File size: 1,566 Bytes
926183f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import random
import json

import torch

from nltk_utils import bag_of_words, tokenize
from run_segbot import get_model 

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

with open('intents.json', 'r') as json_data:
    intents = json.load(json_data)

#FILE = "data.pth"
#data = torch.load(FILE)

#input_size = data["input_size"]
#hidden_size = data["hidden_size"]
#output_size = data["output_size"]
#all_words = data['all_words']
#tags = data['tags']
#model_state = data["model_state"]

#model = NeuralNet(input_size, hidden_size, output_size).to(device)
#model.load_state_dict(model_state)
#with open('model.pickle', 'rb') as f:
#    model = pickle.load(f)

model = get_model()

model.eval()

bot_name = "Sam"


def get_response(msg):
    sentence = tokenize(msg)
    X = bag_of_words(sentence, all_words)
    X = X.reshape(1, X.shape[0])
    X = torch.from_numpy(X).to(device)

    output = model(X)
    _, predicted = torch.max(output, dim=1)

    tag = tags[predicted.item()]

    probs = torch.softmax(output, dim=1)
    prob = probs[0][predicted.item()]
    if prob.item() > 0.75:
        for intent in intents['intents']:
            if tag == intent["tag"]:
                return random.choice(intent['responses'])

    return "I do not understand..."


if __name__ == "__main__":
    print("Let's chat! (type 'quit' to exit)")
    while True:
        # sentence = "do you use credit cards?"
        sentence = input("You: ")
        if sentence == "quit":
            break

        resp = get_response(sentence)
        print(resp)