File size: 47,753 Bytes
bdf9096
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
99bcc04
 
 
bdf9096
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c9a365
bdf9096
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1852a54
bdf9096
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1852a54
bdf9096
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
import matplotlib as mpl
import matplotlib.colors as mcolors
import matplotlib.pyplot as plt
import numpy as np
import os
import pandas as pd
import seaborn as sns
import os
import glob

from matplotlib.axes import Axes
from matplotlib.figure import Figure
from matplotlib.lines import Line2D
from utils.param_keys import PLOT_TYPE, PROJECTION, EXPLAINED_VAR, PLOT_3D_MAP
from utils.param_keys import INPUT_PATH, OUTPUT_PATH
from utils.param_keys.generator import GENERATOR_PARAMS, EXPERIMENT, PLOT_REFERENCE_FEATURE
from utils.param_keys.plotter import REAL_EVENTLOG_PATH
from collections import defaultdict

from sklearn.preprocessing import Normalizer, StandardScaler
from sklearn.decomposition import PCA
from sklearn.metrics.pairwise import euclidean_distances
from gedi.generator import get_tasks
from gedi.utils.io_helpers import get_keys_abbreviation
from gedi.utils.io_helpers import read_csvs, select_instance

def insert_newlines(string, every=140):
    return '\n'.join(string[i:i+every] for i in range(0, len(string), every))

class MyPlotter:
    def __init__(self, interactive: bool = True, title_prefix: str = '', for_paper: bool = False):
        self.fig: Figure = Figure()
        self.axes: Axes = Axes(self.fig, [0, 0, 0, 0])
        self.interactive: bool = interactive
        self.title_prefix: str = title_prefix
        self.colors: dict = mcolors.TABLEAU_COLORS
        self.for_paper: bool = for_paper

        if self.interactive:
            mpl.use('TkAgg')

        if self.for_paper:
            self.fontsize = 18
        else:
            self.fontsize = 10

    def _set_figure_title(self):
        self.fig.suptitle(self.title_prefix)

    def _post_processing(self):
        if not self.for_paper:
            self._set_figure_title()
        plt.show()

class ModelResultPlotter(MyPlotter):
    def plot_models(self, model_results, plot_type='', plot_tics=False, components=None):
        """
        Plots the model results in 2d-coordinate system next to each other.
        Alternatively with tics of the components can be plotted under the figures when `plot_tics` is True
        :param model_results: list of dictionary
            dict should contain the keys: 'model', 'projection', 'title_prefix' (optional)
        :param plot_type: param_key.plot_type
        :param plot_tics: bool (default: False)
            Plots the component tics under the base figures if True
        :param components: int
            Number of components used for the reduced
        """
        if plot_tics:
            self.fig, self.axes = plt.subplots(components + 1, len(model_results),
                                               constrained_layout=True, figsize=(10,8))  # subplots(rows, columns)
            main_axes = self.axes[0]  # axes[row][column]
            if len(model_results) == 1:
                for component_nr in range(components + 1)[1:]:
                    self._plot_time_tics(self.axes[component_nr], model_results[DUMMY_ZERO][PROJECTION],
                                         component=component_nr)
            else:
                for i, result in enumerate(model_results):
                    df_pca = pd.DataFrame(result[PROJECTION], columns=["PC1", "PC2"])
                    sns.scatterplot(ax=self.axes[0][i], data=df_pca, x="PC1", y="PC2", palette="bright", hue=['']*len(df_pca), alpha=0.9, s=100)
                    try:
                        self.axes[0][i].set_xlabel(f"PC1 ({np.round(result[EXPLAINED_VAR][0]*100, 2)}% explained variance)")
                        self.axes[0][i].set_ylabel(f"PC2 ({np.round(result[EXPLAINED_VAR][1]*100, 2)}% explained variance)")
                    except TypeError:
                        self.axes[0][i].set_xlabel(f"TSNE_1")
                        self.axes[0][i].set_ylabel(f"TSNE_2")
                    for component_nr in range(components + 1)[1:]:
                        self._plot_time_tics(self.axes[component_nr][i], result[PROJECTION], component=component_nr)
        else:
            self.fig, self.axes = plt.subplots(1, len(model_results), constrained_layout=True)
            main_axes = self.axes

        plt.show()

    @staticmethod
    def _plot_time_tics(ax, projection, component):
        """
        Plot the time tics on a specific axis
        :param ax: axis
        :param projection:
        :param component:
        :return:
        """
        ax.cla()

        ax.set_xlabel('Time step')
        ax.set_ylabel('Component {}'.format(component))
        ax.label_outer()

        ax.plot(projection[:, component - 1])

class ArrayPlotter(MyPlotter):
    def __init__(self, interactive=False, title_prefix='', x_label='', y_label='', bottom_text=None, y_range=None,
                 show_grid=False, xtick_start=0, for_paper=False):
        super().__init__(interactive, title_prefix, for_paper)
        self.x_label = x_label
        self.y_label = y_label
        self.bottom_text = bottom_text
        self.range_tuple = y_range
        self._activate_legend = False
        self.show_grid = show_grid
        self.xtick_start = xtick_start

    def _post_processing(self, legend_outside=False):
        # self.axes.set_title(self.title_prefix)
        self.axes.set_xlabel(self.x_label, fontsize=self.fontsize)
        self.axes.set_ylabel(self.y_label, fontsize=self.fontsize)
        # plt.xticks(fontsize=self.fontsize)
        # plt.yticks(fontsize=self.fontsize)

        if self.bottom_text is not None:
            self.fig.text(0.01, 0.01, self.bottom_text, fontsize=self.fontsize)
            self.fig.tight_layout()
            self.fig.subplots_adjust(bottom=(self.bottom_text.count('\n') + 1) * 0.1)
        else:
            self.fig.tight_layout()

        if legend_outside:
            self.axes.legend(bbox_to_anchor=(0.5, -0.05), loc='upper center', fontsize=8)
            plt.subplots_adjust(bottom=0.25)
        elif self._activate_legend:
            self.axes.legend(fontsize=self.fontsize)

        if self.range_tuple is not None:
            self.axes.set_ylim(self.range_tuple)

        if self.show_grid:
            plt.grid(True, which='both')
            plt.minorticks_on()
        super()._post_processing()

    def matrix_plot(self, matrix, as_surface='2d', show_values=False):
        """
        Plots the values of a matrix on a 2d or a 3d axes
        :param matrix: ndarray (2-ndim)
            matrix, which should be plotted
        :param as_surface: str
            Plot as a 3d-surface if value PLOT_3D_MAP else 2d-axes
        :param show_values: If true, then show the values in the matrix
        """
        c_map = plt.cm.viridis
        # c_map = plt.cm.seismic
        if as_surface == PLOT_3D_MAP:
            x_coordinates = np.arange(matrix.shape[0])
            y_coordinates = np.arange(matrix.shape[1])
            x_coordinates, y_coordinates = np.meshgrid(x_coordinates, y_coordinates)
            self.fig = plt.figure()
            self.axes = self.fig.gca(projection='3d')
            self.axes.set_zlabel('Covariance Values', fontsize=self.fontsize)
            im = self.axes.plot_surface(x_coordinates, y_coordinates, matrix, cmap=c_map)
        else:
            self.fig, self.axes = plt.subplots(1, 1, dpi=80)
            im = self.axes.matshow(matrix, cmap=c_map)
            if show_values:
                for (i, j), value in np.ndenumerate(matrix):
                    self.axes.text(j, i, '{:0.2f}'.format(value), ha='center', va='center', fontsize=8)
        if not self.for_paper:
            self.fig.colorbar(im, ax=self.axes)
            plt.xticks(np.arange(matrix.shape[1]), np.arange(self.xtick_start, matrix.shape[1] + self.xtick_start))
            # plt.xticks(np.arange(matrix.shape[1], step=5),
            #            np.arange(self.xtick_start, matrix.shape[1] + self.xtick_start, step=5))
        self._post_processing()

    def plot_gauss2d(self,
                     x_index: np.ndarray,
                     ydata: np.ndarray,
                     new_ydata: np.ndarray,
                     gauss_fitted: np.ndarray,
                     fit_method: str,
                     statistical_function: callable = np.median):
        """
        Plot the original data (ydata), the new data (new_ydata) where the x-axis-indices is given by (x_index),
        the (fitted) gauss curve and a line (mean, median)
        :param x_index: ndarray (1-ndim)
            range of plotting
        :param ydata: ndarray (1-ndim)
            original data
        :param new_ydata: ndarray (1-ndim)
            the changed new data
        :param gauss_fitted: ndarray (1-ndim)
            the fitted curve on the new data
        :param fit_method: str
            the name of the fitting method
        :param statistical_function: callable
            Some statistical numpy function
        :return:
        """
        self.fig, self.axes = plt.subplots(1, 1, dpi=80)
        self.axes.plot(x_index, gauss_fitted, '-', label=f'fit {fit_method}')
        # self.axes.plot(x_index, gauss_fitted, ' ')
        self.axes.plot(x_index, ydata, '.', label='original data')
        # self.axes.plot(x_index, ydata, ' ')
        statistical_value = np.full(x_index.shape, statistical_function(ydata))
        if self.for_paper:
            function_label = 'threshold'
        else:
            function_label = function_name(statistical_function)
            self._activate_legend = True
        self.axes.plot(x_index, statistical_value, '-', label=function_label)
        # self.axes.plot(x_index, statistical_value, ' ')
        # self.axes.plot(x_index, new_ydata, '.', label='re-scaled data')
        self.axes.plot(x_index, new_ydata, ' ')
        self._post_processing()

    def plot_2d(self, ndarray_data, statistical_func=None):
        self.fig, self.axes = plt.subplots(1, 1)
        self.axes.plot(ndarray_data, '-')
        if statistical_func is not None:
            statistical_value = statistical_func(ndarray_data)
            statistical_value_line = np.full(ndarray_data.shape, statistical_value)
            self.axes.plot(statistical_value_line, '-',
                           label=f'{function_name(statistical_func)}: {statistical_value:.4f}')
        self._activate_legend = False
        self._post_processing()

    def plot_merged_2ds(self, ndarray_dict: dict, statistical_func=None):
        self.fig, self.axes = plt.subplots(1, 1, dpi=80)
        self.title_prefix += f'with {function_name(statistical_func)}' if statistical_func is not None else ''
        for key, ndarray_data in ndarray_dict.items():
            # noinspection PyProtectedMember
            color = next(self.axes._get_lines.prop_cycler)['color']
            if statistical_func is not None:
                if isinstance(ndarray_data, list):
                    ndarray_data = np.asarray(ndarray_data)
                self.axes.plot(ndarray_data, '-', color=color)
                statistical_value = statistical_func(ndarray_data)
                statistical_value_line = np.full(ndarray_data.shape, statistical_value)
                self.axes.plot(statistical_value_line, '--',
                               label=f'{key.strip()}: {statistical_value:.4f}', color=color)
            else:
                self.axes.plot(ndarray_data, '-', color=color, label=f'{key.strip()[:35]}')

        self._activate_legend = True
        self._post_processing()

class BenchmarkPlotter:
    def __init__(self, benchmark_results, output_path = None):
        self.plot_miners_correlation(benchmark_results, output_path=output_path)
        self.plot_miner_feat_correlation(benchmark_results, output_path=output_path)
        self.plot_miner_feat_correlation(benchmark_results, mean='methods', output_path=output_path)

    def plot_miner_feat_correlation(self, benchmark, mean='metrics', output_path=None):
        df = benchmark.loc[:, benchmark.columns!='log']
        corr = df.corr()

        if mean == 'methods':
            for method in ['inductive', 'heuristics', 'ilp']:
                method_cols = [col for col in corr.columns if col.startswith(method)]
                corr[method+'_avg'] = corr.loc[:, corr.columns.isin(method_cols)].mean(axis=1)
        elif mean == 'metrics':
            for metric in ['fitness', 'precision', 'generalization', 'simplicity']:
                metric_cols = [col for col in corr.columns if col.endswith(metric)]
                corr[metric+'_avg'] = corr.loc[:, corr.columns.isin(metric_cols)].mean(axis=1)

        avg_cols = [col for col in corr.columns if col.endswith('_avg')]

        benchmark_result_cols = [col for col in corr.columns if col.startswith('inductive')
                                or col.startswith('heuristics') or col.startswith('ilp')]

        corr = corr[:][~corr.index.isin(benchmark_result_cols)]

        fig, axes = plt.subplots( 1, len(avg_cols), figsize=(15,10))

        for i, ax in enumerate(axes):
            cbar = True if i==3 else False
            corr = corr.sort_values(avg_cols[i], axis=0, ascending=False)
            b= sns.heatmap(corr[[avg_cols[i]]][:],
                        ax=ax,
                        xticklabels=[avg_cols[i]],
                        yticklabels=corr.index,
                        cbar=cbar)
        plt.subplots_adjust(wspace = 1, top=0.9, left=0.15)
        fig.suptitle(f"Feature and performance correlation per {mean.split('s')[0]} for {len(benchmark)} event-logs")
        if output_path != None:
            output_path = output_path+f"/minperf_corr_{mean.split('s')[0]}_el{len(benchmark)}.jpg"
            fig.savefig(output_path)
            print(f"SUCCESS: Saved correlation plot at {output_path}")
        #plt.show()

    def plot_miners_correlation(self, benchmark, output_path=None):
        benchmark_result_cols = [col for col in benchmark.columns if col.startswith('inductive')
                                or col.startswith('heuristics') or col.startswith('ilp')]
        df = benchmark.loc[:, benchmark.columns!='log']
        df = df.loc[:, df.columns.isin(benchmark_result_cols)]

        corr = df.corr()
        fig, ax = plt.subplots(figsize=(15,10))
        b= sns.heatmap(corr,
                    ax=ax,
                    xticklabels=corr.columns.values,
                    yticklabels=corr.columns.values)
        plt.title(f"Miners and performance correlation for {len(benchmark)} event-logs", loc='center')
        if output_path != None:
            output_path = output_path+f"/minperf_corr_el{len(benchmark)}.jpg"
            fig.savefig(output_path)
            print(f"SUCCESS: Saved correlation plot at {output_path}")
        #plt.show()

class FeaturesPlotter:
    def __init__(self, features, params=None):
        output_path = params[OUTPUT_PATH] if OUTPUT_PATH in params else None
        plot_type = f", plot_type='{params[PLOT_TYPE]}'" if PLOT_TYPE else ""

        source_name = os.path.split(params['input_path'])[-1].replace(".csv", "")+"_"
        #output_path = os.path.join(output_path, source_name)
        if REAL_EVENTLOG_PATH in params:
            #real_eventlogs_path != None:
            real_eventlogs_path=params[REAL_EVENTLOG_PATH]
            real_eventlogs = pd.read_csv(real_eventlogs_path)
            fig, output_path = eval(f"self.plot_violinplot_multi(features, output_path, real_eventlogs, source='{source_name}' {plot_type})")
        else:
            fig, output_path = eval(f"self.plot_violinplot_single(features, output_path, source='{source_name}' {plot_type})")

        if output_path != None:
            os.makedirs(os.path.split(output_path)[0], exist_ok=True)
            fig.savefig(output_path)
            print(f"SUCCESS: Saved {plot_type} plot in {output_path}")


    def plot_violinplot_single(self, features, output_path=None, source="_",  plot_type="violinplot"):
        columns = features.columns[1:]
        df1=features.select_dtypes(exclude=['object'])

        fig, axes = plt.subplots(len(df1.columns),1, figsize=(17,len(df1.columns)))
        for i, ax in enumerate(axes):
                eval(f"sns.{plot_type}(data=df1, x=df1[df1.columns[i]], ax=ax)")
        fig.suptitle(f"{len(columns)} features distribution for {len(features)} generated event-logs", fontsize=16, y=1)
        fig.tight_layout()


        output_path=output_path+f"/{plot_type}s_{source}{len(columns)}fts_{len(df1)}gEL.jpg"

        return fig, output_path

    def plot_violinplot_multi(self, features, output_path, real_eventlogs, source="_", plot_type="violinplot"):
        LOG_NATURE = "Log Nature"
        GENERATED = "Generated"
        REAL = "Real"
        FONT_SIZE=20
        alpha = 0.7
        color = sns.color_palette("bright")
        markers = ['o','X']
        inner_param = ''

        features[LOG_NATURE] = GENERATED
        real_eventlogs[LOG_NATURE] = REAL

        bdf = pd.concat([features, real_eventlogs])
        bdf = bdf[features.columns]
        bdf = bdf.dropna(axis='rows')

        columns = bdf.columns[3:]
        dmf1=bdf.select_dtypes(exclude=['object'])

        if plot_type == 'violinplot':
            inner_param = 'inner = None,'

        fig, axes = plt.subplots(len(dmf1.columns),1, figsize=(12,len(dmf1.columns)*1.25), dpi=100)
        if isinstance(axes, Axes): # not isinstance(axes, list):
            axes = [axes]
        #nature_types = set(['Generated', 'Real'])#set(bdf['Log Nature'].unique())
        nature_types = list(reversed(bdf['Log Nature'].unique()[:2]))
        for i, ax in enumerate(axes):
            for j, nature in enumerate(nature_types):
                eval(f"sns.{plot_type}(data=bdf[bdf['Log Nature']==nature], x=dmf1.columns[i], palette=[color[j]], {inner_param} ax=ax)")
                eval(f"sns.stripplot(data=bdf[bdf['Log Nature']==nature], x=dmf1.columns[i], palette=[color[j]], marker=markers[j], {inner_param} ax=ax)")
            for collection in ax.collections:
                collection.set_alpha(alpha)

            for patch in ax.patches:
                r, g, b, a = patch.get_facecolor()
                patch.set_facecolor((r, g, b, alpha))

            custom_lines = [
                Line2D([0], [0], color=color[nature], lw=4, alpha=alpha)
                for nature in [0,1,2]
            ]
            #ax.legend(custom_lines, bdf['Log Nature'].unique(), title= "Log Nature")
            #sns.set_context("paper", font_scale=1.5)
            ax.tick_params(axis='both', which='major', labelsize=FONT_SIZE)
            ax.tick_params(axis='both', which='minor', labelsize=FONT_SIZE)
            ax.set_xlabel(dmf1.columns[i], fontsize=FONT_SIZE)

        fig.legend(custom_lines, nature_types, loc='upper right', ncol=len(nature_types), prop={'size': FONT_SIZE})
        #fig.suptitle(f"{len(features.columns)-2} features distribution for {len(real_eventlogs[real_eventlogs['Log Nature'].isin(nature_types)])} real and {len(features)} generated event-logs", fontsize=16, y=1)
        fig.tight_layout()

        output_path = output_path+f"/{plot_type}s_{source}{len(columns)}fts_{len(features)}gEL_of{len(bdf[bdf['Log Nature'].isin(nature_types)])}.jpg"
        return fig, output_path

class AugmentationPlotter(object):
    """Plotter for the augmented features.
    If just 2 features are examined, the plotter outputs a scatterplot with the two features defining
    the dimensions.
    IF more than 2 features are examined, a PCA is performed first before the first two principal
    components are plotted.

    Parameters
    ----------
    features : pd.DataFrame
        dataFrame containing the information of the real and synthesized datasets.
    """

    def __init__(self, features, params=None) -> None:
        output_path = params[OUTPUT_PATH] if OUTPUT_PATH in params else None
        self.sampler = params['augmentation_params']['method']
        eval(f"self.plot_augmented_features(features, output_path)")


    def plot_augmented_features(self, features, output_path=None) -> None:
        """Plotting for augmented features. When more than 2 features are selected, the
        plot will show the result after applying a PCA; otherwise the 2 features are
        plotted according to the values.

        Parameters
        ----------
        features : pd.DataFrame
            DataFrame containing the augmented features
        output_path : str, optional
            Path to the output file, by default None
        """
        if len(features.all.columns) < 2:
            raise AssertionError ("AugmentationPlotter - More than 2 (augmented) features are expected for plotting.")

        if len(features.all.columns) > 2:
            self._plot_pca(features, output_path)
        else:
            self._plot_2d(features, output_path)


    def _plot_2d(self, features, output_path=None) -> None:
        """Fnc for plotting 2D features without any dimension reduction technique being applied.

        Parameters
        ----------
        features : pd.DataFrame
            Dataframe containing the augmented features
        output_path : str, optional
            Path to the output file, by default None
        """
        col1_name, col2_name = features.all.columns

        # INIT - settings
        X = features.all.iloc[:-features.new_samples.shape[0]]
        X = X.to_numpy()
        X_aug = features.all.to_numpy()
        sns.set_theme()
        fig, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=(24, 8))
        fig.suptitle(f'Log Descriptors - real: {X.shape[0]}, synth.: {X_aug.shape[0]-X.shape[0]}', fontsize=16)

        # Normalizer: applied to each observation -> row values have unit norm
        normalizer = Normalizer(norm="l2").fit(X)
        normed_data = normalizer.transform(X_aug)

        # StandardScaler: applied to features -> col values have unit norm
        scaler = StandardScaler().fit(X)
        scaled_data = scaler.transform(X_aug)

        # PLOT - raw 2d data
        X_aug = self._add_real_synth_encoding(X_aug, X, X_aug)
        df_raw = self._convert_to_df(X_aug, [col1_name, col2_name, 'type'])
        sns.scatterplot(ax=ax1, data=df_raw, x=col1_name, y=col2_name, palette="bright", 
                        hue = "type", alpha=0.5, s=100).set_title("Raw data") 
        ax1.get_legend().set_title("")

        # PLOT - normed 2d data
        normed_data = self._add_real_synth_encoding(normed_data, X, X_aug)
        df_normed = self._convert_to_df(normed_data, [col1_name, col2_name, 'type'])
        sns.scatterplot(ax=ax2, data=df_normed, x=col1_name, y=col2_name, palette="bright", 
                        hue = 'type', alpha=0.5, s=100).set_title("Normalized data")
        ax2.get_legend().set_title("")

        # PLOT - scaled 2d data
        scaled_data = self._add_real_synth_encoding(scaled_data, X, X_aug)
        df_scaled = self._convert_to_df(scaled_data, [col1_name, col2_name, 'type'])
        sns.scatterplot(ax=ax3, data=df_scaled, x=col1_name, y=col2_name, palette="bright", 
                        hue = 'type', alpha=0.5, s=100).set_title("Scaled data")
        ax3.get_legend().set_title("")

        plt.tight_layout()

        # OUTPUT
        if output_path != None:
            output_path += f"/augmentation_2d_plot_{col1_name}-{col2_name}_{self.sampler}.jpg"
            fig.savefig(output_path)
            print(f"SUCCESS: Saved augmentation pca plot at {output_path}")

    def _add_real_synth_encoding(self, arr, X, X_aug) -> np.array:
        """Helper function for adding one additional column to the array in the last column. 
        The last column indicates whether it is a real data (=0) or synthesized (=1).

        Parameters
        ----------
        arr : np.array
            data array
        X : np.array
            data of real datasets
        X_aug : np.array
            data of real datasets and synthesized datasets

        Returns
        -------
        np.array
            array containing the data with an additional last column indicating whether the
            data comes from a real dataset or synthesized one
        """
        real_synth_enc = np.array([0]*X.shape[0] + [1]*(X_aug.shape[0]-X.shape[0])).reshape(-1, 1)
        return np.hstack ([arr, real_synth_enc])

    def _convert_to_df(self, arr, colnames, enc=['real', 'synth']) -> pd.DataFrame:
        """Converts the attached array to a dataframe. The column names are
        defined by the respective parameters, where the last column is encoded
        by the string array of the enc parameter.

        Parameters
        ----------
        arr : np.array
            _description_
        colnames : list
            column names of returned dataframe
        enc : list, optional
            labels for real vs. generated data, by default ['real', 'synth']

        Returns
        -------
        pd.DataFrame
            dataframe containing the attached data array with encoded values in the last column 
        """
        df = pd.DataFrame(arr, columns=colnames)
        df.loc[df.iloc[:, -1] == 0, colnames[-1]] = enc[0]
        df.loc[df.iloc[:, -1] == 1, colnames[-1]] = enc[1]
        return df

    def _plot_pca(self, features, output_path=None) -> None:
        """Fnc for plotting features with PCA as dimension reduction technique being applied.

        Parameters
        ----------
        features : pd.DataFrame
            DataFrame containing the augmented features
        output_path : str, optional
            path to output file, by default None
        """
        # INIT - settings
        n_features = features.all.shape[1]
        X = features.all.iloc[:-features.new_samples.shape[0]]
        X = X.to_numpy()
        X_aug = features.all.to_numpy()
        sns.set_theme()
        fig, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=(24, 8))
        fig.suptitle(f'Log Descriptors - real: {X.shape[0]}, synth.: {X_aug.shape[0]-X.shape[0]}', fontsize=16)

        pca_components = 2
        pca = PCA(n_components=pca_components)

        # Normalizer: applied to each observation -> row values have unit norm
        normalizer = Normalizer(norm="l2").fit(X)
        normed_data_real = normalizer.transform(X)
        normed_data_aug = normalizer.transform(X_aug)

        # StandardScaler: applied to features -> col values have unit norm
        scaler = StandardScaler().fit(X)
        scaled_data_real = scaler.transform(X)
        scaled_data_aug = scaler.transform(X_aug)

        # PLOT - PCA on raw input
        fit_pca = pca.fit(X)
        X_new = fit_pca.transform(X_aug)
        X_new = self._add_real_synth_encoding(X_new[:, :pca_components], X, X_aug)
        df_pca = self._convert_to_df(X_new, ['PC_1', 'PC_2', 'type'])
        sns.scatterplot(ax=ax1, data=df_pca, x="PC_1", y="PC_2", palette="bright", hue = 'type', alpha=0.5, s=100)
        ax1.set_xlabel(f"PC1 ({np.round(pca.explained_variance_ratio_[0]*100, 2)}% explained variance)")
        ax1.set_ylabel(f"PC2 ({np.round(pca.explained_variance_ratio_[1]*100, 2)}% explained variance)")
        ax1.get_legend().set_title("")

        # PLOT - PCA on normed data
        fit_norm_pca = pca.fit(normed_data_real)
        X_new_normed = fit_norm_pca.transform(normed_data_aug)
        X_new_normed = self._add_real_synth_encoding(X_new_normed[:, :pca_components], X, X_aug)
        df_pca_normed = self._convert_to_df(X_new_normed, ['PC_1', 'PC_2', 'type'])
        sns.scatterplot(ax=ax2, data=df_pca_normed, x="PC_1", y="PC_2", palette="bright", hue = 'type', alpha=0.5, s=100)
        ax2.set_xlabel(f"PC1 ({np.round(pca.explained_variance_ratio_[0]*100, 2)}% explained variance)")
        ax2.set_ylabel(f"PC2 ({np.round(pca.explained_variance_ratio_[1]*100, 2)}% explained variance)")
        ax2.get_legend().set_title("")

        # PLOT - PCA on scaled data
        fit_sca_pca = pca.fit(scaled_data_real)
        X_new_sca = fit_sca_pca.transform(scaled_data_aug)
        X_new_sca = self._add_real_synth_encoding(X_new_sca[:, :pca_components], X, X_aug)
        df_pca_scaled = self._convert_to_df(X_new_sca,  ['PC_1', 'PC_2', 'type'])
        sns.scatterplot(ax=ax3, data=df_pca_scaled, x="PC_1", y="PC_2", palette="bright", hue = 'type', alpha=0.5, s=100)
        ax3.set_xlabel(f"PC1 ({np.round(pca.explained_variance_ratio_[0]*100, 2)}% explained variance)")
        ax3.set_ylabel(f"PC2 ({np.round(pca.explained_variance_ratio_[1]*100, 2)}% explained variance)")
        ax3.get_legend().set_title("")

        plt.tight_layout()

        # OUTPUT
        if output_path != None:
            output_path += f"/augmentation_pca_{n_features}_{self.sampler}.jpg"
            fig.savefig(output_path)
            print(f"SUCCESS: Saved augmentation pca plot at {output_path}")


class GenerationPlotter(object):

    def __init__(self, gen_cfg, model_params, output_path, input_path=None):
        print(f"Running plotter for {len(gen_cfg)} genEL, params {model_params}, output path: {output_path}")
        self.output_path = output_path
        self.input_path = input_path
        self.model_params = model_params
        if "metafeatures" in gen_cfg.columns:
            self.gen = gen_cfg.metafeatures
            self.gen=pd.concat([pd.DataFrame.from_dict(entry, orient="Index").T for entry in self.gen]).reset_index(drop=True)
        else:
            self.gen = gen_cfg.reset_index(drop=True)

        if GENERATOR_PARAMS in model_params:
            self.tasks, _ = get_tasks(model_params[GENERATOR_PARAMS][EXPERIMENT])
            feature_list = list(self.tasks.select_dtypes(exclude=['object']).keys())
            ref_feat = None
            if PLOT_REFERENCE_FEATURE in model_params[GENERATOR_PARAMS]and model_params[GENERATOR_PARAMS][PLOT_REFERENCE_FEATURE] != "":
                ref_feat = model_params[GENERATOR_PARAMS][PLOT_REFERENCE_FEATURE]
            reference_feature_list = feature_list if ref_feat is None else [ref_feat]

        self.plot_settings()

        if input_path is not None:
            # plot single reference feature compared to values stored in .csvs
            if isinstance(input_path, str) and input_path.endswith(".csv"):
                f_d = pd.read_csv(input_path)
                f_d = {model_params['reference_feature']: f_d}
            elif isinstance(input_path, list):
                self.plot_dist_mx(model_params)
            else:
                f_d = read_csvs(input_path, model_params['reference_feature'])
                tasks, _ = get_tasks(model_params['targets'], reference_feature=model_params['reference_feature'])
                self.plot_reference_feature_plot(tasks, f_d, model_params['reference_feature'])
        else:
            # start all plotting procedures at once
            self.plot_feat_comparison(feature_list, reference_feature_list)


    def plot_reference_feature_plot(self, orig_targets, f_dict, reference_feature, resolution=10):
        fig1, axes = plt.subplots(1, len(f_dict), figsize=(20, 4))
        if isinstance(axes,Axes):
            axes = [axes]
        fig2, axes_mesh = plt.subplots(1, len(f_dict), figsize=(20, 4), layout='compressed')
        if isinstance(axes_mesh, Axes):
            axes_mesh = [axes_mesh]

        for idx_ax, (k, v) in enumerate(f_dict.items()):
            if isinstance(orig_targets, pd.DataFrame):
                targets = orig_targets.copy()
            elif isinstance(orig_targets, defaultdict):
                if k not in orig_targets:
                    print(f"[WARNING] {k} not in targets. Only in generated features. Will continue with next feature to compare with")
                    continue
                targets = orig_targets[k].copy()
            else:
                print(f"[ERR] Unknown file format for targets {type(orig_targets)}. Close program (Exit Code: 0).")

            # Identify NAN values of reference feature
            target_nan_values_idx_reference = np.where(targets[reference_feature].isna())[0]
            target_nan_logs_reference = targets.loc[target_nan_values_idx_reference]['log']
            # Identify NAN values of competitor feature
            target_nan_values_idx_competitor = np.where(targets[k].isna())[0]
            target_nan_logs_competitor = targets.loc[target_nan_values_idx_competitor]['log']
            # Collection of indices to drop
            target_nan_indices = np.unique(np.concatenate((target_nan_values_idx_competitor, target_nan_values_idx_reference)))
            # Drop NAN values in target DataFrame
            targets.drop(axis='index', index=target_nan_indices, inplace=True)

            # Check for indices in generated DataFrame
            reference_values_idx_reference = v[v['log'].isin(list(target_nan_logs_reference))].index
            reference_values_idx_competitor = v[v['log'].isin(list(target_nan_logs_competitor))].index
            # Collection of indices to drop for reference
            reference_nan_indices = np.unique(np.concatenate((reference_values_idx_reference, reference_values_idx_competitor)))
            # Drop NAN values in generated DataFrame
            v.drop(axis='index', index=reference_nan_indices, inplace=True)

            # Plot generated DataFrame + target DataFrame 
            v.plot.scatter(x=v.columns.get_loc(reference_feature), y=v.columns.get_loc(k), ax=axes[idx_ax], c="red", alpha=0.3)
            targets.plot.scatter(x=targets.columns.get_loc(reference_feature), y=targets.columns.get_loc(k), ax=axes[idx_ax], c='blue', alpha=0.3)

            Z = np.zeros([resolution+1, resolution+1])
            cnt_Z = np.zeros([resolution+1, resolution+1])
            Z.fill(np.nan)

            min_Z_X = np.min(targets[reference_feature])
            min_Z_Y = np.min(targets[k])
            max_Z_X = np.max(targets[reference_feature])
            max_Z_Y = np.max(targets[k])
            step_Z_X = np.round((max_Z_X - min_Z_X) / float(resolution), 4)
            step_Z_Y = np.round((max_Z_Y - min_Z_Y) / float(resolution), 4)

            cum_sum=0
            for idx in v.index:
                if isinstance(v, pd.DataFrame) and 'log' in v.columns:
                    c_log = v.loc[idx, 'log']
                    if c_log in targets['log'].values:
                        gen_entry = targets[targets['log'] == c_log]
                    else:
                        print(f"INFO: no value for {c_log} in generated files.")
                        gen_entry = targets
                else:
                    gen_entry = targets

                # Plot connection line 
                axes[idx_ax].plot([v[reference_feature][idx], gen_entry[reference_feature].values[0]],
                        [v[k][idx], gen_entry[k].values[0]],
                        c="green", alpha=0.25)
                # Plot textual annotation
                axes[idx_ax].annotate(gen_entry['log'].values[0], 
                                      (gen_entry[reference_feature].values[0], gen_entry[k].values[0]), 
                                      fontsize=5)

                # Compute distance between real and generated dot
                vec1 = np.array([v[reference_feature][idx], v[k][idx]])
                vec2 = np.array([gen_entry[reference_feature].values[0], gen_entry[k].values[0]])

                Z_idx = int (np.round((gen_entry[reference_feature].values[0] - min_Z_X) / step_Z_X))
                Z_idy = int (np.round((gen_entry[k].values[0] - min_Z_Y) / step_Z_Y))
                if np.isnan(Z[Z_idx][Z_idy]):
                    Z[Z_idx][Z_idy] = 0.0
                Z[Z_idx][Z_idy] += np.linalg.norm(vec1 - vec2)
                cnt_Z[Z_idx][Z_idy] += 1

                cum_sum += np.linalg.norm(vec1 - vec2)

            print(f"INFO: Cumulated distances objectives <-> generated features for '{reference_feature}' vs. '{k}': {cum_sum:.4f}")

            X, Y = np.meshgrid(np.linspace(min_Z_X, max_Z_X, resolution+1), 
                               np.linspace(min_Z_Y, max_Z_Y, resolution+1))
            cmap = plt.colormaps['viridis_r']
            Z[np.isnan(Z)] = np.sqrt(2) 
            cnt_Z[cnt_Z==0] = 1
            Z /= cnt_Z
            colormesh = axes_mesh[idx_ax].pcolormesh(X, Y, Z.T, shading='nearest', cmap=cmap)

            axes_mesh[idx_ax].set_xlabel(reference_feature)
            axes_mesh[idx_ax].set_ylabel(k)
            if idx_ax == (len(f_dict)-1):
                cbar = fig2.colorbar(colormesh, ax=axes_mesh, orientation='vertical', pad=0.01)
                cbar.ax.set_ylabel('Feature dist. of generated EDs and objectives',fontsize=8, rotation=90, labelpad=-50)
            axes[idx_ax].set_title(f"Cumulated distances {cum_sum:.4f}")

        tasks_keys = f_dict.keys()
        tasks_keys = list(sorted(tasks_keys))
        abbreviations = get_keys_abbreviation(tasks_keys)
        ref_short_name = get_keys_abbreviation([reference_feature])

        fig1_title = f'Feature Comparison - {reference_feature}'
        fig1.suptitle(fig1_title, fontsize=6)
        fig1.tight_layout()
        distance_plot_path = os.path.join(self.output_path,
                                          f"plot_genEL{len(self.gen)}_tasks{len(tasks_keys)}_{ref_short_name}_vs_{abbreviations}.png")
        fig1.savefig(distance_plot_path)
        print(f"Saved objectives vs. genEL features plot in {distance_plot_path}")

        fig2.suptitle(f'Meshgrid Comparison - {reference_feature}', fontsize=6)
        meshgrid_plot_path = os.path.join(self.output_path,
                                  f"plot_meshgrid_genEL{len(self.gen)}_tasks{len(tasks_keys)}_{ref_short_name}_vs_{abbreviations}.png")

        fig2.savefig(meshgrid_plot_path)
        print(f"Saved meshgrid plot in {meshgrid_plot_path}")


    def plot_single_comparison(self, tasks, objective1, objective2, ax, ax_cmesh, fig2, axes_meshes, flag_plt_clbar):
        if len(tasks.select_dtypes(include=['object']).columns)==0:
            tasks['task']=[f"task_{str(x+1)}" for x in tasks.index.values.tolist()]
        id_col = tasks.select_dtypes(include=['object']).dropna(axis=1).columns[0]
        tasks.plot.scatter(x=objective1, y=objective2, ax=ax, alpha=0.3)
        self.gen.plot.scatter(x=objective1, y=objective2, c="red", ax=ax, alpha=0.3)

        Z = np.zeros([tasks[objective1].unique().size, tasks[objective2].unique().size])
        cnt_Z = np.zeros([tasks[objective1].unique().size, tasks[objective2].unique().size])
        Z.fill(np.inf)
        cum_sum = 0
        for idx in tasks.index:
            if isinstance(tasks, pd.DataFrame) and 'log' in tasks.columns:
                c_log = tasks.loc[idx, 'log']
                if c_log in self.gen['log'].values:
                    gen_entry = self.gen[self.gen['log'] == c_log]
                else:
                    print(f"INFO: no value for {c_log} in generated files.")
                    gen_entry = self.gen
            else:
                gen_entry = self.gen

            ax.plot([tasks[objective1][idx], gen_entry[objective1].values[0]],
                    [tasks[objective2][idx], gen_entry[objective2].values[0]],
                    c="green", alpha=0.25)

            ax.annotate(tasks[id_col][idx], (tasks[objective1][idx], tasks[objective2][idx]), fontsize=5)

            vec1 = np.array([tasks[objective1][idx], tasks[objective2][idx]])
            vec2 = np.array([gen_entry[objective1].values[0], gen_entry[objective2].values[0]])

            Z_idx = np.where(tasks[objective1].unique() == tasks[objective1][idx])[0][0]
            Z_idy = np.where(tasks[objective2].unique() == tasks[objective2][idx])[0][0]
            if np.isinf(Z[Z_idx][Z_idy]):
                Z[Z_idx][Z_idy] = 0.0
            Z[Z_idx][Z_idy] += np.linalg.norm(vec1 - vec2)
            cnt_Z[Z_idx][Z_idy] += 1 
            cum_sum += np.linalg.norm(vec1 - vec2)

        print(f"INFO: Cumulated distances objectives <-> generated features for '{objective1}' vs. '{objective2}':", cum_sum)
        ax.set_title(f"Cumulated distances {cum_sum:.4f}")
        X, Y = np.meshgrid(tasks[objective1].unique(), tasks[objective2].unique())
        cmap = plt.colormaps['viridis_r']

        Z[np.isinf(Z)] = np.sqrt(2)
        cnt_Z[cnt_Z==0] = 1
        Z /= cnt_Z

        colormesh = ax_cmesh.pcolormesh(X, Y, Z.T, shading='nearest', cmap=cmap) # vmin=0.0, vmax=1.0, cmap=cmap)
        ax_cmesh.set_xlabel(objective1)
        ax_cmesh.set_ylabel(objective2)
        if flag_plt_clbar:
            fig2.colorbar(colormesh, ax=axes_meshes, orientation='vertical')
        return colormesh


    def plot_settings(self):
        mpl.rc('axes', titlesize=8)  # fontsize of the axes title
        mpl.rc('axes', labelsize=8)  # fontsize of the x and y labels
        mpl.rc('font', size=8)


    def plot_feat_comparison(self, feature_list, reference_list):
        len_features = len(feature_list)
        len_ref_feats = len(reference_list)
        fig1, axes = plt.subplots(len_ref_feats, len_features)
        fig2, axes_meshes = plt.subplots(len_ref_feats, len_features, layout='compressed')

        for idx1, entry1 in enumerate(reference_list):
            for idx2, entry2 in enumerate(feature_list):
                if isinstance(axes, Axes):
                    ax = axes
                    ax_cmesh = axes_meshes
                elif len_ref_feats == 1:
                    ax = axes[idx2]
                    ax_cmesh = axes_meshes[idx2]
                else:
                    ax = axes[idx1][idx2]
                    ax_cmesh = axes_meshes[idx1][idx2]
                flag_plt_clbar = False
                if ((idx2 == (len(feature_list)-1)) & (idx1 == len(reference_list)-1)):
                    flag_plt_clbar = True
                colormesh = self.plot_single_comparison(self.tasks, entry1, entry2, ax, ax_cmesh, fig2, axes_meshes, flag_plt_clbar)

        objectives_keys = self.tasks.select_dtypes(exclude=['object']).columns
        objectives_keys = list(sorted(objectives_keys))
        abbreviations = get_keys_abbreviation(objectives_keys)

        fig1_title = f'Feature Comparison with {self.model_params[GENERATOR_PARAMS]}'
        fig1.suptitle(insert_newlines(fig1_title), fontsize=6)
        fig1.tight_layout()
        distance_plot_path = os.path.join(self.output_path,
                                          f"eval_genEL{len(self.gen)}_objectives{len(objectives_keys)}_trials{self.model_params['generator_params']['n_trials']}_{abbreviations}.png")
        os.makedirs(self.output_path, exist_ok=True)
        fig1.savefig(distance_plot_path)
        print(f"Saved objectives vs. genEL features plot in {distance_plot_path}")

