Andrea Maldonado commited on
Commit
4df7226
·
1 Parent(s): 10ab34e

Removes unused run options

Browse files
Files changed (1) hide show
  1. main.py +16 -27
main.py CHANGED
@@ -22,37 +22,26 @@ def run(kwargs:dict, model_paramas_list: list, filename_list:list):
22
  @return:
23
  """
24
  params = kwargs[PARAMS]
25
- run_option = 'baseline'
26
  ft = EventLogFeatures(None)
27
  augmented_ft = InstanceAugmentator()
28
  gen = pd.DataFrame(columns=['log'])
29
 
30
- if run_option == BASELINE:
31
- for model_params in model_params_list:
32
- if model_params.get(PIPELINE_STEP) == 'instance_augmentation':
33
- augmented_ft = InstanceAugmentator(aug_params=model_params, samples=ft.feat)
34
- AugmentationPlotter(augmented_ft, model_params)
35
- elif model_params.get(PIPELINE_STEP) == 'event_logs_generation':
36
- gen = pd.DataFrame(GenerateEventLogs(model_params).log_config)
37
- #gen = pd.read_csv("output/features/generated/grid_2objectives_enseef_enve/2_enseef_enve_feat.csv")
38
- #GenerationPlotter(gen, model_params, output_path="output/plots")
39
- elif model_params.get(PIPELINE_STEP) == 'benchmark_test':
40
- benchmark = BenchmarkTest(model_params, event_logs=gen['log'])
41
- # BenchmarkPlotter(benchmark.features, output_path="output/plots")
42
- elif model_params.get(PIPELINE_STEP) == 'feature_extraction':
43
- ft = EventLogFeatures(**kwargs, logs=gen['log'], ft_params=model_params)
44
- FeaturesPlotter(ft.feat, model_params)
45
- elif model_params.get(PIPELINE_STEP) == "evaluation_plotter":
46
- GenerationPlotter(gen, model_params, output_path=model_params['output_path'], input_path=model_params['input_path'])
47
-
48
- elif run_option == COMPARE:
49
- if params[N_COMPONENTS] != 2:
50
- raise ValueError(f'The parameter `{N_COMPONENTS}` has to be 2, but it\'s {params[N_COMPONENTS]}.')
51
- ft = EventLogFeatures(**kwargs)
52
- FeatureAnalyser(ft, params).compare(model_params_list)
53
- else:
54
- raise InvalidRunningOptionError(f'The run_option: `{run_option}` in the (json) configuration '
55
- f'does not exists or it is not a loading option.\n')
56
 
57
 
58
  if __name__=='__main__':
 
22
  @return:
23
  """
24
  params = kwargs[PARAMS]
 
25
  ft = EventLogFeatures(None)
26
  augmented_ft = InstanceAugmentator()
27
  gen = pd.DataFrame(columns=['log'])
28
 
29
+ for model_params in model_params_list:
30
+ if model_params.get(PIPELINE_STEP) == 'instance_augmentation':
31
+ augmented_ft = InstanceAugmentator(aug_params=model_params, samples=ft.feat)
32
+ AugmentationPlotter(augmented_ft, model_params)
33
+ elif model_params.get(PIPELINE_STEP) == 'event_logs_generation':
34
+ gen = pd.DataFrame(GenerateEventLogs(model_params).log_config)
35
+ #gen = pd.read_csv("output/features/generated/grid_2objectives_enseef_enve/2_enseef_enve_feat.csv")
36
+ #GenerationPlotter(gen, model_params, output_path="output/plots")
37
+ elif model_params.get(PIPELINE_STEP) == 'benchmark_test':
38
+ benchmark = BenchmarkTest(model_params, event_logs=gen['log'])
39
+ # BenchmarkPlotter(benchmark.features, output_path="output/plots")
40
+ elif model_params.get(PIPELINE_STEP) == 'feature_extraction':
41
+ ft = EventLogFeatures(**kwargs, logs=gen['log'], ft_params=model_params)
42
+ FeaturesPlotter(ft.feat, model_params)
43
+ elif model_params.get(PIPELINE_STEP) == "evaluation_plotter":
44
+ GenerationPlotter(gen, model_params, output_path=model_params['output_path'], input_path=model_params['input_path'])
 
 
 
 
 
 
 
 
 
 
45
 
46
 
47
  if __name__=='__main__':