Andrea Maldonado commited on
Commit
74f240f
Β·
1 Parent(s): f89abd9

Commits bpm24 from gedi

Browse files
This view is limited to 50 files because it contains too many changes. Β  See raw diff
Files changed (50) hide show
  1. README.md +138 -12
  2. config_files/algorithm/augmentation.json +0 -12
  3. config_files/algorithm/experiment_real_targets.json +41 -0
  4. config_files/algorithm/experiment_test.json +3 -3
  5. config_files/algorithm/feature_extraction.json +0 -10
  6. config_files/algorithm/fix_24.json +0 -34
  7. config_files/algorithm/grid_2obj/generator_grid_2objectives_ense_enseef.json +1 -0
  8. config_files/algorithm/grid_2obj/generator_grid_2objectives_ense_enself.json +1 -0
  9. config_files/algorithm/grid_2obj/generator_grid_2objectives_ense_enve.json +1 -0
  10. config_files/algorithm/grid_2obj/generator_grid_2objectives_ense_rmcv.json +1 -0
  11. config_files/algorithm/grid_2obj/generator_grid_2objectives_ense_rt10v.json +1 -0
  12. config_files/algorithm/grid_2obj/generator_grid_2objectives_ense_rvpnot.json +1 -0
  13. config_files/algorithm/grid_2obj/generator_grid_2objectives_enseef_enself.json +1 -0
  14. config_files/algorithm/grid_2obj/generator_grid_2objectives_enseef_enve.json +1 -0
  15. config_files/algorithm/grid_2obj/generator_grid_2objectives_enseef_rmcv.json +1 -0
  16. config_files/algorithm/grid_2obj/generator_grid_2objectives_enseef_rt10v.json +1 -0
  17. config_files/algorithm/grid_2obj/generator_grid_2objectives_enseef_rvpnot.json +1 -0
  18. config_files/algorithm/grid_2obj/generator_grid_2objectives_enself_enve.json +1 -0
  19. config_files/algorithm/grid_2obj/generator_grid_2objectives_enself_rmcv.json +1 -0
  20. config_files/algorithm/grid_2obj/generator_grid_2objectives_enself_rt10v.json +1 -0
  21. config_files/algorithm/grid_2obj/generator_grid_2objectives_enself_rvpnot.json +1 -0
  22. config_files/algorithm/grid_2obj/generator_grid_2objectives_enve_rmcv.json +1 -0
  23. config_files/algorithm/grid_2obj/generator_grid_2objectives_enve_rt10v.json +1 -0
  24. config_files/algorithm/grid_2obj/generator_grid_2objectives_enve_rvpnot.json +1 -0
  25. config_files/algorithm/grid_2obj/generator_grid_2objectives_rmcv_rt10v.json +1 -0
  26. config_files/algorithm/grid_2obj/generator_grid_2objectives_rmcv_rvpnot.json +1 -0
  27. config_files/algorithm/grid_2obj/generator_grid_2objectives_rt10v_rvpnot.json +1 -0
  28. config_files/algorithm/pipeline_steps/augmentation.json +12 -0
  29. config_files/algorithm/{benchmark.json β†’ pipeline_steps/benchmark.json} +1 -1
  30. config_files/algorithm/{evaluation_plotter.json β†’ pipeline_steps/evaluation_plotter.json} +2 -2
  31. config_files/algorithm/pipeline_steps/feature_extraction.json +12 -0
  32. config_files/algorithm/{generation.json β†’ pipeline_steps/generation.json} +0 -0
  33. config_files/algorithm/test/generator_2bpic_2objectives_ense_enseef.json +2 -2
  34. config_files/algorithm/test/generator_grid_1objectives_rt10v.json +2 -2
  35. config_files/algorithm/test/generator_grid_2objectives_ense_enself.json +2 -2
  36. dashboard.py +0 -295
  37. data/BaselineED_bench.csv +21 -0
  38. data/{baseline_ED_feat.csv β†’ BaselineED_feat.csv} +1 -1
  39. data/GenBaselineED_bench.csv +25 -0
  40. data/{GenBaseline_ED_feat.csv β†’ GenBaselineED_feat.csv} +1 -1
  41. data/GenBaseline_ED_bench.csv +0 -25
  42. data/GenED_bench.csv +0 -0
  43. data/GenED_feat.csv +0 -0
  44. data/baseline_ED_bench.csv +0 -18
  45. data/grid_1obj/grid_1objectives_ense.csv +0 -12
  46. data/grid_1obj/grid_1objectives_enseef.csv +0 -12
  47. data/grid_1obj/grid_1objectives_enself.csv +0 -12
  48. data/grid_1obj/grid_1objectives_enve.csv +0 -12
  49. data/grid_1obj/grid_1objectives_rmcv.csv +0 -12
  50. data/grid_1obj/grid_1objectives_rt10v.csv +0 -12
README.md CHANGED
@@ -5,7 +5,8 @@
5
 
6
  - [Requirements](#requirements)
7
  - [Installation](#installation)
8
- - [Usage](#usage)
 
9
  - [References](#references)
10
 
11
  ## Requirements
@@ -22,29 +23,154 @@ conda install pyrfr swig
22
  ```
23
  ## Installation
24
  - `conda env create -f .conda.yml`
25
- - Install [Feature Extractor for Event Data (feeed)](https://github.com/lmu-dbs/feeed) in the newly installed conda environment: `pip install feeed`
26
 
27
  ### Startup
28
  ```console
29
  conda activate gedi
30
  python main.py -o config_files/options/baseline.json -a config_files/algorithm/experiment_test.json
31
  ```
32
- ## Usage
33
- Our pipeline offers several pipeline steps, which can be run sequentially or partially:
34
- - feature_extraction
35
- - generation
36
- - benchmark
37
- - evaluation_plotter
38
 
39
- We also include two notebooks, which output experimental results as in our paper.
 
 
 
 
 
40
 
41
  To run different steps of the GEDI pipeline, please adapt the `.json` accordingly.
42
  ```console
43
  conda activate gedi
44
- python main.py -o config_files/options/baseline.json -a config_files/algorithm/<pipeline-step>.json
45
  ```
46
  For reference of possible keys and values for each step, please see `config_files/algorithm/experiment_test.json`.
47
- To run the whole pipeline please create a new `.json` file, specifying all steps you want to run and specify desired keys and values for each step.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48
 
49
  ## References
50
- The framework used by `GEDI` is taken directly from the original paper by [Maldonado](mailto:andreamalher.[email protected]), Frey, Tavares, Rehwald and Seidl. If you would like to discuss the paper, or corresponding research questions on benchmarking process mining tasks please email the authors.
 
5
 
6
  - [Requirements](#requirements)
7
  - [Installation](#installation)
8
+ - [General Usage](#general-usage)
9
+ - [Experiments](#experiments)
10
  - [References](#references)
11
 
12
  ## Requirements
 
23
  ```
24
  ## Installation
25
  - `conda env create -f .conda.yml`
 
26
 
27
  ### Startup
28
  ```console
29
  conda activate gedi
30
  python main.py -o config_files/options/baseline.json -a config_files/algorithm/experiment_test.json
31
  ```
32
+ The last step should take only a few minutes to run.
 
 
 
 
 
33
 
34
+ ## General Usage
35
+ Our pipeline offers several pipeline steps, which can be run sequentially or partially ordered:
36
+ - [Feature Extraction](#feature-extraction)
37
+ - [Generation](#generation)
38
+ - [Benchmark](#benchmark)
39
+ - [Evaluation Plotter](https://github.com/lmu-dbs/gedi/blob/16-documentation-update-readme/README.md#evaluation-plotting)
40
 
41
  To run different steps of the GEDI pipeline, please adapt the `.json` accordingly.
42
  ```console
43
  conda activate gedi
44
+ python main.py -o config_files/options/baseline.json -a config_files/algorithm/pipeline_steps/<pipeline-step>.json
45
  ```
46
  For reference of possible keys and values for each step, please see `config_files/algorithm/experiment_test.json`.
47
+ To run the whole pipeline please create a new `.json` file, specifying all steps you want to run and specify desired keys and values for each step.
48
+ To reproduce results from out paper, please refer to [Experiments](#experiments).
49
+
50
+ ### Feature Extraction
51
+ ---
52
+ To extract the features on the event-log level and use them for hyperparameter optimization, we employ the following script:
53
+ ```console
54
+ conda activate gedi
55
+ python main.py -o config_files/options/baseline.json -a config_files/algorithm/pipeline_steps/feature_extraction.json
56
+ ```
57
+ The JSON file consists of the following key-value pairs:
58
+
59
+ - pipeline_step: denotes the current step in the pipeline (here: feature_extraction)
60
+ - input_path: folder to the input files
61
+ - feature params: defines a dictionary, where the inner dictionary consists of a key-value pair 'feature_set' with a list of features being extracted from the references files. A list of valid features can be looked up from the FEEED extractor
62
+ - output_path: defines the path, where plots are saved to
63
+ - real_eventlog_path: defines the file with the features extracted from the real event logs
64
+ - plot_type: defines the style of the output plotting (possible values: violinplot, boxplot)
65
+ - font_size: label font size of the output plot
66
+ - boxplot_widht: width of the violinplot/boxplot
67
+
68
+
69
+ ### Generation
70
+ ---
71
+ After having extracted meta features from the files, the next step is to generate event log data accordingly. Generally, there are two settings on how the targets are defined: i) meta feature targets are defined by the meta features from the real event log data; ii) a configuration space is defined which resembles the feasible meta features space.
72
+
73
+ The command to execute the generation step is given by a exemplarily generation.json file:
74
+
75
+ ```console
76
+ conda activate gedi
77
+ python main.py -o config_files/options/baseline.json -a config_files/algorithm/pipeline_steps/generation.json
78
+ ```
79
+
80
+ In the `generation.json`, we have the following key-value pairs:
81
+
82
+ * pipeline_step: denotes the current step in the pipeline (here: event_logs_generation)
83
+ * output_path: defines the output folder
84
+ * generator_params: defines the configuration of the generator itself. For the generator itself, we can set values for the general 'experiment', 'config_space', 'n_trials', and a specific 'plot_reference_feature' being used for plotting
85
+
86
+ - experiment: defines the path to the input file which contains the features that are used for the optimization step. The 'objectives' define the specific features, which are the optimization criteria.
87
+ - config_space: here, we define the configuration of the generator module (here: process tree generator). The process tree generator can process input information which defines characteristics for the generated data (a more thorough overview of the params can be found [here](https://github.com/tjouck/PTandLogGenerator):
88
+
89
+ - mode: most frequent number of visible activities
90
+ - sequence: the probability of adding a sequence operator to the tree
91
+ - choice: the probability of adding a choice operator to the tree
92
+ - parallel: the probability of adding a parallel operator to the tree
93
+ - loop: the probability of adding a loop operator to the tree
94
+ - silent: probability to add silent activity to a choice or loop operator
95
+ - lt_dependency: the probability of adding a random dependency to the tree
96
+ - num_traces: the number of traces in the event log
97
+ - duplicate: the probability of duplicating an activity label
98
+ - or: probability to add an or operator to the tree
99
+
100
+ - n_trials: the maximum number of trials for the hyperparameter optimization to find a feasible solution to the specific configuration being used as the target
101
+
102
+ - plot_reference_feature: defines the feature, which is used on the x-axis on the output plots, i.e., each feature defined in the 'objectives' of the 'experiment' is plotted against the reference feature being defined in this value
103
+
104
+ ### Benchmark
105
+ The benchmarking defines the downstream task which is used for evaluating the goodness of the synthesized event log datasets with the metrics of real-world datasets. The command to execute a benchmarking is shown in the following script:
106
+
107
+ ```console
108
+ conda activate gedi
109
+ python main.py -o config_files/options/baseline.json -a config_files/algorithm/pipeline_steps/benchmark.json
110
+ ```
111
+
112
+ In the `benchmark.json`, we have the following key-value pairs:
113
+
114
+ * pipeline_step: denotes the current step in the pipeline (here: benchmark_test)
115
+ * benchmark_test: defines the downstream task. Currently (in v 1.0), only `discovery` for process discovery is implemented
116
+ * input_path: defines the input folder where the synthesized event log data are stored
117
+ * output_path: defines the output folder
118
+ * miners: defines the miners for the downstream task 'discovery' which are used in the benchmarking. In v 1.0 the miners 'inductive' for inductive miner, 'heuristics' for heuristics miner, 'imf' for inductive miner infrequent, as well as 'ilp' for integer linear programming are implemented
119
+
120
+
121
+ ### Evaluation Plotting
122
+ The purpose of the evaluation plotting step is used just for visualization. Some examples of how the plotter can be used is shown in the following exemplarily script:
123
+
124
+
125
+ ```console
126
+ conda activate gedi
127
+ python main.py -o config_files/options/baseline.json -a config_files/algorithm/pipeline_steps/evaluation_plotter.json
128
+ ```
129
+
130
+ Generally, in the `evaluation_plotter.json`, we have the following key-value pairs:
131
+
132
+ * pipeline_step: denotes the current step in the pipeline (here: evaluation_plotter)
133
+ * input_path: defines the input file or the input folder which is considered for the visualizations. If a single file is specified, only the features in that file are considered whereas in the case of specifying a folder, the framework iterates over all files and uses them for plotting
134
+ * plot_reference_feature: defines the feature that is used on the x-axis on the output plots, i.e., each feature defined in the input file is plotted against the reference feature being defined in this value
135
+ * targets: defines the target values which are also used as reference. Likewise to the input_path, the targets can be specified by a single file or by a folder
136
+ * output_path: defines where to store the plots
137
+
138
+ ## Experiments
139
+ In this repository, experiments can be run selectively or from scratch, as preferred. For this purpose, we linked both inputs and outputs for each stage. In this section, we present the reproduction of generated event data, as in our paper, as well as the [visualization of evaluation figures](#visualizations).
140
+ We present two settings for generating intentional event logs, using [real targets](#generating-data-with-real-targets) or using [grid targets](#generating-data-with-grid-targets). Both settings output `.xes` event logs, `.json` and `.csv` files containing feature values, as well as evaluation results, from running a [process discovery benchmark](#benchmark), for the generated event logs.
141
+
142
+ ### Generating data with real targets
143
+ To execute the experiments with real targets, we employ the [experiment_real_targets.json](config_files/algorithm/experiment_real_targets.json). The script's pipeline will output the [generated event logs (GenBaselineED)](data/event_logs/GenBaselineED), which optimize their feature values towards [real-world event data features](data/BaselineED_feat.csv), alongside their respectively measured [feature values](data/GenBaselineED_feat.csv) and [benchmark metrics values](data/GenBaselineED_bench.csv).
144
+
145
+ ```console
146
+ conda activate gedi
147
+ python main.py -o config_files/options/baseline.json -a config_files/algorithm/experiment_real_targets.json
148
+ ```
149
+
150
+ ### Generating data with grid targets
151
+ To execute the experiments with grid targets, a single [configuration](config_files/algorithm/grid_2obj) can be selected or all [grid objectives](data/grid_2obj) can be run with one command using the following script. This script will output the [generated event logs (GenED)](data/event_logs/GenED), alongside their respectively measured [feature values](data/GenED_feat.csv) and [benchmark metrics values](data/GenED_bench.csv).
152
+ ```
153
+ conda activate gedi
154
+ python execute_grid_experiments.py config_files/algorithm/grid_2obj
155
+ ```
156
+ We employ the [experiment_grid_2obj_configfiles_fabric.ipynb](notebooks/experiment_grid_2obj_configfiles_fabric.ipynb) to create all necessary [configuration](config_files/algorithm/grid_2obj) and [objective](data/grid_2obj) files for this experiment. For more details about these config_files, please refer to [Feature Extraction](#feature-extraction), [Generation](#generation), and [Benchmark](#benchmark).
157
+
158
+ ### Visualizations
159
+ To run the visualizations, we employ [jupyter notebooks](https://jupyter.org/install) and [add the installed environment to the jupyter notebook](https://medium.com/@nrk25693/how-to-add-your-conda-environment-to-your-jupyter-notebook-in-just-4-steps-abeab8b8d084). We then start all visualizations by running e.g.: `jupyter noteboook`. In the following, we describe the `.ipynb`-files in the folder `\notebooks` to reproduce the figures from our paper.
160
+
161
+ #### [Fig. 4 and fig. 5 Representativeness](notebooks/gedi_figs4and5_representativeness.ipynb)
162
+ To visualize the coverage of the feasible feature space of generated event logs compared to existing real-world benchmark datasets, in this notebook, we conduct a principal component analysis on the features of both settings. The first two principal components are utilized to visualize the coverage which is further highlighted by computing a convex hull of the 2D mapping. Additionally, we visualize the distribution of each meta feature we used in the paper as a boxplot. Additional features can be extracted with FEEED. Therefore, the notebook contains the figures 4 and 5 in the paper.
163
+
164
+ #### [Fig. 6 Benchmark Boxplots](notebooks/gedi_fig6_benchmark_boxplots.ipynb)
165
+ This notebook is used to visualize the metric distribution of real event logs compared to the generated ones. It shows 5 different metrics on 3 various process discovery techniques. We use 'fitness,', 'precision', 'fscore', 'size', 'cfc' (control-flow complexity) as metrics and as 'heuristic miner', 'ilp' (integer linear programming), and 'imf' (inductive miner infrequent) as miners. The notebook outputs the visualization shown in Fig.6 in the paper.
166
+
167
+ #### [Fig. 7 and fig. 8 Benchmark's Statistical Tests](notebooks/gedi_figs7and8_benchmarking_statisticalTests.ipynb)
168
+
169
+ This notebook is used to answer the question if there is a statistically significant relation between feature similarity and performance metrics for the downstream tasks of process discovery. For that, we compute the pearson coefficient, as well as the kendall's tau coefficient. This elucidates the correlation between the features with metric scores being used for process discovery. Each coefficient is calculated for three different settings: i) real-world datasets; ii) synthesized event log data with real-world targets; iii) synthesized event log data with grid objectives. Figures 7 and 8 shown in the paper refer to this notebook.
170
+
171
+ #### [Fig. 9 Consistency and fig. 10 Limitations](notebooks/gedi_figs9and10_consistency.ipynb)
172
+ Likewise to the evaluation on the statistical tests in notebook `gedi_figs7and8_benchmarking_statisticalTests.ipynb`, this notebook is used to compute the differences between two correlation matrices $\Delta C = C_1 - C_2$. This logic is employed to evaluate and visualize the distance of two correlation matrices. Furthermore, we show how significant scores are retained from the correlations being evaluated on real-world datasets coompared to synthesized event log datasets with real-world targets. In Fig. 9 and 10 in the paper, the results of the notebook are shown.
173
+
174
 
