import gradio as gr
from transformers import AutoProcessor, AutoModelForCausalLM
import spaces

import requests
import copy

from PIL import Image, ImageDraw, ImageFont 
import io
import matplotlib.pyplot as plt
import matplotlib.patches as patches

import random
import numpy as np

import subprocess
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)

model_id = 'microsoft/Florence-2-large'
model = AutoModelForCausalLM.from_pretrained(model_id, trust_remote_code=True).to("cuda").eval()
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)


colormap = ['blue','orange','green','purple','brown','pink','gray','olive','cyan','red',
            'lime','indigo','violet','aqua','magenta','coral','gold','tan','skyblue']

def fig_to_pil(fig):
    buf = io.BytesIO()
    fig.savefig(buf, format='png')
    buf.seek(0)
    return Image.open(buf)

@spaces.GPU
def run_example(task_prompt, image, text_input=None):
    if text_input is None:
        prompt = task_prompt
    else:
        prompt = task_prompt + text_input
    inputs = processor(text=prompt, images=image, return_tensors="pt").to("cuda")
    generated_ids = model.generate(
        input_ids=inputs["input_ids"],
        pixel_values=inputs["pixel_values"],
        max_new_tokens=1024,
        early_stopping=False,
        do_sample=False,
        num_beams=3,
    )
    generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
    parsed_answer = processor.post_process_generation(
        generated_text,
        task=task_prompt,
        image_size=(image.width, image.height)
    )
    return parsed_answer

def plot_bbox(image, data):
    fig, ax = plt.subplots()
    ax.imshow(image)
    for bbox, label in zip(data['bboxes'], data['labels']):
        x1, y1, x2, y2 = bbox
        rect = patches.Rectangle((x1, y1), x2-x1, y2-y1, linewidth=1, edgecolor='r', facecolor='none')
        ax.add_patch(rect)
        plt.text(x1, y1, label, color='white', fontsize=8, bbox=dict(facecolor='red', alpha=0.5))
    ax.axis('off')
    return fig

def draw_polygons(image, prediction, fill_mask=False):

    draw = ImageDraw.Draw(image)
    scale = 1
    for polygons, label in zip(prediction['polygons'], prediction['labels']):
        color = random.choice(colormap)
        fill_color = random.choice(colormap) if fill_mask else None
        for _polygon in polygons:
            _polygon = np.array(_polygon).reshape(-1, 2)
            if len(_polygon) < 3:
                print('Invalid polygon:', _polygon)
                continue
            _polygon = (_polygon * scale).reshape(-1).tolist()
            if fill_mask:
                draw.polygon(_polygon, outline=color, fill=fill_color)
            else:
                draw.polygon(_polygon, outline=color)
            draw.text((_polygon[0] + 8, _polygon[1] + 2), label, fill=color)
    return image

def convert_to_od_format(data):
    bboxes = data.get('bboxes', [])
    labels = data.get('bboxes_labels', [])
    od_results = {
        'bboxes': bboxes,
        'labels': labels
    }
    return od_results

def draw_ocr_bboxes(image, prediction):
    scale = 1
    draw = ImageDraw.Draw(image)
    bboxes, labels = prediction['quad_boxes'], prediction['labels']
    for box, label in zip(bboxes, labels):
        color = random.choice(colormap)
        new_box = (np.array(box) * scale).tolist()
        draw.polygon(new_box, width=3, outline=color)
        draw.text((new_box[0]+8, new_box[1]+2),
                  "{}".format(label),
                  align="right",
                  fill=color)
    return image

