Andrea Maldonado commited on
Commit
8dcad92
·
1 Parent(s): 1d9ed09

Restores run file

Browse files
Files changed (2) hide show
  1. gedi/__init__.py +1 -6
  2. gedi/run.py +53 -0
gedi/__init__.py CHANGED
@@ -1,8 +1,3 @@
1
- from .generator import GenerateEventLogs
2
- from .features import EventLogFeatures
3
- from .augmentation import InstanceAugmentator
4
- from .benchmark import BenchmarkTest
5
- from .plotter import BenchmarkPlotter, FeaturesPlotter, AugmentationPlotter, GenerationPlotter
6
  from .run import gedi
7
 
8
- __all__=[ 'gedi', 'GenerateEventLogs', 'EventLogFeatures', 'FeatureAnalyser', 'InstanceAugmentator', 'BenchmarkTest', 'BenchmarkPlotter', 'FeaturesPlotter', 'AugmentationPlotter', 'GenerationPlotter']
 
 
 
 
 
 
1
  from .run import gedi
2
 
3
+ __all__=[ 'gedi']
gedi/run.py ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import config
2
+ import pandas as pd
3
+ from datetime import datetime as dt
4
+ from gedi.generator import GenerateEventLogs
5
+ from gedi.features import EventLogFeatures
6
+ from gedi.augmentation import InstanceAugmentator
7
+ from gedi.benchmark import BenchmarkTest
8
+ from gedi.plotter import BenchmarkPlotter, FeaturesPlotter, AugmentationPlotter, GenerationPlotter
9
+ from utils.default_argparse import ArgParser
10
+ from utils.param_keys import *
11
+
12
+ def run(kwargs:dict, model_params_list: list, filename_list:list):
13
+ """
14
+ This function chooses the running option for the program.
15
+ @param kwargs: dict
16
+ contains the running parameters and the event-log file information
17
+ @param model_params_list: list
18
+ contains a list of model parameters, which are used to analyse this different models.
19
+ @param filename_list: list
20
+ contains the list of the filenames to load multiple event-logs
21
+ @return:
22
+ """
23
+ params = kwargs[PARAMS]
24
+ ft = EventLogFeatures(None)
25
+ augmented_ft = InstanceAugmentator()
26
+ gen = pd.DataFrame(columns=['log'])
27
+
28
+ for model_params in model_params_list:
29
+ if model_params.get(PIPELINE_STEP) == 'instance_augmentation':
30
+ augmented_ft = InstanceAugmentator(aug_params=model_params, samples=ft.feat)
31
+ AugmentationPlotter(augmented_ft, model_params)
32
+ elif model_params.get(PIPELINE_STEP) == 'event_logs_generation':
33
+ gen = pd.DataFrame(GenerateEventLogs(model_params).log_config)
34
+ #gen = pd.read_csv("output/features/generated/grid_2objectives_enseef_enve/2_enseef_enve_feat.csv")
35
+ #GenerationPlotter(gen, model_params, output_path="output/plots")
36
+ elif model_params.get(PIPELINE_STEP) == 'benchmark_test':
37
+ benchmark = BenchmarkTest(model_params, event_logs=gen['log'])
38
+ # BenchmarkPlotter(benchmark.features, output_path="output/plots")
39
+ elif model_params.get(PIPELINE_STEP) == 'feature_extraction':
40
+ ft = EventLogFeatures(**kwargs, logs=gen['log'], ft_params=model_params)
41
+ FeaturesPlotter(ft.feat, model_params)
42
+ elif model_params.get(PIPELINE_STEP) == "evaluation_plotter":
43
+ GenerationPlotter(gen, model_params, output_path=model_params['output_path'], input_path=model_params['input_path'])
44
+
45
+ def gedi(config_path):
46
+ """
47
+ This function runs the GEDI pipeline.
48
+ @param config_path: str
49
+ contains the path to the config file
50
+ @return:
51
+ """
52
+ model_params_list = config.get_model_params_list(config_path)
53
+ run({'params':""}, model_params_list, [])