File size: 10,829 Bytes
aa68450
ea3bd45
eb58c95
aa68450
4547220
 
 
ac1ff33
ea3bd45
4eea983
 
eb58c95
ac1ff33
4eea983
 
 
 
 
 
 
 
 
aa68450
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea3bd45
 
 
 
 
 
 
 
aa68450
 
ea3bd45
 
aa68450
 
 
 
 
ea3bd45
 
 
 
 
 
 
 
 
 
 
aa68450
ea3bd45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa68450
 
 
f80e04a
 
 
e8fb6a3
aa68450
f80e04a
4eea983
 
4547220
aa68450
 
 
 
e8fb6a3
aa68450
e8fb6a3
aa68450
e8fb6a3
 
aa68450
 
 
 
 
ea3bd45
 
 
aa68450
 
 
 
 
 
ea3bd45
 
 
e8fb6a3
ea3bd45
 
 
 
 
 
aa68450
ea3bd45
 
e8fb6a3
4eea983
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e8fb6a3
4547220
 
 
 
 
 
 
 
32e3d31
4547220
 
 
 
 
69cd746
e8fb6a3
ea3bd45
 
 
 
 
 
 
 
 
 
 
 
69cd746
 
 
 
 
 
 
ea3bd45
 
 
 
 
69cd746
 
 
 
 
 
ea3bd45
 
 
 
4547220
8a6a919
4547220
 
 
69cd746
4547220
69cd746
 
 
 
 
 
4547220
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69cd746
 
 
 
 
 
 
 
 
 
 
4547220
 
69cd746
 
 
 
4547220
 
 
 
 
 
 
 
 
 
 
 
 
 
69cd746
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4547220
69cd746
4547220
69cd746
4547220
 
69cd746
4547220
 
 
 
 
 
 
 
 
 
 
 
 
69cd746
 
 
e7e3e25
69cd746
 
4eea983
e7e3e25
4eea983
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
from collections import Counter
import pandas as pd
import streamlit as st
import json
from safetensors import safe_open
from semantic_search import predict
from sentence_transformers import SentenceTransformer
import os
import plotly.graph_objects as go
import plotly.express as px
from utils.process_data import load_data, merge_geoemtry, add_coor

HF_TOKEN = os.environ.get("HF_TOKEN")
CITIES_ENRICHED = os.path.join("data", "cities_enriched_manually.csv")
DATA = os.path.join("2024-08-21_musterdatenkatalog.json")

TAXONOMY = os.path.join("taxonomy_processed_v3.json")
MAP_PATH = os.path.join("data", "map_data.csv")  # this is only for saving
MAP_PATH_WITH_COORD = os.path.join(
    "data", "map_data_with_coord.csv"
)  # this is for saving the data with coordinates
# and local testing


def get_tree_map_data(
    data: dict,
    countings_parents: dict,
    countings_labels: dict,
    root: str = " ",
) -> tuple:
    names: list = [""]
    parents: list = [root]
    values: list = ["0"]

    for group, labels in data.items():
        parents.append(root)
        if group in countings_parents:
            values.append(str(countings_parents[group]))
            group_name_with_count = (
                group
                + "<br>"
                + "Anzahl Datensätze:"
                + " "
                + str(countings_parents[group])
            )
            names.append(group_name_with_count)
        else:
            values.append("0")
            group_name_with_count = group + "<br>" + "Anzahl Datensätze:" + " " + "0"
            names.append(group_name_with_count)
        for label in labels:
            if "-" in label:
                label = label.split("-")
                label = label[0] + "<br> -" + label[1]
            if label in countings_labels:
                label_name_with_count = (
                    label
                    + "<br>"
                    + "<br>"
                    + "Anzahl Datensätze:"
                    + "<br>"
                    + ""
                    + str(countings_labels[label])
                )
                names.append(label_name_with_count)
                parents.append(group_name_with_count)
                values.append(str(countings_labels[label]))
            if label not in countings_labels:
                if "<br>" in label:
                    if (
                        label.split("<br>")[0].strip() + label.split("<br>")[-1]
                        in countings_labels
                    ):
                        label_name_with_count = (
                            label
                            + "<br>"
                            + "<br>"
                            + "Anzahl Datensätze:"
                            + "<br>"
                            + ""
                            + str(
                                countings_labels[
                                    label.split("<br>")[0].strip()
                                    + label.split("<br>")[-1]
                                ]
                            )
                        )
                else:
                    print(label)
                    label_name_with_count = (
                        label
                        + "<br>"
                        + "<br>"
                        + "Anzahl Datensätze:"
                        + "<br>"
                        + ""
                        + "0"
                    )
                    names.append(label_name_with_count)
                    parents.append(group_name_with_count)
                    values.append("0")
    return parents, names, values


