Andrea Maldonado commited on
Commit
8c2c8d0
Β·
1 Parent(s): 32309bf

iGEDI release

Browse files
This view is limited to 50 files because it contains too many changes. Β  See raw diff
Files changed (50) hide show
  1. README.md +168 -14
  2. config.py +6 -69
  3. config_files/algorithm/augmentation.json +0 -12
  4. config_files/config_layout.json +48 -0
  5. config_files/experiment_real_targets.json +41 -0
  6. config_files/grid_2obj/generator_grid_2objectives_ense_enseef.json +1 -0
  7. config_files/grid_2obj/generator_grid_2objectives_ense_enself.json +1 -0
  8. config_files/grid_2obj/generator_grid_2objectives_ense_enve.json +1 -0
  9. config_files/grid_2obj/generator_grid_2objectives_ense_rmcv.json +1 -0
  10. config_files/grid_2obj/generator_grid_2objectives_ense_rt10v.json +1 -0
  11. config_files/grid_2obj/generator_grid_2objectives_ense_rvpnot.json +1 -0
  12. config_files/grid_2obj/generator_grid_2objectives_enseef_enself.json +1 -0
  13. config_files/grid_2obj/generator_grid_2objectives_enseef_enve.json +1 -0
  14. config_files/grid_2obj/generator_grid_2objectives_enseef_rmcv.json +1 -0
  15. config_files/grid_2obj/generator_grid_2objectives_enseef_rt10v.json +1 -0
  16. config_files/grid_2obj/generator_grid_2objectives_enseef_rvpnot.json +1 -0
  17. config_files/grid_2obj/generator_grid_2objectives_enself_enve.json +1 -0
  18. config_files/grid_2obj/generator_grid_2objectives_enself_rmcv.json +1 -0
  19. config_files/grid_2obj/generator_grid_2objectives_enself_rt10v.json +1 -0
  20. config_files/grid_2obj/generator_grid_2objectives_enself_rvpnot.json +1 -0
  21. config_files/grid_2obj/generator_grid_2objectives_enve_mvo.json +1 -0
  22. config_files/grid_2obj/generator_grid_2objectives_enve_rmcv.json +1 -0
  23. config_files/grid_2obj/generator_grid_2objectives_enve_rt10v.json +1 -0
  24. config_files/grid_2obj/generator_grid_2objectives_enve_rvpnot.json +1 -0
  25. config_files/grid_2obj/generator_grid_2objectives_enve_sam.json +1 -0
  26. config_files/grid_2obj/generator_grid_2objectives_mvo_sam.json +1 -0
  27. config_files/grid_2obj/generator_grid_2objectives_rmcv_rt10v.json +1 -0
  28. config_files/grid_2obj/generator_grid_2objectives_rmcv_rvpnot.json +1 -0
  29. config_files/grid_2obj/generator_grid_2objectives_rt10v_rvpnot.json +1 -0
  30. config_files/options/baseline.json +0 -9
  31. config_files/options/run_params.json +0 -9
  32. config_files/pipeline_steps/augmentation.json +12 -0
  33. config_files/{algorithm β†’ pipeline_steps}/benchmark.json +1 -1
  34. config_files/{algorithm β†’ pipeline_steps}/evaluation_plotter.json +2 -2
  35. config_files/{algorithm β†’ pipeline_steps}/feature_extraction.json +1 -1
  36. config_files/{algorithm β†’ pipeline_steps}/generation.json +0 -0
  37. config_files/{algorithm β†’ test}/experiment_test.json +3 -3
  38. config_files/{algorithm/test β†’ test}/generator_2bpic_2objectives_ense_enseef.json +2 -2
  39. config_files/{algorithm/test β†’ test}/generator_grid_1objectives_rt10v.json +2 -2
  40. config_files/{algorithm/test β†’ test}/generator_grid_2objectives_ense_enself.json +2 -2
  41. data/GenED_bench.csv +0 -0
  42. data/GenED_feat.csv +0 -0
  43. data/grid_1obj/grid_1objectives_ense.csv +0 -12
  44. data/grid_1obj/grid_1objectives_enseef.csv +0 -12
  45. data/grid_1obj/grid_1objectives_enself.csv +0 -12
  46. data/grid_1obj/grid_1objectives_enve.csv +0 -12
  47. data/grid_1obj/grid_1objectives_rmcv.csv +0 -12
  48. data/grid_1obj/grid_1objectives_rt10v.csv +0 -12
  49. data/grid_1obj/grid_1objectives_rutpt.csv +0 -12
  50. data/grid_2obj/{grid_2objectives_enve_rutpt.csv β†’ grid_2objectives_ense_rvpnot.csv} +1 -1
README.md CHANGED
@@ -1,13 +1,35 @@
1
- # GEDI
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  **G**enerating **E**vent **D**ata with **I**ntentional Features for Benchmarking Process Mining
3
 
4
  ## Table of Contents
5
 
 
6
  - [Requirements](#requirements)
7
  - [Installation](#installation)
8
- - [Usage](#usage)
 
9
  - [References](#references)
10
 
 
 
 
 
11
  ## Requirements
12
  - [Miniconda](https://docs.conda.io/en/latest/miniconda.html)
13
  - Graphviz on your OS e.g.
@@ -22,29 +44,161 @@ conda install pyrfr swig
22
  ```
23
  ## Installation
24
  - `conda env create -f .conda.yml`
25
- - Install [Feature Extractor for Event Data (feeed)](https://github.com/lmu-dbs/feeed) in the newly installed conda environment: `pip install feeed`
26
 
27
  ### Startup
28
  ```console
29
  conda activate gedi
30
- python main.py -o config_files/options/baseline.json -a config_files/algorithm/experiment_test.json
31
  ```
32
- ## Usage
33
- Our pipeline offers several pipeline steps, which can be run sequentially or partially:
34
- - feature_extraction
35
- - generation
36
- - benchmark
37
- - evaluation_plotter
38
 
39
- We also include two notebooks, which output experimental results as in our paper.
 
 
 
 
 
40
 
41
  To run different steps of the GEDI pipeline, please adapt the `.json` accordingly.
42
  ```console
43
  conda activate gedi
44
- python main.py -o config_files/options/baseline.json -a config_files/algorithm/<pipeline-step>.json
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45
  ```
46
- For reference of possible keys and values for each step, please see `config_files/algorithm/experiment_test.json`.
47
- To run the whole pipeline please create a new `.json` file, specifying all steps you want to run and specify desired keys and values for each step.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48
 
49
  ## References
50
  The framework used by `GEDI` is taken directly from the original paper by [Maldonado](mailto:[email protected]), Frey, Tavares, Rehwald and Seidl. If you would like to discuss the paper, or corresponding research questions on benchmarking process mining tasks please email the authors.
 
1
+ ---
2
+ title: Gedi
3
+ emoji: πŸŒ–
4
+ colorFrom: indigo
5
+ colorTo: blue
6
+ sdk: streamlit
7
+ sdk_version: 1.37.1
8
+ app_file: utils/config_fabric.py
9
+ pinned: false
10
+ license: mit
11
+ ---
12
+
13
+ <p>
14
+ <img src="gedi/utils/logo.png" alt="Logo" width="100" align="left" />
15
+ <h1 style="display: inline;">GEDI</h1>
16
+ </p>
17
+
18
  **G**enerating **E**vent **D**ata with **I**ntentional Features for Benchmarking Process Mining
19
 
20
  ## Table of Contents
21
 
22
+ - [Interactive Web Application](#interactive-web-application)
23
  - [Requirements](#requirements)
24
  - [Installation](#installation)
25
+ - [General Usage](#general-usage)
26
+ - [Experiments](#experiments)
27
  - [References](#references)
28
 
29
+ ## Interactive Web Application
30
+ Our [interactive web application](https://huggingface.co/spaces/andreamalhera/gedi) (iGEDI) guides you through the specification process, runs GEDI for you. You can directly download the resulting generated logs or the configuration file to run GEDI locally.
31
+ ![Interface Screenshot](gedi/utils/iGEDI_interface.png)
32
+
33
  ## Requirements
34
  - [Miniconda](https://docs.conda.io/en/latest/miniconda.html)
35
  - Graphviz on your OS e.g.
 
44
  ```
45
  ## Installation
46
  - `conda env create -f .conda.yml`
 
47
 
48
  ### Startup
49
  ```console
50
  conda activate gedi
51
+ python main.py -a config_files/test/experiment_test.json
52
  ```
53
+ The last step should take only a few minutes to run.
 
 
 
 
 
54
 
55
+ ## General Usage
56
+ Our pipeline offers several pipeline steps, which can be run sequentially or partially ordered:
57
+ - [Feature Extraction](#feature-extraction)
58
+ - [Generation](#generation)
59
+ - [Benchmark](#benchmark)
60
+ - [Evaluation Plotter](https://github.com/lmu-dbs/gedi/blob/16-documentation-update-readme/README.md#evaluation-plotting)
61
 
