Andrea Maldonado commited on
Commit
6be340f
·
2 Parent(s): a5144f0 6d372bb

Merge branch 'bpm24' into 8-experiments-organise-experimental-data-to-reproduce-paper-figures

Browse files

* bpm24:
Inlcude bpm24 in CI
Update README.md
Delete data/mappings.csv
Anonymization
Update README.md

Files changed (4) hide show
  1. .github/workflows/test_gedi.yml +1 -0
  2. README.md +1 -1
  3. data/mappings.csv +0 -26
  4. setup.py +2 -2
.github/workflows/test_gedi.yml CHANGED
@@ -5,6 +5,7 @@ on:
5
  pull_request:
6
  branches:
7
  - main
 
8
 
9
  # Specifies the jobs that are to be run
10
  jobs:
 
5
  pull_request:
6
  branches:
7
  - main
8
+ - bpm24
9
 
10
  # Specifies the jobs that are to be run
11
  jobs:
README.md CHANGED
@@ -47,4 +47,4 @@ For reference of possible keys and values for each step, please see `config_file
47
  To run the whole pipeline please create a new `.json` file, specifying all steps you want to run and specify desired keys and values for each step.
48
 
49
  ## References
50
- The framework used by `GEDI` is taken directly from the original paper by [Maldonado](mailto:andreamalher.[email protected]), Frey, Tavares, Rehwald and Seidl. If you would like to discuss the paper, or corresponding research questions on benchmarking process mining tasks please email the authors.
 
47
  To run the whole pipeline please create a new `.json` file, specifying all steps you want to run and specify desired keys and values for each step.
48
 
