Spaces:
Running
Running
File size: 15,034 Bytes
bdf9096 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 |
from copy import deepcopy
from meta_feature_extraction.simple_stats import simple_stats
from meta_feature_extraction.trace_length import trace_length
from meta_feature_extraction.trace_variant import trace_variant
from meta_feature_extraction.activities import activities
from meta_feature_extraction.start_activities import start_activities
from meta_feature_extraction.end_activities import end_activities
from meta_feature_extraction.entropies import entropies
from pm4py import discover_petri_net_inductive as inductive_miner
from pm4py import generate_process_tree
from pm4py import save_vis_petri_net, save_vis_process_tree
from pm4py.algo.filtering.log.variants import variants_filter
from pm4py.algo.simulation.tree_generator import algorithm as tree_generator
from pm4py.algo.simulation.playout.process_tree import algorithm as playout
from pm4py.objects.conversion.log import converter as log_converter
from pm4py.objects.log.exporter.xes import exporter as xes_exporter
from pm4py.objects.log.importer.xes import importer as xes_importer
from pm4py.objects.log.util import dataframe_utils
from pm4py.sim import play_out
import matplotlib.image as mpimg
import os
import pandas as pd
import streamlit as st
OUTPUT_PATH = "output"
SAMPLE_EVENTS = 500
@st.cache(allow_output_mutation=True)
def load_from_xes(uploaded_file):
bytes_data = uploaded_file.getvalue()
log1 = xes_importer.deserialize(bytes_data)
get_stats(log1)
return log1
@st.cache
def load_from_csv(uploaded_file, sep):
if uploaded_file is not None:
df = pd.read_csv(uploaded_file, sep=sep, index_col=False)
return df
def get_stats(log, save=True):
"""Returns the statistics of an event log."""
num_traces = len(log)
num_events = sum([len(c) for c in log])
num_utraces = len(variants_filter.get_variants(log))
if save:
st.session_state["num_traces"] = num_traces
st.session_state["num_events"] = num_events
st.session_state["num_utraces"] = num_utraces
return num_utraces, num_traces, num_events
#@st.cache
def df_to_log(df, case_id, activity, timestamp):
df.rename(columns={case_id: 'case:concept:name',
activity: 'concept:name',
timestamp: "time:timestamp"}, inplace=True)
temp = dataframe_utils.convert_timestamp_columns_in_df(df)
#temp = temp.sort_values(timestamp)
log = log_converter.apply(temp)
return log, 'concept:name', "time:timestamp"
def read_uploaded_file(uploaded_file):
extension = uploaded_file.name.split('.')[-1]
log_name = uploaded_file.name.split('.')[-2]
st.sidebar.write("Loaded ", extension.upper(), '-File: ', uploaded_file.name)
if extension == "xes":
event_log = load_from_xes(uploaded_file)
log_columns = [*list(event_log[0][0].keys())]
convert_button = False
case_id = "case:concept:name"
activity = "concept:name"
timestamp = "time:timestamp"
default_act_id = log_columns.index("concept:name")
default_tst_id = log_columns.index("time:timestamp")
event_df = log_converter.apply(event_log, variant=log_converter.Variants.TO_DATA_FRAME)
df_path = OUTPUT_PATH+"/"+log_name+".csv"
event_df.to_csv(df_path, sep =";", index=False)
return event_log, event_df, case_id, activity
elif extension == "csv":
sep = st.sidebar.text_input("Columns separator", ";")
event_df = load_from_csv(uploaded_file, sep)
old_df = deepcopy(event_df)
log_columns = event_df.columns
case_id = st.sidebar.selectbox("Choose 'case' column:", log_columns)
activity = st.sidebar.selectbox("Choose 'activity' column:", log_columns, index=0)
timestamp = st.sidebar.selectbox("Choose 'timestamp' column:", log_columns, index=0)
convert_button = st.sidebar.button('Confirm selection')
if convert_button:
temp = deepcopy(event_df)
event_log, activity, timestamp = df_to_log(temp, case_id, activity, timestamp)
#xes_exporter.apply(event_log, INPUT_XES)
log_columns = [*list(event_log[0][0].keys())]
st.session_state['log'] = event_log
return event_log, event_df, case_id, activity
def sample_log_traces(complete_log, sample_size):
'''
Samples random traces out of logs.
So that number of events is slightly over SAMPLE_SIZE.
