Spaces:
Running
Running
File size: 5,516 Bytes
aa68450 eb58c95 aa68450 4547220 ac1ff33 eb58c95 ac1ff33 aa68450 f80e04a e8fb6a3 aa68450 f80e04a 4547220 aa68450 e8fb6a3 aa68450 e8fb6a3 aa68450 e8fb6a3 aa68450 e8fb6a3 aa68450 e8fb6a3 aa68450 e8fb6a3 4547220 32e3d31 4547220 120dad2 e8fb6a3 4547220 e8fb6a3 4547220 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 |
from collections import Counter
import streamlit as st
import json
from itertools import islice
from typing import Generator
from plotly import express as px
from safetensors import safe_open
from semantic_search import predict
from sentence_transformers import SentenceTransformer
import os
HF_TOKEN = os.environ.get("HF_TOKEN")
def chunks(data: dict, size=13) -> Generator:
it = iter(data)
for i in range(0, len(data), size):
yield {k: data[k] for k in islice(it, size)}
def get_tree_map_data(
data: dict,
countings_parents: dict,
countings_labels: dict,
root: str = " ",
) -> tuple:
names: list = [""]
parents: list = [root]
values: list = ["0"]
for group, labels in data.items():
names.append(group)
parents.append(root)
if group in countings_parents:
values.append(str(countings_parents[group]))
else:
values.append("0")
for label in labels:
if "-" in label:
label = label.split("-")
label = label[0] + "<br> -" + label[1]
names.append(label)
parents.append(group)
if label in countings_labels:
values.append(str(countings_labels[label]))
else:
values.append("0")
# if "-" in label:
# names.append(label.split("-")[0])
# parents.append(label)
# names.append(label.split("-")[1])
# parents.append(label)
return parents, names, values
def load_json(path: str) -> dict:
with open(path, "r") as fp:
return json.load(fp)
# Load Data
data = load_json("data.json")
taxonomy = load_json("taxonomy_processed_v3.json")
taxonomy_labels = [el["group"] + " - " + el["label"] for el in taxonomy]
theme_counts = dict(Counter([el["THEMA"] for el in data]))
labels_counts = dict(Counter([el["BEZEICHNUNG"] for el in data]))
names = [""]
parents = ["Musterdatenkatalog"]
taxonomy_group_label_mapper: dict = {el["group"]: [] for el in taxonomy}
for el in taxonomy:
if el["group"] != "Sonstiges":
taxonomy_group_label_mapper[el["group"]].append(el["label"])
else:
taxonomy_group_label_mapper[el["group"]].append("Sonstiges ")
parents, name, values = get_tree_map_data(
data=taxonomy_group_label_mapper,
countings_parents=theme_counts,
countings_labels=labels_counts,
root="Musterdatenkatalog",
)
fig = px.treemap(
names=name,
parents=parents,
)
fig.update_layout(
margin=dict(t=50, l=25, r=25, b=25),
height=1000,
width=1000,
template="plotly",
)
tensors = {}
with safe_open("corpus_embeddings.pt", framework="pt", device="cpu") as f:
for k in f.keys():
tensors[k] = f.get_tensor(k)
model = SentenceTransformer(
model_name_or_path="and-effect/musterdatenkatalog_clf",
device="cpu",
use_auth_token=HF_TOKEN,
)
st.set_page_config(layout="wide")
st.title("Musterdatenkatalog")
col1, col2, col3 = st.columns(3)
col1.metric("Kommunale Datensätze", len(data))
col2.metric("Themen", len(theme_counts))
col3.metric("Bezeichnungen", len(labels_counts))
st.title("Taxonomy")
st.plotly_chart(fig)
st.title("Predict a Dataset")
# create two columns and make left column wider
# st.markdown(
# """
# <style>
# div[data-testid="stVerticalBlock"] div[style*="flex-direction: column;"] div[data-testid="stVerticalBlock"] {
# border-radius: 15px;
# background-color: white;
# box-shadow: 0 0 10px #eee;
# border: 1px solid #ddd;
# padding: 1rem;;
# }
# </style>
# """,
# unsafe_allow_html=True,
# )
st.markdown(
"""
<style>
/* Style columns */
[data-testid="column"] {
border-radius: 15px;
background-color: white;
box-shadow: 0 0 10px #eee;
border: 1px solid #ddd;
padding: 1rem;;
}
/* Style containers */
[data-testid="stVerticalBlock"] > [style*="flex-direction: column;"] > [data-testid="stVerticalBlock"] {
border-radius: 15px;
background-color: white;
box-shadow: 0 0 10px #eee;
border: 1px solid #ddd;
padding: 1rem;;
}
</style>
""",
unsafe_allow_html=True,
)
col1, col2 = st.columns([1.2, 1])
with col2:
st.subheader("Example Datasets")
examples = [
"Spielplätze",
"Berliner Weihnachtsmärkte 2022",
"Hochschulwechslerquoten zum Masterstudium nach Bundesländern",
"Umringe der Bebauungspläne von Etgert",
]
for example in examples:
if st.button(example):
if "key" not in st.session_state:
st.session_state["query"] = example
with col1:
if "query" not in st.session_state:
query = st.text_input(
"Enter dataset name",
)
if "query" in st.session_state and st.session_state.query in examples:
query = st.text_input("Enter dataset name", value=st.session_state.query)
if "query" in st.session_state and st.session_state.query not in examples:
del st.session_state["query"]
query = st.text_input("Enter dataset name")
top_k = st.select_slider("Top Results", options=[1, 2, 3, 4, 5], value=1)
predictions = predict(
query=query,
corpus_embeddings=tensors["corpus_embeddings"],
corpus_labels=taxonomy_labels,
top_k=top_k,
model=model,
)
if st.button("Predict"):
for prediction in predictions:
st.write(prediction)
|