49
  ## References
50
+ The framework used by `GEDI` is taken directly from the original paper by [...]. If you would like to discuss the paper, or corresponding research questions on benchmarking process mining tasks please email the authors.
data/mappings.csv DELETED
@@ -1,26 +0,0 @@
1
- Name;Short description;data link;challenge link;Citations (Stand Februar 2023);Publications;Process Discovery/ Declarative;Conformance Checking / Alignment / Replay;Online / Streaming / Realtime;Performance (Analysis) / Temporal / Time;Predict(ive)/ Monitoring/ Prescriptive;Trace clustering / Clustering;Preprocessing / Event Abstraction / Event Data Correlation;Further keywords:
2
- Sepsis Cases - Event Log;This real-life event log contains events of sepsis cases from a hospital. Sepsis is a life threatening condition typically caused by an infection. One case represents the pathway through the hospital.;https://data.4tu.nl/articles/dataset/Sepsis_Cases_-_Event_Log/12707639;https://data.4tu.nl/articles/dataset/Sepsis_Cases_-_Event_Log/12707639;61;https://app.dimensions.ai/discover/publication?and_subset_figshare_doi=10.4121%2Fuuid%3A915d2bfb-7e84-49ad-a286-dc35f063a460;17;7;4;1;8;2;2;(machine) learning, (online process) monitoring, automation, healthcare, meta-learning, privacy preservation
3
- BPI 2017 - Offer Log;Contains data from a financial institute including all applications filed and their subsequent handling. There may be multiple offers per application. However, at most one of them should always be accepted.;https://data.4tu.nl/articles/dataset/BPI_Challenge_2017_-_Offer_log/12705737/1;https://www.win.tue.nl/bpi/doku.php?id=2017:challenge;4;https://app.dimensions.ai/discover/publication?and_subset_figshare_doi=10.4121%2Fuuid%3A7e326e7e-8b93-4701-8860-71213edf0fbe;1;0;0;1;1;0;0;(machine) learning, cloud computing
4
- Road Traffic Fine Management Process (not BPI);A real-life event log taken from an information system of the Italian police. The information system supports the management and handling of road traffic fines by a local police force in Italy.;https://data.4tu.nl/articles/dataset/Road_Traffic_Fine_Management_Process/12683249;;95;https://app.dimensions.ai/discover/publication?and_subset_figshare_doi=10.4121%2Fuuid%3A270fd440-1057-4fb9-89a9-b699b47990f5;32;9;4;8;15;1;2;alarm-based prescriptive process monitoring, business process deviance, incremental process discovery, multi-perspective, ordering, remaining time prediction, variants, workflow net
5
- BPI 2011;Contains data from from a Dutch Academic Hospital. Each case is a patient of a Gynaecology department. The log contains information about when certain activities took place, which group performed the activity and so on.;https://data.4tu.nl/articles/dataset/Real-life_event_logs_-_Hospital_log/12716513/1;https://www.win.tue.nl/bpi/doku.php?id=2011:challenge;57;https://app.dimensions.ai/discover/publication?and_subset_figshare_doi=10.4121%2Fuuid%3Ad9769f3d-0ab0-4fb8-803b-0d1120ffcf54;13;1;3;4;12;4;1;(compliance) monitoring, (machine) learning, deviant process instances detection, drift detection, explainable predictions, healthcare, outcome prediction, temporal logic
6
- BPI 2012;Contains the event log of an application process for a personal loan or overdraft within a global financing organization.;https://data.4tu.nl/articles/dataset/BPI_Challenge_2012/12689204;https://www.win.tue.nl/bpi/doku.php?id=2012:challenge;151;https://app.dimensions.ai/discover/publication?and_subset_figshare_doi=10.4121%2Fuuid%3A3926db30-f712-4394-aebc-75976070e91f;40;15;4;13;46;0;1;(in)frequent patterns in process models, (machine) learning, automation, event-log sampling, explainable predictions, generilazation in process discovery, multi-perspective, next event prediction, privacy preservation, remaining time prediction, sequence model, sequence prediction, simulation, temporal logic
7
- BPI 2013 - Open Problems;Rabobank Group ICT implemented ITIL processes and tracked events such as changes and incidents;https://data.4tu.nl/articles/dataset/BPI_Challenge_2013_open_problems/12688556/1?file=24026252;https://www.win.tue.nl/bpi/2013/challenge.html;6;https://app.dimensions.ai/discover/publication?and_subset_figshare_doi=10.4121%2Fuuid%3A3537c19d-6c64-4b1d-815d-915ab0e479da;1;0;0;0;1;0;0;(in)frequent patterns in process models, (machine) learning
8
- BPI 2013 - Closed Problems;Rabobank Group ICT implemented ITIL processes and tracked events such as changes and incidents;https://data.4tu.nl/articles/dataset/BPI_Challenge_2013_closed_problems/12714476/1;https://www.win.tue.nl/bpi/doku.php?id=2013:challenge;12;https://app.dimensions.ai/discover/publication?and_subset_figshare_doi=10.4121%2Fuuid%3Ac2c3b154-ab26-4b31-a0e8-8f2350ddac11;3;2;1;2;0;0;3;(in)frequent patterns in process models
9
