File size: 15,034 Bytes
bdf9096
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
from copy import deepcopy
from meta_feature_extraction.simple_stats import simple_stats
from meta_feature_extraction.trace_length import trace_length
from meta_feature_extraction.trace_variant import trace_variant
from meta_feature_extraction.activities import activities
from meta_feature_extraction.start_activities import start_activities
from meta_feature_extraction.end_activities import end_activities
from meta_feature_extraction.entropies import entropies
from pm4py import discover_petri_net_inductive as inductive_miner
from pm4py import generate_process_tree
from pm4py import save_vis_petri_net, save_vis_process_tree
from pm4py.algo.filtering.log.variants import variants_filter
from pm4py.algo.simulation.tree_generator import algorithm as tree_generator
from pm4py.algo.simulation.playout.process_tree import algorithm as playout
from pm4py.objects.conversion.log import converter as log_converter
from pm4py.objects.log.exporter.xes import exporter as xes_exporter
from pm4py.objects.log.importer.xes import importer as xes_importer
from pm4py.objects.log.util import dataframe_utils
from pm4py.sim import play_out

import matplotlib.image as mpimg
import os
import pandas as pd
import streamlit as st

OUTPUT_PATH = "output"
SAMPLE_EVENTS = 500

@st.cache(allow_output_mutation=True)
def load_from_xes(uploaded_file):
    bytes_data = uploaded_file.getvalue()
    log1 = xes_importer.deserialize(bytes_data)
    get_stats(log1)
    return log1

@st.cache
def load_from_csv(uploaded_file, sep):
    if uploaded_file is not None:
        df = pd.read_csv(uploaded_file, sep=sep, index_col=False)
        return df

def get_stats(log, save=True):
    """Returns the statistics of an event log."""
    num_traces = len(log)
    num_events = sum([len(c) for c in log])
    num_utraces = len(variants_filter.get_variants(log))
    if save:
        st.session_state["num_traces"] = num_traces
        st.session_state["num_events"] = num_events
        st.session_state["num_utraces"] = num_utraces
    return num_utraces, num_traces, num_events

#@st.cache
def df_to_log(df, case_id, activity, timestamp):
    df.rename(columns={case_id: 'case:concept:name',
                       activity: 'concept:name',
                       timestamp: "time:timestamp"}, inplace=True)
    temp = dataframe_utils.convert_timestamp_columns_in_df(df)
    #temp = temp.sort_values(timestamp)
    log = log_converter.apply(temp)
    return log, 'concept:name', "time:timestamp"

def read_uploaded_file(uploaded_file):
    extension = uploaded_file.name.split('.')[-1]
    log_name = uploaded_file.name.split('.')[-2]

    st.sidebar.write("Loaded ", extension.upper(), '-File: ', uploaded_file.name)
    if extension == "xes":
        event_log = load_from_xes(uploaded_file)
        log_columns = [*list(event_log[0][0].keys())]
        convert_button = False
        case_id = "case:concept:name"
        activity = "concept:name"
        timestamp = "time:timestamp"
        default_act_id = log_columns.index("concept:name")
        default_tst_id = log_columns.index("time:timestamp")

        event_df = log_converter.apply(event_log, variant=log_converter.Variants.TO_DATA_FRAME)
        df_path = OUTPUT_PATH+"/"+log_name+".csv"
        event_df.to_csv(df_path, sep =";", index=False)
        return event_log, event_df, case_id, activity

    elif extension == "csv":
        sep = st.sidebar.text_input("Columns separator", ";")
        event_df = load_from_csv(uploaded_file, sep)
        old_df = deepcopy(event_df)
        log_columns = event_df.columns

        case_id = st.sidebar.selectbox("Choose 'case' column:", log_columns)
        activity = st.sidebar.selectbox("Choose 'activity' column:", log_columns, index=0)
        timestamp = st.sidebar.selectbox("Choose 'timestamp' column:", log_columns, index=0)