62
  To run different steps of the GEDI pipeline, please adapt the `.json` accordingly.
63
  ```console
64
  conda activate gedi
65
+ python main.py -a config_files/pipeline_steps/<pipeline-step>.json
66
+ ```
67
+ For reference of possible keys and values for each step, please see `config_files/test/experiment_test.json`.
68
+ To run the whole pipeline please create a new `.json` file, specifying all steps you want to run and specify desired keys and values for each step.
69
+ To reproduce results from our paper, please refer to [Experiments](#experiments).
70
+
71
+ ### Feature Extraction
72
+ ---
73
+ To extract the features on the event-log level and use them for hyperparameter optimization, we employ the following script:
74
+ ```console
75
+ conda activate gedi
76
+ python main.py -a config_files/pipeline_steps/feature_extraction.json
77
+ ```
78
+ The JSON file consists of the following key-value pairs:
79
+
80
+ - pipeline_step: denotes the current step in the pipeline (here: feature_extraction)
81
+ - input_path: folder to the input files
82
+ - feature params: defines a dictionary, where the inner dictionary consists of a key-value pair 'feature_set' with a list of features being extracted from the references files. A list of valid features can be looked up from the FEEED extractor
83
+ - output_path: defines the path, where plots are saved to
84
+ - real_eventlog_path: defines the file with the features extracted from the real event logs
85
+ - plot_type: defines the style of the output plotting (possible values: violinplot, boxplot)
86
+ - font_size: label font size of the output plot
87
+ - boxplot_width: width of the violinplot/boxplot
88
+
89
+
90
+ ### Generation
91
+ ---
92
+ After having extracted meta features from the files, the next step is to generate event log data accordingly. Generally, there are two settings on how the targets are defined: i) meta feature targets are defined by the meta features from the real event log data; ii) a configuration space is defined which resembles the feasible meta features space.
93
+
94
+ The command to execute the generation step is given by a exemplarily generation.json file:
95
+
96
+ ```console
97
+ conda activate gedi
98
+ python main.py -a config_files/pipeline_steps/generation.json
99
+ ```
100
+
101
+ In the `generation.json`, we have the following key-value pairs:
102
+
103
+ * pipeline_step: denotes the current step in the pipeline (here: event_logs_generation)
104
+ * output_path: defines the output folder
105
+ * generator_params: defines the configuration of the generator itself. For the generator itself, we can set values for the general 'experiment', 'config_space', 'n_trials', and a specific 'plot_reference_feature' being used for plotting
106
+
107
+ - experiment: defines the path to the input file which contains the features that are used for the optimization step. The 'objectives' define the specific features, which are the optimization criteria.
108
+ - config_space: here, we define the configuration of the generator module (here: process tree generator). The process tree generator can process input information which defines characteristics for the generated data (a more thorough overview of the params can be found [here](https://github.com/tjouck/PTandLogGenerator):
109
+
110
+ - mode: most frequent number of visible activities
111
+ - sequence: the probability of adding a sequence operator to the tree
112
+ - choice: the probability of adding a choice operator to the tree
113
+ - parallel: the probability of adding a parallel operator to the tree
114
+ - loop: the probability of adding a loop operator to the tree
115
+ - silent: probability to add silent activity to a choice or loop operator
116
+ - lt_dependency: the probability of adding a random dependency to the tree
117
+ - num_traces: the number of traces in the event log
118
+ - duplicate: the probability of duplicating an activity label
119
+ - or: probability to add an or operator to the tree
120
+
121
+ - n_trials: the maximum number of trials for the hyperparameter optimization to find a feasible solution to the specific configuration being used as the target
122
+
123
+ - plot_reference_feature: defines the feature, which is used on the x-axis on the output plots, i.e., each feature defined in the 'objectives' of the 'experiment' is plotted against the reference feature being defined in this value
124
+
125
+ ### Benchmark
126
+ The benchmarking defines the downstream task which is used for evaluating the goodness of the synthesized event log datasets with the metrics of real-world datasets. The command to execute a benchmarking is shown in the following script:
127
+
128
+ ```console
129
+ conda activate gedi
130
+ python main.py -a config_files/pipeline_steps/benchmark.json
131
  ```
132
+
133
+ In the `benchmark.json`, we have the following key-value pairs:
134
+
135
+ * pipeline_step: denotes the current step in the pipeline (here: benchmark_test)
136
+ * benchmark_test: defines the downstream task. Currently (in v 1.0), only `discovery` for process discovery is implemented
137
+ * input_path: defines the input folder where the synthesized event log data are stored
138
+ * output_path: defines the output folder
139
+ * miners: defines the miners for the downstream task 'discovery' which are used in the benchmarking. In v 1.0 the miners 'inductive' for inductive miner, 'heuristics' for heuristics miner, 'imf' for inductive miner infrequent, as well as 'ilp' for integer linear programming are implemented
140
+
141
+
142
+ ### Evaluation Plotting
143
+ The purpose of the evaluation plotting step is used just for visualization. Some examples of how the plotter can be used is shown in the following exemplarily script:
144
+
145
+
146
+ ```console
147
+ conda activate gedi
148
+ python main.py -a config_files/pipeline_steps/evaluation_plotter.json
149
+ ```
150
+
151
+ Generally, in the `evaluation_plotter.json`, we have the following key-value pairs:
152
+
153
+ * pipeline_step: denotes the current step in the pipeline (here: evaluation_plotter)
154
+ * input_path: defines the input file or the input folder which is considered for the visualizations. If a single file is specified, only the features in that file are considered whereas in the case of specifying a folder, the framework iterates over all files and uses them for plotting
155
+ * plot_reference_feature: defines the feature that is used on the x-axis on the output plots, i.e., each feature defined in the input file is plotted against the reference feature being defined in this value
156
+ * targets: defines the target values which are also used as reference. Likewise to the input_path, the targets can be specified by a single file or by a folder
157
+ * output_path: defines where to store the plots
158
+
159
+ ## Experiments
160
+ In this repository, experiments can be run selectively or from scratch, as preferred. For this purpose, we linked both inputs and outputs for each stage. In this section, we present the reproduction of generated event data, as in our paper, as well as the [visualization of evaluation figures](#visualizations).
161
+ We present two settings for generating intentional event logs, using [real targets](#generating-data-with-real-targets) or using [grid targets](#generating-data-with-grid-targets). Both settings output `.xes` event logs, `.json` and `.csv` files containing feature values, as well as evaluation results, from running a [process discovery benchmark](#benchmark), for the generated event logs.
162
+
163
+ ### Generating data with real targets
164
+ To execute the experiments with real targets, we employ the [experiment_real_targets.json](config_files/experiment_real_targets.json). The script's pipeline will output the [generated event logs (GenBaselineED)](data/event_logs/GenBaselineED), which optimize their feature values towards [real-world event data features](data/BaselineED_feat.csv), alongside their respectively measured [feature values](data/GenBaselineED_feat.csv) and [benchmark metrics values](data/GenBaselineED_bench.csv).
165
+
166
+ ```console
167
+ conda activate gedi
168
+ python main.py -a config_files/experiment_real_targets.json
169
+ ```
170
+
171
+ ### Generating data with grid targets
172
+ To execute the experiments with grid targets, a single [configuration](config_files/grid_2obj) can be selected or all [grid objectives](data/grid_2obj) can be run with one command using the following script. This script will output the [generated event logs (GenED)](data/event_logs/GenED), alongside their respectively measured [feature values](data/GenED_feat.csv) and [benchmark metrics values](data/GenED_bench.csv).
173
+ ```
174
+ conda activate gedi
175
+ python execute_grid_experiments.py config_files/grid_2obj
176
+ ```
177
+ We employ the [experiment_grid_2obj_configfiles_fabric.ipynb](notebooks/experiment_grid_2obj_configfiles_fabric.ipynb) to create all necessary [configuration](config_files/grid_2obj) and [objective](data/grid_2obj) files for this experiment.
178
+ For more details about these config_files, please refer to [Feature Extraction](#feature-extraction), [Generation](#generation), and [Benchmark](#benchmark).
179
+ To create configuration files for grid objectives interactively, you can use the start the following dashboard:
180
+ ```
181
+ streamlit run utils/config_fabric.py # To tunnel to local machine add: --server.port 8501 --server.headless true
182
+
183
+ # In local machine (only in case you are tunneling):
184
+ ssh -N -f -L 9000:localhost:8501 <user@remote_machine.com>
185
+ open "http://localhost:9000/"
186
+ ```
187
+ ### Visualizations
188
+ To run the visualizations, we employ [jupyter notebooks](https://jupyter.org/install) and [add the installed environment to the jupyter notebook](https://medium.com/@nrk25693/how-to-add-your-conda-environment-to-your-jupyter-notebook-in-just-4-steps-abeab8b8d084). We then start all visualizations by running e.g.: `jupyter noteboook`. In the following, we describe the `.ipynb`-files in the folder `\notebooks` to reproduce the figures from our paper.
189
+
190
+ #### [Fig. 4 and fig. 5 Representativeness](notebooks/gedi_figs4and5_representativeness.ipynb)
191
+ To visualize the coverage of the feasible feature space of generated event logs compared to existing real-world benchmark datasets, in this notebook, we conduct a principal component analysis on the features of both settings. The first two principal components are utilized to visualize the coverage which is further highlighted by computing a convex hull of the 2D mapping.Additionally, we visualize the distribution of each meta feature we used in the paper as a boxplot. Additional features can be extracted with FEEED. Therefore, the notebook contains the figures 4 and 5 in the paper.
192
+
193
+ #### [Fig. 6 Benchmark Boxplots](notebooks/gedi_fig6_benchmark_boxplots.ipynb)
194
+ This notebook is used to visualize the metric distribution of real event logs compared to the generated ones. It shows 5 different metrics on 3 various process discovery techniques. We use 'fitness,', 'precision', 'fscore', 'size', 'cfc' (control-flow complexity) as metrics and as 'heuristic miner', 'ilp' (integer linear programming), and 'imf' (inductive miner infrequent) as miners. The notebook outputs the visualization shown in Fig.6 in the paper.
195
+
196
+ #### [Fig. 7 and fig. 8 Benchmark's Statistical Tests](notebooks/gedi_figs7and8_benchmarking_statisticalTests.ipynb)
197
+
198
+ This notebook is used to answer the question if there is a statistically significant relation between feature similarity and performance metrics for the downstream tasks of process discovery. For that, we compute the pearson coefficient, as well as the kendall's tau coefficient. This elucidates the correlation between the features with metric scores being used for process discovery. Each coefficient is calculated for three different settings: i) real-world datasets; ii) synthesized event log data with real-world targets; iii) synthesized event log data with grid objectives. Figures 7 and 8 shown in the paper refer to this notebook.
199
+
200
+ #### [Fig. 9 Consistency and fig. 10 Limitations](notebooks/gedi_figs9and10_consistency.ipynb)
201
+ Likewise to the evaluation on the statistical tests in notebook `gedi_figs7and8_benchmarking_statisticalTests.ipynb`, this notebook is used to compute the differences between two correlation matrices $\Delta C = C_1 - C_2$. This logic is employed to evaluate and visualize the distance of two correlation matrices. Furthermore, we show how significant scores are retained from the correlations being evaluated on real-world datasets coompared to synthesized event log datasets with real-world targets. In Fig. 9 and 10 in the paper, the results of the notebook are shown.
202
 
203
  ## References
204
  The framework used by `GEDI` is taken directly from the original paper by [Maldonado](mailto:[email protected]), Frey, Tavares, Rehwald and Seidl. If you would like to discuss the paper, or corresponding research questions on benchmarking process mining tasks please email the authors.
config.py CHANGED
@@ -1,10 +1,8 @@
1
  import json
2
- import os
3
  import warnings
4
 
5
- from gedi.utils.io_helpers import sort_files
6
- from tqdm import tqdm
7
- from utils.param_keys import INPUT_NAME, FILENAME, FOLDER_PATH, PARAMS
8
 
9
  def get_model_params_list(alg_json_file: str) :#-> list[dict]:
10
  """
@@ -20,69 +18,8 @@ def get_model_params_list(alg_json_file: str) :#-> list[dict]:
20
  warnings.warn('The default model parameter list is used instead of a .json-file.\n'
21
  ' Use a configuration from the `config_files`-folder together with the args `-a`.')
22
  return [
23
- {ALGORITHM_NAME: 'pca', NDIM: TENSOR_NDIM},
 
 
 
24
  ]
25
- def get_run_params(alg_params_json: str) -> dict:
26
- """
27
- Loads the running configuration given from a json file or the default dictionary from the code.
28
- @param alg_params_json: str
29
- Path to the json data with the running configuration
30
- @return: dict
31
- Running Configuration
32
- """
33
- if alg_params_json is not None:
34
- return json.load(open(alg_params_json))
35
- else:
36
- warnings.warn('The default run option is used instead of a .json-file.\n'
37
- ' Use a configuration from the `config_files`-folder together with the args `-o`.')
38
- return {
39
- RUN_OPTION: COMPARE,
40
- PLOT_TYPE: COLOR_MAP, # 'heat_map', 'color_map', '3d_map', 'explained_var_plot'
41
- PLOT_TICS: True,
42
- N_COMPONENTS: 2,
43
- INPUT_NAME: 'runningExample',
44
- SAVE_RESULTS: True,
45
- LOAD_RESULTS: True
46
- }
47
-
48
- def get_files_and_kwargs(params: dict):
49
- """
50
- This method returns the filename list of the trajectory and generates the kwargs for the DataTrajectory.
51
- The method is individually created for the available data set.
52
- Add new trajectory options, if different data set are used.
53
- @param params: dict
54
- running configuration
55
- @return: tuple
56
- list of filenames of the trajectories AND
57
- kwargs with the important arguments for the classes
58
- """
59
- try:
60
- input_name = params[INPUT_NAME]
61
- except KeyError as e:
62
- raise KeyError(f'Run option parameter is missing the key: `{e}`. This parameter is mandatory.')
63
-
64
- #TODO: generate parent directories if they don't exist
65
- if input_name == 'test':
66
- filename_list = list(tqdm(sort_files(os.listdir('data/test'))))
67
- kwargs = {FILENAME: filename_list, FOLDER_PATH: 'data/test'}
68
- elif input_name == 'realLogs':
69
- filename_list = list(tqdm(sort_files(os.listdir('data/real_event_logs'))))
70
- kwargs = {FILENAME: filename_list, FOLDER_PATH: 'data/real_event_logs'}
71
- elif input_name == 'gen5':
72
- filename_list = list(tqdm(sort_files(os.listdir('data/event_log'))))[:5]
73
- kwargs = {FILENAME: filename_list, FOLDER_PATH: 'data/event_log'}
74
- elif input_name == 'gen20':
75
- filename_list = list(tqdm(sort_files(os.listdir('data/event_log'))))[:20]
76
- kwargs = {FILENAME: filename_list, FOLDER_PATH: 'data/event_log'}
77
- elif input_name == 'runningExample':
78
- filename_list = ['running-example.xes']
79
- kwargs = {FILENAME: filename_list[0], FOLDER_PATH: 'data/'}
80
- elif input_name == 'metaFeatures':
81
- filename_list = ['log_features.csv']
82
- kwargs = {FILENAME: filename_list[0], FOLDER_PATH: 'results/'}
83
- else:
84
- raise ValueError(f'No data trajectory was found with the name `{input_name}`.')
85
-
86
- #filename_list.pop(file_element)
87
- kwargs[PARAMS] = params
88
- return filename_list, kwargs
 
1
  import json
 
2
  import warnings
3
 
4
+ from utils.param_keys import PIPELINE_STEP, INPUT_PATH, OUTPUT_PATH
5
+ from utils.param_keys.features import FEATURE_SET, FEATURE_PARAMS
 
6
 
7
  def get_model_params_list(alg_json_file: str) :#-> list[dict]:
8
  """
 
18
  warnings.warn('The default model parameter list is used instead of a .json-file.\n'
19
  ' Use a configuration from the `config_files`-folder together with the args `-a`.')
20
  return [
21
+ {PIPELINE_STEP: 'feature_extraction', INPUT_PATH: 'data/test',
22
+ FEATURE_PARAMS: {FEATURE_SET: ['ratio_unique_traces_per_trace',
23
+ 'ratio_most_common_variant']},
24
+ OUTPUT_PATH: 'output/plots'}
25
  ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
config_files/algorithm/augmentation.json DELETED
@@ -1,12 +0,0 @@
1
- [
2
- {
3
- "pipeline_step": "instance_augmentation",
4
- "augmentation_params":
5
- {
6
- "method":"SMOTE", "no_samples":20,
7
- "feature_selection": ["n_traces", "n_unique_traces", "ratio_unique_traces_per_trace", "trace_len_min", "trace_len_max", "trace_len_mean", "trace_len_median", "trace_len_mode", "trace_len_std", "trace_len_variance", "trace_len_q1", "trace_len_q3", "trace_len_iqr", "trace_len_geometric_mean", "trace_len_geometric_std", "trace_len_harmonic_mean", "trace_len_skewness", "trace_len_kurtosis", "trace_len_coefficient_variation", "trace_len_entropy", "trace_len_hist1", "trace_len_hist2", "trace_len_hist3", "trace_len_hist4", "trace_len_hist5", "trace_len_hist6", "trace_len_hist7", "trace_len_hist8", "trace_len_hist9", "trace_len_hist10", "trace_len_skewness_hist", "trace_len_kurtosis_hist", "ratio_most_common_variant", "ratio_top_1_variants", "ratio_top_5_variants", "ratio_top_10_variants", "ratio_top_20_variants", "ratio_top_50_variants", "ratio_top_75_variants", "mean_variant_occurrence", "std_variant_occurrence", "skewness_variant_occurrence", "kurtosis_variant_occurrence", "n_unique_activities", "activities_min", "activities_max", "activities_mean", "activities_median", "activities_std", "activities_variance", "activities_q1", "activities_q3", "activities_iqr", "activities_skewness", "activities_kurtosis", "n_unique_start_activities", "start_activities_min", "start_activities_max", "start_activities_mean", "start_activities_median", "start_activities_std", "start_activities_variance", "start_activities_q1", "start_activities_q3", "start_activities_iqr", "start_activities_skewness", "start_activities_kurtosis", "n_unique_end_activities", "end_activities_min", "end_activities_max", "end_activities_mean", "end_activities_median", "end_activities_std", "end_activities_variance", "end_activities_q1", "end_activities_q3", "end_activities_iqr", "end_activities_skewness", "end_activities_kurtosis", "entropy_trace", "entropy_prefix", "entropy_global_block", "entropy_lempel_ziv", "entropy_k_block_diff_1", "entropy_k_block_diff_3", "entropy_k_block_diff_5", "entropy_k_block_ratio_1", "entropy_k_block_ratio_3", "entropy_k_block_ratio_5", "entropy_knn_3", "entropy_knn_5", "entropy_knn_7", "epa_variant_entropy", "epa_normalized_variant_entropy", "epa_sequence_entropy", "epa_normalized_sequence_entropy", "epa_sequence_entropy_linear_forgetting", "epa_normalized_sequence_entropy_linear_forgetting", "epa_sequence_entropy_exponential_forgetting", "epa_normalized_sequence_entropy_exponential_forgetting"]
8
- },
9
- "input_path": "data/bpic_features.csv",
10
- "output_path": "output"
11
- }
12
- ]
 
 
 
 
 
 
 
 
 
 
 
 
 
config_files/config_layout.json ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "pipeline_step": "instance_augmentation",
4
+ "augmentation_params":{"method":"SMOTE", "no_samples":2,
5
+ "feature_selection": ["ratio_top_20_variants", "epa_normalized_sequence_entropy_linear_forgetting"]},
6
+ "input_path": "data/test/bpic_features.csv",
7
+ "output_path": "output"
8
+ },
9
+ {
10
+ "pipeline_step": "event_logs_generation",
11
+ "output_path": "output/features/2_bpic_features/2_ense_rmcv_feat.csv",
12
+ "output_path": "data/frontend/test",
13
+ "generator_params": {
14
+ "experiment": "data/grid_objectives.csv",
15
+ "experiment": {"input_path": "data/2_bpic_features.csv",
16
+ "objectives": ["ratio_top_20_variants", "epa_normalized_sequence_entropy_linear_forgetting"]},
17
+ "experiment": {"n_traces":832, "n_unique_traces":828, "ratio_variants_per_number_of_traces":0.99, "trace_len_min":1, "trace_len_max":132, "trace_len_mean":53.31, "trace_len_median":54, "trace_len_mode":61, "trace_len_std":19.89, "trace_len_variance":395.81, "trace_len_q1":44, "trace_len_q3":62, "trace_len_iqr":18, "trace_len_geometric_mean":48.15, "trace_len_geometric_std":1.69, "trace_len_harmonic_mean":37.58, "trace_len_skewness":0.0541, "trace_len_kurtosis":0.81, "trace_len_coefficient_variation":0.37, "trace_len_entropy":6.65, "trace_len_hist1":0.004, "trace_len_hist2":0.005, "trace_len_hist3":0.005, "trace_len_hist4":0.024, "trace_len_hist5":0.024, "trace_len_hist6":0.008, "trace_len_hist7":0.005, "trace_len_hist8":0.001, "trace_len_hist9":0.0, "trace_len_hist10":0.00, "trace_len_skewness_hist":0.05, "trace_len_kurtosis_hist":0.8, "ratio_most_common_variant":0.0, "ratio_top_1_variants":0.01, "ratio_top_5_variants":0.05, "ratio_top_10_variants":0.10, "ratio_top_20_variants":0.2, "ratio_top_50_variants":0.5, "ratio_top_75_variants":0.75, "mean_variant_occurrence":1.0, "std_variant_occurrence":0.07, "skewness_variant_occurrence":14.28, "kurtosis_variant_occurrence":202.00, "n_unique_activities":410, "activities_min":1, "activities_max":830, "activities_mean":108.18, "activities_median":12, "activities_std":187.59, "activities_variance":35189, "activities_q1":3, "activities_q3":125, "activities_iqr":122, "activities_skewness":2.13, "activities_kurtosis":3.81, "n_unique_start_activities":14, "start_activities_min":1, "start_activities_max":731, "start_activities_mean":59.43, "start_activities_median":1, "start_activities_std":186.72, "start_activities_variance":34863, "start_activities_q1":1, "start_activities_q3":8, "start_activities_iqr":7, "start_activities_skewness":3, "start_activities_kurtosis":9.0, "n_unique_end_activities":82, "end_activities_min":1, "end_activities_max":216, "end_activities_mean":10, "end_activities_median":1, "end_activities_std":35, "end_activities_variance":1247, "end_activities_q1":1, "end_activities_q3":3, "end_activities_iqr":2, "end_activities_skewness":5, "end_activities_kurtosis":26, "eventropy_trace":10, "eventropy_prefix":15, "eventropy_global_block":19, "eventropy_lempel_ziv":4, "eventropy_k_block_diff_1":7.1, "eventropy_k_block_diff_3":7.1, "eventropy_k_block_diff_5":7.1, "eventropy_k_block_ratio_1":7.1, "eventropy_k_block_ratio_3":7.1, "eventropy_k_block_ratio_5":7.1, "eventropy_knn_3":5.54, "eventropy_knn_5":5.04, "eventropy_knn_7":4.72, "epa_variant_entropy":240512, "epa_normalized_variant_entropy":0.68, "epa_sequence_entropy":285876, "epa_normalized_sequence_entropy":0.60, "epa_sequence_entropy_linear_forgetting":150546, "epa_normalized_sequence_entropy_linear_forgetting":0.32, "epa_sequence_entropy_exponential_forgetting":185312, "epa_normalized_sequence_entropy_exponential_forgetting":0.39},
18
+ "config_space": {
19
+ "mode": [5, 20],
20
+ "sequence": [0.01, 1],
21
+ "choice": [0.01, 1],
22
+ "parallel": [0.01, 1],
23
+ "loop": [0.01, 1],
24
+ "silent": [0.01, 1],
25
+ "lt_dependency": [0.01, 1],
26
+ "num_traces": [10, 100],
27
+ "duplicate": [0],
28
+ "or": [0]
29
+ },
30
+ "n_trials": 50
31
+ }
32
+ },
33
+ {
34
+ "pipeline_step": "feature_extraction",
35
+ "input_path": "data/test",
36
+ "feature_params": {"feature_set": ["n_traces", "n_unique_traces", "ratio_unique_traces_per_trace", "trace_len_min", "trace_len_max", "trace_len_mean", "trace_len_median", "trace_len_mode", "trace_len_std", "trace_len_variance", "trace_len_q1", "trace_len_q3", "trace_len_iqr", "trace_len_geometric_mean", "trace_len_geometric_std", "trace_len_harmonic_mean", "trace_len_skewness", "trace_len_kurtosis", "trace_len_coefficient_variation", "trace_len_entropy", "trace_len_hist1", "trace_len_hist2", "trace_len_hist3", "trace_len_hist4", "trace_len_hist5", "trace_len_hist6", "trace_len_hist7", "trace_len_hist8", "trace_len_hist9", "trace_len_hist10", "trace_len_skewness_hist", "trace_len_kurtosis_hist", "ratio_most_common_variant", "ratio_top_1_variants", "ratio_top_5_variants", "ratio_top_10_variants", "ratio_top_20_variants", "ratio_top_50_variants", "ratio_top_75_variants", "mean_variant_occurrence", "std_variant_occurrence", "skewness_variant_occurrence", "kurtosis_variant_occurrence", "n_unique_activities", "activities_min", "activities_max", "activities_mean", "activities_median", "activities_std", "activities_variance", "activities_q1", "activities_q3", "activities_iqr", "activities_skewness", "activities_kurtosis", "n_unique_start_activities", "start_activities_min", "start_activities_max", "start_activities_mean", "start_activities_median", "start_activities_std", "start_activities_variance", "start_activities_q1", "start_activities_q3", "start_activities_iqr", "start_activities_skewness", "start_activities_kurtosis", "n_unique_end_activities", "end_activities_min", "end_activities_max", "end_activities_mean", "end_activities_median", "end_activities_std", "end_activities_variance", "end_activities_q1", "end_activities_q3", "end_activities_iqr", "end_activities_skewness", "end_activities_kurtosis", "eventropy_trace", "eventropy_prefix", "eventropy_prefix_flattened", "eventropy_global_block", "eventropy_global_block_flattened", "eventropy_lempel_ziv", "eventropy_lempel_ziv_flattened", "eventropy_k_block_diff_1", "eventropy_k_block_diff_3", "eventropy_k_block_diff_5", "eventropy_k_block_ratio_1", "eventropy_k_block_ratio_3", "eventropy_k_block_ratio_5", "eventropy_knn_3", "eventropy_knn_5", "eventropy_knn_7", "epa_variant_entropy", "epa_normalized_variant_entropy", "epa_sequence_entropy", "epa_normalized_sequence_entropy", "epa_sequence_entropy_linear_forgetting", "epa_normalized_sequence_entropy_linear_forgetting", "epa_sequence_entropy_exponential_forgetting", "epa_normalized_sequence_entropy_exponential_forgetting"]},
37
+ "output_path": "output/plots",
38
+ "real_eventlog_path": "data/BaselineED_feat.csv",
39
+ "plot_type": "boxplot"
40
+ },
41
+ {
42
+ "pipeline_step": "benchmark_test",
43
+ "benchmark_task": "discovery",
44
+ "input_path":"data/test",
45
+ "output_path":"output",
46
+ "miners" : ["inductive", "heu", "imf", "ilp"]
47
+ }
48
+ ]
config_files/experiment_real_targets.json ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "pipeline_step": "event_logs_generation",
4
+ "output_path": "output",
5
+ "generator_params": {
6
+ "experiment": {
7
+ "input_path": "data/BaselineED_feat.csv",
8
+ "objectives":["ratio_variants_per_number_of_traces","ratio_most_common_variant","ratio_top_10_variants","epa_normalized_variant_entropy","epa_normalized_sequence_entropy","epa_normalized_sequence_entropy_linear_forgetting","epa_normalized_sequence_entropy_exponential_forgetting"]},
9
+ "config_space": {
10
+ "mode": [5, 20],
11
+ "sequence": [0.01, 1],
12
+ "choice": [0.01, 1],
13
+ "parallel": [0.01, 1],
14
+ "loop": [0.01, 1],
15
+ "silent": [0.01, 1],
16
+ "lt_dependency": [0.01, 1],
17
+ "num_traces": [10, 10001],
18
+ "duplicate": [0],
19
+ "or": [0]
20
+ },
21
+ "n_trials": 200,
22
+ "plot_reference_feature": ""
23
+ }
24
+ },
25
+ {
26
+ "pipeline_step": "feature_extraction",
27
+ "input_path": "output/BaselineED_feat/7_ense_enseef_enself_enve_rmcv_rt10v_rutpt/",
28
+ "input_path": "output/features/BaselineED_feat/7_ense_enseef_enself_enve_rmcv_rt10v_rutpt/",
29
+ "feature_params": {"feature_set":["ratio_variants_per_number_of_traces","ratio_most_common_variant","ratio_top_10_variants","epa_normalized_variant_entropy","epa_normalized_sequence_entropy","epa_normalized_sequence_entropy_linear_forgetting","epa_normalized_sequence_entropy_exponential_forgetting"]},
30
+ "output_path": "output/plots",
31
+ "real_eventlog_path": "data/BaselineED_feat.csv",
32
+ "plot_type": "boxplot"
33
+ },
34
+ {
35
+ "pipeline_step": "benchmark_test",
36
+ "benchmark_test": "discovery",
37
+ "input_path": "output/BaselineED_feat/7_ense_enseef_enself_enve_rmcv_rt10v_rutpt/",
38
+ "output_path":"output",
39
+ "miners" : ["heu", "imf", "ilp"]
40
+ }
41
+ ]
config_files/grid_2obj/generator_grid_2objectives_ense_enseef.json ADDED
@@ -0,0 +1 @@
 
 
1
+ [{"pipeline_step": "event_logs_generation", "output_path": "output/generated/grid_2obj", "generator_params": {"experiment": {"input_path": "data/grid_2obj/grid_2objectives_ense_enseef.csv", "objectives": ["epa_normalized_sequence_entropy", "epa_normalized_sequence_entropy_exponential_forgetting"]}, "config_space": {"mode": [5, 20], "sequence": [0.01, 1], "choice": [0.01, 1], "parallel": [0.01, 1], "loop": [0.01, 1], "silent": [0.01, 1], "lt_dependency": [0.01, 1], "num_traces": [10, 10001], "duplicate": [0], "or": [0]}, "n_trials": 200}}, {"pipeline_step": "feature_extraction", "input_path": "output/features/generated/grid_2obj/grid_2objectives_ense_enseef/2_ense_enseef", "feature_params": {"feature_set": ["ratio_variants_per_number_of_traces", "ratio_most_common_variant", "ratio_top_10_variants", "epa_normalized_variant_entropy", "epa_normalized_sequence_entropy", "epa_normalized_sequence_entropy_linear_forgetting", "epa_normalized_sequence_entropy_exponential_forgetting"]}, "output_path": "output/plots", "real_eventlog_path": "data/BaselineED_feat.csv", "plot_type": "boxplot"}, {"pipeline_step": "benchmark_test", "benchmark_test": "discovery", "input_path": "output/generated/grid_2obj/grid_2objectives_ense_enseef/2_ense_enseef", "output_path": "output", "miners": ["heu", "imf", "ilp"]}]
config_files/grid_2obj/generator_grid_2objectives_ense_enself.json ADDED
@@ -0,0 +1 @@
 
 
1
+ [{"pipeline_step": "event_logs_generation", "output_path": "output/generated/grid_2obj", "generator_params": {"experiment": {"input_path": "data/grid_2obj/grid_2objectives_ense_enself.csv", "objectives": ["epa_normalized_sequence_entropy", "epa_normalized_sequence_entropy_linear_forgetting"]}, "config_space": {"mode": [5, 20], "sequence": [0.01, 1], "choice": [0.01, 1], "parallel": [0.01, 1], "loop": [0.01, 1], "silent": [0.01, 1], "lt_dependency": [0.01, 1], "num_traces": [10, 10001], "duplicate": [0], "or": [0]}, "n_trials": 200}}, {"pipeline_step": "feature_extraction", "input_path": "output/features/generated/grid_2obj/grid_2objectives_ense_enself/2_ense_enself", "feature_params": {"feature_set": ["ratio_variants_per_number_of_traces", "ratio_most_common_variant", "ratio_top_10_variants", "epa_normalized_variant_entropy", "epa_normalized_sequence_entropy", "epa_normalized_sequence_entropy_linear_forgetting", "epa_normalized_sequence_entropy_exponential_forgetting"]}, "output_path": "output/plots", "real_eventlog_path": "data/BaselineED_feat.csv", "plot_type": "boxplot"}, {"pipeline_step": "benchmark_test", "benchmark_test": "discovery", "input_path": "output/generated/grid_2obj/grid_2objectives_ense_enself/2_ense_enself", "output_path": "output", "miners": ["heu", "imf", "ilp"]}]
config_files/grid_2obj/generator_grid_2objectives_ense_enve.json ADDED
@@ -0,0 +1 @@
 
 
1
+ [{"pipeline_step": "event_logs_generation", "output_path": "output/generated/grid_2obj", "generator_params": {"experiment": {"input_path": "data/grid_2obj/grid_2objectives_ense_enve.csv", "objectives": ["epa_normalized_sequence_entropy", "epa_normalized_variant_entropy"]}, "config_space": {"mode": [5, 20], "sequence": [0.01, 1], "choice": [0.01, 1], "parallel": [0.01, 1], "loop": [0.01, 1], "silent": [0.01, 1], "lt_dependency": [0.01, 1], "num_traces": [10, 10001], "duplicate": [0], "or": [0]}, "n_trials": 200}}, {"pipeline_step": "feature_extraction", "input_path": "output/features/generated/grid_2obj/grid_2objectives_ense_enve/2_ense_enve", "feature_params": {"feature_set": ["ratio_variants_per_number_of_traces", "ratio_most_common_variant", "ratio_top_10_variants", "epa_normalized_variant_entropy", "epa_normalized_sequence_entropy", "epa_normalized_sequence_entropy_linear_forgetting", "epa_normalized_sequence_entropy_exponential_forgetting"]}, "output_path": "output/plots", "real_eventlog_path": "data/BaselineED_feat.csv", "plot_type": "boxplot"}, {"pipeline_step": "benchmark_test", "benchmark_test": "discovery", "input_path": "output/generated/grid_2obj/grid_2objectives_ense_enve/2_ense_enve", "output_path": "output", "miners": ["heu", "imf", "ilp"]}]
config_files/grid_2obj/generator_grid_2objectives_ense_rmcv.json ADDED
@@ -0,0 +1 @@
 
 
1
+ [{"pipeline_step": "event_logs_generation", "output_path": "output/generated/grid_2obj", "generator_params": {"experiment": {"input_path": "data/grid_2obj/grid_2objectives_ense_rmcv.csv", "objectives": ["epa_normalized_sequence_entropy", "ratio_most_common_variant"]}, "config_space": {"mode": [5, 20], "sequence": [0.01, 1], "choice": [0.01, 1], "parallel": [0.01, 1], "loop": [0.01, 1], "silent": [0.01, 1], "lt_dependency": [0.01, 1], "num_traces": [10, 10001], "duplicate": [0], "or": [0]}, "n_trials": 200}}, {"pipeline_step": "feature_extraction", "input_path": "output/features/generated/grid_2obj/grid_2objectives_ense_rmcv/2_ense_rmcv", "feature_params": {"feature_set": ["ratio_variants_per_number_of_traces", "ratio_most_common_variant", "ratio_top_10_variants", "epa_normalized_variant_entropy", "epa_normalized_sequence_entropy", "epa_normalized_sequence_entropy_linear_forgetting", "epa_normalized_sequence_entropy_exponential_forgetting"]}, "output_path": "output/plots", "real_eventlog_path": "data/BaselineED_feat.csv", "plot_type": "boxplot"}, {"pipeline_step": "benchmark_test", "benchmark_test": "discovery", "input_path": "output/generated/grid_2obj/grid_2objectives_ense_rmcv/2_ense_rmcv", "output_path": "output", "miners": ["heu", "imf", "ilp"]}]
config_files/grid_2obj/generator_grid_2objectives_ense_rt10v.json ADDED
@@ -0,0 +1 @@
 
 
1
+ [{"pipeline_step": "event_logs_generation", "output_path": "output/generated/grid_2obj", "generator_params": {"experiment": {"input_path": "data/grid_2obj/grid_2objectives_ense_rt10v.csv", "objectives": ["epa_normalized_sequence_entropy", "ratio_top_10_variants"]}, "config_space": {"mode": [5, 20], "sequence": [0.01, 1], "choice": [0.01, 1], "parallel": [0.01, 1], "loop": [0.01, 1], "silent": [0.01, 1], "lt_dependency": [0.01, 1], "num_traces": [10, 10001], "duplicate": [0], "or": [0]}, "n_trials": 200}}, {"pipeline_step": "feature_extraction", "input_path": "output/features/generated/grid_2obj/grid_2objectives_ense_rt10v/2_ense_rt10v", "feature_params": {"feature_set": ["ratio_variants_per_number_of_traces", "ratio_most_common_variant", "ratio_top_10_variants", "epa_normalized_variant_entropy", "epa_normalized_sequence_entropy", "epa_normalized_sequence_entropy_linear_forgetting", "epa_normalized_sequence_entropy_exponential_forgetting"]}, "output_path": "output/plots", "real_eventlog_path": "data/BaselineED_feat.csv", "plot_type": "boxplot"}, {"pipeline_step": "benchmark_test", "benchmark_test": "discovery", "input_path": "output/generated/grid_2obj/grid_2objectives_ense_rt10v/2_ense_rt10v", "output_path": "output", "miners": ["heu", "imf", "ilp"]}]
config_files/grid_2obj/generator_grid_2objectives_ense_rvpnot.json ADDED
@@ -0,0 +1 @@
 
 
1
+ [{"pipeline_step": "event_logs_generation", "output_path": "output/generated/grid_2obj", "generator_params": {"experiment": {"input_path": "data/grid_2obj/grid_2objectives_ense_rvpnot.csv", "objectives": ["epa_normalized_sequence_entropy", "ratio_variants_per_number_of_traces"]}, "config_space": {"mode": [5, 20], "sequence": [0.01, 1], "choice": [0.01, 1], "parallel": [0.01, 1], "loop": [0.01, 1], "silent": [0.01, 1], "lt_dependency": [0.01, 1], "num_traces": [10, 10001], "duplicate": [0], "or": [0]}, "n_trials": 200}}, {"pipeline_step": "feature_extraction", "input_path": "output/features/generated/grid_2obj/grid_2objectives_ense_rvpnot/2_ense_rvpnot", "feature_params": {"feature_set": ["ratio_variants_per_number_of_traces", "ratio_most_common_variant", "ratio_top_10_variants", "epa_normalized_variant_entropy", "epa_normalized_sequence_entropy", "epa_normalized_sequence_entropy_linear_forgetting", "epa_normalized_sequence_entropy_exponential_forgetting"]}, "output_path": "output/plots", "real_eventlog_path": "data/BaselineED_feat.csv", "plot_type": "boxplot"}, {"pipeline_step": "benchmark_test", "benchmark_test": "discovery", "input_path": "output/generated/grid_2obj/grid_2objectives_ense_rvpnot/2_ense_rvpnot", "output_path": "output", "miners": ["heu", "imf", "ilp"]}]
config_files/grid_2obj/generator_grid_2objectives_enseef_enself.json ADDED
@@ -0,0 +1 @@
 
 
1
+ [{"pipeline_step": "event_logs_generation", "output_path": "output/generated/grid_2obj", "generator_params": {"experiment": {"input_path": "data/grid_2obj/grid_2objectives_enseef_enself.csv", "objectives": ["epa_normalized_sequence_entropy_exponential_forgetting", "epa_normalized_sequence_entropy_linear_forgetting"]}, "config_space": {"mode": [5, 20], "sequence": [0.01, 1], "choice": [0.01, 1], "parallel": [0.01, 1], "loop": [0.01, 1], "silent": [0.01, 1], "lt_dependency": [0.01, 1], "num_traces": [10, 10001], "duplicate": [0], "or": [0]}, "n_trials": 200}}, {"pipeline_step": "feature_extraction", "input_path": "output/features/generated/grid_2obj/grid_2objectives_enseef_enself/2_enseef_enself", "feature_params": {"feature_set": ["ratio_variants_per_number_of_traces", "ratio_most_common_variant", "ratio_top_10_variants", "epa_normalized_variant_entropy", "epa_normalized_sequence_entropy", "epa_normalized_sequence_entropy_linear_forgetting", "epa_normalized_sequence_entropy_exponential_forgetting"]}, "output_path": "output/plots", "real_eventlog_path": "data/BaselineED_feat.csv", "plot_type": "boxplot"}, {"pipeline_step": "benchmark_test", "benchmark_test": "discovery", "input_path": "output/generated/grid_2obj/grid_2objectives_enseef_enself/2_enseef_enself", "output_path": "output", "miners": ["heu", "imf", "ilp"]}]
config_files/grid_2obj/generator_grid_2objectives_enseef_enve.json ADDED
@@ -0,0 +1 @@
 
 
1
+ [{"pipeline_step": "event_logs_generation", "output_path": "output/generated/grid_2obj", "generator_params": {"experiment": {"input_path": "data/grid_2obj/grid_2objectives_enseef_enve.csv", "objectives": ["epa_normalized_sequence_entropy_exponential_forgetting", "epa_normalized_variant_entropy"]}, "config_space": {"mode": [5, 20], "sequence": [0.01, 1], "choice": [0.01, 1], "parallel": [0.01, 1], "loop": [0.01, 1], "silent": [0.01, 1], "lt_dependency": [0.01, 1], "num_traces": [10, 10001], "duplicate": [0], "or": [0]}, "n_trials": 200}}, {"pipeline_step": "feature_extraction", "input_path": "output/features/generated/grid_2obj/grid_2objectives_enseef_enve/2_enseef_enve", "feature_params": {"feature_set": ["ratio_variants_per_number_of_traces", "ratio_most_common_variant", "ratio_top_10_variants", "epa_normalized_variant_entropy", "epa_normalized_sequence_entropy", "epa_normalized_sequence_entropy_linear_forgetting", "epa_normalized_sequence_entropy_exponential_forgetting"]}, "output_path": "output/plots", "real_eventlog_path": "data/BaselineED_feat.csv", "plot_type": "boxplot"}, {"pipeline_step": "benchmark_test", "benchmark_test": "discovery", "input_path": "output/generated/grid_2obj/grid_2objectives_enseef_enve/2_enseef_enve", "output_path": "output", "miners": ["heu", "imf", "ilp"]}]
config_files/grid_2obj/generator_grid_2objectives_enseef_rmcv.json ADDED
@@ -0,0 +1 @@
 
 
1
+ [{"pipeline_step": "event_logs_generation", "output_path": "output/generated/grid_2obj", "generator_params": {"experiment": {"input_path": "data/grid_2obj/grid_2objectives_enseef_rmcv.csv", "objectives": ["epa_normalized_sequence_entropy_exponential_forgetting", "ratio_most_common_variant"]}, "config_space": {"mode": [5, 20], "sequence": [0.01, 1], "choice": [0.01, 1], "parallel": [0.01, 1], "loop": [0.01, 1], "silent": [0.01, 1], "lt_dependency": [0.01, 1], "num_traces": [10, 10001], "duplicate": [0], "or": [0]}, "n_trials": 200}}, {"pipeline_step": "feature_extraction", "input_path": "output/features/generated/grid_2obj/grid_2objectives_enseef_rmcv/2_enseef_rmcv", "feature_params": {"feature_set": ["ratio_variants_per_number_of_traces", "ratio_most_common_variant", "ratio_top_10_variants", "epa_normalized_variant_entropy", "epa_normalized_sequence_entropy", "epa_normalized_sequence_entropy_linear_forgetting", "epa_normalized_sequence_entropy_exponential_forgetting"]}, "output_path": "output/plots", "real_eventlog_path": "data/BaselineED_feat.csv", "plot_type": "boxplot"}, {"pipeline_step": "benchmark_test", "benchmark_test": "discovery", "input_path": "output/generated/grid_2obj/grid_2objectives_enseef_rmcv/2_enseef_rmcv", "output_path": "output", "miners": ["heu", "imf", "ilp"]}]
config_files/grid_2obj/generator_grid_2objectives_enseef_rt10v.json ADDED
@@ -0,0 +1 @@
 
 
1
+ [{"pipeline_step": "event_logs_generation", "output_path": "output/generated/grid_2obj", "generator_params": {"experiment": {"input_path": "data/grid_2obj/grid_2objectives_enseef_rt10v.csv", "objectives": ["epa_normalized_sequence_entropy_exponential_forgetting", "ratio_top_10_variants"]}, "config_space": {"mode": [5, 20], "sequence": [0.01, 1], "choice": [0.01, 1], "parallel": [0.01, 1], "loop": [0.01, 1], "silent": [0.01, 1], "lt_dependency": [0.01, 1], "num_traces": [10, 10001], "duplicate": [0], "or": [0]}, "n_trials": 200}}, {"pipeline_step": "feature_extraction", "input_path": "output/features/generated/grid_2obj/grid_2objectives_enseef_rt10v/2_enseef_rt10v", "feature_params": {"feature_set": ["ratio_variants_per_number_of_traces", "ratio_most_common_variant", "ratio_top_10_variants", "epa_normalized_variant_entropy", "epa_normalized_sequence_entropy", "epa_normalized_sequence_entropy_linear_forgetting", "epa_normalized_sequence_entropy_exponential_forgetting"]}, "output_path": "output/plots", "real_eventlog_path": "data/BaselineED_feat.csv", "plot_type": "boxplot"}, {"pipeline_step": "benchmark_test", "benchmark_test": "discovery", "input_path": "output/generated/grid_2obj/grid_2objectives_enseef_rt10v/2_enseef_rt10v", "output_path": "output", "miners": ["heu", "imf", "ilp"]}]
config_files/grid_2obj/generator_grid_2objectives_enseef_rvpnot.json ADDED
@@ -0,0 +1 @@
 
 
1
+ [{"pipeline_step": "event_logs_generation", "output_path": "output/generated/grid_2obj", "generator_params": {"experiment": {"input_path": "data/grid_2obj/grid_2objectives_enseef_rvpnot.csv", "objectives": ["epa_normalized_sequence_entropy_exponential_forgetting", "ratio_variants_per_number_of_traces"]}, "config_space": {"mode": [5, 20], "sequence": [0.01, 1], "choice": [0.01, 1], "parallel": [0.01, 1], "loop": [0.01, 1], "silent": [0.01, 1], "lt_dependency": [0.01, 1], "num_traces": [10, 10001], "duplicate": [0], "or": [0]}, "n_trials": 200}}, {"pipeline_step": "feature_extraction", "input_path": "output/features/generated/grid_2obj/grid_2objectives_enseef_rvpnot/2_enseef_rvpnot", "feature_params": {"feature_set": ["ratio_variants_per_number_of_traces", "ratio_most_common_variant", "ratio_top_10_variants", "epa_normalized_variant_entropy", "epa_normalized_sequence_entropy", "epa_normalized_sequence_entropy_linear_forgetting", "epa_normalized_sequence_entropy_exponential_forgetting"]}, "output_path": "output/plots", "real_eventlog_path": "data/BaselineED_feat.csv", "plot_type": "boxplot"}, {"pipeline_step": "benchmark_test", "benchmark_test": "discovery", "input_path": "output/generated/grid_2obj/grid_2objectives_enseef_rvpnot/2_enseef_rvpnot", "output_path": "output", "miners": ["heu", "imf", "ilp"]}]
config_files/grid_2obj/generator_grid_2objectives_enself_enve.json ADDED
@@ -0,0 +1 @@
 
 
1
+ [{"pipeline_step": "event_logs_generation", "output_path": "output/generated/grid_2obj", "generator_params": {"experiment": {"input_path": "data/grid_2obj/grid_2objectives_enself_enve.csv", "objectives": ["epa_normalized_sequence_entropy_linear_forgetting", "epa_normalized_variant_entropy"]}, "config_space": {"mode": [5, 20], "sequence": [0.01, 1], "choice": [0.01, 1], "parallel": [0.01, 1], "loop": [0.01, 1], "silent": [0.01, 1], "lt_dependency": [0.01, 1], "num_traces": [10, 10001], "duplicate": [0], "or": [0]}, "n_trials": 200}}, {"pipeline_step": "feature_extraction", "input_path": "output/features/generated/grid_2obj/grid_2objectives_enself_enve/2_enself_enve", "feature_params": {"feature_set": ["ratio_variants_per_number_of_traces", "ratio_most_common_variant", "ratio_top_10_variants", "epa_normalized_variant_entropy", "epa_normalized_sequence_entropy", "epa_normalized_sequence_entropy_linear_forgetting", "epa_normalized_sequence_entropy_exponential_forgetting"]}, "output_path": "output/plots", "real_eventlog_path": "data/BaselineED_feat.csv", "plot_type": "boxplot"}, {"pipeline_step": "benchmark_test", "benchmark_test": "discovery", "input_path": "output/generated/grid_2obj/grid_2objectives_enself_enve/2_enself_enve", "output_path": "output", "miners": ["heu", "imf", "ilp"]}]
config_files/grid_2obj/generator_grid_2objectives_enself_rmcv.json ADDED
@@ -0,0 +1 @@
 
 
1
+ [{"pipeline_step": "event_logs_generation", "output_path": "output/generated/grid_2obj", "generator_params": {"experiment": {"input_path": "data/grid_2obj/grid_2objectives_enself_rmcv.csv", "objectives": ["epa_normalized_sequence_entropy_linear_forgetting", "ratio_most_common_variant"]}, "config_space": {"mode": [5, 20], "sequence": [0.01, 1], "choice": [0.01, 1], "parallel": [0.01, 1], "loop": [0.01, 1], "silent": [0.01, 1], "lt_dependency": [0.01, 1], "num_traces": [10, 10001], "duplicate": [0], "or": [0]}, "n_trials": 200}}, {"pipeline_step": "feature_extraction", "input_path": "output/features/generated/grid_2obj/grid_2objectives_enself_rmcv/2_enself_rmcv", "feature_params": {"feature_set": ["ratio_variants_per_number_of_traces", "ratio_most_common_variant", "ratio_top_10_variants", "epa_normalized_variant_entropy", "epa_normalized_sequence_entropy", "epa_normalized_sequence_entropy_linear_forgetting", "epa_normalized_sequence_entropy_exponential_forgetting"]}, "output_path": "output/plots", "real_eventlog_path": "data/BaselineED_feat.csv", "plot_type": "boxplot"}, {"pipeline_step": "benchmark_test", "benchmark_test": "discovery", "input_path": "output/generated/grid_2obj/grid_2objectives_enself_rmcv/2_enself_rmcv", "output_path": "output", "miners": ["heu", "imf", "ilp"]}]
config_files/grid_2obj/generator_grid_2objectives_enself_rt10v.json ADDED
@@ -0,0 +1 @@
 
 
1
+ [{"pipeline_step": "event_logs_generation", "output_path": "output/generated/grid_2obj", "generator_params": {"experiment": {"input_path": "data/grid_2obj/grid_2objectives_enself_rt10v.csv", "objectives": ["epa_normalized_sequence_entropy_linear_forgetting", "ratio_top_10_variants"]}, "config_space": {"mode": [5, 20], "sequence": [0.01, 1], "choice": [0.01, 1], "parallel": [0.01, 1], "loop": [0.01, 1], "silent": [0.01, 1], "lt_dependency": [0.01, 1], "num_traces": [10, 10001], "duplicate": [0], "or": [0]}, "n_trials": 200}}, {"pipeline_step": "feature_extraction", "input_path": "output/features/generated/grid_2obj/grid_2objectives_enself_rt10v/2_enself_rt10v", "feature_params": {"feature_set": ["ratio_variants_per_number_of_traces", "ratio_most_common_variant", "ratio_top_10_variants", "epa_normalized_variant_entropy", "epa_normalized_sequence_entropy", "epa_normalized_sequence_entropy_linear_forgetting", "epa_normalized_sequence_entropy_exponential_forgetting"]}, "output_path": "output/plots", "real_eventlog_path": "data/BaselineED_feat.csv", "plot_type": "boxplot"}, {"pipeline_step": "benchmark_test", "benchmark_test": "discovery", "input_path": "output/generated/grid_2obj/grid_2objectives_enself_rt10v/2_enself_rt10v", "output_path": "output", "miners": ["heu", "imf", "ilp"]}]
config_files/grid_2obj/generator_grid_2objectives_enself_rvpnot.json ADDED
@@ -0,0 +1 @@
 
 
1
+ [{"pipeline_step": "event_logs_generation", "output_path": "output/generated/grid_2obj", "generator_params": {"experiment": {"input_path": "data/grid_2obj/grid_2objectives_enself_rvpnot.csv", "objectives": ["epa_normalized_sequence_entropy_linear_forgetting", "ratio_variants_per_number_of_traces"]}, "config_space": {"mode": [5, 20], "sequence": [0.01, 1], "choice": [0.01, 1], "parallel": [0.01, 1], "loop": [0.01, 1], "silent": [0.01, 1], "lt_dependency": [0.01, 1], "num_traces": [10, 10001], "duplicate": [0], "or": [0]}, "n_trials": 200}}, {"pipeline_step": "feature_extraction", "input_path": "output/features/generated/grid_2obj/grid_2objectives_enself_rvpnot/2_enself_rvpnot", "feature_params": {"feature_set": ["ratio_variants_per_number_of_traces", "ratio_most_common_variant", "ratio_top_10_variants", "epa_normalized_variant_entropy", "epa_normalized_sequence_entropy", "epa_normalized_sequence_entropy_linear_forgetting", "epa_normalized_sequence_entropy_exponential_forgetting"]}, "output_path": "output/plots", "real_eventlog_path": "data/BaselineED_feat.csv", "plot_type": "boxplot"}, {"pipeline_step": "benchmark_test", "benchmark_test": "discovery", "input_path": "output/generated/grid_2obj/grid_2objectives_enself_rvpnot/2_enself_rvpnot", "output_path": "output", "miners": ["heu", "imf", "ilp"]}]
config_files/grid_2obj/generator_grid_2objectives_enve_mvo.json ADDED
@@ -0,0 +1 @@
 
 
1
+ [{"pipeline_step": "event_logs_generation", "output_path": "output/shaining/grid_2obj", "generator_params": {"experiment": {"input_path": "data/grid_2obj/grid_2objectives_enve_mvo.csv", "objectives": ["epa_normalized_variant_entropy", "mean_variant_occurrence"]}, "config_space": {"mode": [5, 20], "sequence": [0.01, 1], "choice": [0.01, 1], "parallel": [0.01, 1], "loop": [0.01, 1], "silent": [0.01, 1], "lt_dependency": [0.01, 1], "num_traces": [10, 10001], "duplicate": [0], "or": [0]}, "n_trials": 200}}, {"pipeline_step": "feature_extraction", "input_path": "output/features/shaining/grid_2obj/grid_2objectives_enve_mvo/2_enve_mvo", "feature_params": {"feature_set": ["ratio_variants_per_number_of_traces", "ratio_most_common_variant", "ratio_top_10_variants", "epa_normalized_variant_entropy", "epa_normalized_sequence_entropy", "epa_normalized_sequence_entropy_linear_forgetting", "epa_normalized_sequence_entropy_exponential_forgetting"]}, "output_path": "output/plots", "real_eventlog_path": "data/BaselineED_feat.csv", "plot_type": "boxplot"}, {"pipeline_step": "benchmark_test", "benchmark_test": "discovery", "input_path": "output/shaining/grid_2obj/grid_2objectives_enve_mvo/2_enve_mvo", "output_path": "output", "miners": ["heu", "imf", "ilp"]}]
config_files/grid_2obj/generator_grid_2objectives_enve_rmcv.json ADDED
@@ -0,0 +1 @@
 
 
1
+ [{"pipeline_step": "event_logs_generation", "output_path": "output/generated/grid_2obj", "generator_params": {"experiment": {"input_path": "data/grid_2obj/grid_2objectives_enve_rmcv.csv", "objectives": ["epa_normalized_variant_entropy", "ratio_most_common_variant"]}, "config_space": {"mode": [5, 20], "sequence": [0.01, 1], "choice": [0.01, 1], "parallel": [0.01, 1], "loop": [0.01, 1], "silent": [0.01, 1], "lt_dependency": [0.01, 1], "num_traces": [10, 10001], "duplicate": [0], "or": [0]}, "n_trials": 200}}, {"pipeline_step": "feature_extraction", "input_path": "output/features/generated/grid_2obj/grid_2objectives_enve_rmcv/2_enve_rmcv", "feature_params": {"feature_set": ["ratio_variants_per_number_of_traces", "ratio_most_common_variant", "ratio_top_10_variants", "epa_normalized_variant_entropy", "epa_normalized_sequence_entropy", "epa_normalized_sequence_entropy_linear_forgetting", "epa_normalized_sequence_entropy_exponential_forgetting"]}, "output_path": "output/plots", "real_eventlog_path": "data/BaselineED_feat.csv", "plot_type": "boxplot"}, {"pipeline_step": "benchmark_test", "benchmark_test": "discovery", "input_path": "output/generated/grid_2obj/grid_2objectives_enve_rmcv/2_enve_rmcv", "output_path": "output", "miners": ["heu", "imf", "ilp"]}]
config_files/grid_2obj/generator_grid_2objectives_enve_rt10v.json ADDED
@@ -0,0 +1 @@
 
 
1
+ [{"pipeline_step": "event_logs_generation", "output_path": "output/generated/grid_2obj", "generator_params": {"experiment": {"input_path": "data/grid_2obj/grid_2objectives_enve_rt10v.csv", "objectives": ["epa_normalized_variant_entropy", "ratio_top_10_variants"]}, "config_space": {"mode": [5, 20], "sequence": [0.01, 1], "choice": [0.01, 1], "parallel": [0.01, 1], "loop": [0.01, 1], "silent": [0.01, 1], "lt_dependency": [0.01, 1], "num_traces": [10, 10001], "duplicate": [0], "or": [0]}, "n_trials": 200}}, {"pipeline_step": "feature_extraction", "input_path": "output/features/generated/grid_2obj/grid_2objectives_enve_rt10v/2_enve_rt10v", "feature_params": {"feature_set": ["ratio_variants_per_number_of_traces", "ratio_most_common_variant", "ratio_top_10_variants", "epa_normalized_variant_entropy", "epa_normalized_sequence_entropy", "epa_normalized_sequence_entropy_linear_forgetting", "epa_normalized_sequence_entropy_exponential_forgetting"]}, "output_path": "output/plots", "real_eventlog_path": "data/BaselineED_feat.csv", "plot_type": "boxplot"}, {"pipeline_step": "benchmark_test", "benchmark_test": "discovery", "input_path": "output/generated/grid_2obj/grid_2objectives_enve_rt10v/2_enve_rt10v", "output_path": "output", "miners": ["heu", "imf", "ilp"]}]
config_files/grid_2obj/generator_grid_2objectives_enve_rvpnot.json ADDED
@@ -0,0 +1 @@
 
 
1
+ [{"pipeline_step": "event_logs_generation", "output_path": "output/generated/grid_2obj", "generator_params": {"experiment": {"input_path": "data/grid_2obj/grid_2objectives_enve_rvpnot.csv", "objectives": ["epa_normalized_variant_entropy", "ratio_variants_per_number_of_traces"]}, "config_space": {"mode": [5, 20], "sequence": [0.01, 1], "choice": [0.01, 1], "parallel": [0.01, 1], "loop": [0.01, 1], "silent": [0.01, 1], "lt_dependency": [0.01, 1], "num_traces": [10, 10001], "duplicate": [0], "or": [0]}, "n_trials": 200}}, {"pipeline_step": "feature_extraction", "input_path": "output/features/generated/grid_2obj/grid_2objectives_enve_rvpnot/2_enve_rvpnot", "feature_params": {"feature_set": ["ratio_variants_per_number_of_traces", "ratio_most_common_variant", "ratio_top_10_variants", "epa_normalized_variant_entropy", "epa_normalized_sequence_entropy", "epa_normalized_sequence_entropy_linear_forgetting", "epa_normalized_sequence_entropy_exponential_forgetting"]}, "output_path": "output/plots", "real_eventlog_path": "data/BaselineED_feat.csv", "plot_type": "boxplot"}, {"pipeline_step": "benchmark_test", "benchmark_test": "discovery", "input_path": "output/generated/grid_2obj/grid_2objectives_enve_rvpnot/2_enve_rvpnot", "output_path": "output", "miners": ["heu", "imf", "ilp"]}]
config_files/grid_2obj/generator_grid_2objectives_enve_sam.json ADDED
@@ -0,0 +1 @@
 
 
1
+ [{"pipeline_step": "event_logs_generation", "output_path": "output/shaining/grid_2obj", "generator_params": {"experiment": {"input_path": "data/grid_2obj/grid_2objectives_enve_sam.csv", "objectives": ["epa_normalized_variant_entropy", "start_activities_median"]}, "config_space": {"mode": [5, 20], "sequence": [0.01, 1], "choice": [0.01, 1], "parallel": [0.01, 1], "loop": [0.01, 1], "silent": [0.01, 1], "lt_dependency": [0.01, 1], "num_traces": [10, 10001], "duplicate": [0], "or": [0]}, "n_trials": 200}}, {"pipeline_step": "feature_extraction", "input_path": "output/features/shaining/grid_2obj/grid_2objectives_enve_sam/2_enve_sam", "feature_params": {"feature_set": ["ratio_variants_per_number_of_traces", "ratio_most_common_variant", "ratio_top_10_variants", "epa_normalized_variant_entropy", "epa_normalized_sequence_entropy", "epa_normalized_sequence_entropy_linear_forgetting", "epa_normalized_sequence_entropy_exponential_forgetting"]}, "output_path": "output/plots", "real_eventlog_path": "data/BaselineED_feat.csv", "plot_type": "boxplot"}, {"pipeline_step": "benchmark_test", "benchmark_test": "discovery", "input_path": "output/shaining/grid_2obj/grid_2objectives_enve_sam/2_enve_sam", "output_path": "output", "miners": ["heu", "imf", "ilp"]}]
config_files/grid_2obj/generator_grid_2objectives_mvo_sam.json ADDED
@@ -0,0 +1 @@
 
 
1
+ [{"pipeline_step": "event_logs_generation", "output_path": "output/shaining/grid_2obj", "generator_params": {"experiment": {"input_path": "data/grid_2obj/grid_2objectives_mvo_sam.csv", "objectives": ["mean_variant_occurrence", "start_activities_median"]}, "config_space": {"mode": [5, 20], "sequence": [0.01, 1], "choice": [0.01, 1], "parallel": [0.01, 1], "loop": [0.01, 1], "silent": [0.01, 1], "lt_dependency": [0.01, 1], "num_traces": [10, 10001], "duplicate": [0], "or": [0]}, "n_trials": 200}}, {"pipeline_step": "feature_extraction", "input_path": "output/features/shaining/grid_2obj/grid_2objectives_mvo_sam/2_mvo_sam", "feature_params": {"feature_set": ["ratio_variants_per_number_of_traces", "ratio_most_common_variant", "ratio_top_10_variants", "epa_normalized_variant_entropy", "epa_normalized_sequence_entropy", "epa_normalized_sequence_entropy_linear_forgetting", "epa_normalized_sequence_entropy_exponential_forgetting"]}, "output_path": "output/plots", "real_eventlog_path": "data/BaselineED_feat.csv", "plot_type": "boxplot"}, {"pipeline_step": "benchmark_test", "benchmark_test": "discovery", "input_path": "output/shaining/grid_2obj/grid_2objectives_mvo_sam/2_mvo_sam", "output_path": "output", "miners": ["heu", "imf", "ilp"]}]
config_files/grid_2obj/generator_grid_2objectives_rmcv_rt10v.json ADDED
@@ -0,0 +1 @@
 
 
1
+ [{"pipeline_step": "event_logs_generation", "output_path": "output/generated/grid_2obj", "generator_params": {"experiment": {"input_path": "data/grid_2obj/grid_2objectives_rmcv_rt10v.csv", "objectives": ["ratio_most_common_variant", "ratio_top_10_variants"]}, "config_space": {"mode": [5, 20], "sequence": [0.01, 1], "choice": [0.01, 1], "parallel": [0.01, 1], "loop": [0.01, 1], "silent": [0.01, 1], "lt_dependency": [0.01, 1], "num_traces": [10, 10001], "duplicate": [0], "or": [0]}, "n_trials": 200}}, {"pipeline_step": "feature_extraction", "input_path": "output/features/generated/grid_2obj/grid_2objectives_rmcv_rt10v/2_rmcv_rt10v", "feature_params": {"feature_set": ["ratio_variants_per_number_of_traces", "ratio_most_common_variant", "ratio_top_10_variants", "epa_normalized_variant_entropy", "epa_normalized_sequence_entropy", "epa_normalized_sequence_entropy_linear_forgetting", "epa_normalized_sequence_entropy_exponential_forgetting"]}, "output_path": "output/plots", "real_eventlog_path": "data/BaselineED_feat.csv", "plot_type": "boxplot"}, {"pipeline_step": "benchmark_test", "benchmark_test": "discovery", "input_path": "output/generated/grid_2obj/grid_2objectives_rmcv_rt10v/2_rmcv_rt10v", "output_path": "output", "miners": ["heu", "imf", "ilp"]}]
config_files/grid_2obj/generator_grid_2objectives_rmcv_rvpnot.json ADDED
@@ -0,0 +1 @@
 
 
1
+ [{"pipeline_step": "event_logs_generation", "output_path": "output/generated/grid_2obj", "generator_params": {"experiment": {"input_path": "data/grid_2obj/grid_2objectives_rmcv_rvpnot.csv", "objectives": ["ratio_most_common_variant", "ratio_variants_per_number_of_traces"]}, "config_space": {"mode": [5, 20], "sequence": [0.01, 1], "choice": [0.01, 1], "parallel": [0.01, 1], "loop": [0.01, 1], "silent": [0.01, 1], "lt_dependency": [0.01, 1], "num_traces": [10, 10001], "duplicate": [0], "or": [0]}, "n_trials": 200}}, {"pipeline_step": "feature_extraction", "input_path": "output/features/generated/grid_2obj/grid_2objectives_rmcv_rvpnot/2_rmcv_rvpnot", "feature_params": {"feature_set": ["ratio_variants_per_number_of_traces", "ratio_most_common_variant", "ratio_top_10_variants", "epa_normalized_variant_entropy", "epa_normalized_sequence_entropy", "epa_normalized_sequence_entropy_linear_forgetting", "epa_normalized_sequence_entropy_exponential_forgetting"]}, "output_path": "output/plots", "real_eventlog_path": "data/BaselineED_feat.csv", "plot_type": "boxplot"}, {"pipeline_step": "benchmark_test", "benchmark_test": "discovery", "input_path": "output/generated/grid_2obj/grid_2objectives_rmcv_rvpnot/2_rmcv_rvpnot", "output_path": "output", "miners": ["heu", "imf", "ilp"]}]
config_files/grid_2obj/generator_grid_2objectives_rt10v_rvpnot.json ADDED
@@ -0,0 +1 @@
 
 
1
+ [{"pipeline_step": "event_logs_generation", "output_path": "output/generated/grid_2obj", "generator_params": {"experiment": {"input_path": "data/grid_2obj/grid_2objectives_rt10v_rvpnot.csv", "objectives": ["ratio_top_10_variants", "ratio_variants_per_number_of_traces"]}, "config_space": {"mode": [5, 20], "sequence": [0.01, 1], "choice": [0.01, 1], "parallel": [0.01, 1], "loop": [0.01, 1], "silent": [0.01, 1], "lt_dependency": [0.01, 1], "num_traces": [10, 10001], "duplicate": [0], "or": [0]}, "n_trials": 200}}, {"pipeline_step": "feature_extraction", "input_path": "output/features/generated/grid_2obj/grid_2objectives_rt10v_rvpnot/2_rt10v_rvpnot", "feature_params": {"feature_set": ["ratio_variants_per_number_of_traces", "ratio_most_common_variant", "ratio_top_10_variants", "epa_normalized_variant_entropy", "epa_normalized_sequence_entropy", "epa_normalized_sequence_entropy_linear_forgetting", "epa_normalized_sequence_entropy_exponential_forgetting"]}, "output_path": "output/plots", "real_eventlog_path": "data/BaselineED_feat.csv", "plot_type": "boxplot"}, {"pipeline_step": "benchmark_test", "benchmark_test": "discovery", "input_path": "output/generated/grid_2obj/grid_2objectives_rt10v_rvpnot/2_rt10v_rvpnot", "output_path": "output", "miners": ["heu", "imf", "ilp"]}]
config_files/options/baseline.json DELETED
@@ -1,9 +0,0 @@
1
- {
2
- "run_option": "baseline",
3
- "plot_type": "color_map",
4
- "plot_tics": true,
5
- "n_components": 2,
6
- "input_name": "test",
7
- "save_results": false,
8
- "load_results": false
9
- }
 
 
 
 
 
 
 
 
 
 
config_files/options/run_params.json DELETED
@@ -1,9 +0,0 @@
1
- {
2
- "run_option": "compare",
3
- "plot_type": "color_map",
4
- "plot_tics": true,
5
- "n_components": 2,
6
- "input_name": "gen20",
7
- "save_results": false,
8
- "load_results": true
9
- }
 
 
 
 
 
 
 
 
 
 
config_files/pipeline_steps/augmentation.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "pipeline_step": "instance_augmentation",
4
+ "augmentation_params":
5
+ {
6
+ "method":"SMOTE", "no_samples":20,
7
+ "feature_selection": ["n_traces", "n_unique_traces", "ratio_variants_per_number_of_traces", "trace_len_min", "trace_len_max", "trace_len_mean", "trace_len_median", "trace_len_mode", "trace_len_std", "trace_len_variance", "trace_len_q1", "trace_len_q3", "trace_len_iqr", "trace_len_geometric_mean", "trace_len_geometric_std", "trace_len_harmonic_mean", "trace_len_skewness", "trace_len_kurtosis", "trace_len_coefficient_variation", "trace_len_entropy", "trace_len_hist1", "trace_len_hist2", "trace_len_hist3", "trace_len_hist4", "trace_len_hist5", "trace_len_hist6", "trace_len_hist7", "trace_len_hist8", "trace_len_hist9", "trace_len_hist10", "trace_len_skewness_hist", "trace_len_kurtosis_hist", "ratio_most_common_variant", "ratio_top_1_variants", "ratio_top_5_variants", "ratio_top_10_variants", "ratio_top_20_variants", "ratio_top_50_variants", "ratio_top_75_variants", "mean_variant_occurrence", "std_variant_occurrence", "skewness_variant_occurrence", "kurtosis_variant_occurrence", "n_unique_activities", "activities_min", "activities_max", "activities_mean", "activities_median", "activities_std", "activities_variance", "activities_q1", "activities_q3", "activities_iqr", "activities_skewness", "activities_kurtosis", "n_unique_start_activities", "start_activities_min", "start_activities_max", "start_activities_mean", "start_activities_median", "start_activities_std", "start_activities_variance", "start_activities_q1", "start_activities_q3", "start_activities_iqr", "start_activities_skewness", "start_activities_kurtosis", "n_unique_end_activities", "end_activities_min", "end_activities_max", "end_activities_mean", "end_activities_median", "end_activities_std", "end_activities_variance", "end_activities_q1", "end_activities_q3", "end_activities_iqr", "end_activities_skewness", "end_activities_kurtosis", "entropy_trace", "entropy_prefix", "entropy_global_block", "entropy_lempel_ziv", "entropy_k_block_diff_1", "entropy_k_block_diff_3", "entropy_k_block_diff_5", "entropy_k_block_ratio_1", "entropy_k_block_ratio_3", "entropy_k_block_ratio_5", "entropy_knn_3", "entropy_knn_5", "entropy_knn_7", "epa_variant_entropy", "epa_normalized_variant_entropy", "epa_sequence_entropy", "epa_normalized_sequence_entropy", "epa_sequence_entropy_linear_forgetting", "epa_normalized_sequence_entropy_linear_forgetting", "epa_sequence_entropy_exponential_forgetting", "epa_normalized_sequence_entropy_exponential_forgetting"]
8
+ },
9
+ "input_path": "data/test/bpic_features.csv",
10
+ "output_path": "output"
11
+ }
12
+ ]
config_files/{algorithm β†’ pipeline_steps}/benchmark.json RENAMED
@@ -4,6 +4,6 @@
4
  "benchmark_test": "discovery",
5
  "input_path":"data/test",
6
  "output_path":"output",
7
- "miners" : ["inductive", "heuristics", "imf", "ilp"]
8
  }
9
  ]
 
4
  "benchmark_test": "discovery",
5
  "input_path":"data/test",
6
  "output_path":"output",
7
+ "miners" : ["ind", "heu", "imf", "ilp"]
8
  }
9
  ]
config_files/{algorithm β†’ pipeline_steps}/evaluation_plotter.json RENAMED
@@ -1,7 +1,7 @@
1
  [
2
  {
3
  "pipeline_step": "evaluation_plotter",
4
- "input_path": "output/features/generated/34_bpic_features/",
5
  "input_path": "output/features/generated/grid_2obj/",
6
  "input_path": ["output/features/generated/grid_1obj/", "output/features/generated/grid_2obj/"],
7
  "input_path": "output/features/generated/grid_1obj/1_enve_feat.csv",
@@ -9,7 +9,7 @@
9
  "reference_feature": "epa_normalized_sequence_entropy",
10
  "reference_feature": "epa_normalized_sequence_entropy_exponential_forgetting",
11
  "reference_feature": "epa_normalized_variant_entropy",
12
- "targets": "data/34_bpic_features.csv",
13
  "targets": "data/grid_experiments/grid_2obj/",
14
  "targets": ["data/grid_experiments/grid_1obj/", "data/grid_experiments/grid_2obj/"],
15
  "targets": "data/grid_experiments/grid_1obj/grid_1objectives_enve.csv",
 
1
  [
2
  {
3
  "pipeline_step": "evaluation_plotter",
4
+ "input_path": "output/features/generated/BaselineED_feat/",
5
  "input_path": "output/features/generated/grid_2obj/",
6
  "input_path": ["output/features/generated/grid_1obj/", "output/features/generated/grid_2obj/"],
7
  "input_path": "output/features/generated/grid_1obj/1_enve_feat.csv",
 
9
  "reference_feature": "epa_normalized_sequence_entropy",
10
  "reference_feature": "epa_normalized_sequence_entropy_exponential_forgetting",
11
  "reference_feature": "epa_normalized_variant_entropy",
12
+ "targets": "data/BaselineED_feat.csv",
13
  "targets": "data/grid_experiments/grid_2obj/",
14
  "targets": ["data/grid_experiments/grid_1obj/", "data/grid_experiments/grid_2obj/"],
15
  "targets": "data/grid_experiments/grid_1obj/grid_1objectives_enve.csv",
config_files/{algorithm β†’ pipeline_steps}/feature_extraction.json RENAMED
@@ -2,7 +2,7 @@
2
  {
3
  "pipeline_step": "feature_extraction",
4
  "input_path": "data/test",
5
- "feature_params": {"feature_set":["simple_stats", "trace_length", "trace_variant", "activities", "start_activities", "end_activities", "eventropies", "epa_based"]},
6
  "output_path": "output/plots",
7
  "real_eventlog_path": "data/BaselineED_feat.csv",
8
  "plot_type": "boxplot",
 
