Spaces:
Running
Running
Merge pull request #6 from lmu-dbs/5-automation-test-gedi-automatically
Browse filesThis view is limited to 50 files because it contains too many changes. Β
See raw diff
- .github/workflows/test_gedi.yml +162 -0
- .gitignore +5 -1
- README.md +1 -1
- config.py +3 -3
- config_files/algorithm/benchmark.json +1 -2
- config_files/algorithm/evaluation_plotter.json +7 -5
- config_files/algorithm/experiment_test.json +7 -7
- config_files/algorithm/feature_extraction.json +1 -1
- config_files/algorithm/generation.json +2 -5
- data/2_grid_test.csv +3 -3
- data/{test_2 β test}/gen_el_168.xes +0 -0
- data/{test_2 β test}/gen_el_169.xes +0 -0
- data/test/grid_feat.csv +3 -0
- data/test/plotter/1_enve_feat.csv +12 -0
- data/test/plotter/grid_1objectives_enve.csv +12 -0
- execute_grid_experiments.py +1 -1
- gedi/__init__.py +8 -0
- {tag β gedi}/analyser.py +3 -3
- {tag β gedi}/augmentation.py +1 -1
- {tag β gedi}/benchmark.py +3 -3
- {tag β gedi}/features.py +1 -1
- {tag β gedi}/generator.py +2 -2
- {tag β gedi}/plotter.py +6 -5
- {tag β gedi}/utils/algorithms/__init__.py +0 -0
- {tag β gedi}/utils/algorithms/tsne.py +0 -0
- {tag β gedi}/utils/array_tools.py +0 -0
- {tag β gedi}/utils/io_helpers.py +0 -0
- {tag β gedi}/utils/matrix_tools.py +0 -0
- main.py +9 -9
- notebooks/.ipynb_checkpoints/augmentation-checkpoint.ipynb +0 -0
- notebooks/.ipynb_checkpoints/benchmarking_process_discovery-checkpoint.ipynb +0 -0
- notebooks/.ipynb_checkpoints/bpic_generability_pdm-checkpoint.ipynb +0 -0
- notebooks/.ipynb_checkpoints/data_exploration-checkpoint.ipynb +0 -0
- notebooks/.ipynb_checkpoints/experiment_generator-checkpoint.ipynb +0 -0
- notebooks/.ipynb_checkpoints/feature_distributions-checkpoint.ipynb +0 -0
- notebooks/.ipynb_checkpoints/feature_exploration-checkpoint.ipynb +0 -0
- notebooks/.ipynb_checkpoints/feature_performance_similarity-checkpoint.ipynb +0 -0
- notebooks/.ipynb_checkpoints/feature_selection-checkpoint.ipynb +0 -0
- notebooks/.ipynb_checkpoints/feature_variance-checkpoint.ipynb +0 -0
- notebooks/.ipynb_checkpoints/gedi_representativeness-checkpoint.ipynb +0 -0
- notebooks/.ipynb_checkpoints/grid_objectives-checkpoint.ipynb +0 -376
- notebooks/.ipynb_checkpoints/oversampling-checkpoint.ipynb +0 -6
- notebooks/.ipynb_checkpoints/performance_feature_correlation-checkpoint.ipynb +0 -6
- notebooks/.ipynb_checkpoints/pt_gen-checkpoint.ipynb +0 -0
- notebooks/.ipynb_checkpoints/statistics_tasks_to_datasets-checkpoint.ipynb +0 -818
- notebooks/.ipynb_checkpoints/test_feed-checkpoint.ipynb +0 -0
- notebooks/benchmarking_process_discovery.ipynb +2 -2
- notebooks/bpic_generability_pdm.ipynb +1 -1
- notebooks/experiment_generator.ipynb +2 -2
- notebooks/feature_distributions.ipynb +1 -1
.github/workflows/test_gedi.yml
ADDED
@@ -0,0 +1,162 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
name: GEDI Test
|
2 |
+
|
3 |
+
# Specifies when the action should run
|
4 |
+
on:
|
5 |
+
pull_request:
|
6 |
+
branches:
|
7 |
+
- main
|
8 |
+
|
9 |
+
# Specifies the jobs that are to be run
|
10 |
+
jobs:
|
11 |
+
test_feature-extraction:
|
12 |
+
runs-on: ubuntu-latest
|
13 |
+
|
14 |
+
# Setting up a python envronment for the test script to run
|
15 |
+
steps:
|
16 |
+
- name: Checkout code
|
17 |
+
uses: actions/checkout@v4
|
18 |
+
|
19 |
+
- name: Set up Python
|
20 |
+
uses: actions/setup-python@v5
|
21 |
+
with:
|
22 |
+
python-version: 3.9
|
23 |
+
|
24 |
+
- name: Install feeed
|
25 |
+
run: |
|
26 |
+
python -m pip install --upgrade pip
|
27 |
+
pip install .
|
28 |
+
|
29 |
+
- name: Run test
|
30 |
+
run:
|
31 |
+
python main.py -o config_files/options/baseline.json -a config_files/algorithm/feature_extraction.json
|
32 |
+
|
33 |
+
- name: Compare output
|
34 |
+
run: diff data/test_feat.csv data/test_feat.csv
|
35 |
+
|
36 |
+
test_generation:
|
37 |
+
runs-on: ubuntu-latest
|
38 |
+
|
39 |
+
# Setting up a python envronment for the test script to run
|
40 |
+
steps:
|
41 |
+
- name: Checkout code
|
42 |
+
uses: actions/checkout@v4
|
43 |
+
|
44 |
+
- name: Set up Python
|
45 |
+
uses: actions/setup-python@v5
|
46 |
+
with:
|
47 |
+
python-version: 3.9
|
48 |
+
|
49 |
+
- name: Install dependencies
|
50 |
+
run: |
|
51 |
+
sudo apt-get install build-essential python3 python3-dev
|
52 |
+
|
53 |
+
- name: Install feeed
|
54 |
+
run: |
|
55 |
+
python -m pip install --upgrade pip
|
56 |
+
pip install .
|
57 |
+
|
58 |
+
- name: Run test
|
59 |
+
run:
|
60 |
+
python main.py -o config_files/options/baseline.json -a config_files/algorithm/generation.json
|
61 |
+
|
62 |
+
- name: Compare output
|
63 |
+
run: diff output/features/grid_feat/2_enself_rt20v/genELexperiment2_07_04.json output/features/grid_feat/2_enself_rt20v/genELexperiment2_07_04.json
|
64 |
+
|
65 |
+
test_benchmark:
|
66 |
+
runs-on: ubuntu-latest
|
67 |
+
|
68 |
+
# Setting up a python envronment for the test script to run
|
69 |
+
steps:
|
70 |
+
- name: Checkout code
|
71 |
+
uses: actions/checkout@v4
|
72 |
+
|
73 |
+
- name: Set up Python
|
74 |
+
uses: actions/setup-python@v5
|
75 |
+
with:
|
76 |
+
python-version: 3.9
|
77 |
+
|
78 |
+
- name: Install feeed
|
79 |
+
run: |
|
80 |
+
python -m pip install --upgrade pip
|
81 |
+
pip install .
|
82 |
+
|
83 |
+
- name: Run test
|
84 |
+
run:
|
85 |
+
python main.py -o config_files/options/baseline.json -a config_files/algorithm/benchmark.json
|
86 |
+
|
87 |
+
- name: Compare output
|
88 |
+
run: diff output/benchmark/test_benchmark.csv output/benchmark/test_benchmark.csv
|
89 |
+
|
90 |
+
test_augmentation:
|
91 |
+
runs-on: ubuntu-latest
|
92 |
+
|
93 |
+
# Setting up a python envronment for the test script to run
|
94 |
+
steps:
|
95 |
+
- name: Checkout code
|
96 |
+
uses: actions/checkout@v4
|
97 |
+
|
98 |
+
- name: Set up Python
|
99 |
+
uses: actions/setup-python@v5
|
100 |
+
with:
|
101 |
+
python-version: 3.9
|
102 |
+
|
103 |
+
- name: Install feeed
|
104 |
+
run: |
|
105 |
+
python -m pip install --upgrade pip
|
106 |
+
pip install .
|
107 |
+
|
108 |
+
- name: Run test
|
109 |
+
run:
|
110 |
+
python main.py -o config_files/options/baseline.json -a config_files/algorithm/augmentation.json
|
111 |
+
|
112 |
+
test_evaluation-plotter:
|
113 |
+
runs-on: ubuntu-latest
|
114 |
+
|
115 |
+
# Setting up a python envronment for the test script to run
|
116 |
+
steps:
|
117 |
+
- name: Checkout code
|
118 |
+
uses: actions/checkout@v4
|
119 |
+
|
120 |
+
- name: Set up Python
|
121 |
+
uses: actions/setup-python@v5
|
122 |
+
with:
|
123 |
+
python-version: 3.9
|
124 |
+
|
125 |
+
- name: Install dependencies
|
126 |
+
run: |
|
127 |
+
sudo apt-get install build-essential python3 python3-dev
|
128 |
+
|
129 |
+
- name: Install feeed
|
130 |
+
run: |
|
131 |
+
python -m pip install --upgrade pip
|
132 |
+
pip install .
|
133 |
+
|
134 |
+
- name: Run test
|
135 |
+
run:
|
136 |
+
python main.py -o config_files/options/baseline.json -a config_files/algorithm/evaluation_plotter.json
|
137 |
+
|
138 |
+
test_integration:
|
139 |
+
runs-on: ubuntu-latest
|
140 |
+
|
141 |
+
# Setting up a python envronment for the test script to run
|
142 |
+
steps:
|
143 |
+
- name: Checkout code
|
144 |
+
uses: actions/checkout@v4
|
145 |
+
|
146 |
+
- name: Set up Python
|
147 |
+
uses: actions/setup-python@v5
|
148 |
+
with:
|
149 |
+
python-version: 3.9
|
150 |
+
|
151 |
+
- name: Install dependencies
|
152 |
+
run: |
|
153 |
+
sudo apt-get install build-essential python3 python3-dev
|
154 |
+
|
155 |
+
- name: Install feeed
|
156 |
+
run: |
|
157 |
+
python -m pip install --upgrade pip
|
158 |
+
pip install .
|
159 |
+
|
160 |
+
- name: Run test
|
161 |
+
run:
|
162 |
+
python main.py -o config_files/options/baseline.json -a config_files/algorithm/experiment_test.json
|
.gitignore
CHANGED
@@ -1,3 +1,7 @@
|
|
1 |
smac3_output/
|
2 |
data/
|
3 |
-
output/
|
|
|
|
|
|
|
|
|
|
1 |
smac3_output/
|
2 |
data/
|
3 |
+
output/
|
4 |
+
.ipynb_checkpoints/
|
5 |
+
notebooks/.ipynb_checkpoints/*
|
6 |
+
gedi.egg-info/
|
7 |
+
build/
|
README.md
CHANGED
@@ -32,7 +32,7 @@ python main.py -o config_files/options/baseline.json -a config_files/algorithm/e
|
|
32 |
## Usage
|
33 |
Our pipeline offers several pipeline steps, which can be run sequentially or partially:
|
34 |
- feature_extraction
|
35 |
-
-
|
36 |
- benchmark
|
37 |
- evaluation_plotter
|
38 |
|
|
|
32 |
## Usage
|
33 |
Our pipeline offers several pipeline steps, which can be run sequentially or partially:
|
34 |
- feature_extraction
|
35 |
+
- generation
|
36 |
- benchmark
|
37 |
- evaluation_plotter
|
38 |
|
config.py
CHANGED
@@ -2,7 +2,7 @@ import json
|
|
2 |
import os
|
3 |
import warnings
|
4 |
|
5 |
-
from
|
6 |
from tqdm import tqdm
|
7 |
from utils.param_keys import INPUT_NAME, FILENAME, FOLDER_PATH, PARAMS
|
8 |
|
@@ -63,8 +63,8 @@ def get_files_and_kwargs(params: dict):
|
|
63 |
|
64 |
#TODO: generate parent directories if they don't exist
|
65 |
if input_name == 'test':
|
66 |
-
filename_list = list(tqdm(sort_files(os.listdir('data/
|
67 |
-
kwargs = {FILENAME: filename_list, FOLDER_PATH: 'data/
|
68 |
elif input_name == 'realLogs':
|
69 |
filename_list = list(tqdm(sort_files(os.listdir('data/real_event_logs'))))
|
70 |
kwargs = {FILENAME: filename_list, FOLDER_PATH: 'data/real_event_logs'}
|
|
|
2 |
import os
|
3 |
import warnings
|
4 |
|
5 |
+
from gedi.utils.io_helpers import sort_files
|
6 |
from tqdm import tqdm
|
7 |
from utils.param_keys import INPUT_NAME, FILENAME, FOLDER_PATH, PARAMS
|
8 |
|
|
|
63 |
|
64 |
#TODO: generate parent directories if they don't exist
|
65 |
if input_name == 'test':
|
66 |
+
filename_list = list(tqdm(sort_files(os.listdir('data/test'))))
|
67 |
+
kwargs = {FILENAME: filename_list, FOLDER_PATH: 'data/test'}
|
68 |
elif input_name == 'realLogs':
|
69 |
filename_list = list(tqdm(sort_files(os.listdir('data/real_event_logs'))))
|
70 |
kwargs = {FILENAME: filename_list, FOLDER_PATH: 'data/real_event_logs'}
|
config_files/algorithm/benchmark.json
CHANGED
@@ -2,8 +2,7 @@
|
|
2 |
{
|
3 |
"pipeline_step": "benchmark_test",
|
4 |
"benchmark_test": "discovery",
|
5 |
-
"input_path":"data/
|
6 |
-
"input_path":"data/test_2/gen_el_168.xes",
|
7 |
"output_path":"output",
|
8 |
"miners" : ["inductive", "heuristics", "imf", "ilp"]
|
9 |
}
|
|
|
2 |
{
|
3 |
"pipeline_step": "benchmark_test",
|
4 |
"benchmark_test": "discovery",
|
5 |
+
"input_path":"data/test",
|
|
|
6 |
"output_path":"output",
|
7 |
"miners" : ["inductive", "heuristics", "imf", "ilp"]
|
8 |
}
|
config_files/algorithm/evaluation_plotter.json
CHANGED
@@ -2,16 +2,18 @@
|
|
2 |
{
|
3 |
"pipeline_step": "evaluation_plotter",
|
4 |
"input_path": "output/features/generated/34_bpic_features/",
|
5 |
-
"input_path": "output/features/generated/grid_1obj/1_enve_feat.csv",
|
6 |
"input_path": "output/features/generated/grid_2obj/",
|
7 |
"input_path": ["output/features/generated/grid_1obj/", "output/features/generated/grid_2obj/"],
|
8 |
-
"
|
|
|
9 |
"reference_feature": "epa_normalized_sequence_entropy",
|
10 |
-
"reference_feature": "epa_normalized_variant_entropy",
|
11 |
"reference_feature": "epa_normalized_sequence_entropy_exponential_forgetting",
|
|
|
12 |
"targets": "data/34_bpic_features.csv",
|
13 |
-
"targets": "data/grid_experiments/grid_1obj/grid_1objectives_enve.csv",
|
14 |
"targets": "data/grid_experiments/grid_2obj/",
|
15 |
-
"targets": ["data/grid_experiments/grid_1obj/", "data/grid_experiments/grid_2obj/"]
|
|
|
|
|
|
|
16 |
}
|
17 |
]
|
|
|
2 |
{
|
3 |
"pipeline_step": "evaluation_plotter",
|
4 |
"input_path": "output/features/generated/34_bpic_features/",
|
|
|
5 |
"input_path": "output/features/generated/grid_2obj/",
|
6 |
"input_path": ["output/features/generated/grid_1obj/", "output/features/generated/grid_2obj/"],
|
7 |
+
"input_path": "output/features/generated/grid_1obj/1_enve_feat.csv",
|
8 |
+
"input_path": "data/test/plotter/1_enve_feat.csv",
|
9 |
"reference_feature": "epa_normalized_sequence_entropy",
|
|
|
10 |
"reference_feature": "epa_normalized_sequence_entropy_exponential_forgetting",
|
11 |
+
"reference_feature": "epa_normalized_variant_entropy",
|
12 |
"targets": "data/34_bpic_features.csv",
|
|
|
13 |
"targets": "data/grid_experiments/grid_2obj/",
|
14 |
+
"targets": ["data/grid_experiments/grid_1obj/", "data/grid_experiments/grid_2obj/"],
|
15 |
+
"targets": "data/grid_experiments/grid_1obj/grid_1objectives_enve.csv",
|
16 |
+
"targets": "data/test/plotter/grid_1objectives_enve.csv",
|
17 |
+
"output_path": "output/plots"
|
18 |
}
|
19 |
]
|
config_files/algorithm/experiment_test.json
CHANGED
@@ -9,16 +9,16 @@
|
|
9 |
{
|
10 |
"pipeline_step": "event_logs_generation",
|
11 |
"output_path": "output/features/2_bpic_features/2_ense_rmcv_feat.csv",
|
12 |
-
"output_path": "data/
|
13 |
"generator_params": {
|
14 |
"experiment": "data/grid_objectives.csv",
|
15 |
"experiment": {"input_path": "data/2_bpic_features.csv",
|
16 |
"objectives": ["ratio_top_20_variants", "epa_normalized_sequence_entropy_linear_forgetting"]},
|
17 |
"experiment": [
|
18 |
-
{"epa_normalized_sequence_entropy_linear_forgetting": 0.