175
  ## References
176
+ The framework used by `GEDI` is taken directly from the original paper by [...]. If you would like to discuss the paper, or corresponding research questions on benchmarking process mining tasks please email the authors.
config_files/algorithm/augmentation.json DELETED
@@ -1,12 +0,0 @@
1
- [
2
- {
3
- "pipeline_step": "instance_augmentation",
4
- "augmentation_params":
5
- {
6
- "method":"SMOTE", "no_samples":20,
7
- "feature_selection": ["n_traces", "n_unique_traces", "ratio_unique_traces_per_trace", "trace_len_min", "trace_len_max", "trace_len_mean", "trace_len_median", "trace_len_mode", "trace_len_std", "trace_len_variance", "trace_len_q1", "trace_len_q3", "trace_len_iqr", "trace_len_geometric_mean", "trace_len_geometric_std", "trace_len_harmonic_mean", "trace_len_skewness", "trace_len_kurtosis", "trace_len_coefficient_variation", "trace_len_entropy", "trace_len_hist1", "trace_len_hist2", "trace_len_hist3", "trace_len_hist4", "trace_len_hist5", "trace_len_hist6", "trace_len_hist7", "trace_len_hist8", "trace_len_hist9", "trace_len_hist10", "trace_len_skewness_hist", "trace_len_kurtosis_hist", "ratio_most_common_variant", "ratio_top_1_variants", "ratio_top_5_variants", "ratio_top_10_variants", "ratio_top_20_variants", "ratio_top_50_variants", "ratio_top_75_variants", "mean_variant_occurrence", "std_variant_occurrence", "skewness_variant_occurrence", "kurtosis_variant_occurrence", "n_unique_activities", "activities_min", "activities_max", "activities_mean", "activities_median", "activities_std", "activities_variance", "activities_q1", "activities_q3", "activities_iqr", "activities_skewness", "activities_kurtosis", "n_unique_start_activities", "start_activities_min", "start_activities_max", "start_activities_mean", "start_activities_median", "start_activities_std", "start_activities_variance", "start_activities_q1", "start_activities_q3", "start_activities_iqr", "start_activities_skewness", "start_activities_kurtosis", "n_unique_end_activities", "end_activities_min", "end_activities_max", "end_activities_mean", "end_activities_median", "end_activities_std", "end_activities_variance", "end_activities_q1", "end_activities_q3", "end_activities_iqr", "end_activities_skewness", "end_activities_kurtosis", "entropy_trace", "entropy_prefix", "entropy_global_block", "entropy_lempel_ziv", "entropy_k_block_diff_1", "entropy_k_block_diff_3", "entropy_k_block_diff_5", "entropy_k_block_ratio_1", "entropy_k_block_ratio_3", "entropy_k_block_ratio_5", "entropy_knn_3", "entropy_knn_5", "entropy_knn_7", "epa_variant_entropy", "epa_normalized_variant_entropy", "epa_sequence_entropy", "epa_normalized_sequence_entropy", "epa_sequence_entropy_linear_forgetting", "epa_normalized_sequence_entropy_linear_forgetting", "epa_sequence_entropy_exponential_forgetting", "epa_normalized_sequence_entropy_exponential_forgetting"]
8
- },
9
- "input_path": "data/bpic_features.csv",
10
- "output_path": "output"
11
- }
12
- ]
 
 
 
 
 
 
 
 
 
 
 
 
 
config_files/algorithm/experiment_real_targets.json ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "pipeline_step": "event_logs_generation",
4
+ "output_path": "output",
5
+ "generator_params": {
6
+ "experiment": {
7
+ "input_path": "data/BaselineED_feat.csv",
8
+ "objectives":["ratio_variants_per_number_of_traces","ratio_most_common_variant","ratio_top_10_variants","epa_normalized_variant_entropy","epa_normalized_sequence_entropy","epa_normalized_sequence_entropy_linear_forgetting","epa_normalized_sequence_entropy_exponential_forgetting"]},
9
+ "config_space": {
10
+ "mode": [5, 20],
11
+ "sequence": [0.01, 1],
12
+ "choice": [0.01, 1],
13
+ "parallel": [0.01, 1],
14
+ "loop": [0.01, 1],
15
+ "silent": [0.01, 1],
16
+ "lt_dependency": [0.01, 1],
17
+ "num_traces": [10, 10001],
18
+ "duplicate": [0],
19
+ "or": [0]
20
+ },
21
+ "n_trials": 200,
22
+ "plot_reference_feature": ""
23
+ }
24
+ },
25
+ {
26
+ "pipeline_step": "feature_extraction",
27
+ "input_path": "output/BaselineED_feat/7_ense_enseef_enself_enve_rmcv_rt10v_rutpt/",
28
+ "input_path": "output/features/BaselineED_feat/7_ense_enseef_enself_enve_rmcv_rt10v_rutpt/",
29
+ "feature_params": {"feature_set":["ratio_variants_per_number_of_traces","ratio_most_common_variant","ratio_top_10_variants","epa_normalized_variant_entropy","epa_normalized_sequence_entropy","epa_normalized_sequence_entropy_linear_forgetting","epa_normalized_sequence_entropy_exponential_forgetting"]},
30
+ "output_path": "output/plots",
31
+ "real_eventlog_path": "data/BaselineED_feat.csv",
32
+ "plot_type": "boxplot"
33
+ },
34
+ {
35
+ "pipeline_step": "benchmark_test",
36
+ "benchmark_test": "discovery",
37
+ "input_path": "output/BaselineED_feat/7_ense_enseef_enself_enve_rmcv_rt10v_rutpt/",
38
+ "output_path":"output",
39
+ "miners" : ["heu", "imf", "ilp"]
40
+ }
41
+ ]
config_files/algorithm/experiment_test.json CHANGED
@@ -3,7 +3,7 @@
3
  "pipeline_step": "instance_augmentation",
4
  "augmentation_params":{"method":"SMOTE", "no_samples":2,
5
  "feature_selection": ["ratio_top_20_variants", "epa_normalized_sequence_entropy_linear_forgetting"]},
6
- "input_path": "data/bpic_features.csv",
7
  "output_path": "output"
8
  },
9
  {
@@ -39,7 +39,7 @@
39
  "input_path": "data/test",
40
  "feature_params": {"feature_set":["trace_length"]},
41
  "output_path": "output/plots",
42
- "real_eventlog_path": "data/bpic_features.csv",
43
  "plot_type": "boxplot"
44
  },
45
  {
@@ -47,6 +47,6 @@
47
  "benchmark_test": "discovery",
48
  "input_path":"data/test",
49
  "output_path":"output",
50
- "miners" : ["inductive", "heuristics", "imf", "ilp"]
51
  }
52
  ]
 
3
  "pipeline_step": "instance_augmentation",
4
  "augmentation_params":{"method":"SMOTE", "no_samples":2,
5
  "feature_selection": ["ratio_top_20_variants", "epa_normalized_sequence_entropy_linear_forgetting"]},
6
+ "input_path": "data/test/bpic_features.csv",
7
  "output_path": "output"
8
  },
9
  {
 
39
  "input_path": "data/test",
40
  "feature_params": {"feature_set":["trace_length"]},
41
  "output_path": "output/plots",
42
+ "real_eventlog_path": "data/BaselineED_feat.csv",
43
  "plot_type": "boxplot"
44
  },
45
  {
 
47
  "benchmark_test": "discovery",
48
  "input_path":"data/test",
49
  "output_path":"output",
50
+ "miners" : ["inductive", "heu", "imf", "ilp"]
51
  }
52
  ]
config_files/algorithm/feature_extraction.json DELETED
@@ -1,10 +0,0 @@
1
- [
2
- {
3
- "pipeline_step": "feature_extraction",
4
- "input_path": "data/test",
5
- "feature_params": {"feature_set":["simple_stats", "trace_length", "trace_variant", "activities", "start_activities", "end_activities", "eventropies", "epa_based"]},
6
- "output_path": "output/plots",
7
- "real_eventlog_path": "data/bpic_features.csv",
8
- "plot_type": "boxplot"
9
- }
10
- ]
 
 
 
 
 
 
 
 
 
 
 
config_files/algorithm/fix_24.json DELETED
@@ -1,34 +0,0 @@
1
- [
2
- {
3
- "pipeline_step": "event_logs_generation",
4
- "output_path":"data/generated",
5
- "generator_params": {
6
- "objectives": {
7
- "normalized_sequence_entropy_linear_forgetting": 0.05,
8
- "ratio_top_20_variants": 0.4
9
- },
10
- "config_space": {
11
- "mode": [5, 40],
12
- "sequence": [0.01, 1],
13
- "choice": [0.01, 1],
14
- "parallel": [0.01, 1],
15
- "loop": [0.01, 1],
16
- "silent": [0.01, 1],
17
- "lt_dependency": [0.01, 1],
18
- "num_traces": [100, 1001],
19
- "duplicate": [0],
20
- "or": [0]
21
- },
22
- "n_trials": 20
23
- }
24
- },
25
- {
26
- "pipeline_step": "feature_extraction",
27
- "input_path": "data/generated",
28
- "feature_params": {"feature_set":["simple_stats", "trace_length", "trace_variant", "activities", "start_activities", "end_activities", "entropies", "complexity"]},
29
- "feature_params": {"feature_set":["trace_length"]},
30
- "output_path": "output/plots",
31
- "real_eventlog_path": "data/log_meta_features.csv",
32
- "plot_type": "boxplot"
33
- }
34
- ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
config_files/algorithm/grid_2obj/generator_grid_2objectives_ense_enseef.json ADDED
@@ -0,0 +1 @@
 
 
1
+ [{"pipeline_step": "event_logs_generation", "output_path": "output/generated/grid_2obj", "generator_params": {"experiment": {"input_path": "data/grid_2obj/grid_2objectives_ense_enseef.csv", "objectives": ["epa_normalized_sequence_entropy", "epa_normalized_sequence_entropy_exponential_forgetting"]}, "config_space": {"mode": [5, 20], "sequence": [0.01, 1], "choice": [0.01, 1], "parallel": [0.01, 1], "loop": [0.01, 1], "silent": [0.01, 1], "lt_dependency": [0.01, 1], "num_traces": [10, 10001], "duplicate": [0], "or": [0]}, "n_trials": 200}}, {"pipeline_step": "feature_extraction", "input_path": "output/features/generated/grid_2obj/grid_2objectives_ense_enseef/2_ense_enseef", "feature_params": {"feature_set": ["ratio_variants_per_number_of_traces", "ratio_most_common_variant", "ratio_top_10_variants", "epa_normalized_variant_entropy", "epa_normalized_sequence_entropy", "epa_normalized_sequence_entropy_linear_forgetting", "epa_normalized_sequence_entropy_exponential_forgetting"]}, "output_path": "output/plots", "real_eventlog_path": "data/BaselineED_feat.csv", "plot_type": "boxplot"}, {"pipeline_step": "benchmark_test", "benchmark_test": "discovery", "input_path": "output/generated/grid_2obj/grid_2objectives_ense_enseef/2_ense_enseef", "output_path": "output", "miners": ["heu", "imf", "ilp"]}]
config_files/algorithm/grid_2obj/generator_grid_2objectives_ense_enself.json ADDED
@@ -0,0 +1 @@
 
 
1
+ [{"pipeline_step": "event_logs_generation", "output_path": "output/generated/grid_2obj", "generator_params": {"experiment": {"input_path": "data/grid_2obj/grid_2objectives_ense_enself.csv", "objectives": ["epa_normalized_sequence_entropy", "epa_normalized_sequence_entropy_linear_forgetting"]}, "config_space": {"mode": [5, 20], "sequence": [0.01, 1], "choice": [0.01, 1], "parallel": [0.01, 1], "loop": [0.01, 1], "silent": [0.01, 1], "lt_dependency": [0.01, 1], "num_traces": [10, 10001], "duplicate": [0], "or": [0]}, "n_trials": 200}}, {"pipeline_step": "feature_extraction", "input_path": "output/features/generated/grid_2obj/grid_2objectives_ense_enself/2_ense_enself", "feature_params": {"feature_set": ["ratio_variants_per_number_of_traces", "ratio_most_common_variant", "ratio_top_10_variants", "epa_normalized_variant_entropy", "epa_normalized_sequence_entropy", "epa_normalized_sequence_entropy_linear_forgetting", "epa_normalized_sequence_entropy_exponential_forgetting"]}, "output_path": "output/plots", "real_eventlog_path": "data/BaselineED_feat.csv", "plot_type": "boxplot"}, {"pipeline_step": "benchmark_test", "benchmark_test": "discovery", "input_path": "output/generated/grid_2obj/grid_2objectives_ense_enself/2_ense_enself", "output_path": "output", "miners": ["heu", "imf", "ilp"]}]
config_files/algorithm/grid_2obj/generator_grid_2objectives_ense_enve.json ADDED
@@ -0,0 +1 @@
 
