File size: 4,978 Bytes
a57c6eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import os
from typing import Dict, List

from ...utils.path_util import get_file_name_ext
from ...utils.util import load_dct_from_file
from .vision_object import Object
from .vision_frame import Frame, FrameSeq


def face_meta_2_tme_meta(src: dict) -> dict:
    """人脸中的元信息格式转换

    Args:
        src (dict): 人脸中的元信息

    Returns:
        dict: 转换后的元信息
    """
    dst = {}
    dst["media_name"] = src["video_name"]
    dst["mediaid"] = src["video_name"]
    dst["signature"] = src["video_file_hash_code"]
    dst["fps"] = src["fps"]
    dst["duration"] = src["duration"]
    dst["frame_num"] = src["frame_num"]
    dst["height"] = src["height"]
    dst["width"] = src["width"]
    return dst


def face_obj_2_tme_obj(src: dict) -> dict:
    """人脸信息转换为 Object中的元信息

    Args:
        src (dict): 人脸框相关信息

    Returns:
        dict: 转换后的人脸信息
    """
    obj = {}
    obj["category"] = "face"
    obj["bbox"] = src["bbox"]
    obj["kps"] = src["kps"]
    obj["det_score"] = src["det_score"]
    obj["gender"] = src["gender"]
    obj["age"] = src["age"]
    obj["trackid"] = src["roleid"]
    return obj


def face_clips_2_tme_clips(src: list) -> list:
    """人脸信息转换为Clip

    Args:
        src (list): 人脸中 Clip 的多帧检测信息

    Returns:
        list: Clip 中的 frames信息
    """
    dst = []
    for idx, frame_perception in enumerate(src):
        frame_dst = {}
        frame_dst["frame_idx"] = frame_perception["frame_idx"]
        objs = []
        if frame_perception["faces"] is not None:
            for face in frame_perception["faces"]:
                obj = face_obj_2_tme_obj(face)
                objs.append(obj)
        frame_dst["objs"] = objs
        dst.append(frame_dst)
    return dst


def face2TMEType(src: dict) -> dict:
    """人脸检测的信息转换成 视频剪辑中的格式

    Args:
        src (dict): 人脸检测信息

    Returns:
        dict: 转换后的字典格式
    """
    meta_info = face_meta_2_tme_meta(
        {
            k: v
            for k, v in src.items()
            if k
            not in [
                "face_detections",
                "single_frame_transiton_score",
                "all_frame_transiton_score",
                "clips",
            ]
        }
    )
    clips = face_clips_2_tme_clips(src["face_detections"])
    video_info = {"meta_info": meta_info, "sub_meta_info": [], "clips": clips}
    return video_info


def load_multi_face(
    path_lst: str,
) -> dict:
    """读取多个人脸检测结果文件,转化成VideoInfo对应的字典格式。

    Args:
        path_lst (str or [str]): 人脸检测结果文件

    Returns:
        dict: VideoInfo对应的字典格式, key是 文件名
    """
    if not isinstance(path_lst, list):
        path_lst = [path_lst]
    face_info_dct = {}
    for path in path_lst:
        filename, ext = get_file_name_ext(os.path.basename(path))
        face_info = load_dct_from_file(path)
        face_info = face2TMEType(face_info)
        face_info_dct[filename] = face_info
    return face_info_dct


def face_roles2frames(src: dict, **kwargs: dict) -> List[Frame]:
    """将roles字典转换为Frame

    Args:
        src (dict): {
            roleid: {
                "bbox": {
                "frame_idx": [
                        [x1, y1, x2, y2]
                    ]
                }
                "names": str,
            }
        }
        kwargs (dict): 便于其他需要的参数也传到Frame中去

    Returns:
        List[Frame]: _description_
    """
    frames = {}
    for roleid, faces_info in src.items():
        if "name" not in faces_info or faces_info["name"] == "":
            name = "unknown"
        else:
            name = faces_info["name"]
        if "bbox" in faces_info:
            frames_bbox = faces_info["bbox"]
            for frameid, bbox in frames_bbox.items():
                frameid = int(frameid)
                if frameid not in frames:
                    frames[frameid] = {"objs": [], "frame_idx": frameid}
                obj = {
                    "name": name,
                    "bbox": bbox[0],
                    "category": "person",
                    "obj_id": int(roleid),
                }
                obj = Object(**obj)
                frames[frameid]["objs"].append(obj)
    frame_obj_list = []
    for frameid in sorted(frames.keys()):
        frame_args = frames[frameid]
        frame_args.update(**kwargs)
        frame = Frame(**frame_args)
        frame_obj_list.append(frame)
    return frame_obj_list


def clipseq_face_roles2frames(clips_roles: List[Dict], **kwargs: dict) -> FrameSeq:
    frame_seq = []
    for roles in clips_roles:
        frames = face_roles2frames(roles)
        frame_seq.extend(frames)
    frame_seq = sorted(frame_seq, key=lambda f: f.frame_idx)
    return FrameSeq(frame_seq, **kwargs)