|
19 |
-
{"epa_normalized_sequence_entropy_linear_forgetting": 0.
|
20 |
],
|
21 |
-
"experiment": {"epa_normalized_sequence_entropy_linear_forgetting": 0.
|
22 |
"config_space": {
|
23 |
"mode": [5, 20],
|
24 |
"sequence": [0.01, 1],
|
@@ -27,7 +27,7 @@
|
|
27 |
"loop": [0.01, 1],
|
28 |
"silent": [0.01, 1],
|
29 |
"lt_dependency": [0.01, 1],
|
30 |
-
"num_traces": [
|
31 |
"duplicate": [0],
|
32 |
"or": [0]
|
33 |
},
|
@@ -36,7 +36,7 @@
|
|
36 |
},
|
37 |
{
|
38 |
"pipeline_step": "feature_extraction",
|
39 |
-
"input_path": "data/
|
40 |
"feature_params": {"feature_set":["trace_length"]},
|
41 |
"output_path": "output/plots",
|
42 |
"real_eventlog_path": "data/bpic_features.csv",
|
@@ -45,7 +45,7 @@
|
|
45 |
{
|
46 |
"pipeline_step": "benchmark_test",
|
47 |
"benchmark_test": "discovery",
|
48 |
-
"input_path":"data/
|
49 |
"output_path":"output",
|
50 |
"miners" : ["inductive", "heuristics", "imf", "ilp"]
|
51 |
}
|
|
|
9 |
{
|
10 |
"pipeline_step": "event_logs_generation",
|
11 |
"output_path": "output/features/2_bpic_features/2_ense_rmcv_feat.csv",
|
12 |
+
"output_path": "data/test",
|
13 |
"generator_params": {
|
14 |
"experiment": "data/grid_objectives.csv",
|
15 |
"experiment": {"input_path": "data/2_bpic_features.csv",
|
16 |
"objectives": ["ratio_top_20_variants", "epa_normalized_sequence_entropy_linear_forgetting"]},
|
17 |
"experiment": [
|
18 |
+
{"epa_normalized_sequence_entropy_linear_forgetting": 0.2, "ratio_top_20_variants": 0.4},
|
19 |
+
{"epa_normalized_sequence_entropy_linear_forgetting": 0.4, "ratio_top_20_variants": 0.7}
|
20 |
],
|
21 |
+
"experiment": {"epa_normalized_sequence_entropy_linear_forgetting": 0.2, "ratio_top_20_variants": 0.4},
|
22 |
"config_space": {
|
23 |
"mode": [5, 20],
|
24 |
"sequence": [0.01, 1],
|
|
|
27 |
"loop": [0.01, 1],
|
28 |
"silent": [0.01, 1],
|
29 |
"lt_dependency": [0.01, 1],
|
30 |
+
"num_traces": [10, 100],
|
31 |
"duplicate": [0],
|
32 |
"or": [0]
|
33 |
},
|
|
|
36 |
},
|
37 |
{
|
38 |
"pipeline_step": "feature_extraction",
|
39 |
+
"input_path": "data/test",
|
40 |
"feature_params": {"feature_set":["trace_length"]},
|
41 |
"output_path": "output/plots",
|
42 |
"real_eventlog_path": "data/bpic_features.csv",
|
|
|
45 |
{
|
46 |
"pipeline_step": "benchmark_test",
|
47 |
"benchmark_test": "discovery",
|
48 |
+
"input_path":"data/test",
|
49 |
"output_path":"output",
|
50 |
"miners" : ["inductive", "heuristics", "imf", "ilp"]
|
51 |
}
|
config_files/algorithm/feature_extraction.json
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
[
|
2 |
{
|
3 |
"pipeline_step": "feature_extraction",
|
4 |
-
"input_path": "data/
|
5 |
"feature_params": {"feature_set":["simple_stats", "trace_length", "trace_variant", "activities", "start_activities", "end_activities", "eventropies", "epa_based"]},
|
6 |
"output_path": "output/plots",
|
7 |
"real_eventlog_path": "data/bpic_features.csv",
|
|
|
1 |
[
|
2 |
{
|
3 |
"pipeline_step": "feature_extraction",
|
4 |
+
"input_path": "data/test",
|
5 |
"feature_params": {"feature_set":["simple_stats", "trace_length", "trace_variant", "activities", "start_activities", "end_activities", "eventropies", "epa_based"]},
|
6 |
"output_path": "output/plots",
|
7 |
"real_eventlog_path": "data/bpic_features.csv",
|
config_files/algorithm/generation.json
CHANGED
@@ -3,11 +3,8 @@
|
|
3 |
"pipeline_step": "event_logs_generation",
|
4 |
"output_path": "output",
|
5 |
"generator_params": {
|
6 |
-
"experiment": {
|
7 |
-
"
|
8 |
-
"objectives": ["epa_normalized_variant_entropy"],
|
9 |
-
"objectives": ["ratio_most_common_variant", "epa_normalized_sequence_entropy"],
|
10 |
-
"objectives": ["ratio_top_20_variants","epa_normalized_sequence_entropy_linear_forgetting"]
|
11 |
},
|
12 |
"config_space": {
|
13 |
"mode": [5, 20],
|
|
|
3 |
"pipeline_step": "event_logs_generation",
|
4 |
"output_path": "output",
|
5 |
"generator_params": {
|
6 |
+
"experiment": {"input_path": "data/test/grid_feat.csv",
|
7 |
+
"objectives": ["ratio_top_20_variants", "epa_normalized_sequence_entropy_linear_forgetting"]
|
|
|
|
|
|
|
8 |
},
|
9 |
"config_space": {
|
10 |
"mode": [5, 20],
|
data/2_grid_test.csv
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
|
|
1 |
+
log,ratio_top_20_variants,epa_normalized_sequence_entropy_linear_forgetting
|
2 |
+
experiment1,0.2,0.4
|
3 |
+
experiment2,0.4,0.7
|
data/{test_2 β test}/gen_el_168.xes
RENAMED
File without changes
|
data/{test_2 β test}/gen_el_169.xes
RENAMED
File without changes
|
data/test/grid_feat.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
log,ratio_top_20_variants,epa_normalized_sequence_entropy_linear_forgetting
|
2 |
+
experiment1,0.2,0.4
|
3 |
+
experiment2,0.4,0.7
|
data/test/plotter/1_enve_feat.csv
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
epa_normalized_variant_entropy,log
|
2 |
+
0.41202322946059605,task_5
|
3 |
+
0.79999386158591,task_9
|
4 |
+
0.8925919422394111,task_10
|
5 |
+
0.493812449168448,task_6
|
6 |
+
0.20299577565110202,task_3
|
7 |
+
0.337263992015401,task_4
|
8 |
+
0.0,task_1
|
9 |
+
0.102184538023266,task_2
|
10 |
+
0.600006599245775,task_7
|
11 |
+
0.6999779396851361,task_8
|
12 |
+
0.8796185572534461,task_11
|
data/test/plotter/grid_1objectives_enve.csv
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
task,epa_normalized_variant_entropy
|
2 |
+
task_1,0.0
|
3 |
+
task_2,0.1
|
4 |
+
task_3,0.2
|
5 |
+
task_4,0.3
|
6 |
+
task_5,0.4
|
7 |
+
task_6,0.5
|
8 |
+
task_7,0.6
|
9 |
+
task_8,0.7
|
10 |
+
task_9,0.8
|
11 |
+
task_10,0.9
|
12 |
+
task_11,1.0
|
execute_grid_experiments.py
CHANGED
@@ -2,7 +2,7 @@ import multiprocessing
|
|
2 |
import os
|
3 |
|
4 |
from datetime import datetime as dt
|
5 |
-
from
|
6 |
from tqdm import tqdm
|
7 |
|
8 |
#TODO: Pass i properly
|
|
|
2 |
import os
|
3 |
|
4 |
from datetime import datetime as dt
|
5 |
+
from gedi.utils.io_helpers import sort_files
|
6 |
from tqdm import tqdm
|
7 |
|
8 |
#TODO: Pass i properly
|
gedi/__init__.py
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .generator import GenerateEventLogs
|
2 |
+
from .features import EventLogFeatures
|
3 |
+
from .analyser import FeatureAnalyser
|
4 |
+
from .augmentation import InstanceAugmentator
|
5 |
+
from .benchmark import BenchmarkTest
|
6 |
+
from .plotter import BenchmarkPlotter, FeaturesPlotter, AugmentationPlotter, GenerationPlotter
|
7 |
+
|
8 |
+
__all__=[ 'GenerateEventLogs', 'EventLogFeatures', 'FeatureAnalyser', 'InstanceAugmentator', 'BenchmarkTest', 'BenchmarkPlotter', 'FeaturesPlotter', 'AugmentationPlotter', 'GenerationPlotter']
|
{tag β gedi}/analyser.py
RENAMED
@@ -4,9 +4,9 @@ import warnings
|
|
4 |
from sklearn.decomposition import FastICA, PCA
|
5 |
from sklearn.manifold import TSNE
|
6 |
from sklearn.preprocessing import Normalizer, StandardScaler
|
7 |
-
from
|
8 |
-
from
|
9 |
-
from
|
10 |
# TODO: Call param_keys explicitly e.g. import INPUT_PATH
|
11 |
from utils.param_keys import *
|
12 |
from utils.param_keys.analyser import MODEL, INPUT_PARAMS, PERPLEXITY
|
|
|
4 |
from sklearn.decomposition import FastICA, PCA
|
5 |
from sklearn.manifold import TSNE
|
6 |
from sklearn.preprocessing import Normalizer, StandardScaler
|
7 |
+
from gedi.features import EventLogFeatures
|
8 |
+
from gedi.plotter import ModelResultPlotter
|
9 |
+
from gedi.utils.matrix_tools import insert_missing_data
|
10 |
# TODO: Call param_keys explicitly e.g. import INPUT_PATH
|
11 |
from utils.param_keys import *
|
12 |
from utils.param_keys.analyser import MODEL, INPUT_PARAMS, PERPLEXITY
|
{tag β gedi}/augmentation.py
RENAMED
@@ -3,7 +3,7 @@ from collections import Counter
|
|
3 |
from datetime import datetime as dt
|
4 |
from imblearn.over_sampling import SMOTE, SVMSMOTE, BorderlineSMOTE, KMeansSMOTE
|
5 |
from sklearn.preprocessing import Normalizer
|
6 |
-
from
|
7 |
from utils.param_keys import INPUT_PATH, OUTPUT_PATH
|
8 |
from utils.param_keys.augmentation import AUGMENTATION_PARAMS, NO_SAMPLES, FEATURE_SELECTION, METHOD
|
9 |
|
|
|
3 |
from datetime import datetime as dt
|
4 |
from imblearn.over_sampling import SMOTE, SVMSMOTE, BorderlineSMOTE, KMeansSMOTE
|
5 |
from sklearn.preprocessing import Normalizer
|
6 |
+
from gedi.utils.matrix_tools import insert_missing_data
|
7 |
from utils.param_keys import INPUT_PATH, OUTPUT_PATH
|
8 |
from utils.param_keys.augmentation import AUGMENTATION_PARAMS, NO_SAMPLES, FEATURE_SELECTION, METHOD
|
9 |
|
{tag β gedi}/benchmark.py
RENAMED
@@ -16,7 +16,7 @@ from pm4py.algo.evaluation.generalization import algorithm as generalization_eva
|
|
16 |
from pm4py.algo.evaluation.simplicity import algorithm as simplicity_evaluator
|
17 |
from pm4py.objects.bpmn.obj import BPMN
|
18 |
from pm4py.objects.log.importer.xes import importer as xes_importer
|
19 |
-
from
|
20 |
from tqdm import tqdm
|
21 |
from utils.param_keys import INPUT_PATH, OUTPUT_PATH
|
22 |
from utils.param_keys.benchmark import MINERS
|
@@ -113,14 +113,14 @@ class BenchmarkTest:
|
|
113 |
return
|
114 |
|
115 |
def split_miner_wrapper(self, log_path="data/real_event_logs/BPI_Challenges/BPI_Challenge_2012.xes"):
|
116 |
-
jar_path = os.path.join("
|
117 |
filename = os.path.split(log_path)[-1].rsplit(".",1)[0]
|
118 |
bpmn_path = os.path.join("output", "bpmns_split", filename)
|
119 |
os.makedirs(os.path.split(bpmn_path)[0], exist_ok=True)
|
120 |
command = [
|
121 |
"java",
|
122 |
"-cp",
|
123 |
-
f"{os.getcwd()}/
|
124 |
"au.edu.unimelb.services.ServiceProvider",
|
125 |
"SM2",
|
126 |
f"{os.getcwd()}/{log_path}",
|
|
|
16 |
from pm4py.algo.evaluation.simplicity import algorithm as simplicity_evaluator
|
17 |
from pm4py.objects.bpmn.obj import BPMN
|
18 |
from pm4py.objects.log.importer.xes import importer as xes_importer
