Spaces:
Running
Running
File size: 10,829 Bytes
aa68450 ea3bd45 eb58c95 aa68450 4547220 ac1ff33 ea3bd45 4eea983 eb58c95 ac1ff33 4eea983 aa68450 ea3bd45 aa68450 ea3bd45 aa68450 ea3bd45 aa68450 ea3bd45 aa68450 f80e04a e8fb6a3 aa68450 f80e04a 4eea983 4547220 aa68450 e8fb6a3 aa68450 e8fb6a3 aa68450 e8fb6a3 aa68450 ea3bd45 aa68450 ea3bd45 e8fb6a3 ea3bd45 aa68450 ea3bd45 e8fb6a3 4eea983 e8fb6a3 4547220 32e3d31 4547220 69cd746 e8fb6a3 ea3bd45 69cd746 ea3bd45 69cd746 ea3bd45 4547220 8a6a919 4547220 69cd746 4547220 69cd746 4547220 69cd746 4547220 69cd746 4547220 69cd746 4547220 69cd746 4547220 69cd746 4547220 69cd746 4547220 69cd746 e7e3e25 69cd746 4eea983 e7e3e25 4eea983 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 |
from collections import Counter
import pandas as pd
import streamlit as st
import json
from safetensors import safe_open
from semantic_search import predict
from sentence_transformers import SentenceTransformer
import os
import plotly.graph_objects as go
import plotly.express as px
from utils.process_data import load_data, merge_geoemtry, add_coor
HF_TOKEN = os.environ.get("HF_TOKEN")
CITIES_ENRICHED = os.path.join("data", "cities_enriched_manually.csv")
DATA = os.path.join("2024-08-21_musterdatenkatalog.json")
TAXONOMY = os.path.join("taxonomy_processed_v3.json")
MAP_PATH = os.path.join("data", "map_data.csv") # this is only for saving
MAP_PATH_WITH_COORD = os.path.join(
"data", "map_data_with_coord.csv"
) # this is for saving the data with coordinates
# and local testing
def get_tree_map_data(
data: dict,
countings_parents: dict,
countings_labels: dict,
root: str = " ",
) -> tuple:
names: list = [""]
parents: list = [root]
values: list = ["0"]
for group, labels in data.items():
parents.append(root)
if group in countings_parents:
values.append(str(countings_parents[group]))
group_name_with_count = (
group
+ "<br>"
+ "Anzahl Datensätze:"
+ " "
+ str(countings_parents[group])
)
names.append(group_name_with_count)
else:
values.append("0")
group_name_with_count = group + "<br>" + "Anzahl Datensätze:" + " " + "0"
names.append(group_name_with_count)
for label in labels:
if "-" in label:
label = label.split("-")
label = label[0] + "<br> -" + label[1]
if label in countings_labels:
label_name_with_count = (
label
+ "<br>"
+ "<br>"
+ "Anzahl Datensätze:"
+ "<br>"
+ ""
+ str(countings_labels[label])
)
names.append(label_name_with_count)
parents.append(group_name_with_count)
values.append(str(countings_labels[label]))
if label not in countings_labels:
if "<br>" in label:
if (
label.split("<br>")[0].strip() + label.split("<br>")[-1]
in countings_labels
):
label_name_with_count = (
label
+ "<br>"
+ "<br>"
+ "Anzahl Datensätze:"
+ "<br>"
+ ""
+ str(
countings_labels[
label.split("<br>")[0].strip()
+ label.split("<br>")[-1]
]
)
)
else:
print(label)
label_name_with_count = (
label
+ "<br>"
+ "<br>"
+ "Anzahl Datensätze:"
+ "<br>"
+ ""
+ "0"
)
names.append(label_name_with_count)
parents.append(group_name_with_count)
values.append("0")
return parents, names, values
def load_json(path: str) -> dict:
with open(path, "r") as fp:
return json.load(fp)
# Load Data
data = load_json(DATA)
taxonomy = load_json(TAXONOMY)
taxonomy_labels = [el["group"] + " - " + el["label"] for el in taxonomy]
theme_counts = dict(Counter([el["THEMA"] for el in data]))
labels_counts = dict(Counter([el["BEZEICHNUNG"] for el in data]))
names = [""]
parents = ["Musterdatenkatalog"]
taxonomy_group_label_mapper: dict = {el["group"]: [] for el in taxonomy}
for el in taxonomy:
if el["group"] != "Sonstiges":
taxonomy_group_label_mapper[el["group"]].append(el["label"])
else:
taxonomy_group_label_mapper[el["group"]].append("Sonstiges ")
del taxonomy_group_label_mapper["Sonstiges"]
parents, names, values = get_tree_map_data(
data=taxonomy_group_label_mapper,
countings_parents=theme_counts,
countings_labels=labels_counts,
root="Musterdatenkatalog",
)
df = pd.DataFrame(data={"thema": parents, "bezeichnung": names, "value": values})
df["value"] = df["value"].astype(str)
df["bezeichnung"] = df["bezeichnung"]
fig = go.Figure(
go.Treemap(
labels=df["bezeichnung"],
parents=df["thema"],
textinfo="label",
)
)
fig.update_layout(margin=dict(t=50, l=25, r=25, b=25))
fig.update_layout(height=1000, width=1000, template="plotly")
# # load data ready to plot for local testing
# germany = pd.read_csv(MAP_PATH)
# germany.drop(columns=["lat", "lon"], inplace=True)
# # or generate it directly in this script
map_data = load_data()
map_data = merge_geoemtry(map_data, pd.read_csv(filepath_or_buffer=CITIES_ENRICHED))
# print(
# map_data["Geometry"].iloc[0].strip("[]").split(),
# type(map_data["Geometry"].iloc[0].strip("[]").split()),
# )
germany = add_coor(map_data)
germany.to_csv(MAP_PATH_WITH_COORD, index=False)