:param complete_log: Log extracted from xes
'''
log_traces = variants_filter.get_variants(complete_log)
keys = list(log_traces.keys())
sample_traces = {}
num_evs = 0
while num_evs < sample_size:
if len(keys) == 0:
break
random_trace = keys.pop()
sample_traces[random_trace] = log_traces[random_trace]
evs = sum([len(case_id) for case_id in sample_traces[random_trace]])
num_evs += evs
log1 = variants_filter.apply(complete_log, sample_traces)
return log1
def show_process_petrinet(event_log, filter_info, OUTPUT_PATH):
OUTPUT_PLOT = f"{OUTPUT_PATH}_{filter_info}".replace(":","").replace(".","")+".png" # OUTPUT_PATH is OUTPUT_PATH+INPUT_FILE
try:
fig_pt = mpimg.imread(OUTPUT_PLOT)
st.write("Loaded from memory")
except FileNotFoundError:
net, im, fm = inductive_miner(event_log)
# parameters={heuristics_miner.Variants.CLASSIC.value.Parameters.DEPENDENCY_THRESH: 0.99,
# pn_visualizer.Variants.FREQUENCY.value.Parameters.FORMAT: "png"})
#parameters = {pn_visualizer.Variants.FREQUENCY.value.Parameters.FORMAT: "png"}
save_vis_petri_net(net, im, fm, OUTPUT_PLOT)
st.write("Saved in: ", OUTPUT_PLOT)
fig_pt = mpimg.imread(OUTPUT_PLOT)
st.image(fig_pt)
def show_loaded_event_log(event_log, event_df):
get_stats(event_log)
st.write("### Loaded event-log")
col1, col2 = st.columns(2)
with col2:
st.dataframe(event_df)
with col1:
show_process_petrinet(event_log, None, OUTPUT_PATH+"running-example")
def extract_meta_features(log, log_name):
mtf_cols = ["log", "n_traces", "n_unique_traces", "ratio_unique_traces_per_trace", "n_events", "trace_len_min", "trace_len_max",
"trace_len_mean", "trace_len_median", "trace_len_mode", "trace_len_std", "trace_len_variance", "trace_len_q1",
"trace_len_q3", "trace_len_iqr", "trace_len_geometric_mean", "trace_len_geometric_std", "trace_len_harmonic_mean",
"trace_len_skewness", "trace_len_kurtosis", "trace_len_coefficient_variation", "trace_len_entropy", "trace_len_hist1",
"trace_len_hist2", "trace_len_hist3", "trace_len_hist4", "trace_len_hist5", "trace_len_hist6", "trace_len_hist7",
"trace_len_hist8", "trace_len_hist9", "trace_len_hist10", "trace_len_skewness_hist", "trace_len_kurtosis_hist",
"ratio_most_common_variant", "ratio_top_1_variants", "ratio_top_5_variants", "ratio_top_10_variants", "ratio_top_20_variants",
"ratio_top_50_variants", "ratio_top_75_variants", "mean_variant_occurrence", "std_variant_occurrence", "skewness_variant_occurrence",
"kurtosis_variant_occurrence", "n_unique_activities", "activities_min", "activities_max", "activities_mean", "activities_median",
"activities_std", "activities_variance", "activities_q1", "activities_q3", "activities_iqr", "activities_skewness",
"activities_kurtosis", "n_unique_start_activities", "start_activities_min", "start_activities_max", "start_activities_mean",
"start_activities_median", "start_activities_std", "start_activities_variance", "start_activities_q1", "start_activities_q3",
"start_activities_iqr", "start_activities_skewness", "start_activities_kurtosis", "n_unique_end_activities", "end_activities_min",
"end_activities_max", "end_activities_mean", "end_activities_median", "end_activities_std", "end_activities_variance",
"end_activities_q1", "end_activities_q3", "end_activities_iqr", "end_activities_skewness", "end_activities_kurtosis", "entropy_trace",
"entropy_prefix", "entropy_global_block", "entropy_lempel_ziv", "entropy_k_block_diff_1", "entropy_k_block_diff_3",
"entropy_k_block_diff_5", "entropy_k_block_ratio_1", "entropy_k_block_ratio_3", "entropy_k_block_ratio_5", "entropy_knn_3",
"entropy_knn_5", "entropy_knn_7"]
features = [log_name]
features.extend(simple_stats(log))
features.extend(trace_length(log))
features.extend(trace_variant(log))
features.extend(activities(log))
features.extend(start_activities(log))
features.extend(end_activities(log))
features.extend(entropies(log_name, OUTPUT_PATH))
mtf = pd.DataFrame([features], columns=mtf_cols)
st.dataframe(mtf)
return mtf
def generate_pt(mtf):
OUTPUT_PLOT = f"{OUTPUT_PATH}/generated_pt".replace(":","").replace(".","")#+".png" # OUTPUT_PATH is OUTPUT_PATH+INPUT_FILE
st.write("### PT Gen configurations")
col1, col2, col3, col4, col5, col6 = st.columns(6)
with col1:
param_mode = st.text_input('Mode', str(round(mtf['activities_median'].iat[0]))) #?
