File size: 8,799 Bytes
4eea983
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
import pandas as pd
import os
import logging
import numpy as np
import ast
import math
from pathlib import Path

# define logger
logging.basicConfig(
    level=logging.INFO,
    format="%(asctime)s [%(levelname)s] %(message)s",
    handlers=[
        logging.FileHandler("process_data.log"),
        logging.StreamHandler(),
    ],
)


CITIES_DATA = os.path.join("data", "raw", "2024_08_20_cities_1310_v5.csv")
DATA_ENRICHED = os.path.join("data", "cities_enriched.csv")

# meta data for kreis codes ( variable in coordinates table)
NAME_CODE_DATA = os.path.join("data", "raw", "name_kreiscode.csv")
CODES_KOMMUNEN = os.path.join("data", "raw", "Deutschlandatlas.csv")
# coordinates for Gemeinden
COORDINATES = os.path.join("data", "raw", "coordinates_plz_kreiscode.csv")
MISSING = os.path.join("data", "missing_first_parser.csv")

if not os.path.exists(os.path.join("data", "preprocessed")):
    Path(os.path.join("data", "preprocessed")).mkdir(parents=True, exist_ok=True)


def load_cities(path: str) -> pd.DataFrame:
    df = pd.read_csv(path)
    df.drop_duplicates(subset="Kommune", keep="first", inplace=True)
    return df


def create_code_mapper(path: str) -> dict:
    name_code = pd.read_csv(
        path, sep=";", encoding="latin_1", names=["Datum", "Code", "Name", "Fläche"]
    )[7:13929]
    # adds all Landkreise and gemeinden to the mapper
    code_mapper = {
        (key if type(key) != float else "0000"): value
        for key, value in zip(name_code["Name"], name_code["Code"])
    }
    # adds all gemeindeverbände to the mapper
    kommunen_code = pd.read_csv(CODES_KOMMUNEN, sep=";", encoding="latin_1")
    code_mapper_update = {
        key: value
        for key, value in zip(kommunen_code["name"], kommunen_code["Gebietskennziffer"])
    }
    print(code_mapper_update)
    code_mapper.update(code_mapper_update)
    return code_mapper


def map_code(org_name, code_mapper):
    # Split the org_name string into parts
    parts = org_name.split()
    # print(parts, type(parts[0]))
    # Find a key in code_mapper that contains all parts of the split org_name
    for key in code_mapper.keys():
        # look first for whole name (cases like "Landkreis München" , "kreisfreie Stadt München")
        if all(part in key for part in parts):
            return code_mapper[key]
        elif any(part in key for part in parts):
            return code_mapper[key]
        # Return None or a default value if no key matches all parts
    return None


# main goal with this: identify Landkreise and their codes
def add_code(df: pd.DataFrame, code_mapper: dict) -> pd.DataFrame:
    """Add the (Kreis-/Gemeinde-)code to the dataframe based on the name of the (administrative) region."""
    df["Code"] = df["Kommune"].apply(lambda x: map_code(x, code_mapper))
    df[df["Code"].isnull()]["Code"] = df[df["Code"].isnull()]["name"].apply(
        lambda x: map_code(x, code_mapper)
    )
    df["Code"] = df["Code"].apply(lambda x: int(x) if x is not None else None)
    return df


def org_in_plzname(org_name, plz_name):
    parts = org_name.split()
    if any(part in plz_name or part in plz_name for part in parts):
        return True
    else:
        return False


def load_coordinates(path: str) -> pd.DataFrame:
    return pd.read_csv(path, sep=";")


