Spaces:
Runtime error
Runtime error
File size: 24,986 Bytes
96d7ad8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 |
# MuseV [English](README.md) [中文](README-zh.md)
<font size=5>MuseV: Infinite-length and High Fidelity Virtual Human Video Generation with Visual Conditioned Parallel Denoising
</br>
Zhiqiang Xia <sup>\*</sup>,
Zhaokang Chen<sup>\*</sup>,
Bin Wu<sup>†</sup>,
Chao Li,
Kwok-Wai Hung,
Chao Zhan,
Yingjie He,
Wenjiang Zhou
(<sup>*</sup>co-first author, <sup>†</sup>Corresponding Author, [email protected])
</font>
**[github](https://github.com/TMElyralab/MuseV)** **[huggingface](https://huggingface.co/TMElyralab/MuseV)** **[HuggingfaceSpace](https://huggingface.co/spaces/AnchorFake/MuseVDemo)** **[project](https://tmelyralab.github.io/)** **Technical report (comming soon)**
We have setup **the world simulator vision since March 2023, believing diffusion models can simulate the world**. `MuseV` was a milestone achieved around **July 2023**. Amazed by the progress of Sora, we decided to opensource `MuseV`, hopefully it will benefit the community. Next we will move on to the promising diffusion+transformer scheme.
Update: We have released <a href="https://github.com/TMElyralab/MuseTalk" style="font-size:24px; color:red;">MuseTalk</a>, a real-time high quality lip sync model, which can be applied with MuseV as a complete virtual human generation solution.
# Overview
`MuseV` is a diffusion-based virtual human video generation framework, which
1. supports **infinite length** generation using a novel **Visual Conditioned Parallel Denoising scheme**.
2. checkpoint available for virtual human video generation trained on human dataset.
3. supports Image2Video, Text2Image2Video, Video2Video.
4. compatible with the **Stable Diffusion ecosystem**, including `base_model`, `lora`, `controlnet`, etc.
5. supports multi reference image technology, including `IPAdapter`, `ReferenceOnly`, `ReferenceNet`, `IPAdapterFaceID`.
6. training codes (comming very soon).
# Important bug fixes
1. `musev_referencenet_pose`: model_name of `unet`, `ip_adapter` of Command is not correct, please use `musev_referencenet_pose` instead of `musev_referencenet`.
# News
- [03/27/2024] release `MuseV` project and trained model `musev`, `muse_referencenet`.
- [03/30/2024] add huggingface space gradio to generate video in gui
## Model
### Overview of model structure

### Parallel denoising

## Cases
All frames were generated directly from text2video model, without any post process.
<!-- # TODO: // use youtu video link? -->
Examples bellow can be accessed at `configs/tasks/example.yaml`
MoreCase is in **[project](https://tmelyralab.github.io/)**
### Text/Image2Video
#### Human
<table class="center">
<tr style="font-weight: bolder;text-align:center;">
<td width="50%">image</td>
<td width="45%">video </td>
<td width="5%">prompt</td>
</tr>
<tr>
<td>
<img src=./data/images/yongen.jpeg width="400">
</td>
<td >
<video src="https://github.com/TMElyralab/MuseV/assets/163980830/732cf1fd-25e7-494e-b462-969c9425d277" width="100" controls preload></video>
</td>
<td>(masterpiece, best quality, highres:1),(1boy, solo:1),(eye blinks:1.8),(head wave:1.3)
</td>
</tr>
<tr>
<td>
<img src=./data/images/jinkesi2.jpeg width="400">
</td>
<td>
<video src="https://github.com/TMElyralab/MuseV/assets/163980830/62b533d3-95f3-48db-889d-75dde1ad04b7" width="100" controls preload></video>
</td>
<td>
(masterpiece, best quality, highres:1),(1girl, solo:1),(beautiful face,
soft skin, costume:1),(eye blinks:{eye_blinks_factor}),(head wave:1.3)
</td>
</tr>
<tr>
<td>
<img src=./data/images/seaside4.jpeg width="400">
</td>
<td>
