Spaces:
Runtime error
Runtime error
File size: 3,854 Bytes
46a030d 926183f 7b7d97b 616c59c 02ccaba da90a83 46a030d bee48d6 46a030d 926183f 46a030d 926183f 46a030d bee48d6 46a030d bee48d6 6ffd015 46a030d 7b7d97b 46a030d 1286697 7b7d97b 46a030d 7b7d97b 46a030d 7b7d97b 46a030d 7b7d97b 46a030d 7b7d97b e5c0423 0abdfd0 46a030d 81d3143 46a030d 4295a5f 46a030d 4295a5f 7b7d97b 4295a5f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 |
import streamlit as st
import numpy as np
from pandas import DataFrame
import run_segbot
from functionforDownloadButtons import download_button
import os
import json
os.system('git clone --depth 1 https://github.com/neologd/mecab-ipadic-neologd.git && cd mecab-ipadic-neologd && ./bin/install-mecab-ipadic-neologd -n -y -u -p $PWD')
os.system('git clone --depth 1 https://github.com/neologd/mecab-ipadic-neologd.git && cd mecab-ipadic-neologd && ./bin/install-mecab-ipadic-neologd -n -y -u -p $PWD')
st.set_page_config(
page_title="Clinical Segment Splitter",
page_icon="๐",
layout="wide"
)
def _max_width_():
max_width_str = f"max-width: 1400px;"
st.markdown(
f"""
<style>
.reportview-container .main .block-container{{
{max_width_str}
}}
</style>
""",
unsafe_allow_html=True,
)
#_max_width_()
#c30 = st.columns([1,])
#with c30:
# st.image("logo.png", width=400)
st.title("๐ Clinical Segment Splitter")
st.header("")
with st.expander("โน๏ธ - About this app", expanded=True):
st.write(
"""
- *Clinical segment splitter* app is an implementation of our paper.
>Kenichiro Ando, Takashi Okumura, Mamoru Komachi, Hiromasa Horiguchi, Yuji Matsumoto (2022) [Exploring optimal granularity for extractive summarization of unstructured health records: Analysis of the largest multi-institutional archive of health records in Japan.](https://doi.org/10.1371/journal.pdig.0000099) PLOS Digital Health 1(9): e000009.
- This app automatically splits Japanese sentences into smaller units representing medical meanings.
"""
)
st.markdown("")
st.markdown("")
#st.markdown("## ๐ Paste document")
@st.cache(allow_output_mutation=True)
def model_load():
return run_segbot.setup()
model,fm,index = model_load()
with st.form(key="my_form"):
ce, c1, ce, c2, c3 = st.columns([0.07, 1, 0.07, 5, 0.07])
with c1:
ModelType = st.radio(
"Select the sentence split method",
["pySBD (Default)", "full stop & linebreak"],
help="""
We have prepared 2 methods to break input text into sentences.
- The [pySBD](https://github.com/nipunsadvilkar/pySBD) is a more accurate method.
- The full stop & linebreak is naive and has low accuracy, but can be robust to noise.
""",
)
if ModelType == "full stop & linebreak":
split_method="fullstop"
else:
split_method="pySBD"
with c2:
doc = st.text_area(
"Paste your text",
"ใฐใฉใ ๆ่ฒใใใๆใใใช่ใ่ฆใคใใใใ ้ซๆถฒๅน้คใงใๅชไฝใช่ใฏๅน้คใใใชใใฃใใ็ดฐ่ๆง้ซ่็ใซๅฏพใใใฐใฉใ ๆ่ฒใฎๆๅบฆใฏ60%็จๅบฆใงใใใๅน้คใซ้ขใใฆใๆๅบฆใฏ้ซใใชใใใพใ้ซๆถฒไธญใฎ็ณใฏใใๅฐใๆธใใฎใงใฏใชใใ ใใใใ็ขบๅฎ่จบๆญใฏใคใใชใใใฎใฎใๆใ็ใใใ็พๆฃใงใใฃใใ่ตทๅ ่ใฏMRSA,่
ธๅ
็ดฐ่็ญใๅบๅใซใซใใผใใใใใใณใณใใคใทใณ,ใกใญใใใ (้ซ่็dose)ใจใใใ",
height=300,
)
submit_button = st.form_submit_button(label="Go to split โ๏ธ")
if not submit_button:
st.stop()
keywords = run_segbot.generate(doc, model, fm, index, split_method)
st.markdown("## Results")
st.header("")
cs, c1, c2, c3, cLast = st.columns([2, 1.5, 1.5, 1.5, 2])
st.header("")
df = DataFrame(keywords)
df.index += 1
df.columns = ['Segment']
print(df)
#with c2:
st.table(df)
with c1:
CSVButton2 = download_button(keywords, "Data.csv", "๐ฅ Download (.csv)")
with c2:
CSVButton2 = download_button(keywords, "Data.txt", "๐ฅ Download (.txt)")
with c3:
CSVButton2 = download_button(keywords, "Data.json", "๐ฅ Download (.json)")
|