        convert_button = st.sidebar.button('Confirm selection')
        if convert_button:
            temp = deepcopy(event_df)
            event_log, activity, timestamp = df_to_log(temp, case_id, activity, timestamp)
            #xes_exporter.apply(event_log, INPUT_XES)
            log_columns = [*list(event_log[0][0].keys())]
            st.session_state['log'] = event_log
            return event_log, event_df, case_id, activity

def sample_log_traces(complete_log, sample_size):
    '''
    Samples random traces out of logs.
    So that number of events is slightly over SAMPLE_SIZE.
    :param complete_log: Log extracted from xes
    '''

    log_traces = variants_filter.get_variants(complete_log)
    keys = list(log_traces.keys())
    sample_traces = {}
    num_evs = 0
    while num_evs < sample_size:
        if len(keys) == 0:
            break
        random_trace = keys.pop()
        sample_traces[random_trace] = log_traces[random_trace]
        evs = sum([len(case_id) for case_id in sample_traces[random_trace]])
        num_evs += evs
    log1 = variants_filter.apply(complete_log, sample_traces)
    return log1

def show_process_petrinet(event_log, filter_info, OUTPUT_PATH):
            OUTPUT_PLOT = f"{OUTPUT_PATH}_{filter_info}".replace(":","").replace(".","")+".png" # OUTPUT_PATH is OUTPUT_PATH+INPUT_FILE

            try:
                fig_pt = mpimg.imread(OUTPUT_PLOT)
                st.write("Loaded from memory")
            except FileNotFoundError:
                net, im, fm = inductive_miner(event_log)
                           # parameters={heuristics_miner.Variants.CLASSIC.value.Parameters.DEPENDENCY_THRESH: 0.99,
                           #     pn_visualizer.Variants.FREQUENCY.value.Parameters.FORMAT: "png"})
                #parameters = {pn_visualizer.Variants.FREQUENCY.value.Parameters.FORMAT: "png"}
                save_vis_petri_net(net, im, fm, OUTPUT_PLOT)
                st.write("Saved in: ", OUTPUT_PLOT)
            fig_pt = mpimg.imread(OUTPUT_PLOT)
            st.image(fig_pt)

def show_loaded_event_log(event_log, event_df):
        get_stats(event_log)
        st.write("### Loaded event-log")
        col1, col2 = st.columns(2)
        with col2:
            st.dataframe(event_df)
        with col1:
            show_process_petrinet(event_log, None, OUTPUT_PATH+"running-example")

def extract_meta_features(log, log_name):
    mtf_cols = ["log", "n_traces", "n_unique_traces", "ratio_unique_traces_per_trace", "n_events", "trace_len_min", "trace_len_max",
                "trace_len_mean", "trace_len_median", "trace_len_mode", "trace_len_std", "trace_len_variance", "trace_len_q1",
                "trace_len_q3", "trace_len_iqr", "trace_len_geometric_mean", "trace_len_geometric_std", "trace_len_harmonic_mean",
                "trace_len_skewness", "trace_len_kurtosis", "trace_len_coefficient_variation", "trace_len_entropy", "trace_len_hist1",
                "trace_len_hist2", "trace_len_hist3", "trace_len_hist4", "trace_len_hist5", "trace_len_hist6", "trace_len_hist7",
                "trace_len_hist8", "trace_len_hist9", "trace_len_hist10", "trace_len_skewness_hist", "trace_len_kurtosis_hist",
                "ratio_most_common_variant", "ratio_top_1_variants", "ratio_top_5_variants", "ratio_top_10_variants", "ratio_top_20_variants",
                "ratio_top_50_variants", "ratio_top_75_variants", "mean_variant_occurrence", "std_variant_occurrence", "skewness_variant_occurrence",
                "kurtosis_variant_occurrence", "n_unique_activities", "activities_min", "activities_max", "activities_mean", "activities_median",
                "activities_std", "activities_variance", "activities_q1", "activities_q3", "activities_iqr", "activities_skewness",
                "activities_kurtosis", "n_unique_start_activities", "start_activities_min", "start_activities_max", "start_activities_mean",
                "start_activities_median", "start_activities_std", "start_activities_variance", "start_activities_q1", "start_activities_q3",
                "start_activities_iqr", "start_activities_skewness", "start_activities_kurtosis", "n_unique_end_activities", "end_activities_min",
                "end_activities_max", "end_activities_mean", "end_activities_median", "end_activities_std", "end_activities_variance",
                "end_activities_q1", "end_activities_q3", "end_activities_iqr", "end_activities_skewness", "end_activities_kurtosis", "entropy_trace",
                "entropy_prefix", "entropy_global_block", "entropy_lempel_ziv", "entropy_k_block_diff_1", "entropy_k_block_diff_3",
                "entropy_k_block_diff_5", "entropy_k_block_ratio_1", "entropy_k_block_ratio_3", "entropy_k_block_ratio_5", "entropy_knn_3",
                "entropy_knn_5", "entropy_knn_7"]
    features = [log_name]
    features.extend(simple_stats(log))
    features.extend(trace_length(log))
    features.extend(trace_variant(log))
    features.extend(activities(log))
    features.extend(start_activities(log))
    features.extend(end_activities(log))
    features.extend(entropies(log_name, OUTPUT_PATH))