<video src="https://github.com/TMElyralab/MuseV/assets/163980830/9b75a46c-f4e6-45ef-ad02-05729f091c8f" width="100" controls preload></video>
</td>
<td>
(masterpiece, best quality, highres:1), peaceful beautiful sea scene
</td>
</tr>
<tr>
<td>
<img src=./data/images/seaside_girl.jpeg width="400">
</td>
<td>
<video src="https://github.com/TMElyralab/MuseV/assets/163980830/d0f3b401-09bf-4018-81c3-569ec24a4de9" width="100" controls preload></video>
</td>
<td>
(masterpiece, best quality, highres:1), peaceful beautiful sea scene
</td>
</tr>
<!-- guitar -->
<tr>
<td>
<img src=./data/images/boy_play_guitar.jpeg width="400">
</td>
<td>
<video src="https://github.com/TMElyralab/MuseV/assets/163980830/61bf955e-7161-44c8-a498-8811c4f4eb4f" width="100" controls preload></video>
</td>
<td>
(masterpiece, best quality, highres:1), playing guitar
</td>
</tr>
<tr>
<td>
<img src=./data/images/girl_play_guitar2.jpeg width="400">
</td>
<td>
<video src="https://github.com/TMElyralab/MuseV/assets/163980830/40982aa7-9f6a-4e44-8ef6-3f185d284e6a" width="100" controls preload></video>
</td>
<td>
(masterpiece, best quality, highres:1), playing guitar
</td>
</tr>
<tr>
<td>
<img src=./data/images/boy_play_guitar2.jpeg width="400">
</td>
<td>
<video src="https://github.com/TMElyralab/MuseV/assets/163980830/69ea9d0c-5ed0-44b9-bca9-a4829c8d8b68" width="100" controls preload></video>
</td>
<td>
(masterpiece, best quality, highres:1), playing guitar
</td>
</tr>
<tr>
<td>
<img src=./data/images/girl_play_guitar4.jpeg width="400">
</td>
<td>
<video src="https://github.com/TMElyralab/MuseV/assets/163980830/d242e8a4-08ab-474f-b4a8-b718780d2991" width="100" controls preload></video>
</td>
<td>
(masterpiece, best quality, highres:1), playing guitar
</td>
</tr>
<!-- famous people -->
<tr>
<td>
<img src=./data/images/dufu.jpeg width="400">
</td>
<td>
<video src="https://github.com/TMElyralab/MuseV/assets/163980830/28294baa-b996-420f-b1fb-046542adf87d" width="100" controls preload></video>
</td>
<td>
(masterpiece, best quality, highres:1),(1man, solo:1),(eye blinks:1.8),(head wave:1.3),Chinese ink painting style
</td>
</tr>
<tr>
<td>
<img src=./data/images/Mona_Lisa.jpg width="400">
</td>
<td>
<video src="https://github.com/TMElyralab/MuseV/assets/163980830/1ce11da6-14c6-4dcd-b7f9-7a5f060d71fb" width="100" controls preload></video>
</td>
<td>
(masterpiece, best quality, highres:1),(1girl, solo:1),(beautiful face,
soft skin, costume:1),(eye blinks:{eye_blinks_factor}),(head wave:1.3)
</td>
</tr>
<tr>
<td>
<img src=./data/images/Portrait-of-Dr.-Gachet.jpg width="400">
</td>
<td>
<video src="https://github.com/TMElyralab/MuseV/assets/163980830/4072410a-ecea-4ee5-a9b4-735f9f462d51" width="100" controls preload></video>
</td>
<td>
(masterpiece, best quality, highres:1),(1man, solo:1),(eye blinks:1.8),(head wave:1.3)
</td>
</tr>
<tr>
<td>
<img src=./data/images/Self-Portrait-with-Cropped-Hair.jpg width="400">
</td>
<td>
<video src="https://github.com/TMElyralab/MuseV/assets/163980830/5148beda-a1e1-44f0-ad84-2fb99ad73a11" width="100" controls preload></video>
</td>
<td>
(masterpiece, best quality, highres:1),(1man, solo:1),(eye blinks:1.8),(head wave:1.3), animate
</td>
</tr>
<tr>
<td>
<img src=./data/images/The-Laughing-Cavalier.jpg width="400">
</td>
<td>
<video src="https://github.com/TMElyralab/MuseV/assets/163980830/df1c5943-15a3-41f5-afe7-e7497c81836d" width="100" controls preload></video>
</td>
<td>
(masterpiece, best quality, highres:1),(1girl, solo:1),(beautiful face,
soft skin, costume:1),(eye blinks:{eye_blinks_factor}),(head wave:1.3)
</td>
</tr>
</table >
#### Scene
<table class="center">
<tr style="font-weight: bolder;text-align:center;">
<td width="35%">image</td>
<td width="50%">video</td>
<td width="15%">prompt</td>
