch.sigmoid(all_frame_pred).reshape(-1)

            # single_frame_pred = (single_frame_pred>threshold)*1
            if total_frames > end_frame:
                if i == 0:
                    single_frame_pred_label = single_frame_pred[: -overlap // 2]
                    all_frame_pred_label = all_frame_pred[: -overlap // 2]
                else:
                    single_frame_pred_label = torch.cat(
                        (
                            single_frame_pred_label,
                            single_frame_pred[overlap // 2 : -overlap // 2],
                        ),
                        dim=0,
                    )
                    all_frame_pred_label = torch.cat(
                        (
                            all_frame_pred_label,
                            all_frame_pred[overlap // 2 : -overlap // 2],
                        ),
                        dim=0,
                    )
            else:
                if i == 0:
                    single_frame_pred_label = single_frame_pred
                    all_frame_pred_label = all_frame_pred
                else:
                    single_frame_pred_label = torch.cat(
                        (single_frame_pred_label, single_frame_pred[overlap // 2 :]),
                        dim=0,
                    )
                    all_frame_pred_label = torch.cat(
                        (all_frame_pred_label, all_frame_pred[overlap // 2 :]), dim=0
                    )
                break

        single_frame_pred_label = single_frame_pred_label.cpu().numpy()
        all_frame_pred_label = all_frame_pred_label.cpu().numpy()

        return (
            single_frame_pred_label,
            all_frame_pred_label,
            fps,
            total_frames,
            duration,
            h,
            w,
        )

        # transition_index = torch.where(pred_label==1)[0].cpu().numpy() # 转场帧位置
        # transition_index = transition_index.astype(np.float)
        # # 对返回结果做后处理合并相邻帧
        # result_transition = []
        # for i, transition in enumerate(transition_index):
        #     if i == 0:
        #         result_transition.append([transition])
        #     else:
        #         if abs(result_transition[-1][-1]-transition) == 1:
        #             result_transition[-1].append(transition)
        #         else:
        #             result_transition.append([transition])
        #
        # result_transition = [[0]] + [[item[0], item[-1]] if len(item)>1 else [item[0]] for item in result_transition] + [[total_frames]]
        #
        # return result_transition, fps, total_frames, duration, h, w

    def predict_video_2(
        self,
        mp4_file,
        cache_path="",
        c_box=None,
        width=48,
        height=27,
        input_frames=100,
        overlap=30,
        sample_fps=30,
        threshold=0.3,
    ):
        """
        mp4_file: ~/6712566330782010632.mp4
        cache_path: ~/视频单帧数据_h48_w27
        return: [x,x,...] 点位时间
        """
        assert overlap % 2 == 0
        assert input_frames > overlap
        # fps = eval(ffmpeg.probe(mp4_file)['streams'][0]['r_frame_rate']) # 获取视频的视频帧率
        # total_frames = int(ffmpeg.probe(mp4_file)['streams'][0]['nb_frames']) # 获取视频的总帧数
        # duration = float(ffmpeg.probe(mp4_file)['streams'][0]['duration']) # 获取视频的总时长
        video = VideoFileClip(mp4_file)
        # video = video.subclip(0, 60 * 10)
        fps = video.fps
        duration = video.duration
        total_frames = int(duration * fps)
        w, h = video.size
        print(fps, duration, total_frames, w, h)

        if c_box:
            video.crop(*c_box)

        frame_iter = video.iter_frames(fps=sample_fps)
        sample_total_frames = int(sample_fps * duration)
        frame_list = []
        for i in range(sample_total_frames // (input_frames - overlap) + 1):
            # if i==1:
            #     break
            frame_list = frame_list[-overlap:]
            start_frame = i * (input_frames - overlap)
            end_frame = min(start_frame + input_frames, sample_total_frames)
            print("start_frame & end_frame: ", start_frame, end_frame)
            for frame in frame_iter:
                frame = cv2.resize(frame, (width, height))
                frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
                frame_list.append(frame)
                if len(frame_list) == end_frame - start_frame:
                    break
            frames = torch.Tensor(frame_list)  # 获得帧
            if frames.shape[0] < end_frame - start_frame:
                # 原视频的视频时长比音频时长短,体现出来的是原视频最后有声音没画面
                print(
                    "total_frames is wrong: ",
                    total_frames,
                    "-->",
                    start_frame + frames.shape[0],
                )
                # sample_total_frames = start_frame + frames.shape[0]
                # fps = total_frames / duration
            frames = frames.cuda()
            single_frame_pred, all_frame_pred = self.forward(
                frames.unsqueeze(0)
            )  # 前向推理
            # single_frame_pred = F.softmax(single_frame_pred, dim=-1) # 获得每一帧对应的类别概率
            # single_frame_pred = torch.argmax(single_frame_pred, dim=-1).reshape(-1)
            single_frame_pred = torch.sigmoid(single_frame_pred).reshape(-1)
            all_frame_pred = torch.sigmoid(all_frame_pred).reshape(-1)

            # single_frame_pred = (single_frame_pred>threshold)*1
            if total_frames > end_frame:
                if i == 0:
                    single_frame_pred_label = single_frame_pred[: -overlap // 2]
                    all_frame_pred_label = all_frame_pred[: -overlap // 2]
                else:
                    single_frame_pred_label = torch.cat(
                        (
                            single_frame_pred_label,
                            single_frame_pred[overlap // 2 : -overlap // 2],
                        ),
                        dim=0,
                    )
                    all_frame_pred_label = torch.cat(
                        (
                            all_frame_pred_label,
                            all_frame_pred[overlap // 2 : -overlap // 2],
                        ),
                        dim=0,
                    )
            else:
                if i == 0:
                    single_frame_pred_label = single_frame_pred
                    all_frame_pred_label = all_frame_pred
                else:
                    single_frame_pred_label = torch.cat(
                        (single_frame_pred_label, single_frame_pred[overlap // 2 :]),
                        dim=0,
                    )
                    all_frame_pred_label = torch.cat(
                        (all_frame_pred_label, all_frame_pred[overlap // 2 :]), dim=0
                    )
                break

        single_frame_pred_label = single_frame_pred_label.cpu().numpy()
        all_frame_pred_label = all_frame_pred_label.cpu().numpy()

        return (
            single_frame_pred_label,
            all_frame_pred_label,
            fps,
            total_frames,
            duration,
            h,
            w,
        )


class StackedDDCNNV2(nn.Module):
    def __init__(
        self,
        in_filters,
        n_blocks,
        filters,
        shortcut=True,
        pool_type="avg",
        stochastic_depth_drop_prob=0.0,
    ):
        super(StackedDDCNNV2, self).__init__()

        self.shortcut = shortcut
        # 定义DDCNN层
        self.DDCNN = nn.ModuleList(
            [
                DilatedDCNNV2(
                    in_filters if i == 1 else filters * 4,
                    filters,
                    activation=F.relu if i != n_blocks else None,
                )
                for i in range(1, n_blocks + 1)
            ]
        )  # 有n_blocks层数量的DilateDCNNV2模块

        # 定义pool层
        self.pool = (
            nn.MaxPool3d(kernel_size=(1, 2, 2))
            if pool_type == "max"
            else nn.AvgPool3d(kernel_size=(1, 2, 2))
        )
        self.stochastic_depth_drop_prob = stochastic_depth_drop_prob

    def forward(self, inputs):
        x = inputs
        shortcut = None

        # DDCNN层前向传播
        for block in self.DDCNN:
            x = block(x)
            if shortcut is None:  # 记录第一层的结果作为残差连接
                shortcut = x

        x = F.relu(x)
        if self.shortcut is not None:
            if self.stochastic_depth_drop_prob != 0.0:
                if self.training:
                    if random.random() < self.stochastic_depth_drop_prob:
                        x = shortcut
                    else:
                        x = x + shortcut
                else:
                    x = (1 - self.stochastic_depth_drop_prob) * x + shortcut
            else:
                x = x + shortcut

        x = self.pool(x)
        return x


class DilatedDCNNV2(nn.Module):
    def __init__(self, in_filters, filters, batch_norm=True, activation=None):
        super(DilatedDCNNV2, self).__init__()

        self.Conv3D_1 = Conv3DConfigurable(
            in_filters, filters, 1, use_bias=not batch_norm
        )
        self.Conv3D_2 = Conv3DConfigurable(
            in_filters, filters, 2, use_bias=not batch_norm
        )
        self.Conv3D_4 = Conv3DConfigurable(
            in_filters, filters, 4, use_bias=not batch_norm
        )
        self.Conv3D_8 = Conv3DConfigurable(
            in_filters, filters, 8, use_bias=not batch_norm
        )

        self.bn = nn.BatchNorm3d(filters * 4, eps=1e-3) if batch_norm else None
        self.activation = activation  # 激活函数定义

    def forward(self, inputs):
        conv1 = self.Conv3D_1(inputs)
        conv2 = self.Conv3D_2(inputs)
        conv3 = self.Conv3D_4(inputs)
        conv4 = self.Conv3D_8(inputs)

        x = torch.cat([conv1, conv2, conv3, conv4], dim=1)

        if self.bn is not None:
            x = self.bn(x)

        if self.activation is not None:
            x = self.activation(x)

        return x


class Conv3DConfigurable(nn.Module):
    def __init__(
        self, in_filters, filters, dilation_rate, separable=True, use_bias=True
    ):
        super(Conv3DConfigurable, self).__init__()

        if separable:
            # (2+1)D convolution https://arxiv.org/pdf/1711.11248.pdf
            conv1 = nn.Conv3d(
                in_filters,
                2 * filters,
                kernel_size=(1, 3, 3),
                dilation=(1, 1, 1),
                padding=(0, 1, 1),
                bias=False,
            )
            conv2 = nn.Conv3d(
                2 * filters,
                filters,
                kernel_size=(3, 1, 1),
                dilation=(dilation_rate, 1, 1),
                padding=(dilation_rate, 0, 0),
                bias=use_bias,
            )
            self.layers = nn.ModuleList([conv1, conv2])
        else:
            conv = nn.Conv3d(
                in_filters,
                filters,
                kernel_size=3,
                dilation=(dilation_rate, 1, 1),
                padding=(dilation_rate, 1, 1),
                bias=use_bias,
            )
            self.layers = nn.ModuleList([conv])

    def forward(self, inputs):
        x = inputs
        for layer in self.layers:
            x = layer(x)
        return x


