diff --git "a/notebooks/feature_selection.ipynb" "b/notebooks/feature_selection.ipynb" deleted file mode 100644--- "a/notebooks/feature_selection.ipynb" +++ /dev/null @@ -1,4557 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "execution_count": 1, - "id": "4fa5c9aa", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "(34, 178)\n", - "['ratio_unique_traces_per_trace', 'trace_len_hist2', 'trace_len_hist3', 'trace_len_hist4', 'trace_len_hist5', 'trace_len_hist7', 'trace_len_hist8', 'trace_len_hist9', 'ratio_most_common_variant', 'ratio_top_1_variants', 'ratio_top_5_variants', 'ratio_top_10_variants', 'ratio_top_20_variants', 'ratio_top_50_variants', 'ratio_top_75_variants', 'normalized_variant_entropy', 'normalized_sequence_entropy', 'normalized_sequence_eventropy_linear_forgetting', 'normalized_sequence_eventropy_exponential_forgetting']\n", - "(34, 102)\n", - "Index(['log', 'n_traces', 'n_unique_traces', 'ratio_unique_traces_per_trace',\n", - " 'trace_len_min', 'trace_len_max', 'trace_len_mean', 'trace_len_median',\n", - " 'trace_len_mode', 'trace_len_std',\n", - " ...\n", - " 'eventropy_knn_7', 'Log Nature', 'variant_entropy',\n", - " 'normalized_variant_entropy', 'sequence_entropy',\n", - " 'normalized_sequence_entropy', 'sequence_eventropy_linear_forgetting',\n", - " 'normalized_sequence_eventropy_linear_forgetting',\n", - " 'sequence_eventropy_exponential_forgetting',\n", - " 'normalized_sequence_eventropy_exponential_forgetting'],\n", - " dtype='object', length=102)\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
logn_tracesn_unique_tracesratio_unique_traces_per_tracetrace_len_mintrace_len_maxtrace_len_meantrace_len_mediantrace_len_modetrace_len_std...eventropy_knn_7Log Naturevariant_entropynormalized_variant_entropysequence_entropynormalized_sequence_entropysequence_eventropy_linear_forgettingnormalized_sequence_eventropy_linear_forgettingsequence_eventropy_exponential_forgettingnormalized_sequence_eventropy_exponential_forgetting
0BPIC15_28328280.995192113253.31009654.06119.894977...4.721Real2.405122e+050.6279732.858769e+050.6023711.505466e+050.3172171.853129e+050.390473
1BPI_Challenge_201843809284570.64957024297357.39154149.04934.872131...7.067Real1.156384e+070.7120792.114626e+070.5706881.414023e+070.3816121.557608e+070.420362
2Receipt_WABO_CoSeLoG14341160.0808931255.9811726.062.166129...2.584Real2.382326e+030.6893631.829627e+040.2355327.814868e+030.1006031.072870e+040.138113
3BPIC15_3140913490.957417312442.35699142.04416.138406...4.900Real2.981464e+050.6617813.975043e+050.6056762.241393e+050.3415212.657571e+050.404934
4BPI_Challenge_2019251734119730.04756219906.3397205.0513.057417...6.601Real1.690369e+060.6455307.477256e+060.3280297.298458e+060.3201857.300663e+060.320282
5RequestForPayment6886890.0129251205.3435965.051.467384...2.312Real1.322840e+030.7037357.313156e+040.1890483.774501e+040.0975724.593493e+040.118744
6PrepaidTravelCost20992020.0962361218.6927118.082.253873...2.987Real5.488774e+030.7237855.675857e+040.3170443.309789e+040.1848793.838045e+040.214387
7DomesticDeclarations10500990.0094291245.3749525.051.486345...2.315Real1.649696e+030.6964741.017330e+050.1647585.275579e+040.0854396.445733e+040.104389
8BPIC15_4105310490.996201111644.91263144.04214.947644...4.729Real2.357325e+050.6529853.074084e+050.6038661.811907e+050.3559272.101610e+050.412835
9BPI_Challenge_20121308743660.333614317520.03514911.0319.943559...5.335Real4.749288e+050.7082801.384057e+060.4230747.397790e+050.2261339.014471e+050.275551
10Hospital_log11439810.85826811814131.48818955.02202.528729...4.931Real8.469167e+050.5174439.191069e+050.5130324.798126e+050.2678255.941966e+050.331672
11BPIC15_5115611530.997405515451.10986250.04416.029953...4.841Real3.031393e+050.6487023.915923e+050.6032602.222674e+050.3424102.626238e+050.404580
12CoSeLoG_WABO_26456440.998450112451.74108551.04420.373556...4.430Real1.744120e+050.6184552.064846e+050.5940351.123546e+050.3232331.355134e+050.389858
13Road_Traffic_Fine_Management_Process1503702310.0015362203.7339235.021.641012...2.790Real1.892307e+030.7693538.319835e+050.1119323.908680e+050.0525865.087233e+050.068442
14BPI_Challenge_2017_Offer_log42995160.000372354.5086415.050.560753...0.618Real4.232263e+010.8134792.481151e+050.1051301.243092e+050.0526721.557649e+050.066000
15Sepsis_Cases_Event_Log10508460.805714318514.48952413.0811.470475...4.191Real4.062449e+040.6957597.652868e+040.5223433.213928e+040.2193654.388054e+040.299505
16CoSeLoG_WABO_3108710320.949402312441.21527141.04615.780335...4.537Real2.127409e+050.6542962.861474e+050.5963671.334475e+050.2781211.710260e+050.356439
17BPI_Challenge_2013_closed_problems14871830.1230671354.4788163.023.170888...2.386Real3.502264e+030.7053831.823159e+040.3109401.679949e+040.2865151.690901e+040.288383
18BPI_Challenge_2013_incidents755415110.20002611238.6752716.037.625071...4.083Real8.867742e+040.7178462.940925e+050.4046512.842417e+050.3910972.846260e+050.391625
19PermitLog706514780.20920039012.25491911.0105.584833...4.725Real9.661835e+040.7336534.135643e+050.4201501.351355e+050.1372872.121125e+050.215490
20BPIC15_1119911700.975813210143.55045944.04416.981536...4.931Real2.772222e+050.6528553.461843e+050.6102941.532922e+050.2702412.064350e+050.363928
21InternationalDeclarations64497530.11676232711.18793610.0102.740671...3.986Real3.072202e+040.7582682.739197e+050.3393801.175256e+050.1456111.563815e+050.193753
22BPI_Challenge_201731509159300.5055701018038.15630535.02416.715043...6.297Real2.602767e+060.7417067.768787e+060.4615653.903568e+060.2319224.888915e+060.290464
23BPI2016_Complaints226990.438053151.2787611.010.642995...3.272NaN5.219700e+020.8994971.119782e+030.6837966.627117e+020.4046857.698614e+020.470116
24BPI2016_Questions21533171710.79742711025.7308784.015.485213...8.054NaN8.500998e+050.8134681.093881e+060.7561326.147088e+050.4249107.321911e+050.506118
25BPI2016_Werkmap_Messages16653480.0028821613.9667333.014.203692...1.055NaN0.000000e+000.0000000.000000e+000.0000000.000000e+000.0000000.000000e+000.000000
26BPI_Challenge_2013_open_problems8191080.1318681222.8705742.022.082628...2.259NaN9.200861e+020.7029605.051026e+030.2767714.783176e+030.2620944.800238e+030.263029
27CoSeLoG_WABO_19379160.97758829541.56243343.04016.678023...0.000NaN1.951662e+050.6466972.476248e+050.6015661.205360e+050.2928241.548878e+050.376276
28CoSeLoG_WABO_47877810.99237629344.27954344.03913.950744...0.000NaN1.675112e+050.6443992.176264e+050.5971091.362814e+050.3739201.539968e+050.422526
29CoSeLoG_WABO_58928790.985426510049.21076246.04414.946856...0.000NaN2.097776e+050.6426682.779969e+050.5924541.627439e+050.3468321.885039e+050.401731
30Detail_Change180008720.048444110071.6819441.017.979279...0.000NaNNaNNaNNaNNaNNaNNaNNaNNaN
31Detail_Incident_Activity46616231610.496847117810.0123787.059.653109...7.647NaNNaNNaNNaNNaNNaNNaNNaNNaN
32Detail_Interaction14700460.000041111.0000001.010.000000...0.000NaNNaNNaNNaNNaNNaNNaNNaNNaN
33finale45802260.0493452154.6611354.041.179897...2.748NaN3.724970e+030.7991205.406829e+040.2540662.521350e+040.1184783.289574e+040.154576
\n", - "

34 rows × 102 columns

\n", - "
" - ], - "text/plain": [ - " log n_traces n_unique_traces \n", - "0 BPIC15_2 832 828 \\\n", - "1 BPI_Challenge_2018 43809 28457 \n", - "2 Receipt_WABO_CoSeLoG 1434 116 \n", - "3 BPIC15_3 1409 1349 \n", - "4 BPI_Challenge_2019 251734 11973 \n", - "5 RequestForPayment 6886 89 \n", - "6 PrepaidTravelCost 2099 202 \n", - "7 DomesticDeclarations 10500 99 \n", - "8 BPIC15_4 1053 1049 \n", - "9 BPI_Challenge_2012 13087 4366 \n", - "10 Hospital_log 1143 981 \n", - "11 BPIC15_5 1156 1153 \n", - "12 CoSeLoG_WABO_2 645 644 \n", - "13 Road_Traffic_Fine_Management_Process 150370 231 \n", - "14 BPI_Challenge_2017_Offer_log 42995 16 \n", - "15 Sepsis_Cases_Event_Log 1050 846 \n", - "16 CoSeLoG_WABO_3 1087 1032 \n", - "17 BPI_Challenge_2013_closed_problems 1487 183 \n", - "18 BPI_Challenge_2013_incidents 7554 1511 \n", - "19 PermitLog 7065 1478 \n", - "20 BPIC15_1 1199 1170 \n", - "21 InternationalDeclarations 6449 753 \n", - "22 BPI_Challenge_2017 31509 15930 \n", - "23 BPI2016_Complaints 226 99 \n", - "24 BPI2016_Questions 21533 17171 \n", - "25 BPI2016_Werkmap_Messages 16653 48 \n", - "26 BPI_Challenge_2013_open_problems 819 108 \n", - "27 CoSeLoG_WABO_1 937 916 \n", - "28 CoSeLoG_WABO_4 787 781 \n", - "29 CoSeLoG_WABO_5 892 879 \n", - "30 Detail_Change 18000 872 \n", - "31 Detail_Incident_Activity 46616 23161 \n", - "32 Detail_Interaction 147004 6 \n", - "33 finale 4580 226 \n", - "\n", - " ratio_unique_traces_per_trace trace_len_min trace_len_max \n", - "0 0.995192 1 132 \\\n", - "1 0.649570 24 2973 \n", - "2 0.080893 1 25 \n", - "3 0.957417 3 124 \n", - "4 0.047562 1 990 \n", - "5 0.012925 1 20 \n", - "6 0.096236 1 21 \n", - "7 0.009429 1 24 \n", - "8 0.996201 1 116 \n", - "9 0.333614 3 175 \n", - "10 0.858268 1 1814 \n", - "11 0.997405 5 154 \n", - "12 0.998450 1 124 \n", - "13 0.001536 2 20 \n", - "14 0.000372 3 5 \n", - "15 0.805714 3 185 \n", - "16 0.949402 3 124 \n", - "17 0.123067 1 35 \n", - "18 0.200026 1 123 \n", - "19 0.209200 3 90 \n", - "20 0.975813 2 101 \n", - "21 0.116762 3 27 \n", - "22 0.505570 10 180 \n", - "23 0.438053 1 5 \n", - "24 0.797427 1 102 \n", - "25 0.002882 1 61 \n", - "26 0.131868 1 22 \n", - "27 0.977588 2 95 \n", - "28 0.992376 2 93 \n", - "29 0.985426 5 100 \n", - "30 0.048444 1 1007 \n", - "31 0.496847 1 178 \n", - "32 0.000041 1 1 \n", - "33 0.049345 2 15 \n", - "\n", - " trace_len_mean trace_len_median trace_len_mode trace_len_std ... \n", - "0 53.310096 54.0 61 19.894977 ... \\\n", - "1 57.391541 49.0 49 34.872131 ... \n", - "2 5.981172 6.0 6 2.166129 ... \n", - "3 42.356991 42.0 44 16.138406 ... \n", - "4 6.339720 5.0 5 13.057417 ... \n", - "5 5.343596 5.0 5 1.467384 ... \n", - "6 8.692711 8.0 8 2.253873 ... \n", - "7 5.374952 5.0 5 1.486345 ... \n", - "8 44.912631 44.0 42 14.947644 ... \n", - "9 20.035149 11.0 3 19.943559 ... \n", - "10 131.488189 55.0 2 202.528729 ... \n", - "11 51.109862 50.0 44 16.029953 ... \n", - "12 51.741085 51.0 44 20.373556 ... \n", - "13 3.733923 5.0 2 1.641012 ... \n", - "14 4.508641 5.0 5 0.560753 ... \n", - "15 14.489524 13.0 8 11.470475 ... \n", - "16 41.215271 41.0 46 15.780335 ... \n", - "17 4.478816 3.0 2 3.170888 ... \n", - "18 8.675271 6.0 3 7.625071 ... \n", - "19 12.254919 11.0 10 5.584833 ... \n", - "20 43.550459 44.0 44 16.981536 ... \n", - "21 11.187936 10.0 10 2.740671 ... \n", - "22 38.156305 35.0 24 16.715043 ... \n", - "23 1.278761 1.0 1 0.642995 ... \n", - "24 5.730878 4.0 1 5.485213 ... \n", - "25 3.966733 3.0 1 4.203692 ... \n", - "26 2.870574 2.0 2 2.082628 ... \n", - "27 41.562433 43.0 40 16.678023 ... \n", - "28 44.279543 44.0 39 13.950744 ... \n", - "29 49.210762 46.0 44 14.946856 ... \n", - "30 1.681944 1.0 1 7.979279 ... \n", - "31 10.012378 7.0 5 9.653109 ... \n", - "32 1.000000 1.0 1 0.000000 ... \n", - "33 4.661135 4.0 4 1.179897 ... \n", - "\n", - " eventropy_knn_7 Log Nature variant_entropy normalized_variant_entropy \n", - "0 4.721 Real 2.405122e+05 0.627973 \\\n", - "1 7.067 Real 1.156384e+07 0.712079 \n", - "2 2.584 Real 2.382326e+03 0.689363 \n", - "3 4.900 Real 2.981464e+05 0.661781 \n", - "4 6.601 Real 1.690369e+06 0.645530 \n", - "5 2.312 Real 1.322840e+03 0.703735 \n", - "6 2.987 Real 5.488774e+03 0.723785 \n", - "7 2.315 Real 1.649696e+03 0.696474 \n", - "8 4.729 Real 2.357325e+05 0.652985 \n", - "9 5.335 Real 4.749288e+05 0.708280 \n", - "10 4.931 Real 8.469167e+05 0.517443 \n", - "11 4.841 Real 3.031393e+05 0.648702 \n", - "12 4.430 Real 1.744120e+05 0.618455 \n", - "13 2.790 Real 1.892307e+03 0.769353 \n", - "14 0.618 Real 4.232263e+01 0.813479 \n", - "15 4.191 Real 4.062449e+04 0.695759 \n", - "16 4.537 Real 2.127409e+05 0.654296 \n", - "17 2.386 Real 3.502264e+03 0.705383 \n", - "18 4.083 Real 8.867742e+04 0.717846 \n", - "19 4.725 Real 9.661835e+04 0.733653 \n", - "20 4.931 Real 2.772222e+05 0.652855 \n", - "21 3.986 Real 3.072202e+04 0.758268 \n", - "22 6.297 Real 2.602767e+06 0.741706 \n", - "23 3.272 NaN 5.219700e+02 0.899497 \n", - "24 8.054 NaN 8.500998e+05 0.813468 \n", - "25 1.055 NaN 0.000000e+00 0.000000 \n", - "26 2.259 NaN 9.200861e+02 0.702960 \n", - "27 0.000 NaN 1.951662e+05 0.646697 \n", - "28 0.000 NaN 1.675112e+05 0.644399 \n", - "29 0.000 NaN 2.097776e+05 0.642668 \n", - "30 0.000 NaN NaN NaN \n", - "31 7.647 NaN NaN NaN \n", - "32 0.000 NaN NaN NaN \n", - "33 2.748 NaN 3.724970e+03 0.799120 \n", - "\n", - " sequence_entropy normalized_sequence_entropy \n", - "0 2.858769e+05 0.602371 \\\n", - "1 2.114626e+07 0.570688 \n", - "2 1.829627e+04 0.235532 \n", - "3 3.975043e+05 0.605676 \n", - "4 7.477256e+06 0.328029 \n", - "5 7.313156e+04 0.189048 \n", - "6 5.675857e+04 0.317044 \n", - "7 1.017330e+05 0.164758 \n", - "8 3.074084e+05 0.603866 \n", - "9 1.384057e+06 0.423074 \n", - "10 9.191069e+05 0.513032 \n", - "11 3.915923e+05 0.603260 \n", - "12 2.064846e+05 0.594035 \n", - "13 8.319835e+05 0.111932 \n", - "14 2.481151e+05 0.105130 \n", - "15 7.652868e+04 0.522343 \n", - "16 2.861474e+05 0.596367 \n", - "17 1.823159e+04 0.310940 \n", - "18 2.940925e+05 0.404651 \n", - "19 4.135643e+05 0.420150 \n", - "20 3.461843e+05 0.610294 \n", - "21 2.739197e+05 0.339380 \n", - "22 7.768787e+06 0.461565 \n", - "23 1.119782e+03 0.683796 \n", - "24 1.093881e+06 0.756132 \n", - "25 0.000000e+00 0.000000 \n", - "26 5.051026e+03 0.276771 \n", - "27 2.476248e+05 0.601566 \n", - "28 2.176264e+05 0.597109 \n", - "29 2.779969e+05 0.592454 \n", - "30 NaN NaN \n", - "31 NaN NaN \n", - "32 NaN NaN \n", - "33 5.406829e+04 0.254066 \n", - "\n", - " sequence_eventropy_linear_forgetting \n", - "0 1.505466e+05 \\\n", - "1 1.414023e+07 \n", - "2 7.814868e+03 \n", - "3 2.241393e+05 \n", - "4 7.298458e+06 \n", - "5 3.774501e+04 \n", - "6 3.309789e+04 \n", - "7 5.275579e+04 \n", - "8 1.811907e+05 \n", - "9 7.397790e+05 \n", - "10 4.798126e+05 \n", - "11 2.222674e+05 \n", - "12 1.123546e+05 \n", - "13 3.908680e+05 \n", - "14 1.243092e+05 \n", - "15 3.213928e+04 \n", - "16 1.334475e+05 \n", - "17 1.679949e+04 \n", - "18 2.842417e+05 \n", - "19 1.351355e+05 \n", - "20 1.532922e+05 \n", - "21 1.175256e+05 \n", - "22 3.903568e+06 \n", - "23 6.627117e+02 \n", - "24 6.147088e+05 \n", - "25 0.000000e+00 \n", - "26 4.783176e+03 \n", - "27 1.205360e+05 \n", - "28 1.362814e+05 \n", - "29 1.627439e+05 \n", - "30 NaN \n", - "31 NaN \n", - "32 NaN \n", - "33 2.521350e+04 \n", - "\n", - " normalized_sequence_eventropy_linear_forgetting \n", - "0 0.317217 \\\n", - "1 0.381612 \n", - "2 0.100603 \n", - "3 0.341521 \n", - "4 0.320185 \n", - "5 0.097572 \n", - "6 0.184879 \n", - "7 0.085439 \n", - "8 0.355927 \n", - "9 0.226133 \n", - "10 0.267825 \n", - "11 0.342410 \n", - "12 0.323233 \n", - "13 0.052586 \n", - "14 0.052672 \n", - "15 0.219365 \n", - "16 0.278121 \n", - "17 0.286515 \n", - "18 0.391097 \n", - "19 0.137287 \n", - "20 0.270241 \n", - "21 0.145611 \n", - "22 0.231922 \n", - "23 0.404685 \n", - "24 0.424910 \n", - "25 0.000000 \n", - "26 0.262094 \n", - "27 0.292824 \n", - "28 0.373920 \n", - "29 0.346832 \n", - "30 NaN \n", - "31 NaN \n", - "32 NaN \n", - "33 0.118478 \n", - "\n", - " sequence_eventropy_exponential_forgetting \n", - "0 1.853129e+05 \\\n", - "1 1.557608e+07 \n", - "2 1.072870e+04 \n", - "3 2.657571e+05 \n", - "4 7.300663e+06 \n", - "5 4.593493e+04 \n", - "6 3.838045e+04 \n", - "7 6.445733e+04 \n", - "8 2.101610e+05 \n", - "9 9.014471e+05 \n", - "10 5.941966e+05 \n", - "11 2.626238e+05 \n", - "12 1.355134e+05 \n", - "13 5.087233e+05 \n", - "14 1.557649e+05 \n", - "15 4.388054e+04 \n", - "16 1.710260e+05 \n", - "17 1.690901e+04 \n", - "18 2.846260e+05 \n", - "19 2.121125e+05 \n", - "20 2.064350e+05 \n", - "21 1.563815e+05 \n", - "22 4.888915e+06 \n", - "23 7.698614e+02 \n", - "24 7.321911e+05 \n", - "25 0.000000e+00 \n", - "26 4.800238e+03 \n", - "27 1.548878e+05 \n", - "28 1.539968e+05 \n", - "29 1.885039e+05 \n", - "30 NaN \n", - "31 NaN \n", - "32 NaN \n", - "33 3.289574e+04 \n", - "\n", - " normalized_sequence_eventropy_exponential_forgetting \n", - "0 0.390473 \n", - "1 0.420362 \n", - "2 0.138113 \n", - "3 0.404934 \n", - "4 0.320282 \n", - "5 0.118744 \n", - "6 0.214387 \n", - "7 0.104389 \n", - "8 0.412835 \n", - "9 0.275551 \n", - "10 0.331672 \n", - "11 0.404580 \n", - "12 0.389858 \n", - "13 0.068442 \n", - "14 0.066000 \n", - "15 0.299505 \n", - "16 0.356439 \n", - "17 0.288383 \n", - "18 0.391625 \n", - "19 0.215490 \n", - "20 0.363928 \n", - "21 0.193753 \n", - "22 0.290464 \n", - "23 0.470116 \n", - "24 0.506118 \n", - "25 0.000000 \n", - "26 0.263029 \n", - "27 0.376276 \n", - "28 0.422526 \n", - "29 0.401731 \n", - "30 NaN \n", - "31 NaN \n", - "32 NaN \n", - "33 0.154576 \n", - "\n", - "[34 rows x 102 columns]" - ] - }, - "execution_count": 1, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "import pandas as pd\n", - "import matplotlib.pyplot as plt\n", - "\n", - "dmf = pd.read_csv(\"/Users/andreamaldonado/Downloads/benchmark_features_final.csv\", index_col=None)\n", - "#dmf = dmf.drop(['Unnamed: 0'], axis=1)\n", - "print(dmf.shape)\n", - "describe = dmf.describe().transpose()\n", - "print(describe[describe['max']<1].index[:19].tolist())\n", - "selected_ft = ['log', 'ratio_unique_traces_per_trace', 'ratio_most_common_variant', 'ratio_top_1_variants',\n", - " 'ratio_top_5_variants', 'ratio_top_10_variants', 'ratio_top_20_variants', 'ratio_top_50_variants',\n", - " 'ratio_top_75_variants', 'normalized_variant_entropy', 'normalized_sequence_entropy', \n", - " 'normalized_sequence_entropy_linear_forgetting', 'normalized_sequence_entropy_exponential_forgetting']\n", - "selected_ft = dmf.columns[:102]\n", - "#print(selected_ft)\n", - "ft_preselection = dmf[selected_ft]\n", - "#ft_preselection['log'] = dmf['log']\n", - "print(ft_preselection.shape)\n", - "print(ft_preselection.columns)\n", - "\n", - "ft_preselection\n", - "# Include complexity features" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "id": "39182cd7", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Before: 19 columns in 34 rows\n", - "After: 0\n" - ] - } - ], - "source": [ - "import numpy as np\n", - "from sklearn.impute import SimpleImputer\n", - "cols_to_drop = ft_preselection.select_dtypes(include=['object']).columns\n", - "imp_mean = SimpleImputer(missing_values=np.nan, strategy='mean')\n", - "imp_mean.fit(ft_preselection.drop(cols_to_drop, axis=1))\n", - "imp_df = imp_mean.transform(ft_preselection.drop(cols_to_drop, axis=1))\n", - "imp_df = pd.DataFrame(imp_df, columns = ft_preselection.columns[2:])\n", - "print(\"Before:\", len(ft_preselection.loc[:, ft_preselection.isna().any()].columns), \"columns in\", len(ft_preselection.loc[:, ft_preselection.isna().any()]), 'rows')\n", - "print(\"After:\", len(imp_df.loc[:, imp_df.isna().any()].columns))\n", - "\n", - "#col_to_drop = ft_preselection.select_dtypes(include=['object']).columns\n", - "#scaled_dmf = scaleColumns(ft_preselection, ft_preselection.drop(col_to_drop, axis=1).columns)" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "id": "ef4741c8", - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/Users/andreamaldonado/miniconda3/envs/py39/lib/python3.9/site-packages/sklearn/base.py:457: UserWarning: X has feature names, but PCA was fitted without feature names\n", - " warnings.warn(\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAC64AAAMWCAYAAABLXDovAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9d7hU5bk//r9nUzYdRCliUBSRYiOC+kVFsAVFjRh7TARjSzxobFH8aBSOsWvsRmMSMUYTO/GosbuJIAEbRhP7ETEKoqKADRDm90d+zMmWjgwb9n69rmsumGc9a933WjO7v+eZQrFYLAYAAAAAAAAAAAAAAMqkoqYbAAAAAAAAAAAAAACgdhNcBwAAAAAAAAAAAACgrATXAQAAAAAAAAAAAAAoK8F1AAAAAAAAAAAAAADKSnAdAAAAAAAAAAAAAICyElwHAAAAAAAAAAAAAKCsBNcBAAAAAAAAAAAAACgrwXUAAAAAAAAAAAAAAMpKcB0AAAAAAAAAAAAAgLISXAcAAAAAKKMhQ4akU6dOK7xvs2bNVm5DZfD0009nu+22S9OmTVMoFDJx4sTlPkanTp2y1157rfzmFuHiiy/ORhttlHr16qVnz56l+kOGDFkl9ctl+PDhKRQKZTt+VVVVCoVCqqqqylYjSQqFQoYPH17WGgAAAAAArHqC6wAAAABAnXP77benUCjknnvuWWjblltumUKhkCeeeGKhbeuvv3622267VdHicvn8888zfPjwsgeKF2Xu3Lk54IADMn369Fx22WW5+eabs8EGGyxy7j//+c8MHz48kyZNWrVN/oeHH344p556arbffvvceOONOe+888pS59Zbb83ll19elmNDuV177bUZOXJkTbcBAAAAANQy9Wu6AQAAAACAVW2HHXZIkowZMyb77rtvaXzmzJl56aWXUr9+/YwdOzY77bRTads777yTd955JwcffPBy1brhhhsyf/78ldP4Ynz++ecZMWJEkqR///5lrfV1b775Zt5+++3ccMMNOfLII5c495///GdGjBiR/v37r/Aq9N/U448/noqKivz2t79Nw4YNS+OvvvpqKipW3lovt956a1566aWccMIJK+2YS3PmmWdm2LBhZTv+jjvumC+++KLadaN2uvbaa7POOuus8e9CAAAAAACsXqy4DgAAAADUOR06dMiGG26YMWPGVBsfN25cisViDjjggIW2Lbi/IPS+rBo0aJDKyspv1vBqbNq0aUmSVq1a1Wwjy2jatGlp3LjxQuHrysrKNGjQYIn7fvbZZ+VsbYUt6Kt+/fpp1KhR2epUVFSkUaNGKzXgDwAAAABA3eG3ywAAAABAnbTDDjvk+eefzxdffFEaGzt2bDbddNPsscce+dvf/lZtpfSxY8emUChk++23L4394Q9/SK9evdK4ceO0bt06Bx98cN55551qdYYMGbLQ6uIfffRRfvjDH6ZFixZp1apVBg8enBdeeCGFQiEjR45cqNd33303gwYNSrNmzdKmTZuccsopmTdvXpJk0qRJadOmTZJkxIgRKRQKKRQKGT58eJJk6tSpOfzww/Otb30rlZWVWXfddbPPPvtk0qRJS71Gjz/+ePr27ZumTZumVatW2WefffLyyy9XO7d+/folSQ444IAUCoXFrvg+cuTIHHDAAUmSnXbaqdRnVVVVtXljxozJNttsk0aNGmWjjTbK73//+4WO9cknn+SEE05Ix44dU1lZmY033jgXXnjhUle2LxQKufHGG/PZZ5+V6i+43p06daq2uvTIkSNTKBQyevToHHvssWnbtm2+9a1vJUlmzZqVE044IZ06dUplZWXatm2b3XbbLc8991ySf696f//99+ftt98u1VnaCvOFQiFDhw7NLbfckq5du6ZRo0bp1atX/vrXv1abN3z48BQKhfzzn//M97///ay11lqlF1Ms2Lao444aNSqbbbZZKisrs+mmm+bBBx9cqId33303RxxxRDp06JDKyspsuOGG+clPfpI5c+YkSaqqqhZ6zPr375/NNtsszz77bLbbbrs0btw4G264Ya677rpqx54zZ07OOuus9OrVKy1btkzTpk3Tt2/fPPHEE0u8Lkvy5ZdfZvjw4dlkk03SqFGjrLvuuvne976XN998szTns88+y8knn1x6rnTt2jWXXHJJisXiIq/THXfckR49eqRx48bp06dPXnzxxSTJ9ddfn4033jiNGjVK//79F/r4WdbrkPz7xRNHHHFE2rVrl0aNGmXLLbfMTTfdVG3OpEmTUigUcskll+TXv/51OnfunMrKymy99dZ5+umnFzrmK6+8kv333z+tW7dOo0aN0rt379x7773V5ix4To8dOzYnnXRS2rRpk6ZNm2bffffNBx98UJrXqVOn/OMf/8jo0aNLz99V/U4OAAAAAEDtVL+mGwAAAAAAqAk77LBDbr755owfP74Uyhw7dmy22267bLfddpkxY0ZeeumlbLHFFqVt3bp1y9prr50kOffcc/Pzn/88Bx54YI488sh88MEHueqqq7Ljjjvm+eefX+wK5PPnz8/ee++dCRMm5Cc/+Um6deuWP//5zxk8ePAi58+bNy8DBgzItttum0suuSSPPvpoLr300nTu3Dk/+clP0qZNm/zqV7/KT37yk+y777753ve+lySlvvfbb7/84x//yHHHHZdOnTpl2rRpeeSRRzJ58uQlhqkfffTR7LHHHtloo40yfPjwfPHFF7nqqquy/fbb57nnnkunTp1yzDHHZL311st5552X448/PltvvXXatWu3yOPtuOOOOf7443PllVfm//2//5fu3bsnSenfJHnjjTey//7754gjjsjgwYPzu9/9LkOGDEmvXr2y6aabJkk+//zz9OvXL++++26OOeaYrL/++nnqqady+umnZ8qUKbn88ssXe04333xzfv3rX2fChAn5zW9+kyTZbrvtFjs/SY499ti0adMmZ511Vmll8x//+Me58847M3To0PTo0SMfffRRxowZk5dffjlbbbVVzjjjjMyYMSP/+te/ctlllyVJmjVrtsQ6STJ69OjcdtttOf7441NZWZlrr702u+++eyZMmJDNNtus2twDDjggXbp0yXnnnbdQCPvrxowZk7vvvjvHHntsmjdvniuvvDL77bdfJk+eXHo+v/fee9lmm23yySef5Oijj063bt3y7rvv5s4778znn3++0Ar1/+njjz/OwIEDc+CBB+aQQw7J7bffnp/85Cdp2LBhfvSjHyVJZs6cmd/85jc55JBDctRRR2XWrFn57W9/mwEDBmTChAnp2bPnUq/Pf5o3b1722muvPPbYYzn44IPz05/+NLNmzcojjzySl156KZ07d06xWMx3v/vdPPHEEzniiCPSs2fPPPTQQ/nZz36Wd999t/TYLPDkk0/m3nvvzX/9138lSc4///zstddeOfXUU3Pttdfm2GOPzccff5yLLrooP/rRj/L4448v93X44osv0r9//7zxxhsZOnRoNtxww9xxxx0ZMmRIPvnkk/z0pz+tdsxbb701s2bNyjHHHJNCoZCLLroo3/ve9/K///u/pXcI+Mc//pHtt98+6623XoYNG5amTZvm9ttvz6BBg3LXXXdl3333rXbM4447LmuttVbOPvvsTJo0KZdffnmGDh2a2267LUly+eWX57jjjkuzZs1yxhlnJMliP64BAAAAAJZLEQAAAACgDvrHP/5RTFI855xzisVisTh37txi06ZNizfddFOxWCwW27VrV7zmmmuKxWKxOHPmzGK9evWKRx11VLFYLBYnTZpUrFevXvHcc8+tdswXX3yxWL9+/WrjgwcPLm6wwQal+3fddVcxSfHyyy8vjc2bN6+48847F5MUb7zxxmr7Jin+93//d7U63/72t4u9evUq3f/ggw+KSYpnn312tXkff/xxMUnx4osvXs6rUyz27Nmz2LZt2+JHH31UGnvhhReKFRUVxcMOO6w09sQTTxSTFO+4446lHvOOO+4oJik+8cQTC23bYIMNikmKf/3rX0tj06ZNK1ZWVhZPPvnk0tg555xTbNq0afG1116rtv+wYcOK9erVK06ePHmJPQwePLjYtGnTRdYfPHhw6f6NN95YTFLcYYcdil999VW1uS1btiz+13/91xLr7LnnntUe96VJUkxSfOaZZ0pjb7/9drFRo0bFfffdtzR29tlnF5MUDznkkIWOsWDb14/bsGHD4htvvFEae+GFF4pJildddVVp7LDDDitWVFQUn3766YWOO3/+/GKx+H+P9X8+fv369SsmKV566aWlsdmzZ5eeP3PmzCkWi8XiV199VZw9e3a143788cfFdu3aFX/0ox8t1PPXn8tf97vf/a6YpPjLX/5ysf2OGjWqmKT4i1/8otr2/fffv1goFKpdkyTFysrK4ltvvVUau/7664tJiu3bty/OnDmzNH766acXk1Sbu6zX4fLLLy8mKf7hD38ozZszZ06xT58+xWbNmpXqvPXWW8UkxbXXXrs4ffr00tw///nPxSTF//mf/ymN7bLLLsXNN9+8+OWXX1a7Btttt12xS5cupbEFz+ldd921dI2KxWLxxBNPLNarV6/4ySeflMY23XTTYr9+/Ra6tgAAAAAA30TFKknHAwAAAACsZrp375611147Y8aMSZK88MIL+eyzz0orcG+33XYZO3ZskmTcuHGZN29edthhhyTJ3Xffnfnz5+fAAw/Mhx9+WLq1b98+Xbp0yRNPPLHYug8++GAaNGiQo446qjRWUVFRWuV5UX784x9Xu9+3b9/87//+71LPsXHjxmnYsGGqqqry8ccfL3X+AlOmTMnEiRMzZMiQtG7dujS+xRZbZLfddssDDzywzMdaHj169Ejfvn1L99u0aZOuXbtWO9c77rgjffv2zVprrVXt2u+6666ZN29e/vrXv67Uno466qjUq1ev2lirVq0yfvz4vPfeeyu1Vp8+fdKrV6/S/fXXXz/77LNPHnroocybN6/a3K8/J5Zk1113TefOnUv3t9hii7Ro0aJ0XefPn59Ro0Zl7733Tu/evRfav1AoLPH49evXzzHHHFO637BhwxxzzDGZNm1ann322SRJvXr1Squ2z58/P9OnT89XX32V3r1757nnnlvmc1ngrrvuyjrrrJPjjjtusf0+8MADqVevXo4//vhq208++eQUi8X85S9/qTa+yy67VHsXgm233TbJv9+1oHnz5guNf/1jcFmuwwMPPJD27dvnkEMOKc1r0KBBjj/++Hz66acZPXp0tWMedNBBWWuttUr3F3x8LKg9ffr0PP744znwwAMza9as0sfDRx99lAEDBuT111/Pu+++W+2YRx99dLXHtG/fvpk3b17efvvtAAAAAACUk+A6AAAAAFAnFQqFbLfddvnb3/6W+fPnZ+zYsWnbtm023njjJNWD6wv+XRBcf/3111MsFtOlS5e0adOm2u3ll1/OtGnTFlv37bffzrrrrpsmTZpUG19Q9+saNWqUNm3aVBtba621limIXllZmQsvvDB/+ctf0q5du+y444656KKLMnXq1CXutyDA2rVr14W2de/ePR9++GE+++yzpdZfXuuvv/5CY18/19dffz0PPvjgQtd91113TZIlXvsVseGGGy40dtFFF+Wll15Kx44ds80222T48OHL9EKCpenSpctCY5tsskk+//zzfPDBB0vta3GWdl0/+OCDzJw5M5ttttlydvxvHTp0SNOmTauNbbLJJkmSSZMmlcZuuummbLHFFmnUqFHWXnvttGnTJvfff39mzJix3DXffPPNdO3aNfXr11/snLfffjsdOnSoFjpP/v0cXrD9P339OrVs2TJJ0rFjx0WOf/1jcFmuw9tvv50uXbqkoqL6n2eWtacFIfYFtd94440Ui8X8/Oc/X+hj4uyzz06y8MfE0o4JAAAAAFAui/+NLgAAAABALbfDDjvkf/7nf/Liiy9m7NixpdXWk38H13/2s5/l3XffzZgxY9KhQ4dstNFGSf69YnShUMhf/vKXhVbjTpJmzZqttB4XdfzlccIJJ2TvvffOqFGj8tBDD+XnP/95zj///Dz++OP59re/vZK6XDkWd67FYrH0//nz52e33XbLqaeeusi5C4LCK0vjxo0XGjvwwAPTt2/f3HPPPXn44Ydz8cUX58ILL8zdd9+dPfbYY6XWX56+FmdZrmu5/eEPf8iQIUMyaNCg/OxnP0vbtm1Tr169nH/++XnzzTdXWR9LsrjrVJPXb2m158+fnyQ55ZRTMmDAgEXO/fqLYlaH5wMAAAAAUDcJrgMAAAAAddaCFdTHjBmTsWPH5oQTTiht69WrVyorK1NVVZXx48dn4MCBpW2dO3dOsVjMhhtuuNxB6Q022CBPPPFEPv/882qrrr/xxhsrfB6FQmGJ2zt37pyTTz45J598cl5//fX07Nkzl156af7whz8stsckefXVVxfa9sorr2SdddZZaGXpldHnsujcuXM+/fTT0grrNWXdddfNsccem2OPPTbTpk3LVlttlXPPPbcUXF+Rc3399dcXGnvttdfSpEmThVbdX5natGmTFi1a5KWXXlqh/d9777189tln1Z4Tr732WpKkU6dOSZI777wzG220Ue6+++5q12bBquDLq3Pnzhk/fnzmzp2bBg0aLHLOBhtskEcffTSzZs2qtur6K6+8Utq+Mi3Lddhggw3y97//PfPnz6+26vqK9rTgxTQNGjRYqR8TK+NjFQAAAADg6yqWPgUAAAAAoHbq3bt3GjVqlFtuuSXvvvtutRXXKysrs9VWW+Waa67JZ599Vgq5J8n3vve91KtXLyNGjFholeJisZiPPvposTUHDBiQuXPn5oYbbiiNzZ8/P9dcc80Kn8eCAPwnn3xSbfzzzz/Pl19+WW2sc+fOad68eWbPnr3Y46277rrp2bNnbrrppmrHfOmll/Lwww9XC/EvjwWB3q/3uTwOPPDAjBs3Lg899NBC2z755JN89dVXK3zsZTFv3rzMmDGj2ljbtm3ToUOHate0adOmC81bmnHjxuW5554r3X/nnXfy5z//Od/5zne+8cr7S1JRUZFBgwblf/7nf/LMM88stH1pK3F/9dVXuf7660v358yZk+uvvz5t2rRJr169kvzfKt//eazx48dn3LhxK9Tzfvvtlw8//DBXX331YvsdOHBg5s2bt9Ccyy67LIVCYaWvjr8s12HgwIGZOnVqbrvttmr7XXXVVWnWrFn69eu3XDXbtm2b/v375/rrr8+UKVMW2v7BBx+s0Lk0bdr0G32cAgAAAAAsihXXAQAAAIA6q2HDhtl6663z5JNPprKyshQuXWC77bbLpZdemiTVguudO3fOL37xi5x++umZNGlSBg0alObNm+ett97KPffck6OPPjqnnHLKImsOGjQo22yzTU4++eS88cYb6datW+69995Mnz49yYqtdNy4ceP06NEjt912WzbZZJO0bt06m222Wb766qvssssuOfDAA9OjR4/Ur18/99xzT95///0cfPDBSzzmxRdfnD322CN9+vTJEUcckS+++CJXXXVVWrZsmeHDhy93j0nSs2fP1KtXLxdeeGFmzJiRysrK7Lzzzmnbtu0yH+NnP/tZ7r333uy1114ZMmRIevXqlc8++ywvvvhi7rzzzkyaNCnrrLPOCvW3LGbNmpVvfetb2X///bPlllumWbNmefTRR/P000+XnivJv1fsv+2223LSSSdl6623TrNmzbL33nsv8dibbbZZBgwYkOOPPz6VlZW59tprkyQjRowo2/kscN555+Xhhx9Ov379cvTRR6d79+6ZMmVK7rjjjowZMyatWrVa7L4dOnTIhRdemEmTJmWTTTbJbbfdlokTJ+bXv/51aTX0vfbaK3fffXf23Xff7Lnnnnnrrbdy3XXXpUePHvn000+Xu9/DDjssv//973PSSSdlwoQJ6du3bz777LM8+uijOfbYY7PPPvtk7733zk477ZQzzjgjkyZNypZbbpmHH344f/7zn3PCCSekc+fOK3q5Vvg6HH300bn++uszZMiQPPvss+nUqVPuvPPOjB07Npdffnm1leGX1TXXXJMddtghm2++eY466qhstNFGef/99zNu3Lj861//ygsvvLDcx+zVq1d+9atf5Re/+EU23njjtG3bNjvvvPNyHwcAAAAA4D8JrgMAAAAAddoOO+yQJ598Mr169UplZWW1bdtvv30uvfTSNG/ePFtuuWW1bcOGDcsmm2ySyy67rBQs7tixY77zne/ku9/97mLr1atXL/fff39++tOf5qabbkpFRUX23XffnH322dl+++3TqFGjFTqP3/zmNznuuONy4oknZs6cOTn77LNz3HHH5ZBDDsljjz2Wm2++OfXr10+3bt1y++23Z7/99lvi8Xbdddc8+OCDOfvss3PWWWelQYMG6devXy688MJsuOGGK9Rj+/btc9111+X888/PEUcckXnz5uWJJ55YruB6kyZNMnr06Jx33nm544478vvf/z4tWrTIJptskhEjRqRly5Yr1Nvy1D/22GPz8MMP5+677878+fOz8cYb59prr81PfvKT0rxjjz02EydOzI033pjLLrssG2ywwVKD6/369UufPn0yYsSITJ48OT169MjIkSOzxRZblPWckmS99dbL+PHj8/Of/zy33HJLZs6cmfXWWy977LFHaUX/xVlrrbVy00035bjjjssNN9yQdu3a5eqrr85RRx1VmjNkyJBMnTo1119/fR566KH06NEjf/jDH3LHHXekqqpqufutV69eHnjggZx77rm59dZbc9ddd2XttdcuBbiTf68kf++99+ass87KbbfdlhtvvDGdOnXKxRdfnJNPPnm5ay7NslyHxo0bp6qqKsOGDctNN92UmTNnpmvXrrnxxhszZMiQFarbo0ePPPPMMxkxYkRGjhyZjz76KG3bts23v/3tnHXWWSt0zLPOOitvv/12LrroosyaNSv9+vUTXAcAAAAAvrFCcWnv8QkAAAAAQNmNGjUq++67b8aMGZPtt9++ptthFSsUCvmv//qvXH311TXdynLp379/Pvzww7z00ks13UqNch0AAAAAAJauoqYbAAAAAACoa7744otq9+fNm5errroqLVq0yFZbbVVDXQEAAAAAAJRP/ZpuAAAAAACgrjnuuOPyxRdfpE+fPpk9e3buvvvuPPXUUznvvPPSuHHjmm4PAAAAAABgpRNcBwAAAABYxXbeeedceumlue+++/Lll19m4403zlVXXZWhQ4fWdGsAAAAAAABlUSgWi8WabgIAAAAAAAAAAAAAgNqroqYbAAAAAAAAAAAAAACgdhNcBwAAAAAAAAAAAACgrOrXdAMr2/z58/Pee++lefPmKRQKNd0OAAAAAAAAAAAAAECtVCwWM2vWrHTo0CEVFUteU73WBdffe++9dOzYsabbAAAAAAAAAAAAAACoE955551861vfWuKcWhdcb968eZJ/n3yLFi1quBsAAAAAAAAAAAAAgNpp5syZ6dixYynDvSS1LrheKBSSJC1atBBcBwAAAAAAAAAAAAAoswUZ7iWpWAV9AAAAAAAAAAAAAABQhwmuAwAAAAAAAAAAAABQVoLrAAAAAAAAAAAAAACUVf2abqCmzJs3L3Pnzq3pNmCFNGzYMBUVXncCAAAAAAAAAAAAwJqhzgXXi8Vipk6dmk8++aSmW4EVVlFRkQ033DANGzas6VYAAAAAAAAAAAAAYKnqXHB9QWi9bdu2adKkSQqFQk23BMtl/vz5ee+99zJlypSsv/76nsMAAAAAAAAAAAAArPbqVHB93rx5pdD62muvXdPtwApr06ZN3nvvvXz11Vdp0KBBTbcDAAAAAAAAAAAAAEtUUdMNrEpz585NkjRp0qSGO4FvpmHDhkn+/WIMAAAAAAAAAAAAAFjd1ang+gKFQqGmW4BvxHMYAAAAAAAAAAAAgDVJnQyuAwAAAAAAAAAAAACw6giu10IjR45Mq1atljqvUChk1KhRZe9nddC/f/+ccMIJpfudOnXK5ZdfXmP9AAAAAAAAAAAAAEBdUr+mG1hddBp2/yqtN+mCPct27IMOOigDBw4s3R8+fHhGjRqViRMnlq3mkhQKhdxzzz0ZNGhQjdRflKeffjpNmzat6TYAAAAAAAAAAAAAoE4QXK+FGjdunMaNG9d0G6u1Nm3a1HQLAAAAAAAAAAAAAFBnVNR0Ayzdfffdl1atWmXevHlJkokTJ6ZQKGTYsGGlOUceeWR+8IMfJElGjhyZVq1alf4/YsSIvPDCCykUCikUChk5cmRpvw8//DD77rtvmjRpki5duuTee++tVnv06NHZZpttUllZmXXXXTfDhg3LV199VdreqVOnXH755dX26dmzZ4YPH17aniT77rtvCoVC6f7XzZkzJ0OHDs26666bRo0aZYMNNsj5559f2v7JJ5/kmGOOSbt27dKoUaNsttlmue+++5IkH330UQ455JCst956adKkSTbffPP88Y9/XOI1/XrfhUIhv/nNb5Z4Le6999506dIljRo1yk477ZSbbrophUIhn3zyyRJrAQAAAAAAAAAAAJTb5jdtvtANVieC62uAvn37ZtasWXn++eeT/DtMvs4666Sqqqo0Z/To0enfv/9C+x500EE5+eSTs+mmm2bKlCmZMmVKDjrooNL2ESNG5MADD8zf//73DBw4MIceemimT5+eJHn33XczcODAbL311nnhhRfyq1/9Kr/97W/zi1/8Ypl7f/rpp5MkN954Y6ZMmVK6/3VXXnll7r333tx+++159dVXc8stt5RC7vPnz88ee+yRsWPH5g9/+EP++c9/5oILLki9evWSJF9++WV69eqV+++/Py+99FKOPvro/PCHP8yECROWuc+lXYu33nor+++/fwYNGpQXXnghxxxzTM4444zlOj4AAAAAAAAAAAAA1FX1a7oBlq5ly5bp2bNnqqqq0rt371RVVeXEE0/MiBEj8umnn2bGjBl544030q9fv4X2bdy4cZo1a5b69eunffv2C20fMmRIDjnkkCTJeeedlyuvvDITJkzI7rvvnmuvvTYdO3bM1VdfnUKhkG7duuW9997LaaedlrPOOisVFUt/3UObNm2SJK1atVpk/QUmT56cLl26ZIcddkihUMgGG2xQ2vboo49mwoQJefnll7PJJpskSTbaaKPS9vXWWy+nnHJK6f5xxx2Xhx56KLfffnu22Wabpfa4LNfi+uuvT9euXXPxxRcnSbp27ZqXXnop55577jIfHwAAAAAAAAAAAADqKiuuryH69euXqqqqFIvFPPnkk/ne976X7t27Z8yYMRk9enQ6dOiQLl26LPdxt9hii9L/mzZtmhYtWmTatGlJkpdffjl9+vRJoVAozdl+++3z6aef5l//+tc3P6n/MGTIkEycODFdu3bN8ccfn4cffri0beLEifnWt75VCq1/3bx583LOOedk8803T+vWrdOsWbM89NBDmTx58nL1sKRr8eqrr2brrbeuNn95QvEAAAAAAAAAAAAAUJcJrq8h+vfvnzFjxuSFF15IgwYN0q1bt/Tv3z9VVVUZPXr0IldbXxYNGjSodr9QKGT+/PnLvH9FRUWKxWK1sblz5y53H1tttVXeeuutnHPOOfniiy9y4IEHZv/990/y71Xjl+Tiiy/OFVdckdNOOy1PPPFEJk6cmAEDBmTOnDnL1cM3vRYAAAAAAAAAAAAAwKIJrq8h+vbtm1mzZuWyyy4rhdQXBNerqqrSv3//xe7bsGHDzJs3b7lrdu/ePePGjasWTB87dmyaN2+eb33rW0mSNm3aZMqUKaXtM2fOzFtvvVXtOA0aNFim+i1atMhBBx2UG264IbfddlvuuuuuTJ8+PVtssUX+9a9/5bXXXlvkfmPHjs0+++yTH/zgB9lyyy2z0UYbLXbuiuratWueeeaZamNPP/30Sq0BAAAAAAAAAAAAALWV4PoaYq211soWW2yRW265pRRS33HHHfPcc8/ltddeW+KK6506dcpbb72ViRMn5sMPP8zs2bOXqeaxxx6bd955J8cdd1xeeeWV/PnPf87ZZ5+dk046KRUV/37q7Lzzzrn55pvz5JNP5sUXX8zgwYNTr169heo/9thjmTp1aj7++ONF1vrlL3+ZP/7xj3nllVfy2muv5Y477kj79u3TqlWr9OvXLzvuuGP222+/PPLII3nrrbfyl7/8JQ8++GCSpEuXLnnkkUfy1FNP5eWXX84xxxyT999/f5nOcVkdc8wxeeWVV3Laaafltddey+23356RI0cm+ffK7AAAAAAAAAAAAADA4gmur0H69euXefPmlYLrrVu3To8ePdK+fft07dp1sfvtt99+2X333bPTTjulTZs2+eMf/7hM9dZbb7088MADmTBhQrbccsv8+Mc/zhFHHJEzzzyzNOf0009Pv379stdee2XPPffMoEGD0rlz52rHufTSS/PII4+kY8eO+fa3v73IWs2bN89FF12U3r17Z+utt86kSZPywAMPlALyd911V7beeusccsgh6dGjR0499dTSKu5nnnlmttpqqwwYMCD9+/dP+/btM2jQoGU6x2W14YYb5s4778zdd9+dLbbYIr/61a9yxhlnJEkqKytXai0AAAAAAAAAAAAAqG0KxWKxWNNNrEwzZ85My5YtM2PGjLRo0aLati+//DJvvfVWNtxwwzRq1KiGOqS2OPfcc3PdddflnXfeWeW1PZcBAAAAAAAAAACA/7T5TZsvNPbi4BdroBPqkiVlt7+u/irqCdZ41157bbbeeuusvfbaGTt2bC6++OIMHTq0ptsCAAAAAAAAAAAAgNWe4Doso9dffz2/+MUvMn369Ky//vo5+eSTc/rpp9d0WwAAAAAAAAAAAACw2hNch2V02WWX5bLLLqvpNgAAAAAAAAAAAABgjVNR0w0AAAAAAAAAAAAAAFC7Ca4DAAAAAAAAAAAAAFBWgusAAAAAAAAAAAAAAJSV4DoAAAAAAAAAAAAAAGUluA4AAAAAAAAAAAAAQFkJrgMAAAAAAAAAAAAAUFaC67XQyJEj06pVq6XOKxQKGTVqVNn7WVbDhw9Pz549S/eHDBmSQYMG1Vg/AAAAAAAAAAAAAMDKUb+mG1htDG+5iuvNKNuhDzrooAwcOPD/Sg0fnlGjRmXixIllq1kOV1xxRYrFYk23AQAAAAAAAAAAAAB8Q4LrtVDjxo3TuHHjmm7jG2vZchW/mAAAAAAAAAAAAAAAKIuKmm6ApbvvvvvSqlWrzJs3L0kyceLEFAqFDBs2rDTnyCOPzA9+8IMkyciRI9OqVavS/0eMGJEXXnghhUIhhUIhI0eOLO334YcfZt99902TJk3SpUuX3HvvvUvs5dprr02XLl3SqFGjtGvXLvvvv39p2/z583PRRRdl4403TmVlZdZff/2ce+65pe2nnXZaNtlkkzRp0iQbbbRRfv7zn2fu3LmLrTVkyJAMGjSodL9///45/vjjc+qpp6Z169Zp3759hg8fXm2fV155JTvssEMaNWqUHj165NFHH02hUMioUaOWeF4AAAAAAAAAAAAAQPlYcX0N0Ldv38yaNSvPP/98evfundGjR2edddZJVVVVac7o0aNz2mmnLbTvQQcdlJdeeikPPvhgHn300STVVzIfMWJELrroolx88cW56qqrcuihh+btt99O69atFzrWM888k+OPPz4333xztttuu0yfPj1PPvlkafvpp5+eG264IZdddll22GGHTJkyJa+88kppe/PmzTNy5Mh06NAhL774Yo466