baakaani commited on
Commit
28b0c8e
·
1 Parent(s): fd29a7e
Files changed (1) hide show
  1. README.md +214 -18
README.md CHANGED
@@ -124,24 +124,220 @@ In the `generation.json`, we have the following key-value pairs:
124
  - plot_reference_feature: defines the feature, which is used on the x-axis on the output plots, i.e., each feature defined in the 'objectives' of the 'experiment' is plotted against the reference feature being defined in this value
125
 
126
  The BPIC ranges of the feature values are as follows:
127
- <script>
128
- // Function to load the content from the txt file
129
- async function loadTable() {
130
- try {
131
- // Fetch the .txt file
132
- const response = await fetch('gedi/utils/bpic_feat_ranges.html');
133
- const tableContent = await response.text();
134
-
135
- // Inject the content into the div
136
- document.getElementById('myDiv').innerHTML = tableContent;
137
- } catch (error) {
138
- console.error('Error loading the file:', error);
139
- }
140
- }
141
-
142
- // Call the function when the page loads
143
- window.onload = loadTable;
144
- </script>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
145
 
146
  ### Benchmark
147
  The benchmarking defines the downstream task which is used for evaluating the goodness of the synthesized event log datasets with the metrics of real-world datasets. The command to execute a benchmarking is shown in the following script:
 
124
  - plot_reference_feature: defines the feature, which is used on the x-axis on the output plots, i.e., each feature defined in the 'objectives' of the 'experiment' is plotted against the reference feature being defined in this value
125
 