def load_json(path: str) -> dict:
    with open(path, "r") as fp:
        return json.load(fp)


# Load Data
data = load_json(DATA)
taxonomy = load_json(TAXONOMY)
taxonomy_labels = [el["group"] + " - " + el["label"] for el in taxonomy]

theme_counts = dict(Counter([el["THEMA"] for el in data]))
labels_counts = dict(Counter([el["BEZEICHNUNG"] for el in data]))

names = [""]
parents = ["Musterdatenkatalog"]

taxonomy_group_label_mapper: dict = {el["group"]: [] for el in taxonomy}

for el in taxonomy:
    if el["group"] != "Sonstiges":
        taxonomy_group_label_mapper[el["group"]].append(el["label"])
    else:
        taxonomy_group_label_mapper[el["group"]].append("Sonstiges ")

del taxonomy_group_label_mapper["Sonstiges"]

parents, names, values = get_tree_map_data(
    data=taxonomy_group_label_mapper,
    countings_parents=theme_counts,
    countings_labels=labels_counts,
    root="Musterdatenkatalog",
)

df = pd.DataFrame(data={"thema": parents, "bezeichnung": names, "value": values})
df["value"] = df["value"].astype(str)
df["bezeichnung"] = df["bezeichnung"]

fig = go.Figure(
    go.Treemap(
        labels=df["bezeichnung"],
        parents=df["thema"],
        textinfo="label",
    )
)
fig.update_layout(margin=dict(t=50, l=25, r=25, b=25))
fig.update_layout(height=1000, width=1000, template="plotly")

# # load data ready to plot for local testing
# germany = pd.read_csv(MAP_PATH)
# germany.drop(columns=["lat", "lon"], inplace=True)
# # or generate it directly in this script
map_data = load_data()
map_data = merge_geoemtry(map_data, pd.read_csv(filepath_or_buffer=CITIES_ENRICHED))
# print(
#     map_data["Geometry"].iloc[0].strip("[]").split(),
#     type(map_data["Geometry"].iloc[0].strip("[]").split()),
# )
germany = add_coor(map_data)
germany.to_csv(MAP_PATH_WITH_COORD, index=False)

# # germany need columns with lat and lon as well as hover data
fig_map = px.scatter_mapbox(
    germany,
    lat="lat",
    lon="lon",
    hover_name="ORG",
    custom_data=["Count"],
    # color_discrete_map=["magenta"],
    zoom=5,
    height=700,
)
# Custom hover template
fig_map.update_traces(
    hovertemplate="<br>".join(
        [
            "Kommune: %{hovertext}",  # Use hover_name as hovertext
            "Count: %{customdata[0]}",  # Access elements in custom_data
        ]
    )
)
fig_map.update_layout(mapbox_style="carto-positron")

tensors = {}
with safe_open("corpus_embeddings.pt", framework="pt", device="cpu") as f:
    for k in f.keys():
        tensors[k] = f.get_tensor(k)

model = SentenceTransformer(
    model_name_or_path="and-effect/musterdatenkatalog_clf",
    device="cpu",
    use_auth_token=HF_TOKEN,
)


st.set_page_config(layout="wide")

st.title("Musterdatenkatalog (MDK)")

st.markdown(
    """
<style>
.font {
    font-size:20px !important;
}
</style>
""",
    unsafe_allow_html=True,
)

st.markdown(
    """
<style>
.prediction {
    font-size:10px !important;
}
</style>
""",
    unsafe_allow_html=True,
)