- BPI 2013 - Incidents;The log contains events from an incident and problem management system called VINST.;https://data.4tu.nl/articles/dataset/BPI_Challenge_2013_incidents/12693914/1;https://www.win.tue.nl/bpi/2013/challenge.html;36;https://app.dimensions.ai/discover/publication?and_subset_figshare_doi=10.4121%2Fuuid%3A500573e6-accc-4b0c-9576-aa5468b10cee;14;5;1;1;7;0;2;(machine) learning, rule mining
10
- BPI 2014 - Incident Records;Rabobank Group ICT implemented ITIL processes and tracked events such as changes and incidents;https://data.4tu.nl/articles/dataset/BPI_Challenge_2014_Activity_log_for_incidents/12706424;https://www.win.tue.nl/bpi/doku.php?id=2014:challenge;5;https://app.dimensions.ai/discover/publication?and_subset_figshare_doi=10.4121%2Fuuid%3A86977bac-f874-49cf-8337-80f26bf5d2ef;1;0;0;0;0;0;0;privacy preservation, security
11
- BPI 2014 - Interaction Records;Rabobank Group ICT implemented ITIL processes and tracked events such as changes and incidents;https://data.4tu.nl/articles/dataset/BPI_Challenge_2014_Interaction_details/12692411;https://www.win.tue.nl/bpi/doku.php?id=2014:challenge;1;https://app.dimensions.ai/discover/publication?and_subset_figshare_doi=10.4121%2Fuuid%3A3d5ae0ce-198c-4b5c-b0f9-60d3035d07bf;0;0;0;0;0;0;0;(machine) learning, hidden Markov models
12
- BPI 2015 - Log 3;Provided by 5 Dutch municipalities. The data contains all building permit applications over a period of approx. 4 years (Municipality 3);https://data.4tu.nl/articles/dataset/BPI_Challenge_2015_Municipality_3/12718370?backTo=/collections/_/5065424;https://www.win.tue.nl/bpi/doku.php?id=2015:challenge;1;https://app.dimensions.ai/discover/publication?and_subset_figshare_doi=10.4121%2Fuuid%3Aed445cdd-27d5-4d77-a1f7-59fe7360cfbe;0;0;0;0;1;0;0;specification-driven predictive business process monitoring
13
- BPI 2015 - Log 1;Provided by 5 Dutch municipalities. The data contains all building permit applications over a period of approx. 4 years (Municipality 1);https://data.4tu.nl/articles/dataset/BPI_Challenge_2015_Municipality_1/12709154;https://www.win.tue.nl/bpi/doku.php?id=2015:challenge;8;https://app.dimensions.ai/discover/publication?and_subset_figshare_doi=10.4121%2Fuuid%3Aa0addfda-2044-4541-a450-fdcc9fe16d17;1;1;0;0;3;0;3;(machine) learning
14
- BPI 2016 - Clicks Logged In;Contains clicks of users that are logged in from a Dutch autonomous administrative authority that implements employee insurances and provides labour market and data services.;https://data.4tu.nl/articles/dataset/BPI_Challenge_2016_Clicks_Logged_In/12674816;https://www.win.tue.nl/bpi/doku.php?id=2016:challenge;1;https://app.dimensions.ai/discover/publication?and_subset_figshare_doi=10.4121%2Fuuid%3A01345ac4-7d1d-426e-92b8-24933a079412;1;0;1;0;0;0;0;automation
15
- BPI 2017 - Application Log;Contains data from a financial institute including all applications filed and their subsequent handling. There may be multiple offers per application. However, at most one of them should always be accepted.;https://data.4tu.nl/articles/dataset/BPI_Challenge_2017/12696884/1;https://www.win.tue.nl/bpi/doku.php?id=2017:challenge;73;https://app.dimensions.ai/discover/publication?and_subset_figshare_doi=10.4121%2Fuuid%3A5f3067df-f10b-45da-b98b-86ae4c7a310b;11;5;2;14;23;1;1;(machine) learning, alarm-based prescriptive process monitoring, automation, privacy preservation, remaining time prediction, resource constraints, simulation, trace ordering
16
- BPI 2018;The process covers the handling of applications for EU direct payments for German farmers from the https://en.wikipedia.org/wiki/European_Agricultural_Guarantee_Fund. It contains yearly allocation of direct payments, starting with the application and, if all goes well, finishing with the authorization of a payment.;https://data.4tu.nl/articles/dataset/BPI_Challenge_2018/12688355/1;https://www.win.tue.nl/bpi/doku.php?id=2018:challenge;26;https://app.dimensions.ai/discover/publication?and_subset_figshare_doi=10.4121%2Fuuid%3A3301445f-95e8-4ff0-98a4-901f1f204972;7;1;2;0;8;0;2;(machine) learning, automation
17
- BPI 2020 - Travel Permits;Contains 2 years of data from the reimbursement process at TU/e. Travel permits should be approved before making any arrangements.;https://data.4tu.nl/articles/dataset/BPI_Challenge_2020_Travel_Permit_Data/12718178;https://icpmconference.org/2020/bpi-challenge/;2;https://app.dimensions.ai/discover/publication?and_subset_figshare_doi=10.4121%2Fuuid%3Aea03d361-a7cd-4f5e-83d8-5fbdf0362550;0;0;0;1;0;0;0;stage-based process performance analysis
18
- BPI 2019;Contains the purchase order handling process of a multinational company operating from the Netherlands in the area of coatings and paints.;https://data.4tu.nl/articles/dataset/BPI_Challenge_2019/12715853/1;https://icpmconference.org/2019/icpm-2019/contests-challenges/bpi-challenge-2019/;35;https://app.dimensions.ai/discover/publication?and_subset_figshare_doi=10.4121%2Fuuid%3Ad06aff4b-79f0-45e6-8ec8-e19730c248f1;3;1;6;6;9;4;1;(online process) monitoring, remaining time prediction
19
- BPI 2020 - International Declarations;Contains 2 years of data from the reimbursement process at TU/e. For international trips, permission is needed from the supervisor.;https://data.4tu.nl/articles/dataset/BPI_Challenge_2020_International_Declarations/12687374;https://icpmconference.org/2020/bpi-challenge/;2;https://app.dimensions.ai/discover/publication?and_subset_figshare_doi=10.4121%2Fuuid%3A2bbf8f6a-fc50-48eb-aa9e-c4ea5ef7e8c5;0;0;0;1;2;0;0;(machine) learning, remaining time prediction
20
- BPI 2020 - Domestic Declarations;Contains 2 years of data from the reimbursement process at TU/e. For domestic trips, no prior permission is needed, i.e. an employee can undertake these trips and ask for reimbursement of the costs afterwards.;https://data.4tu.nl/articles/dataset/BPI_Challenge_2020_Domestic_Declarations/12692543;https://icpmconference.org/2020/bpi-challenge/;7;https://app.dimensions.ai/discover/publication?and_subset_figshare_doi=10.4121%2Fuuid%3A3f422315-ed9d-4882-891f-e180b5b4feb5;0;2;2;2;3;0;0;(machine) learning, remaining time prediction
21
- BPI 2020 - Prepaid Travel Cost;Contains 2 years of data from the reimbursement process at TU/e. ;https://data.4tu.nl/articles/dataset/BPI_Challenge_2020_Prepaid_Travel_Costs/12696722;https://icpmconference.org/2020/bpi-challenge/;2;https://app.dimensions.ai/discover/publication?and_subset_figshare_doi=10.4121%2Fuuid%3A5d2fe5e1-f91f-4a3b-ad9b-9e4126870165;0;0;0;0;0;0;0;multi-perspective
22
- Helpdesk;Ticketing management process of the Help desk of an Italian software company;https://data.4tu.nl/articles/dataset/Dataset_belonging_to_the_help_desk_log_of_an_Italian_Company/12675977;;20;https://app.dimensions.ai/discover/publication?and_subset_figshare_doi=10.4121%2Fuuid%3A0c60edf1-6f83-4e75-9367-4c63b3e9d5bb;4;1;3;1;8;0;0;(machine) learning, drift detection
23
- Receipt phase of an environmental permit application process (WABO), CoSeLoG project;Data originates from the CoSeLoG project where (dis)similarities between processes of different Dutch municipalities have been investigated. Here: execution of the receiving phase of the building permit application process.;https://data.4tu.nl/articles/dataset/Receipt_phase_of_an_environmental_permit_application_process_WABO_CoSeLoG_project/12709127;;15;https://data.4tu.nl/articles/dataset/Receipt_phase_of_an_environmental_permit_application_process_WABO_CoSeLoG_project/12709127;-1;-1;-1;-1;-1;-1;-1;
24
- Environmental permit application process (‘WABO’), CoSeLoG project – Municipality 4;Data originates from the CoSeLoG project where (dis)similarities between processes of different Dutch municipalities have been investigated. Here: execution of a building permit application process in one of five anonymous municipalities (municipality 4);https://data.4tu.nl/articles/dataset/Environmental_permit_application_process_WABO_CoSeLoG_project_Municipality_4/12718076?backTo=/collections/_/5065529;;2;https://app.dimensions.ai/discover/publication?and_subset_figshare_doi=10.4121%2Fuuid%3Ae8c3a53d-5301-4afb-9bcd-38e74171ca32;0;0;0;0;1;0;0;predictions with a-priori knowledge
25
- Environmental permit application process (‘WABO’), CoSeLoG project – Municipality 1;Data originates from the CoSeLoG project where (dis)similarities between processes of different Dutch municipalities have been investigated. Here: execution of a building permit application process in one of five anonymous municipalities (municipality 1);https://data.4tu.nl/articles/dataset/Environmental_permit_application_process_WABO_CoSeLoG_project_Municipality_1/12714599?backTo=/collections/_/5065529;;2;https://app.dimensions.ai/discover/publication?and_subset_figshare_doi=10.4121%2Fuuid%3Ac45dcbe9-557b-43ca-b6d0-10561e13dcb5;1;0;0;0;0;0;0;multidimensional process mining, process cubes
26
- ;;;;;;;;;;;;;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
setup.py CHANGED
@@ -12,8 +12,8 @@ setup(
12
  name = 'gedi',
13
  version = str(version),
14
  description = 'Generating Event Data with Intentional Features for Benchmarking Process Mining',
15
- author = 'Andrea Maldonado',
16
- author_email = '[email protected]',
17
  license = 'MIT',
18
  url='https://github.com/lmu-dbs/gedi.git',
19
  long_description=long_description,
 
12
  name = 'gedi',
13
  version = str(version),
14
  description = 'Generating Event Data with Intentional Features for Benchmarking Process Mining',
15
+ author = '...',
16
+ author_email = '...',
17
  license = 'MIT',
18
  url='https://github.com/lmu-dbs/gedi.git',
19
  long_description=long_description,