126
  The BPIC ranges of the feature values are as follows:
127
+ <div style="overflow-x:auto;">
128
+ <table border="1" class="dataframe">
129
+ <thead>
130
+ <tr style="text-align: right;">
131
+ <th></th>
132
+ <th>n_traces</th>
133
+ <th>n_unique_traces</th>
134
+ <th>ratio_variants_per_number_of_traces</th>
135
+ <th>trace_len_min</th>
136
+ <th>trace_len_max</th>
137
+ <th>trace_len_mean</th>
138
+ <th>trace_len_median</th>
139
+ <th>trace_len_mode</th>
140
+ <th>trace_len_std</th>
141
+ <th>trace_len_variance</th>
142
+ <th>trace_len_q1</th>
143
+ <th>trace_len_q3</th>
144
+ <th>trace_len_iqr</th>
145
+ <th>trace_len_geometric_mean</th>
146
+ <th>trace_len_geometric_std</th>
147
+ <th>trace_len_harmonic_mean</th>
148
+ <th>trace_len_skewness</th>
149
+ <th>trace_len_kurtosis</th>
150
+ <th>trace_len_coefficient_variation</th>
151
+ <th>trace_len_entropy</th>
152
+ <th>trace_len_hist1</th>
153
+ <th>trace_len_hist2</th>
154
+ <th>trace_len_hist3</th>
155
+ <th>trace_len_hist4</th>
156
+ <th>trace_len_hist5</th>
157
+ <th>trace_len_hist6</th>
158
+ <th>trace_len_hist7</th>
159
+ <th>trace_len_hist8</th>
160
+ <th>trace_len_hist9</th>
161
+ <th>trace_len_hist10</th>
162
+ <th>trace_len_skewness_hist</th>
163
+ <th>trace_len_kurtosis_hist</th>
164
+ <th>ratio_most_common_variant</th>
165
+ <th>ratio_top_1_variants</th>
166
+ <th>ratio_top_5_variants</th>
167
+ <th>ratio_top_10_variants</th>
168
+ <th>ratio_top_20_variants</th>
169
+ <th>ratio_top_50_variants</th>
170
+ <th>ratio_top_75_variants</th>
171
+ <th>mean_variant_occurrence</th>
172
+ <th>std_variant_occurrence</th>
173
+ <th>skewness_variant_occurrence</th>
174
+ <th>kurtosis_variant_occurrence</th>
175
+ <th>n_unique_activities</th>
176
+ <th>activities_min</th>
177
+ <th>activities_max</th>
178
+ <th>activities_mean</th>
179
+ <th>activities_median</th>
180
+ <th>activities_std</th>
181
+ <th>activities_variance</th>
182
+ <th>activities_q1</th>
183
+ <th>activities_q3</th>
184
+ <th>activities_iqr</th>
185
+ <th>activities_skewness</th>
186
+ <th>activities_kurtosis</th>
187
+ <th>n_unique_start_activities</th>
188
+ <th>start_activities_min</th>
189
+ <th>start_activities_max</th>
190
+ <th>start_activities_mean</th>
191
+ <th>start_activities_median</th>
192
+ <th>start_activities_std</th>
193
+ <th>start_activities_variance</th>
194
+ <th>start_activities_q1</th>
195
+ <th>start_activities_q3</th>
196
+ <th>start_activities_iqr</th>
197
+ <th>start_activities_skewness</th>
198
+ <th>start_activities_kurtosis</th>
199
+ <th>n_unique_end_activities</th>
200
+ <th>end_activities_min</th>
201
+ <th>end_activities_max</th>
202
+ <th>end_activities_mean</th>
203
+ <th>end_activities_median</th>
204
+ <th>end_activities_std</th>
205
+ <th>end_activities_variance</th>
206
+ <th>end_activities_q1</th>
207
+ <th>end_activities_q3</th>
208
+ <th>end_activities_iqr</th>
209
+ <th>end_activities_skewness</th>
210
+ <th>end_activities_kurtosis</th>
211
+ <th>eventropy_trace</th>
212
+ <th>eventropy_prefix</th>
213
+ <th>eventropy_global_block</th>
214
+ <th>eventropy_lempel_ziv</th>
215
+ <th>eventropy_k_block_diff_1</th>
216
+ <th>eventropy_k_block_diff_3</th>
217
+ <th>eventropy_k_block_diff_5</th>
218
+ <th>eventropy_k_block_ratio_1</th>
219
+ <th>eventropy_k_block_ratio_3</th>
220
+ <th>eventropy_k_block_ratio_5</th>
221
+ <th>eventropy_knn_3</th>
222
+ <th>eventropy_knn_5</th>
223
+ <th>eventropy_knn_7</th>
224
+ <th>epa_variant_entropy</th>
225
+ <th>epa_normalized_variant_entropy</th>
226
+ <th>epa_sequence_entropy</th>
227
+ <th>epa_normalized_sequence_entropy</th>
228
+ <th>epa_sequence_entropy_linear_forgetting</th>
229
+ <th>epa_normalized_sequence_entropy_linear_forgetting</th>