 
1
+ [{"pipeline_step": "event_logs_generation", "output_path": "output/generated/grid_2obj", "generator_params": {"experiment": {"input_path": "data/grid_2obj/grid_2objectives_ense_enve.csv", "objectives": ["epa_normalized_sequence_entropy", "epa_normalized_variant_entropy"]}, "config_space": {"mode": [5, 20], "sequence": [0.01, 1], "choice": [0.01, 1], "parallel": [0.01, 1], "loop": [0.01, 1], "silent": [0.01, 1], "lt_dependency": [0.01, 1], "num_traces": [10, 10001], "duplicate": [0], "or": [0]}, "n_trials": 200}}, {"pipeline_step": "feature_extraction", "input_path": "output/features/generated/grid_2obj/grid_2objectives_ense_enve/2_ense_enve", "feature_params": {"feature_set": ["ratio_variants_per_number_of_traces", "ratio_most_common_variant", "ratio_top_10_variants", "epa_normalized_variant_entropy", "epa_normalized_sequence_entropy", "epa_normalized_sequence_entropy_linear_forgetting", "epa_normalized_sequence_entropy_exponential_forgetting"]}, "output_path": "output/plots", "real_eventlog_path": "data/BaselineED_feat.csv", "plot_type": "boxplot"}, {"pipeline_step": "benchmark_test", "benchmark_test": "discovery", "input_path": "output/generated/grid_2obj/grid_2objectives_ense_enve/2_ense_enve", "output_path": "output", "miners": ["heu", "imf", "ilp"]}]
config_files/algorithm/grid_2obj/generator_grid_2objectives_ense_rmcv.json ADDED
@@ -0,0 +1 @@
 
 
1
+ [{"pipeline_step": "event_logs_generation", "output_path": "output/generated/grid_2obj", "generator_params": {"experiment": {"input_path": "data/grid_2obj/grid_2objectives_ense_rmcv.csv", "objectives": ["epa_normalized_sequence_entropy", "ratio_most_common_variant"]}, "config_space": {"mode": [5, 20], "sequence": [0.01, 1], "choice": [0.01, 1], "parallel": [0.01, 1], "loop": [0.01, 1], "silent": [0.01, 1], "lt_dependency": [0.01, 1], "num_traces": [10, 10001], "duplicate": [0], "or": [0]}, "n_trials": 200}}, {"pipeline_step": "feature_extraction", "input_path": "output/features/generated/grid_2obj/grid_2objectives_ense_rmcv/2_ense_rmcv", "feature_params": {"feature_set": ["ratio_variants_per_number_of_traces", "ratio_most_common_variant", "ratio_top_10_variants", "epa_normalized_variant_entropy", "epa_normalized_sequence_entropy", "epa_normalized_sequence_entropy_linear_forgetting", "epa_normalized_sequence_entropy_exponential_forgetting"]}, "output_path": "output/plots", "real_eventlog_path": "data/BaselineED_feat.csv", "plot_type": "boxplot"}, {"pipeline_step": "benchmark_test", "benchmark_test": "discovery", "input_path": "output/generated/grid_2obj/grid_2objectives_ense_rmcv/2_ense_rmcv", "output_path": "output", "miners": ["heu", "imf", "ilp"]}]
config_files/algorithm/grid_2obj/generator_grid_2objectives_ense_rt10v.json ADDED
@@ -0,0 +1 @@
 
 
1
+ [{"pipeline_step": "event_logs_generation", "output_path": "output/generated/grid_2obj", "generator_params": {"experiment": {"input_path": "data/grid_2obj/grid_2objectives_ense_rt10v.csv", "objectives": ["epa_normalized_sequence_entropy", "ratio_top_10_variants"]}, "config_space": {"mode": [5, 20], "sequence": [0.01, 1], "choice": [0.01, 1], "parallel": [0.01, 1], "loop": [0.01, 1], "silent": [0.01, 1], "lt_dependency": [0.01, 1], "num_traces": [10, 10001], "duplicate": [0], "or": [0]}, "n_trials": 200}}, {"pipeline_step": "feature_extraction", "input_path": "output/features/generated/grid_2obj/grid_2objectives_ense_rt10v/2_ense_rt10v", "feature_params": {"feature_set": ["ratio_variants_per_number_of_traces", "ratio_most_common_variant", "ratio_top_10_variants", "epa_normalized_variant_entropy", "epa_normalized_sequence_entropy", "epa_normalized_sequence_entropy_linear_forgetting", "epa_normalized_sequence_entropy_exponential_forgetting"]}, "output_path": "output/plots", "real_eventlog_path": "data/BaselineED_feat.csv", "plot_type": "boxplot"}, {"pipeline_step": "benchmark_test", "benchmark_test": "discovery", "input_path": "output/generated/grid_2obj/grid_2objectives_ense_rt10v/2_ense_rt10v", "output_path": "output", "miners": ["heu", "imf", "ilp"]}]
config_files/algorithm/grid_2obj/generator_grid_2objectives_ense_rvpnot.json ADDED
@@ -0,0 +1 @@
 
 
1
+ [{"pipeline_step": "event_logs_generation", "output_path": "output/generated/grid_2obj", "generator_params": {"experiment": {"input_path": "data/grid_2obj/grid_2objectives_ense_rvpnot.csv", "objectives": ["epa_normalized_sequence_entropy", "ratio_variants_per_number_of_traces"]}, "config_space": {"mode": [5, 20], "sequence": [0.01, 1], "choice": [0.01, 1], "parallel": [0.01, 1], "loop": [0.01, 1], "silent": [0.01, 1], "lt_dependency": [0.01, 1], "num_traces": [10, 10001], "duplicate": [0], "or": [0]}, "n_trials": 200}}, {"pipeline_step": "feature_extraction", "input_path": "output/features/generated/grid_2obj/grid_2objectives_ense_rvpnot/2_ense_rvpnot", "feature_params": {"feature_set": ["ratio_variants_per_number_of_traces", "ratio_most_common_variant", "ratio_top_10_variants", "epa_normalized_variant_entropy", "epa_normalized_sequence_entropy", "epa_normalized_sequence_entropy_linear_forgetting", "epa_normalized_sequence_entropy_exponential_forgetting"]}, "output_path": "output/plots", "real_eventlog_path": "data/BaselineED_feat.csv", "plot_type": "boxplot"}, {"pipeline_step": "benchmark_test", "benchmark_test": "discovery", "input_path": "output/generated/grid_2obj/grid_2objectives_ense_rvpnot/2_ense_rvpnot", "output_path": "output", "miners": ["heu", "imf", "ilp"]}]
config_files/algorithm/grid_2obj/generator_grid_2objectives_enseef_enself.json ADDED
@@ -0,0 +1 @@
 
 
1
+ [{"pipeline_step": "event_logs_generation", "output_path": "output/generated/grid_2obj", "generator_params": {"experiment": {"input_path": "data/grid_2obj/grid_2objectives_enseef_enself.csv", "objectives": ["epa_normalized_sequence_entropy_exponential_forgetting", "epa_normalized_sequence_entropy_linear_forgetting"]}, "config_space": {"mode": [5, 20], "sequence": [0.01, 1], "choice": [0.01, 1], "parallel": [0.01, 1], "loop": [0.01, 1], "silent": [0.01, 1], "lt_dependency": [0.01, 1], "num_traces": [10, 10001], "duplicate": [0], "or": [0]}, "n_trials": 200}}, {"pipeline_step": "feature_extraction", "input_path": "output/features/generated/grid_2obj/grid_2objectives_enseef_enself/2_enseef_enself", "feature_params": {"feature_set": ["ratio_variants_per_number_of_traces", "ratio_most_common_variant", "ratio_top_10_variants", "epa_normalized_variant_entropy", "epa_normalized_sequence_entropy", "epa_normalized_sequence_entropy_linear_forgetting", "epa_normalized_sequence_entropy_exponential_forgetting"]}, "output_path": "output/plots", "real_eventlog_path": "data/BaselineED_feat.csv", "plot_type": "boxplot"}, {"pipeline_step": "benchmark_test", "benchmark_test": "discovery", "input_path": "output/generated/grid_2obj/grid_2objectives_enseef_enself/2_enseef_enself", "output_path": "output", "miners": ["heu", "imf", "ilp"]}]
config_files/algorithm/grid_2obj/generator_grid_2objectives_enseef_enve.json ADDED
@@ -0,0 +1 @@
 
 
1
+ [{"pipeline_step": "event_logs_generation", "output_path": "output/generated/grid_2obj", "generator_params": {"experiment": {"input_path": "data/grid_2obj/grid_2objectives_enseef_enve.csv", "objectives": ["epa_normalized_sequence_entropy_exponential_forgetting", "epa_normalized_variant_entropy"]}, "config_space": {"mode": [5, 20], "sequence": [0.01, 1], "choice": [0.01, 1], "parallel": [0.01, 1], "loop": [0.01, 1], "silent": [0.01, 1], "lt_dependency": [0.01, 1], "num_traces": [10, 10001], "duplicate": [0], "or": [0]}, "n_trials": 200}}, {"pipeline_step": "feature_extraction", "input_path": "output/features/generated/grid_2obj/grid_2objectives_enseef_enve/2_enseef_enve", "feature_params": {"feature_set": ["ratio_variants_per_number_of_traces", "ratio_most_common_variant", "ratio_top_10_variants", "epa_normalized_variant_entropy", "epa_normalized_sequence_entropy", "epa_normalized_sequence_entropy_linear_forgetting", "epa_normalized_sequence_entropy_exponential_forgetting"]}, "output_path": "output/plots", "real_eventlog_path": "data/BaselineED_feat.csv", "plot_type": "boxplot"}, {"pipeline_step": "benchmark_test", "benchmark_test": "discovery", "input_path": "output/generated/grid_2obj/grid_2objectives_enseef_enve/2_enseef_enve", "output_path": "output", "miners": ["heu", "imf", "ilp"]}]
config_files/algorithm/grid_2obj/generator_grid_2objectives_enseef_rmcv.json ADDED
@@ -0,0 +1 @@
 
 
1
+ [{"pipeline_step": "event_logs_generation", "output_path": "output/generated/grid_2obj", "generator_params": {"experiment": {"input_path": "data/grid_2obj/grid_2objectives_enseef_rmcv.csv", "objectives": ["epa_normalized_sequence_entropy_exponential_forgetting", "ratio_most_common_variant"]}, "config_space": {"mode": [5, 20], "sequence": [0.01, 1], "choice": [0.01, 1], "parallel": [0.01, 1], "loop": [0.01, 1], "silent": [0.01, 1], "lt_dependency": [0.01, 1], "num_traces": [10, 10001], "duplicate": [0], "or": [0]}, "n_trials": 200}}, {"pipeline_step": "feature_extraction", "input_path": "output/features/generated/grid_2obj/grid_2objectives_enseef_rmcv/2_enseef_rmcv", "feature_params": {"feature_set": ["ratio_variants_per_number_of_traces", "ratio_most_common_variant", "ratio_top_10_variants", "epa_normalized_variant_entropy", "epa_normalized_sequence_entropy", "epa_normalized_sequence_entropy_linear_forgetting", "epa_normalized_sequence_entropy_exponential_forgetting"]}, "output_path": "output/plots", "real_eventlog_path": "data/BaselineED_feat.csv", "plot_type": "boxplot"}, {"pipeline_step": "benchmark_test", "benchmark_test": "discovery", "input_path": "output/generated/grid_2obj/grid_2objectives_enseef_rmcv/2_enseef_rmcv", "output_path": "output", "miners": ["heu", "imf", "ilp"]}]
config_files/algorithm/grid_2obj/generator_grid_2objectives_enseef_rt10v.json ADDED
@@ -0,0 +1 @@
 
 
1
+ [{"pipeline_step": "event_logs_generation", "output_path": "output/generated/grid_2obj", "generator_params": {"experiment": {"input_path": "data/grid_2obj/grid_2objectives_enseef_rt10v.csv", "objectives": ["epa_normalized_sequence_entropy_exponential_forgetting", "ratio_top_10_variants"]}, "config_space": {"mode": [5, 20], "sequence": [0.01, 1], "choice": [0.01, 1], "parallel": [0.01, 1], "loop": [0.01, 1], "silent": [0.01, 1], "lt_dependency": [0.01, 1], "num_traces": [10, 10001], "duplicate": [0], "or": [0]}, "n_trials": 200}}, {"pipeline_step": "feature_extraction", "input_path": "output/features/generated/grid_2obj/grid_2objectives_enseef_rt10v/2_enseef_rt10v", "feature_params": {"feature_set": ["ratio_variants_per_number_of_traces", "ratio_most_common_variant", "ratio_top_10_variants", "epa_normalized_variant_entropy", "epa_normalized_sequence_entropy", "epa_normalized_sequence_entropy_linear_forgetting", "epa_normalized_sequence_entropy_exponential_forgetting"]}, "output_path": "output/plots", "real_eventlog_path": "data/BaselineED_feat.csv", "plot_type": "boxplot"}, {"pipeline_step": "benchmark_test", "benchmark_test": "discovery", "input_path": "output/generated/grid_2obj/grid_2objectives_enseef_rt10v/2_enseef_rt10v", "output_path": "output", "miners": ["heu", "imf", "ilp"]}]
config_files/algorithm/grid_2obj/generator_grid_2objectives_enseef_rvpnot.json ADDED
@@ -0,0 +1 @@
 
 
1
+ [{"pipeline_step": "event_logs_generation", "output_path": "output/generated/grid_2obj", "generator_params": {"experiment": {"input_path": "data/grid_2obj/grid_2objectives_enseef_rvpnot.csv", "objectives": ["epa_normalized_sequence_entropy_exponential_forgetting", "ratio_variants_per_number_of_traces"]}, "config_space": {"mode": [5, 20], "sequence": [0.01, 1], "choice": [0.01, 1], "parallel": [0.01, 1], "loop": [0.01, 1], "silent": [0.01, 1], "lt_dependency": [0.01, 1], "num_traces": [10, 10001], "duplicate": [0], "or": [0]}, "n_trials": 200}}, {"pipeline_step": "feature_extraction", "input_path": "output/features/generated/grid_2obj/grid_2objectives_enseef_rvpnot/2_enseef_rvpnot", "feature_params": {"feature_set": ["ratio_variants_per_number_of_traces", "ratio_most_common_variant", "ratio_top_10_variants", "epa_normalized_variant_entropy", "epa_normalized_sequence_entropy", "epa_normalized_sequence_entropy_linear_forgetting", "epa_normalized_sequence_entropy_exponential_forgetting"]}, "output_path": "output/plots", "real_eventlog_path": "data/BaselineED_feat.csv", "plot_type": "boxplot"}, {"pipeline_step": "benchmark_test", "benchmark_test": "discovery", "input_path": "output/generated/grid_2obj/grid_2objectives_enseef_rvpnot/2_enseef_rvpnot", "output_path": "output", "miners": ["heu", "imf", "ilp"]}]
config_files/algorithm/grid_2obj/generator_grid_2objectives_enself_enve.json ADDED
@@ -0,0 +1 @@
 