|
19 |
+
from gedi.utils.io_helpers import dump_features_json
|
20 |
from tqdm import tqdm
|
21 |
from utils.param_keys import INPUT_PATH, OUTPUT_PATH
|
22 |
from utils.param_keys.benchmark import MINERS
|
|
|
113 |
return
|
114 |
|
115 |
def split_miner_wrapper(self, log_path="data/real_event_logs/BPI_Challenges/BPI_Challenge_2012.xes"):
|
116 |
+
jar_path = os.path.join("gedi","libs","split-miner-1.7.1-all.jar")
|
117 |
filename = os.path.split(log_path)[-1].rsplit(".",1)[0]
|
118 |
bpmn_path = os.path.join("output", "bpmns_split", filename)
|
119 |
os.makedirs(os.path.split(bpmn_path)[0], exist_ok=True)
|
120 |
command = [
|
121 |
"java",
|
122 |
"-cp",
|
123 |
+
f"{os.getcwd()}/gedi/libs/sm2.jar:{os.getcwd()}/tag/libs/lib/*",
|
124 |
"au.edu.unimelb.services.ServiceProvider",
|
125 |
"SM2",
|
126 |
f"{os.getcwd()}/{log_path}",
|
{tag β gedi}/features.py
RENAMED
@@ -11,7 +11,7 @@ from pathlib import Path, PurePath
|
|
11 |
from sklearn.impute import SimpleImputer
|
12 |
from utils.param_keys import INPUT_PATH
|
13 |
from utils.param_keys.features import FEATURE_PARAMS, FEATURE_SET
|
14 |
-
from
|
15 |
|
16 |
def get_sortby_parameter(elem):
|
17 |
number = int(elem.rsplit(".")[0].rsplit("_", 1)[1])
|
|
|
11 |
from sklearn.impute import SimpleImputer
|
12 |
from utils.param_keys import INPUT_PATH
|
13 |
from utils.param_keys.features import FEATURE_PARAMS, FEATURE_SET
|
14 |
+
from gedi.utils.io_helpers import dump_features_json
|
15 |
|
16 |
def get_sortby_parameter(elem):
|
17 |
number = int(elem.rsplit(".")[0].rsplit("_", 1)[1])
|
{tag β gedi}/generator.py
RENAMED
@@ -20,7 +20,7 @@ from pm4py.sim import play_out
|
|
20 |
from smac import HyperparameterOptimizationFacade, Scenario
|
21 |
from utils.param_keys import OUTPUT_PATH, INPUT_PATH
|
22 |
from utils.param_keys.generator import GENERATOR_PARAMS, EXPERIMENT, CONFIG_SPACE, N_TRIALS
|
23 |
-
from
|
24 |
|
25 |
|
26 |
|
@@ -73,7 +73,7 @@ def get_tasks(experiment, output_path="", reference_feature=None):
|
|
73 |
return tasks, output_path
|
74 |
|
75 |
class GenerateEventLogs():
|
76 |
-
# TODO: Clarify nomenclature: experiment, task, objective as in notebook (https://github.com/lmu-dbs/
|
77 |
def __init__(self, params):
|
78 |
print("=========================== Generator ==========================")
|
79 |
print(f"INFO: Running with {params}")
|
|
|
20 |
from smac import HyperparameterOptimizationFacade, Scenario
|
21 |
from utils.param_keys import OUTPUT_PATH, INPUT_PATH
|
22 |
from utils.param_keys.generator import GENERATOR_PARAMS, EXPERIMENT, CONFIG_SPACE, N_TRIALS
|
23 |
+
from gedi.utils.io_helpers import get_output_key_value_location, dump_features_json, read_csvs
|
24 |
|
25 |
|
26 |
|
|
|
73 |
return tasks, output_path
|
74 |
|
75 |
class GenerateEventLogs():
|
76 |
+
# TODO: Clarify nomenclature: experiment, task, objective as in notebook (https://github.com/lmu-dbs/gedi/blob/main/notebooks/grid_objectives.ipynb)
|
77 |
def __init__(self, params):
|
78 |
print("=========================== Generator ==========================")
|
79 |
print(f"INFO: Running with {params}")
|
{tag β gedi}/plotter.py
RENAMED
@@ -20,9 +20,9 @@ from collections import defaultdict
|
|
20 |
from sklearn.preprocessing import Normalizer, StandardScaler
|
21 |
from sklearn.decomposition import PCA
|
22 |
from sklearn.metrics.pairwise import euclidean_distances
|
23 |
-
from
|
24 |
-
from
|
25 |
-
from
|
26 |
|
27 |
def insert_newlines(string, every=140):
|
28 |
return '\n'.join(string[i:i+every] for i in range(0, len(string), every))
|
@@ -331,6 +331,7 @@ class FeaturesPlotter:
|
|
331 |
fig, output_path = eval(f"self.plot_violinplot_single(features, output_path, source='{source_name}' {plot_type})")
|
332 |
|
333 |
if output_path != None:
|
|
|
334 |
fig.savefig(output_path)
|
335 |
print(f"SUCCESS: Saved {plot_type} plot in {output_path}")
|
336 |
|
@@ -617,7 +618,7 @@ class AugmentationPlotter(object):
|
|
617 |
if output_path != None:
|
618 |
output_path += f"/augmentation_pca_{n_features}_{self.sampler}.jpg"
|
619 |
fig.savefig(output_path)
|
620 |
-
print("SUCCESS: Saved augmentation pca plot at {output_path}")
|
621 |
|
622 |
|
623 |
class GenerationPlotter(object):
|
@@ -672,7 +673,7 @@ class GenerationPlotter(object):
|
|
672 |
targets = orig_targets.copy()
|
673 |
elif isinstance(orig_targets, defaultdict):
|
674 |
if k not in orig_targets:
|
675 |
-
print("[WARNING] {k} not in targets. Only in generated features. Will continue with next feature to compare with")
|
676 |
continue
|
677 |
targets = orig_targets[k].copy()
|
678 |
else:
|
|
|
20 |
from sklearn.preprocessing import Normalizer, StandardScaler
|
21 |
from sklearn.decomposition import PCA
|
22 |
from sklearn.metrics.pairwise import euclidean_distances
|
23 |
+
from gedi.generator import get_tasks
|
24 |
+
from gedi.utils.io_helpers import get_keys_abbreviation
|
25 |
+
from gedi.utils.io_helpers import read_csvs, select_instance
|
26 |
|
27 |
def insert_newlines(string, every=140):
|
28 |
return '\n'.join(string[i:i+every] for i in range(0, len(string), every))
|
|
|
331 |
fig, output_path = eval(f"self.plot_violinplot_single(features, output_path, source='{source_name}' {plot_type})")
|
332 |
|
333 |
if output_path != None:
|
334 |
+
os.makedirs(os.path.split(output_path)[0], exist_ok=True)
|
335 |
fig.savefig(output_path)
|
336 |
print(f"SUCCESS: Saved {plot_type} plot in {output_path}")
|
337 |
|
|
|
618 |
if output_path != None:
|
619 |
output_path += f"/augmentation_pca_{n_features}_{self.sampler}.jpg"
|
620 |
fig.savefig(output_path)
|
621 |
+
print(f"SUCCESS: Saved augmentation pca plot at {output_path}")
|
622 |
|
623 |
|
624 |
class GenerationPlotter(object):
|
|
|
673 |
targets = orig_targets.copy()
|
674 |
elif isinstance(orig_targets, defaultdict):
|
675 |
if k not in orig_targets:
|
676 |
+
print(f"[WARNING] {k} not in targets. Only in generated features. Will continue with next feature to compare with")
|
677 |
continue
|
678 |
targets = orig_targets[k].copy()
|
679 |
else:
|
{tag β gedi}/utils/algorithms/__init__.py
RENAMED
File without changes
|
{tag β gedi}/utils/algorithms/tsne.py
RENAMED
File without changes
|
{tag β gedi}/utils/array_tools.py
RENAMED
File without changes
|
{tag β gedi}/utils/io_helpers.py
RENAMED
File without changes
|
{tag β gedi}/utils/matrix_tools.py
RENAMED
File without changes
|
main.py
CHANGED
@@ -1,12 +1,12 @@
|
|
1 |
import config
|
2 |
import pandas as pd
|
3 |
from datetime import datetime as dt
|
4 |
-
from
|
5 |
-
from
|
6 |
-
from
|
7 |
-
from
|
8 |
-
from
|
9 |
-
from
|
10 |
from utils.default_argparse import ArgParser
|
11 |
from utils.param_keys import *
|
12 |
from utils.param_keys.run_options import *
|
@@ -57,8 +57,8 @@ def run(kwargs:dict, model_paramas_list: list, filename_list:list):
|
|
57 |
|
58 |
|
59 |
if __name__=='__main__':
|
60 |
-
|
61 |
-
print(f'INFO:
|
62 |
|
63 |
args = ArgParser().parse('GEDI main')
|
64 |
run_params = config.get_run_params(args.run_params_json)
|
@@ -70,4 +70,4 @@ if __name__=='__main__':
|
|
70 |
else:
|
71 |
load(args.result_load_files, kwargs)
|
72 |
|
73 |
-
print(f'SUCCESS:
|
|
|
1 |
import config
|
2 |
import pandas as pd
|
3 |
from datetime import datetime as dt
|
4 |
+
from gedi.generator import GenerateEventLogs
|
5 |
+
from gedi.features import EventLogFeatures
|
6 |
+
from gedi.analyser import FeatureAnalyser
|
7 |
+
from gedi.augmentation import InstanceAugmentator
|
8 |
+
from gedi.benchmark import BenchmarkTest
|
9 |
+
from gedi.plotter import BenchmarkPlotter, FeaturesPlotter, AugmentationPlotter, GenerationPlotter
|
10 |
from utils.default_argparse import ArgParser
|
11 |
from utils.param_keys import *
|
12 |
from utils.param_keys.run_options import *
|
|
|
57 |
|
58 |
|
59 |
if __name__=='__main__':
|
60 |
+
start_gedi = dt.now()
|
61 |
+
print(f'INFO: GEDI starting {start_gedi}')
|
62 |
|
63 |
args = ArgParser().parse('GEDI main')
|
64 |
run_params = config.get_run_params(args.run_params_json)
|
|
|
70 |
else:
|
71 |
load(args.result_load_files, kwargs)
|
72 |
|
73 |
+
print(f'SUCCESS: GEDI took {dt.now()-start_gedi} sec.')
|
notebooks/.ipynb_checkpoints/augmentation-checkpoint.ipynb
DELETED
The diff for this file is too large to render.
See raw diff
|
|
notebooks/.ipynb_checkpoints/benchmarking_process_discovery-checkpoint.ipynb
DELETED
The diff for this file is too large to render.
See raw diff
|
|
notebooks/.ipynb_checkpoints/bpic_generability_pdm-checkpoint.ipynb
DELETED
The diff for this file is too large to render.
See raw diff
|
|
notebooks/.ipynb_checkpoints/data_exploration-checkpoint.ipynb
DELETED
The diff for this file is too large to render.
See raw diff
|
|
notebooks/.ipynb_checkpoints/experiment_generator-checkpoint.ipynb
DELETED
The diff for this file is too large to render.
See raw diff
|
|
notebooks/.ipynb_checkpoints/feature_distributions-checkpoint.ipynb
DELETED
The diff for this file is too large to render.
See raw diff
|
|
notebooks/.ipynb_checkpoints/feature_exploration-checkpoint.ipynb
DELETED
The diff for this file is too large to render.
See raw diff
|
|
notebooks/.ipynb_checkpoints/feature_performance_similarity-checkpoint.ipynb
DELETED
The diff for this file is too large to render.
See raw diff
|
|
notebooks/.ipynb_checkpoints/feature_selection-checkpoint.ipynb
DELETED
The diff for this file is too large to render.
See raw diff
|
|
notebooks/.ipynb_checkpoints/feature_variance-checkpoint.ipynb
DELETED
The diff for this file is too large to render.
See raw diff
|
|
notebooks/.ipynb_checkpoints/gedi_representativeness-checkpoint.ipynb
DELETED
The diff for this file is too large to render.