230
+ <th>epa_sequence_entropy_exponential_forgetting</th>
231
+ <th>epa_normalized_sequence_entropy_exponential_forgetting</th>
232
+ </tr>
233
+ </thead>
234
+ <tbody>
235
+ <tr>
236
+ <td>[ min, max ]</td>
237
+ <td>[ 226.0, 251734.0 ]</td>
238
+ <td>[ 6.0, 28457.0 ]</td>
239
+ <td>[ 0.0, 1.0 ]</td>
240
+ <td>[ 1.0, 24.0 ]</td>
241
+ <td>[ 1.0, 2973.0 ]</td>
242
+ <td>[ 1.0, 131.49 ]</td>
243
+ <td>[ 1.0, 55.0 ]</td>
244
+ <td>[ 1.0, 61.0 ]</td>
245
+ <td>[ 0.0, 202.53 ]</td>
246
+ <td>[ 0.0, 41017.89 ]</td>
247
+ <td>[ 1.0, 44.0 ]</td>
248
+ <td>[ 1.0, 169.0 ]</td>
249
+ <td>[ 0.0, 161.0 ]</td>
250
+ <td>[ 1.0, 53.78 ]</td>
251
+ <td>[ 1.0, 5.65 ]</td>
252
+ <td>[ 1.0, 51.65 ]</td>
253
+ <td>[ -0.58, 111.97 ]</td>
254
+ <td>[ -0.97, 14006.75 ]</td>
255
+ <td>[ 0.0, 4.74 ]</td>
256
+ <td>[ 5.33, 12.04 ]</td>
257
+ <td>[ 0.0, 1.99 ]</td>
258
+ <td>[ 0.0, 0.42 ]</td>
259
+ <td>[ 0.0, 0.4 ]</td>
260
+ <td>[ 0.0, 0.19 ]</td>
261
+ <td>[ 0.0, 0.14 ]</td>
262
+ <td>[ 0.0, 10.0 ]</td>
263
+ <td>[ 0.0, 0.02 ]</td>
264
+ <td>[ 0.0, 0.04 ]</td>
265
+ <td>[ 0.0, 0.0 ]</td>
266
+ <td>[ 0.0, 2.7 ]</td>
267
+ <td>[ -0.58, 111.97 ]</td>
268
+ <td>[ -0.97, 14006.75 ]</td>
269
+ <td>[ 0.0, 0.79 ]</td>
270
+ <td>[ 0.0, 0.87 ]</td>
271
+ <td>[ 0.0, 0.98 ]</td>
272
+ <td>[ 0.0, 0.99 ]</td>
273
+ <td>[ 0.2, 1.0 ]</td>
274
+ <td>[ 0.5, 1.0 ]</td>
275
+ <td>[ 0.75, 1.0 ]</td>
276
+ <td>[ 1.0, 24500.67 ]</td>
277
+ <td>[ 0.04, 42344.04 ]</td>
278
+ <td>[ 1.54, 64.77 ]</td>
279
+ <td>[ 0.66, 5083.46 ]</td>
280
+ <td>[ 1.0, 1152.0 ]</td>
281
+ <td>[ 1.0, 66058.0 ]</td>
282
+ <td>[ 34.0, 466141.0 ]</td>
283
+ <td>[ 4.13, 66058.0 ]</td>
284
+ <td>[ 2.0, 66058.0 ]</td>
285
+ <td>[ 0.0, 120522.25 ]</td>
286
+ <td>[ 0.0, 14525612122.34 ]</td>
287
+ <td>[ 1.0, 66058.0 ]</td>
288
+ <td>[ 4.0, 79860.0 ]</td>
289
+ <td>[ 0.0, 77290.0 ]</td>
290
+ <td>[ -0.06, 15.21 ]</td>
291
+ <td>[ -1.5, 315.84 ]</td>
292
+ <td>[ 1.0, 809.0 ]</td>
293
+ <td>[ 1.0, 150370.0 ]</td>
294
+ <td>[ 27.0, 199867.0 ]</td>
295
+ <td>[ 3.7, 150370.0 ]</td>
296
+ <td>[ 1.0, 150370.0 ]</td>
297
+ <td>[ 0.0, 65387.49 ]</td>
298
+ <td>[ 0.0, 4275524278.19 ]</td>
299
+ <td>[ 1.0, 150370.0 ]</td>
300
+ <td>[ 4.0, 150370.0 ]</td>
301
+ <td>[ 0.0, 23387.25 ]</td>
302
+ <td>[ 0.0, 9.3 ]</td>
303
+ <td>[ -2.0, 101.82 ]</td>
304
+ <td>[ 1.0, 757.0 ]</td>
305
+ <td>[ 1.0, 16653.0 ]</td>
306
+ <td>[ 28.0, 181328.0 ]</td>
307
+ <td>[ 3.53, 24500.67 ]</td>
308
+ <td>[ 1.0, 16653.0 ]</td>
309
+ <td>[ 0.0, 42344.04 ]</td>
310
+ <td>[ 0.0, 1793017566.89 ]</td>
311
+ <td>[ 1.0, 16653.0 ]</td>
312
+ <td>[ 3.0, 39876.0 ]</td>
313
+ <td>[ 0.0, 39766.0 ]</td>
314
+ <td>[ -0.7, 13.82 ]</td>
315
+ <td>[ -2.0, 255.39 ]</td>
316
+ <td>[ 0.0, 13.36 ]</td>
317
+ <td>[ 0.0, 16.77 ]</td>
318
+ <td>[ 0.0, 24.71 ]</td>
319
+ <td>[ 0.0, 685.0 ]</td>
320
+ <td>[ -328.0, 962.0 ]</td>
321
+ <td>[ 0.0, 871.0 ]</td>
322
+ <td>[ 0.0, 881.0 ]</td>
323
+ <td>[ 0.0, 935.0 ]</td>
324
+ <td>[ 0.0, 7.11 ]</td>
325
+ <td>[ 0.0, 7.11 ]</td>
326
+ <td>[ 0.0, 8.93 ]</td>
327
+ <td>[ 0.0, 648.0 ]</td>
328
+ <td>[ 0.0, 618.0 ]</td>
329
+ <td>[ 0.0, 11563842.15 ]</td>
330
+ <td>[ 0.0, 0.9 ]</td>
331
+ <td>[ 0.0, 21146257.12 ]</td>
332
+ <td>[ 0.0, 0.76 ]</td>
333
+ <td>[ 0.0, 14140225.9 ]</td>
334
+ <td>[ 0.0, 0.42 ]</td>
335
+ <td>[ 0.0, 15576076.83 ]</td>
336
+ <td>[ 0.0, 0.51 ]</td>
337
+ </tr>
338
+ </tbody>
339
+ </table>
340
+ </div>
341
 
342
  ### Benchmark
343
  The benchmarking defines the downstream task which is used for evaluating the goodness of the synthesized event log datasets with the metrics of real-world datasets. The command to execute a benchmarking is shown in the following script: