igedi / gedi /generator.py
Andrea Maldonado
Fixes benchmark run with logs from memory.
ddfaf7c
import multiprocessing
import os
import pandas as pd
import random
from ConfigSpace import Configuration, ConfigurationSpace
from datetime import datetime as dt
from feeed.activities import Activities as activities
from feeed.end_activities import EndActivities as end_activities
from feeed.epa_based import Epa_based as epa_based
from feeed.eventropies import Eventropies as eventropies
from feeed.feature_extractor import feature_type
from feeed.simple_stats import SimpleStats as simple_stats
from feeed.start_activities import StartActivities as start_activities
from feeed.trace_length import TraceLength as trace_length
from feeed.trace_variant import TraceVariant as trace_variant
from pm4py import generate_process_tree
from pm4py import write_xes
from pm4py.sim import play_out
from smac import HyperparameterOptimizationFacade, Scenario
from gedi.utils.column_mappings import column_mappings
from gedi.utils.io_helpers import get_output_key_value_location, dump_features_json, compute_similarity
from gedi.utils.io_helpers import read_csvs
from gedi.utils.param_keys import OUTPUT_PATH, INPUT_PATH
from gedi.utils.param_keys.generator import GENERATOR_PARAMS, EXPERIMENT, CONFIG_SPACE, N_TRIALS
import xml.etree.ElementTree as ET
import re
from xml.dom import minidom
from functools import partial
"""
Parameters
--------------
parameters
Parameters of the algorithm, according to the paper:
- Parameters.MODE: most frequent number of visible activities
- Parameters.MIN: minimum number of visible activities
- Parameters.MAX: maximum number of visible activities
- Parameters.SEQUENCE: probability to add a sequence operator to tree
- Parameters.CHOICE: probability to add a choice operator to tree
- Parameters.PARALLEL: probability to add a parallel operator to tree
- Parameters.LOOP: probability to add a loop operator to tree
- Parameters.OR: probability to add an or operator to tree
- Parameters.SILENT: probability to add silent activity to a choice or loop operator
- Parameters.DUPLICATE: probability to duplicate an activity label
- Parameters.NO_MODELS: number of trees to generate from model population
"""
RANDOM_SEED = 10
random.seed(RANDOM_SEED)
def get_tasks(experiment, output_path="", reference_feature=None):
#Read tasks from file.
if isinstance(experiment, str) and experiment.endswith(".csv"):
tasks = pd.read_csv(experiment, index_col=None)
output_path=os.path.join(output_path,os.path.split(experiment)[-1].split(".")[0])
if 'task' in tasks.columns:
tasks.rename(columns={"task":"log"}, inplace=True)
elif isinstance(experiment, str) and os.path.isdir(os.path.join(os.getcwd(), experiment)):
tasks = read_csvs(experiment, reference_feature)
#Read tasks from a real log features selection.
elif isinstance(experiment, dict) and INPUT_PATH in experiment.keys():
output_path=os.path.join(output_path,os.path.split(experiment.get(INPUT_PATH))[-1].split(".")[0])
tasks = pd.read_csv(experiment.get(INPUT_PATH), index_col=None)
id_col = tasks.select_dtypes(include=['object']).dropna(axis=1).columns[0]
if "objectives" in experiment.keys():
incl_cols = experiment["objectives"]
tasks = tasks[(incl_cols + [id_col])]
# TODO: Solve/Catch error for different objective keys.
#Read tasks from config_file with list of targets
elif isinstance(experiment, list):
tasks = pd.DataFrame.from_dict(data=experiment)
#Read single tasks from config_file
elif isinstance(experiment, dict):
tasks = pd.DataFrame.from_dict(data=[experiment])
else:
raise FileNotFoundError(f"{experiment} not found. Please check path in filesystem.")
return tasks, output_path
def removeextralines(elem):
hasWords = re.compile("\\w")
for element in elem.iter():
if not re.search(hasWords,str(element.tail)):
element.tail=""
if not re.search(hasWords,str(element.text)):
element.text = ""
def add_extension_before_traces(xes_file):
# Register the namespace
ET.register_namespace('', "http://www.xes-standard.org/")
# Parse the original XML
tree = ET.parse(xes_file)
root = tree.getroot()
# Add extensions
extensions = [
{'name': 'Lifecycle', 'prefix': 'lifecycle', 'uri': 'http://www.xes-standard.org/lifecycle.xesext'},
{'name': 'Time', 'prefix': 'time', 'uri': 'http://www.xes-standard.org/time.xesext'},
{'name': 'Concept', 'prefix': 'concept', 'uri': 'http://www.xes-standard.org/concept.xesext'}
]
for ext in extensions:
extension_elem = ET.Element('extension', ext)
root.insert(0, extension_elem)
# Add global variables
globals = [
{
'scope': 'event',
'attributes': [
{'key': 'lifecycle:transition', 'value': 'complete'},
{'key': 'concept:name', 'value': '__INVALID__'},
{'key': 'time:timestamp', 'value': '1970-01-01T01:00:00.000+01:00'}
]
},
{
'scope': 'trace',
'attributes': [
{'key': 'concept:name', 'value': '__INVALID__'}
]
}
]
for global_var in globals:
global_elem = ET.Element('global', {'scope': global_var['scope']})
for attr in global_var['attributes']:
string_elem = ET.SubElement(global_elem, 'string', {'key': attr['key'], 'value': attr['value']})
root.insert(len(extensions), global_elem)
# Pretty print the Xes
removeextralines(root)
xml_str = minidom.parseString(ET.tostring(root)).toprettyxml()
with open(xes_file, "w") as f:
f.write(xml_str)
class GenerateEventLogs():
# TODO: Clarify nomenclature: experiment, task, objective as in notebook (https://github.com/lmu-dbs/gedi/blob/main/notebooks/grid_objectives.ipynb)
def __init__(self, params=None) -> None:
print("=========================== Generator ==========================")
if params is None:
default_params = {'generator_params': {'experiment': {'ratio_top_20_variants': 0.2, 'epa_normalized_sequence_entropy_linear_forgetting': 0.4}, 'config_space': {'mode': [5, 20], 'sequence': [0.01, 1], 'choice': [0.01, 1], 'parallel': [0.01, 1], 'loop': [0.01, 1], 'silent': [0.01, 1], 'lt_dependency': [0.01, 1], 'num_traces': [10, 101], 'duplicate': [0], 'or': [0]}, 'n_trials': 50}}
raise TypeError(f"Missing 'params'. Please provide a dictionary with generator parameters as so: {default_params}. See https://github.com/lmu-dbs/gedi for more info.")
print(f"INFO: Running with {params}")
start = dt.now()
if params.get(OUTPUT_PATH) is None:
self.output_path = 'data/generated'
else:
self.output_path = params.get(OUTPUT_PATH)
if not os.path.exists(self.output_path):
os.makedirs(self.output_path, exist_ok=True)
if self.output_path.endswith('csv'):
self.generated_features = pd.read_csv(self.output_path)
return
generator_params = params.get(GENERATOR_PARAMS)
experiment = generator_params.get(EXPERIMENT)
if experiment is not None:
tasks, output_path = get_tasks(experiment, self.output_path)
columns_to_rename = {col: column_mappings()[col] for col in tasks.columns if col in column_mappings()}
tasks = tasks.rename(columns=columns_to_rename)
self.output_path = output_path
if tasks is not None:
self.feature_keys = sorted([feature for feature in tasks.columns.tolist() if feature != "log"])
num_cores = multiprocessing.cpu_count() if len(tasks) >= multiprocessing.cpu_count() else len(tasks)
#self.generator_wrapper([*tasks.iterrows()][0])# For testing
with multiprocessing.Pool(num_cores) as p:
print(f"INFO: Generator starting at {start.strftime('%H:%M:%S')} using {num_cores} cores for {len(tasks)} tasks...")
random.seed(RANDOM_SEED)
partial_wrapper = partial(self.generator_wrapper, generator_params=generator_params)
generated_features = p.map(partial_wrapper, [(index, row) for index, row in tasks.iterrows()])
# TODO: Split log and metafeatures into separate object attributes
# TODO: Access not storing log in memory
# TODO: identify why log is needed in self.generated_features
self.generated_features = [
{
#'log': config.get('log'),
'metafeatures': config.get('metafeatures')}
for config in generated_features
if 'metafeatures' in config #and 'log' in config
]
else:
random.seed(RANDOM_SEED)
configs = self.optimize(generator_params=generator_params)
if type(configs) is not list:
configs = [configs]
temp = self.generate_optimized_log(configs[0])
self.generated_features = [temp['metafeatures']] if 'metafeatures' in temp else []
save_path = get_output_key_value_location(generator_params[EXPERIMENT],
self.output_path, "genEL")+".xes"
write_xes(temp['log'], save_path)
add_extension_before_traces(save_path)
print("SUCCESS: Saved generated event log in", save_path)
print(f"SUCCESS: Generator took {dt.now()-start} sec. Generated {len(self.generated_features)} event log(s).")
print(f" Saved generated logs in {self.output_path}")
print("========================= ~ Generator ==========================")
def clear(self):
print("Clearing parameters...")
self.generated_features = None
# self.configs = None
# self.params = None
self.output_path = None
self.feature_keys = None
def generator_wrapper(self, task, generator_params=None):
try:
identifier = [x for x in task[1] if isinstance(x, str)][0]
except IndexError:
identifier = task[0]+1
identifier = "genEL" +str(identifier)
task = task[1].drop('log', errors='ignore')
self.objectives = task.dropna().to_dict()
random.seed(RANDOM_SEED)
configs = self.optimize(generator_params = generator_params)
random.seed(RANDOM_SEED)
if isinstance(configs, list):
generated_features = self.generate_optimized_log(configs[0])
else:
generated_features = self.generate_optimized_log(configs)
save_path = get_output_key_value_location(task.to_dict(),
self.output_path, identifier, self.feature_keys)+".xes"
write_xes(generated_features['log'], save_path)
add_extension_before_traces(save_path)
print("SUCCESS: Saved generated event log in", save_path)
features_to_dump = generated_features['metafeatures']
features_to_dump['log']= os.path.split(save_path)[1].split(".")[0]
# calculating the manhattan distance of the generated log to the target features
#features_to_dump['distance_to_target'] = calculate_manhattan_distance(self.objectives, features_to_dump)
features_to_dump['target_similarity'] = compute_similarity(self.objectives, features_to_dump)
dump_features_json(features_to_dump, save_path)
return generated_features
def generate_optimized_log(self, config):
''' Returns event log from given configuration'''
tree = generate_process_tree(parameters={
"min": config["mode"],
"max": config["mode"],
"mode": config["mode"],
"sequence": config["sequence"],
"choice": config["choice"],
"parallel": config["parallel"],
"loop": config["loop"],
"silent": config["silent"],
"lt_dependency": config["lt_dependency"],
"duplicate": config["duplicate"],
"or": config["or"],
"no_models": 1
})
log = play_out(tree, parameters={"num_traces": config["num_traces"]})
for i, trace in enumerate(log):
trace.attributes['concept:name'] = str(i)
for j, event in enumerate(trace):
event['time:timestamp'] = dt.now()
event['lifecycle:transition'] = "complete"
random.seed(RANDOM_SEED)
metafeatures = self.compute_metafeatures(log)
return {
"configuration": config,
"log": log,
"metafeatures": metafeatures,
}
def gen_log(self, config: Configuration, seed: int = 0):
random.seed(RANDOM_SEED)
tree = generate_process_tree(parameters={
"min": config["mode"],
"max": config["mode"],
"mode": config["mode"],
"sequence": config["sequence"],
"choice": config["choice"],
"parallel": config["parallel"],
"loop": config["loop"],
"silent": config["silent"],
"lt_dependency": config["lt_dependency"],
"duplicate": config["duplicate"],
"or": config["or"],
"no_models": 1
})
random.seed(RANDOM_SEED)
log = play_out(tree, parameters={"num_traces": config["num_traces"]})
random.seed(RANDOM_SEED)
result = self.eval_log(log)
return result
def compute_metafeatures(self, log):
for i, trace in enumerate(log):
trace.attributes['concept:name'] = str(i)
for j, event in enumerate(trace):
event['time:timestamp'] = dt.fromtimestamp(j * 1000)
event['lifecycle:transition'] = "complete"
metafeatures_computation = {}
for ft_name in self.objectives.keys():
ft_type = feature_type(ft_name)
metafeatures_computation.update(eval(f"{ft_type}(feature_names=['{ft_name}']).extract(log)"))
return metafeatures_computation
def eval_log(self, log):
random.seed(RANDOM_SEED)
metafeatures = self.compute_metafeatures(log)
log_evaluation = {}
for key in self.objectives.keys():
log_evaluation[key] = abs(self.objectives[key] - metafeatures[key])
return log_evaluation
def optimize(self, generator_params):
if generator_params.get(CONFIG_SPACE) is None:
configspace = ConfigurationSpace({
"mode": (5, 40),
"sequence": (0.01, 1),
"choice": (0.01, 1),
"parallel": (0.01, 1),
"loop": (0.01, 1),
"silent": (0.01, 1),
"lt_dependency": (0.01, 1),
"num_traces": (100, 1001),
"duplicate": (0),
"or": (0),
})
print(f"WARNING: No config_space specified in config file. Continuing with {configspace}")
else:
configspace_lists = generator_params[CONFIG_SPACE]
configspace_tuples = {}
for k, v in configspace_lists.items():
if len(v) == 1:
configspace_tuples[k] = v[0]
else:
configspace_tuples[k] = tuple(v)
configspace = ConfigurationSpace(configspace_tuples)
if generator_params.get(N_TRIALS) is None:
n_trials = 20
print(f"INFO: Running with n_trials={n_trials}")
else:
n_trials = generator_params[N_TRIALS]
objectives = [*self.objectives.keys()]
# Scenario object specifying the multi-objective optimization environment
scenario = Scenario(
configspace,
deterministic=True,
n_trials=n_trials,
objectives=objectives,
n_workers=-1
)
# Use SMAC to find the best configuration/hyperparameters
random.seed(RANDOM_SEED)
multi_obj = HyperparameterOptimizationFacade.get_multi_objective_algorithm(
scenario,
objective_weights=[1]*len(self.objectives),
)
random.seed(RANDOM_SEED)
smac = HyperparameterOptimizationFacade(
scenario=scenario,
target_function=self.gen_log,
multi_objective_algorithm=multi_obj,
# logging_level=False,
overwrite=True,
)
random.seed(RANDOM_SEED)
incumbent = smac.optimize()
return incumbent