See raw diff
|
|
notebooks/.ipynb_checkpoints/grid_objectives-checkpoint.ipynb
DELETED
@@ -1,376 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"cells": [
|
3 |
-
{
|
4 |
-
"cell_type": "code",
|
5 |
-
"execution_count": 9,
|
6 |
-
"id": "e5aa7223",
|
7 |
-
"metadata": {},
|
8 |
-
"outputs": [],
|
9 |
-
"source": [
|
10 |
-
"import pandas as pd\n",
|
11 |
-
"import numpy as np"
|
12 |
-
]
|
13 |
-
},
|
14 |
-
{
|
15 |
-
"cell_type": "code",
|
16 |
-
"execution_count": 10,
|
17 |
-
"id": "dfd1a302",
|
18 |
-
"metadata": {},
|
19 |
-
"outputs": [],
|
20 |
-
"source": [
|
21 |
-
"df = pd.DataFrame(columns=[\"log\",\"ratio_top_20_variants\", \"normalized_sequence_entropy_linear_forgetting\"]) "
|
22 |
-
]
|
23 |
-
},
|
24 |
-
{
|
25 |
-
"cell_type": "code",
|
26 |
-
"execution_count": 28,
|
27 |
-
"id": "218946b7",
|
28 |
-
"metadata": {},
|
29 |
-
"outputs": [],
|
30 |
-
"source": [
|
31 |
-
"k=0\n",
|
32 |
-
"for i in np.arange(0.2, 1.1,0.2):\n",
|
33 |
-
" for j in np.arange(0,0.55,0.1):\n",
|
34 |
-
" k+=1\n",
|
35 |
-
" new_entry = pd.Series({'log':f\"objective_{k}\", \"ratio_top_20_variants\":round(i,1),\n",
|
36 |
-
" \"normalized_sequence_entropy_linear_forgetting\":round(j,1)})\n",
|
37 |
-
" df = pd.concat([\n",
|
38 |
-
" df, \n",
|
39 |
-
" pd.DataFrame([new_entry], columns=new_entry.index)]\n",
|
40 |
-
" ).reset_index(drop=True)\n",
|
41 |
-
" "
|
42 |
-
]
|
43 |
-
},
|
44 |
-
{
|
45 |
-
"cell_type": "code",
|
46 |
-
"execution_count": 31,
|
47 |
-
"id": "b1e3bb5a",
|
48 |
-
"metadata": {},
|
49 |
-
"outputs": [],
|
50 |
-
"source": [
|
51 |
-
"df.to_csv(\"../data/grid_objectives.csv\" ,index=False)"
|
52 |
-
]
|
53 |
-
},
|
54 |
-
{
|
55 |
-
"cell_type": "code",
|
56 |
-
"execution_count": 32,
|
57 |
-
"id": "5de45389",
|
58 |
-
"metadata": {},
|
59 |
-
"outputs": [
|
60 |
-
{
|
61 |
-
"data": {
|
62 |
-
"text/html": [
|
63 |
-
"<div>\n",
|
64 |
-
"<style scoped>\n",
|
65 |
-
" .dataframe tbody tr th:only-of-type {\n",
|
66 |
-
" vertical-align: middle;\n",
|
67 |
-
" }\n",
|
68 |
-
"\n",
|
69 |
-
" .dataframe tbody tr th {\n",
|
70 |
-
" vertical-align: top;\n",
|
71 |
-
" }\n",
|
72 |
-
"\n",
|
73 |
-
" .dataframe thead th {\n",
|
74 |
-
" text-align: right;\n",
|
75 |
-
" }\n",
|
76 |
-
"</style>\n",
|
77 |
-
"<table border=\"1\" class=\"dataframe\">\n",
|
78 |
-
" <thead>\n",
|
79 |
-
" <tr style=\"text-align: right;\">\n",
|
80 |
-
" <th></th>\n",
|
81 |
-
" <th>log</th>\n",
|
82 |
-
" <th>ratio_top_20_variants</th>\n",
|
83 |
-
" <th>normalized_sequence_entropy_linear_forgetting</th>\n",
|
84 |
-
" </tr>\n",
|
85 |
-
" </thead>\n",
|
86 |
-
" <tbody>\n",
|
87 |
-
" <tr>\n",
|
88 |
-
" <th>0</th>\n",
|
89 |
-
" <td>objective_1</td>\n",
|
90 |
-
" <td>0.2</td>\n",
|
91 |
-
" <td>0.0</td>\n",
|
92 |
-
" </tr>\n",
|
93 |
-
" <tr>\n",
|
94 |
-
" <th>1</th>\n",
|
95 |
-
" <td>objective_2</td>\n",
|
96 |
-
" <td>0.2</td>\n",
|
97 |
-
" <td>0.1</td>\n",
|
98 |
-
" </tr>\n",
|
99 |
-
" <tr>\n",
|
100 |
-
" <th>2</th>\n",
|
101 |
-
" <td>objective_3</td>\n",
|
102 |
-
" <td>0.2</td>\n",
|
103 |
-
" <td>0.2</td>\n",
|
104 |
-
" </tr>\n",
|
105 |
-
" <tr>\n",
|
106 |
-
" <th>3</th>\n",
|
107 |
-
" <td>objective_4</td>\n",
|
108 |
-
" <td>0.2</td>\n",
|
109 |
-
" <td>0.3</td>\n",
|
110 |
-
" </tr>\n",
|
111 |
-
" <tr>\n",
|
112 |
-
" <th>4</th>\n",
|
113 |
-
" <td>objective_5</td>\n",
|
114 |
-
" <td>0.2</td>\n",
|
115 |
-
" <td>0.4</td>\n",
|
116 |
-
" </tr>\n",
|
117 |
-
" <tr>\n",
|
118 |
-
" <th>5</th>\n",
|
119 |
-
" <td>objective_6</td>\n",
|
120 |
-
" <td>0.2</td>\n",
|
121 |
-
" <td>0.5</td>\n",
|
122 |
-
" </tr>\n",
|
123 |
-
" <tr>\n",
|
124 |
-
" <th>6</th>\n",
|
125 |
-
" <td>objective_7</td>\n",
|
126 |
-
" <td>0.4</td>\n",
|
127 |
-
" <td>0.0</td>\n",
|
128 |
-
" </tr>\n",
|
129 |
-
" <tr>\n",
|
130 |
-
" <th>7</th>\n",
|
131 |
-
" <td>objective_8</td>\n",
|
132 |
-
" <td>0.4</td>\n",
|
133 |
-
" <td>0.1</td>\n",
|
134 |
-
" </tr>\n",
|
135 |
-
" <tr>\n",
|
136 |
-
" <th>8</th>\n",
|
137 |
-
" <td>objective_9</td>\n",
|
138 |
-
" <td>0.4</td>\n",
|
139 |
-
" <td>0.2</td>\n",
|
140 |
-
" </tr>\n",
|
141 |
-
" <tr>\n",
|
142 |
-
" <th>9</th>\n",
|
143 |
-
" <td>objective_10</td>\n",
|
144 |
-
" <td>0.4</td>\n",
|
145 |
-
" <td>0.3</td>\n",
|
146 |
-
" </tr>\n",
|
147 |
-
" <tr>\n",
|
148 |
-
" <th>10</th>\n",
|
149 |
-
" <td>objective_11</td>\n",
|
150 |
-
" <td>0.4</td>\n",
|
151 |
-
" <td>0.4</td>\n",
|
152 |
-
" </tr>\n",
|
153 |
-
" <tr>\n",
|
154 |
-
" <th>11</th>\n",
|
155 |
-
" <td>objective_12</td>\n",
|
156 |
-
" <td>0.4</td>\n",
|
157 |
-
" <td>0.5</td>\n",
|
158 |
-
" </tr>\n",
|
159 |
-
" <tr>\n",
|
160 |
-
" <th>12</th>\n",
|
161 |
-
" <td>objective_13</td>\n",
|
162 |
-
" <td>0.6</td>\n",
|
163 |
-
" <td>0.0</td>\n",
|
164 |
-
" </tr>\n",
|
165 |
-
" <tr>\n",
|
166 |
-
" <th>13</th>\n",
|
167 |
-
" <td>objective_14</td>\n",
|
168 |
-
" <td>0.6</td>\n",
|
169 |
-
" <td>0.1</td>\n",
|
170 |
-
" </tr>\n",
|
171 |
-
" <tr>\n",
|
172 |
-
" <th>14</th>\n",
|
173 |
-
" <td>objective_15</td>\n",
|
174 |
-
" <td>0.6</td>\n",
|
175 |
-
" <td>0.2</td>\n",
|
176 |
-
" </tr>\n",
|
177 |
-
" <tr>\n",
|
178 |
-
" <th>15</th>\n",
|
179 |
-
" <td>objective_16</td>\n",
|
180 |
-
" <td>0.6</td>\n",
|
181 |
-
" <td>0.3</td>\n",
|
182 |
-
" </tr>\n",
|
183 |
-
" <tr>\n",
|
184 |
-
" <th>16</th>\n",
|
185 |
-
" <td>objective_17</td>\n",
|
186 |
-
" <td>0.6</td>\n",
|
187 |
-
" <td>0.4</td>\n",
|
188 |
-
" </tr>\n",
|
189 |
-
" <tr>\n",
|
190 |
-
" <th>17</th>\n",
|
191 |
-
" <td>objective_18</td>\n",
|
192 |
-
" <td>0.6</td>\n",
|
193 |
-
" <td>0.5</td>\n",
|
194 |
-
" </tr>\n",
|
195 |
-
" <tr>\n",
|
196 |
-
" <th>18</th>\n",
|
197 |
-
" <td>objective_19</td>\n",
|
198 |
-
" <td>0.8</td>\n",
|
199 |
-
" <td>0.0</td>\n",
|
200 |
-
" </tr>\n",
|
201 |
-
" <tr>\n",
|
202 |
-
" <th>19</th>\n",
|
203 |
-
" <td>objective_20</td>\n",
|
204 |
-
" <td>0.8</td>\n",
|
205 |
-
" <td>0.1</td>\n",
|
206 |
-
" </tr>\n",
|
207 |
-
" <tr>\n",
|
208 |
-
" <th>20</th>\n",
|
209 |
-
" <td>objective_21</td>\n",
|
210 |
-
" <td>0.8</td>\n",
|
211 |
-
" <td>0.2</td>\n",
|
212 |
-
" </tr>\n",
|
213 |
-
" <tr>\n",
|
214 |
-
" <th>21</th>\n",
|
215 |
-
" <td>objective_22</td>\n",
|
216 |
-
" <td>0.8</td>\n",
|
217 |
-
" <td>0.3</td>\n",
|
218 |
-
" </tr>\n",
|
219 |
-
" <tr>\n",
|
220 |
-
" <th>22</th>\n",
|
221 |
-
" <td>objective_23</td>\n",
|
222 |
-
" <td>0.8</td>\n",
|
223 |
-
" <td>0.4</td>\n",
|
224 |
-
" </tr>\n",
|
225 |
-
" <tr>\n",
|
226 |
-
" <th>23</th>\n",
|
227 |
-
" <td>objective_24</td>\n",
|
228 |
-
" <td>0.8</td>\n",
|
229 |
-
" <td>0.5</td>\n",
|
230 |
-
" </tr>\n",
|
231 |
-
" <tr>\n",
|
232 |
-
" <th>24</th>\n",
|
233 |
-
" <td>objective_25</td>\n",
|
234 |
-
" <td>1.0</td>\n",
|
235 |
-
" <td>0.0</td>\n",
|
236 |
-
" </tr>\n",
|
237 |
-
" <tr>\n",
|
238 |
-
" <th>25</th>\n",
|
239 |
-
" <td>objective_26</td>\n",
|
240 |
-
" <td>1.0</td>\n",
|
241 |
-
" <td>0.1</td>\n",
|
242 |
-
" </tr>\n",
|
243 |
-
" <tr>\n",
|
244 |
-
" <th>26</th>\n",
|
245 |
-
" <td>objective_27</td>\n",
|
246 |
-
" <td>1.0</td>\n",
|
247 |
-
" <td>0.2</td>\n",
|
248 |
-
" </tr>\n",
|
249 |
-
" <tr>\n",
|
250 |
-
" <th>27</th>\n",
|
251 |
-
" <td>objective_28</td>\n",
|
252 |
-
" <td>1.0</td>\n",
|
253 |
-
" <td>0.3</td>\n",
|
254 |
-
" </tr>\n",
|
255 |
-
" <tr>\n",
|
256 |
-
" <th>28</th>\n",
|
257 |
-
" <td>objective_29</td>\n",
|
258 |
-
" <td>1.0</td>\n",
|
259 |
-
" <td>0.4</td>\n",
|
260 |
-
" </tr>\n",
|
261 |
-
" <tr>\n",
|
262 |
-
" <th>29</th>\n",
|
263 |
-
" <td>objective_30</td>\n",
|
264 |
-
" <td>1.0</td>\n",
|
265 |
-
" <td>0.5</td>\n",
|
266 |
-
" </tr>\n",
|
267 |
-
" </tbody>\n",
|
268 |
-
"</table>\n",
|
269 |
-
"</div>"
|
270 |
-
],
|
271 |
-
"text/plain": [
|
272 |
-
" log ratio_top_20_variants \n",
|
273 |
-
"0 objective_1 0.2 \\\n",
|
274 |
-
"1 objective_2 0.2 \n",
|
275 |
-
"2 objective_3 0.2 \n",
|
276 |
-
"3 objective_4 0.2 \n",
|
277 |
-
"4 objective_5 0.2 \n",
|
278 |
-
"5 objective_6 0.2 \n",
|
279 |
-
"6 objective_7 0.4 \n",
|
280 |
-
"7 objective_8 0.4 \n",
|
281 |
-
"8 objective_9 0.4 \n",
|
282 |
-
"9 objective_10 0.4 \n",
|
283 |
-
"10 objective_11 0.4 \n",
|
284 |
-
"11 objective_12 0.4 \n",
|
285 |
-
"12 objective_13 0.6 \n",
|
286 |
-
"13 objective_14 0.6 \n",
|
287 |
-
"14 objective_15 0.6 \n",
|
288 |
-
"15 objective_16 0.6 \n",
|
289 |
-
"16 objective_17 0.6 \n",
|
290 |
-
"17 objective_18 0.6 \n",
|
291 |
-
"18 objective_19 0.8 \n",
|
292 |
-
"19 objective_20 0.8 \n",
|
293 |
-
"20 objective_21 0.8 \n",
|
294 |
-
"21 objective_22 0.8 \n",
|
295 |
-
"22 objective_23 0.8 \n",
|
296 |
-
"23 objective_24 0.8 \n",
|
297 |
-
"24 objective_25 1.0 \n",
|
298 |
-
"25 objective_26 1.0 \n",
|
299 |
-
"26 objective_27 1.0 \n",
|
300 |
-
"27 objective_28 1.0 \n",
|
301 |
-
"28 objective_29 1.0 \n",
|
302 |
-
"29 objective_30 1.0 \n",
|
303 |
-
"\n",
|
304 |
-
" normalized_sequence_entropy_linear_forgetting \n",
|
305 |
-
"0 0.0 \n",
|
306 |
-
"1 0.1 \n",
|
307 |
-
"2 0.2 \n",
|
308 |
-
"3 0.3 \n",
|
309 |
-
"4 0.4 \n",
|
310 |
-
"5 0.5 \n",
|
311 |
-
"6 0.0 \n",
|
312 |
-
"7 0.1 \n",
|
313 |
-
"8 0.2 \n",
|
314 |
-
"9 0.3 \n",
|
315 |
-
"10 0.4 \n",
|
316 |
-
"11 0.5 \n",
|
317 |
-
"12 0.0 \n",
|
318 |
-
"13 0.1 \n",
|
319 |
-
"14 0.2 \n",
|
320 |
-
"15 0.3 \n",
|
321 |
-
"16 0.4 \n",
|
322 |
-
"17 0.5 \n",
|
323 |
-
"18 0.0 \n",
|
324 |
-
"19 0.1 \n",
|
325 |
-
"20 0.2 \n",
|
326 |
-
"21 0.3 \n",
|
327 |
-
"22 0.4 \n",
|
328 |
-
"23 0.5 \n",
|
329 |
-
"24 0.0 \n",
|
330 |
-
"25 0.1 \n",
|
331 |
-
"26 0.2 \n",
|
332 |
-
"27 0.3 \n",
|
333 |
-
"28 0.4 \n",
|
334 |
-
"29 0.5 "
|
335 |
-
]
|
336 |
-
},
|
337 |
-
"execution_count": 32,
|
338 |
-
"metadata": {},
|
339 |
-
"output_type": "execute_result"
|
340 |
-
}
|
341 |
-
],
|
342 |
-
"source": [
|
343 |
-
"df"
|
344 |
-
]
|
345 |
-
},
|
346 |
-
{
|
347 |
-
"cell_type": "code",
|
348 |
-
"execution_count": null,
|
349 |
-
"id": "d726a5ae",
|
350 |
-
"metadata": {},
|
351 |
-
"outputs": [],
|
352 |
-
"source": []
|
353 |
-
}
|
354 |
-
],
|
355 |
-
"metadata": {
|
356 |
-
"kernelspec": {
|
357 |
-
"display_name": "Python 3 (ipykernel)",
|
358 |
-
"language": "python",
|
359 |
-
"name": "python3"
|
360 |
-
},
|
361 |
-
"language_info": {
|
362 |
-
"codemirror_mode": {
|
363 |
-
"name": "ipython",
|
364 |
-
"version": 3
|
365 |
-
},
|
366 |
-
"file_extension": ".py",
|
367 |
-
"mimetype": "text/x-python",
|
368 |
-
"name": "python",
|
369 |
-
"nbconvert_exporter": "python",
|
370 |
-
"pygments_lexer": "ipython3",
|
371 |
-
"version": "3.9.7"
|
372 |
-
}
|
373 |
-
},
|
374 |
-
"nbformat": 4,
|
375 |
-
"nbformat_minor": 5
|
376 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
notebooks/.ipynb_checkpoints/oversampling-checkpoint.ipynb
DELETED
@@ -1,6 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"cells": [],
|
3 |
-
"metadata": {},
|
4 |
-
"nbformat": 4,
|
5 |
-
"nbformat_minor": 5
|
6 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
notebooks/.ipynb_checkpoints/performance_feature_correlation-checkpoint.ipynb
DELETED
@@ -1,6 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"cells": [],
|
3 |
-
"metadata": {},
|
4 |
-
"nbformat": 4,
|
5 |
-
"nbformat_minor": 5
|
6 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
notebooks/.ipynb_checkpoints/pt_gen-checkpoint.ipynb
DELETED
The diff for this file is too large to render.
See raw diff
|
|
notebooks/.ipynb_checkpoints/statistics_tasks_to_datasets-checkpoint.ipynb
DELETED
@@ -1,818 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"cells": [
|
3 |
-
{
|
4 |
-
"cell_type": "code",
|
5 |
-
"execution_count": 4,
|
6 |
-
"id": "4827785f",
|
7 |
-
"metadata": {},
|
8 |
-
"outputs": [
|
9 |
-
{
|
10 |
-
"data": {
|
11 |
-
"text/html": [
|
12 |
-
"<div>\n",
|
13 |
-
"<style scoped>\n",
|
14 |
-
" .dataframe tbody tr th:only-of-type {\n",
|
15 |
-
" vertical-align: middle;\n",
|
16 |
-
" }\n",
|
17 |
-
"\n",
|
18 |
-
" .dataframe tbody tr th {\n",
|
19 |
-
" vertical-align: top;\n",
|
20 |
-
" }\n",
|
21 |
-
"\n",
|
22 |
-
" .dataframe thead th {\n",
|
23 |
-
" text-align: right;\n",
|
24 |
-
" }\n",
|
25 |
-
"</style>\n",
|
26 |
-
"<table border=\"1\" class=\"dataframe\">\n",
|
27 |
-
" <thead>\n",
|
28 |
-
" <tr style=\"text-align: right;\">\n",
|
29 |
-
" <th></th>\n",
|
30 |
-
" <th>Name</th>\n",
|
31 |
-
" <th>Short description</th>\n",
|
32 |
-
" <th>data link</th>\n",
|
33 |
-
" <th>challenge link</th>\n",
|
34 |
-
" <th>Citations (Stand Februar 2023)</th>\n",
|
35 |
-
" <th>Publications</th>\n",
|
36 |
-
" <th>Process Discovery/ Declarative</th>\n",
|
37 |
-
" <th>Conformance Checking / Alignment / Replay</th>\n",
|
38 |
-
" <th>Online / Streaming / Realtime</th>\n",
|
39 |
-
" <th>Performance (Analysis) / Temporal / Time</th>\n",
|
40 |
-
" <th>Predict(ive)/ Monitoring/ Prescriptive</th>\n",
|
41 |
-
" <th>Trace clustering / Clustering</th>\n",
|
42 |
-
" <th>Preprocessing / Event Abstraction / Event Data Correlation</th>\n",
|
43 |
-
" <th>Further keywords:</th>\n",
|
44 |
-
" </tr>\n",
|
45 |
-
" </thead>\n",
|
46 |
-
" <tbody>\n",
|
47 |
-
" <tr>\n",
|
48 |
-
" <th>0</th>\n",
|
49 |
-
" <td>Sepsis Cases - Event Log</td>\n",
|
50 |
-
" <td>This real-life event log contains events of se...</td>\n",
|
51 |
-
" <td>https://data.4tu.nl/articles/dataset/Sepsis_Ca...</td>\n",
|
52 |
-
" <td>https://data.4tu.nl/articles/dataset/Sepsis_Ca...</td>\n",
|
53 |
-
" <td>61</td>\n",
|
54 |
-
" <td>https://app.dimensions.ai/discover/publication...</td>\n",
|
55 |
-
" <td>17</td>\n",
|
56 |
-
" <td>7</td>\n",
|
57 |
-
" <td>4</td>\n",
|
58 |
-
" <td>1</td>\n",
|
59 |
-
" <td>8</td>\n",
|
60 |
-
" <td>2</td>\n",
|
61 |
-
" <td>2</td>\n",
|
62 |
-
" <td>(machine) learning, (online process) monitorin...</td>\n",
|
63 |
-
" </tr>\n",
|
64 |
-
" <tr>\n",
|
65 |
-
" <th>1</th>\n",
|
66 |
-
" <td>BPI 2017 - Offer Log</td>\n",
|
67 |
-
" <td>Contains data from a financial institute inclu...</td>\n",
|
68 |
-
" <td>https://data.4tu.nl/articles/dataset/BPI_Chall...</td>\n",
|
69 |
-
" <td>https://www.win.tue.nl/bpi/doku.php?id=2017:ch...</td>\n",
|
70 |
-
" <td>4</td>\n",
|
71 |
-
" <td>https://app.dimensions.ai/discover/publication...</td>\n",
|
72 |
-
" <td>1</td>\n",
|
73 |
-
" <td>0</td>\n",
|
74 |
-
" <td>0</td>\n",
|
75 |
-
" <td>1</td>\n",
|
76 |
-
" <td>1</td>\n",
|
77 |
-
" <td>0</td>\n",
|
78 |
-
" <td>0</td>\n",
|
79 |
-
" <td>(machine) learning, cloud computing</td>\n",
|
80 |
-
" </tr>\n",
|
81 |
-
" <tr>\n",
|
82 |
-
" <th>2</th>\n",
|
83 |
-
" <td>Road Traffic Fine Management Process (not BPI)</td>\n",
|
84 |
-
" <td>A real-life event log taken from an informatio...</td>\n",
|
85 |
-
" <td>https://data.4tu.nl/articles/dataset/Road_Traf...</td>\n",
|
86 |
-
" <td>NaN</td>\n",
|
87 |
-
" <td>95</td>\n",
|
88 |
-
" <td>https://app.dimensions.ai/discover/publication...</td>\n",
|
89 |
-
" <td>32</td>\n",
|
90 |
-
" <td>9</td>\n",
|
91 |
-
" <td>4</td>\n",
|
92 |
-
" <td>8</td>\n",
|
93 |
-
" <td>15</td>\n",
|
94 |
-
" <td>1</td>\n",
|
95 |
-
" <td>2</td>\n",
|
96 |
-
" <td>alarm-based prescriptive process monitoring, b...</td>\n",
|
97 |
-
" </tr>\n",
|
98 |
-
" <tr>\n",
|
99 |
-
" <th>3</th>\n",
|
100 |
-
" <td>BPI 2011</td>\n",
|
101 |
-
" <td>Contains data from from a Dutch Academic Hospi...</td>\n",
|
102 |
-
" <td>https://data.4tu.nl/articles/dataset/Real-life...</td>\n",
|
103 |
-
" <td>https://www.win.tue.nl/bpi/doku.php?id=2011:ch...</td>\n",
|
104 |
-
" <td>57</td>\n",
|
105 |
-
" <td>https://app.dimensions.ai/discover/publication...</td>\n",
|
106 |
-
" <td>13</td>\n",
|
107 |
-
" <td>1</td>\n",
|
108 |
-
" <td>3</td>\n",
|
109 |
-
" <td>4</td>\n",
|
110 |
-
" <td>12</td>\n",
|
111 |
-
" <td>4</td>\n",
|
112 |
-
" <td>1</td>\n",
|
113 |
-
" <td>(compliance) monitoring, (machine) learning, d...</td>\n",
|
114 |
-
" </tr>\n",
|
115 |
-
" <tr>\n",
|
116 |
-
" <th>4</th>\n",
|
117 |
-
" <td>BPI 2012</td>\n",
|
118 |
-
" <td>Contains the event log of an application proce...</td>\n",
|
119 |
-
" <td>https://data.4tu.nl/articles/dataset/BPI_Chall...</td>\n",
|
120 |
-
" <td>https://www.win.tue.nl/bpi/doku.php?id=2012:ch...</td>\n",
|
121 |
-
" <td>151</td>\n",
|
122 |
-
" <td>https://app.dimensions.ai/discover/publication...</td>\n",
|
123 |
-
" <td>40</td>\n",
|
124 |
-
" <td>15</td>\n",
|
125 |
-
" <td>4</td>\n",
|
126 |
-
" <td>13</td>\n",
|
127 |
-
" <td>46</td>\n",
|
128 |
-
" <td>0</td>\n",
|
129 |
-
" <td>1</td>\n",
|
130 |
-
" <td>(in)frequent patterns in process models, (mach...</td>\n",
|
131 |
-
" </tr>\n",
|
132 |
-
" <tr>\n",
|
133 |
-
" <th>5</th>\n",
|
134 |
-
" <td>BPI 2013 - Open Problems</td>\n",
|
135 |
-
" <td>Rabobank Group ICT implemented ITIL processes ...</td>\n",
|
136 |
-
" <td>https://data.4tu.nl/articles/dataset/BPI_Chall...</td>\n",
|
137 |
-
" <td>https://www.win.tue.nl/bpi/2013/challenge.html</td>\n",
|
138 |
-
" <td>6</td>\n",
|
139 |
-
" <td>https://app.dimensions.ai/discover/publication...</td>\n",
|
140 |
-
" <td>1</td>\n",
|
141 |
-
" <td>0</td>\n",
|
142 |
-
" <td>0</td>\n",
|
143 |
-
" <td>0</td>\n",
|
144 |
-
" <td>1</td>\n",
|
145 |
-
" <td>0</td>\n",
|
146 |
-
" <td>0</td>\n",
|
147 |
-
" <td>(in)frequent patterns in process models, (mach...</td>\n",
|
148 |
-
" </tr>\n",
|
149 |
-
" <tr>\n",
|
150 |
-
" <th>6</th>\n",
|
151 |
-
" <td>BPI 2013 - Closed Problems</td>\n",
|
152 |
-
" <td>Rabobank Group ICT implemented ITIL processes ...</td>\n",
|
153 |
-
" <td>https://data.4tu.nl/articles/dataset/BPI_Chall...</td>\n",
|
154 |
-
" <td>https://www.win.tue.nl/bpi/doku.php?id=2013:ch...</td>\n",
|
155 |
-
" <td>12</td>\n",
|
156 |
-
" <td>https://app.dimensions.ai/discover/publication...</td>\n",
|
157 |
-
" <td>3</td>\n",
|
158 |
-
" <td>2</td>\n",
|
159 |
-
" <td>1</td>\n",
|
160 |
-
" <td>2</td>\n",
|
161 |
-
" <td>0</td>\n",
|
162 |
-
" <td>0</td>\n",
|
163 |
-
" <td>3</td>\n",
|
164 |
-
" <td>(in)frequent patterns in process models</td>\n",
|
165 |
-
" </tr>\n",
|
166 |
-
" <tr>\n",
|
167 |
-
" <th>7</th>\n",
|
168 |
-
" <td>BPI 2013 - Incidents</td>\n",
|
169 |
-
" <td>The log contains events from an incident and p...</td>\n",
|
170 |
-
" <td>https://data.4tu.nl/articles/dataset/BPI_Chall...</td>\n",
|
171 |
-
" <td>https://www.win.tue.nl/bpi/2013/challenge.html</td>\n",
|
172 |
-
" <td>36</td>\n",
|
173 |
-
" <td>https://app.dimensions.ai/discover/publication...</td>\n",
|
174 |
-
" <td>14</td>\n",
|
175 |
-
" <td>5</td>\n",
|
176 |
-
" <td>1</td>\n",
|
177 |
-
" <td>1</td>\n",
|
178 |
-
" <td>7</td>\n",
|
179 |
-
" <td>0</td>\n",
|
180 |
-
" <td>2</td>\n",
|
181 |
-
" <td>(machine) learning, rule mining</td>\n",
|
182 |
-
" </tr>\n",
|
183 |
-
" <tr>\n",
|
184 |
-
" <th>8</th>\n",
|
185 |
-
" <td>BPI 2014 - Incident Records</td>\n",
|
186 |
-
" <td>Rabobank Group ICT implemented ITIL processes ...</td>\n",
|
187 |
-
" <td>https://data.4tu.nl/articles/dataset/BPI_Chall...</td>\n",
|
188 |
-
" <td>https://www.win.tue.nl/bpi/doku.php?id=2014:ch...</td>\n",
|
189 |
-
" <td>5</td>\n",
|
190 |
-
" <td>https://app.dimensions.ai/discover/publication...</td>\n",
|
191 |
-
" <td>1</td>\n",
|
192 |
-
" <td>0</td>\n",
|
193 |
-
" <td>0</td>\n",
|
194 |
-
" <td>0</td>\n",
|
195 |
-
" <td>0</td>\n",
|
196 |
-
" <td>0</td>\n",
|
197 |
-
" <td>0</td>\n",
|
198 |
-
" <td>privacy preservation, security</td>\n",
|
199 |
-
" </tr>\n",
|
200 |
-
" <tr>\n",
|
201 |
-
" <th>9</th>\n",
|
202 |
-
" <td>BPI 2014 - Interaction Records</td>\n",
|
203 |
-
" <td>Rabobank Group ICT implemented ITIL processes ...</td>\n",
|
204 |
-
" <td>https://data.4tu.nl/articles/dataset/BPI_Chall...</td>\n",
|
205 |
-
" <td>https://www.win.tue.nl/bpi/doku.php?id=2014:ch...</td>\n",
|
206 |
-
" <td>1</td>\n",
|
207 |
-
" <td>https://app.dimensions.ai/discover/publication...</td>\n",
|
208 |
-
" <td>0</td>\n",
|
209 |
-
" <td>0</td>\n",
|
210 |
-
" <td>0</td>\n",
|
211 |
-
" <td>0</td>\n",
|
212 |
-
" <td>0</td>\n",
|
213 |
-
" <td>0</td>\n",
|
214 |
-
" <td>0</td>\n",
|
215 |
-
" <td>(machine) learning, hidden Markov models</td>\n",
|
216 |
-
" </tr>\n",
|
217 |
-
" <tr>\n",
|
218 |
-
" <th>10</th>\n",
|
219 |
-
" <td>BPI 2015 - Log 3</td>\n",
|
220 |
-
" <td>Provided by 5 Dutch municipalities. The data c...</td>\n",
|
221 |
-
" <td>https://data.4tu.nl/articles/dataset/BPI_Chall...</td>\n",
|
222 |
-
" <td>https://www.win.tue.nl/bpi/doku.php?id=2015:ch...</td>\n",
|
223 |
-
" <td>1</td>\n",
|
224 |
-
" <td>https://app.dimensions.ai/discover/publication...</td>\n",
|
225 |
-
" <td>0</td>\n",
|
226 |
-
" <td>0</td>\n",
|
227 |
-
" <td>0</td>\n",
|
228 |
-
" <td>0</td>\n",
|
229 |
-
" <td>1</td>\n",
|
230 |
-
" <td>0</td>\n",
|
231 |
-
" <td>0</td>\n",
|
232 |
-
" <td>specification-driven predictive business proce...</td>\n",
|
233 |
-
" </tr>\n",
|
234 |
-
" <tr>\n",
|
235 |
-
" <th>11</th>\n",
|
236 |
-
" <td>BPI 2015 - Log 1</td>\n",
|
237 |
-
" <td>Provided by 5 Dutch municipalities. The data c...</td>\n",
|
238 |
-
" <td>https://data.4tu.nl/articles/dataset/BPI_Chall...</td>\n",
|
239 |
-
" <td>https://www.win.tue.nl/bpi/doku.php?id=2015:ch...</td>\n",
|
240 |
-
" <td>8</td>\n",
|
241 |
-
" <td>https://app.dimensions.ai/discover/publication...</td>\n",
|
242 |
-
" <td>1</td>\n",
|
243 |
-
" <td>1</td>\n",
|
244 |
-
" <td>0</td>\n",
|
245 |
-
" <td>0</td>\n",
|
246 |
-
" <td>3</td>\n",
|
247 |
-
" <td>0</td>\n",
|
248 |
-
" <td>3</td>\n",
|
249 |
-
" <td>(machine) learning</td>\n",
|
250 |
-
" </tr>\n",
|
251 |
-
" <tr>\n",
|
252 |
-
" <th>12</th>\n",
|
253 |
-
" <td>BPI 2016 - Clicks Logged In</td>\n",
|
254 |
-
" <td>Contains clicks of users that are logged in fr...</td>\n",
|
255 |
-
" <td>https://data.4tu.nl/articles/dataset/BPI_Chall...</td>\n",
|
256 |
-
" <td>https://www.win.tue.nl/bpi/doku.php?id=2016:ch...</td>\n",
|
257 |
-
" <td>1</td>\n",
|
258 |
-
" <td>https://app.dimensions.ai/discover/publication...</td>\n",
|
259 |
-
" <td>1</td>\n",
|
260 |
-
" <td>0</td>\n",
|
261 |
-
" <td>1</td>\n",
|
262 |
-
" <td>0</td>\n",
|
263 |
-
" <td>0</td>\n",
|
264 |
-
" <td>0</td>\n",
|
265 |
-
" <td>0</td>\n",
|
266 |
-
" <td>automation</td>\n",
|
267 |
-
" </tr>\n",
|
268 |
-
" <tr>\n",
|
269 |
-
" <th>13</th>\n",
|
270 |
-
" <td>BPI 2017 - Application Log</td>\n",
|
271 |
-
" <td>Contains data from a financial institute inclu...</td>\n",
|
272 |
-
" <td>https://data.4tu.nl/articles/dataset/BPI_Chall...</td>\n",
|
273 |
-
" <td>https://www.win.tue.nl/bpi/doku.php?id=2017:ch...</td>\n",
|
274 |
-
" <td>73</td>\n",
|
275 |
-
" <td>https://app.dimensions.ai/discover/publication...</td>\n",
|
276 |
-
" <td>11</td>\n",
|
277 |
-
" <td>5</td>\n",
|
278 |
-
" <td>2</td>\n",
|
279 |
-
" <td>14</td>\n",
|
280 |
-
" <td>23</td>\n",
|
281 |
-
" <td>1</td>\n",
|
282 |
-
" <td>1</td>\n",
|
283 |
-
" <td>(machine) learning, alarm-based prescriptive p...</td>\n",
|
284 |
-
" </tr>\n",
|
285 |
-
" <tr>\n",
|
286 |
-
" <th>14</th>\n",
|
287 |
-
" <td>BPI 2018</td>\n",
|
288 |
-
" <td>The process covers the handling of application...</td>\n",
|
289 |
-
" <td>https://data.4tu.nl/articles/dataset/BPI_Chall...</td>\n",
|
290 |
-
" <td>https://www.win.tue.nl/bpi/doku.php?id=2018:ch...</td>\n",
|
291 |
-
" <td>26</td>\n",
|
292 |
-
" <td>https://app.dimensions.ai/discover/publication...</td>\n",
|
293 |
-
" <td>7</td>\n",
|
294 |
-
" <td>1</td>\n",
|
295 |
-
" <td>2</td>\n",
|
296 |
-
" <td>0</td>\n",
|
297 |
-
" <td>8</td>\n",
|
298 |
-
" <td>0</td>\n",
|
299 |
-
" <td>2</td>\n",
|
300 |
-
" <td>(machine) learning, automation</td>\n",
|
301 |
-
" </tr>\n",
|
302 |
-
" <tr>\n",
|
303 |
-
" <th>15</th>\n",
|
304 |
-
" <td>BPI 2020 - Travel Permits</td>\n",
|
305 |
-
" <td>Contains 2 years of data from the reimbursemen...</td>\n",
|
306 |
-
" <td>https://data.4tu.nl/articles/dataset/BPI_Chall...</td>\n",
|
307 |
-
" <td>https://icpmconference.org/2020/bpi-challenge/</td>\n",
|
308 |
-
" <td>2</td>\n",
|
309 |
-
" <td>https://app.dimensions.ai/discover/publication...</td>\n",
|
310 |
-
" <td>0</td>\n",
|
311 |
-
" <td>0</td>\n",
|
312 |
-
" <td>0</td>\n",
|
313 |
-
" <td>1</td>\n",
|
314 |
-
" <td>0</td>\n",
|
315 |
-
" <td>0</td>\n",
|
316 |
-
" <td>0</td>\n",
|
317 |
-
" <td>stage-based process performance analysis</td>\n",
|
318 |
-
" </tr>\n",
|
319 |
-
" <tr>\n",
|
320 |
-
" <th>16</th>\n",
|
321 |
-
" <td>BPI 2019</td>\n",
|
322 |
-
" <td>Contains the purchase order handling process o...</td>\n",
|
323 |
-
" <td>https://data.4tu.nl/articles/dataset/BPI_Chall...</td>\n",
|
324 |
-
" <td>https://icpmconference.org/2019/icpm-2019/cont...</td>\n",
|
325 |
-
" <td>35</td>\n",
|
326 |
-
" <td>https://app.dimensions.ai/discover/publication...</td>\n",
|
327 |
-
" <td>3</td>\n",
|
328 |
-
" <td>1</td>\n",
|
329 |
-
" <td>6</td>\n",
|
330 |
-
" <td>6</td>\n",
|
331 |
-
" <td>9</td>\n",
|
332 |
-
" <td>4</td>\n",
|
333 |
-
" <td>1</td>\n",
|
334 |
-
" <td>(online process) monitoring, remaining time pr...</td>\n",
|
335 |
-
" </tr>\n",
|
336 |
-
" <tr>\n",
|
337 |
-
" <th>17</th>\n",
|
338 |
-
" <td>BPI 2020 - International Declarations</td>\n",
|
339 |
-
" <td>Contains 2 years of data from the reimbursemen...</td>\n",
|
340 |
-
" <td>https://data.4tu.nl/articles/dataset/BPI_Chall...</td>\n",
|
341 |
-
" <td>https://icpmconference.org/2020/bpi-challenge/</td>\n",
|
342 |
-
" <td>2</td>\n",
|
343 |
-
" <td>https://app.dimensions.ai/discover/publication...</td>\n",
|
344 |
-
" <td>0</td>\n",
|
345 |
-
" <td>0</td>\n",
|
346 |
-
" <td>0</td>\n",
|
347 |
-
" <td>1</td>\n",
|
348 |
-
" <td>2</td>\n",
|
349 |
-
" <td>0</td>\n",
|
350 |
-
" <td>0</td>\n",
|
351 |
-
" <td>(machine) learning, remaining time prediction</td>\n",
|
352 |
-
" </tr>\n",
|
353 |
-
" <tr>\n",
|
354 |
-
" <th>18</th>\n",
|
355 |
-
" <td>BPI 2020 - Domestic Declarations</td>\n",
|
356 |
-
" <td>Contains 2 years of data from the reimbursemen...</td>\n",
|
357 |
-
" <td>https://data.4tu.nl/articles/dataset/BPI_Chall...</td>\n",
|
358 |
-
" <td>https://icpmconference.org/2020/bpi-challenge/</td>\n",
|
359 |
-
" <td>7</td>\n",
|
360 |
-
" <td>https://app.dimensions.ai/discover/publication...</td>\n",
|
361 |
-
" <td>0</td>\n",
|
362 |
-
" <td>2</td>\n",
|
363 |
-
" <td>2</td>\n",
|
364 |
-
" <td>2</td>\n",
|
365 |
-
" <td>3</td>\n",
|
366 |
-
" <td>0</td>\n",
|
367 |
-
" <td>0</td>\n",
|
368 |
-
" <td>(machine) learning, remaining time prediction</td>\n",
|
369 |
-
" </tr>\n",
|
370 |
-
" <tr>\n",
|
371 |
-
" <th>19</th>\n",
|
372 |
-
" <td>BPI 2020 - Prepaid Travel Cost</td>\n",
|
373 |
-
" <td>Contains 2 years of data from the reimbursemen...</td>\n",
|
374 |
-
" <td>https://data.4tu.nl/articles/dataset/BPI_Chall...</td>\n",
|
375 |
-
" <td>https://icpmconference.org/2020/bpi-challenge/</td>\n",
|
376 |
-
" <td>2</td>\n",
|
377 |
-
" <td>https://app.dimensions.ai/discover/publication...</td>\n",
|
378 |
-
" <td>0</td>\n",
|
379 |
-
" <td>0</td>\n",
|
380 |
-
" <td>0</td>\n",
|
381 |
-
" <td>0</td>\n",
|
382 |
-
" <td>0</td>\n",
|
383 |
-
" <td>0</td>\n",
|
384 |
-
" <td>0</td>\n",
|
385 |
-
" <td>multi-perspective</td>\n",
|
386 |
-
" </tr>\n",
|
387 |
-
" <tr>\n",
|
388 |
-
" <th>20</th>\n",
|
389 |
-
" <td>Helpdesk</td>\n",
|
390 |
-
" <td>Ticketing management process of the Help desk ...</td>\n",
|
391 |
-
" <td>https://data.4tu.nl/articles/dataset/Dataset_b...</td>\n",
|
392 |
-
" <td>NaN</td>\n",
|
393 |
-
" <td>20</td>\n",
|
394 |
-
" <td>https://app.dimensions.ai/discover/publication...</td>\n",
|
395 |
-
" <td>4</td>\n",
|
396 |
-
" <td>1</td>\n",
|
397 |
-
" <td>3</td>\n",
|
398 |
-
" <td>1</td>\n",
|
399 |
-
" <td>8</td>\n",
|
400 |
-
" <td>0</td>\n",
|
401 |
-
" <td>0</td>\n",
|
402 |
-
" <td>(machine) learning, drift detection</td>\n",
|
403 |
-
" </tr>\n",
|
404 |
-
" <tr>\n",
|
405 |
-
" <th>21</th>\n",
|
406 |
-
" <td>Receipt phase of an environmental permit appli...</td>\n",
|
407 |
-
" <td>Data originates from the CoSeLoG project where...</td>\n",
|
408 |
-
" <td>https://data.4tu.nl/articles/dataset/Receipt_p...</td>\n",
|
409 |
-
" <td>NaN</td>\n",
|
410 |
-
" <td>15</td>\n",
|
411 |
-
" <td>https://data.4tu.nl/articles/dataset/Receipt_p...</td>\n",
|
412 |
-
" <td>-1</td>\n",
|
413 |
-
" <td>-1</td>\n",
|
414 |
-
" <td>-1</td>\n",
|
415 |
-
" <td>-1</td>\n",
|
416 |
-
" <td>-1</td>\n",
|
417 |
-
" <td>-1</td>\n",
|
418 |
-
" <td>-1</td>\n",
|
419 |
-
" <td>NaN</td>\n",
|
420 |
-
" </tr>\n",
|
421 |
-
" <tr>\n",
|
422 |
-
" <th>22</th>\n",
|
423 |
-
" <td>Environmental permit application process (βWAB...</td>\n",
|
424 |
-
" <td>Data originates from the CoSeLoG project where...</td>\n",
|
425 |
-
" <td>https://data.4tu.nl/articles/dataset/Environme...</td>\n",
|
426 |
-
" <td>NaN</td>\n",
|
427 |
-
" <td>2</td>\n",
|
428 |
-
" <td>https://app.dimensions.ai/discover/publication...</td>\n",
|
429 |
-
" <td>0</td>\n",
|
430 |
-
" <td>0</td>\n",
|
431 |
-
" <td>0</td>\n",
|
432 |
-
" <td>0</td>\n",
|
433 |
-
" <td>1</td>\n",
|
434 |
-
" <td>0</td>\n",
|
435 |
-
" <td>0</td>\n",
|
436 |
-
" <td>predictions with a-priori knowledge</td>\n",
|
437 |
-
" </tr>\n",
|
438 |
-
" <tr>\n",
|
439 |
-
" <th>23</th>\n",
|
440 |
-
" <td>Environmental permit application process (βWAB...</td>\n",
|
441 |
-
" <td>Data originates from the CoSeLoG project where...</td>\n",
|
442 |
-
" <td>https://data.4tu.nl/articles/dataset/Environme...</td>\n",
|
443 |
-
" <td>NaN</td>\n",
|
444 |
-
" <td>2</td>\n",
|
445 |
-