# 帧相似网络构建
class FrameSimilarity(nn.Module):
    def __init__(
        self,
        in_filters,
        similarity_dim=128,
        lookup_window=101,
        output_dim=128,
        use_bias=False,
    ):
        super(FrameSimilarity, self).__init__()

        self.projection = nn.Linear(in_filters, similarity_dim, bias=use_bias)
        self.fc = nn.Linear(lookup_window, output_dim)

        self.lookup_window = lookup_window
        assert lookup_window % 2 == 1, "`lookup_window` must be odd integer"

    def forward(self, inputs):
        x = torch.cat([torch.mean(x, dim=[3, 4]) for x in inputs], dim=1)
        x = torch.transpose(x, 1, 2)

        x = self.projection(x)
        x = F.normalize(x, p=2, dim=2)

        batch_size, time_window = x.shape[0], x.shape[1]
        similarities = torch.bmm(
            x, x.transpose(1, 2)
        )  # [batch_size, time_window, time_window]余弦相似度
        similarities_padded = F.pad(
            similarities, [(self.lookup_window - 1) // 2, (self.lookup_window - 1) // 2]
        )

        batch_indices = (
            torch.arange(0, batch_size, device=x.device)
            .view([batch_size, 1, 1])
            .repeat([1, time_window, self.lookup_window])
        )
        time_indices = (
            torch.arange(0, time_window, device=x.device)
            .view([1, time_window, 1])
            .repeat([batch_size, 1, self.lookup_window])
        )
        lookup_indices = (
            torch.arange(0, self.lookup_window, device=x.device)
            .view([1, 1, self.lookup_window])
            .repeat([batch_size, time_window, 1])
            + time_indices
        )

        similarities = similarities_padded[batch_indices, time_indices, lookup_indices]
        return F.relu(self.fc(similarities))


# 颜色相似网络
class ColorHistograms(nn.Module):
    def __init__(self, lookup_window=101, output_dim=None):
        super(ColorHistograms, self).__init__()

        self.fc = (
            nn.Linear(lookup_window, output_dim) if output_dim is not None else None
        )
        self.lookup_window = lookup_window
        assert lookup_window % 2 == 1, "`lookup_window` must be odd integer"

    @staticmethod
    def compute_color_histograms(frames):
        frames = frames.int()

        def get_bin(frames):
            # returns 0 .. 511
            R, G, B = frames[:, :, 0], frames[:, :, 1], frames[:, :, 2]
            R, G, B = R >> 5, G >> 5, B >> 5
            return (R << 6) + (G << 3) + B

        batch_size, time_window, height, width, no_channels = frames.shape
        assert no_channels == 3
        frames_flatten = frames.view(batch_size * time_window, height * width, 3)

        binned_values = get_bin(frames_flatten)
        frame_bin_prefix = (
            torch.arange(0, batch_size * time_window, device=frames.device) << 9
        ).view(-1, 1)
        binned_values = (binned_values + frame_bin_prefix).view(-1)

        histograms = torch.zeros(
            batch_size * time_window * 512, dtype=torch.int32, device=frames.device
        )
        histograms.scatter_add_(
            0,
            binned_values,
            torch.ones(len(binned_values), dtype=torch.int32, device=frames.device),
        )

        histograms = histograms.view(batch_size, time_window, 512).float()
        histograms_normalized = F.normalize(histograms, p=2, dim=2)
        return histograms_normalized

    def forward(self, inputs):
        x = self.compute_color_histograms(inputs)

        batch_size, time_window = x.shape[0], x.shape[1]
        similarities = torch.bmm(
            x, x.transpose(1, 2)
        )  # [batch_size, time_window, time_window]
        similarities_padded = F.pad(
            similarities, [(self.lookup_window - 1) // 2, (self.lookup_window - 1) // 2]
        )

        batch_indices = (
            torch.arange(0, batch_size, device=x.device)
            .view([batch_size, 1, 1])
            .repeat([1, time_window, self.lookup_window])
        )
        time_indices = (
            torch.arange(0, time_window, device=x.device)
            .view([1, time_window, 1])
            .repeat([batch_size, 1, self.lookup_window])
        )
        lookup_indices = (
            torch.arange(0, self.lookup_window, device=x.device)
            .view([1, 1, self.lookup_window])
            .repeat([batch_size, time_window, 1])
            + time_indices
        )

        similarities = similarities_padded[batch_indices, time_indices, lookup_indices]

        if self.fc is not None:
            return F.relu(self.fc(similarities))
        return similarities