st.markdown(
    '<p class="font">This demo showcases the algorithm of Musterdatenkatalog (MDK) of the Bertelsmann Stiftung. The MDK is a taxonomy of Open Data in municipalities in Germany. It is intended to help municipalities in Germany, as well as data analysts and journalists, to get an overview of the topics and the extent to which cities have already published data sets.</p>',
    unsafe_allow_html=True,
)

st.markdown(
    '<p class="font"> For more details checkout the <a href=https://www.bertelsmann-stiftung.de/de/unsere-projekte/smart-country/musterdatenkatalog> Musterdatenkatalog </a>.</p>',
    unsafe_allow_html=True,
)


col1, col2, col3 = st.columns(3)
col1.metric("Datensätze", len(data))
col2.metric("Themen", len(theme_counts))
col3.metric("Bezeichnungen", len(labels_counts))

st.header("Explore the MDK-Classifier")

st.markdown(
    '<p class="font"> This section allows you to predict a label from the MDK Taxonomy for a title of a dataset from municipalities. You can either enter your own dataset title or click on one of the examples. Checkout also <a href=https://www.govdata.de/> GOVDATA </a> for more dataset title examples. \
    \
    If you click on predict, the model will predict the most likely label for the dataset title. You can also change the number of labels that should be predicted. For example, if you change the Top Results to 3, the model will predict the 3 most likely labels for the dataset title in descending order. </p>',
    unsafe_allow_html=True,
)

st.markdown(
    """
<style>
/* Style columns */
[data-testid="column"] {
      border-radius: 15px;
         background-color: white;
         box-shadow: 0 0 10px #eee;
         border: 1px solid #ddd;
         padding: 1rem;;
} 

/* Style containers */
[data-testid="stVerticalBlock"] > [style*="flex-direction: column;"] > [data-testid="stVerticalBlock"] {
      border-radius: 15px;
         background-color: white;
         box-shadow: 0 0 10px #eee;
         border: 1px solid #ddd;
         padding: 1rem;;
}
</style>
""",
    unsafe_allow_html=True,
)


col1, col2 = st.columns([1.2, 1])

st.markdown(
    """
<style>
.example {
    font-size:24px !important;
}
</style>
""",
    unsafe_allow_html=True,
)


with col2:
    st.markdown(
        '<p class="example">Example Titles of Datasets</p>',
        unsafe_allow_html=True,
    )
    examples = [
        "Spielplätze",
        "Berliner Weihnachtsmärkte 2022",
        "Hochschulwechslerquoten zum Masterstudium nach Bundesländern",
        "Umringe der Bebauungspläne von Etgert",
    ]

    for example in examples:
        if st.button(example):
            if "key" not in st.session_state:
                st.session_state["query"] = example


with col1:
    tabs_font_css = """
    <style>
    div[class*="stTextInput"] label p {
    font-size: 2px;
    }
    </style>    
    """

    st.write(tabs_font_css, unsafe_allow_html=True)

    st.markdown(
        '<p class="example">Enter a dataset title</p>',
        unsafe_allow_html=True,
    )

    if "query" not in st.session_state:
        query = st.text_input("")
    if "query" in st.session_state and st.session_state.query in examples:
        query = st.text_input("Enter a dataset title", value=st.session_state.query)
    if "query" in st.session_state and st.session_state.query not in examples:
        del st.session_state["query"]
        query = st.text_input("Enter a dataset title")

    top_k = st.select_slider("Top Results", options=[1, 2, 3, 4, 5], value=1)

    predictions = predict(
        query=query,
        corpus_embeddings=tensors["corpus_embeddings"],
        corpus_labels=taxonomy_labels,
        top_k=top_k,
        model=model,
    )

    if st.button("Predict"):
        for prediction in predictions:
            st.markdown(f'<p class="font"> {prediction} <p>', unsafe_allow_html=True)


st.header("Musterdatenkatalog Taxonomy (as of 20.08.2024)")

st.plotly_chart(fig)

st.header("Locations with Musterdatensätzen (as of 20.08.2024)")
st.markdown(
    """<p class="font">Hover over the map to see how many datasets are available
            for this location. </p>
   """,
    unsafe_allow_html=True,
)
st.plotly_chart(fig_map)