</tr>
<tr>
<td>
<img src=./data/images/waterfall4.jpeg width="400">
</td>
<td>
<video src="https://github.com/TMElyralab/MuseV/assets/163980830/852daeb6-6b58-4931-81f9-0dddfa1b4ea5" width="100" controls preload></video>
</td>
<td>
(masterpiece, best quality, highres:1), peaceful beautiful waterfall, an
endless waterfall
</td>
</tr>
<tr>
<td>
<img src=./data/images/river.jpeg width="400">
</td>
<td>
<video src="https://github.com/TMElyralab/MuseV/assets/163980830/d5cb2798-b5ce-497a-a058-ae63d664028e" width="100" controls preload></video>
</td>
<td>(masterpiece, best quality, highres:1), peaceful beautiful river
</td>
</tr>
<tr>
<td>
<img src=./data/images/seaside2.jpeg width="400">
</td>
<td>
<video src="https://github.com/TMElyralab/MuseV/assets/163980830/4a4d527a-6203-411f-afe9-31c992d26816" width="100" controls preload></video>
</td>
<td>(masterpiece, best quality, highres:1), peaceful beautiful sea scene
</td>
</tr>
</table >
### VideoMiddle2Video
**pose2video**
In `duffy` mode, pose of the vision condition frame is not aligned with the first frame of control video. `posealign` will solve the problem.
<table class="center">
<tr style="font-weight: bolder;text-align:center;">
<td width="25%">image</td>
<td width="65%">video</td>
<td width="10%">prompt</td>
</tr>
<tr>
<td>
<img src=./data/images/spark_girl.png width="200">
<img src=./data/images/cyber_girl.png width="200">
</td>
<td>
<video src="https://github.com/TMElyralab/MuseV/assets/163980830/484cc69d-c316-4464-a55b-3df929780a8e" width="400" controls preload></video>
</td>
<td>
(masterpiece, best quality, highres:1) , a girl is dancing, animation
</td>
</tr>
<tr>
<td>
<img src=./data/images/duffy.png width="400">
</td>
<td>
<video src="https://github.com/TMElyralab/MuseV/assets/163980830/c44682e6-aafc-4730-8fc1-72825c1bacf2" width="400" controls preload></video>
</td>
<td>
(masterpiece, best quality, highres:1), is dancing, animation
</td>
</tr>
</table >
### MuseTalk
The character of talk, `Sun Xinying` is a supermodel KOL. You can follow her on [douyin](https://www.douyin.com/user/MS4wLjABAAAAWDThbMPN_6Xmm_JgXexbOii1K-httbu2APdG8DvDyM8).
<table class="center">
<tr style="font-weight: bolder;">
<td width="35%">name</td>
<td width="50%">video</td>
</tr>
<tr>
<td>
talk
</td>
<td>
<video src="https://github.com/TMElyralab/MuseV/assets/163980830/951188d1-4731-4e7f-bf40-03cacba17f2f" width="100" controls preload></video>
</td>
</tr>
<tr>
<td>
talk
</td>
<td>
<video src="https://github.com/TMElyralab/MuseV/assets/163980830/ba0396ab-8aba-4440-803c-18b078ae1dd9" width="100" controls preload></video>
</td>
</tr>
<tr>
<td>
sing
</td>
<td>
<video src="https://github.com/TMElyralab/MuseV/assets/163980830/50b8ffab-9307-4836-99e5-947e6ce7d112" width="100" controls preload></video>
</td>
</tr>
</table >
# TODO:
- [ ] technical report (comming soon).
- [ ] training codes.
- [ ] release pretrained unet model, which is trained with controlnet、referencenet、IPAdapter, which is better on pose2video.
- [ ] support diffusion transformer generation framework.
- [ ] release `posealign` module
# Quickstart
Prepare python environment and install extra package like `diffusers`, `controlnet_aux`, `mmcm`.
## Prepare environment
You are recommended to use `docker` primarily to prepare python environment.
### prepare python env
**Attention**: we only test with docker, there are maybe trouble with conda, or requirement. We will try to fix it. Use `docker` Please.
#### Method 1: docker
1. pull docker image
```bash
docker pull anchorxia/musev:latest
```
2. run docker
```bash
docker run --gpus all -it --entrypoint /bin/bash anchorxia/musev:latest
```
The default conda env is `musev`.
#### Method 2: conda
create conda environment from environment.yaml
```
conda env create --name musev --file ./environment.yml
```
#### Method 3: pip requirements
```
pip install -r requirements.txt
```
#### Prepare mmlab package
if not use docker, should install mmlab package additionally.
```bash
pip install --no-cache-dir -U openmim
mim install mmengine
mim install "mmcv>=2.0.1"
mim install "mmdet>=3.1.0"
mim install "mmpose>=1.1.0"
```
### Prepare custom package / modified package
#### clone
```bash
git clone --recursive https://github.com/TMElyralab/MuseV.git
```
#### prepare PYTHONPATH
```bash
current_dir=$(pwd)
export PYTHONPATH=${PYTHONPATH}:${current_dir}/MuseV
export PYTHONPATH=${PYTHONPATH}:${current_dir}/MuseV/MMCM
export PYTHONPATH=${PYTHONPATH}:${current_dir}/MuseV/diffusers/src
export PYTHONPATH=${PYTHONPATH}:${current_dir}/MuseV/controlnet_aux/src
cd MuseV
```
1. `MMCM`: multi media, cross modal process package。
1. `diffusers`: modified diffusers package based on [diffusers](https://github.com/huggingface/diffusers)
1. `controlnet_aux`: modified based on [controlnet_aux](https://github.com/TMElyralab/controlnet_aux)
## Download models
```bash
git clone https://huggingface.co/TMElyralab/MuseV ./checkpoints
```
- `motion`: text2video model, trained on tiny `ucf101` and tiny `webvid` dataset, approximately 60K videos text pairs. GPU memory consumption testing on `resolution`$=512*512$, `time_size=12`.
- `musev/unet`: only has and train `unet` motion module. `GPU memory consumption` $\approx 8G$.
- `musev_referencenet`: train `unet` module, `referencenet`, `IPAdapter`. `GPU memory consumption` $\approx 12G$.
- `unet`: `motion` module, which has `to_k`, `to_v` in `Attention` layer refer to `IPAdapter`
- `referencenet`: similar to `AnimateAnyone`
- `ip_adapter_image_proj.bin`: images clip emb project layer, refer to `IPAdapter`
- `musev_referencenet_pose`: based on `musev_referencenet`, fix `referencenet`and `controlnet_pose`, train `unet motion` and `IPAdapter`. `GPU memory consumption` $\approx 12G$
- `t2i/sd1.5`: text2image model, parameter are frozen when training motion module. Different `t2i` base_model has a significant impact.
- `majicmixRealv6Fp16`: example, could be replaced with other t2i base. download from [majicmixRealv6Fp16](https://civitai.com/models/43331?modelVersionId=94640)
- `fantasticmix_v10`: example, could be replaced with other t2i base. download from [fantasticmix_v10](https://civitai.com/models/22402?modelVersionId=26744)
- `IP-Adapter/models`: download from [IPAdapter](https://huggingface.co/h94/IP-Adapter/tree/main)
- `image_encoder`: vision clip model.
- `ip-adapter_sd15.bin`: original IPAdapter model checkpoint.
- `ip-adapter-faceid_sd15.bin`: original IPAdapter model checkpoint.
## Inference
### Prepare model_path
Skip this step when run example task with example inference command.
Set model path and abbreviation in config, to use abbreviation in inference script.
- T2I SD:ref to `musev/configs/model/T2I_all_model.py`
- Motion Unet: refer to `musev/configs/model/motion_model.py`
- Task: refer to `musev/configs/tasks/example.yaml`
### musev_referencenet
#### text2video
```bash
python scripts/inference/text2video.py --sd_model_name majicmixRealv6Fp16 --unet_model_name musev_referencenet --referencenet_model_name musev_referencenet --ip_adapter_model_name musev_referencenet -test_data_path ./configs/tasks/example.yaml --output_dir ./output --n_batch 1 --target_datas yongen --vision_clip_extractor_class_name ImageClipVisionFeatureExtractor --vision_clip_model_path ./checkpoints/IP-Adapter/models/image_encoder --time_size 12 --fps 12
```
**common parameters**:
- `test_data_path`: task_path in yaml extention
- `target_datas`: sep is `,`, sample subtasks if `name` in `test_data_path` is in `target_datas`.
- `sd_model_cfg_path`: T2I sd models path, model config path or model path.