def process_image(image, task_prompt, text_input=None):
    image = Image.fromarray(image)  # Convert NumPy array to PIL Image
    if task_prompt == '<CAPTION>':
        result = run_example(task_prompt, image)
        return result, None
    elif task_prompt == '<DETAILED_CAPTION>':
        result = run_example(task_prompt, image)
        return result, None
    elif task_prompt == '<MORE_DETAILED_CAPTION>':
        result = run_example(task_prompt, image)
        return result, None
    elif task_prompt == '<OD>':
        results = run_example(task_prompt, image)
        fig = plot_bbox(image, results['<OD>'])
        return results, fig_to_pil(fig)
    elif task_prompt == '<DENSE_REGION_CAPTION>':
        results = run_example(task_prompt, image)
        fig = plot_bbox(image, results['<DENSE_REGION_CAPTION>'])
        return results, fig_to_pil(fig)
    elif task_prompt == '<REGION_PROPOSAL>':
        results = run_example(task_prompt, image)
        fig = plot_bbox(image, results['<REGION_PROPOSAL>'])
        return results, fig_to_pil(fig)
    elif task_prompt == '<CAPTION_TO_PHRASE_GROUNDING>':
        results = run_example(task_prompt, image, text_input)
        fig = plot_bbox(image, results['<CAPTION_TO_PHRASE_GROUNDING>'])
        return results, fig_to_pil(fig)
    elif task_prompt == '<REFERRING_EXPRESSION_SEGMENTATION>':
        results = run_example(task_prompt, image, text_input)
        output_image = copy.deepcopy(image)
        output_image = draw_polygons(output_image, results['<REFERRING_EXPRESSION_SEGMENTATION>'], fill_mask=True)
        return results, output_image
    elif task_prompt == '<REGION_TO_SEGMENTATION>':
        results = run_example(task_prompt, image, text_input)
        output_image = copy.deepcopy(image)
        output_image = draw_polygons(output_image, results['<REGION_TO_SEGMENTATION>'], fill_mask=True)
        return results, output_image
    elif task_prompt == '<OPEN_VOCABULARY_DETECTION>':
        results = run_example(task_prompt, image, text_input)
        bbox_results = convert_to_od_format(results['<OPEN_VOCABULARY_DETECTION>'])
        fig = plot_bbox(image, bbox_results)
        return results, fig_to_pil(fig)
    elif task_prompt == '<REGION_TO_CATEGORY>':
        results = run_example(task_prompt, image, text_input)
        return results, None
    elif task_prompt == '<REGION_TO_DESCRIPTION>':
        results = run_example(task_prompt, image, text_input)
        return results, None
    elif task_prompt == '<OCR>':
        result = run_example(task_prompt, image)
        return result, None
    elif task_prompt == '<OCR_WITH_REGION>':
        results = run_example(task_prompt, image)
        output_image = copy.deepcopy(image)
        output_image = draw_ocr_bboxes(output_image, results['<OCR_WITH_REGION>'])
        return results, output_image
    else:
        return "", None  # Return empty string and None for unknown task prompts

css = """
  #output {
    height: 500px; 
    overflow: auto; 
    border: 1px solid #ccc; 
  }
"""

with gr.Blocks(css=css) as demo:
    gr.HTML("<h1><center>Florence-2 Demo<center><h1>")
    with gr.Tab(label="Florence-2 Image Captioning"):
        with gr.Row():
            with gr.Column():
                input_img = gr.Image(label="Input Picture")
                task_prompt = gr.Dropdown(choices=[
                    '<CAPTION>', '<DETAILED_CAPTION>', '<MORE_DETAILED_CAPTION>', '<OD>',
                    '<DENSE_REGION_CAPTION>', '<REGION_PROPOSAL>', '<CAPTION_TO_PHRASE_GROUNDING>',
                    '<REFERRING_EXPRESSION_SEGMENTATION>', '<REGION_TO_SEGMENTATION>',
                    '<OPEN_VOCABULARY_DETECTION>', '<REGION_TO_CATEGORY>', '<REGION_TO_DESCRIPTION>',
                    '<OCR>', '<OCR_WITH_REGION>'
                ], label="Task Prompt")
                text_input = gr.Textbox(label="Text Input (optional)")
                submit_btn = gr.Button(value="Submit")
            with gr.Column():
                output_text = gr.Textbox(label="Output Text")
                output_img = gr.Image(label="Output Image")

        gr.Examples(
            examples=[
                ["image1.jpg", '<CAPTION>'],
                ["image1.jpg", '<OD>'],
                ["image2.jpg", '<OCR_WITH_REGION>']
            ],
            inputs=[input_img, task_prompt],
            outputs=[output_text, output_img],
            fn=process_image,
            cache_examples=True,
            label='Try examples'
        )

        submit_btn.click(process_image, [input_img, task_prompt, text_input], [output_text, output_img])

demo.launch(debug=True)