2
  {
3
  "pipeline_step": "feature_extraction",
4
  "input_path": "data/test",
5
+ "feature_params": {"feature_set":["ratio_variants_per_number_of_traces", "ratio_most_common_variant", "ratio_top_10_variants", "epa_normalized_variant_entropy", "epa_normalized_sequence_entropy", "epa_normalized_sequence_entropy_linear_forgetting", "epa_normalized_sequence_entropy_exponential_forgetting"]},
6
  "output_path": "output/plots",
7
  "real_eventlog_path": "data/BaselineED_feat.csv",
8
  "plot_type": "boxplot",
config_files/{algorithm β†’ pipeline_steps}/generation.json RENAMED
File without changes
config_files/{algorithm β†’ test}/experiment_test.json RENAMED
@@ -3,7 +3,7 @@
3
  "pipeline_step": "instance_augmentation",
4
  "augmentation_params":{"method":"SMOTE", "no_samples":2,
5
  "feature_selection": ["ratio_top_20_variants", "epa_normalized_sequence_entropy_linear_forgetting"]},
6
- "input_path": "data/bpic_features.csv",
7
  "output_path": "output"
8
  },
9
  {
@@ -39,7 +39,7 @@
39
  "input_path": "data/test",
40
  "feature_params": {"feature_set":["trace_length"]},
41
  "output_path": "output/plots",
42
- "real_eventlog_path": "data/bpic_features.csv",
43
  "plot_type": "boxplot"
44
  },
45
  {
@@ -47,6 +47,6 @@
47
  "benchmark_test": "discovery",
48
  "input_path":"data/test",
49
  "output_path":"output",
50
- "miners" : ["inductive", "heuristics", "imf", "ilp"]
51
  }
52
  ]
 
3
  "pipeline_step": "instance_augmentation",
4
  "augmentation_params":{"method":"SMOTE", "no_samples":2,
5
  "feature_selection": ["ratio_top_20_variants", "epa_normalized_sequence_entropy_linear_forgetting"]},
6
+ "input_path": "data/test/bpic_features.csv",
7
  "output_path": "output"
8
  },
9
  {
 
39
  "input_path": "data/test",
40
  "feature_params": {"feature_set":["trace_length"]},
41
  "output_path": "output/plots",
42
+ "real_eventlog_path": "data/BaselineED_feat.csv",
43
  "plot_type": "boxplot"
44
  },
45
  {
 
47
  "benchmark_test": "discovery",
48
  "input_path":"data/test",
49
  "output_path":"output",
50
+ "miners" : ["inductive", "heu", "imf", "ilp"]
51
  }
52
  ]
config_files/{algorithm/test β†’ test}/generator_2bpic_2objectives_ense_enseef.json RENAMED
@@ -1,7 +1,7 @@
1
  [{"pipeline_step": "event_logs_generation",
2
  "output_path": "output/generated",
3
  "generator_params": {"experiment":
4
- {"input_path": "data/2_bpic_features.csv",
5
  "objectives": ["epa_normalized_sequence_entropy",
6
  "epa_normalized_sequence_entropy_exponential_forgetting"]},
7
  "config_space": {"mode": [5, 20], "sequence": [0.01, 1],
@@ -12,4 +12,4 @@
12
  "input_path": "output/features/generated/2_bpic_features/2_ense_enseef",
13
  "feature_params": {"feature_set": ["simple_stats", "trace_length", "trace_variant", "activities",
14
  "start_activities", "end_activities", "eventropies", "epa_based"]}, "output_path": "output/plots",
15
- "real_eventlog_path": "data/2_bpic_features.csv", "plot_type": "boxplot"}]
 
1
  [{"pipeline_step": "event_logs_generation",
2
  "output_path": "output/generated",
3
  "generator_params": {"experiment":
4
+ {"input_path": "data/test/2_bpic_features.csv",
5
  "objectives": ["epa_normalized_sequence_entropy",
6
  "epa_normalized_sequence_entropy_exponential_forgetting"]},
7
  "config_space": {"mode": [5, 20], "sequence": [0.01, 1],
 
12
  "input_path": "output/features/generated/2_bpic_features/2_ense_enseef",
13
  "feature_params": {"feature_set": ["simple_stats", "trace_length", "trace_variant", "activities",
14
  "start_activities", "end_activities", "eventropies", "epa_based"]}, "output_path": "output/plots",
15
+ "real_eventlog_path": "data/test/2_bpic_features.csv", "plot_type": "boxplot"}]
config_files/{algorithm/test β†’ test}/generator_grid_1objectives_rt10v.json RENAMED
@@ -1,7 +1,7 @@
1
  [{"pipeline_step": "event_logs_generation",
2
  "output_path": "output/generated/grid_1obj",
3
  "generator_params": {"experiment":
4
- {"input_path": "data/grid_experiments/grid_1objectives_rt10v.csv",
5
  "objectives": ["ratio_top_10_variants"]},
6
  "config_space": {"mode": [5, 20], "sequence": [0.01, 1],
7
  "choice": [0.01, 1], "parallel": [0.01, 1], "loop": [0.01, 1],
@@ -12,5 +12,5 @@
12
  "input_path": "output/features/generated/grid_1obj/grid_1objectives_rt10v/1_rt10v",
13
  "feature_params": {"feature_set": ["simple_stats", "trace_length", "trace_variant",
14
  "activities", "start_activities", "end_activities", "eventropies", "epa_based"]},
15
- "output_path": "output/plots", "real_eventlog_path": "data/2_bpic_features.csv",
16
  "plot_type": "boxplot"}]
 
1
  [{"pipeline_step": "event_logs_generation",
2
  "output_path": "output/generated/grid_1obj",
3
  "generator_params": {"experiment":
4
+ {"input_path": "data/test/grid_experiments/grid_1objectives_rt10v.csv",
5
  "objectives": ["ratio_top_10_variants"]},
6
  "config_space": {"mode": [5, 20], "sequence": [0.01, 1],
7
  "choice": [0.01, 1], "parallel": [0.01, 1], "loop": [0.01, 1],
 
12
  "input_path": "output/features/generated/grid_1obj/grid_1objectives_rt10v/1_rt10v",
13
  "feature_params": {"feature_set": ["simple_stats", "trace_length", "trace_variant",
14
  "activities", "start_activities", "end_activities", "eventropies", "epa_based"]},
15
+ "output_path": "output/plots", "real_eventlog_path": "data/test/2_bpic_features.csv",
16
  "plot_type": "boxplot"}]
config_files/{algorithm/test β†’ test}/generator_grid_2objectives_ense_enself.json RENAMED
@@ -1,7 +1,7 @@
1
  [{"pipeline_step": "event_logs_generation",
2
  "output_path": "output/generated/grid_2obj",
3
  "generator_params": {"experiment":
4
- {"input_path": "data/2_grid_test.csv",
5
  "objectives": ["epa_normalized_sequence_entropy",
6
  "epa_normalized_sequence_entropy_linear_forgetting"]},
7
  "config_space": {"mode": [5, 20], "sequence": [0.01, 1],
@@ -15,5 +15,5 @@
15
  "feature_params": {"feature_set": ["simple_stats", "trace_length", "trace_variant",
16
  "activities", "start_activities", "end_activities", "eventropies", "epa_based"]},
17
  "output_path": "output/plots",
18
- "real_eventlog_path": "data/2_bpic_features.csv",
19
  "plot_type": "boxplot"}]
 
1
  [{"pipeline_step": "event_logs_generation",
2
  "output_path": "output/generated/grid_2obj",
3
  "generator_params": {"experiment":
4
+ {"input_path": "data/test/2_grid_test.csv",
5
  "objectives": ["epa_normalized_sequence_entropy",
6
  "epa_normalized_sequence_entropy_linear_forgetting"]},
7
  "config_space": {"mode": [5, 20], "sequence": [0.01, 1],
 
15
  "feature_params": {"feature_set": ["simple_stats", "trace_length", "trace_variant",
16
  "activities", "start_activities", "end_activities", "eventropies", "epa_based"]},
17
  "output_path": "output/plots",
18
+ "real_eventlog_path": "data/test/2_bpic_features.csv",
19
  "plot_type": "boxplot"}]
data/GenED_bench.csv CHANGED
The diff for this file is too large to render. See raw diff
 
data/GenED_feat.csv CHANGED
The diff for this file is too large to render. See raw diff
 
data/grid_1obj/grid_1objectives_ense.csv DELETED
@@ -1,12 +0,0 @@
1
- task,epa_normalized_sequence_entropy
2
- task_1,0.0
3
- task_2,0.1
4
- task_3,0.2
5
- task_4,0.3
6
- task_5,0.4
7
- task_6,0.5
8
- task_7,0.6
9
- task_8,0.7
10
- task_9,0.8
11
- task_10,0.9
12
- task_11,1.0
 
 
 
 
 
 
 
 
 
 
 
 
 
data/grid_1obj/grid_1objectives_enseef.csv DELETED
@@ -1,12 +0,0 @@
1
- task,epa_normalized_sequence_entropy_exponential_forgetting
2
- task_1,0.0
3
- task_2,0.1
4
- task_3,0.2
5
- task_4,0.3
6
- task_5,0.4
7
- task_6,0.5
8
- task_7,0.6
9
- task_8,0.7
10
- task_9,0.8
11
- task_10,0.9
12
- task_11,1.0
 
 
 
 
 
 
 
 
 
 
 
 
 
data/grid_1obj/grid_1objectives_enself.csv DELETED
@@ -1,12 +0,0 @@
1
- task,epa_normalized_sequence_entropy_linear_forgetting
2
- task_1,0.0
3
- task_2,0.1
4
- task_3,0.2
5
- task_4,0.3
6
- task_5,0.4
7
- task_6,0.5
8
- task_7,0.6
9
- task_8,0.7
10
- task_9,0.8
11
- task_10,0.9
12
- task_11,1.0
 
 
 
 
 
 
 
 
 
 
 
 
 
data/grid_1obj/grid_1objectives_enve.csv DELETED
@@ -1,12 +0,0 @@
1
- task,epa_normalized_variant_entropy
2
- task_1,0.0
3
- task_2,0.1
4
- task_3,0.2
5
- task_4,0.3
6
- task_5,0.4
7
- task_6,0.5
8
- task_7,0.6
9
- task_8,0.7
10
- task_9,0.8
11
- task_10,0.9
12
- task_11,1.0
 
 
 
 
 
 
 
 
 
 
 
 
 
data/grid_1obj/grid_1objectives_rmcv.csv DELETED
@@ -1,12 +0,0 @@
1
- task,ratio_most_common_variant
2
- task_1,0.0
3
- task_2,0.1
4
- task_3,0.2
5
- task_4,0.3
6
- task_5,0.4
7
- task_6,0.5
8
- task_7,0.6
9
- task_8,0.7
10
- task_9,0.8
11
- task_10,0.9
12
- task_11,1.0
 
 
 
 
 
 
 
 
 
 
 
 
 
data/grid_1obj/grid_1objectives_rt10v.csv DELETED
@@ -1,12 +0,0 @@
1
- task,ratio_top_10_variants
2
- task_1,0.0
3
- task_2,0.1
4
- task_3,0.2
5
- task_4,0.3
6
- task_5,0.4
7
- task_6,0.5
8
- task_7,0.6
9
- task_8,0.7
10
- task_9,0.8
11
- task_10,0.9
12
- task_11,1.0
 
 
 
 
 
 
 
 
 
 
 
 
 
data/grid_1obj/grid_1objectives_rutpt.csv DELETED
@@ -1,12 +0,0 @@
1
- task,ratio_unique_traces_per_trace
2
- task_1,0.0
3
- task_2,0.1
4
- task_3,0.2
5
- task_4,0.3
6
- task_5,0.4
7
- task_6,0.5
8
- task_7,0.6
9
- task_8,0.7
10
- task_9,0.8
11
- task_10,0.9
12
- task_11,1.0
 
 
 
 
 
 
 
 
 
 
 
 
 
data/grid_2obj/{grid_2objectives_enve_rutpt.csv β†’ grid_2objectives_ense_rvpnot.csv} RENAMED
@@ -1,4 +1,4 @@
1
- task,epa_normalized_variant_entropy,ratio_unique_traces_per_trace
2
  task_1,0.0,0.0
3
  task_2,0.0,0.1
4
  task_3,0.0,0.2
 
1
+ task,epa_normalized_sequence_entropy,ratio_variants_per_number_of_traces
2
  task_1,0.0,0.0
3
  task_2,0.0,0.1
4
  task_3,0.0,0.2