 
1
+ [{"pipeline_step": "event_logs_generation", "output_path": "output/generated/grid_2obj", "generator_params": {"experiment": {"input_path": "data/grid_2obj/grid_2objectives_enself_enve.csv", "objectives": ["epa_normalized_sequence_entropy_linear_forgetting", "epa_normalized_variant_entropy"]}, "config_space": {"mode": [5, 20], "sequence": [0.01, 1], "choice": [0.01, 1], "parallel": [0.01, 1], "loop": [0.01, 1], "silent": [0.01, 1], "lt_dependency": [0.01, 1], "num_traces": [10, 10001], "duplicate": [0], "or": [0]}, "n_trials": 200}}, {"pipeline_step": "feature_extraction", "input_path": "output/features/generated/grid_2obj/grid_2objectives_enself_enve/2_enself_enve", "feature_params": {"feature_set": ["ratio_variants_per_number_of_traces", "ratio_most_common_variant", "ratio_top_10_variants", "epa_normalized_variant_entropy", "epa_normalized_sequence_entropy", "epa_normalized_sequence_entropy_linear_forgetting", "epa_normalized_sequence_entropy_exponential_forgetting"]}, "output_path": "output/plots", "real_eventlog_path": "data/BaselineED_feat.csv", "plot_type": "boxplot"}, {"pipeline_step": "benchmark_test", "benchmark_test": "discovery", "input_path": "output/generated/grid_2obj/grid_2objectives_enself_enve/2_enself_enve", "output_path": "output", "miners": ["heu", "imf", "ilp"]}]
config_files/algorithm/grid_2obj/generator_grid_2objectives_enself_rmcv.json ADDED
@@ -0,0 +1 @@
 
 
1
+ [{"pipeline_step": "event_logs_generation", "output_path": "output/generated/grid_2obj", "generator_params": {"experiment": {"input_path": "data/grid_2obj/grid_2objectives_enself_rmcv.csv", "objectives": ["epa_normalized_sequence_entropy_linear_forgetting", "ratio_most_common_variant"]}, "config_space": {"mode": [5, 20], "sequence": [0.01, 1], "choice": [0.01, 1], "parallel": [0.01, 1], "loop": [0.01, 1], "silent": [0.01, 1], "lt_dependency": [0.01, 1], "num_traces": [10, 10001], "duplicate": [0], "or": [0]}, "n_trials": 200}}, {"pipeline_step": "feature_extraction", "input_path": "output/features/generated/grid_2obj/grid_2objectives_enself_rmcv/2_enself_rmcv", "feature_params": {"feature_set": ["ratio_variants_per_number_of_traces", "ratio_most_common_variant", "ratio_top_10_variants", "epa_normalized_variant_entropy", "epa_normalized_sequence_entropy", "epa_normalized_sequence_entropy_linear_forgetting", "epa_normalized_sequence_entropy_exponential_forgetting"]}, "output_path": "output/plots", "real_eventlog_path": "data/BaselineED_feat.csv", "plot_type": "boxplot"}, {"pipeline_step": "benchmark_test", "benchmark_test": "discovery", "input_path": "output/generated/grid_2obj/grid_2objectives_enself_rmcv/2_enself_rmcv", "output_path": "output", "miners": ["heu", "imf", "ilp"]}]
config_files/algorithm/grid_2obj/generator_grid_2objectives_enself_rt10v.json ADDED
@@ -0,0 +1 @@
 
 
1
+ [{"pipeline_step": "event_logs_generation", "output_path": "output/generated/grid_2obj", "generator_params": {"experiment": {"input_path": "data/grid_2obj/grid_2objectives_enself_rt10v.csv", "objectives": ["epa_normalized_sequence_entropy_linear_forgetting", "ratio_top_10_variants"]}, "config_space": {"mode": [5, 20], "sequence": [0.01, 1], "choice": [0.01, 1], "parallel": [0.01, 1], "loop": [0.01, 1], "silent": [0.01, 1], "lt_dependency": [0.01, 1], "num_traces": [10, 10001], "duplicate": [0], "or": [0]}, "n_trials": 200}}, {"pipeline_step": "feature_extraction", "input_path": "output/features/generated/grid_2obj/grid_2objectives_enself_rt10v/2_enself_rt10v", "feature_params": {"feature_set": ["ratio_variants_per_number_of_traces", "ratio_most_common_variant", "ratio_top_10_variants", "epa_normalized_variant_entropy", "epa_normalized_sequence_entropy", "epa_normalized_sequence_entropy_linear_forgetting", "epa_normalized_sequence_entropy_exponential_forgetting"]}, "output_path": "output/plots", "real_eventlog_path": "data/BaselineED_feat.csv", "plot_type": "boxplot"}, {"pipeline_step": "benchmark_test", "benchmark_test": "discovery", "input_path": "output/generated/grid_2obj/grid_2objectives_enself_rt10v/2_enself_rt10v", "output_path": "output", "miners": ["heu", "imf", "ilp"]}]
config_files/algorithm/grid_2obj/generator_grid_2objectives_enself_rvpnot.json ADDED
@@ -0,0 +1 @@
 
 
1
+ [{"pipeline_step": "event_logs_generation", "output_path": "output/generated/grid_2obj", "generator_params": {"experiment": {"input_path": "data/grid_2obj/grid_2objectives_enself_rvpnot.csv", "objectives": ["epa_normalized_sequence_entropy_linear_forgetting", "ratio_variants_per_number_of_traces"]}, "config_space": {"mode": [5, 20], "sequence": [0.01, 1], "choice": [0.01, 1], "parallel": [0.01, 1], "loop": [0.01, 1], "silent": [0.01, 1], "lt_dependency": [0.01, 1], "num_traces": [10, 10001], "duplicate": [0], "or": [0]}, "n_trials": 200}}, {"pipeline_step": "feature_extraction", "input_path": "output/features/generated/grid_2obj/grid_2objectives_enself_rvpnot/2_enself_rvpnot", "feature_params": {"feature_set": ["ratio_variants_per_number_of_traces", "ratio_most_common_variant", "ratio_top_10_variants", "epa_normalized_variant_entropy", "epa_normalized_sequence_entropy", "epa_normalized_sequence_entropy_linear_forgetting", "epa_normalized_sequence_entropy_exponential_forgetting"]}, "output_path": "output/plots", "real_eventlog_path": "data/BaselineED_feat.csv", "plot_type": "boxplot"}, {"pipeline_step": "benchmark_test", "benchmark_test": "discovery", "input_path": "output/generated/grid_2obj/grid_2objectives_enself_rvpnot/2_enself_rvpnot", "output_path": "output", "miners": ["heu", "imf", "ilp"]}]
config_files/algorithm/grid_2obj/generator_grid_2objectives_enve_rmcv.json ADDED
@@ -0,0 +1 @@
 
 
1
+ [{"pipeline_step": "event_logs_generation", "output_path": "output/generated/grid_2obj", "generator_params": {"experiment": {"input_path": "data/grid_2obj/grid_2objectives_enve_rmcv.csv", "objectives": ["epa_normalized_variant_entropy", "ratio_most_common_variant"]}, "config_space": {"mode": [5, 20], "sequence": [0.01, 1], "choice": [0.01, 1], "parallel": [0.01, 1], "loop": [0.01, 1], "silent": [0.01, 1], "lt_dependency": [0.01, 1], "num_traces": [10, 10001], "duplicate": [0], "or": [0]}, "n_trials": 200}}, {"pipeline_step": "feature_extraction", "input_path": "output/features/generated/grid_2obj/grid_2objectives_enve_rmcv/2_enve_rmcv", "feature_params": {"feature_set": ["ratio_variants_per_number_of_traces", "ratio_most_common_variant", "ratio_top_10_variants", "epa_normalized_variant_entropy", "epa_normalized_sequence_entropy", "epa_normalized_sequence_entropy_linear_forgetting", "epa_normalized_sequence_entropy_exponential_forgetting"]}, "output_path": "output/plots", "real_eventlog_path": "data/BaselineED_feat.csv", "plot_type": "boxplot"}, {"pipeline_step": "benchmark_test", "benchmark_test": "discovery", "input_path": "output/generated/grid_2obj/grid_2objectives_enve_rmcv/2_enve_rmcv", "output_path": "output", "miners": ["heu", "imf", "ilp"]}]
config_files/algorithm/grid_2obj/generator_grid_2objectives_enve_rt10v.json ADDED
@@ -0,0 +1 @@
 
 
1
+ [{"pipeline_step": "event_logs_generation", "output_path": "output/generated/grid_2obj", "generator_params": {"experiment": {"input_path": "data/grid_2obj/grid_2objectives_enve_rt10v.csv", "objectives": ["epa_normalized_variant_entropy", "ratio_top_10_variants"]}, "config_space": {"mode": [5, 20], "sequence": [0.01, 1], "choice": [0.01, 1], "parallel": [0.01, 1], "loop": [0.01, 1], "silent": [0.01, 1], "lt_dependency": [0.01, 1], "num_traces": [10, 10001], "duplicate": [0], "or": [0]}, "n_trials": 200}}, {"pipeline_step": "feature_extraction", "input_path": "output/features/generated/grid_2obj/grid_2objectives_enve_rt10v/2_enve_rt10v", "feature_params": {"feature_set": ["ratio_variants_per_number_of_traces", "ratio_most_common_variant", "ratio_top_10_variants", "epa_normalized_variant_entropy", "epa_normalized_sequence_entropy", "epa_normalized_sequence_entropy_linear_forgetting", "epa_normalized_sequence_entropy_exponential_forgetting"]}, "output_path": "output/plots", "real_eventlog_path": "data/BaselineED_feat.csv", "plot_type": "boxplot"}, {"pipeline_step": "benchmark_test", "benchmark_test": "discovery", "input_path": "output/generated/grid_2obj/grid_2objectives_enve_rt10v/2_enve_rt10v", "output_path": "output", "miners": ["heu", "imf", "ilp"]}]
config_files/algorithm/grid_2obj/generator_grid_2objectives_enve_rvpnot.json ADDED
@@ -0,0 +1 @@
 
 
1
+ [{"pipeline_step": "event_logs_generation", "output_path": "output/generated/grid_2obj", "generator_params": {"experiment": {"input_path": "data/grid_2obj/grid_2objectives_enve_rvpnot.csv", "objectives": ["epa_normalized_variant_entropy", "ratio_variants_per_number_of_traces"]}, "config_space": {"mode": [5, 20], "sequence": [0.01, 1], "choice": [0.01, 1], "parallel": [0.01, 1], "loop": [0.01, 1], "silent": [0.01, 1], "lt_dependency": [0.01, 1], "num_traces": [10, 10001], "duplicate": [0], "or": [0]}, "n_trials": 200}}, {"pipeline_step": "feature_extraction", "input_path": "output/features/generated/grid_2obj/grid_2objectives_enve_rvpnot/2_enve_rvpnot", "feature_params": {"feature_set": ["ratio_variants_per_number_of_traces", "ratio_most_common_variant", "ratio_top_10_variants", "epa_normalized_variant_entropy", "epa_normalized_sequence_entropy", "epa_normalized_sequence_entropy_linear_forgetting", "epa_normalized_sequence_entropy_exponential_forgetting"]}, "output_path": "output/plots", "real_eventlog_path": "data/BaselineED_feat.csv", "plot_type": "boxplot"}, {"pipeline_step": "benchmark_test", "benchmark_test": "discovery", "input_path": "output/generated/grid_2obj/grid_2objectives_enve_rvpnot/2_enve_rvpnot", "output_path": "output", "miners": ["heu", "imf", "ilp"]}]
config_files/algorithm/grid_2obj/generator_grid_2objectives_rmcv_rt10v.json ADDED
@@ -0,0 +1 @@
 
 
1
+ [{"pipeline_step": "event_logs_generation", "output_path": "output/generated/grid_2obj", "generator_params": {"experiment": {"input_path": "data/grid_2obj/grid_2objectives_rmcv_rt10v.csv", "objectives": ["ratio_most_common_variant", "ratio_top_10_variants"]}, "config_space": {"mode": [5, 20], "sequence": [0.01, 1], "choice": [0.01, 1], "parallel": [0.01, 1], "loop": [0.01, 1], "silent": [0.01, 1], "lt_dependency": [0.01, 1], "num_traces": [10, 10001], "duplicate": [0], "or": [0]}, "n_trials": 200}}, {"pipeline_step": "feature_extraction", "input_path": "output/features/generated/grid_2obj/grid_2objectives_rmcv_rt10v/2_rmcv_rt10v", "feature_params": {"feature_set": ["ratio_variants_per_number_of_traces", "ratio_most_common_variant", "ratio_top_10_variants", "epa_normalized_variant_entropy", "epa_normalized_sequence_entropy", "epa_normalized_sequence_entropy_linear_forgetting", "epa_normalized_sequence_entropy_exponential_forgetting"]}, "output_path": "output/plots", "real_eventlog_path": "data/BaselineED_feat.csv", "plot_type": "boxplot"}, {"pipeline_step": "benchmark_test", "benchmark_test": "discovery", "input_path": "output/generated/grid_2obj/grid_2objectives_rmcv_rt10v/2_rmcv_rt10v", "output_path": "output", "miners": ["heu", "imf", "ilp"]}]
config_files/algorithm/grid_2obj/generator_grid_2objectives_rmcv_rvpnot.json ADDED
@@ -0,0 +1 @@
 
 
1
+ [{"pipeline_step": "event_logs_generation", "output_path": "output/generated/grid_2obj", "generator_params": {"experiment": {"input_path": "data/grid_2obj/grid_2objectives_rmcv_rvpnot.csv", "objectives": ["ratio_most_common_variant", "ratio_variants_per_number_of_traces"]}, "config_space": {"mode": [5, 20], "sequence": [0.01, 1], "choice": [0.01, 1], "parallel": [0.01, 1], "loop": [0.01, 1], "silent": [0.01, 1], "lt_dependency": [0.01, 1], "num_traces": [10, 10001], "duplicate": [0], "or": [0]}, "n_trials": 200}}, {"pipeline_step": "feature_extraction", "input_path": "output/features/generated/grid_2obj/grid_2objectives_rmcv_rvpnot/2_rmcv_rvpnot", "feature_params": {"feature_set": ["ratio_variants_per_number_of_traces", "ratio_most_common_variant", "ratio_top_10_variants", "epa_normalized_variant_entropy", "epa_normalized_sequence_entropy", "epa_normalized_sequence_entropy_linear_forgetting", "epa_normalized_sequence_entropy_exponential_forgetting"]}, "output_path": "output/plots", "real_eventlog_path": "data/BaselineED_feat.csv", "plot_type": "boxplot"}, {"pipeline_step": "benchmark_test", "benchmark_test": "discovery", "input_path": "output/generated/grid_2obj/grid_2objectives_rmcv_rvpnot/2_rmcv_rvpnot", "output_path": "output", "miners": ["heu", "imf", "ilp"]}]
config_files/algorithm/grid_2obj/generator_grid_2objectives_rt10v_rvpnot.json ADDED
@@ -0,0 +1 @@
 
