Spaces:
Running
Running
Rahkakavee Baskaran
commited on
Commit
·
4547220
1
Parent(s):
3592072
add app
Browse files
app.py
CHANGED
@@ -4,6 +4,9 @@ import json
|
|
4 |
from itertools import islice
|
5 |
from typing import Generator
|
6 |
from plotly import express as px
|
|
|
|
|
|
|
7 |
|
8 |
|
9 |
def chunks(data: dict, size=13) -> Generator:
|
@@ -55,12 +58,11 @@ def load_json(path: str) -> dict:
|
|
55 |
# Load Data
|
56 |
data = load_json("data.json")
|
57 |
taxonomy = load_json("taxonomy_processed_v3.json")
|
|
|
58 |
|
59 |
theme_counts = dict(Counter([el["THEMA"] for el in data]))
|
60 |
labels_counts = dict(Counter([el["BEZEICHNUNG"] for el in data]))
|
61 |
|
62 |
-
taxonomy = taxonomy
|
63 |
-
|
64 |
names = [""]
|
65 |
parents = ["Musterdatenkatalog"]
|
66 |
|
@@ -79,17 +81,6 @@ parents, name, values = get_tree_map_data(
|
|
79 |
root="Musterdatenkatalog",
|
80 |
)
|
81 |
|
82 |
-
|
83 |
-
# fig = go.Figure(
|
84 |
-
# go.Treemap(
|
85 |
-
# labels=name,
|
86 |
-
# parents=parents,
|
87 |
-
# root_color="white",
|
88 |
-
# values=values,
|
89 |
-
# # textinfo="label+value",
|
90 |
-
# ),
|
91 |
-
# )
|
92 |
-
|
93 |
fig = px.treemap(
|
94 |
names=name,
|
95 |
parents=parents,
|
@@ -103,6 +94,115 @@ fig.update_layout(
|
|
103 |
)
|
104 |
|
105 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
st.title("Musterdatenkatalog")
|
107 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
st.plotly_chart(fig)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
from itertools import islice
|
5 |
from typing import Generator
|
6 |
from plotly import express as px
|
7 |
+
from safetensors import safe_open
|
8 |
+
from semantic_search import predict
|
9 |
+
from sentence_transformers import SentenceTransformer
|
10 |
|
11 |
|
12 |
def chunks(data: dict, size=13) -> Generator:
|
|
|
58 |
# Load Data
|
59 |
data = load_json("data.json")
|
60 |
taxonomy = load_json("taxonomy_processed_v3.json")
|
61 |
+
taxonomy_labels = [el["group"] + " - " + el["label"] for el in taxonomy]
|
62 |
|
63 |
theme_counts = dict(Counter([el["THEMA"] for el in data]))
|
64 |
labels_counts = dict(Counter([el["BEZEICHNUNG"] for el in data]))
|
65 |
|
|
|
|
|
66 |
names = [""]
|
67 |
parents = ["Musterdatenkatalog"]
|
68 |
|
|
|
81 |
root="Musterdatenkatalog",
|
82 |
)
|
83 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
fig = px.treemap(
|
85 |
names=name,
|
86 |
parents=parents,
|
|
|
94 |
)
|
95 |
|
96 |
|
97 |
+
tensors = {}
|
98 |
+
with safe_open("corpus_embeddings.pt", framework="pt", device="cpu") as f:
|
99 |
+
for k in f.keys():
|
100 |
+
tensors[k] = f.get_tensor(k)
|
101 |
+
|
102 |
+
model = SentenceTransformer(
|
103 |
+
model_name_or_path="and-effect/musterdatenkatalog_clf",
|
104 |
+
device="cpu",
|
105 |
+
use_auth_token=True,
|
106 |
+
)
|
107 |
+
|
108 |
+
|
109 |
+
st.set_page_config(layout="wide")
|
110 |
+
|
111 |
st.title("Musterdatenkatalog")
|
112 |
|
113 |
+
col1, col2, col3 = st.columns(3)
|
114 |
+
col1.metric("Kommunale Datensätze", len(data))
|
115 |
+
col2.metric("Themen", len(theme_counts))
|
116 |
+
col3.metric("Bezeichnungen", len(labels_counts))
|
117 |
+
|
118 |
+
st.title("Taxonomy")
|
119 |
+
|
120 |
st.plotly_chart(fig)
|
121 |
+
|
122 |
+
st.title("Predict a Dataset")
|
123 |
+
|
124 |
+
# create two columns and make left column wider
|
125 |
+
|
126 |
+
# st.markdown(
|
127 |
+
# """
|
128 |
+
# <style>
|
129 |
+
# div[data-testid="stVerticalBlock"] div[style*="flex-direction: column;"] div[data-testid="stVerticalBlock"] {
|
130 |
+
# border-radius: 15px;
|
131 |
+
# background-color: white;
|
132 |
+
# box-shadow: 0 0 10px #eee;
|
133 |
+
# border: 1px solid #ddd;
|
134 |
+
# padding: 1rem;;
|
135 |
+
# }
|
136 |
+
# </style>
|
137 |
+
# """,
|
138 |
+
# unsafe_allow_html=True,
|
139 |
+
# )
|
140 |
+
|
141 |
+
st.markdown(
|
142 |
+
"""
|
143 |
+
<style>
|
144 |
+
/* Style columns */
|
145 |
+
[data-testid="column"] {
|
146 |
+
border-radius: 15px;
|
147 |
+
background-color: white;
|
148 |
+
box-shadow: 0 0 10px #eee;
|
149 |
+
border: 1px solid #ddd;
|
150 |
+
padding: 1rem;;
|
151 |
+
}
|
152 |
+
|
153 |
+
/* Style containers */
|
154 |
+
[data-testid="stVerticalBlock"] > [style*="flex-direction: column;"] > [data-testid="stVerticalBlock"] {
|
155 |
+
border-radius: 15px;
|
156 |
+
background-color: white;
|
157 |
+
box-shadow: 0 0 10px #eee;
|
158 |
+
border: 1px solid #ddd;
|
159 |
+
padding: 1rem;;
|
160 |
+
}
|
161 |
+
</style>
|
162 |
+
""",
|
163 |
+
unsafe_allow_html=True,
|
164 |
+
)
|
165 |
+
|
166 |
+
|
167 |
+
col1, col2 = st.columns([1.2, 1])
|
168 |
+
|
169 |
+
|
170 |
+
with col2:
|
171 |
+
st.subheader("Example Datasets")
|
172 |
+
examples = [
|
173 |
+
"Spielplätze",
|
174 |
+
"Berliner Weihnachtsmärkte 2022",
|
175 |
+
"Hochschulwechslerquoten zum Masterstudium nach Bundesländern",
|
176 |
+
"Umringe der Bebauungspläne von Etgert",
|
177 |
+
]
|
178 |
+
|
179 |
+
for example in examples:
|
180 |
+
if st.button(example):
|
181 |
+
if "key" not in st.session_state:
|
182 |
+
st.session_state["query"] = example
|
183 |
+
|
184 |
+
|
185 |
+
with col1:
|
186 |
+
if "query" not in st.session_state:
|
187 |
+
query = st.text_input(
|
188 |
+
"Enter dataset name",
|
189 |
+
)
|
190 |
+
if "query" in st.session_state and st.session_state.query in examples:
|
191 |
+
query = st.text_input("Enter dataset name", value=st.session_state.query)
|
192 |
+
if "query" in st.session_state and st.session_state.query not in examples:
|
193 |
+
del st.session_state["query"]
|
194 |
+
query = st.text_input("Enter dataset name")
|
195 |
+
|
196 |
+
top_k = st.select_slider("Top Results", options=[1, 2, 3, 4, 5], value=1)
|
197 |
+
|
198 |
+
predictions = predict(
|
199 |
+
query=query,
|
200 |
+
corpus_embeddings=tensors["corpus_embeddings"],
|
201 |
+
corpus_labels=taxonomy_labels,
|
202 |
+
top_k=top_k,
|
203 |
+
model=model,
|
204 |
+
)
|
205 |
+
|
206 |
+
if st.button("Predict"):
|
207 |
+
for prediction in predictions:
|
208 |
+
st.write(prediction)
|