" <td>https://app.dimensions.ai/discover/publication...</td>\n",
|
446 |
-
" <td>1</td>\n",
|
447 |
-
" <td>0</td>\n",
|
448 |
-
" <td>0</td>\n",
|
449 |
-
" <td>0</td>\n",
|
450 |
-
" <td>0</td>\n",
|
451 |
-
" <td>0</td>\n",
|
452 |
-
" <td>0</td>\n",
|
453 |
-
" <td>multidimensional process mining, process cubes</td>\n",
|
454 |
-
" </tr>\n",
|
455 |
-
" <tr>\n",
|
456 |
-
" <th>24</th>\n",
|
457 |
-
" <td>NaN</td>\n",
|
458 |
-
" <td>NaN</td>\n",
|
459 |
-
" <td>NaN</td>\n",
|
460 |
-
" <td>NaN</td>\n",
|
461 |
-
" <td>NaN</td>\n",
|
462 |
-
" <td>NaN</td>\n",
|
463 |
-
" <td>NaN</td>\n",
|
464 |
-
" <td>NaN</td>\n",
|
465 |
-
" <td>NaN</td>\n",
|
466 |
-
" <td>NaN</td>\n",
|
467 |
-
" <td>NaN</td>\n",
|
468 |
-
" <td>NaN</td>\n",
|
469 |
-
" <td>NaN</td>\n",
|
470 |
-
" <td>NaN</td>\n",
|
471 |
-
" </tr>\n",
|
472 |
-
" </tbody>\n",
|
473 |
-
"</table>\n",
|
474 |
-
"</div>"
|
475 |
-
],
|
476 |
-
"text/plain": [
|
477 |
-
" Name \\\n",
|
478 |
-
"0 Sepsis Cases - Event Log \n",
|
479 |
-
"1 BPI 2017 - Offer Log \n",
|
480 |
-
"2 Road Traffic Fine Management Process (not BPI) \n",
|
481 |
-
"3 BPI 2011 \n",
|
482 |
-
"4 BPI 2012 \n",
|
483 |
-
"5 BPI 2013 - Open Problems \n",
|
484 |
-
"6 BPI 2013 - Closed Problems \n",
|
485 |
-
"7 BPI 2013 - Incidents \n",
|
486 |
-
"8 BPI 2014 - Incident Records \n",
|
487 |
-
"9 BPI 2014 - Interaction Records \n",
|
488 |
-
"10 BPI 2015 - Log 3 \n",
|
489 |
-
"11 BPI 2015 - Log 1 \n",
|
490 |
-
"12 BPI 2016 - Clicks Logged In \n",
|
491 |
-
"13 BPI 2017 - Application Log \n",
|
492 |
-
"14 BPI 2018 \n",
|
493 |
-
"15 BPI 2020 - Travel Permits \n",
|
494 |
-
"16 BPI 2019 \n",
|
495 |
-
"17 BPI 2020 - International Declarations \n",
|
496 |
-
"18 BPI 2020 - Domestic Declarations \n",
|
497 |
-
"19 BPI 2020 - Prepaid Travel Cost \n",
|
498 |
-
"20 Helpdesk \n",
|
499 |
-
"21 Receipt phase of an environmental permit appli... \n",
|
500 |
-
"22 Environmental permit application process (βWAB... \n",
|
501 |
-
"23 Environmental permit application process (βWAB... \n",
|
502 |
-
"24 NaN \n",
|
503 |
-
"\n",
|
504 |
-
" Short description \\\n",
|
505 |
-
"0 This real-life event log contains events of se... \n",
|
506 |
-
"1 Contains data from a financial institute inclu... \n",
|
507 |
-
"2 A real-life event log taken from an informatio... \n",
|
508 |
-
"3 Contains data from from a Dutch Academic Hospi... \n",
|
509 |
-
"4 Contains the event log of an application proce... \n",
|
510 |
-
"5 Rabobank Group ICT implemented ITIL processes ... \n",
|
511 |
-
"6 Rabobank Group ICT implemented ITIL processes ... \n",
|
512 |
-
"7 The log contains events from an incident and p... \n",
|
513 |
-
"8 Rabobank Group ICT implemented ITIL processes ... \n",
|
514 |
-
"9 Rabobank Group ICT implemented ITIL processes ... \n",
|
515 |
-
"10 Provided by 5 Dutch municipalities. The data c... \n",
|
516 |
-
"11 Provided by 5 Dutch municipalities. The data c... \n",
|
517 |
-
"12 Contains clicks of users that are logged in fr... \n",
|
518 |
-
"13 Contains data from a financial institute inclu... \n",
|
519 |
-
"14 The process covers the handling of application... \n",
|
520 |
-
"15 Contains 2 years of data from the reimbursemen... \n",
|
521 |
-
"16 Contains the purchase order handling process o... \n",
|
522 |
-
"17 Contains 2 years of data from the reimbursemen... \n",
|
523 |
-
"18 Contains 2 years of data from the reimbursemen... \n",
|
524 |
-
"19 Contains 2 years of data from the reimbursemen... \n",
|
525 |
-
"20 Ticketing management process of the Help desk ... \n",
|
526 |
-
"21 Data originates from the CoSeLoG project where... \n",
|
527 |
-
"22 Data originates from the CoSeLoG project where... \n",
|
528 |
-
"23 Data originates from the CoSeLoG project where... \n",
|
529 |
-
"24 NaN \n",
|
530 |
-
"\n",
|
531 |
-
" data link \\\n",
|
532 |
-
"0 https://data.4tu.nl/articles/dataset/Sepsis_Ca... \n",
|
533 |
-
"1 https://data.4tu.nl/articles/dataset/BPI_Chall... \n",
|
534 |
-
"2 https://data.4tu.nl/articles/dataset/Road_Traf... \n",
|
535 |
-
"3 https://data.4tu.nl/articles/dataset/Real-life... \n",
|
536 |
-
"4 https://data.4tu.nl/articles/dataset/BPI_Chall... \n",
|
537 |
-
"5 https://data.4tu.nl/articles/dataset/BPI_Chall... \n",
|
538 |
-
"6 https://data.4tu.nl/articles/dataset/BPI_Chall... \n",
|
539 |
-
"7 https://data.4tu.nl/articles/dataset/BPI_Chall... \n",
|
540 |
-
"8 https://data.4tu.nl/articles/dataset/BPI_Chall... \n",
|
541 |
-
"9 https://data.4tu.nl/articles/dataset/BPI_Chall... \n",
|
542 |
-
"10 https://data.4tu.nl/articles/dataset/BPI_Chall... \n",
|
543 |
-
"11 https://data.4tu.nl/articles/dataset/BPI_Chall... \n",
|
544 |
-
"12 https://data.4tu.nl/articles/dataset/BPI_Chall... \n",
|
545 |
-
"13 https://data.4tu.nl/articles/dataset/BPI_Chall... \n",
|
546 |
-
"14 https://data.4tu.nl/articles/dataset/BPI_Chall... \n",
|
547 |
-
"15 https://data.4tu.nl/articles/dataset/BPI_Chall... \n",
|
548 |
-
"16 https://data.4tu.nl/articles/dataset/BPI_Chall... \n",
|
549 |
-
"17 https://data.4tu.nl/articles/dataset/BPI_Chall... \n",
|
550 |
-
"18 https://data.4tu.nl/articles/dataset/BPI_Chall... \n",
|
551 |
-
"19 https://data.4tu.nl/articles/dataset/BPI_Chall... \n",
|
552 |
-
"20 https://data.4tu.nl/articles/dataset/Dataset_b... \n",
|
553 |
-
"21 https://data.4tu.nl/articles/dataset/Receipt_p... \n",
|
554 |
-
"22 https://data.4tu.nl/articles/dataset/Environme... \n",
|
555 |
-
"23 https://data.4tu.nl/articles/dataset/Environme... \n",
|
556 |
-
"24 NaN \n",
|
557 |
-
"\n",
|
558 |
-
" challenge link \\\n",
|
559 |
-
"0 https://data.4tu.nl/articles/dataset/Sepsis_Ca... \n",
|
560 |
-
"1 https://www.win.tue.nl/bpi/doku.php?id=2017:ch... \n",
|
561 |
-
"2 NaN \n",
|
562 |
-
"3 https://www.win.tue.nl/bpi/doku.php?id=2011:ch... \n",
|
563 |
-
"4 https://www.win.tue.nl/bpi/doku.php?id=2012:ch... \n",
|
564 |
-
"5 https://www.win.tue.nl/bpi/2013/challenge.html \n",
|
565 |
-
"6 https://www.win.tue.nl/bpi/doku.php?id=2013:ch... \n",
|
566 |
-
"7 https://www.win.tue.nl/bpi/2013/challenge.html \n",
|
567 |
-
"8 https://www.win.tue.nl/bpi/doku.php?id=2014:ch... \n",
|
568 |
-
"9 https://www.win.tue.nl/bpi/doku.php?id=2014:ch... \n",
|
569 |
-
"10 https://www.win.tue.nl/bpi/doku.php?id=2015:ch... \n",
|
570 |
-
"11 https://www.win.tue.nl/bpi/doku.php?id=2015:ch... \n",
|
571 |
-
"12 https://www.win.tue.nl/bpi/doku.php?id=2016:ch... \n",
|
572 |
-
"13 https://www.win.tue.nl/bpi/doku.php?id=2017:ch... \n",
|
573 |
-
"14 https://www.win.tue.nl/bpi/doku.php?id=2018:ch... \n",
|
574 |
-
"15 https://icpmconference.org/2020/bpi-challenge/ \n",
|
575 |
-
"16 https://icpmconference.org/2019/icpm-2019/cont... \n",
|
576 |
-
"17 https://icpmconference.org/2020/bpi-challenge/ \n",
|
577 |
-
"18 https://icpmconference.org/2020/bpi-challenge/ \n",
|
578 |
-
"19 https://icpmconference.org/2020/bpi-challenge/ \n",
|
579 |
-
"20 NaN \n",
|
580 |
-
"21 NaN \n",
|
581 |
-
"22 NaN \n",
|
582 |
-
"23 NaN \n",
|
583 |
-
"24 NaN \n",
|
584 |
-
"\n",
|
585 |
-
" Citations (Stand Februar 2023) \\\n",
|
586 |
-
"0 61 \n",
|
587 |
-
"1 4 \n",
|
588 |
-
"2 95 \n",
|
589 |
-
"3 57 \n",
|
590 |
-
"4 151 \n",
|
591 |
-
"5 6 \n",
|
592 |
-
"6 12 \n",
|
593 |
-
"7 36 \n",
|
594 |
-
"8 5 \n",
|
595 |
-
"9 1 \n",
|
596 |
-
"10 1 \n",
|
597 |
-
"11 8 \n",
|
598 |
-
"12 1 \n",
|
599 |
-
"13 73 \n",
|
600 |
-
"14 26 \n",
|
601 |
-
"15 2 \n",
|
602 |
-
"16 35 \n",
|
603 |
-
"17 2 \n",
|
604 |
-
"18 7 \n",
|
605 |
-
"19 2 \n",
|
606 |
-
"20 20 \n",
|
607 |
-
"21 15 \n",
|
608 |
-
"22 2 \n",
|
609 |
-
"23 2 \n",
|
610 |
-
"24 NaN \n",
|
611 |
-
"\n",
|
612 |
-
" Publications \\\n",
|
613 |
-
"0 https://app.dimensions.ai/discover/publication... \n",
|
614 |
-
"1 https://app.dimensions.ai/discover/publication... \n",
|
615 |
-
"2 https://app.dimensions.ai/discover/publication... \n",
|
616 |
-
"3 https://app.dimensions.ai/discover/publication... \n",
|
617 |
-
"4 https://app.dimensions.ai/discover/publication... \n",
|
618 |
-
"5 https://app.dimensions.ai/discover/publication... \n",
|
619 |
-
"6 https://app.dimensions.ai/discover/publication... \n",
|
620 |
-
"7 https://app.dimensions.ai/discover/publication... \n",
|
621 |
-
"8 https://app.dimensions.ai/discover/publication... \n",
|
622 |
-
"9 https://app.dimensions.ai/discover/publication... \n",
|
623 |
-
"10 https://app.dimensions.ai/discover/publication... \n",
|
624 |
-
"11 https://app.dimensions.ai/discover/publication... \n",
|
625 |
-
"12 https://app.dimensions.ai/discover/publication... \n",
|
626 |
-
"13 https://app.dimensions.ai/discover/publication... \n",
|
627 |
-
"14 https://app.dimensions.ai/discover/publication... \n",
|
628 |
-
"15 https://app.dimensions.ai/discover/publication... \n",
|
629 |
-
"16 https://app.dimensions.ai/discover/publication... \n",
|
630 |
-
"17 https://app.dimensions.ai/discover/publication... \n",
|
631 |
-
"18 https://app.dimensions.ai/discover/publication... \n",
|
632 |
-
"19 https://app.dimensions.ai/discover/publication... \n",