# maybe 2d coordinates instead of geometry
def merge_coordinates(df: pd.DataFrame, coordinates: pd.DataFrame) -> pd.DataFrame:
    """Merge the coordinates of the regions to the dataframe. Try to use
     Kreiscode first, if it consists of 5 digits. Else, use the name of
    the region.
    """
    geometries = []
    modified_rows = []
    for row in df.itertuples():
        # adds coordinates for Landkreise
        if pd.notna(row.Code) and (
            len(str(int(row.Code))) == 5 or len(str(int(row.Code))) == 4
        ):
            coor = coordinates[coordinates["Kreis code"] == row.Code]
            geometry = [co.geo_point_2d for co in coor.itertuples()]
            geometries.append(geometry)
            modified_row = row
        else:
            coor = coordinates[
                coordinates["PLZ Name (short)"].apply(
                    lambda x: org_in_plzname(row.Kommune, x)
                )
            ]
            # adds coordinates for Kommunen in coordinates table
            if len(coor) > 0:
                geometry = [co.geo_point_2d for co in coor.itertuples()]
                geometries.append(geometry)
                modified_row = row
            # adds coordinates from infered kreis code if Gebietskennziffer available
            elif row.Code and pd.notna(row.Code):  # and not math.isnan(row.Code):
                if len(str(int(row.Code))) < 4:
                    code_str = str(int(row.Code))
                    coor = coordinates[
                        coordinates["Kreis code"]
                        .astype(str)
                        .apply(lambda x: x[: len(code_str)])
                        == code_str
                    ]
                    geometry = [co.geo_point_2d for co in coor.itertuples()]
                    geometries.append(geometry)
                elif str(row.Code)[:2] in ["11", "12", "13", "14", "15", "16"]:
                    coor = coordinates[
                        coordinates["Kreis code"] == int(str(row.Code)[:5])
                    ]
                else:
                    coor = coordinates[
                        coordinates["Kreis code"] == int(str(row.Code)[:4])
                    ]
                geometry = [co.geo_point_2d for co in coor.itertuples()]
                geometries.append(geometry)
                modified_row = row
            else:  # tries to infer coordinates from name instead of Kommune
                coor = coordinates[
                    coordinates["PLZ Name (short)"].apply(
                        lambda x: (org_in_plzname(row.name, x))
                    )
                ]
                # adds coordinates for name in coordinates table
                if len(coor) > 0:
                    geometry = [co.geo_point_2d for co in coor.itertuples()]
                    geometries.append(geometry)
                    # switch name and Kommune
                    kommune_new = row.Kommune
                    name_new = row.name
                    modified_row = row._replace(Kommune=name_new, name=kommune_new)
                    print(modified_row)
                else:
                    geometries.append([])
                    modified_row = row
        modified_rows.append(modified_row)
    df["Geometry"] = geometries
    # print(modified_rows)
    modified = pd.DataFrame(modified_rows)
    modified["Geometry"] = geometries
    return modified


def aggregate_coordinates(geo_element: str) -> list:
    # Convert the string representation of a list into an actual list
    if geo_element == "[]" or geo_element == []:
        return []
    else:
        actual_list = geo_element  # ast.literal_eval(geo_element)
        processed_list = [list(map(float, coord.split(", "))) for coord in actual_list]
        # print(processed_list)
        if len(processed_list) > 1:
            coordinates = np.mean(np.array(processed_list), axis=0)
        else:
            coordinates = np.array(processed_list[0])
        return coordinates


if __name__ == "__main__":
    code_mapper = create_code_mapper(NAME_CODE_DATA)
    logging.info("Code mapper created")
    cities = load_cities(CITIES_DATA)
    data = add_code(cities, code_mapper)
    missing = data[data["Code"].isnull()]
    logging.info(f"Missing values Gebietscode: {len(missing)}")
    data.to_csv(
        os.path.join("data", "preprocessed", "cities_enriched_with_code.csv"),
        index=False,
    )
    # data = pd.read_csv(
    #    os.path.join("data", "preprocessed", "cities_enriched_with_code.csv"))
    data["Code"] = data["Code"].apply(lambda x: int(x) if pd.notna(x) else None)
    coordinates = load_coordinates(COORDINATES)
    data = merge_coordinates(data, coordinates)
    data.to_csv(
        os.path.join("data", "preprocessed", "cities_enriched_with_coordinates.csv"),
        index=False,
    )
    logging.info("Coordinates merged")

    missing = data[
        [
            all([x, y])
            for x, y in zip(
                data["Geometry"].apply(lambda x: x == []), data["Code"].isnull()
            )
        ]
    ]
    missing_geometry = data[data["Geometry"].apply(lambda x: x == [])]
    logging.info(f"Missing values: {len(missing)}")
    logging.info(f"Missing geometry: {len(missing_geometry)}")
    missing_geometry.to_csv(MISSING, index=False)

    # data = pd.read_csv(os.path.join("data", "cities_enriched_manually.csv"))
    data["Geometry"] = data["Geometry"].apply(aggregate_coordinates)
    data.to_csv(DATA_ENRICHED, index=False)