    mtf = pd.DataFrame([features], columns=mtf_cols)

    st.dataframe(mtf)
    return mtf

def generate_pt(mtf):
    OUTPUT_PLOT = f"{OUTPUT_PATH}/generated_pt".replace(":","").replace(".","")#+".png" # OUTPUT_PATH is OUTPUT_PATH+INPUT_FILE

    st.write("### PT Gen configurations")
    col1, col2, col3, col4, col5, col6 = st.columns(6)
    with col1:
            param_mode = st.text_input('Mode', str(round(mtf['activities_median'].iat[0]))) #?
            st.write("Sum of probabilities must be one")
    with col2:
            param_min = st.text_input('Min', str(mtf['activities_min'].iat[0]))
            param_seq = st.text_input('Probability Sequence', 0.25)
    with col3:
            param_max = st.text_input('Max', str(mtf['activities_max'].iat[0]))
            param_cho = st.text_input('Probability Choice (XOR)', 0.25)
    with col4:
            param_nmo = st.text_input('Number of models', 1)
            param_par = st.text_input('Probability Parallel', 0.25)
    with col5:
            param_dup = st.text_input('Duplicates', 0)
            param_lop = st.text_input('Probability Loop', 0.25)
    with col6:
            param_sil = st.text_input('Silent', 0.2)
            param_or = st.text_input('Probability Or', 0.0)

    PT_PARAMS = {tree_generator.Variants.PTANDLOGGENERATOR.value.Parameters.MODE: round(float(param_mode)), #most frequent number of visible activities
            tree_generator.Variants.PTANDLOGGENERATOR.value.Parameters.MIN: int(param_min), #minimum number of visible activities
            tree_generator.Variants.PTANDLOGGENERATOR.value.Parameters.MAX: int(param_max), #maximum number of visible activities
            tree_generator.Variants.PTANDLOGGENERATOR.value.Parameters.SEQUENCE: float(param_seq), #probability to add a sequence operator to tree
            tree_generator.Variants.PTANDLOGGENERATOR.value.Parameters.CHOICE: float(param_cho), #probability to add a choice (XOR) operator to tree
            tree_generator.Variants.PTANDLOGGENERATOR.value.Parameters.PARALLEL: float(param_par), #probability to add a parallel operator to tree
            tree_generator.Variants.PTANDLOGGENERATOR.value.Parameters.LOOP: float(param_lop), #probability to add a loop operator to tree
            tree_generator.Variants.PTANDLOGGENERATOR.value.Parameters.OR: float(param_or), #probability to add an or operator to tree
            tree_generator.Variants.PTANDLOGGENERATOR.value.Parameters.SILENT: float(param_sil), #probability to add silent activity to a choice or loop operator
            tree_generator.Variants.PTANDLOGGENERATOR.value.Parameters.DUPLICATE: int(param_dup), #probability to duplicate an activity label
            tree_generator.Variants.PTANDLOGGENERATOR.value.Parameters.NO_MODELS: int(param_nmo)} #number of trees to generate from model population