 
1
+ [{"pipeline_step": "event_logs_generation", "output_path": "output/generated/grid_2obj", "generator_params": {"experiment": {"input_path": "data/grid_2obj/grid_2objectives_rt10v_rvpnot.csv", "objectives": ["ratio_top_10_variants", "ratio_variants_per_number_of_traces"]}, "config_space": {"mode": [5, 20], "sequence": [0.01, 1], "choice": [0.01, 1], "parallel": [0.01, 1], "loop": [0.01, 1], "silent": [0.01, 1], "lt_dependency": [0.01, 1], "num_traces": [10, 10001], "duplicate": [0], "or": [0]}, "n_trials": 200}}, {"pipeline_step": "feature_extraction", "input_path": "output/features/generated/grid_2obj/grid_2objectives_rt10v_rvpnot/2_rt10v_rvpnot", "feature_params": {"feature_set": ["ratio_variants_per_number_of_traces", "ratio_most_common_variant", "ratio_top_10_variants", "epa_normalized_variant_entropy", "epa_normalized_sequence_entropy", "epa_normalized_sequence_entropy_linear_forgetting", "epa_normalized_sequence_entropy_exponential_forgetting"]}, "output_path": "output/plots", "real_eventlog_path": "data/BaselineED_feat.csv", "plot_type": "boxplot"}, {"pipeline_step": "benchmark_test", "benchmark_test": "discovery", "input_path": "output/generated/grid_2obj/grid_2objectives_rt10v_rvpnot/2_rt10v_rvpnot", "output_path": "output", "miners": ["heu", "imf", "ilp"]}]
config_files/algorithm/pipeline_steps/augmentation.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "pipeline_step": "instance_augmentation",
4
+ "augmentation_params":
5
+ {
6
+ "method":"SMOTE", "no_samples":20,
7
+ "feature_selection": ["n_traces", "n_unique_traces", "ratio_variants_per_number_of_traces", "trace_len_min", "trace_len_max", "trace_len_mean", "trace_len_median", "trace_len_mode", "trace_len_std", "trace_len_variance", "trace_len_q1", "trace_len_q3", "trace_len_iqr", "trace_len_geometric_mean", "trace_len_geometric_std", "trace_len_harmonic_mean", "trace_len_skewness", "trace_len_kurtosis", "trace_len_coefficient_variation", "trace_len_entropy", "trace_len_hist1", "trace_len_hist2", "trace_len_hist3", "trace_len_hist4", "trace_len_hist5", "trace_len_hist6", "trace_len_hist7", "trace_len_hist8", "trace_len_hist9", "trace_len_hist10", "trace_len_skewness_hist", "trace_len_kurtosis_hist", "ratio_most_common_variant", "ratio_top_1_variants", "ratio_top_5_variants", "ratio_top_10_variants", "ratio_top_20_variants", "ratio_top_50_variants", "ratio_top_75_variants", "mean_variant_occurrence", "std_variant_occurrence", "skewness_variant_occurrence", "kurtosis_variant_occurrence", "n_unique_activities", "activities_min", "activities_max", "activities_mean", "activities_median", "activities_std", "activities_variance", "activities_q1", "activities_q3", "activities_iqr", "activities_skewness", "activities_kurtosis", "n_unique_start_activities", "start_activities_min", "start_activities_max", "start_activities_mean", "start_activities_median", "start_activities_std", "start_activities_variance", "start_activities_q1", "start_activities_q3", "start_activities_iqr", "start_activities_skewness", "start_activities_kurtosis", "n_unique_end_activities", "end_activities_min", "end_activities_max", "end_activities_mean", "end_activities_median", "end_activities_std", "end_activities_variance", "end_activities_q1", "end_activities_q3", "end_activities_iqr", "end_activities_skewness", "end_activities_kurtosis", "entropy_trace", "entropy_prefix", "entropy_global_block", "entropy_lempel_ziv", "entropy_k_block_diff_1", "entropy_k_block_diff_3", "entropy_k_block_diff_5", "entropy_k_block_ratio_1", "entropy_k_block_ratio_3", "entropy_k_block_ratio_5", "entropy_knn_3", "entropy_knn_5", "entropy_knn_7", "epa_variant_entropy", "epa_normalized_variant_entropy", "epa_sequence_entropy", "epa_normalized_sequence_entropy", "epa_sequence_entropy_linear_forgetting", "epa_normalized_sequence_entropy_linear_forgetting", "epa_sequence_entropy_exponential_forgetting", "epa_normalized_sequence_entropy_exponential_forgetting"]
8
+ },
9
+ "input_path": "data/test/bpic_features.csv",
10
+ "output_path": "output"
11
+ }
12
+ ]
config_files/algorithm/{benchmark.json β†’ pipeline_steps/benchmark.json} RENAMED
@@ -4,6 +4,6 @@
4
  "benchmark_test": "discovery",
5
  "input_path":"data/test",
6
  "output_path":"output",
7
- "miners" : ["inductive", "heuristics", "imf", "ilp"]
8
  }
9
  ]
 
4
  "benchmark_test": "discovery",
5
  "input_path":"data/test",
6
  "output_path":"output",
7
+ "miners" : ["inductive", "heu", "imf", "ilp"]
8
  }
9
  ]
config_files/algorithm/{evaluation_plotter.json β†’ pipeline_steps/evaluation_plotter.json} RENAMED
@@ -1,7 +1,7 @@
1
  [
2
  {
3
  "pipeline_step": "evaluation_plotter",
4
- "input_path": "output/features/generated/34_bpic_features/",
5
  "input_path": "output/features/generated/grid_2obj/",
6
  "input_path": ["output/features/generated/grid_1obj/", "output/features/generated/grid_2obj/"],
7
  "input_path": "output/features/generated/grid_1obj/1_enve_feat.csv",
@@ -9,7 +9,7 @@
9
  "reference_feature": "epa_normalized_sequence_entropy",
10
  "reference_feature": "epa_normalized_sequence_entropy_exponential_forgetting",
11
  "reference_feature": "epa_normalized_variant_entropy",
12
- "targets": "data/34_bpic_features.csv",
13
  "targets": "data/grid_experiments/grid_2obj/",
14
  "targets": ["data/grid_experiments/grid_1obj/", "data/grid_experiments/grid_2obj/"],
15
  "targets": "data/grid_experiments/grid_1obj/grid_1objectives_enve.csv",
 
1
  [
2
  {
3
  "pipeline_step": "evaluation_plotter",
4
+ "input_path": "output/features/generated/BaselineED_feat/",
5
  "input_path": "output/features/generated/grid_2obj/",
6
  "input_path": ["output/features/generated/grid_1obj/", "output/features/generated/grid_2obj/"],
7
  "input_path": "output/features/generated/grid_1obj/1_enve_feat.csv",
 
9
  "reference_feature": "epa_normalized_sequence_entropy",
10
  "reference_feature": "epa_normalized_sequence_entropy_exponential_forgetting",
11
  "reference_feature": "epa_normalized_variant_entropy",
12
+ "targets": "data/BaselineED_feat.csv",
13
  "targets": "data/grid_experiments/grid_2obj/",
14
  "targets": ["data/grid_experiments/grid_1obj/", "data/grid_experiments/grid_2obj/"],
15
  "targets": "data/grid_experiments/grid_1obj/grid_1objectives_enve.csv",
config_files/algorithm/pipeline_steps/feature_extraction.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "pipeline_step": "feature_extraction",
4
+ "input_path": "data/test",
5
+ "feature_params": {"feature_set":["ratio_variants_per_number_of_traces", "ratio_most_common_variant", "ratio_top_10_variants", "epa_normalized_variant_entropy", "epa_normalized_sequence_entropy", "epa_normalized_sequence_entropy_linear_forgetting", "epa_normalized_sequence_entropy_exponential_forgetting"]},
6
+ "output_path": "output/plots",
7
+ "real_eventlog_path": "data/BaselineED_feat.csv",
8
+ "plot_type": "boxplot",
9
+ "font_size": 24,
10
+ "boxplot_width":10
11
+ }
12
+ ]
config_files/algorithm/{generation.json β†’ pipeline_steps/generation.json} RENAMED
File without changes
config_files/algorithm/test/generator_2bpic_2objectives_ense_enseef.json CHANGED
@@ -1,7 +1,7 @@
1
  [{"pipeline_step": "event_logs_generation",
2
  "output_path": "output/generated",
3
  "generator_params": {"experiment":
4
- {"input_path": "data/2_bpic_features.csv",
5
  "objectives": ["epa_normalized_sequence_entropy",
6
  "epa_normalized_sequence_entropy_exponential_forgetting"]},
7
  "config_space": {"mode": [5, 20], "sequence": [0.01, 1],
@@ -12,4 +12,4 @@
12
  "input_path": "output/features/generated/2_bpic_features/2_ense_enseef",
13
  "feature_params": {"feature_set": ["simple_stats", "trace_length", "trace_variant", "activities",
14
  "start_activities", "end_activities", "eventropies", "epa_based"]}, "output_path": "output/plots",
15
- "real_eventlog_path": "data/2_bpic_features.csv", "plot_type": "boxplot"}]
 
1
  [{"pipeline_step": "event_logs_generation",
2
  "output_path": "output/generated",
3
  "generator_params": {"experiment":
4
+ {"input_path": "data/test/2_bpic_features.csv",
5
  "objectives": ["epa_normalized_sequence_entropy",
6
  "epa_normalized_sequence_entropy_exponential_forgetting"]},
7
  "config_space": {"mode": [5, 20], "sequence": [0.01, 1],
 
12
  "input_path": "output/features/generated/2_bpic_features/2_ense_enseef",
13
  "feature_params": {"feature_set": ["simple_stats", "trace_length", "trace_variant", "activities",
14
  "start_activities", "end_activities", "eventropies", "epa_based"]}, "output_path": "output/plots",
15
+ "real_eventlog_path": "data/test/2_bpic_features.csv", "plot_type": "boxplot"}]
config_files/algorithm/test/generator_grid_1objectives_rt10v.json CHANGED
@@ -1,7 +1,7 @@
1
  [{"pipeline_step": "event_logs_generation",
2
  "output_path": "output/generated/grid_1obj",
3
  "generator_params": {"experiment":
4
- {"input_path": "data/grid_experiments/grid_1objectives_rt10v.csv",
5
  "objectives": ["ratio_top_10_variants"]},
6
  "config_space": {"mode": [5, 20], "sequence": [0.01, 1],
7
  "choice": [0.01, 1], "parallel": [0.01, 1], "loop": [0.01, 1],
@@ -12,5 +12,5 @@
12
  "input_path": "output/features/generated/grid_1obj/grid_1objectives_rt10v/1_rt10v",
13
  "feature_params": {"feature_set": ["simple_stats", "trace_length", "trace_variant",
14
  "activities", "start_activities", "end_activities", "eventropies", "epa_based"]},
15
- "output_path": "output/plots", "real_eventlog_path": "data/2_bpic_features.csv",
16
  "plot_type": "boxplot"}]
 
1
  [{"pipeline_step": "event_logs_generation",
2
  "output_path": "output/generated/grid_1obj",
3
  "generator_params": {"experiment":
4
+ {"input_path": "data/test/grid_experiments/grid_1objectives_rt10v.csv",
5
  "objectives": ["ratio_top_10_variants"]},
6
  "config_space": {"mode": [5, 20], "sequence": [0.01, 1],
7
  "choice": [0.01, 1], "parallel": [0.01, 1], "loop": [0.01, 1],
 
12
  "input_path": "output/features/generated/grid_1obj/grid_1objectives_rt10v/1_rt10v",
13
  "feature_params": {"feature_set": ["simple_stats", "trace_length", "trace_variant",
14
  "activities", "start_activities", "end_activities", "eventropies", "epa_based"]},
15
+ "output_path": "output/plots", "real_eventlog_path": "data/test/2_bpic_features.csv",
16
  "plot_type": "boxplot"}]
config_files/algorithm/test/generator_grid_2objectives_ense_enself.json CHANGED
@@ -1,7 +1,7 @@
1
  [{"pipeline_step": "event_logs_generation",
2
  "output_path": "output/generated/grid_2obj",
3
  "generator_params": {"experiment":
4
- {"input_path": "data/2_grid_test.csv",
5
  "objectives": ["epa_normalized_sequence_entropy",
6
  "epa_normalized_sequence_entropy_linear_forgetting"]},
7
  "config_space": {"mode": [5, 20], "sequence": [0.01, 1],
@@ -15,5 +15,5 @@
15
  "feature_params": {"feature_set": ["simple_stats", "trace_length", "trace_variant",
16
  "activities", "start_activities", "end_activities", "eventropies", "epa_based"]},
17
  "output_path": "output/plots",
18
- "real_eventlog_path": "data/2_bpic_features.csv",
19
  "plot_type": "boxplot"}]
 
1
  [{"pipeline_step": "event_logs_generation",
2
  "output_path": "output/generated/grid_2obj",
3
  "generator_params": {"experiment":
4
+ {"input_path": "data/test/2_grid_test.csv",
5
  "objectives": ["epa_normalized_sequence_entropy",
6
  "epa_normalized_sequence_entropy_linear_forgetting"]},
7
  "config_space": {"mode": [5, 20], "sequence": [0.01, 1],
 