- `sd_model_name`: sd model name, which use to choose full model path in sd_model_cfg_path. multi model names with sep =`,`, or `all`
- `unet_model_cfg_path`: motion unet model config path or model path。
- `unet_model_name`: unet model name, use to get model path in `unet_model_cfg_path`, and init unet class instance in `musev/models/unet_loader.py`. multi model names with sep=`,`, or `all`. If `unet_model_cfg_path` is model path, `unet_name` must be supported in `musev/models/unet_loader.py`
- `time_size`: num_frames per diffusion denoise generation。default=`12`.
- `n_batch`: generation numbers of shot, $total\_frames=n\_batch * time\_size + n\_viscond$, default=`1`。
- `context_frames`: context_frames num. If `time_size` > `context_frame`,`time_size` window is split into many sub-windows for parallel denoising"。 default=`12`。
To generate long videos, there two ways:
1. `visual conditioned parallel denoise`: set `n_batch=1`, `time_size` = all frames you want.
1. `traditional end-to-end`: set `time_size` = `context_frames` = frames of a shot (`12`), `context_overlap` = 0;
**model parameters**:
supports `referencenet`, `IPAdapter`, `IPAdapterFaceID`, `Facein`.
- referencenet_model_name: `referencenet` model name.
- ImageClipVisionFeatureExtractor: `ImageEmbExtractor` name, extractor vision clip emb used in `IPAdapter`.
- vision_clip_model_path: `ImageClipVisionFeatureExtractor` model path.
- ip_adapter_model_name: from `IPAdapter`, it's `ImagePromptEmbProj`, used with `ImageEmbExtractor`。
- ip_adapter_face_model_name: `IPAdapterFaceID`, from `IPAdapter` to keep faceid,should set `face_image_path`。
**Some parameters that affect the motion range and generation results**:
- `video_guidance_scale`: Similar to text2image, control influence between cond and uncond,default=`3.5`
- `guidance_scale`: The parameter ratio in the first frame image between cond and uncond, default=`3.5`
- `use_condition_image`: Whether to use the given first frame for video generation.
- `redraw_condition_image`: Whether to redraw the given first frame image.
- `video_negative_prompt`: Abbreviation of full `negative_prompt` in config path. default=`V2`.
#### video2video
`t2i` base_model has a significant impact. In this case, `fantasticmix_v10` performs better than `majicmixRealv6Fp16`.
```bash
python scripts/inference/video2video.py --sd_model_name fantasticmix_v10 --unet_model_name musev_referencenet --referencenet_model_name musev_referencenet --ip_adapter_model_name musev_referencenet -test_data_path ./configs/tasks/example.yaml --vision_clip_extractor_class_name ImageClipVisionFeatureExtractor --vision_clip_model_path ./checkpoints/IP-Adapter/models/image_encoder --output_dir ./output --n_batch 1 --controlnet_name dwpose_body_hand --which2video "video_middle" --target_datas dance1 --fps 12 --time_size 12
```
**import parameters**
Most of the parameters are same as `musev_text2video`. Special parameters of `video2video` are:
1. need to set `video_path` in `test_data`. Now supports `rgb video` and `controlnet_middle_video`。
- `which2video`: whether `rgb` video influences initial noise, more strongly than controlnet condition. If `True`, then redraw video.
- `controlnet_name`:whether to use `controlnet condition`, such as `dwpose,depth`.
- `video_is_middle`: `video_path` is `rgb video` or `controlnet_middle_video`. Can be set for every `test_data` in test_data_path.
- `video_has_condition`: whether condtion_images is aligned with the first frame of video_path. If Not, firstly generate `condition_images` and then align with concatation. set in `test_data`。
all controlnet_names refer to [mmcm](https://github.com/TMElyralab/MMCM/blob/main/mmcm/vision/feature_extractor/controlnet.py#L513)
```python
['pose', 'pose_body', 'pose_hand', 'pose_face', 'pose_hand_body', 'pose_hand_face', 'dwpose', 'dwpose_face', 'dwpose_hand', 'dwpose_body', 'dwpose_body_hand', 'canny', 'tile', 'hed', 'hed_scribble', 'depth', 'pidi', 'normal_bae', 'lineart', 'lineart_anime', 'zoe', 'sam', 'mobile_sam', 'leres', 'content', 'face_detector']
```
### musev_referencenet_pose
Only used for `pose2video`
train based on `musev_referencenet`, fix `referencenet`, `pose-controlnet`, and `T2I`, train `motion` module and `IPAdapter`.
