igedi / main.py
Andrea Maldonado
Moving private repo to public
bdf9096
raw
history blame
3.54 kB
import config
import pandas as pd
from datetime import datetime as dt
from tag.generator import GenerateEventLogs
from tag.features import EventLogFeatures
from tag.analyser import FeatureAnalyser
from tag.augmentation import InstanceAugmentator
from tag.benchmark import BenchmarkTest
from tag.plotter import BenchmarkPlotter, FeaturesPlotter, AugmentationPlotter, GenerationPlotter
from utils.default_argparse import ArgParser
from utils.param_keys import *
from utils.param_keys.run_options import *
def run(kwargs:dict, model_paramas_list: list, filename_list:list):
"""
This function chooses the running option for the program.
@param kwargs: dict
contains the running parameters and the event-log file information
@param model_params_list: list
contains a list of model parameters, which are used to analyse this different models.
@param filename_list: list
contains the list of the filenames to load multiple event-logs
@return:
"""
params = kwargs[PARAMS]
run_option = params[RUN_OPTION]
ft = EventLogFeatures(None)
augmented_ft = InstanceAugmentator()
gen = pd.DataFrame(columns=['log'])
if run_option == BASELINE:
for model_params in model_params_list:
if model_params.get(PIPELINE_STEP) == 'instance_augmentation':
augmented_ft = InstanceAugmentator(aug_params=model_params, samples=ft.feat)
AugmentationPlotter(augmented_ft, model_params)
elif model_params.get(PIPELINE_STEP) == 'event_logs_generation':
gen = pd.DataFrame(GenerateEventLogs(model_params).log_config)
#gen = pd.read_csv("output/features/generated/grid_2objectives_enseef_enve/2_enseef_enve_feat.csv")
GenerationPlotter(gen, model_params, output_path="output/plots")
elif model_params.get(PIPELINE_STEP) == 'benchmark_test':
benchmark = BenchmarkTest(model_params, event_logs=gen['log'])
# BenchmarkPlotter(benchmark.features, output_path="output/plots")
elif model_params.get(PIPELINE_STEP) == 'feature_extraction':
ft = EventLogFeatures(**kwargs, logs=gen['log'], ft_params=model_params)
FeaturesPlotter(ft.feat, model_params)
elif model_params.get(PIPELINE_STEP) == "evaluation_plotter":
GenerationPlotter(gen, model_params, output_path=model_params['output_path'], input_path=model_params['input_path'])
elif run_option == COMPARE:
if params[N_COMPONENTS] != 2:
raise ValueError(f'The parameter `{N_COMPONENTS}` has to be 2, but it\'s {params[N_COMPONENTS]}.')
ft = EventLogFeatures(**kwargs)
FeatureAnalyser(ft, params).compare(model_params_list)
else:
raise InvalidRunningOptionError(f'The run_option: `{run_option}` in the (json) configuration '
f'does not exists or it is not a loading option.\n')
if __name__=='__main__':
start_tag = dt.now()
print(f'INFO: TAG starting {start_tag}')
args = ArgParser().parse('GEDI main')
run_params = config.get_run_params(args.run_params_json)
filename_list, kwargs = config.get_files_and_kwargs(run_params)
if args.result_load_files is None:
model_params_list = config.get_model_params_list(args.alg_params_json)
run(kwargs, model_params_list, filename_list)
else:
load(args.result_load_files, kwargs)
print(f'SUCCESS: TAG took {dt.now()-start_tag} sec.')