15
  "feature_params": {"feature_set": ["simple_stats", "trace_length", "trace_variant",
16
  "activities", "start_activities", "end_activities", "eventropies", "epa_based"]},
17
  "output_path": "output/plots",
18
+ "real_eventlog_path": "data/test/2_bpic_features.csv",
19
  "plot_type": "boxplot"}]
dashboard.py DELETED
@@ -1,295 +0,0 @@
1
- from copy import deepcopy
2
- from meta_feature_extraction.simple_stats import simple_stats
3
- from meta_feature_extraction.trace_length import trace_length
4
- from meta_feature_extraction.trace_variant import trace_variant
5
- from meta_feature_extraction.activities import activities
6
- from meta_feature_extraction.start_activities import start_activities
7
- from meta_feature_extraction.end_activities import end_activities
8
- from meta_feature_extraction.entropies import entropies
9
- from pm4py import discover_petri_net_inductive as inductive_miner
10
- from pm4py import generate_process_tree
11
- from pm4py import save_vis_petri_net, save_vis_process_tree
12
- from pm4py.algo.filtering.log.variants import variants_filter
13
- from pm4py.algo.simulation.tree_generator import algorithm as tree_generator
14
- from pm4py.algo.simulation.playout.process_tree import algorithm as playout
15
- from pm4py.objects.conversion.log import converter as log_converter
16
- from pm4py.objects.log.exporter.xes import exporter as xes_exporter
17
- from pm4py.objects.log.importer.xes import importer as xes_importer
18
- from pm4py.objects.log.util import dataframe_utils
19
- from pm4py.sim import play_out
20
-
21
- import matplotlib.image as mpimg
22
- import os
23
- import pandas as pd
24
- import streamlit as st
25
-
26
- OUTPUT_PATH = "output"
27
- SAMPLE_EVENTS = 500
28
-
29
- @st.cache(allow_output_mutation=True)
30
- def load_from_xes(uploaded_file):
31
- bytes_data = uploaded_file.getvalue()
32
- log1 = xes_importer.deserialize(bytes_data)
33
- get_stats(log1)
34
- return log1
35
-
36
- @st.cache
37
- def load_from_csv(uploaded_file, sep):
38
- if uploaded_file is not None:
39
- df = pd.read_csv(uploaded_file, sep=sep, index_col=False)
40
- return df
41
-
42
- def get_stats(log, save=True):
43
- """Returns the statistics of an event log."""
44
- num_traces = len(log)
45
- num_events = sum([len(c) for c in log])
46
- num_utraces = len(variants_filter.get_variants(log))
47
- if save:
48
- st.session_state["num_traces"] = num_traces
49
- st.session_state["num_events"] = num_events
50
- st.session_state["num_utraces"] = num_utraces
51
- return num_utraces, num_traces, num_events
52
-
53
- #@st.cache
54
- def df_to_log(df, case_id, activity, timestamp):
55
- df.rename(columns={case_id: 'case:concept:name',
56
- activity: 'concept:name',
57
- timestamp: "time:timestamp"}, inplace=True)
58
- temp = dataframe_utils.convert_timestamp_columns_in_df(df)
59
- #temp = temp.sort_values(timestamp)
60
- log = log_converter.apply(temp)
61
- return log, 'concept:name', "time:timestamp"
62
-
63
- def read_uploaded_file(uploaded_file):
64
- extension = uploaded_file.name.split('.')[-1]
65
- log_name = uploaded_file.name.split('.')[-2]
66
-
67
- st.sidebar.write("Loaded ", extension.upper(), '-File: ', uploaded_file.name)
68
- if extension == "xes":
69
- event_log = load_from_xes(uploaded_file)
70
- log_columns = [*list(event_log[0][0].keys())]
71
- convert_button = False
72
- case_id = "case:concept:name"
73
- activity = "concept:name"
74
- timestamp = "time:timestamp"
75
- default_act_id = log_columns.index("concept:name")
76
- default_tst_id = log_columns.index("time:timestamp")
77
-
78
- event_df = log_converter.apply(event_log, variant=log_converter.Variants.TO_DATA_FRAME)
79
- df_path = OUTPUT_PATH+"/"+log_name+".csv"
80
- event_df.to_csv(df_path, sep =";", index=False)
81
- return event_log, event_df, case_id, activity
82
-
83
- elif extension == "csv":
84
- sep = st.sidebar.text_input("Columns separator", ";")
85
- event_df = load_from_csv(uploaded_file, sep)
86
- old_df = deepcopy(event_df)
87
- log_columns = event_df.columns
88
-
89
- case_id = st.sidebar.selectbox("Choose 'case' column:", log_columns)
90
- activity = st.sidebar.selectbox("Choose 'activity' column:", log_columns, index=0)
91
- timestamp = st.sidebar.selectbox("Choose 'timestamp' column:", log_columns, index=0)
92
-
93
- convert_button = st.sidebar.button('Confirm selection')
94
- if convert_button:
95
- temp = deepcopy(event_df)
96
- event_log, activity, timestamp = df_to_log(temp, case_id, activity, timestamp)
97
- #xes_exporter.apply(event_log, INPUT_XES)
98
- log_columns = [*list(event_log[0][0].keys())]
99
- st.session_state['log'] = event_log
100
- return event_log, event_df, case_id, activity
101
-
102
- def sample_log_traces(complete_log, sample_size):
103
- '''
104
- Samples random traces out of logs.
105
- So that number of events is slightly over SAMPLE_SIZE.
106
- :param complete_log: Log extracted from xes
107
- '''
108
-
109
- log_traces = variants_filter.get_variants(complete_log)
110
- keys = list(log_traces.keys())
111
- sample_traces = {}
112
- num_evs = 0
113
- while num_evs < sample_size:
114
- if len(keys) == 0:
115
- break
116
- random_trace = keys.pop()
117
- sample_traces[random_trace] = log_traces[random_trace]
118
- evs = sum([len(case_id) for case_id in sample_traces[random_trace]])
119
- num_evs += evs
120
- log1 = variants_filter.apply(complete_log, sample_traces)
121
- return log1
122
-
123
- def show_process_petrinet(event_log, filter_info, OUTPUT_PATH):
124
- OUTPUT_PLOT = f"{OUTPUT_PATH}_{filter_info}".replace(":","").replace(".","")+".png" # OUTPUT_PATH is OUTPUT_PATH+INPUT_FILE
125
-
126
- try:
127
- fig_pt = mpimg.imread(OUTPUT_PLOT)
128
- st.write("Loaded from memory")
129
- except FileNotFoundError:
130
- net, im, fm = inductive_miner(event_log)
131
- # parameters={heuristics_miner.Variants.CLASSIC.value.Parameters.DEPENDENCY_THRESH: 0.99,
132
- # pn_visualizer.Variants.FREQUENCY.value.Parameters.FORMAT: "png"})
133
- #parameters = {pn_visualizer.Variants.FREQUENCY.value.Parameters.FORMAT: "png"}
134
- save_vis_petri_net(net, im, fm, OUTPUT_PLOT)
135
- st.write("Saved in: ", OUTPUT_PLOT)
136
- fig_pt = mpimg.imread(OUTPUT_PLOT)
137
- st.image(fig_pt)
138
-
139
- def show_loaded_event_log(event_log, event_df):
140
- get_stats(event_log)
141
- st.write("### Loaded event-log")
142
- col1, col2 = st.columns(2)
143
- with col2:
144
- st.dataframe(event_df)
145
- with col1:
146
- show_process_petrinet(event_log, None, OUTPUT_PATH+"running-example")
147
-
148
- def extract_meta_features(log, log_name):
149
- mtf_cols = ["log", "n_traces", "n_unique_traces", "ratio_unique_traces_per_trace", "n_events", "trace_len_min", "trace_len_max",
150
- "trace_len_mean", "trace_len_median", "trace_len_mode", "trace_len_std", "trace_len_variance", "trace_len_q1",
151
- "trace_len_q3", "trace_len_iqr", "trace_len_geometric_mean", "trace_len_geometric_std", "trace_len_harmonic_mean",
152
- "trace_len_skewness", "trace_len_kurtosis", "trace_len_coefficient_variation", "trace_len_entropy", "trace_len_hist1",
153
- "trace_len_hist2", "trace_len_hist3", "trace_len_hist4", "trace_len_hist5", "trace_len_hist6", "trace_len_hist7",
154
- "trace_len_hist8", "trace_len_hist9", "trace_len_hist10", "trace_len_skewness_hist", "trace_len_kurtosis_hist",
155
- "ratio_most_common_variant", "ratio_top_1_variants", "ratio_top_5_variants", "ratio_top_10_variants", "ratio_top_20_variants",
156
- "ratio_top_50_variants", "ratio_top_75_variants", "mean_variant_occurrence", "std_variant_occurrence", "skewness_variant_occurrence",
157
- "kurtosis_variant_occurrence", "n_unique_activities", "activities_min", "activities_max", "activities_mean", "activities_median",
158
- "activities_std", "activities_variance", "activities_q1", "activities_q3", "activities_iqr", "activities_skewness",
159
- "activities_kurtosis", "n_unique_start_activities", "start_activities_min", "start_activities_max", "start_activities_mean",
160
- "start_activities_median", "start_activities_std", "start_activities_variance", "start_activities_q1", "start_activities_q3",
161
- "start_activities_iqr", "start_activities_skewness", "start_activities_kurtosis", "n_unique_end_activities", "end_activities_min",
162
- "end_activities_max", "end_activities_mean", "end_activities_median", "end_activities_std", "end_activities_variance",
163
- "end_activities_q1", "end_activities_q3", "end_activities_iqr", "end_activities_skewness", "end_activities_kurtosis", "entropy_trace",
164
- "entropy_prefix", "entropy_global_block", "entropy_lempel_ziv", "entropy_k_block_diff_1", "entropy_k_block_diff_3",
165
- "entropy_k_block_diff_5", "entropy_k_block_ratio_1", "entropy_k_block_ratio_3", "entropy_k_block_ratio_5", "entropy_knn_3",
166
- "entropy_knn_5", "entropy_knn_7"]
167
- features = [log_name]
168
- features.extend(simple_stats(log))
169
- features.extend(trace_length(log))
170
- features.extend(trace_variant(log))
171
- features.extend(activities(log))
172
- features.extend(start_activities(log))
173
- features.extend(end_activities(log))
174
- features.extend(entropies(log_name, OUTPUT_PATH))
175
-
176
- mtf = pd.DataFrame([features], columns=mtf_cols)
177
-
178
- st.dataframe(mtf)
179
- return mtf
180
-
181
- def generate_pt(mtf):
182
- OUTPUT_PLOT = f"{OUTPUT_PATH}/generated_pt".replace(":","").replace(".","")#+".png" # OUTPUT_PATH is OUTPUT_PATH+INPUT_FILE
183
-
184
- st.write("### PT Gen configurations")
185
- col1, col2, col3, col4, col5, col6 = st.columns(6)
186
- with col1:
187
- param_mode = st.text_input('Mode', str(round(mtf['activities_median'].iat[0]))) #?
188
- st.write("Sum of probabilities must be one")
189
- with col2:
190
- param_min = st.text_input('Min', str(mtf['activities_min'].iat[0]))
191
- param_seq = st.text_input('Probability Sequence', 0.25)
192
- with col3:
193
- param_max = st.text_input('Max', str(mtf['activities_max'].iat[0]))
194
- param_cho = st.text_input('Probability Choice (XOR)', 0.25)
195
- with col4:
196
- param_nmo = st.text_input('Number of models', 1)
197
- param_par = st.text_input('Probability Parallel', 0.25)
198
- with col5:
199
- param_dup = st.text_input('Duplicates', 0)
200
- param_lop = st.text_input('Probability Loop', 0.25)
201
- with col6:
202
- param_sil = st.text_input('Silent', 0.2)
203
- param_or = st.text_input('Probability Or', 0.0)
204
-
205
- PT_PARAMS = {tree_generator.Variants.PTANDLOGGENERATOR.value.Parameters.MODE: round(float(param_mode)), #most frequent number of visible activities
206
- tree_generator.Variants.PTANDLOGGENERATOR.value.Parameters.MIN: int(param_min), #minimum number of visible activities
207
- tree_generator.Variants.PTANDLOGGENERATOR.value.Parameters.MAX: int(param_max), #maximum number of visible activities
208
- tree_generator.Variants.PTANDLOGGENERATOR.value.Parameters.SEQUENCE: float(param_seq), #probability to add a sequence operator to tree
209
- tree_generator.Variants.PTANDLOGGENERATOR.value.Parameters.CHOICE: float(param_cho), #probability to add a choice (XOR) operator to tree
210
- tree_generator.Variants.PTANDLOGGENERATOR.value.Parameters.PARALLEL: float(param_par), #probability to add a parallel operator to tree
211
- tree_generator.Variants.PTANDLOGGENERATOR.value.Parameters.LOOP: float(param_lop), #probability to add a loop operator to tree
212
- tree_generator.Variants.PTANDLOGGENERATOR.value.Parameters.OR: float(param_or), #probability to add an or operator to tree
213
- tree_generator.Variants.PTANDLOGGENERATOR.value.Parameters.SILENT: float(param_sil), #probability to add silent activity to a choice or loop operator
214
- tree_generator.Variants.PTANDLOGGENERATOR.value.Parameters.DUPLICATE: int(param_dup), #probability to duplicate an activity label
215
- tree_generator.Variants.PTANDLOGGENERATOR.value.Parameters.NO_MODELS: int(param_nmo)} #number of trees to generate from model population
216
-
217
- process_tree = generate_process_tree(parameters=PT_PARAMS)
218
- save_vis_process_tree(process_tree, OUTPUT_PLOT+"_tree.png")
219
-
220
- st.write("### Playout configurations")
221
-
222
- param_ntraces = st.text_input('Number of traces', str(mtf['n_traces'].iat[0]))
223
- PO_PARAMS = {playout.Variants.BASIC_PLAYOUT.value.Parameters.NO_TRACES : int(param_ntraces)}
224
-
225
- ptgen_log = play_out(process_tree, parameters=PO_PARAMS)
226
-
227
- net, im, fm = inductive_miner(ptgen_log)
228
- save_vis_petri_net(net, im, fm, OUTPUT_PLOT+".png")
229
- st.write("Saved in: ", OUTPUT_PLOT)
230
- fig_pt_net = mpimg.imread(OUTPUT_PLOT+".png")
231
- fig_pt_tree = mpimg.imread(OUTPUT_PLOT+"_tree.png")
232
-
233
- fcol1, fcol2 = st.columns(2)
234
- with fcol1:
235
- st.image(fig_pt_tree)
236
- with fcol2:
237
- st.image(fig_pt_net)
238
- extract_meta_features(ptgen_log, "gen_pt")
239
-
240
-
241
- if __name__ == '__main__':
242
- st.set_page_config(layout='wide')
243
- """
244
- # Event Log Generator
245
- """
246
- start_options = ['Event-Log', 'Meta-features']
247
- start_preference = st.sidebar.selectbox("Do you want to start with a log or with metafeatures?", start_options,0)
248
- #lets_start = st.sidebar.button("Let's start with "+start_preference+'!')
249
-
250
- if start_preference==start_options[0]:
251
- st.sidebar.write("Upload a dataset in csv or xes-format:")
252
- uploaded_file = st.sidebar.file_uploader("Pick a logfile")
253
-
254
- bar = st.progress(0)
255
-
256
- os.makedirs(OUTPUT_PATH, exist_ok=True)
257
- event_log = st.session_state['log'] if "log" in st.session_state else None
258
- if uploaded_file:
259
- event_log, event_df, case_id, activity_id = read_uploaded_file(uploaded_file)
260
- #event_log = deepcopy(event_log)
261
-
262
- use_sample = st.sidebar.checkbox('Use random sample', True)
263
- if use_sample:
264
- sample_size = st.sidebar.text_input('Sample size of approx number of events', str(SAMPLE_EVENTS))
265
- sample_size = int(sample_size)
266
-
267
- event_log = sample_log_traces(event_log, sample_size)
268
- sample_cases = [event_log[i].attributes['concept:name'] for i in range(0, len(event_log))]
269
- event_df = event_df[event_df[case_id].isin(sample_cases)]
270
-
271
- show_loaded_event_log(event_log, event_df)
272
- ext_mtf = extract_meta_features(event_log, "running-example")
273
- generate_pt(ext_mtf)
274
-
275
- elif start_preference==start_options[1]:
276
- LOG_COL = 'log'
277
- st.sidebar.write("Upload a dataset in csv-format")
278
- uploaded_file = st.sidebar.file_uploader("Pick a file containing meta-features")
279
-
280
- bar = st.progress(0)
281
-
282
- os.makedirs(OUTPUT_PATH, exist_ok=True)
283
- event_log = st.session_state[LOG_COL] if "log" in st.session_state else None
284
- if uploaded_file:
285
- sep = st.sidebar.text_input("Columns separator", ";")
286
- mtf = load_from_csv(uploaded_file, sep)
287
- st.dataframe(mtf)
288
-
289
- log_options = mtf['log'].unique()
290
- log_preference = st.selectbox("What log should we use for generating a new event-log?", log_options,1)
291
- mtf_selection = mtf[mtf[LOG_COL]==log_preference]
292
- generate_pt(mtf_selection)
293
- st.write("##### Original")
294
- st.write(mtf_selection)
295
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
data/BaselineED_bench.csv ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ log,fitness_ilp,precision_ilp,fscore_ilp,size_ilp,pnsize_ilp,cfc_ilp,fitness_imf,precision_imf,fscore_imf,size_imf,pnsize_imf,cfc_imf,fitness_heu,precision_heu,fscore_heu,size_heu,pnsize_heu,cfc_heu
2
+ BPIC12,,,,,,,0.999782450408571,0.106249999999999,0.192086381040032,69,41,37,,,,,,
3
+ BPIC13cp,0.999955347339294,0.792379879879879,0.8841476594077591,20.0,8.0,6.0,0.990412853232678,0.9470205909661912,0.9682307987170752,15,10,9,0.989977119234364,0.8684298767708941,0.925228660364203,14.0,9.0,8.0
4
+ BPIC13inc,0.99997694649763,0.625730547968199,0.7697770045565601,19.0,7.0,5.0,0.957240933170762,0.716391417907929,0.819486058514255,16,10,8,0.99128117000846,0.8850810072924521,0.935175678848088,14.0,8.0,8.0
5
+ BPIC13op,0.99993033237412,0.9065645824471852,0.950961282086593,10.0,5.0,3.0,0.8513195049834781,0.9065645824471852,0.8780739493381781,17,10,8,0.990133346397138,0.9620563035495712,0.975892918274616,12.0,7.0,7.0
6
+ BPIC14dc_p,,,,,,,0.9998326981312632,1.0,0.9999163420675672,606,366,364,0.92732126656531,1.0,0.962290286162716,547.0,364.0,364.0
7
+ BPIC14di_p,,,,,,,0.999900009999,1.0,0.9999500024998752,10,4,2,1.0,1.0,1.0,10.0,2.0,2.0
8
+ BPIC15f2,,,,,,,0.9677497565467512,0.010598531351998,0.0209674330962,381,134,115,,,,,,
9
+ BPIC16c_p,0.999843623073484,0.75266316984805,0.8588217446396421,270.0,123.0,120.0,0.8853691071783161,0.9174262372560932,0.901112653845042,110,38,34,0.7688674244586541,0.9952442715088632,0.8675311223109071,92.0,50.0,49.0
10
+ BPIC16wm_p,0.9999495832135112,1.0,0.999974790971276,4.0,3.0,1.0,0.999900004026629,1.0,0.999949999513391,5,4,2,0.999900004026629,1.0,0.999949999513391,5.0,4.0,2.0
11
+ BPIC17,,,,,,,0.930672500139456,0.244851509976953,0.387702105600728,73,48,40,,,,,,
12
+ BPIC17ol,0.999984636044501,0.6172893728926371,0.7633584481974761,39.0,18.0,15.0,0.9960693326660932,0.898064579352246,0.944531514451642,14,6,4,0.9107234276582472,1.0,0.9532760361602052,24.0,12.0,9.0
13
+ BPIC20a,0.999962791752526,0.188093126224035,0.316628409088329,89.0,38.0,38.0,0.9368177153041932,0.375765199161425,0.5363828699729011,36,21,18,0.8903598625893641,0.867035609327888,0.878542955546676,40.0,19.0,18.0
14
+ BPIC20b,0.99998483485473,0.11309976930835,0.203215557399531,193.0,94.0,90.0,0.8859445593469291,0.348704855833889,0.500438693033593,79,46,43,0.6970214666884511,0.9141924615708572,0.7909710302567481,124.0,62.0,55.0
15
+ BPIC20c,,,,,,,0.7723547059308711,0.190996223166598,0.306257724619519,122,71,67,,,,,,
16
+ BPIC20d,0.999976992746818,0.213233968166344,0.351511928441461,170.0,82.0,79.0,0.867127706306101,0.40344856566562,0.5506815089742241,78,45,41,0.778405152397002,0.8877260430015661,0.8294791282917191,110.0,57.0,55.0
17
+ BPIC20e,0.9999625734194992,0.177946979285382,0.302129002909987,101.0,43.0,43.0,0.9184257431784232,0.38688423100734,0.544429207489319,46,29,25,0.8957327113789421,0.808290592116352,0.8497681013791021,48.0,23.0,22.0
18
+ HD,0.999957093840268,0.412049000421671,0.583611250200463,67.0,29.0,26.0,0.9784476270770972,0.759636896649265,0.8552690146197981,45,29,27,0.7266871858430181,0.8474784912426241,0.782448466293276,61.0,33.0,26.0
19
+ RTFMP,0.9999788763172012,0.589212029307434,0.7415088783783841,43.0,17.0,14.0,0.878359786969879,0.7802754349784181,0.8264174735665141,41,25,20,0.847745391902833,0.991356698750484,0.9139439048749932,47.0,25.0,22.0
20
+ RWABOCSL,0.999985675961848,0.18194590014049,0.307874495646305,133.0,62.0,58.0,0.8277414379848941,0.252082243592322,0.386468499184599,77,45,43,0.7998506743994891,0.680938416422287,0.7356200217515501,83.0,43.0,38.0
21
+ SEPSIS,0.9999870882139372,0.19811033775102,0.330703956956029,96.0,47.0,44.0,0.9605344308961652,0.443996632051641,0.6072831901523931,43,27,23,0.650269438232782,0.7023809523809521,0.675321384593596,64.0,33.0,29.0
data/{baseline_ED_feat.csv β†’ BaselineED_feat.csv} RENAMED
@@ -1,4 +1,4 @@
1
- log,ratio_unique_traces_per_trace,ratio_most_common_variant,ratio_top_10_variants,epa_normalized_variant_entropy,epa_normalized_sequence_entropy,epa_normalized_sequence_entropy_linear_forgetting,epa_normalized_sequence_entropy_exponential_forgetting
2
  BPIC16wm_p,0.002882363538101243,0.29580255809764006,0.7141055665645829,0.0,0.0,0.0,0.0
3
  BPIC15f5,0.9974048442906575,0.0017301038062283738,0.10207612456747404,0.648702019618582,0.6032598312788823,0.34240966430145864,0.4045799140620184
4
  BPIC15f1,0.97581317764804,0.006672226855713094,0.12176814011676397,0.6528546738228733,0.610294028540377,0.270241403634718,0.3639276823477533
 