st.write("Sum of probabilities must be one")
with col2:
param_min = st.text_input('Min', str(mtf['activities_min'].iat[0]))
param_seq = st.text_input('Probability Sequence', 0.25)
with col3:
param_max = st.text_input('Max', str(mtf['activities_max'].iat[0]))
param_cho = st.text_input('Probability Choice (XOR)', 0.25)
with col4:
param_nmo = st.text_input('Number of models', 1)
param_par = st.text_input('Probability Parallel', 0.25)
with col5:
param_dup = st.text_input('Duplicates', 0)
param_lop = st.text_input('Probability Loop', 0.25)
with col6:
param_sil = st.text_input('Silent', 0.2)
param_or = st.text_input('Probability Or', 0.0)
PT_PARAMS = {tree_generator.Variants.PTANDLOGGENERATOR.value.Parameters.MODE: round(float(param_mode)), #most frequent number of visible activities
tree_generator.Variants.PTANDLOGGENERATOR.value.Parameters.MIN: int(param_min), #minimum number of visible activities
tree_generator.Variants.PTANDLOGGENERATOR.value.Parameters.MAX: int(param_max), #maximum number of visible activities
tree_generator.Variants.PTANDLOGGENERATOR.value.Parameters.SEQUENCE: float(param_seq), #probability to add a sequence operator to tree
tree_generator.Variants.PTANDLOGGENERATOR.value.Parameters.CHOICE: float(param_cho), #probability to add a choice (XOR) operator to tree
tree_generator.Variants.PTANDLOGGENERATOR.value.Parameters.PARALLEL: float(param_par), #probability to add a parallel operator to tree
tree_generator.Variants.PTANDLOGGENERATOR.value.Parameters.LOOP: float(param_lop), #probability to add a loop operator to tree
tree_generator.Variants.PTANDLOGGENERATOR.value.Parameters.OR: float(param_or), #probability to add an or operator to tree
tree_generator.Variants.PTANDLOGGENERATOR.value.Parameters.SILENT: float(param_sil), #probability to add silent activity to a choice or loop operator
tree_generator.Variants.PTANDLOGGENERATOR.value.Parameters.DUPLICATE: int(param_dup), #probability to duplicate an activity label
tree_generator.Variants.PTANDLOGGENERATOR.value.Parameters.NO_MODELS: int(param_nmo)} #number of trees to generate from model population
process_tree = generate_process_tree(parameters=PT_PARAMS)
save_vis_process_tree(process_tree, OUTPUT_PLOT+"_tree.png")
st.write("### Playout configurations")
param_ntraces = st.text_input('Number of traces', str(mtf['n_traces'].iat[0]))
PO_PARAMS = {playout.Variants.BASIC_PLAYOUT.value.Parameters.NO_TRACES : int(param_ntraces)}
ptgen_log = play_out(process_tree, parameters=PO_PARAMS)
net, im, fm = inductive_miner(ptgen_log)
save_vis_petri_net(net, im, fm, OUTPUT_PLOT+".png")
st.write("Saved in: ", OUTPUT_PLOT)
fig_pt_net = mpimg.imread(OUTPUT_PLOT+".png")
fig_pt_tree = mpimg.imread(OUTPUT_PLOT+"_tree.png")
fcol1, fcol2 = st.columns(2)
with fcol1:
st.image(fig_pt_tree)
with fcol2:
st.image(fig_pt_net)
extract_meta_features(ptgen_log, "gen_pt")
if __name__ == '__main__':
st.set_page_config(layout='wide')
"""
# Event Log Generator
"""
start_options = ['Event-Log', 'Meta-features']
start_preference = st.sidebar.selectbox("Do you want to start with a log or with metafeatures?", start_options,0)
#lets_start = st.sidebar.button("Let's start with "+start_preference+'!')
if start_preference==start_options[0]:
st.sidebar.write("Upload a dataset in csv or xes-format:")
uploaded_file = st.sidebar.file_uploader("Pick a logfile")
bar = st.progress(0)
os.makedirs(OUTPUT_PATH, exist_ok=True)
event_log = st.session_state['log'] if "log" in st.session_state else None
if uploaded_file:
event_log, event_df, case_id, activity_id = read_uploaded_file(uploaded_file)
#event_log = deepcopy(event_log)
use_sample = st.sidebar.checkbox('Use random sample', True)
if use_sample:
sample_size = st.sidebar.text_input('Sample size of approx number of events', str(SAMPLE_EVENTS))
sample_size = int(sample_size)
event_log = sample_log_traces(event_log, sample_size)
sample_cases = [event_log[i].attributes['concept:name'] for i in range(0, len(event_log))]
event_df = event_df[event_df[case_id].isin(sample_cases)]
show_loaded_event_log(event_log, event_df)
ext_mtf = extract_meta_features(event_log, "running-example")
generate_pt(ext_mtf)
elif start_preference==start_options[1]:
LOG_COL = 'log'
st.sidebar.write("Upload a dataset in csv-format")
uploaded_file = st.sidebar.file_uploader("Pick a file containing meta-features")
bar = st.progress(0)
os.makedirs(OUTPUT_PATH, exist_ok=True)
event_log = st.session_state[LOG_COL] if "log" in st.session_state else None
if uploaded_file:
sep = st.sidebar.text_input("Columns separator", ";")
mtf = load_from_csv(uploaded_file, sep)
st.dataframe(mtf)
log_options = mtf['log'].unique()
log_preference = st.selectbox("What log should we use for generating a new event-log?", log_options,1)
mtf_selection = mtf[mtf[LOG_COL]==log_preference]
generate_pt(mtf_selection)
st.write("##### Original")
st.write(mtf_selection)
|