Josephina commited on
Commit
08ea2e4
·
verified ·
1 Parent(s): b7bfd3b

cache data for map

Browse files
Files changed (1) hide show
  1. app.py +30 -18
app.py CHANGED
@@ -10,7 +10,6 @@ from safetensors import safe_open
10
  from sentence_transformers import SentenceTransformer
11
 
12
  from semantic_search import predict
13
- from utils.process_data import add_coor, load_data, merge_geoemtry
14
 
15
  HF_TOKEN = os.environ.get("HF_TOKEN")
16
  CITIES_ENRICHED = os.path.join("data", "cities_enriched_manually.csv")
@@ -151,10 +150,9 @@ fig = go.Figure(
151
  fig.update_layout(margin=dict(t=50, l=25, r=25, b=25))
152
  fig.update_layout(height=1000, width=1000, template="plotly")
153
 
 
154
  # load data ready to plot for local testing
155
- germany = pd.read_csv(MAP_PATH)
156
- germany["lat"] = pd.to_numeric(germany["lat"])
157
- germany["lon"] = pd.to_numeric(germany["lon"])
158
  # germany.drop(columns=["lat", "lon"], inplace=True)
159
 
160
  # # or generate it directly in this script
@@ -164,6 +162,34 @@ germany["lon"] = pd.to_numeric(germany["lon"])
164
  # germany.to_csv(MAP_PATH_WITH_COORD, index=False)
165
 
166
  # # germany need columns with lat and lon as well as hover data
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
167
  fig_map = px.scatter_geo(
168
  germany,
169
  lat="lat",
@@ -199,20 +225,6 @@ fig_map.update_layout(
199
  height=700,
200
  )
201
 
202
- tensors = {}
203
- with safe_open("corpus_embeddings.pt", framework="pt", device="cpu") as f:
204
- for k in f.keys():
205
- tensors[k] = f.get_tensor(k)
206
-
207
- model = SentenceTransformer(
208
- model_name_or_path="and-effect/musterdatenkatalog_clf",
209
- device="cpu",
210
- use_auth_token=HF_TOKEN,
211
- )
212
-
213
-
214
- st.set_page_config(layout="wide")
215
-
216
  st.title("Musterdatenkatalog (MDK)")
217
 
218
  st.markdown(
 
10
  from sentence_transformers import SentenceTransformer
11
 
12
  from semantic_search import predict
 
13
 
14
  HF_TOKEN = os.environ.get("HF_TOKEN")
15
  CITIES_ENRICHED = os.path.join("data", "cities_enriched_manually.csv")
 
150
  fig.update_layout(margin=dict(t=50, l=25, r=25, b=25))
151
  fig.update_layout(height=1000, width=1000, template="plotly")
152
 
153
+
154
  # load data ready to plot for local testing
155
+
 
 
156
  # germany.drop(columns=["lat", "lon"], inplace=True)
157
 
158
  # # or generate it directly in this script
 
162
  # germany.to_csv(MAP_PATH_WITH_COORD, index=False)
163
 
164
  # # germany need columns with lat and lon as well as hover data
165
+
166
+
167
+ tensors = {}
168
+ with safe_open("corpus_embeddings.pt", framework="pt", device="cpu") as f:
169
+ for k in f.keys():
170
+ tensors[k] = f.get_tensor(k)
171
+
172
+ model = SentenceTransformer(
173
+ model_name_or_path="and-effect/musterdatenkatalog_clf",
174
+ device="cpu",
175
+ use_auth_token=HF_TOKEN,
176
+ )
177
+
178
+
179
+ st.set_page_config(layout="wide")
180
+
181
+
182
+ @st.cache_data
183
+ def load_data() -> pd.DataFrame:
184
+ germany = pd.read_csv(MAP_PATH)
185
+ return germany
186
+
187
+
188
+ germany = load_data()
189
+ germany["lat"] = pd.to_numeric(germany["lat"])
190
+ germany["lon"] = pd.to_numeric(germany["lon"])
191
+
192
+
193
  fig_map = px.scatter_geo(
194
  germany,
195
  lat="lat",
 
225
  height=700,
226
  )
227
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
228
  st.title("Musterdatenkatalog (MDK)")
229
 
230
  st.markdown(