1
+ log,ratio_variants_per_number_of_traces,ratio_most_common_variant,ratio_top_10_variants,epa_normalized_variant_entropy,epa_normalized_sequence_entropy,epa_normalized_sequence_entropy_linear_forgetting,epa_normalized_sequence_entropy_exponential_forgetting
2
  BPIC16wm_p,0.002882363538101243,0.29580255809764006,0.7141055665645829,0.0,0.0,0.0,0.0
3
  BPIC15f5,0.9974048442906575,0.0017301038062283738,0.10207612456747404,0.648702019618582,0.6032598312788823,0.34240966430145864,0.4045799140620184
4
  BPIC15f1,0.97581317764804,0.006672226855713094,0.12176814011676397,0.6528546738228733,0.610294028540377,0.270241403634718,0.3639276823477533
data/GenBaselineED_bench.csv ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ log,fitness_ilp,precision_ilp,fscore_ilp,size_ilp,pnsize_ilp,cfc_ilp,fitness_imf,precision_imf,fscore_imf,size_imf,pnsize_imf,cfc_imf,fitness_heu,precision_heu,fscore_heu,size_heu,pnsize_heu,cfc_heu
2
+ genELBPIC12_04231_02756_02261_07083_0262_06863_03336,0.999983354100017,0.128493715326455,0.227725631143263,54.0,10.0,28.0,0.9099497610012792,0.397165646466794,0.552974562177985,48,30,26,0.938048056994855,0.492925487219797,0.6462562461747551,49.0,30.0,30.0
3
+ genELBPIC13cp_03109_02884_02865_07054_03315_08406_01231,0.9999801548798732,0.395704287667927,0.567028509892201,47.0,22.0,12.0,0.980044672023712,0.631207493904786,0.7678643410683581,37,28,11,0.347586684851292,0.9355932203389832,0.5068653966783401,47.0,30.0,17.0
4
+ genELBPIC13inc_04047_03916_03911_07178_02322_07944_02,0.999958215484349,0.408035700462898,0.5795744516613001,25.0,8.0,12.0,0.9686666193751672,0.691338675620024,0.8068368212742281,31,18,16,0.985072402672326,0.712919969188461,0.8271860328700411,29.0,18.0,18.0
5
+ genELBPIC13op_02768_0263_02621_0703_02173_07692_01319,0.9999849524483452,0.468847352024922,0.6383850567451991,18.0,7.0,7.0,0.9999267492461212,0.6979087706782,0.8220556586844351,21,14,10,0.63766810311605,0.82383808095952,0.7188957146869801,20.0,12.0,10.0
6
+ genELBPIC14dc_p_04193_03267_03126_04708_00749_07651_00484,0.9999801548798732,0.395704287667927,0.567028509892201,47.0,22.0,12.0,0.980044672023712,0.631207493904786,0.7678643410683581,37,28,11,0.347586684851292,0.9355932203389832,0.5068653966783401,46.0,29.0,16.0
7
+ genELBPIC15f1_06103_03639_02702_06529_00067_01218_09758,0.9999851056034972,0.7639844601581931,0.866197576079873,50.0,34.0,12.0,0.9999702116506732,0.7639844601581931,0.8661919884129461,32,33,4,0.244571491396844,0.970825492684492,0.390713884832271,48.0,28.0,13.0
8
+ genELBPIC15f2_06024_03905_03172_0628_00024_01034_09952,0.9999670209931352,0.99625386996904,0.998106992083072,14.0,6.0,4.0,0.9999670209931352,0.99625386996904,0.998106992083072,14,6,4,0.598731029752207,0.771688142034321,0.6742953476423611,12.0,2.0,4.0
9
+ genELBPIC15f3_06057_04049_03415_06618_00106_01377_09574,0.999994016598948,0.187744606298656,0.316136024084765,37.0,11.0,14.0,0.8327048201120321,0.49525012025012,0.6211011379360081,43,28,24,,,,,,
10
+ genELBPIC15f4_06039_04128_03559_0653_00028_01026_09962,0.999977383275612,0.302621609334747,0.464632272467502,38.0,11.0,17.0,0.946902744936401,0.63868632378007,0.7628380455854801,42,27,20,0.675397479517932,0.902480467048128,0.7725984561543561,31.0,18.0,18.0
11
+ genELBPIC15f5_06033_04046_03424_06487_00017_01021_09974,0.999983354100017,0.128493715326455,0.227725631143263,54.0,10.0,28.0,0.9099497610012792,0.397165646466794,0.552974562177985,48,30,26,0.938048056994855,0.492925487219797,0.6462562461747551,49.0,30.0,30.0
12
+ genELBPIC16c_p_06838_04701_04047_08995_01018_04248_04381,0.999977812170716,0.969934322549258,0.9847269679872972,13.0,8.0,3.0,0.951125602902324,0.969934322549258,0.960437886489628,13,8,4,0.818032265179306,0.74400127547631,0.779262458626504,17.0,10.0,10.0
13
+ genELBPIC16wm_p_00_00_00_00_02958_07141_00029,0.9999835444611692,0.31221384063791,0.475856310241554,38.0,14.0,15.0,0.853166759305167,0.6460181552942631,0.735281165968741,39,25,21,0.7559297979920231,0.842836745090442,0.797021195137192,31.0,18.0,16.0
14
+ genELBPIC17_04616_02905_02319_07417_00335_05313_05056,0.9999529422841532,0.943943512563813,0.9711413284222972,53.0,22.0,16.0,0.9999170610110152,0.943943512563813,0.971124406425324,32,22,10,,,,,,
15
+ genELBPIC17ol_01051_0066_00527_08135_03806_03806_00004,0.9999783279433192,0.340552711229226,0.5080752639070121,42.0,14.0,12.0,0.935457409263567,0.79857953477885,0.8616161786652851,44,28,24,0.8887581366581631,0.8234395340870161,0.854852916190842,41.0,24.0,17.0
16
+ genELBPIC19_0328_03203_03202_06455_01998_09464_00476,0.999959264300715,0.499102378696454,0.6658592723568011,17.0,6.0,5.0,0.999890512287676,0.976915568570034,0.988269530105323,17,12,9,0.5636771288053071,0.9640768588137012,0.711407831532712,10.0,6.0,4.0
17
+ genELBPIC20a_01648_01044_00854_06965_04398_09501_00094,,,,,,,0.9168707487964872,0.314787191876771,0.468667734435799,46,28,24,,,,,,
18
+ genELBPIC20b_03394_01938_01456_07583_02123_08113_01168,0.999969621176065,0.427355623100303,0.598802049151352,21.0,7.0,6.0,0.99991994157317,0.902439024390243,0.9486819182778732,21,14,11,0.6965863019071621,0.8709677419354831,0.7740775519905101,13.0,7.0,5.0
19
+ genELBPIC20c_04202_02155_01373_07337_01353_07575_02092,0.9999529422841532,0.943943512563813,0.9711413284222972,53.0,22.0,16.0,0.9999170610110152,0.943943512563813,0.971124406425324,32,22,10,,,,,,
20
+ genELBPIC20d_0317_02144_01849_07238_02711_08228_00962,0.999982296525308,0.484721663109443,0.652942397986183,44.0,20.0,10.0,0.9999179179170272,0.7032408784863411,0.8257399797307741,35,27,11,0.225420538815396,0.637019197304859,0.333002306545369,55.0,36.0,23.0
21
+ genELBPIC20e_0189_01187_00976_07037_04373_09335_00129,0.999970639140175,0.880258899676375,0.9363038249811212,23.0,12.0,5.0,0.9999185975932092,0.8029049230541211,0.890646871938623,26,20,11,0.344766967838924,0.996734180708667,0.5123231114582241,20.0,11.0,6.0
22
+ genELHD_02541_01546_01185_07991_05166_09063_00493,0.999959264300715,0.499102378696454,0.6658592723568011,17.0,6.0,5.0,0.999890512287676,0.976915568570034,0.988269530105323,17,12,9,0.5636771288053071,0.9640768588137012,0.711407831532712,10.0,6.0,4.0
23
+ genELRTFMP_01119_00684_00526_07694_03756_09931_00015,0.999977812170716,0.969934322549258,0.9847269679872972,13.0,8.0,3.0,0.951125602902324,0.969934322549258,0.960437886489628,13,8,4,0.818032265179306,0.74400127547631,0.779262458626504,17.0,10.0,10.0
24
+ genELRWABOCSL_02355_01381_01006_06894_04972_0887_00809,0.999955496609388,0.8994933189848441,0.947067676789098,10.0,7.0,2.0,0.999933093365992,1.0,0.999966545563834,12,9,4,0.530065017562215,1.0,0.692866004356787,6.0,5.0,0.0
25
+ genELSEPSIS_05223_02995_02194_06958_00333_02743_08057,0.9999529422841532,0.943943512563813,0.9711413284222972,53.0,22.0,16.0,0.9999170610110152,0.943943512563813,0.971124406425324,32,22,10,,,,,,
data/{GenBaseline_ED_feat.csv β†’ GenBaselineED_feat.csv} RENAMED
@@ -1,4 +1,4 @@
1
- ratio_unique_traces_per_trace,ratio_most_common_variant,ratio_top_10_variants,epa_normalized_variant_entropy,epa_normalized_sequence_entropy,epa_normalized_sequence_entropy_linear_forgetting,epa_normalized_sequence_entropy_exponential_forgetting,log
2
  0.21031587365053903,0.23750499800079902,0.7944822071171531,0.8436095804469511,0.454318645274405,0.207520432496227,0.288223924276644,BPIC20c
3
  0.22916666666666602,0.208333333333333,0.39583333333333304,0.401685982808314,0.245964987620705,0.029935020945679004,0.10766848262252701,BPIC20b
4
  0.493082835183603,0.12929120409906,0.556105892399658,0.80784773712104,0.49684445215246903,0.276433398156238,0.33730492928925604,BPIC15f1
 