        # fig2.suptitle('Meshgrid Comparison', fontsize=12)
        meshgrid_plot_path = os.path.join(self.output_path,
                                  f"meshgrid_genEL{len(self.gen)}_objectives{len(objectives_keys)}_trials{self.model_params['generator_params']['n_trials']}_{abbreviations}.png")

        fig2.savefig(meshgrid_plot_path)
        print(f"Saved meshgrid plot in {meshgrid_plot_path}")


    def plot_dist_mx (self, model_params):
        gen_dict = defaultdict(lambda: defaultdict(dict))
        targets_dict = defaultdict(lambda: defaultdict(dict))

        set_ = set()
        for in_file in self.input_path:
            for file in glob.glob(f'{in_file}*.csv'):
                read_in = pd.read_csv(file)
                feat1, feat2 = None, None
                if len(read_in.columns) == 2:
                    feat1 = read_in.columns[0]
                    feat2 = feat1
                else:
                    feat1 = read_in.columns[0]
                    feat2 = read_in.columns[1]
                read_in['fn'] = file
                gen_dict[feat1][feat2] = read_in
                set_.add(feat1)
                set_.add(feat2)
        for target_file in model_params["targets"]:
            for file in glob.glob(f'{target_file}*.csv'):
                read_in = pd.read_csv(file)
                if 'task' in read_in.columns:
                    read_in.rename(columns={"task":"log"}, inplace=True)
                feat1, feat2 = None, None
                if len(read_in.columns) == 2:
                    feat1 = read_in.columns[1]
                    feat2 = feat1
                else:
                    feat1 = read_in.columns[1]
                    feat2 = read_in.columns[2]
                read_in['fn'] = file
                targets_dict[feat1][feat2] = read_in
                set_.add(feat1)
                set_.add(feat2)

        keys = sorted(list(set_))
        result_df = pd.DataFrame(index=keys, columns=keys)

        dist_list = list()

        for gen_idx, (gen_obj1_key, gen_obj1_vals) in enumerate(gen_dict.items()):
            if gen_obj1_key not in targets_dict:
                continue

            for gen_obj1_value in gen_obj1_vals:
                if gen_obj1_value not in targets_dict[gen_obj1_key]:
                    continue

                gen_df = gen_dict[gen_obj1_key][gen_obj1_value]
                target_df = targets_dict[gen_obj1_key][gen_obj1_value]


                cnt = 0
                cum_sum = 0
                for i in gen_df.index:
                    current_log_name = gen_df.loc[i, 'log']
                    if current_log_name in target_df['log'].values:
                        target_entry = target_df[target_df['log'] == current_log_name]
                    else:
                        print (f"[INFO] no value found for {current_log_name} in target file")

                    vec1 = np.array([gen_df[gen_obj1_key][i], gen_df[gen_obj1_value][i]])
                    vec2 = np.array([target_entry[gen_obj1_key].values[0], target_entry[gen_obj1_value].values[0]])

                    cum_sum += np.linalg.norm(vec1 - vec2)
                    cnt += 1

                    THRESHOLD=0.1
                    if np.linalg.norm(vec1 - vec2) < THRESHOLD and len(gen_df.columns)>3:#3 for 1 objective
                        path_splits = gen_df.loc[i, 'fn'].split("/")
                        data_splits = path_splits[-1][:-4].split("_")
                        log_path= f'grid_2objectives_{data_splits[1]}_{data_splits[2]}/2_{data_splits[1]}_{data_splits[2]}/genEL{current_log_name}_*.xes'
                        dest, len_is = select_instance(in_file.replace("features/", ""), log_path)

                        dist_list.append(np.linalg.norm(vec1 - vec2))

                cum_sum /= cnt

                result_df.loc[gen_obj1_key, gen_obj1_value] = cum_sum
                result_df.loc[gen_obj1_value, gen_obj1_key] = cum_sum
        try:
            print(f"INFO: Instance selection saved {len_is} ED selection in {dest}")
        except UnboundLocalError as e:
            print(e)
        ratio_most_common_variant = 2.021278 / 11.0
        ratio_top_10_variants = 0.07378 / 11.0
        ratio_unique_traces_per_trace = 0.016658 / 11.0
        result_df['ratio_most_common_variant']['ratio_most_common_variant'] = ratio_most_common_variant
        result_df['ratio_top_10_variants']['ratio_top_10_variants'] = ratio_top_10_variants
        result_df['ratio_unique_traces_per_trace']['ratio_unique_traces_per_trace'] = ratio_unique_traces_per_trace

        abbrvs_key = get_keys_abbreviation(keys)
        result_df.columns = abbrvs_key.split("_")
        result_df.index = abbrvs_key.split("_")
        # result__mx = result_df.values.astype(np.float16)
        # result__mx[np.isnan(result__mx)] = 0
        img = sns.heatmap(result_df.astype(np.float16),annot=True, cmap="viridis_r", vmin=0.0, vmax=1.0)
        # plt.xticks(rotation=45)
        plt.yticks(rotation=0)

        plt.tight_layout()
        plt.savefig(os.path.join(self.output_path, f"dist_mx_{abbrvs_key}"))
        plt.show()

        fig = plt.figure()
        sns.histplot(data=pd.DataFrame(dist_list), x=0, bins=30)
        fig.savefig(os.path.join(self.output_path, f"dist_histogram"))