    process_tree = generate_process_tree(parameters=PT_PARAMS)
    save_vis_process_tree(process_tree, OUTPUT_PLOT+"_tree.png")

    st.write("### Playout configurations")

    param_ntraces = st.text_input('Number of traces', str(mtf['n_traces'].iat[0]))
    PO_PARAMS = {playout.Variants.BASIC_PLAYOUT.value.Parameters.NO_TRACES : int(param_ntraces)}

    ptgen_log = play_out(process_tree, parameters=PO_PARAMS)

    net, im, fm = inductive_miner(ptgen_log)
    save_vis_petri_net(net, im, fm, OUTPUT_PLOT+".png")
    st.write("Saved in: ", OUTPUT_PLOT)
    fig_pt_net = mpimg.imread(OUTPUT_PLOT+".png")
    fig_pt_tree = mpimg.imread(OUTPUT_PLOT+"_tree.png")

    fcol1, fcol2 = st.columns(2)
    with fcol1:
        st.image(fig_pt_tree)
    with fcol2:
        st.image(fig_pt_net)
    extract_meta_features(ptgen_log, "gen_pt")


if __name__ == '__main__':
    st.set_page_config(layout='wide')
    """
    # Event Log Generator
    """
    start_options =  ['Event-Log', 'Meta-features']
    start_preference = st.sidebar.selectbox("Do you want to start with a log or with metafeatures?", start_options,0)
    #lets_start = st.sidebar.button("Let's start with "+start_preference+'!')

    if start_preference==start_options[0]:
        st.sidebar.write("Upload a dataset in csv or xes-format:")
        uploaded_file = st.sidebar.file_uploader("Pick a logfile")

        bar = st.progress(0)

        os.makedirs(OUTPUT_PATH, exist_ok=True)
        event_log = st.session_state['log'] if "log" in st.session_state else None
        if uploaded_file:
            event_log, event_df, case_id, activity_id = read_uploaded_file(uploaded_file)
            #event_log = deepcopy(event_log)

            use_sample = st.sidebar.checkbox('Use random sample', True)
            if use_sample:
                sample_size = st.sidebar.text_input('Sample size of approx number of events', str(SAMPLE_EVENTS))
                sample_size = int(sample_size)

                event_log = sample_log_traces(event_log, sample_size)
                sample_cases = [event_log[i].attributes['concept:name'] for i in range(0, len(event_log))]
                event_df = event_df[event_df[case_id].isin(sample_cases)]

            show_loaded_event_log(event_log, event_df)
            ext_mtf = extract_meta_features(event_log, "running-example")
            generate_pt(ext_mtf)

    elif start_preference==start_options[1]:
        LOG_COL = 'log'
        st.sidebar.write("Upload a dataset in csv-format")
        uploaded_file = st.sidebar.file_uploader("Pick a file containing meta-features")

        bar = st.progress(0)

        os.makedirs(OUTPUT_PATH, exist_ok=True)
        event_log = st.session_state[LOG_COL] if "log" in st.session_state else None
        if uploaded_file:
            sep = st.sidebar.text_input("Columns separator", ";")
            mtf = load_from_csv(uploaded_file, sep)
            st.dataframe(mtf)

            log_options = mtf['log'].unique()
            log_preference = st.selectbox("What log should we use for generating a new event-log?", log_options,1)
            mtf_selection = mtf[mtf[LOG_COL]==log_preference]
            generate_pt(mtf_selection)
            st.write("##### Original")
            st.write(mtf_selection)