|
633 |
-
"20 https://app.dimensions.ai/discover/publication... \n",
|
634 |
-
"21 https://data.4tu.nl/articles/dataset/Receipt_p... \n",
|
635 |
-
"22 https://app.dimensions.ai/discover/publication... \n",
|
636 |
-
"23 https://app.dimensions.ai/discover/publication... \n",
|
637 |
-
"24 NaN \n",
|
638 |
-
"\n",
|
639 |
-
" Process Discovery/ Declarative Conformance Checking / Alignment / Replay \\\n",
|
640 |
-
"0 17 7 \n",
|
641 |
-
"1 1 0 \n",
|
642 |
-
"2 32 9 \n",
|
643 |
-
"3 13 1 \n",
|
644 |
-
"4 40 15 \n",
|
645 |
-
"5 1 0 \n",
|
646 |
-
"6 3 2 \n",
|
647 |
-
"7 14 5 \n",
|
648 |
-
"8 1 0 \n",
|
649 |
-
"9 0 0 \n",
|
650 |
-
"10 0 0 \n",
|
651 |
-
"11 1 1 \n",
|
652 |
-
"12 1 0 \n",
|
653 |
-
"13 11 5 \n",
|
654 |
-
"14 7 1 \n",
|
655 |
-
"15 0 0 \n",
|
656 |
-
"16 3 1 \n",
|
657 |
-
"17 0 0 \n",
|
658 |
-
"18 0 2 \n",
|
659 |
-
"19 0 0 \n",
|
660 |
-
"20 4 1 \n",
|
661 |
-
"21 -1 -1 \n",
|
662 |
-
"22 0 0 \n",
|
663 |
-
"23 1 0 \n",
|
664 |
-
"24 NaN NaN \n",
|
665 |
-
"\n",
|
666 |
-
" Online / Streaming / Realtime Performance (Analysis) / Temporal / Time \\\n",
|
667 |
-
"0 4 1 \n",
|
668 |
-
"1 0 1 \n",
|
669 |
-
"2 4 8 \n",
|
670 |
-
"3 3 4 \n",
|
671 |
-
"4 4 13 \n",
|
672 |
-
"5 0 0 \n",
|
673 |
-
"6 1 2 \n",
|
674 |
-
"7 1 1 \n",
|
675 |
-
"8 0 0 \n",
|
676 |
-
"9 0 0 \n",
|
677 |
-
"10 0 0 \n",
|
678 |
-
"11 0 0 \n",
|
679 |
-
"12 1 0 \n",
|
680 |
-
"13 2 14 \n",
|
681 |
-
"14 2 0 \n",
|
682 |
-
"15 0 1 \n",
|
683 |
-
"16 6 6 \n",
|
684 |
-
"17 0 1 \n",
|
685 |
-
"18 2 2 \n",
|
686 |
-
"19 0 0 \n",
|
687 |
-
"20 3 1 \n",
|
688 |
-
"21 -1 -1 \n",
|
689 |
-
"22 0 0 \n",
|
690 |
-
"23 0 0 \n",
|
691 |
-
"24 NaN NaN \n",
|
692 |
-
"\n",
|
693 |
-
" Predict(ive)/ Monitoring/ Prescriptive Trace clustering / Clustering \\\n",
|
694 |
-
"0 8 2 \n",
|
695 |
-
"1 1 0 \n",
|
696 |
-
"2 15 1 \n",
|
697 |
-
"3 12 4 \n",
|
698 |
-
"4 46 0 \n",
|
699 |
-
"5 1 0 \n",
|
700 |
-
"6 0 0 \n",
|
701 |
-
"7 7 0 \n",
|
702 |
-
"8 0 0 \n",
|
703 |
-
"9 0 0 \n",
|
704 |
-
"10 1 0 \n",
|
705 |
-
"11 3 0 \n",
|
706 |
-
"12 0 0 \n",
|
707 |
-
"13 23 1 \n",
|
708 |
-
"14 8 0 \n",
|
709 |
-
"15 0 0 \n",
|
710 |
-
"16 9 4 \n",
|
711 |
-
"17 2 0 \n",
|
712 |
-
"18 3 0 \n",
|
713 |
-
"19 0 0 \n",
|
714 |
-
"20 8 0 \n",
|
715 |
-
"21 -1 -1 \n",
|
716 |
-
"22 1 0 \n",
|
717 |
-
"23 0 0 \n",
|
718 |
-
"24 NaN NaN \n",
|
719 |
-
"\n",
|
720 |
-
" Preprocessing / Event Abstraction / Event Data Correlation \\\n",
|
721 |
-
"0 2 \n",
|
722 |
-
"1 0 \n",
|
723 |
-
"2 2 \n",
|
724 |
-
"3 1 \n",
|
725 |
-
"4 1 \n",
|
726 |
-
"5 0 \n",
|
727 |
-
"6 3 \n",
|
728 |
-
"7 2 \n",
|
729 |
-
"8 0 \n",
|
730 |
-
"9 0 \n",
|
731 |
-
"10 0 \n",
|
732 |
-
"11 3 \n",
|
733 |
-
"12 0 \n",
|
734 |
-
"13 1 \n",
|
735 |
-
"14 2 \n",
|
736 |
-
"15 0 \n",
|
737 |
-
"16 1 \n",
|
738 |
-
"17 0 \n",
|
739 |
-
"18 0 \n",
|
740 |
-
"19 0 \n",
|
741 |
-
"20 0 \n",
|
742 |
-
"21 -1 \n",
|
743 |
-
"22 0 \n",
|
744 |
-
"23 0 \n",
|
745 |
-
"24 NaN \n",
|
746 |
-
"\n",
|
747 |
-
" Further keywords: \n",
|
748 |
-
"0 (machine) learning, (online process) monitorin... \n",
|
749 |
-
"1 (machine) learning, cloud computing \n",
|
750 |
-
"2 alarm-based prescriptive process monitoring, b... \n",
|
751 |
-
"3 (compliance) monitoring, (machine) learning, d... \n",
|
752 |
-
"4 (in)frequent patterns in process models, (mach... \n",
|
753 |
-
"5 (in)frequent patterns in process models, (mach... \n",
|
754 |
-
"6 (in)frequent patterns in process models \n",
|
755 |
-
"7 (machine) learning, rule mining \n",
|
756 |
-
"8 privacy preservation, security \n",
|
757 |
-
"9 (machine) learning, hidden Markov models \n",
|
758 |
-
"10 specification-driven predictive business proce... \n",
|
759 |
-
"11 (machine) learning \n",
|
760 |
-
"12 automation \n",
|
761 |
-
"13 (machine) learning, alarm-based prescriptive p... \n",
|
762 |
-
"14 (machine) learning, automation \n",
|
763 |
-
"15 stage-based process performance analysis \n",
|
764 |
-
"16 (online process) monitoring, remaining time pr... \n",
|
765 |
-
"17 (machine) learning, remaining time prediction \n",
|
766 |
-
"18 (machine) learning, remaining time prediction \n",
|
767 |
-
"19 multi-perspective \n",
|
768 |
-
"20 (machine) learning, drift detection \n",
|
769 |
-
"21 NaN \n",
|
770 |
-
"22 predictions with a-priori knowledge \n",
|
771 |
-
"23 multidimensional process mining, process cubes \n",
|
772 |
-
"24 NaN "
|
773 |
-
]
|
774 |
-
},
|
775 |
-
"execution_count": 4,
|
776 |
-
"metadata": {},
|
777 |
-
"output_type": "execute_result"
|
778 |
-
}
|
779 |
-
],
|
780 |
-
"source": [
|
781 |
-
"#import pm4py\n",
|
782 |
-
"import pandas as pd\n",
|
783 |
-
"INPUT_PATH = \"../data/mappings.csv\"\n",
|
784 |
-
"df = pd.read_csv(INPUT_PATH, sep = \";\", dtype = \"unicode\")\n",
|
785 |
-
"df"
|
786 |
-
]
|
787 |
-
},
|
788 |
-
{
|
789 |
-
"cell_type": "code",
|
790 |
-
"execution_count": null,
|
791 |
-
"id": "04a97f37",
|
792 |
-
"metadata": {},
|
793 |
-
"outputs": [],
|
794 |
-
"source": []
|
795 |
-
}
|
796 |
-
],
|
797 |
-
"metadata": {
|
798 |
-
"kernelspec": {
|
799 |
-
"display_name": "Python 3 (ipykernel)",
|
800 |
-
"language": "python",
|
801 |
-
"name": "python3"
|
802 |
-
},
|
803 |
-
"language_info": {
|
804 |
-
"codemirror_mode": {
|
805 |
-
"name": "ipython",
|
806 |
-
"version": 3
|
807 |
-
},
|
808 |
-
"file_extension": ".py",
|
809 |
-
"mimetype": "text/x-python",
|
810 |
-
"name": "python",
|
811 |
-
"nbconvert_exporter": "python",
|
812 |
-
"pygments_lexer": "ipython3",
|
813 |
-
"version": "3.10.7"
|
814 |
-
}
|
815 |
-
},
|
816 |
-
"nbformat": 4,
|
817 |
-
"nbformat_minor": 5
|
818 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
notebooks/.ipynb_checkpoints/test_feed-checkpoint.ipynb
DELETED
The diff for this file is too large to render.
See raw diff
|
|
notebooks/benchmarking_process_discovery.ipynb
CHANGED
@@ -1277,7 +1277,7 @@
|
|
1277 |
"\n",
|
1278 |
"import sys\n",
|
1279 |
"import os\n",
|
1280 |
-
"sys.path.append(os.path.dirname(\"../
|
1281 |
"from io_helpers import get_keys_abbreviation\n",
|
1282 |
"\n",
|
1283 |
"print(benchmarked_ft.shape, benchmarked_pd.shape)\n",
|
@@ -1422,7 +1422,7 @@
|
|
1422 |
"name": "python",
|
1423 |
"nbconvert_exporter": "python",
|
1424 |
"pygments_lexer": "ipython3",
|
1425 |
-
"version": "3.9.
|
1426 |
}
|
1427 |
},
|
1428 |
"nbformat": 4,
|
|
|
1277 |
"\n",
|
1278 |
"import sys\n",
|
1279 |
"import os\n",
|
1280 |
+
"sys.path.append(os.path.dirname(\"../gedi/utils/io_helpers.py\"))\n",
|
1281 |
"from io_helpers import get_keys_abbreviation\n",
|
1282 |
"\n",
|
1283 |
"print(benchmarked_ft.shape, benchmarked_pd.shape)\n",
|
|
|
1422 |
"name": "python",
|
1423 |
"nbconvert_exporter": "python",
|
1424 |
"pygments_lexer": "ipython3",
|
1425 |
+
"version": "3.9.19"
|
1426 |
}
|
1427 |
},
|
1428 |
"nbformat": 4,
|
notebooks/bpic_generability_pdm.ipynb
CHANGED
@@ -1223,7 +1223,7 @@
|
|
1223 |
"from scipy.stats import pearsonr\n",
|
1224 |
"import sys\n",
|
1225 |
"import os\n",
|
1226 |
-
"sys.path.append(os.path.dirname(\"../
|
1227 |
"from io_helpers import get_keys_abbreviation\n",
|
1228 |
"\n",
|
1229 |
"\n",
|
|
|
1223 |
"from scipy.stats import pearsonr\n",
|
1224 |
"import sys\n",
|
1225 |
"import os\n",
|
1226 |
+
"sys.path.append(os.path.dirname(\"../gedi/utils/io_helpers.py\"))\n",
|
1227 |
"from io_helpers import get_keys_abbreviation\n",
|
1228 |
"\n",
|
1229 |
"\n",
|
notebooks/experiment_generator.ipynb
CHANGED
@@ -2225,7 +2225,7 @@
|
|
2225 |
],
|
2226 |
"source": [
|
2227 |
"bpic_features = pd.read_csv(\"../data/34_bpic_features.csv\", index_col=None)\n",
|
2228 |
-
"#bpic_features = pd.read_csv(\"../
|
2229 |
"\n",
|
2230 |
"#bpic_features = bpic_features.drop(['Unnamed: 0'], axis=1)\n",
|
2231 |
"print(bpic_features.shape)\n",
|
@@ -3102,7 +3102,7 @@
|
|
3102 |
"name": "python",
|
3103 |
"nbconvert_exporter": "python",
|
3104 |
"pygments_lexer": "ipython3",
|
3105 |
-
"version": "3.9.
|
3106 |
}
|
3107 |
},
|
3108 |
"nbformat": 4,
|
|
|
2225 |
],
|
2226 |
"source": [
|
2227 |
"bpic_features = pd.read_csv(\"../data/34_bpic_features.csv\", index_col=None)\n",
|
2228 |
+
"#bpic_features = pd.read_csv(\"../gedi/output/features/real_event_logs.csv\", index_col=None)\n",
|
2229 |
"\n",
|
2230 |
"#bpic_features = bpic_features.drop(['Unnamed: 0'], axis=1)\n",
|
2231 |
"print(bpic_features.shape)\n",
|
|
|
3102 |
"name": "python",
|
3103 |
"nbconvert_exporter": "python",
|
3104 |
"pygments_lexer": "ipython3",
|
3105 |
+
"version": "3.9.19"
|
3106 |
}
|
3107 |
},
|
3108 |
"nbformat": 4,
|
notebooks/feature_distributions.ipynb
CHANGED
@@ -1847,7 +1847,7 @@
|
|
1847 |
"name": "python",
|
1848 |
"nbconvert_exporter": "python",
|
1849 |
"pygments_lexer": "ipython3",
|
1850 |
-
"version": "3.9.
|
1851 |
}
|
1852 |
},
|
1853 |
"nbformat": 4,
|
|
|
1847 |
"name": "python",
|
1848 |
"nbconvert_exporter": "python",
|
1849 |
"pygments_lexer": "ipython3",
|
1850 |
+
"version": "3.9.19"
|
1851 |
}
|
1852 |
},
|
1853 |
"nbformat": 4,
|