# # germany need columns with lat and lon as well as hover data
fig_map = px.scatter_mapbox(
germany,
lat="lat",
lon="lon",
hover_name="ORG",
custom_data=["Count"],
# color_discrete_map=["magenta"],
zoom=5,
height=700,
)
# Custom hover template
fig_map.update_traces(
hovertemplate="<br>".join(
[
"Kommune: %{hovertext}", # Use hover_name as hovertext
"Count: %{customdata[0]}", # Access elements in custom_data
]
)
)
fig_map.update_layout(mapbox_style="carto-positron")
tensors = {}
with safe_open("corpus_embeddings.pt", framework="pt", device="cpu") as f:
for k in f.keys():
tensors[k] = f.get_tensor(k)
model = SentenceTransformer(
model_name_or_path="and-effect/musterdatenkatalog_clf",
device="cpu",
use_auth_token=HF_TOKEN,
)
st.set_page_config(layout="wide")
st.title("Musterdatenkatalog (MDK)")
st.markdown(
"""
<style>
.font {
font-size:20px !important;
}
</style>
""",
unsafe_allow_html=True,
)
st.markdown(
"""
<style>
.prediction {
font-size:10px !important;
}
</style>
""",
unsafe_allow_html=True,
)
st.markdown(
'<p class="font">This demo showcases the algorithm of Musterdatenkatalog (MDK) of the Bertelsmann Stiftung. The MDK is a taxonomy of Open Data in municipalities in Germany. It is intended to help municipalities in Germany, as well as data analysts and journalists, to get an overview of the topics and the extent to which cities have already published data sets.</p>',
unsafe_allow_html=True,
)
st.markdown(
'<p class="font"> For more details checkout the <a href=https://www.bertelsmann-stiftung.de/de/unsere-projekte/smart-country/musterdatenkatalog> Musterdatenkatalog </a>.</p>',
unsafe_allow_html=True,
)
col1, col2, col3 = st.columns(3)
col1.metric("Datensätze", len(data))
col2.metric("Themen", len(theme_counts))
col3.metric("Bezeichnungen", len(labels_counts))
st.header("Explore the MDK-Classifier")
st.markdown(
'<p class="font"> This section allows you to predict a label from the MDK Taxonomy for a title of a dataset from municipalities. You can either enter your own dataset title or click on one of the examples. Checkout also <a href=https://www.govdata.de/> GOVDATA </a> for more dataset title examples. \
\
If you click on predict, the model will predict the most likely label for the dataset title. You can also change the number of labels that should be predicted. For example, if you change the Top Results to 3, the model will predict the 3 most likely labels for the dataset title in descending order. </p>',
unsafe_allow_html=True,
)
st.markdown(
"""
<style>
/* Style columns */
[data-testid="column"] {
border-radius: 15px;
background-color: white;
box-shadow: 0 0 10px #eee;
border: 1px solid #ddd;
padding: 1rem;;
}
/* Style containers */
[data-testid="stVerticalBlock"] > [style*="flex-direction: column;"] > [data-testid="stVerticalBlock"] {
border-radius: 15px;
background-color: white;
box-shadow: 0 0 10px #eee;
border: 1px solid #ddd;
padding: 1rem;;
}
</style>
""",
unsafe_allow_html=True,
)
col1, col2 = st.columns([1.2, 1])
st.markdown(
"""
<style>
.example {
font-size:24px !important;
}
</style>
""",
unsafe_allow_html=True,
)
with col2:
st.markdown(
'<p class="example">Example Titles of Datasets</p>',
unsafe_allow_html=True,
)
examples = [
"Spielplätze",
"Berliner Weihnachtsmärkte 2022",
"Hochschulwechslerquoten zum Masterstudium nach Bundesländern",
"Umringe der Bebauungspläne von Etgert",
]
for example in examples:
if st.button(example):
if "key" not in st.session_state:
st.session_state["query"] = example
with col1:
tabs_font_css = """
<style>
div[class*="stTextInput"] label p {
font-size: 2px;
}
</style>
"""
st.write(tabs_font_css, unsafe_allow_html=True)
st.markdown(
'<p class="example">Enter a dataset title</p>',
unsafe_allow_html=True,
)
if "query" not in st.session_state:
query = st.text_input("")
if "query" in st.session_state and st.session_state.query in examples:
query = st.text_input("Enter a dataset title", value=st.session_state.query)
if "query" in st.session_state and st.session_state.query not in examples:
del st.session_state["query"]
query = st.text_input("Enter a dataset title")
top_k = st.select_slider("Top Results", options=[1, 2, 3, 4, 5], value=1)
predictions = predict(
query=query,
corpus_embeddings=tensors["corpus_embeddings"],
corpus_labels=taxonomy_labels,
top_k=top_k,
model=model,
)
if st.button("Predict"):
for prediction in predictions:
st.markdown(f'<p class="font"> {prediction} <p>', unsafe_allow_html=True)
st.header("Musterdatenkatalog Taxonomy (as of 20.08.2024)")
st.plotly_chart(fig)
st.header("Locations with Musterdatensätzen (as of 20.08.2024)")
st.markdown(
"""<p class="font">Hover over the map to see how many datasets are available
for this location. </p>
""",
unsafe_allow_html=True,
)
st.plotly_chart(fig_map)
|