1
+ ratio_variants_per_number_of_traces,ratio_most_common_variant,ratio_top_10_variants,epa_normalized_variant_entropy,epa_normalized_sequence_entropy,epa_normalized_sequence_entropy_linear_forgetting,epa_normalized_sequence_entropy_exponential_forgetting,log
2
  0.21031587365053903,0.23750499800079902,0.7944822071171531,0.8436095804469511,0.454318645274405,0.207520432496227,0.288223924276644,BPIC20c
3
  0.22916666666666602,0.208333333333333,0.39583333333333304,0.401685982808314,0.245964987620705,0.029935020945679004,0.10766848262252701,BPIC20b
4
  0.493082835183603,0.12929120409906,0.556105892399658,0.80784773712104,0.49684445215246903,0.276433398156238,0.33730492928925604,BPIC15f1
data/GenBaseline_ED_bench.csv DELETED
@@ -1,25 +0,0 @@
1
- log,fitness_heuristics,precision_heuristics,fscore_heuristics,size_heuristics,pnsize_heuristics,cfc_heuristics,fitness_ilp,precision_ilp,fscore_ilp,size_ilp,pnsize_ilp,cfc_ilp,fitness_imf,precision_imf,fscore_imf,size_imf,pnsize_imf,cfc_imf
2
- genELBPIC20b_03394_01938_01456_07583_02123_08113_01168,0.6965863019071621,0.8709677419354831,0.7740775519905101,13.0,7.0,5.0,0.999969621176065,0.427355623100303,0.598802049151352,21.0,7.0,6.0,0.99991994157317,0.902439024390243,0.9486819182778732,21,14,11
3
- genELBPIC15f1_06103_03639_02702_06529_00067_01218_09758,0.244571491396844,0.970825492684492,0.390713884832271,48.0,28.0,13.0,0.9999851056034972,0.7639844601581931,0.866197576079873,50.0,34.0,12.0,0.9999702116506732,0.7639844601581931,0.8661919884129461,32,33,4
4
- genELBPIC12_04231_02756_02261_07083_0262_06863_03336,0.938048056994855,0.492925487219797,0.6462562461747551,49.0,30.0,30.0,0.999983354100017,0.128493715326455,0.227725631143263,54.0,10.0,28.0,0.9099497610012792,0.397165646466794,0.552974562177985,48,30,26
5
- genELRTFMP_01119_00684_00526_07694_03756_09931_00015,0.818032265179306,0.74400127547631,0.779262458626504,17.0,10.0,10.0,0.999977812170716,0.969934322549258,0.9847269679872972,13.0,8.0,3.0,0.951125602902324,0.969934322549258,0.960437886489628,13,8,4
6
- genELBPIC15f5_06033_04046_03424_06487_00017_01021_09974,0.938048056994855,0.492925487219797,0.6462562461747551,49.0,30.0,30.0,0.999983354100017,0.128493715326455,0.227725631143263,54.0,10.0,28.0,0.9099497610012792,0.397165646466794,0.552974562177985,48,30,26
7
- genELHD_02541_01546_01185_07991_05166_09063_00493,0.5636771288053071,0.9640768588137012,0.711407831532712,10.0,6.0,4.0,0.999959264300715,0.499102378696454,0.6658592723568011,17.0,6.0,5.0,0.999890512287676,0.976915568570034,0.988269530105323,17,12,9
8
- genELBPIC13op_02768_0263_02621_0703_02173_07692_01319,0.63766810311605,0.82383808095952,0.7188957146869801,20.0,12.0,10.0,0.9999849524483452,0.468847352024922,0.6383850567451991,18.0,7.0,7.0,0.9999267492461212,0.6979087706782,0.8220556586844351,21,14,10
9
- genELRWABOCSL_02355_01381_01006_06894_04972_0887_00809,0.530065017562215,1.0,0.692866004356787,6.0,5.0,0.0,0.999955496609388,0.8994933189848441,0.947067676789098,10.0,7.0,2.0,0.999933093365992,1.0,0.999966545563834,12,9,4
10
- genELBPIC13inc_04047_03916_03911_07178_02322_07944_02,0.985072402672326,0.712919969188461,0.8271860328700411,29.0,18.0,18.0,0.999958215484349,0.408035700462898,0.5795744516613001,25.0,8.0,12.0,0.9686666193751672,0.691338675620024,0.8068368212742281,31,18,16
11
- genELBPIC15f2_06024_03905_03172_0628_00024_01034_09952,0.598731029752207,0.771688142034321,0.6742953476423611,12.0,2.0,4.0,0.9999670209931352,0.99625386996904,0.998106992083072,14.0,6.0,4.0,0.9999670209931352,0.99625386996904,0.998106992083072,14,6,4
12
- genELBPIC20e_0189_01187_00976_07037_04373_09335_00129,0.344766967838924,0.996734180708667,0.5123231114582241,20.0,11.0,6.0,0.999970639140175,0.880258899676375,0.9363038249811212,23.0,12.0,5.0,0.9999185975932092,0.8029049230541211,0.890646871938623,26,20,11
13
- genELBPIC20d_0317_02144_01849_07238_02711_08228_00962,0.225420538815396,0.637019197304859,0.333002306545369,55.0,36.0,23.0,0.999982296525308,0.484721663109443,0.652942397986183,44.0,20.0,10.0,0.9999179179170272,0.7032408784863411,0.8257399797307741,35,27,11
14
- genELBPIC14dc_p_04193_03267_03126_04708_00749_07651_00484,0.347586684851292,0.9355932203389832,0.5068653966783401,46.0,29.0,16.0,0.9999801548798732,0.395704287667927,0.567028509892201,47.0,22.0,12.0,0.980044672023712,0.631207493904786,0.7678643410683581,37,28,11
15
- genELBPIC16c_p_06838_04701_04047_08995_01018_04248_04381,0.818032265179306,0.74400127547631,0.779262458626504,17.0,10.0,10.0,0.999977812170716,0.969934322549258,0.9847269679872972,13.0,8.0,3.0,0.951125602902324,0.969934322549258,0.960437886489628,13,8,4
16
- genELBPIC17ol_01051_0066_00527_08135_03806_03806_00004,0.8887581366581631,0.8234395340870161,0.854852916190842,41.0,24.0,17.0,0.9999783279433192,0.340552711229226,0.5080752639070121,42.0,14.0,12.0,0.935457409263567,0.79857953477885,0.8616161786652851,44,28,24
17
- genELBPIC19_0328_03203_03202_06455_01998_09464_00476,0.5636771288053071,0.9640768588137012,0.711407831532712,10.0,6.0,4.0,0.999959264300715,0.499102378696454,0.6658592723568011,17.0,6.0,5.0,0.999890512287676,0.976915568570034,0.988269530105323,17,12,9
18
- genELBPIC13cp_03109_02884_02865_07054_03315_08406_01231,0.347586684851292,0.9355932203389832,0.5068653966783401,47.0,30.0,17.0,0.9999801548798732,0.395704287667927,0.567028509892201,47.0,22.0,12.0,0.980044672023712,0.631207493904786,0.7678643410683581,37,28,11
19
- genELBPIC15f4_06039_04128_03559_0653_00028_01026_09962,0.675397479517932,0.902480467048128,0.7725984561543561,31.0,18.0,18.0,0.999977383275612,0.302621609334747,0.464632272467502,38.0,11.0,17.0,0.946902744936401,0.63868632378007,0.7628380455854801,42,27,20
20
- genELBPIC20c_04202_02155_01373_07337_01353_07575_02092,,,,,,,0.9999529422841532,0.943943512563813,0.9711413284222972,53.0,22.0,16.0,0.9999170610110152,0.943943512563813,0.971124406425324,32,22,10
21
- genELBPIC15f3_06057_04049_03415_06618_00106_01377_09574,,,,,,,0.999994016598948,0.187744606298656,0.316136024084765,37.0,11.0,14.0,0.8327048201120321,0.49525012025012,0.6211011379360081,43,28,24
22
- genELBPIC16wm_p_00_00_00_00_02958_07141_00029,,,,,,,0.9999835444611692,0.31221384063791,0.475856310241554,38.0,14.0,15.0,0.853166759305167,0.6460181552942631,0.735281165968741,39,25,21
23
- genELSEPSIS_05223_02995_02194_06958_00333_02743_08057,,,,,,,0.9999529422841532,0.943943512563813,0.9711413284222972,53.0,22.0,16.0,0.9999170610110152,0.943943512563813,0.971124406425324,32,22,10
24
- genELBPIC17_04616_02905_02319_07417_00335_05313_05056,,,,,,,0.9999529422841532,0.943943512563813,0.9711413284222972,53.0,22.0,16.0,0.9999170610110152,0.943943512563813,0.971124406425324,32,22,10
25
- genELBPIC20a_01648_01044_00854_06965_04398_09501_00094,,,,,,,,,,,,,0.9168707487964872,0.314787191876771,0.468667734435799,46,28,24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
data/GenED_bench.csv CHANGED
The diff for this file is too large to render. See raw diff
 
data/GenED_feat.csv CHANGED
The diff for this file is too large to render. See raw diff
 
data/baseline_ED_bench.csv DELETED
@@ -1,18 +0,0 @@
1
- log,fitness_heuristics,precision_heuristics,fscore_heuristics,size_heuristics,pnsize_heuristics,cfc_heuristics,fitness_ilp,precision_ilp,fscore_ilp,size_ilp,pnsize_ilp,cfc_ilp,fitness_imf,precision_imf,fscore_imf,size_imf,pnsize_imf,cfc_imf
2
- BPIC16wm_p,0.999900004026629,1.0,0.999949999513391,5.0,4.0,2.0,0.9999495832135112,1.0,0.999974790971276,4.0,3.0,1.0,0.999900004026629,1.0,0.999949999513391,5,4,2
3
- BPIC13op,0.990133346397138,0.9620563035495712,0.975892918274616,12.0,7.0,7.0,0.99993033237412,0.9065645824471852,0.950961282086593,10.0,5.0,3.0,0.8513195049834781,0.9065645824471852,0.8780739493381781,17,10,8
4
- BPIC13cp,0.989977119234364,0.8684298767708941,0.925228660364203,14.0,9.0,8.0,0.999955347339294,0.792379879879879,0.8841476594077591,20.0,8.0,6.0,0.990412853232678,0.9470205909661912,0.9682307987170752,15,10,9
5
- RTFMP,0.847745391902833,0.991356698750484,0.9139439048749932,47.0,25.0,22.0,0.9999788763172012,0.589212029307434,0.7415088783783841,43.0,17.0,14.0,0.878359786969879,0.7802754349784181,0.8264174735665141,41,25,20
6
- SEPSIS,0.650269438232782,0.7023809523809521,0.675321384593596,64.0,33.0,29.0,0.9999870882139372,0.19811033775102,0.330703956956029,96.0,47.0,44.0,0.9605344308961652,0.443996632051641,0.6072831901523931,43,27,23
7
- HD,0.7266871858430181,0.8474784912426241,0.782448466293276,61.0,33.0,26.0,0.999957093840268,0.412049000421671,0.583611250200463,67.0,29.0,26.0,0.9784476270770972,0.759636896649265,0.8552690146197981,45,29,27
8
- BPIC20d,0.778405152397002,0.8877260430015661,0.8294791282917191,110.0,57.0,55.0,0.999976992746818,0.213233968166344,0.351511928441461,170.0,82.0,79.0,0.867127706306101,0.40344856566562,0.5506815089742241,78,45,41
9
- BPIC13inc,0.99128117000846,0.8850810072924521,0.935175678848088,14.0,8.0,8.0,0.99997694649763,0.625730547968199,0.7697770045565601,19.0,7.0,5.0,0.957240933170762,0.716391417907929,0.819486058514255,16,10,8
10
- BPIC14di_p,1.0,1.0,1.0,10.0,2.0,2.0,,,,,,,0.999900009999,1.0,0.9999500024998752,10,4,2
11
- BPIC20e,0.8957327113789421,0.808290592116352,0.8497681013791021,48.0,23.0,22.0,0.9999625734194992,0.177946979285382,0.302129002909987,101.0,43.0,43.0,0.9184257431784232,0.38688423100734,0.544429207489319,46,29,25
12
- BPIC14dc_p,0.92732126656531,1.0,0.962290286162716,547.0,364.0,364.0,,,,,,,0.9998326981312632,1.0,0.9999163420675672,606,366,364
13
- BPIC16c_p,0.7688674244586541,0.9952442715088632,0.8675311223109071,92.0,50.0,49.0,0.999843623073484,0.75266316984805,0.8588217446396421,270.0,123.0,120.0,0.8853691071783161,0.9174262372560932,0.901112653845042,110,38,34
14
- BPIC20a,0.8903598625893641,0.867035609327888,0.878542955546676,40.0,19.0,18.0,0.999962791752526,0.188093126224035,0.316628409088329,89.0,38.0,38.0,0.9368177153041932,0.375765199161425,0.5363828699729011,36,21,18
15
- BPIC20b,0.6970214666884511,0.9141924615708572,0.7909710302567481,124.0,62.0,55.0,0.99998483485473,0.11309976930835,0.203215557399531,193.0,94.0,90.0,0.8859445593469291,0.348704855833889,0.500438693033593,79,46,43
16
- RWABOCSL,0.7998506743994891,0.680938416422287,0.7356200217515501,83.0,43.0,38.0,0.999985675961848,0.18194590014049,0.307874495646305,133.0,62.0,58.0,0.8277414379848941,0.252082243592322,0.386468499184599,77,45,43
17
- BPIC17ol,0.9107234276582472,1.0,0.9532760361602052,24.0,12.0,9.0,0.999984636044501,0.6172893728926371,0.7633584481974761,39.0,18.0,15.0,0.9960693326660932,0.898064579352246,0.944531514451642,14,6,4
18
- BPIC20c,,,,,,,,,,,,,0.7723547059308711,0.190996223166598,0.306257724619519,122,71,67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
data/grid_1obj/grid_1objectives_ense.csv DELETED
@@ -1,12 +0,0 @@
1
- task,epa_normalized_sequence_entropy
2
- task_1,0.0
3
- task_2,0.1
4
- task_3,0.2
5
- task_4,0.3
6
- task_5,0.4
7
- task_6,0.5
8
- task_7,0.6
9
- task_8,0.7
10
- task_9,0.8
11
- task_10,0.9
12
- task_11,1.0
 
 
 
 
 
 
 
 
 
 
 
 
 
data/grid_1obj/grid_1objectives_enseef.csv DELETED
@@ -1,12 +0,0 @@
1
- task,epa_normalized_sequence_entropy_exponential_forgetting
2
- task_1,0.0
3
- task_2,0.1
4
- task_3,0.2
5
- task_4,0.3
6
- task_5,0.4
7
- task_6,0.5
8
- task_7,0.6
9
- task_8,0.7
10
- task_9,0.8
11
- task_10,0.9
12
- task_11,1.0
 
 
 
 
 
 
 
 
 
 
 
 
 
data/grid_1obj/grid_1objectives_enself.csv DELETED
@@ -1,12 +0,0 @@
1
- task,epa_normalized_sequence_entropy_linear_forgetting
2
- task_1,0.0
3
- task_2,0.1
4
- task_3,0.2
5
- task_4,0.3
6
- task_5,0.4
7
- task_6,0.5
8
- task_7,0.6
9
- task_8,0.7
10
- task_9,0.8
11
- task_10,0.9
12
- task_11,1.0
 
 
 
 
 
 
 
 
 
 
 
 
 
data/grid_1obj/grid_1objectives_enve.csv DELETED
@@ -1,12 +0,0 @@
1
- task,epa_normalized_variant_entropy
2
- task_1,0.0
3
- task_2,0.1
4
- task_3,0.2
5
- task_4,0.3
6
- task_5,0.4
7
- task_6,0.5
8
- task_7,0.6
9
- task_8,0.7
10
- task_9,0.8
11
- task_10,0.9
12
- task_11,1.0
 
 
 
 
 
 
 
 
 
 
 
 
 
data/grid_1obj/grid_1objectives_rmcv.csv DELETED
@@ -1,12 +0,0 @@
1
- task,ratio_most_common_variant
2
- task_1,0.0
3
- task_2,0.1
4
- task_3,0.2
5
- task_4,0.3
6
- task_5,0.4
7
- task_6,0.5
8
- task_7,0.6
9
- task_8,0.7
10
- task_9,0.8
11
- task_10,0.9
12
- task_11,1.0
 
 
 
 
 
 
 
 
 
 
 
 
 
data/grid_1obj/grid_1objectives_rt10v.csv DELETED
@@ -1,12 +0,0 @@
1
- task,ratio_top_10_variants
2
- task_1,0.0
3
- task_2,0.1
4
- task_3,0.2
5
- task_4,0.3
6
- task_5,0.4
7
- task_6,0.5
8
- task_7,0.6
9
- task_8,0.7
10
- task_9,0.8
11
- task_10,0.9
12
- task_11,1.0