`t2i` base_model has a significant impact. In this case, `fantasticmix_v10` performs better than `majicmixRealv6Fp16`.
```bash
python scripts/inference/video2video.py --sd_model_name fantasticmix_v10 --unet_model_name musev_referencenet_pose --referencenet_model_name musev_referencenet --ip_adapter_model_name musev_referencenet_pose -test_data_path ./configs/tasks/example.yaml --vision_clip_extractor_class_name ImageClipVisionFeatureExtractor --vision_clip_model_path ./checkpoints/IP-Adapter/models/image_encoder --output_dir ./output --n_batch 1 --controlnet_name dwpose_body_hand --which2video "video_middle" --target_datas dance1 --fps 12 --time_size 12
```
### musev
Only has motion module, no referencenet, requiring less gpu memory.
#### text2video
```bash
python scripts/inference/text2video.py --sd_model_name majicmixRealv6Fp16 --unet_model_name musev -test_data_path ./configs/tasks/example.yaml --output_dir ./output --n_batch 1 --target_datas yongen --time_size 12 --fps 12
```
#### video2video
```bash
python scripts/inference/video2video.py --sd_model_name fantasticmix_v10 --unet_model_name musev -test_data_path ./configs/tasks/example.yaml --output_dir ./output --n_batch 1 --controlnet_name dwpose_body_hand --which2video "video_middle" --target_datas dance1 --fps 12 --time_size 12
```
### Gradio demo
MuseV provides gradio script to generate a GUI in a local machine to generate video conveniently.
```bash
cd scripts/gradio
python app.py
```
# Acknowledgements
1. MuseV has referred much to [TuneAVideo](https://github.com/showlab/Tune-A-Video), [diffusers](https://github.com/huggingface/diffusers), [Moore-AnimateAnyone](https://github.com/MooreThreads/Moore-AnimateAnyone/tree/master/src/pipelines), [animatediff](https://github.com/guoyww/AnimateDiff), [IP-Adapter](https://github.com/tencent-ailab/IP-Adapter), [AnimateAnyone](https://arxiv.org/abs/2311.17117), [VideoFusion](https://arxiv.org/abs/2303.08320), [insightface](https://github.com/deepinsight/insightface).
2. MuseV has been built on `ucf101` and `webvid` datasets.
Thanks for open-sourcing!
# Limitation
There are still many limitations, including
1. Lack of generalization ability. Some visual condition image perform well, some perform bad. Some t2i pretraied model perform well, some perform bad.
1. Limited types of video generation and limited motion range, partly because of limited types of training data. The released `MuseV` has been trained on approximately 60K human text-video pairs with resolution `512*320`. `MuseV` has greater motion range while lower video quality at lower resolution. `MuseV` tends to generate less motion range with high video quality. Trained on larger, higher resolution, higher quality text-video dataset may make `MuseV` better.
1. Watermarks may appear because of `webvid`. A cleaner dataset withour watermarks may solve this issue.
1. Limited types of long video generation. Visual Conditioned Parallel Denoise can solve accumulated error of video generation, but the current method is only suitable for relatively fixed camera scenes.
1. Undertrained referencenet and IP-Adapter, beacause of limited time and limited resources.
1. Understructured code. `MuseV` supports rich and dynamic features, but with complex and unrefacted codes. It takes time to familiarize.
<!-- # Contribution 暂时不需要组织开源共建 -->
# Citation
```bib
@article{musev,
title={MuseV: Infinite-length and High Fidelity Virtual Human Video Generation with Visual Conditioned Parallel Denoising},
author={Xia, Zhiqiang and Chen, Zhaokang and Wu, Bin and Li, Chao and Hung, Kwok-Wai and Zhan, Chao and He, Yingjie and Zhou, Wenjiang},
journal={arxiv},
year={2024}
}
```
# Disclaimer/License
1. `code`: The code of MuseV is released under the MIT License. There is no limitation for both academic and commercial usage.
1. `model`: The trained model are available for non-commercial research purposes only.
1. `other opensource model`: Other open-source models used must comply with their license, such as `insightface`, `IP-Adapter`, `ft-mse-vae`, etc.
1. The testdata are collected from internet, which are available for non-commercial research purposes only.
1. `AIGC`: This project strives to impact the domain of AI-driven video generation positively. Users are granted the freedom to create videos using this tool, but they are expected to comply with local laws and utilize it responsibly. The developers do not assume any responsibility for potential misuse by users.
|