qg0b948p5566jJfi5tuuiknnXRSxo8fn3HjxmXIkCHZfvvts9tuu2XevHkZNGhQ1l9//YwfPz6zZs3KySefvMzHBgAAAAAAAAAAAADKQ3B9DdCyZcv07NkzVVVV6d27d6qqqnLiiSdmxIgR+fTTTzNjxoy88cYb6dev30L7Nm7cOM2aNUv9+vXTvn37hbYPGTIkhxxySJLkvPPOy5VXXpkJEyZk9913X2ju5MmT07Rp0+y1115p3rx5Nthgg3z7299OksyaNStXXHFFrr766gwePDhJ0rlz5+ywww6l/c8888zS/zt16pRTTjklf/rTn5YruL7FFlvk7LPPTpJ06dIlV199dR577LHstttueeSRR/Lmm2+mqqqqdK7nnntudtttt2U+PgAAAAAAAAAAAACw8lXUdAMsm379+qWqqirFYjFPPvlkvve976V79+4ZM2ZMRo8enQ4dOqRLly7Lfdwtttii9P+mTZumRYsWmTZt2iLn7rbbbtlggw2y0UYb5Yc//GFuueWWfP7550mSl19+ObNnz84uu+yy2Fq33XZbtt9++7Rv3z7NmjXLmWeemcmTJ69wv0my7rrrlvp99dVX07Fjx2oB/W222Wa5jg8AAAAAAAAAAAAArHyrJLh+zTXXpFOnTmnUqFG23XbbTJgwYZn2+9Of/pRCoZBBgwaVt8E1QP/+/TNmzJi88MILadCgQbp165b+/funqqoqo0ePXuRq68uiQYMG1e4XCoXMnz9/kXObN2+e5557Ln/84x+z7rrr5qyzzsqWW26ZTz75JI0bN15inXHjxuXQQw/NwIEDc9999+X555/PGWeckTlz5pStXwAAAAAAAAAAAABg9VD24Pptt92Wk046KWeffXaee+65bLnllhkwYMBiV/VeYNKkSTnllFPSt2/fcre4Rujbt29mzZqVyy67rBRSXxBcr6qqSv/+/Re7b8OGDTNv3ryV0kf9+vWz66675qKLLsrf//73TJo0KY8//ni6dOmSxo0b57HHHlvkfk899VQ22GCDnHHGGendu3e6dOmSt99+e6X0tEDXrl3zzjvv5P333y+NPf300yu1BgAAAAAAAAAAAACw/MoeXP/lL3+Zo446Kocffnh69OiR6667Lk2aNMnvfve7xe4zb968HHrooRkxYkQ22mijcre4RlhrrbWyxRZb5JZbbimF1Hfcccc899xzee2115a44nqnTp3y1ltvZeLEifnwww8ze/bsFerhvvvuy5VXXpmJEyfm7bffzu9///vMnz8/Xbt2TaNGjXLaaafl1FNPze9///u8+eab+dvf/pbf/va3SZIuXbpk8uTJ+dOf/pQ333wzV155Ze65554V6mNxdtttt3Tu3DmDBw/O3//+94wdOzZnnnlmkn+vzA4AAAAAAAAAAAAA1IyyBtfnzJmTZ599Nrvuuuv/FayoyK677ppx48Ytdr///u//Ttu2bXPEEUeUs701Tr9+/TJv3rxScL1169bp0aNH2rdvn65duy52v/322y+77757dtppp7Rp0yZ//OMfV6h+q1atcvfdd2fnnXdO9+7dc9111+WPf/xjNt100yTJz3/+85x88sk566yz0r179xx00EGllfW/+93v5sQTT8zQoUPTs2fPPPXUU/n5z3++Qn0sTr169TJq1Kh8+umn2XrrrXPkkUfmjDPOSJI0atRopdYCAAAAAAAAAAAAAJZdoVgsFst18Pfeey/rrbdennrqqfTp06c0fuqpp2b06NEZP378QvuMGTMmBx98cCZOnJh11lknQ4YMySeffJJRo0Ytssbs2bOrrSA+c+bMdOzYMTNmzEiLFi2qzf3yyy/z1ltvZcMNNxRkriPGjh2bHXbYIW+88UY6d+5c0+2sNJ7LAAAAAAAAAAAAwH/a/KbNFxp7cfCLNdAJdcnMmTPTsmXLRWa3v67+KuppmcyaNSs//OEPc8MNN2SdddZZpn3OP//8jBgxosydsaa455570qxZs3Tp0iVvvPFGfvrTn2b77bevVaF1AAAAAAAAAAAAAFjTlDW4vs4666RevXp5//33q42///77ad++/ULz33zzzUyaNCl77713aWz+/Pn/brR+/bz66qsLBZBPP/30nHTSSaX7C1Zcp26aNWtWTjvttEyePDnrrLNOdt1111x66aU13RYAAAAAAAAAAAAA1GllDa43bNgwvXr1ymOPPZZBgwYl+XcQ/bHHHsvQoUMXmt+tW7e8+GL1tyQ488wzM2vWrFxxxRWLDKRXVlamsrKyLP2z5jnssMNy2GGH1XQbAAAAAAAAAAAAAMB/KGtwPUlOOumkDB48OL17984222yTyy+/PJ999lkOP/zwJP8OGq+33no5//zz06hRo2y22WbV9m/VqlWSLDQOAAAAAAAAAAAAAMCaoezB9YMOOigffPBBzjrrrEydOjU9e/bMgw8+mHbt2iVJJk+enIqKinK3AQAAAAAAAAAAAABADSl7cD1Jhg4dmqFDhy5yW1VV1RL3HTly5MpvCAAAAAAAAAAAAACAVWaVBNcBAAAAAAAAAAAAoCZsftPmC429OPjFGugE6raKmm4AAAAAAAAAAAAAAIDaTXAdAAAAAAAAAAAAAICyElyvhUaOHJlWrVotdV6hUMioUaPK3k9N+8/znDRpUgqFQiZOnFjWmv37988JJ5xQ1hoAAAAAAAAAAAAAsKaoX9MNrC42v2nzVVrvxcEvlu3YBx10UAYOHFi6P3z48IwaNarsYe01QceOHTNlypSss846K+V4VVVV2WmnnfLxxx9Xe7HA3XffnQYNGqyUGgAAAAAAAAAAAACwphNcr4UaN26cxo0b13Qby2zOnDlp2LDhKqlVr169tG/fvux1WrduXfYaAAAAAAAAAAAAALCmqKjpBli6++67L61atcq8efOSJBMnTkyhUMiwYcNKc4488sj84Ac/SJKMHDmytPr3yJEjM2LEiLzwwgspFAopFAoZOXJkab8PP/ww++67b5o0aZIuXbrk3nvvXWIvnTp1ynnnnZcf/ehHad68edZff/38+te/rjbnxRdfzM4775zGjRtn7bXXztFHH51PP/20tH3IkCEZNGhQzj333HTo0CFdu3bNpEmTUigUcvvtt6dv375p3Lhxtt5667z22mt5+umn07t37zRr1ix77LFHPvjgg9Kxnn766ey2225ZZ5110rJly/Tr1y/PPffcYvtfUGfB6vNDhgwpXZf/vFVVVSVJbr755vTu3TvNmzdP+/bt8/3vfz/Tpk0rHWunnXZKkqy11lopFAoZMmRIkqR///454YQTSnU//vjjHHbYYVlrrbXSpEmT7LHHHnn99ddL2xc8Zg899FC6d++eZs2aZffdd8+UKVOW+HgAAAAAAAAAAAAAwJpAcH0N0Ldv38yaNSvPP/98kmT06NFZZ511SuHqBWP9+/dfaN+DDjooJ598cjbddNNMmTIlU6ZMyUEHHVTaPmLEiBx44IH5+9//noEDB+bQQw/N9OnTl9jPpZdemt69e+f555/Psccem5/85Cd59dVXkySfffZZBgwYkLXWWitPP/107rjjjjz66KMZOnRotWM89thjefXVV/PII4/kvvvuK42fffbZOfPMM/Pcc8+lfv36+f73v59TTz01V1xxRZ588sm88cYbOeuss0rzZ82alcGDB2fMmDH529/+li5dumTgwIGZNWvWMl3bK664onRdpkyZkp/+9Kdp27ZtunXrliSZO3duzjnnnLzwwgsZNWpUJk2aVAqnd+zYMXfddVeS5NVXX82UKVNyxRVXLLLOkCFD8swzz+Tee+/NuHHjUiwWM3DgwMydO7c05/PPP88ll1ySm2++OX/9618zefLknHLKKct0HgAAAAAAAAAAAACwOqtf0w2wdC1btkzPnj1TVVWV3r17p6qqKieeeGJGjBiRTz/9NDNmzMgbb7yRfv36LbRv48aN06xZs9SvXz/t27dfaPuQIUNyyCGHJEnOO++8XHnllZkwYUJ23333xfYzcODAHHvssUmS0047LZdddlmeeOKJdO3aNbfeemu+/PLL/P73v0/Tpk2TJFdffXX23nvvXHjhhWnXrl2SpGnTpvnNb36Thg0bJvn36uVJcsopp2TAgAFJkp/+9Kc55JBD8thjj2X77bdPkhxxxBHVVozfeeedq/X261//Oq1atcro0aOz1157LdO1bdmyZZLk7rvvzvXXX59HH320dK1+9KMfleZutNFGufLKK7P11lvn008/TbNmzdK6deskSdu2bUur3H/d66+/nnvvvTdjx47NdtttlyS55ZZb0rFjx4waNSoHHHBAkn+H5K+77rp07tw5STJ06ND893//91LPAQAAAAAAAAAAAABWd1ZcX0P069cvVVVVKRaLefLJJ/O9730v3bt3z5gxYzJ69Oh06NAhXbp0We7jbrHFFqX/N23aNC1atMi0adOWeZ9CoZD27duX9nn55Zez5ZZblkLrSbL99ttn/vz5pVXZk2TzzTcvhdYXd+wFIffNN9+82th/9vf+++/nqKOOSpcuXdKyZcu0aNEin376aSZPnrzUc/9Pzz//fH74wx/m6quvLoXkk+TZZ5/N3nvvnfXXXz/NmzcvvThgeY7/8ssvp379+tl2221LY2uvvXa6du2al19+uTTWpEmTUmg9SdZdd92lPhYAAAAAAAAAAAAAsCaw4voaon///vnd736XF154IQ0aNEi3bt3Sv3//VFVV5eOPP17kauvLokGDBtXuFwqFzJ8/f6Xv83X/GWxf3LELhcIix/6z1uDBg/PRRx/liiuuyAYbbJDKysr06dMnc+bMWeZepk6dmu9+97s58sgjc8QRR5TGP/vsswwYMCADBgzILbfckjZt2mTy5MkZMGDAch1/WS3quhaLxZVeBwAAAAAAAAAAAABWNSuuryH69u2bWbNm5bLLLiuF1BcE16uqqtK/f//F7tuwYcPMmzdvlfTZvXv3vPDCC/nss89KY2PHjk1FRUW6du260uuNHTs2xx9/fAYOHJhNN900lZWV+fDDD5d5/y+//DL77LNPunXrll/+8pfVtr3yyiv56KOPcsEFF6Rv377p1q3bQiugL1g1fknXt3v37vnqq68yfvz40thHH32UV199NT169FjmXgEAAAAAAAAAAABgTSW4voZYa621ssUWW+SWW24phdR33HHHPPfcc3nttdeWuOJ6p06d8tZbb2XixIn58MMPM3v27LL1eeihh6ZRo0YZPHhwXnrppTzxxBM57rjj8sMf/jDt2rVb6fW6dOmSm2++OS+//HLGjx+fQw89NI0bN17m/Y855pi88847ufLKK/PBBx9k6tSpmTp1aubMmZP1118/DRs2zFVXXZX//d//zb333ptzzjmn2v4bbLBBCoVC7rvvvnzwwQf59NNPF9njPvvsk6OOOipjxozJCy+8kB/84AdZb731ss8++3zjawAAAAAAAAAAAABA7bT5TZtXu63JBNfXIP369cu8efNKwfXWrVunR48ead++/RJXM99vv/2y++67Z6eddkqbNm3yxz/+sWw9NmnSJA899FCmT5+erbfeOvvvv3922WWXXH311WWp99vf/jYff/xxttpqq/zwhz/M8ccfn7Zt2y7z/qNHj86UKVPSo0ePrLvuuqXbU089lTZt2mTkyJG544470qNHj1xwwQW55JJLqu2/3nrrZcSIERk2bFjatWuXoUOHLrLOjTfemF69emWvvfZKnz59UiwW88ADD6RBgwbf6PwBAAAAAAAAAAAAYE1QKBaLxZpuYmWaOXNmWrZsmRkzZqRFixbVtn355Zd56623suGGG6ZRo0Y11CF8c57LAAAAAAAAAAAAsGwWtUr1i4NfrIFOyquunGdd8/XHdXV7TJeU3f46K64DAAAAAAAAAAAAAFBWgusAAAAAAAAAAAAAAJSV4DoAAAAAAAAAAAAAAGUluA4AAAAAAAAAAAAAQFnVyeB6sVis6RbgG/EcBgAAAAAAAAAAAGBNUqeC6w0aNEiSfP755zXcCXwzc+bMSZLUq1evhjsBAAAAAAAAAAAAgKWrX9MNrEr16tVLq1atMm3atCRJkyZNUigUargrWD7z58/PBx98kCZNmqR+/Tr1IQwAAAAAAAAAAADAGqrOpV7bt2+fJKXwOqyJKioqsv7663vhBQAAAAAAAAAAAABrhDoXXC8UCll33XXTtm3bzJ07t6bbgRXSsGHDVFRU1HQbAAAAAAAAAAAAALBM6lxwfYF69eqlXr16Nd0GAAAAAAAAAAAAAECtZ8lmAAAAAAAAAAAAAADKSnAdAAAAAAAAAAAAAICyql/TDQAAAAAAAAAAAAAALKvNb9p8obEXB79YA52wPKy4DgAAAAAAAAAAAABAWQmuAwAAAAAAAAAAAABQVoLrAAAAAAAAAAAAAACUleA6AAAAAAAAAAAAAABlJbgOAAAAAAAAAAAAAEBZCa4DAAAAAAAAAAAAAFBW9Wu6AQAAAAC+mU7D7q92f9IFe67ymquqLgAAAAAAALBmsuI6AAAAAAAAAAAAAABlJbgOAAAAAAAAAAAAAEBZCa4DAAAAAAAAAAAAAFBWgusAAAAAAAAAAAAAAJRV/ZpuAAAAAKC26DTs/oXGJl2wZw10AgAAAAAAALB6seI6AAAAAAAAAAAAAABlJbgOAAAAAAAAAAAAAEBZCa4DAAAAAAAAAAAAAFBWgusAAAAAAAAAAAAAAJSV4DoAAAAAAAAAAAAAAGW1SoLr11xzTTp16pRGjRpl2223zYQJExY794Ybbkjfvn2z1lprZa211squu+66xPkAAAAAAAAAAAAAAKzeyh5cv+2223LSSSfl7LPPznPPPZctt9wyAwYMyLRp0xY5v6qqKoccckieeOKJjBs3Lh07dsx3vvOdvPvuu+VuFQAAAAAAAAAAAACAMih7cP2Xv/xljjrqqBx++OHp0aNHrrvuujRp0iS/+93vFjn/lltuybHHHpuePXumW7du+c1vfpP58+fnscceK3erAAAAAAAAAAAAAACUQVmD63PmzMmzzz6bXXfd9f8KVlRk1113zbhx45bpGJ9//nnmzp2b1q1bl6tNAAAAAAAAAAAAAADKqH45D/7hhx9m3rx5adeuXbXxdu3a5ZVXXlmmY5x22mnp0KFDtfD7f5o9e3Zmz55duj9z5swVbxgAAAAAAAAAAAAAgJWurCuuf1MXXHBB/vSnP+Wee+5Jo0aNFjnn/PPPT8uWLUu3jh07ruIuAQAAAAAAAAAAAABYkrIG19dZZ53Uq1cv77//frXx999/P+3bt1/ivpdcckkuuOCCPPzww9liiy0WO+/000/PjBkzSrd33nlnpfQOAAAAAAAAAAAAAMDKUdbgesOGDdOrV6889thjpbH58+fnscceS58+fRa730UXXZRzzjknDz74YHr37r3EGpWVlWnRokW1GwAAAAAAAAAAAAAAq4/65S5w0kknZfDgwendu3e22WabXH755fnss89y+OGHJ0kOO+ywrLfeejn//POTJBdeeGHOOuus3HrrrenUqVOmTp2aJGnWrFmaNWtW7nYBAAAAAAAAAAAAAFjJyh5cP+igg/LBBx/krLPOytSpU9OzZ888+OCDadeuXZJk8uTJqaj4v4Xff/WrX2XOnDnZf//9qx3n7LPPzvDhw8vdLgAAAAAAAAAAAAAAK1nZg+tJMnTo0AwdOnSR26qqqqrdnzRpUvkbAgAAAAAAAAAAAABglalY+hQAAAAAAAAAAAAAAFhxq2TFdQAAAIBVrdOw+xcam3TBnjXQSQ0Y3nIRYzNqb10AAAAAAABgtSe4DgAAAFBOwtwAAAAAAAAAqajpBgAAAAAAAAAAAAAAqN0E1wEAAAAAAAAAAAAAKKv6Nd0AAAAAUPt1Gnb/QmOTLtizBjoBAAAAAAAAoCYIrgMAAMDqZHjLRYzNWPV9AAAAAAAAAMBKVFHTDQAAAAAAAAAAAAAAULsJrgMAAAAAAAAAAAAAUFb1a7oBAAAAAAAAAICVZnjLRYzNWPV9AAAAUI0V1wEAAAAAAAAAAAAAKCvBdQAAAAAAAAAAAAAAyqp+TTcAAAAAAAAAAACrneEtv3Z/Rs30AQAAtYTgOgDAmsIvRwFqnU7D7l9obFKjGmikLvn619PE11QAAAAAAACAVaCiphsAAAAAAAAAAAAAAKB2s+I6AAAAAACw7LyDCQAAAAAAK0BwHQAAAKgZXw+9CbwBAAAALB8vKqx9PKYAANRigusAAAAAAADUDTURBBM+Y2XwPAIAAABqgYqabgAAAAAAAAAAAAAAgNrNiusLeHtyAAAAAKC2s9IwAAAAAABQQwTXAQAAAACA1ZsXQAAArD58bwYAAKwgwXUAAAAAAACoTQQKgdWJz0kAAAD8/wmuAwCshjoNu3+hsUmNaqARAAAAgHIQYmRN5vkLAAAAsEIqaroBAAAAAAAAAAAAAABqNyuuAwAAQB2yyHf1uGDPGugEAAAA4JvzDqYAAABrDiuuAwAAAAAAAAAAAABQVlZcBwAAgLpueMtFjM1Y9X0AAAAAAAAAUGsJrgMAAADA8vBiDwAAAL7Oz4oAAABLJbgOAMDqxS/3AQAAVhudht2/0NikRjXQCAA14+u/q/N7OgAAAOAbEFwHAADKy4sRACgnX2dgsQSOAQAAAACA1YngOgAAAAAAAPDNWZ0boKy8OLW8XF8AACg/wXUAAAAAAFaK1SboUZfejaEunSsAAAAAAGs0wXUAAAAAAABqndXmxTSUlxfwAAAAAKwxBNcBAKgx/oAMAECd9vWgnZAdAAAAAABQi9XJ4LqAFAAAAABQYqVWAADqCt/7sqaqpc9d+RUAAOqaOhlcBwAAAAAAAABWLiHc2sdjCgAArEyC6wAA1Dlf/0X7pAv2rKFOAAAAWJSFfm4TjmINIdzHyuB5BAAAANRWFTXdAAAAAAAAAAAAAAAAtZsV1wEAAAAAACgrq+iXj9W5y6suXd+6dK6wMvjaBgAAsPwE1wEAAFg+w1suYmzGqu8DAAAAAAAAAFhjCK4DAAAAwGJYdRJYnficBKxOfE4CAAAAYHkJrgMAgNWjVxp/tAagnHydAVZ7X//Zws8VAACw3Pz8DwAAtZfgOgCw8gj/AlBOgmAArAQCELWPxxSg7vA5H5aPjxkAAABWN4LrAMAKWW1+4S0sD1Ar+ToDQG2z2nxtAwAAAAAAqCGC6wDAGqMmgh6LrHnBnuUtCkCNECgEAAAAAAAAgPIRXAcAWF5W3wXqEGFuAAAAAAAAAGBlqFgVRa655pp06tQpjRo1yrbbbpsJEyYscf4dd9yRbt26pVGjRtl8883zwAMPrIo2AQAAAAAAAAAAAIDVyfCWC99YI5V9xfXbbrstJ510Uq677rpsu+22ufzyyzNgwIC8+uqradu27ULzn3rqqRxyyCE5//zzs9dee+XWW2/NoEGD8txzz2WzzTYrd7slm9+0+UJjLw5+cZXVBwAAAAAAAAAAAADqkEWF8jdcf9X3USZlD67/8pe/zFFHHZXDDz88SXLdddfl/vvvz+9+97sMGzZsoflXXHFFdt999/zsZz9Lkpxzzjl55JFHcvXVV+e6664rd7s1TmAeAKgpnYbdv9DYpEbfX3ji8BmroBsAAAAAAAAAAJbo6yHnWhRwpnYqa3B9zpw5efbZZ3P66aeXxioqKrLrrrtm3Lhxi9xn3LhxOemkk6qNDRgwIKNGjVrk/NmzZ2f27Nml+zNnzvzmjQMAwEq2yBcGXLBnDXQCALDmqSuLPdTUedaV67uyLfrFvzXQCJRJXfrc8PVzra3nCaz+6tLnXgAAAOqmQrFYLJbr4O+9917WW2+9PPXUU+nTp09p/NRTT83o0aMzfvz4hfZp2LBhbrrpphxyyCGlsWuvvTYjRozI+++/v9D84cOHZ8SIEQuNz5gxIy1atFhJZ/LN1cQKpnWl5jLXrYmaK7nu6nJ9V5vHdCXXrSs1F1XXY7pm11zmulbJhtXPot7eqRZ8TqoJvraVryYANcPXtvLVhFVJ+GzNUlc+D/rcS13g8++aoy59HqyJ7/FhVfK5d81Rlz/3LrKu36+stLqrzWO6kuvWlZqLqusxXbNrLnNdj+kaU3Oxdcu8YN5qc31XwcKAq83nwTXwMZ05c2Zatmy5TNntsq64viqcfvrp1VZonzlzZjp27FiDHQEAAAAAAAAAAABQGy0yWDx8lbdRa9Wld6+vS+e6QFmD6+uss07q1au30Erp77//ftq3b7/Ifdq3b79c8ysrK1NZWblyGgYAgFXJCkoAAAAAAAAAwDKoiyFnap+yBtcbNmyYXr165bHHHsugQYOSJPPnz89jjz2WoUOHLnKfPn365LHHHssJJ5xQGnvkkUfSp0+fcrYKAACwXLyKHoA6wQvtAAAAAABY0/jdNqy2yhpcT5KTTjopgwcPTu/evbPNNtvk8ssvz2effZbDDz88SXLYYYdlvfXWy/nnn58k+elPf5p+/frl0ksvzZ577pk//elPeeaZZ/LrX/+63K1SLr4IAAAAAAAAAAAAACvZarMKuZwkLJOyB9cPOuigfPDBBznrrLMyderU9OzZMw8++GDatWuXJJk8eXIqKipK87fbbrvceuutOfPMM/P//t//S5cuXTJq1Khsttlm5W6VNZjVLgEAFuZ7JABgeaw2v9wHAAAAAACgVip7cD1Jhg4dmqFDhy5yW1VV1UJjBxxwQA444IAyd0U5rFZ/4PQKJpaTcB8AAAAAUNv5PSgAAAAAUFNWSXCdxRCsBqh1/OEPoI7zPT4AAAAAAAAAwCIJrq8iq9VK5AAAUMss9P328BppAwAAAIDVnAVoAAAAoOYIrgMAAAAAANQA4UkAAAAAoC4RXAdWS/5gAwBlMnxGTXcAAAAAAAAAAEAdJLgOwCrhxQgA8M35egoAAAAAAAAArKkE1wEAAABgdeddUwAAYI220IIEw2ukDQAAAKhRgusASyIYAABrJl/DAVjDLfJdNgAoK+9wBAAA5eF7bQAAFhBcBwAAWJMJ6QMAAAAAAAAAawDBdQAAAAAAAABWOSvwAgAAQN0iuA4AAAAAAFCXeScnAAAAAGAVEFwHgHLzhz8AAAAAAAAAAADqOMF1AAAAAAAAAOouC9AAAADAKiG4Dqw5/NIQAAAAAAAAAAAAYI0kuA5AzfFiBAAAAACozu/MAAAAAIBaSnAdAAAAAAAAAADqgEkX7Lnw4PBV3gYAAHVURU03AAAAAAAAAAAAAABA7Sa4DgAAAAAAAAAAAABAWdWv6QYAAAAAAAAAAAAAaqNJF+y5iNEZNVN3eA3UXAXnCqw5BNcB6qCFvkkcXiNtAAAAAAAAVDe8joRa6sp5AkC5+ZoKy8fHDFDDBNcBAAAAAAAAAIBVR3ASAKBOElyHFVQTb6UCAAAAAMAqJEwDAACw2lhkVgcAWKNU1HQDAAAAAAAAAAAAAADUblZcBwAAAABqhHe0AwAAAAAAqDusuA4AAAAAAAAAAAAAQFkJrgMAAAAAAAAAAAAAUFaC6wAAAAAAAAAAAAAAlFX9mm4AAAAAAAAAAACAlWT4jJruAADWOJMu2LP6wPAaaaPWE1wHAAAAAAAAAABqP4FuAIAaJbgOgB/OayuPKwAAAAAAALA0/q4IAFBnLLSyfLJKV5cXXIeVqa78MFdXzhMAAAAAAAAAAACAlUJwHWB144UBAAAAAACwwl4c/GJNtwAA8H/KnAFY5KqpAMA3J8dXFoLrAAAAAAAAAABArSLQDWuomgiKCqcCrDKC6wDULX7YAAAAAAAAAADWJLIOQA1Z5AvBhq/yNqhFBNdhTecbUwAAAAAAAAAAAABWc4LrAAAAAAAAAACssBcHv1jTLQCsOhaZBIAVJrgOAAAAAKw+/OEPAAAAAGqe39MB1B2r8HO+4DoA1AKTLtizplsAAAAAAAAAqNP83RYAYMkqaroBAAAAAAAAAAAAAABqNyuuAwAAAAAAAAAAsOKGz6jpDgCANYDgOgAAAAAAAAAAAMts0gV71nQLsEI8dwFqluA6AAAAAAAAAAAAsEoJkcMayrts8A0IrgNL5ZtEAAAAAAAAAAAAAL4JwfW6xitdAAAAAAAAAAAAAIBVrKKmGwAAAAAAAAAAAAAAoHYTXAcAAAAAAAAAAAAAoKzKGlyfPn16Dj300LRo0SKtWrXKEUcckU8//XSJ84877rh07do1jRs3zvrrr5/jjz8+M2bMKGebAAAAAAAAAAAAAACUUf1yHvzQQw/NlClT8sgjj2Tu3Lk5/PDDc/TRR+fWW29d5Pz33nsv7733Xi655JL06NEjb7/9dn784x/nvffey5133lnOVgEAAAAAAAAAAKBGTbpgz5puAQDKpmzB9ZdffjkPPvhgnn766fTu3TtJctVVV2XgwIG55JJL0qFDh4X22WyzzXLXXXeV7nfu3DnnnntufvCDH+Srr75K/fplzdkDUMv4YQ4AAAAAAAAAWFFyBwCwcpUtCT5u3Li0atWqFFpPkl133TUVFRUZP3589t1332U6zowZM9KiRYvFhtZnz56d2bNnl+7PnDnzmzUOAAAAAAAAAAAAdYiQPgCrQkW5Djx16tS0bdu22lj9+vXTunXrTJ06dZmO8eGHH+acc87J0Ucfvdg5559/flq2bFm6dezY8Rv1DQAAAAAAAAAAAADAyrXcwfVhw4alUCgs8fbKK69848ZmzpyZPffcMz169Mjw4cMXO+/000/PjBkzSrd33nnnG9cGAAAAAAAAAAAAAGDlqb+8O5x88skZMmTIEudstNFGad++faZNm1Zt/Kuvvsr06dPTvn37Je4/a9as7L777mnevHnuueeeNGjQYLFzKysrU1lZucz9w5rMW/IAAAAAAAAAAAAAsCZa7uB6mzZt0qZNm6XO69OnTz755JM8++yz6dWrV5Lk8ccfz/z587Ptttsudr+ZM2dmwIABqayszL333ptGjRotb4sAawwvRgAAAAAAAAAAAADqgopyHbh79+7Zfffdc9RRR2XChAkZO3Zshg4dmoMPPjgdOnRIkrz77rvp1q1bJkyYkOTfofXvfOc7+eyzz/Lb3/42M2fOzNSpUzN16tTMmzevXK0CAAAAAAAAAAAAAFBGy73i+vK45ZZbMnTo0Oyyyy6pqKjIfvvtlyuvvLK0fe7cuXn11Vfz+eefJ0mee+65jB8/Pkmy8cYbVzvWW2+9lU6dOpWzXQAAAAAAAAAAAAAAyqCswfXWrVvn1ltvXez2Tp06pVgslu7379+/2n0AAAAAAAAAAAAAANZ8FTXdAAAAAAAAAAAAAAAAtZvgOgAAAAAAAAAAAAAAZSW4DgAAAAAAAAAAAABAWQmuAwAAAAAAAAAAAABQVoLrAAAAAAAAAAAAAACUleA6AAAAAAAAAAAAAABlJbgOAAAAAAAAAAAAAEBZCa4DAAAAAAAAAAAAAFBWgusAAAAAAAAAAAAAAJSV4DoAAAAAAAAAAAAAAGVVv6YboHwmXbBnTbcAAAAAAAAAAAAAAGDFdQAAAAAAAAAAAAAAyktwHQAAAAAAAAAAAACAshJcBwAAAAAAAAAAAACgrATXAQAAAAAAAAAAAAAoK8F1AAAAAAAAAAAAAADKSnAdAAAAAAAAAAAAAICyElwHAAAAAAAAAAAAAKCsBNcBAAAAAAAAAAAAACgrwXUAAAAAAAAAAAAAAMpKcB0AAAAAAAAAAAAAgLISXAcAAAAAAAAAAAAAoKwE1wEAAAAAAAAAAAAAKCvBdQAAAAAAAAAAAAAAykpwHQAAAAAAAAAAAACAshJcBwAAAAAAAAAAAACgrATXAQAAAAAAAAAAAAAoK8F1AAAAAAAAAAAAAADKSnAdAAAAAAAAAAAAAICyElwHAAAAAAAAAAAAAKCsBNcBAAAAAAAAAAAAACgrwXUAAAAAAAAAAAAAAMpKcB0AAAAAAAAAAAAAgLISXAcAAAAAAAAAAAAAoKwE1wEAAAAAAAAAAAAAKCvBdQAAAAAAAAAAAAAAykpwHQAAAAAAAAAAAACAshJcBwAAAAAAAAAAAACgrATXAQAAAAAAAAAAAAAoK8F1AAAAAAAAAAAAAADKSnAdAAAAAAAAAAAAAICyElwHAAAAAAAAAAAAAKCsBNcBAAAAAAAAAAAAACgrwXUAAAAAAAAAAAAAAMpKcB0AAAAAAAAAAAAAgLIqa3B9+vTpOfTQQ9OiRYu0atUqRxxxRD799NNl2rdYLGaPPfZIoVDIqFGjytkmAAAAAAAAAAAAAABlVNbg+qGHHpp//OMfeeSRR3Lfffflr3/9a44++uhl2vfyyy9PoVAoZ3sAAAAAAAAAAAAAAKwC9ct14JdffjkPPvhgnn766fTu3TtJctVVV2XgwIG55JJL0qFDh8XuO3HixFx66aV55plnsu6665arRQAAAAAAAAAAAAAAVoGyrbg+bty4tGrVqhRaT5Jdd901FRUVGT9+/GL3+/zzz/P9738/11xzTdq3b7/UOrNnz87MmTOr3QAAAAAAAAAAAAAAWH2ULbg+derUtG3bttpY/fr107p160ydOnWx+5144onZbrvtss8++yxTnfPPPz8tW7Ys3Tp27PiN+gYAAAAAAAAAAAAAYOVa7uD6sGHDUigUlnh75ZVXVqiZe++9N48//nguv/zyZd7n9NNPz4wZM0q3d955Z4VqAwAAAAAAAAAAAABQHvWXd4eTTz45Q4YMWeKcjTbaKO3bt8+0adOqjX/11VeZPn162rdvv8j9Hn/88bz55ptp1apVtfH99tsvffv2TVVV1UL7VFZWprKycnlOAQAAAAAAAAAAAACAVWi5g+tt2rRJmzZtljqvT58++eSTT/Lss8+mV69eSf4dTJ8/f3623XbbRe4zbNiwHHnkkdXGNt9881x22WXZe++9l7dVAAAAAAAAAAAAAABWA8sdXF9W3bt3z+67756jjjoq1113XebOnZuhQ4fm4IMPTocOHZIk7777bnbZZZf8/ve/zzbbbJP27dsvcjX29ddfPxtuuGG5WgUAAAAAAAAAAAAAoIwqynnwW265Jd26dcsuu+ySgQMHZocddsivf/3r0va5c+fm1Vdfzeeff17ONgAAAAAAAAAAAAAAqEFlW3E9SVq3bp1bb711sds7deqUYrG4xGMsbTsAAAAAAAAAAAAAAKu3sq64DgAAAAAAAAAAAAAAgusAAAAAAAAAAAAAAJSV4DoAAAAAAAAAAAAAAGUluA4AAAAAAAAAAAAAQFkJrgMAAAAAAAAAAAAAUFaC6wAAAAAAAAAAAAAAlJXgOgAAAAAAAAAAAAAAZSW4DgAAAAAAAAAAAABAWQmuAwAAAAAAAAAAAABQVoLrAAAAAAAAAAAAAACUleA6AAAAAAAAAAAAAABlJbgOAAAAAAAAAAAAAEBZCa4DAAAAAAAAAAAAAFBWgusAAAAAAAAAAAAAAJSV4DoAAAAAAAAAAAAAAGUluA4AAAAAAAAAAAAAQFkJrgMAAAAAAAAAAAAAUFaC6wAAAAAAAAAAAAAAlJXgOgAAAAAAAAAAAAAAZSW4DgAAAAAAAAAAAABAWQmuAwAAAAAAAAAAAABQVoLrAAAAAAAAAAAAAACUleA6AAAAAAAAAAAAAABlJbgOAAAAAAAAAAAAAEBZCa4DAAAAAAAAAAAAAFBWgusAAAAAAAAAAAAAAJSV4DoAAAAAAAAAAAAAAGUluA4AAAAAAAAAAAAAQFkJrgMAAAAAAAAAAAAAUFaC6wAAAAAAAAAAAAAAlJXgOgAAAAAAAAAAAAAAZSW4DgAAAAAAAAAAAABAWQmuAwAAAAAAAAAAAABQVoLrAAAAAAAAAAAAAACUleA6AAAAAAAAAAAAAABlJbgOAAAAAAAAAAAAAEBZCa4DAAAAAAAAAAAAAFBWgusAAAAAAAAAAAAAAJSV4DoAAAAAAAAAAAAAAGUluA4AAAAAAAAAAAAAQFkJrgMAAAAAAAAAAAAAUFaC6wAAAAAAAAAAAAAAlJXgOgAAAAAAAAAAAAAAZSW4DgAAAAAAAAAAAABAWQmuAwAAAAAAAAAAAABQVmULrk+fPj2HHnpoWrRokVatWuWII47Ip59+utT9xo0bl5133jlNmzZNixYtsuOOO+aLL74oV5sAAAAAAAAAAAAAAJRZ2YLrhx56aP7xj3/kkUceyX333Ze//vWvOfroo5e4z7hx47L77rvnO9/5TiZMmJCnn346Q4cOTUWFheEBAAAAAAAAAAAAANZUhWKxWFzZB3355ZfTo0ePPP300+ndu3eS5MEHH8zAgQPzr3/9Kx06dFjkfv/f//f/Zbfddss555yzwrVnzpyZli1bZsaMGWnRosUKHwcAAAAAAL6JzW/afKGxFwe/WAOdAAAAAABAeSxPdrssS5mPGzcurVq1KoXWk2TXXXdNRUVFxo8fv8h9pk2blvHjx6dt27bZbrvt0q5du/Tr1y9jxowpR4sAAAAAAAAAAAAAAKwiZQmuT506NW3btq02Vr9+/bRu3TpTp05d5D7/+7//myQZPnx4jjrqqDz44IPZaqutsssuu+T1119fbK3Zs2dn5syZ1W4AAAAAAAAAAAAAAKw+liu4PmzYsBQKhSXeXnnllRVqZP78+UmSY445Jocffni+/e1v57LLLkvXrl3zu9/9brH7nX/++WnZsmXp1rFjxxWqDwAAAAAAAAAAAABAedRfnsknn3xyhgwZssQ5G220Udq3b59p06ZVG//qq68yffr0tG/ffpH7rbvuukmSHj16VBvv3r17Jk+evNh6p59+ek466aTS/ZkzZwqvAwAAAAAAAAAAAACsRpYruN6mTZu0adNmqfP69OmTTz75JM8++2x69eqVJHn88cczf/78bLvttovcp1OnTunQoUNeffXVauOvvfZa9thjj8XWqqysTGVl5XKcBQAAAAAAlN+Lg1+s6RYAAAAAAGC1UVGOg3bv3j277757jjrqqEyYMCFjx47N0KFDc/DBB6dDhw5JknfffTfdunXLhAkTkiSFQiE/+9nPcuWVV+bOO+/MG2+8kZ///Od55ZVXcsQRR5SjTQAAAAAAAAAAAAAAVoHlWnF9edxyyy0ZOnRodtlll1RUVGS//fbLlVdeWdo+d+7cvPrqq/n8889LYyeccEK+/PLLnHjiiZk+fXq23HLLPPLII+ncuXO52gQAAAAAAAAAAAAAoMwKxWKxWNNNrEwzZ85My5YtM2PGjLRo0aKm2wEAAAAAAAAAAAAAqJWWJ7tdsYp6AgAAAAAAAAAAAACgjhJcBwAAAAAAAAAAAACgrATXAQAAAAAAAAAAAAAoK8F1AAAAAAAAAAAAAADKSnAdAAAAAAAAAAAAAICyElwHAAAAAAAAAAAAAKCsBNcBAAAAAAAAAAAAACgrwXUAAAAAAAAAAAAAAMpKcB0AAAAAAAAAAAAAgLISXAcAAAAAAAAAAAAAoKwE1wEAAAAAAAAAAAAAKKv6Nd3AylYsFpMkM2fOrOFOAAAAAAAAAAAAAABqrwWZ7QUZ7iWpdcH1WbNmJUk6duxYw50AAAAAAAAAAAAAANR+s2bNSsuWLZc4p1Bclnj7GmT+/Pl577330rx58xQKheXad+bMmenYsWPeeeedtGjRokwd1nzNmqqrZu2rq2btq6tm7atbV2rWVF01a19dNWtfXTVrX926UrOm6qpZ++qqWfvqqln76taVmjVVV83aV1fN2ldXzdpXt67UrKm6ata+umrWvrpq1r66daVmTdVVs/bVVbP21VWz9tWtKzVrqq6ata+umktXLBYza9asdOjQIRUVFUucW+tWXK+oqMi3vvWtb3SMFi1arNIPpJqqWVN11ax9ddWsfXXVrH1160rNmqqrZu2rq2btq6tm7atbV2rWVF01a19dNWtfXTVrX926UrOm6qpZ++qqWfvqqln76taVmjVVV83aV1fN2ldXzdpXt67UrKm6ata+umrWvrpq1r66daVmTdVVs/bVVXPJlrbS+gJLjrUDAAAAAAAAAAAAAMA3JLjO/4+9s46KYv///3OXbpASUVppg4uJgR0odifYXWBcCwzEFhMVFeGa1+5GFGxUbEUEwe5AVARevz/47Xx3XfB6P3feO/fCPM6Zc2B2zzx3Zmff836/UkRERERERERERERERERERERERERERERERERERERERERERERERERERERERESEKWLguhxaWlqYNm0atLS0irWmULqiZvHTFTWLn66oWfx0S4qmULqiZvHTFTWLn66oWfx0S4qmULqiZvHTFTWLn66oWfx0S4qmULqiZvHTFTWLn66oWfx0S4qmULqiZvHTFTWLn66oWfx0S4qmULqiZvHTFTWLn66oWfx0S4qmULqiZvHTFTX5RUJExFRBRERERERERERERERERERERERERERERERERERERERERERERERERERERERERESkRCNWXBcREREREREREREREREREREREREREREREREREREREREREREREREREREREREREWGKGLguIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiLCFDFwXUREREREREREREREREREREREREREREREREREREREREREREREREREREREREREhCli4LqIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiAhTxMB1ERERkRLK9+/fERgYiLS0NKE/ioiIiIiIiMh/hIyMDBCR0n4iQkZGBhPNmJgYfPv2TWl/Tk4OYmJimGiKiIj89/j69avQH0FERORfijg+8EteXh5Onz6N9+/fC/1RRIoxha05RERKMt+/f0fDhg2RkpIi9EcRERERKTHk5uYiJiYGL168EPqjiKgIIeag4rxXRESkJHDmzBn06NEDNWvWxJMnTwAAsbGxSEhIEPiTiYiICImExJlQiSInJwcvX75Efn6+wn4bGxvetUJCQjB16lRIpYr5ER8+fMCgQYOwefNm3jUB4P3797h48WKh59mrVy8mmjJUeX2Bgof7qlWrkJqaiu3bt8Pa2hqxsbGwt7dH7dq1edHYu3fvL7/X39+fF83CyM3NxalTp5Camopu3brBwMAAT58+haGhIfT19ZnpFneMjIxw7do12NvbC/1Rii0pKSmIi4srdGyYOnUq73qZmZmQSCQoW7YsAODixYvYtGkT3NzcMGDAAN71ZBw+fBj6+vrc2LN8+XKsWbMGbm5uWL58OUxMTJjoqvr6rl+/Hp07d4auri7vxxZRhoiQn58PNTU1lWlGR0ejbdu2MDIyUpmmEKSkpCAjIwO2trZwcnIS+uPwSl5ensI9c/HiReTn56NKlSrQ0tJiqp2RkYFnz55BKpXCwcEBpqamTPVkyIK6WZ8fAKipqeHZs2ewsLBQ2P/mzRtYWFggLy+vWGjKOH36NGrVqgV1dXWF/bm5uTh79izq1q3LTFtEROSvyc/Px6xZsxAZGYkXL17g/v37cHBwwJQpU2BnZ4e+ffsy0U1NTcX69euRmpqKiIgIWFhY4NChQ7CxsYG7uzsTTRG23L17Fy4uLoW+duTIETRt2lTFn0jknyLU+FAYnz9/RlJSEpN5w49z3wsXLuDbt2+oWbMmNDQ0eNeToa2tjTt37ghqT8rLy8ONGzdga2vLzObw5csXEBFnA3j06BF27doFNzc3NGnShImmUOTn5+PBgweF2ldYzXn79OmD5cuXQ09PT2F/eno6evbsiTNnzjDRVbUtCRDm+grF+/fvsX37dqSmpiI4OBilSpXClStXYGlpCWtra6E/3n8ac3NznD17FuXLl1eZ5pUrV6ChoQFPT08AwJ49e7B+/Xq4ubkhJCQEmpqavGtu2LABZmZm8PPzAwCMGzcOq1evhpubGzZv3gxbW1veNUsScXFxqF+/fqGvrVq1CgMHDmSmrWofqqr4+PHjL7/X0NCQ2efIyclBWloaHB0dlexYquLdu3fYt28fE388ESE9PR3lypWDuro6cnJysGvXLnz79g0tWrSAmZkZ75oAoKurizt37gg69nz8+BEnT56Es7MzXF1dmWgI5VsECgIXIyMjkZaWhnPnzsHW1haLFy+Gvb09WrduzbueEHPQefPmITg4WGl/Xl4eevTowSRupl+/fujRowd8fX15P/b/Qm5uLp4+faqSMf/Fixf49u2bSp8v379/Z7oGFxH5L7Njxw707NkT3bt3R2xsLG7fvg0HBwcsW7YMBw8exMGDB5no9u7dG3379lX5mvvz589KzxjW2NnZITAwEH369PnPz61/xvXr1wvdL5FIoK2tDRsbG5X4ykV4hEo4SUlJdP36de7/3bt3U+vWrWnixIn07ds35vopKSl0+PBhys7OJiKi/Px8Jjr379+n2rVrk1QqVdgkEglJpVImmmXLlqWaNWtSamoqty8uLo7KlStHVatWZaK5d+9eMjAwIIlEQkZGRmRsbMxtJiYmTDSJhLm+27dvJx0dHerXrx9paWlx13np0qXUvHlz3nQkEonCJjsv+f9lGyvS09PJxcWFdHV1SU1NjTvXESNG0MCBA5npFkZGRgYFBATwftzbt2/TunXr6M6dO0REdOfOHRo0aBAFBATQiRMneNeT0atXL1q4cCGz4xfF8+fPqUePHmRlZUVqampKvx2+kP32f2VjwerVq0lNTY0sLS2pUqVKVLlyZW6rUqUKE83atWtTTEwMERE9e/aMDA0NqWbNmmRmZkahoaFMNImIPDw86MCBA0REdP36ddLS0qKJEydSjRo1qE+fPkw0hbi+FhYWZGBgQIGBgZSYmMhE41e5du0as7H3wIED1LdvXwoODubGJRlv376l+vXr86r3/ft3mjRpEtWtW5emTp1KRERz584lXV1d0tTUpF69eqlkXkZEpKGhQbdv32Z2/AsXLlBubi73/759+6hu3bpUpkwZ+u2332jDhg28a4aFhdHx48eJqOD7a9iwocJzvFmzZvTu3TteNfX19VX+O0lPT6fffvuN1NTUqFmzZvThwwdq1KgRd64ODg507949JtrLly8nGxsbpeeZj48PXb58mYnm0aNHqXnz5mRsbMzpGRsbU/PmzenYsWNMNIkK5oYvX75U2p+enk66uroq1bx27RrTOT4RkVQqpRcvXijtf/36NbMx+NChQ3TmzBnu/2XLllGlSpWoa9eu9PbtWyaaQqyLMzIyKDMzk/v/woULNHLkSFq1ahUTPRnZ2dn0+fNn7v/09HRatGgRHTlyRNTkgZiYGKpVqxZZWVlReno6EREtWrSIdu/ezUQvNDSUHBwc6I8//iAdHR1urbhlyxaqUaMGE81Tp06Rjo4ONWrUiDQ1NTnN2bNnU/v27ZloylD19f2RDx8+0K5du5jOlXJzcykqKoq6du1KDRs2pPr16ytsrNDR0aFly5Yp7Pv69SsNHTqUtLS0mGiqal0sj6qur9BrcSJhxoeiYLF2e/r0Kfn4+JCamhrVrVuX3r59S35+ftzct0KFCvT06VNeNeX57bffuDWGqhg5ciRFRUURUcG97OPjQxKJhPT09CguLo6JZuPGjWnlypVERPTu3TuytLSksmXLkra2Nq1YsYKJJpHq54Pnzp0je3t7JbsvS9s2EVHlypXJwcGBzp49y+2Ljo4mQ0NDatOmDRNNIWxJqrq+ERERv7yxIjk5mczNzcnJyYnU1dW5sXfSpEnUs2dPZrqF8eDBAyZzh6NHj9LUqVM5m318fDw1a9aM6tevT+vWreNdT55Ro0bR+PHjmWr8iLe3N23fvp2IiFJTU0lbW5u6du1KTk5ONHLkSCaaFSpU4K7v2bNnSVdXl1atWkWtWrWitm3bMtEkEmYNlZWVRZMnT6aaNWuSo6Mj2dvbK2ws0NTUpKCgIMrJyeH2vXr1ilq2bEnGxsZMNIXwoary2v7oK/3ZxoLPnz9TYGAgqampKfhQhw0bRrNnz2aiWRSsfBZ3794lW1tbkkql5OTkRA8fPqTffvuN9PT0SFdXl8zMzOj+/fu86xIR1atXT2VrbhkdO3akpUuXElHB2FS+fHnS0NAgdXV1bkzmG6F8iytWrCAzMzOaOXOmwrpt/fr15Ovry0RTiDmoubk5t5aRkZubSx06dCAXFxcmmv7+/qSlpUVly5aloKAgunbtGhOdX4XF+PDx40fq3r072djYcH7EIUOGcONy3bp16cOHD7xqbt26VcFevnTpUs43ZGpqyvT3UhSs4leIhIthkZGVlUXr1q2j33//nZYuXUqvX79morNmzRrq1asXN5/fsmULubi4kL29Pee35psf/U5Xr16lXr16Ua1atah9+/ZM7BweHh40ffp0ysjI4P3YP6Ny5cqc/1tfX58b669cuUKWlpbMdFu3bk0aGhrk5OREs2bNosePHzPTkkdPT48CAgIU7DqsWbRoEVWqVInU1NSoUaNGtHnzZvr69Stz3ZMnTzLXkOev5t1aWlrUq1cv+vLli0o/FwtGjx5d6DZmzBj6/fffad26dfTmzRuhP+Y/psQHrgthdCEqCHSQBQ1JpVJuYA4ICKAxY8bwrlerVi2qW7cuHTx4kK5evUrXrl1T2Fjw9u1b6tixIxkYGNDq1aspKCiINDQ06Pfff6fv378z0SxfvjyNHDlSwbikCoS4vkI83I8dO0ZeXl50+PBh+vDhA3348IEOHz5M3t7edPToUSaaRAUTih49etC3b98UzjUuLo6cnJyY6RYGi0XVoUOHSFNTk0qVKkXa2tp06NAhMjc3p0aNGlGDBg1ITU2N2cR/xowZZGxsTO3bt6ewsDCVOTGaNWtGbm5utGLFCtq1axft3r1bYeOL6OhobluwYAGZmJhQly5duPPr0qULmZiYMAvet7GxofDwcCbHLgpjY2O6e/cuERU4rGrVqkVEREeOHGFm7CYqmICnpaUREdG0adO4oJ2kpCRmY5IQ1/f79++0c+dO8vf3Jw0NDXJ2dqbw8HB69uyZSj8HUcF4JJFIeD/uxo0bSU1Njfz8/Kh27dqkra1Nf/zxB/f68+fPeR8HJ0+eTJaWljRmzBhyc3OjQYMGUbly5eiPP/6gDRs2kLW1Nc2ZM4dXzaICZ2TJb6wCaeSDYPfu3UtSqZR69epFy5cvp379+pG6ujrt3LmTV82yZcvSlStXiIioX79+VKVKFbpy5Qp9+fKFrl27RjVq1KC+ffvyqimRSMjd3Z0kEgm5uLjQ/PnzCw085pP27dtTvXr1aN++fdSpUyfy8fEhX19fevz4MT19+pSaNm3KxPA8b948KlOmDC1dupTWrFlDrq6uNH36dDp06BD17NmTdHV16dKlS7xqRkdHk7q6OnXp0oXWr19PBw8epIMHD9L69eupa9eupKGhwTka+EK2IJZKpTRw4ECFRfKIESOoevXq3DOHL2TBI1KplDw9PalKlSrcVrFiRTIwMKCOHTvyqvkjRQXN37t3jwwMDJhoCpEMJsS6WCiHmBABaCVFUwhno6OjIxc4Kb9WvHPnDrOgixo1atCCBQuUNC9cuEDW1tZMNImEub5COMuHDh1Kenp61KlTJxo5ciSNGjVKYWPF1q1bqVSpUtS8eXN6/vw5Xb16lVxdXcnZ2ZkuXrzIRFNV62J5VHV9hV6LEwkzPhQFC1tSz549qVatWrR3717q3Lkz1apVi+rUqUOPHz+mR48ekY+PDw0dOpRXTXkOHTpElStXpn379tHTp085O6FsY4G1tTU3r961axeVKVOG7t27R5MnT+Z9HirD1NSUbt68SUQFjuyKFStSXl4ebdu2jVmACZHq54OVKlWijh070u3bt+ndu3f0/v17hY0VOTk5FBQURJqamjRx4kTq2LEj6evr0+rVq5lpCmFLUtX1tbOzU9j09PRIIpEo2Dv09PSY2gcbNmxIwcHBRKQ49iYmJpKtrS0z3cJgMfbGxsaSuro6eXl5kb6+Pq1fv56MjY2pX79+FBgYSJqamvTnn3/yqinPsGHDyNDQkH777TcaMGCAkgObBYaGhvTgwQMiIgoPD6cmTZoQEVFCQgKVLVuWiaaOjg49evSIiIjGjRvHJT3cvHmTzMzMmGgSCbOG6tKlC1lZWdG4ceNo0aJFtHjxYoWNBYmJieTo6EiVKlWiW7du0f79+8nS0pLq1q3LJcfyjRA+VFVe21OnTnFbdHQ0lS5dmiZMmEB79uyhPXv20IQJE8jKyoqio6N51ZUxYsQI+u233+jMmTOkp6fHjb27d++mypUr86r145zvx+3MmTNMAtdbt25N/v7+dP36dRo1ahS5urpS69atKScnh75+/UqtWrWiHj168K5LVLBWdHBwoKVLl9LZs2cpOTlZYWOBpaUl99vYuHEjOTk50efPn2nFihW8f6cyhPIturq60q5du4hIce5w48YNMjU1ZaIpxBz04sWLZGxszM0Tvn//Tm3btiVXV1em/sW3b9/SqlWrqF69eiSVSsnNzY1mzZrF+XNVCYu52bBhw8jFxYWWLFlCvr6+1Lp1a/Lw8KCEhASKj48nNzc3+v3333nVlPfxrVu3jrS1tWnq1Kl04MABmjlzJunp6dGaNWt41fwrWCUNCRHD4urqygViZmRkkJ2dHRkZGVHVqlWpVKlSZGFhQQ8fPuRVc9GiRaSnp0ft2rUjKysrmjlzJpmamtLMmTMpNDSUDA0NmRTbkb+XEhMTSUNDg+rVq0fBwcHUuHFjUldXp/j4eF41JRIJmZqakpqaGjVt2pS2b9/OLHZPHh0dHW7ckR/rU1NTmRUMkfHy5UtasGABVaxYkdTV1alZs2b0559/KiRx8s2uXbu4oPny5cvT7Nmz6cmTJ8z05ElKSqLhw4eTmZkZmZiY0NChQykpKYmZnqamJjk4ONCMGTNUkhCxe/ducnZ2pqioKLp+/Tpdv36doqKiyNXVlbZs2UJ//PEHlS1blsaOHcurrhBB5L6+vmRoaEh6enrk5eXF2SGMjIyoevXqXOGYW7du8apbVEGaUqVKUZkyZahu3bq8Ju2X+MB1IYwuRAXOhaZNm1JmZqbCwHz48GFyc3PjXU9XV1epYqqqmDhxIkkkEtLQ0GBeiUdXV1ehwruqEOL6CvFwd3d3LzQr7PTp00ydNaVKleIWy/LnmpaWRjo6OrxqyQxJRW2LFi3ifeJfs2ZNmjRpEhERbd68mUxMTBQWURMmTKDGjRvzqinjR4eG/MbSEKGvr09Xr15ldvzCaNeuHRd0Ic/SpUupdevWTDQNDAxUPibJB5C3atWKc8Y9evSItLW1menKT4p8fHy4BRyL36kMIa6vPM+fP6f58+eTp6cnaWhoUKtWrWj37t2Ul5fHy/Hbtm37061BgwZMDBGVK1dWSFzZunUr6enpcdUgWASuOzg40L59+4iooBuNVCqlLVu2KHwGDw8PXjX19fXJz89PIahm/fr1pKamRrNmzeL28Y1EIuEMEbVr16YJEyYovD5r1izeK0BqaWlxjic7OzslQ8fly5fJysqKV03ZeV67do2GDRtGpUqVIk1NTWrXrh0dPHiQSZchc3Nz7tny/v17kkgkCvMWVok0dnZ2dPDgQe7/e/fukampKWfsGTFiBO/P8fLlyytVhZVn+fLlvCf3+fr6kq+vL0kkEqpVqxb3v6+vLzVp0oQGDBjAe2WjkJAQCgkJIYlEQkFBQdz/ISEhFBYWRps2bWJWDVw21kqlUmrRooXC+Ovv7092dnbUtGlTJtpCJIMJsS4WyiEmRABaSdEUwtmora3NPePkNW/dukV6enpMNPX09DgHyY/rU5aGdiGurxDOclNTUy5YU9VkZmZSo0aNyNTUlLS1tWnQoEFMCyMIsS4W4voKsRYnUu348FdV5Q0NDXlfQ1lZWdG5c+eIiOjNmzckkUgU7K4nTpwgBwcHXjXlKaobI8vKqVpaWly3lv79+3PJdQ8fPmSWUCgfPNmxY0cKCQkhogIHOitbB5Hq54O6urqUkpLC+3F/lalTp3L+A/nKlywQwpYkxPXduHEj+fj4cPNtooJqtXXq1FEoTsA38usK+bE3PT2d93nSX1WVHzduHO/jkbzN7Pjx46Sjo6OQhDV//nzy8fHhVVMe+XX4jxurzjQGBgbcWr9Ro0ZcwC9LW7O5uTlXgKFy5cpcwvODBw+YzfGJhFlDGRkZUUJCApNj/4xPnz5R9+7dSUtLizQ0NCg8PJxZR3AiYXyoQl3bBg0a0KZNm5T2b9y4kerVq8dE08bGhpsXyo+9KSkpvM+R/qrKJau5oLzdNysrS8num5iYSDY2NrzrEil3JpfvTs5q3qutrc0Ff/Xs2ZPrtvHo0SOmtg4hfItFrdvu37/PVJdItXNQooI1moGBAe3Zs4f8/f3Jzc2Nnj9/zlxXRmZmJs2dO5dcXFxITU2N9+PLF50pbHNxceH9N1OuXDmu2u+TJ09IIpFwvkYiov3795OzszOvmvI+vmrVqtHcuXMVXl+xYgXvnZyEiF8hEiaGRf76du/enWrVqsUl+3769IkaNWpEXbt25VXTxcWFNm7cSEQFRULV1dUVOiRERUXRb7/9xqsmkeK5Nm7cmAIDAxVeHzlyJDVo0IB3zSdPntCuXbuoVatWpK6uTubm5jR27FimHTbt7e25TtHyY/2GDRvI1dWVme6PJCUl0bBhw0hbW5vMzMxo1KhRzDq2EP1f0Lynpyepq6uTn58f7dixQyXJAjk5ObR48WLS0tIiqVRKlSpVorVr1/I+53/16hUtXLiQKlWqROrq6tSkSROlzhR8UrVqVTp8+LDS/sOHD1PVqlWJqCBxgG+bqBBB5IsWLaJ27dopFAh5//49dejQgRYvXkyfP3+m1q1bc/5cvli4cCGZmppSjx49aMmSJbRkyRLq0aMHmZmZ0axZs6hfv36kpaXFW8JfiQ9cF8LoQqTo/Psx6JjFgsPb21ulbShkLFmyhHR1dalbt27k7OxMbm5uTNsQtW3blrZu3crs+EUhxPUV4uGura1NN27cUNqfnJzM9PdibGzMDfDy53rmzBmysLDgVUve4FDUxvfE39DQkHNe5OXlkbq6OmeYJSoIRGDZIkcIXF1dFc5RFejp6RXqJEpJSWFm6AkMDOSqtKiKatWq0fjx4+n06dOkra3Njbnnzp1jWgGyVatW1LRpU5o+fTppaGhwrZaOHDlC5cuXZ6IpxPX9kfPnz9OAAQNIS0uLy/q2s7PjpX2Xuro6NW/enPr06VPo5u/vz8QQIR+MJePkyZOkr69PK1euZBK4Lm+Ilf0v78xgEYiQkpJCVatWpV69etGnT5+4/erq6rxnpsojb4iwsLCgy5cvK7x+9+5d3itAVqhQgfbv309EBfOHxMREhdevXr1KhoaGvGrKnycR0devX2nTpk3UsGFDkkqlVLZsWZoyZQqvmgYGBty9K3ueys87WThriAqcb/IVSvLz80ldXZ2ePn1KRAXVLvT19XnV1NLSUghA+JG7d+8ym5v16dOHWRXNooiOjlZJSzt5ZGOtRCKhzp07K4y/AwYMoLCwMHr16hUTbaGSwVS9LhbKISZEAFpJ0RTC2ejl5UWxsbFKmqGhoVS7dm0mmtbW1tyzVF5z586dTINEhbi+QjjLrays6N69e0yO/VdkZmZS3bp1ydjYmDQ0NCg0NJS3pNTCEGJdLMT1FWItTqTa8UFXV5fGjh2rkBQrv4WGhjJfQ/14nR89esQ0sFq+smhhGwtsbGzoyJEjlJubS+XKlePWODdv3mRWRd/T05MiIiIoIyODDA0NuYCWy5cvM7XVqXo+WL9+fTp06BDvx/0rcnJyaMyYMaSlpUW///471a1bl0qXLs00wUYIW5IQ19fBwaHQZ8zly5fJzs6Oma58wLH82Hv06FHeE2IlEgmVKVOmyKIsZcqU4X3s/dFmpqGhoVBt986dO8wSCoWifv361KtXL4qJiSENDQ3uWXPq1ClmVfS7detGXl5e1LdvX9LV1aXXr18TUUHQlru7OxNNImHWUHZ2dkyDhIoiKSmJnJ2dydHRkXR0dCggIICysrKY6QnhQxXq2uro6BQaAHXv3j2m63/ZeCs/9l67do13m6+hoSHNmTOnyDngmjVrmPgs5H+fRAXnKUuUIir4nbJKJE9PT//pxoLy5cvT1q1bKSsri8zNzbmKxteuXWP2nBHKt+jq6sp1HJO/f5csWcJ78K8MIeagMnbt2kXq6urk6enJzLZcGDk5ObRr1y5q3749aWtrU5kyZXjX0NLSot69eysUn5HfBg4cyPv4oKWlpbAu1tXVVbB5pKenk66uLq+a8h1azczMlGKfHjx4wCxpSJXxK0TCxLDI+xYdHBzo6NGjCq8nJiZSuXLleNX88RmjpaXFJTMSFdivWNgc5M9VvjiBDBbdhn703T59+pTCwsKofPnyJJVKqWbNmrR27VpeNYmIwsLCyM3Njc6fP08GBgZ05swZ+uOPP8jc3JyWLFnCu15hPH36lMLDw8nZ2Zn09PSoV69e1LBhQ1JXV2faEVLGkiVLSEtLiyQSCZmbm9OUKVOYFEzJycmhrVu3UrNmzUhNTY18fHxo3bp1NH36dLK0tOQ98UMeWWKAqakpmZqa0vDhw3mPD/0xhkTGnTt3OB8JC9uZEEHkZcqUKTRm5ebNm9xzPCkpife5Ybt27Qq1m0VGRlK7du2IqOB+5qvoZIkPXBfC6EJUMPGWLVzlJ+GXLl2iUqVK8a534sQJqlmzJsXFxdHr169V0r61adOmZGpqyrU8ys7OpkGDBpG2tjbNmTOHiWZUVBTZ2NjQtGnTaPv27UrZhqwQ4voK8XCvU6cONW7cWCH79/nz59SkSROqW7cuE00iok6dOlH//v2JqOD38vDhQ/r06RM1aNCA9/a4ZcqU+WlL7qtXrzIJXJc3sMiPCUQFiyrWWeWq5siRI9SkSROVtiKzsbGh+fPnK+2fP38+s0oMYWFhZGZmRr1796b58+crVf5hQVxcHBkbG5NUKqWAgABu/8SJE6lt27ZMNIkKnOJ+fn5UsWJFhSzkUaNG0fDhw5loCnF9iQrGvXnz5pGbmxtpa2tTly5duESirKwsGjduHC/3lKenp8K1/BEW4xFR4YtjooK5kb6+Pk2aNIl3XUtLS7p+/Tr3f61atbjkB6KCxQbfRnaignaM48aNI0dHR64CjyoC1+Pi4ig5OZlsbW3p4sWLCq/fvXuX9yDnefPmkaurK6WkpNCCBQuoZs2a3HPn4cOH5OvrSx06dOBVU77F3Y+kpaXR5MmTeTcu1ahRgyZPnkxEBS0aLS0tFSraT58+nUlVhMqVKytkFZ84cYJ0dXW5rPW7d+/ybqj08vLi2q8Xxrhx48jLy4tXzaL48OED7dq1i2nlrIyMDK66JhHRhQsXaOTIkUzaM/5ISEgIU+dtYQiRDCbEulgoh5gQAWglRVMIZ+Pu3bvJyMiIwsPDSVdXl+bNm0f9+vUjTU1NJccGX4wdO5Zq165Nz549IwMDA0pJSaGEhARycHDggltYIMT1FcJZPn/+fBoyZAjTio+FsXnzZjI2NqZWrVrRy5cv6ejRo2RtbU21atViVplXiHWxENdXiLU4kWrHh1q1anFJX4XBom23jY0NXbhwgft//PjxCi1pr127xruDU2imTZtGRkZG5OLiQjY2Nlxi49q1a3nvWiXjzz//JA0NDZJKpQqV5MLCwqhZs2ZMNIlUPx/cuXMnubm50fr16+ny5cuUnJyssLGiYsWK5OTkxNkg8vPzKTw8nLS0tGjw4MFMNIWwJQlxfXV0dJTsDUQFaymWSS19+/alNm3aUE5ODmfHf/ToEVWpUoXrksAXdnZ2Py1ixMJuJt81ikjZjv/w4UPeg6OEJjk5mTw8PMjQ0FBhrjts2DBmQQ/v3r2joUOHkr+/v0LSx9SpU2nmzJlMNImEWUPFxsZShw4dmHb5+ZHZs2eTpqYmDRs2jL58+UI3btygypUrk4ODA7OKw0L4UIW4tkQFBUQKs9kFBwdThQoVmGjWqVOH8wvLxl6igt8p390CfX19f+rjv3btGkkkEl41iYgcHR0Vkh9WrFhBHz9+5P5PSkqi0qVL864rFMuXLyd1dXUyNjamSpUqcQnVS5YsIV9fXyaaQvkW16xZQ9bW1rRlyxbS09OjzZs308yZM7m/WaCqOWhR3ZStrKyoTp06CvtYcfLkSerXrx+ZmJiQkZERBQQE0PHjx5nYBH777TdasWJFka+zmJuVKVOGkpKSuP+7du2q4Je6efMmmZiY8KopkUgoJiaG9uzZQ2XLllV6dt68eZN3f6YQ8StEwsSwyCcGlClTRqmoJgtNU1NThWS3smXLKiQmpaSk8O63JSo41wcPHtCHDx/I3t5eKfH4wYMHvK8tfua7jYuLox49ejApMpGfn8+N7bJkC21tbc6ny4qcnBzavn07+fn5kYaGBv3222+0cuVKhfnnzp07mRVDeP78Oc2ZM4dcXV1JV1eXunfvTidPnqSYmBhyd3fntWOBfNC4rIr+j37bGzduMI87e/LkCU2bNo20tLRIT0+P1NTUqHbt2grJIP+EypUrU+/evRUquufk5FDv3r25DrEJCQm8J+wLEUSup6dXaLHMuLg4bkxKTU3lPQbhV4rQ8Dk+lfjAdSGMLkREzZs35wZh2SIyLy+POnbsyLX+5JPCWreybmPVqFEjevLkidL+/fv3M1s8qjrL8EddVV5fIR7uKSkp5OHhQZqamuTo6EiOjo6kqalJ7u7uTNudZmZmkpubG7m6upK6ujrVqFGDTE1NydnZuciJ1f9Kq1atfloBloXRpWLFigoG2Bs3bii0hzl9+jTZ29vzqilj9OjRv7zxibGxMWlqapJUKiV9fX2lNtosWL9+PampqVHLli1pxowZNGPGDGrZsiWpq6vT+vXrmWgWVfHHzs6O2XdKRJSbm0tv375V2JeWlsb770VohLi+LVu2JA0NDXJ3d6dFixYpBAbIePHiBS/jRJ8+fWjIkCFFvn779m0mVbJat25NU6dOLfS1uLg40tPT4/3ZVr9+fYqOji7y9W3btjEJOJZx4sQJsrGxoYkTJ5KGhgbzwHX5ygiLFi1SeH3z5s3k5ubGu+7w4cNJQ0ODXFxcSFtbm6RSKTcOe3t707Nnz3jV+zFrvzD4No4ePnyYtLW1SVNTk7S1tSk+Pp4qVKhA1apVoxo1apCamhqTzjxbt24lDQ0N6tSpE/Xq1Yv09fUVAuYjIyOpZs2avGrKfouenp40evRoCg8Pp/DwcBo9ejRVrFiR9PX1KT4+nldNGR07dqSlS5cSUUFiavny5UlDQ4PU1dVp+/btTDRr167NtQaXBYrWrFmTzMzMKDQ0lImmkAiRDHbt2jWVr4uFcogJEYBWUjSFcDYSFayXGjVqRObm5qSjo0M+Pj505MgRZnrfvn2jfv36kbq6OtdSWiqVUo8ePSg3N5eZrhDXV95ZXrFiRZU4y9u0aUNGRkZkb29PLVu2VHLwskJXV1fJwfr27Vvq2LEjk44tRMKsi4W4vkKsxWWoanyYNWvWTxNXMjIyeC+84O/v/9Ng+WXLlvHeUlqeHwNvf7bxyZ9//kkLFy5USGqMjo7+qRP/n/Ls2TO6cuWKQgeGCxcuME3cVPV8sChbOmubemBgYKFJoleuXGFWVVkIW5IQ17dly5ZUpUoVhUCey5cvk5eXF7Vq1YqJJlFBxbFGjRqRsbExqampUbly5UhDQ4Pq1q3Le0Jw+/btady4cUW+zsKO7+3trTDefPjwQcG2cezYMWaBqUQFz/GiguBUNWeS8eXLF8rJyWGuo0rk11CNGjXi9rNcQ1WuXJkMDAxIX1+fPDw8qEqVKgobC0qXLk0HDx5U2JeTk0NBQUGkqanJRFMIH6oQ15aI6MCBA6StrU0eHh7Ut29f6tu3L3l6epK2tjazas5nzpwhfX19rnjcyJEjqXHjxqSnp6fU7fOfsnr16p8mej1//pxJQvfAgQNpzZo1Rb4+e/ZsatGiBe+6RKRUJO9nG59cunSJdu7cqdAtdv/+/VwBHhYI5Vv8448/yMnJiRsrrK2tf1rU6Z+iqjloUd2UC9tYUKZMGdLW1qY2bdrQn3/+ybyj6YgRI36aqPjgwQPebUnNmjWjyMjIIl9fv3491apVi1fNH+f1PybVRUVF8f6cESJ+hUiYGBaJREKenp5UpUoV0tfXV/I5xcfH8170xsfHh7Zs2VLk6/v27eOtsrA88nMjiUSiUCCLqOD54+TkxLvmX43pfCcV5ubmUnx8PL17946+fftGt27dogsXLig831hhampKJiYmNGTIELp69Wqh73n37h3v8RY7duzgYkoqVapES5cupXfv3im858GDB6ShocGbplQqpaZNm9K2bduKXKdlZWUxeebk5OTQn3/+Sc2bN+fi+dasWUNZWVmUlpZG3bt3J1dXV160EhMTueD8hg0bUsOGDcnCwoJMTU25hLSYmBiaO3cuL3oyhAgi79atG9nb29POnTspMzOTMjMzua6/PXr0IKKCuBK+Y2jKlStXaBeChQsXckUJk5OTeUvulhARQUSJr1+/Qk1NDRoaGkyOf/PmTTRs2BBeXl44efIk/P39cevWLbx9+xaJiYlwdHTkVS8+Pv6nr9erV49Xvb/i9evXMDMzU6kmS4S8vjk5OXjw4AGysrLg5uYGfX19ZloAQEQ4duwY7t69CwBwdXVFo0aNIJFImOrm5uZi69atSE5ORlZWFry8vNC9e3fo6OjwqnPmzBl8/vwZzZo1K/T1z58/4/Lly7x+p5GRkShXrhz8/PwKff3333/Hy5cvERUVxZumjPr16+Pq1av4/v07nJ2dAQD379+HmpoavLy8uPdJJBKcPHmSN90NGzb89PXevXvzpiXPhQsXsGTJEty5cwdAwf07YsQIVK9enYmeEHz58gVEBF1dXQDAo0ePsGvXLri6uqJp06a8an38+BGGhobc3z9D9r7/On379kW/fv1Qs2bNIt9DRMjIyICtre0/0vr27Rvy8vK471JVxMfH4+zZs5g4cWKhr8fFxSEmJgbr16/nTfP+/fvQ0NCAvb19oa9v2rQJ6urq6NSpE2+aP/LmzRv0798fcXFxOH/+PDcm8s2jR48U/tfX14epqSn3f0xMDACgV69evGvfuXMH+/fvx8OHD5Gfnw8rKyv4+PgweY6HhoYiODhY5fdveno6kpKS8Ntvv8HOzg4vXrzA8uXLkZ2dDT8/P9SvX5+J7qFDh/DHH3/g27dvaNq0Kfr378+99ubNGwBQ+J75ID09HStXrsT58+fx/PlzAEDp0qVRs2ZNDBo0CHZ2drzqyShdujSOHDmCSpUqYdOmTZg2bRqSk5OxYcMGrF69GlevXuVd08TEhPtdLlmyBFu3bkViYiKOHj2KQYMG4eHDh7xrynjx4gWCgoJw4sQJvHz5Ej8un/Py8php/xv4+vUr1NXVoa6uzuT4eXl5+PjxI0xMTLh96enp0NPTg7m5ORNNAHj+/DmePXuGSpUqQSqVAgAuXrwIIyMjZuN/SdHcuHEjQkJCkJqaCgAoU6YMQkND0bdvXyZ6QpKZmYkbN24gKysLVapUQfny5ZlrCnF9L1++jMzMTDRu3JizNxw4cADGxsbw8fHhXS8gIOCnr/M5B5Xn3r17Rf4uYmNj0bNnT941hVgXC3V9S8Ja/N/GxYsXoaurCw8PDybHl0qlf7mGICJIJBKm86X379/D2NiY2fFLCj+uU3/kn9o3/he+ffsGLS0tleuyQIjr++rVK/Tu3RuHDx/mfFy5ublo2rQp1q9fD0tLS9415UlMTFSw4zdq1Ih3jdu3byM7Oxve3t6Fvv79+3c8ffqU1+u7a9cumJqaom7duoW+Hh4ejs+fP2PGjBm8acrTp08f7Nq1C0ZGRtx5JyUl4cOHD2jTpo3CuMzXMz0zMxMSiQRly5YFUPB82bRpE9zc3DBgwABeNADg+vXr8PDwgFQqxfXr13/63ooVK/Km+yNFraEMDQ3h4uLCu15oaOhPX582bRrvmj/zz8bHxzPxZwrhQxXi2sp4/PgxVq5cqTD3HTRoEMqVK8dMMzU1FeHh4Qpj7/jx4+Hp6clM899EWloatLW1YWVlxfuxZfPeH22CP+5jOe/Ny8vDjRs3YGtrq2BDK25kZ2cjKysLFhYWgn2G4jQHXbNmDTp27Fis10tv376FVCot8hwPHToEHR0d+Pr6quwz7d+/HxoaGrz65IWIXwGEiWH58fldo0YNhWsZHByMx48fY/PmzbxpJiYmQk9PD5UrVy709RUrViA/Px/Dhg3jTRNQnh9ZWVmhQoUK3P8RERHIyclBcHAwb5oBAQFYsmQJDAwMeDvmr6CtrY07d+4UGQfAitjYWHTs2BHa2toq1TUyMkKXLl3Qr18/VK1atdD3fPnyBXPnzuVtTvro0SNBbDfDhw/H5s2bQUTo2bMn+vXrp2SLfP78OcqUKYP8/HxeND99+oSNGzfi/v37AABnZ2d069aN6X3dvXt3nDt3DgsWLOC+00uXLiEoKAi1atVCbGwstmzZgvnz5+Py5cu8aGZlZWH06NGIiYlBbm4uAEBdXR29e/fGokWLoKenh2vXrgFAkePX/8KaNWswePBgtGjRAtWqVQNQcK4HDx5EZGQk+vbtiwULFuDixYvYunXrP9YTA9dRYODevn07UlNTERwcjFKlSuHKlSuwtLSEtbU1M90PHz5g2bJlCovIoUOHMllUiYjwQUxMDDp37qy0YMvJycGWLVuYBNmJsGXhwoU4deoUNmzYwBk73r17h4CAANSpUwdjx44V+BOK/F2aNGmCdu3aYdCgQXj//j1cXFygoaGB169fY+HChRg8eDBvWmpqanj27BksLCyKdFqrwlEt0wHAPIlGREREpKSjo6OD+/fvo1y5cujVqxfKlCmD8PBwZGRkwM3NDVlZWbxr6uvr4+bNm7Czs4O/vz98fHwwfvx4ZGRkwNnZGV++fOFdU0bz5s2RkZGBYcOGwcrKSuk507p1a9415Z+v8rx58wYWFhZMnqkODg64dOmSUoLF+/fv4eXlxSQ5oEGDBti5c6eSY+Hjx49o06YNr0mT8gQGBiIiIkLJiPX582cMHz4c69atEzV5QFXOxkuXLiE/P18p+PXChQtQU1MrMpDpv46qnbk5OTlIS0uDo6Mjs0QWERG+Kanjg6rYvXs3goKCEBwczCV2yxw4c+fORZUqVbj38uU4mzNnDuzs7NC5c2cAQKdOnbBjxw5YWVnh4MGDvAUytmvXDtHR0TA0NES7du1++t6dO3fyolkYqampWL9+PVJTUxEREQELCwscOnQINjY2cHd3Z6YrFF+/fkVOTo7CvuJSBEFIUlJSuMBJFxcXhUAIkf8e48ePx9u3bxEZGQk1NTUABcGMQ4YMgaGhIebNm8e7Zp06dTBgwAD07NkTz58/h7OzM9zd3ZGSkoLhw4dj6tSpvOhIpVI8f/5cwc78Y0CoquzMDx48QGpqKurWrQsdHR1OV0TkV8jIyEC5cuUKvWcyMjJgY2MjwKcS+SccP34c48ePR1hYmMK8d/LkyQgLC0Pjxo151xw1ahQ8PT3Rt29f5OXloV69ejh79ix0dXWxf/9+3oJwvby8cOLECZiYmKBKlSo/HeuuXLnCi+aPpKWlITc3V6kYQEpKCjQ0NHgrziJ0IS5Vned/iSFDhmD69OkqLXZZUjQfP36MMmXKcEl4xVlXCM3NmzfD398fenp6KtMUSpcvTW9vb8yZMwcNGzbk6ZP9fTIzMwGAaSKhjOzsbJUXdpNx+fJlheRJ1vbPhg0bol+/fmjXrl2RiV+5ublITExUeUFlPhEqiFymLfPROjg4MC9mDBQk9Cxbtgz37t0DUJAcMHz4cNSqVYt3rRIfuH79+nU0bNgQxsbGSE9Px7179+Dg4IDJkycjIyODq3r5X0ToCgV5eXlYtGgRtm3bhoyMDCXD89u3b3nXBAoc8fHx8YVqjhgxgommjOzs7EJ1+XSc/CosHCdCBNEAwOzZs2FpaYnAwECF/evWrcOrV68wfvx4JrolAWtraxw9elTJ4XXz5k00adIET58+Zf4ZVOWYEur+ffz4Mfbu3Vvo2LBw4ULe9czMzBAfHw93d3dERUVh6dKluHr1Knbs2IGpU6dyE1U+iI+Ph4+PD9TV1QXrPBETE4N58+YhJSUFAFChQgUEBwczqYgo48SJE1i0aJHCpH/UqFFMqkcBwt27QuiWFE2hdEXN4vedCkGFChUwc+ZM+Pn5wd7eHlu2bEGDBg2QnJyMhg0b4vXr17xrVq9eHfXr14efnx+aNGmC8+fPo1KlSjh//jw6dOiAx48f864pw8DAAGfOnOHd0PAz5B328jx9+hSOjo5MAvWL0nzx4gXKlSunNIdhqfny5UtYW1vj+/fvvGsCRf9WX79+jdKlS3NGJ1Hz7yOEE65atWoYN24cOnTooLB/586dmDNnDi5cuMC7Zvv27VGtWjWldejcuXNx6dIl/Pnnn7xrAsJc3+zsbAwfPpyrDH7//n04ODhg+PDhsLa2xoQJE3jXFBJVr93kKc4Bm0LNkYQYH/bu3fvL7/X39//PagIF1zckJAQtWrRQ2H/w4EFMmTIFSUlJvGnJsLe3x8aNG1GrVi0cO3YMnTp1wtatWznb89GjR3nRka9AJlSXgvj4eDRv3hw+Pj44ffo07ty5AwcHB4SHh+Py5cvYvn37P9bYu3cvmjdvDg0Njb+8j/i8d+T5/Pkzxo8fj23btnGdquQpLrY6Gbdv3y5Uk8X1nT59OoKCgpSc5V++fMG8efN4Czb+kREjRsDJyUnJD7Ns2TI8ePAAixcvZqJbUjA3N0dCQoJSl5h79+6hVq1ahf6O/imq6oD26NEj2NjYQCKRCNYF4s2bN+jUqRPi4uIgkUiQkpICBwcHBAYGwsTEBAsWLGCiKwSXL18u0nfLMimLtQ/134AQc9+DBw9CTU1NqbrvkSNHkJ+fj+bNm/OuuWTJkl9+L5++eSF0PTw8EBkZidq1ayvsP3PmDAYMGMCrz01G2bJlsXv3bnh7e2P37t0YOnQo4uLiEBsbi5MnTyIxMZEXHfmuqUJ1KahXrx4CAwOVOo798ccfiIqKwqlTp3jREboQl6rO89+ShPsrGBoa4tq1a3BwcBA1i4GmULolRVMoXb40Dx8+jIkTJ2LGjBn47bfflALhWdlAc3NzERoaiiVLlnBFt/T19TF8+HBMmzaN607Ggry8POzatUshnqRNmzbMisI8fvwYXbt2RWJiIlcs6v3796hVqxa2bNnCddAqDqSkpCAuLg4vX75UquLOytYhQ4gg8uJOiS+TNGbMGAQEBGDu3LkKlchatGiBbt26MdNdv3499PX10bFjR4X9f/75J7Kzs3lpB1y5cmUuEKBy5cqFtrEC2LWuCg0NRVRUFMaOHYvJkydj0qRJSE9Px+7du5kNFlevXkWLFi2QnZ2Nz58/o1SpUnj9+jV0dXVhYWHBLHD91atXCAgIwKFDhwp9na/ra2RkxP1NRIW2hXz//v3fCnD/OxRVWeLx48cKn41vVq1ahU2bNintd3d3R5cuXZgErrdt2/aXq2jwtbATQvPjx4949eqV0v5Xr17h06dPvGgUhhCOqaLytL59+wZNTU3e9YCCAGd/f384ODjg7t278PDwQHp6OogIXl5eTDSzs7O559nRo0fRrl07SKVS1KhR4y+N/n8X+WB0ITIkFy5ciClTpmDYsGHw8fEBACQkJGDQoEF4/fo1Ro8ezbvmihUrMHLkSHTo0AEjR44EAJw/fx4tWrTAokWLMHToUN41hbh3hdItKZpC6Yqaxe87LYrk5GR4eXkxeZ6OGjUK3bt3h76+PmxtbbkKP6dPn2bWfnjOnDlo27Yt5s2bh969e6NSpUoACoJtZG3KWFGuXLkiv1u+kTnfJBIJoqKiFAweeXl5OH36NO+tyeWDlI4cOaIwp8/Ly8OJEyd4b98on1R9+/ZtPH/+XEHz8OHDTDqfffz4EUQEIsKnT58U2kPm5eXh4MGDvFevLimaMvr06YPAwEClwOoLFy7w6oST5/bt24XOq6tUqYLbt2/zrgcUjHchISFK+5s3b840mEWI6ztx4kQkJyfj1KlTCu2IGzVqhJCQEN4C1/8NVd6EWLsJFbC5ffv2IgOVWFxfoeZIQowPbdq0KdT+WljVWL6+XyE0AeDGjRuFzhHs7e2ZXd/nz59zlbH279+PTp06oUmTJrCzs1OqrP9PkA9GZxWY/ldMmDABM2fOxJgxYxR8Fg0aNMCyZct40WjTpg3nO2jTpk2R72NZ3XjcuHGIi4vDypUr0bNnTyxfvhxPnjzBqlWrEB4ezkRTiPH+4cOHaNu2LW7cuKHw25Q971j5ZgYNGqQUuJ6dnY3Q0FBm/pkdO3YUmghRq1YthIeHMwlc/6u5gzx8PeeE0AQKAi/u3r2rFLh+9+5d3tqu/8j379+5ynnHjx/nEi1cXFzw7Nkz3nTkg9GFaHEPAKNHj4aGhgYyMjLg6urK7e/cuTPGjBnD21y/VKlSuH//PszMzGBiYvLTe4lFATBZ9+SmTZvi6NGjaNKkCe7fv48XL16gbdu2vOsBqvOh/nhMIYqrFeVHzcrKUlif88mECRMKfW4SESZMmMAkcH3RokV49eoVsrOzFYKjdHV1YW5uzr1PIpHw6psXQjc1NVWpWyBQ4LNPT0/nReNHZEUHgILEhI4dO6JChQpcdz2+kA9GZxWY/ldcvXqV8+/JU6NGDQwbNow3nZMnT6JUqVIAgLi4ON6O+6uo6jyNjIy4McjQ0PBf3TFEiPqqombx0y0pmkLp8qUpK3rg7++vMC6x7qg0fPhw7Ny5E3PnzlXomhISEoI3b95g5cqVTHRv3bqFVq1a4cWLF9zabc6cOTA3N8e+ffvg4eHBu2a/fv3w/ft33Llzh9O8d+8eAgIC0K9fPxw+fJh3TRn37t3D0qVLFYL0hw8frrRu5YM1a9Zg8ODBMDMzQ+nSpRXuJ4lEwjxwXV9fX2VJt58/f0Z4eDhOnDhRaJA+i07ZMvLz8/HgwYNCdevWrcurVokPXL906RJWrVqltN/a2lrBgc43s2fPLlTXwsICAwYM4CVwPS0tjVukpaWl/ePj/V02btyINWvWwM/PDyEhIejatSscHR1RsWJFnD9/nkkQ+ejRo9GqVStERkbCyMgI58+fh4aGBnr06MEFGLJg1KhReP/+PS5cuABfX1/s2rULL168wMyZM3l1XMs7S8aPH49OnToV2RaST2SGWIlEgoYNGypkgeXl5SEtLU3Bic03z58/h5WVldJ+c3NzXo2j8hgZGRWaGPDhwwfOKVgcNNu2bYuAgAAsWLCAC/y6cOECgoODmSVAAKp1TAkRBCZj4sSJCAoKQmhoKAwMDLBjxw5YWFige/fuzH4zTk5O2L17N9q2bYsjR45wwdsvX75kWrHv8OHD0NfX56pOLF++HGvWrIGbmxuWL18OExMT3jWXLl2KlStXolevXtw+f39/uLu7IyQkhEngelhYGBYtWqRgSBoxYgR8fHwQFhbGa+C6UPeuELolRVMoXVGz+H2nvwIrI9aQIUNQrVo1ZGZmonHjxlwLRgcHB8ycOZOJpq+vL16/fo2PHz8qPE8GDBjAvN3e4sWLMWHCBKxatYp5y9ZFixYBKPju5Of4AKCpqQk7OztERkbyqikLUpJIJEprUFkFZ74DcWVJ1RKJBA0aNFB6XUdHB0uXLuVVEwCMjY053QoVKii9LpFI/rK6lKj5c1TlhJNHS0sLL168UKr68uzZM2bVS7KysgoNttXQ0PjLdtP/BCGu7+7du7F161bUqFFDYT3q7u6O1NRU3nRat27NBUT9LHiSJUKs3YQI2FyyZAkmTZqEPn36YM+ePQgICEBqaiouXbrEexKu0HMkIcaHo0ePYvz48QgLC1NwiE2ePBlhYWFo3LhxsdAECpxQs2fPRlRUFDcm5uTkYPbs2QrBfnxiYmKCzMxMlCtXDocPH+bmnkTEzMn55csXEBE353z06BF27doFNzc3NGnShIkmUJAYUFgRDwsLC946HMk7nlgFvP4V+/btQ0xMDHx9fREQEIA6derAyckJtra22LhxI7p37867phDj/ciRI2Fvb88lhV68eBFv3rzB2LFjMX/+fCaaRQVOJicnc0FbLHjz5k2hBW4MDQ2ZdOcCgGbNmmHFihVwc3PjxsHz58/j1q1bGDx4MHR0dIqFJlDQEaJv375ITU1VsOWHh4f/ZYeI/xV3d3dERkbCz88Px44dw4wZMwAUdAQzNTVlorlhwwaYmZnBz88PQMGcafXq1XBzc8PmzZuZBbYfPXoUR44cUapGWL58eV4LwixatIhLShKiC4HMvj106FAYGBggIiIC9vb2GDhwYKF+OD5QlQ9VHlUXVxszZgyAgrnvlClTFOxVeXl5uHDhArNufikpKXBzc1Pa7+LiggcPHjDRnDVrFlasWIG1a9cqBEf1798fAwcOZPIMF0q3atWqGDNmDGJjY2FpaQmgoENhcHAws4IalpaWuH37NqysrHD48GEusC47O1vBXsgnmZmZkEgk3Bh48eJFbNq0CW5ubhgwYAATTaDgN1NYIbUPHz7wOsePiIhAlSpVYGhoiEePHqFz586cHUIVqOo85WNJoqOjeTuuiIiIyD9BiIQhANi0aRO2bNmikMRXsWJFlCtXDl27dmUWuN6vXz94eHggKSmJ82m+e/cOffr0wYABA3D27FneNePj43H27FmFYHFnZ2csXboUderU4V1Pxo4dO9ClSxd4e3srrI09PDywZcsWtG/fnle9mTNnYtasWUyK2/4MIYLI+/Xrh/j4ePTs2RNWVlYqS0Y7f/48unXrhkePHhVaKIV3GyyVcMzNzenKlStERKSvr0+pqalERHT06FEqW7YsM10tLS1KS0tT2p+Wlkba2trMdFWJrq4uPXr0iIiISpcuTUlJSURElJqaSoaGhkw0jYyM6O7du9zft2/fJiKi8+fPk7OzMxNNooLzu3DhAhERGRgY0L1794iIaM+ePeTj48NE08zMjDtXee7evUulSpXiVSskJIRCQkJIIpFQUFAQ939ISAiFhYXRpk2b6Nu3b7xqyuPk5ESxsbFK+2NiYsje3p6J5rhx46hfv36Um5vL7cvNzaUBAwZQUFBQsdH8/PkzDR48mLS0tEgqlZJUKiVNTU0aPHgwZWVlMdEkIipXrhzFxcURUcFvJiUlhYgKvtPmzZvzqmVnZ0d2dnYkkUioXLly3P92dnZUoUIFatKkCZ0/f55XTRn6+vr04MEDIiIyNjammzdvEhHRtWvXyNbWlonmn3/+SRoaGiSVSqlRo0bc/rCwMGrWrBkTTSIiDw8POnDgABERXb9+nTQ1NWnixIlUo0YN6tOnDxNNLS0t7t6R5/79+6SlpcVEU09Pr0hNPT09XrWEuneF0C0pmkLpiprF7ztt27btT7cGDRqQVCrlVbOkYmxsTJqamiSVSklfX59MTEwUNhb4+vrS27dvmRy7KOzs7OjVq1cq0UpPT6e0tDSSSCR06dIlSk9P57anT58qzIX55NSpUxQXF0cSiYR27txJp06d4razZ8/SkydPRM1/iKGhIWdfkefy5cukr6/PRLNLly5Ur149ev/+Pbfv3bt3VK9ePerYsSMTzapVq1JoaKjS/mnTppGXlxcTTSJhrq+Ojg5nJ5O3mV27do2ZXUcohFi7qXJdLMPZ2Zk2bdpERIrf6ZQpU2jo0KG8agm5FicSZnxwd3enM2fOKO0/ffo0ubi4FBtNIqILFy6QhYUFmZubU8OGDalhw4Zkbm5OFhYWnI2Ub4YOHUq2trbUqFEjMjU1pU+fPhER0ebNm6lKlSpMNBs3bkwrV64kooL7x8LCgsqWLUva2tq0YsUKJppERNbW1pSYmEhEir/VnTt3koODAzNdVaOnp8f5D6ytrbl75+HDh7zbWGQIMd6bmppScnIyERU8z2U2/RMnTlDlypV51TI2NiYTExOSSqXc37LN0NCQpFIpDRkyhFdNedzd3Wnp0qVK+5csWUKurq5MNPv27UuTJ09W2j916lQKCAgoNppERHl5eTRnzhwqU6YMSSQSkkgkVKZMGZozZw6zdVRcXBwZGxuTVCpVOLeJEydS27ZtmWhWqFCBTpw4QUREZ8+eJR0dHVq1ahW1atWKmSZRwfhw//597m/Z2Hvp0iXefW5Coqury/mnS5UqRdevXyciotu3b1Pp0qWZaArhQ3VwcKD9+/cTkeLYHxERQV27duVdz9fXl3x9fUkikVCtWrW4/319falJkyY0YMAA7v7iG0tLS+43I8+xY8fI3NyciaaDg0OR61M7OzsmmkLppqSkkIeHB2lqapKjoyM5OjqSpqYmubu7F+or4oNp06aRkZERubi4kI2NDX39+pWIiNauXUs1atRgolm7dm2KiYkhIqJnz56RgYEB1axZk8zMzAq1gfBFy5YtqWPHjkq+8fbt2/Pq09TQ0KCnT58SEZFUKqUXL17wduxfQVXnKU9oaGihY0NWVhbT7/RXkX/Wipr/fU2hdEuKplC6Qp0rX5ibm3Mxg/Lcvn2bzMzMmOlqa2tztgZ5bty4wSwetHz58oXa4y5cuECOjo5MNIkK5mZTpkxR2j916lQm9isDAwNB7skuXbqQlZUVjRs3jhYtWkSLFy9W2FhgZGRECQkJTI79MypVqkQdO3ak27dv07t37+j9+/cKG9+U+Irr/v7+mD59OrZt2wagIDsgIyMD48eP5z3zQx4LCwtcv35dqWpfcnIysyoFT58+RUJCQqHZHyyqn5ctWxbPnj2DjY0NHB0dcfToUXh5eeHSpUvMMlg1NDS4qo8WFhZcSz8jIyNkZmYy0QQKsmtk7dZNTEzw6tUrVKhQAZ6enszaWKuyLaSsPZidnR26dOmi0gxkAOjfvz9GjRqF79+/c1UZT5w4gXHjxmHs2LFMNNetW4eEhASFzHU1NTWMGTMGtWrVwrx584qFpq6uLlasWIF58+ZxFfMcHR2hp6fHu5Y8b9++5aqeGRoacm0Za9eujcGDB/OqJes4Ub9+fezcuZNJ5e+i0NPT41pQWllZITU1Fe7u7gDArMpQhw4dULt2bTx79gyVKlXi9jds2JBZq0+g4DrLqnrs2LEDrVq1QlhYGK5cucK1f+IbJycnbNu2Db///rvC/q1bt6J8+fJMNP39/bFr1y4EBwcr7N+zZw9atmzJq5ZQ964QuiVFUyhdUbP46e7btw+NGzfmqvz8CN/ZzmPGjMGMGTOgp6fHVZAqioULF/Ki6eXlhRMnTsDExOQv27Czmm8DwlQ/E6L6hCo7dMmq46m6sme9evUAFJxruXLluHWjqMkfdevWxezZs7F582aFrmCzZ8/muvLwzfz581G3bl3Y2tqiSpUqAIBr167B0tISsbGxTDSnTJmCdu3aITU1VWF9unnzZvz5559MNAFhrq+3tzcOHDiA4cOHAwA3FkdFRXEVVFiSlZWlNFaw6iIlxNpNletiGRkZGahVqxaAgg4XsopvPXv2RI0aNbBs2TLetIRciwPCjA+pqakwNjZW2m9kZIT09PRiowkA1apVw8OHD7Fx40bcvXsXANC5c2d069aNmU1p0aJFsLOzQ2ZmJubOnctV8X/27BmGDBnCRPPKlStcV5zt27ejdOnSuHr1Knbs2IGpU6cy+6126dIF48ePx59//gmJRIL8/HwkJiYiKChIoescn1y6dAlxcXGF+g74muP/iIODA9LS0mBjYwMXFxds27YN1apVw759+wq9r/lAiPE+Ly+Pq65sZmaGp0+fwtnZGba2trh37x6vWosXLwYRITAwEKGhoQrVz2VdnFg+w8eMGYNhw4bh1atXCvOkBQsWMFtb/fnnn7h8+bLS/h49esDb2xvr1q0rFpoAIJVKMW7cOIwbN47r9MOywyYgTAe0zMxMODk5ASjoANShQwcMGDAAPj4+8PX1ZaIJAHXq1EFMTAxXVV42/s6dOxf169dnpgsUdEstbPxl0YbexMSEmwNaW1vj5s2b8PT0xPv375Gdnc27HiCMD/X58+fw9PQEAOjr6+PDhw8AgJYtW2LKlCm868lsOQEBAYiIiGD+25SndevWGDVqFHbt2gVHR0cAwIMHDzB27Fj4+/sz0Xz27Blyc3OV9ufl5eHFixdMNIXSdXJywvXr13Hs2DFu3uvq6opGjRoxq3wZEhICDw8PZGZmomPHjpxfXk1NDRMmTGCiefPmTa6C/LZt2+Dp6YnExEQcPXoUgwYNYtKpAADmzJmDunXrwtnZmasIe+bMGXz8+BEnT57kTcfFxQUTJ05E/fr1QUTYtm1bkb9TFvNtVZ2nPCEhIdDQ0MDs2bMVbPpZWVkIDQ1l9p2KiIiI/Mjp06d/+nrdunWZ6A4bNgwzZszA+vXruWfpt2/fMGvWLGYdTAGgQoUKePHiBWdrkPHy5UtuncM38+bNw/Dhw7F8+XJ4e3sDAC5fvoyRI0cy6/QGFMzNCntu9ujRg0l8W8eOHbm5iSo5dOgQDhw4UGhHXFaYmJgw7ZhXFCkpKdi+fTuze/VHSnzg+oIFC9ChQwdYWFjgy5cvqFevHp4/f46aNWti1qxZzHS7du2KESNGwMDAgBuE4+PjMXLkSHTp0oV3vejoaAwcOBCampowNTVVWEhJJBImgett27bFiRMnUL16dQwfPhw9evTA2rVrkZGRgdGjR/OuBwBVqlTBpUuXUL58edSrVw9Tp07F69evERsbCw8PDyaaQEGLjXv37sHOzg6VKlXCqlWrYGdnh8jISGat9YRoC9mgQQO8evVK5W3CgoOD8ebNGwwZMoRzLGhra2P8+PGYOHEiE01VJgYIqSlDT0+PiRG0KIRwTP0YBJaXl4cbN27A1taWmQO9Ro0aSEhIgKurK1q0aIGxY8fixo0b2LlzJ2rUqMFEEwBKly6NrKwsHDt2DHXr1oWOjg6qVq3KtH2MpqYmZ9g+fvw4N0EtVaoU50jhm9DQUHTu3BmnT5/mJomJiYk4ceIEl5DGN25ubpg1axZOnTql0O4oMTERY8eOxZIlS7j38vVsFeLeFUq3pGgKpStqFp/v1NXVFe3bt0ffvn0Lff3atWvYv38/b3pXr17F9+/fub+Lgs/nTOvWrTlDUps2bXg77t+ld+/eKtfMy8tDdHR0kS3nWDkzTpw4UaQmq8CLlJSUIgOkWDlPbG1t8f79e1y8eLFQXRbOqZKiKYQTztraGtevX8fGjRuRnJwMHR0dBAQEoGvXrtDQ0GCi2apVK+zevRthYWHYvn07dHR0ULFiRRw/fpxLHGCBENc3LCwMzZs3x+3bt5Gbm4uIiAjcvn0bZ8+eRXx8PBPNtLQ0DBs2DKdOncLXr1+5/UTEphXl/0eItZsQ6+LSpUvj7du3sLW1hY2NDc6fP49KlSohLS1NqfUnXwg1NxNifKhatSrGjBmD2NhYLsHwxYsXCA4O5mx3xUFThp6eHlN74I9oaGggKChIaT8rOzMAZGdncwHHR48eRbt27SCVSlGjRg08evSImW5YWBiGDh2KcuXKIS8vD25ubsjLy0O3bt0wefJkJnqTJ0+Gs7MzLC0tlXwHrAgICEBycjLq1auHCRMmoFWrVli2bBm+f//OLFheiPHew8MDycnJsLe3R/Xq1TF37lxoampi9erVXAITX8jWL/b29vDx8YG6umpdgIGBgVwggCz4187ODitXrmSWdKGjo4PExESlIhaJiYnQ1tYuNpo/osqgWCJCUlISUlNT0a1bNxgYGEBTU5NZ4Lq+vj7evHkDGxsbHD16lAu209bWxpcvX5hoAsDcuXPRsGFDXL58GTk5ORg3bhxu3bqFt2/fIjExkYlmUlISevfujTt37qimDTsKAoOOHTsGT09PdOzYESNHjsTJkydx7NgxNGzYkHc9QBgfqhDF1QBg/fr1Cv/L1msuLi5wcXFhojl37lw0a9YMLi4unP/28ePHqFOnDrNApYYNG2LgwIGIioqCl5cXgIL7efDgwWjUqBETTSF1JRIJmjRpgiZNmjDT+JEOHToAgMK6mKWd8vv379xv4/jx41zSg4uLC549e8ZM183NDdevX8eyZcu4dVuvXr0wbNgwXoO1IiMjMWbMGBw4cAASiQSTJ08udJ4rkUiYzFlUdZ4/EhMTg6FDh+LGjRtYtWoVNDU1mWmJ/HtguYb7t+kKda4if4/Ckk/lvztW9t6rV6/ixIkTKFu2LFfwMTk5GTk5OWjYsCHatWvHvXfnzp286c6ePRsjRoxASEgIZ2c4f/48pk+fjjlz5ijEzvC1ruvTpw+ys7NRvXp1zg6Qm5sLdXV1BAYGIjAwkHuvrHgKH/j6+uLMmTNKQc4JCQmcD4NPnJycMGXKFJw/fx6enp5KNl4Wsa+AMEHkM2bMwNSpU7FhwwZma+/CqF69Oh48eKCywHXwXsP9P0pCQgItX76c5syZQ8eOHWOu9+3bN+rUqRNJJBLS0NAgDQ0NUlNTo4CAAPr27RvvemXLlqWZM2dSXl4e78f+Vc6ePUsLFiygvXv3MtO4dOkSnTx5koiIXrx4QU2bNiUDAwPy8vKia9euMdONjY2l9evXE1FBOzIzMzOSSqWkra1NW7ZsYaIpRFtIodqEyfj06RNdvHiRbty4wbVFY8Xo0aPJ1NSUFixYQGfOnKEzZ87Q/PnzyczMjEaPHv2f1mzbti19+PCB+/tnGysWLlxIERERRFTQrlBbW5u0tLRIKpUya6UycuRIioqKIqKC9mu1atUiiURCenp6XHt2vklNTeVaAWdlZdHAgQPJ09OT2rVrR+np6Uw0X79+TQ0aNCCJREJSqZRrlRMQEEBjxoxhoklE1KpVK2ratClNnz6dNDQ06PHjx0REdOTIESpfvjwz3cuXL1P37t3Jy8uLvLy8qHv37oW2iuQL+fb2P9vs7e150xTi3hVKt6RoCqUrahaf77RPnz4/be9++/Ztpm15SypfvnyhDx8+KGwsGDp0KOnp6VGnTp1o5MiRNGrUKIWNBSEhISSVSqlatWrUunVratOmjcLGgtWrV5OamhpZWlpSpUqVqHLlytxWpUoVJppERHv37iUDAwOSSCRkZGRExsbG3GZiYiJq/kOePHlCEydOpBYtWlD79u0pNDSU3rx5w0yvpCHE9X3w4AH169ePqlatSq6urtS9e3e6fv06M71atWpRzZo1acuWLRQXF0enTp1S2FghxNpNiHVx3759KSQkhIiIli1bRjo6OtSoUSMyNjamwMBAJppCzc2EICUlhTw8PEhTU5McHR3J0dGRNDU1yd3dnVJSUv7zmnv27KGcnBzu759trIiJiSEfHx+ysrLifpuLFi2i3bt3M9Hz9PSkiIgIysjIIENDQzp79iwRFdgiLC0tmWjK8+jRIzpw4ABt3bqV7t+/z0zHwsKCs20LSXp6Ou3YsYMbj1kgxHh/+PBh2rFjBxEV/GadnZ1JIpGQmZkZnThxgolmUlKSwvN69+7d1Lp1a5o4cSIT/1NhvHz5kj59+sRcZ/bs2aStrU3Dhw+n2NhYio2NpWHDhpGuri7Nnj37P69ZpUoVevv2LRERt1YqamNBeno6ubi4kK6uLqmpqXG25hEjRtDAgQOZaHbr1o28vLyob9++pKurS69fvyaigmePu7s7E00Z79+/p5kzZ1LHjh2pefPmNGnSJHr69CkzvYoVK1Lbtm3p/PnzlJaWRunp6QobC968eUNPnjwhogI/4+zZs6lVq1Y0ZswY7l7jGyF8qOPHj6dZs2YREdGWLVtIXV2dnJycSFNTk8aPH89Ek4ioY8eOtHTpUiIiys7OpvLly5OGhgapq6vT9u3bmenm5+fTkSNHaO7cubR06VKKj49npkVUMMY3b96cJBIJaWpqkqamJkmlUmrevDm9ePHiP68bERFBX7584f7+2caC3Nxcmj59OpUpU0Zh7J08eTK3tuKbatWq0fjx4+n06dOkra3NxVWcO3eOrK2tmWgKhUQiYXqf/luQneeDBw/I1dWVatasSS9evKDnz5+TVCrlVUs+9mDDhg2/FMcxaNAgevXqlajJAH19fW7cKO66Qmi6u7tTRkaGSjWF0uVL8/379wrbq1ev6OjRo1S9enU6fvw4D5+0cPr06fPLG5/I4vdk8TpSqbTQ//kci6Ojo39545OVK1eSubk5DR06lFsbDx06lCwsLGjlypW82wpVFZ/zI7GxsdShQwf6/PkzM40fqVy5MhkYGJC+vj55eHioZP1PRLRz505yc3Oj9evX0+XLlyk5OVlh4xsJEaNyOiK/xP3797msSk9PT65tOt+Ympri4sWLXIswEbZkZ2fj7t27sLGxgZmZGXM9VbWFNDExwfnz5+Hs7IwlS5Zg69atCm3CHj58yFRfleTn52P+/PmIiIjgMsmtrKwwcuRIjB07lmvN/l/UDAgIwJIlS2BgYPCX1fl/rA7BikePHiEpKQlOTk7MKr9bW1tjz5498Pb2xu7duzF06FDExcUhNjYWJ0+eZFY1RdX06tULL1++RFRUFFxdXZGcnAwHBwccOXIEY8aMwa1bt5joZmRkYMiQIcjMzMSIESO4KsCjR49GXl6eQiVykb+HUPeuELolRVMoXVGz+Hyn3759Q15enkozrP8N5OTkFFo52sbGhpnm58+fMX78eGzbtg1v3rxRep1FJQgzMzPExMSgRYsWvB+7KKysrDB37lz07NlTZZq2trYYMmQIxo8frzJNoKBNY4sWLRAWFqay31BJ0RQKISr3A8KMSSUBfX19JCUlKXUiKwmoYl2cn5+P/Px8rvLOli1bcPbsWZQvX57r1Mg3Qq7FhRgfiAjHjh3D3bt3ARR0ymnUqBHTKmCq0pRKpXj+/DksLCwglUqLfB+rCrErV67E1KlTMWrUKMyaNQs3b96Eg4MDoqOjsWHDBqXq/nywfft2dOvWDXl5eWjQoAGOHTsGoKB61unTp3Ho0CHeNYXAysoKp0+fVqoeLcKOt2/fwsTEhNnYULVqVUyYMAHt27fHw4cP4ebmhnbt2uHSpUvw8/PD4sWLmegKxbZt2xAREYE7d+4AKBgHR44ciU6dOv3nNUNDQxEcHAxdXV2Ehob+9L3Tpk3jVRso6IBmYGCAtWvXwtTUlLM1nzp1Cv3790dKSgrvmu/fv8fkyZORmZmJwYMHo1mzZgAKzk9TUxOTJk3iXVMoDAwMcPXqVdVVs/uXoGofKgCcO3cO586dQ/ny5dGqVStmOqVLl8aRI0dQqVIlbNq0CdOmTUNycjI2bNiA1atX/7ST4X+RlJQUbhx0cXFBhQoVioWuvb09Ll++DFNTU9jb2xf5PolEwsQ3Pn36dGzYsAHTp09H//79uXnv1q1bsXjxYpw7d453zVOnTqFt27b4+PEjevfuzXVf/P3333H37l1eK9EWRnZ2NjIyMrjO6zJYrI0fPXoEGxsblVdqfv/+PdauXcvdu+7u7ggMDISRkRETPTU1NTx79gwWFhb4+PEjOnXqhFu3biEyMhL+/v68rtk0NTXx6NEjWFlZKeiypKRoFsXjx48BgOu0IU9mZibKlCnDJJ5FCF1Vawpl8xVCV2j7dnx8PMaMGYOkpCSV6KmKv9OplGUHV1XwM/ugPCw7qaqCKlWqIDU1FUQEOzs7pUrvV65c4V1TiPU/UPh3KpFImHXELfGB6yNGjICTk5NSu4Bly5bhwYMHxcaAN27cOJQqVQoTJkxQqe7Tp0+RkJBQ6MOOVYuG3NxcnDp1SqFt4dOnT2FoaAh9fX0mmkLy6tUr3Lt3D0DB4pylkUdfXx83b96EnZ0d/P394ePjg/HjxyMjIwPOzs7M2jR+/vwZ4eHhOHHiRKH3EuuA+Z8lBiQmJsLb25v31oJCaP4Mlppfv35VSQtVbW1tPHjwAGXLlsWAAQOgq6uLxYsXIy0tDZUqVVJoycMn79+/x/bt25Gamorg4GCUKlUKV65cgaWlJaytrXnXkzeMGhgYcM6Ehw8fomLFisjKyuJdU5V8/PiR+1381XfGOplHNoVibdwS6t4VQrekaAqlK2oWv+9UCISYl92/fx99+/bF2bNnFfazWiTLIwuumzFjBnr27Inly5fjyZMnWLVqFcLDw9G9e3feNcuUKYNTp06pzNkHCJPobGhoiGvXrsHBwUFlmgCgp6eHGzduqFS3pGgCBXPfixcvFjo+sGi1vGbNGgwePBhmZmYoXbq0wrxMIpEwMRimpKQgMDBQkDFJFddX6Pl2/fr1MWnSJKZt3v+KrKwspevLem2hqnWxEAg1RxJifPhVPD09cfDgQZQrV65Ya/KNm5sbwsLCuCBKmb3j5s2b8PX1xevXr5noPn/+HM+ePUOlSpU4583FixdhaGgIFxcX3nTGjBmDGTNmQE9PD2PGjPnpexcuXMibLgDMnTsXT58+FcQXcunSpSITTPg+TxmqttUJgZGREa5cuQJHR0fMmTMHJ0+exJEjR5CYmIguXbogMzOTie6LFy8QFBTErRd/dD8K6ajevHkz/P39oaenV6w1+dY1NTXF2bNn4ezsrDD2pqenw83NDdnZ2Tx8YuG4fv06PDw8IJVKcf369Z++l0XwZJs2bdCzZ0+0b9+e92P/FS9fvix07GWVQAkUBEelpaXB0dGRS6Qsbujo6OD+/fsoV64cevXqhTJlyiA8PBwZGRlwc3Nj5p85ceJEkbY6WQCyEAhl+xFKly+cnJywatUqNGzYUGHsvXv3LmrWrIl3794x0c3Ly8PHjx9hYmLC7UtPT4euri6z4NxXr14hICCgyIRQVnOHM2fOYNWqVUhNTcX27dthbW2N2NhY2Nvbo3bt2rzrXb58GU2bNoWOjg6qVasGoGAe/OXLFxw9ehReXl68a8onHgMFieyjRo3CypUrkZ+fz+u1rVixIry8vFC/fn2ugF5RdhS+7FclRVOe/Px8zJw5EwsWLOCeJwYGBhg7diwmTZr0ywGk/wVdITSFsvkKoSukfVueu3fvwtvbm3n8inxMnbOzM8zNzZnqCUVeXh52796tkCDl7+/PJImlpCFUELkQPHr06Kev812Qu3iuCv8GO3bswN69e5X216pVC+Hh4UyNtY8fP8bevXsLzR7l2yg7e/ZstGzZEocPH4anp6dS9gcLI3B0dDRXrcnU1FTJQcQicP3Ro0do1qwZMjIy8O3bNzRu3BgGBgaYM2cOvn37hsjISN60hHQmAAVBQ8OHD0dMTAxnhFBTU0OvXr2wdOlSJlX13N3dERkZCT8/Pxw7dgwzZswAUJCgYGpqyruejH79+iE+Ph49e/aElZWVyjOgf+agbt68ORPjhxCaP4Nvzby8PISFhSEyMhIvXrzA/fv34eDggClTpsDOzo6r1s0nlpaWuH37NqysrHD48GGsXLkSQEEWP6vJ2vXr19GoUSMYGRkhPT0d/fv3R6lSpbBz505kZGQgJiaGd83Pnz8X+vt/+/Yt82QHVUyGTUxMuAx2Y2PjQscD1ouqmJgYzJs3j6soVKFCBQQHBzOrUivEvSuUbknRFEpX1Cx+32lRVT3evHkDCwsLJuOgEPOygIAAqKurY//+/SqfC+7btw8xMTHw9fVFQEAA6tSpAycnJ9ja2mLjxo1MAtfHjh2LiIgILFu2TGXn2q9fP2zatAlTpkxRiR4AdOzYkevcpEqaNm2Ky5cvq3QuXVI09+3bh+7duyMrKwuGhoZKNgAWDpuZM2di1qxZKq3c36dPH0HGJFVdX6Hn21FRURg0aBCePHkCDw8PJfsVq0CatLQ0DBs2DKdOncLXr1+5/SzPVVXrYqEDsoSamwkxPvwq6enp+P79e7HXBPgNmE9LS0OVKlWU9mtpaeHz58//+PhFUbp0aZQuXVqhypss2IRPrl69yn1Hqq7GGhQUBD8/Pzg6OsLNzU1p7GVVYTMsLAyTJ0+Gs7MzLC0tlZ5tLFCVra5du3aIjo6GoaEh2rVr99P3sri+RMT5DI4fP46WLVsCAMqVK8csyQMomCdlZGRgypQpgtjxf8bAgQNRvXp1lc6PhdDkW7eowLbHjx/DwMDgHx+/KFRVlbZy5cpcUF/lypW5SnI/wnLu27t3b9y8ebPQua+/vz/vmklJSejduzfu3LmjdK6szjM7OxvDhw/Hhg0bAICb9w4fPhzW1ta8FV3bu3cvmjdvDg0NjUJ9//KwuLZAwTh77tw5lCpVCocPH8aWLVsAAO/evWOWqBoaGorp06fD29v7Xzf2ClU/UQhdPoPlnzx5Umgnhvz8fKZzejU1NeTm5iIhIQFAQXCfnZ0dMz0AGDVqFN6/f48LFy7A19cXu3btwosXL7iAVRbs2LEDPXv2RPfu3XH16lV8+/YNAPDhwweEhYXh4MGDvGuOHj0a/v7+WLNmDZe4k5ubi379+mHUqFE4ffo075rr169XeG5KpVIsWbIEVapU4V1v5cqVGDt2LA4cOACJRILJkycXOhbxab8qKZryTJo0CWvXrkV4eDh8fHwAAAkJCQgJCcHXr18xa9Ys3jWF0hVCUyibrxC6qtb80R5JRHj27BnCw8NRuXJlZrpCxNTJUHWXjQcPHqBFixZ48uQJ18l09uzZKFeuHA4cOKDSolV8I3RsJlC8AtP/Cr4D0/+KEh+4/ubNm0IHBkNDQ6YGvBMnTsDf35/LjvXw8EB6ejqIiElG5ezZs3HkyBFugFKFEXjKlCmYOnUqJk6cyCy770dGjhwJb29vJCcnKwRSt23bFv379+dV61edCayu75gxYxAfH499+/YpTNZGjBiBsWPHco5APpkzZw7atm2LefPmoXfv3qhUqRKAAmMQC4eNjEOHDuHAgQPcef6bEML4URw0Z82ahQ0bNmDu3LkKv00PDw8sXryYSeB6QEAAOnXqxE2+ZRX8Lly4wGuFLHnGjBmDPn36YO7cuQqG/BYtWqBbt25MNOvUqYOYmBgusUQikSA/Px9z585F/fr1mWgCqpsMnzx5EqVKlQIAJm3A/4qFCxdiypQpGDZsmMLYO2jQILx+/RqjR4/mXVOIe1co3ZKiKZSuqFn8vtOins/fvn2DpqYmE00h5mXXrl1DUlIS0++vKN6+fcs5nAwNDfH27VsAQO3atTF48GAmmgkJCYiLi8OhQ4fg7u6uksChr1+/YvXq1Th+/DgqVqyokkRnJycnTJkyBefPny80uZpVhy4/Pz8EBwfj9u3bheqycF6XFM2xY8ciMDAQYWFhTI2+8rx79w4dO3ZUiZYMocYkVV1foefbr169QmpqKgICArh9LFtRyujRoweICOvWrVMKnmSFqtbFQgdkCTU3E2J8EFGGz4B5e3t7XLt2TcmBcvjwYbi6uvKi8SOqrPImP+aqevwdMWIE4uLiUL9+faUCNCyJiIjAunXr0KdPH5XoAaqz1RkZGXHXkZVj+md4e3tj5syZaNSoEeLj4zlfQVpaGiwtLZnpJiQk4MyZM0yDD/5XioNNXQjdJk2aYPHixVi9ejWAgvlCVlYWpk2bhhYtWvCmI09hVWkXLlyIWbNm8V6VNi0tjau4mJaWxttxf5Vz584hMTGx0ErDrOZmgYGBqFChAtauXauyee/EiRORnJyMU6dOoVmzZtz+Ro0aISQkhLfA9TZt2nDz3jZt2hT5PpbrilGjRqF79+7Q19eHra0tfH19AQCnT5+Gp6cnE83IyEhER0czK6wj8mvwOfa6ubnhzJkzSvPe7du3F5rIyQdCBfedPHkSe/bsgbe3N6RSKWxtbdG4cWMYGhpi9uzZ8PPz411z5syZiIyMRK9evbjkEgDw8fHBzJkzedcDCp5t8kHrAKCuro5x48bB29ubiWbv3r0L3R8QEKBgc+Ej2djHxwfnz58HUBAgf//+fWZV+kuapjwbNmxAVFSUgl23YsWKsLa2xpAhQ5gFrguhK4SmUDZfIXRVrVmUPbJGjRpMO8MIEVMHqHY9I2PEiBFwdHTE+fPnOdv+mzdv0KNHD4wYMQIHDhzgXVNGfHw85s+fzwXpu7m5ITg4GHXq1OHl+EIWelA1pUqVwv3792FmZgYTE5OfrtVk/mo+EDQBmEo47u7utHTpUqX9S5YsIVdXV2a6VatWpalTpxIRkb6+PqWmptKnT5/I39+fVqxYwbuesbExrV+/nvfj/oxSpUrRgwcPVK559+5dIvq/60pElJaWRjo6Oir9LKwxNTWluLg4pf0nT54kMzMzZrq5ubn09u1bhX1paWn04sUL7v+EhAT6+vUrb5p2dnZ0+/Zt3o7HJ/L3maj56zg6OtLx48eVjn3nzh0yNjbmTedH/vzzT1q4cCFlZmZy+6Kjo2n37t1M9AwNDblxUP4809PTSUtLi4nmjRs3yMLCgpo1a0aamprUoUMHcnV1JUtLS6ZjcvPmzalZs2b05s0bbt/r16+pWbNm1KJFCyaajx49ovz8fKX9+fn59OjRIyaadnZ2tGHDBqX90dHRZGdnx0STSPX3rpC6JUVTKF1Rs3h8pxERERQREUFSqZRmzZrF/R8REUELFy6kNm3aUOXKlXnVlCHEvMzb25vOnDmjUk0Znp6edOrUKSIiatiwIY0dO5aICr4Da2trJpp9+vT56cYCX1/fIrf69esz0bSzsytys7e3Z6JJRCSRSIrcpFKpqPkP0NXVVfk6JTAwkFauXKlSTaHGJCGurxDzbVdXV2rXrh2dP3+e0tLSKD09XWFjhZ6eHmdPUhWqWhenp6dz3+OP11NV11eIuZkQ48OvUhzsOkLorlmzhqytrWnLli2kp6dHmzdvppkzZ3J/s2DChAlkbm5OK1asoOTkZEpOTqbly5eTubk5/f7770w0iYgCAgLo48ePSvuzsrIoICCAdz19fX3av38/78f9K0qXLk33799XqaYQtjohSE5OJg8PDzI0NKSQkBBu/7Bhw6hr167MdF1dXenKlSvMjv9PEMfe/43MzExyc3MjV1dXUldXpxo1apCpqSk5Ozsr+IT4pHbt2tSnTx/6/v07t+/79+/Uu3dvqlOnDhNNIqL4+HgFTXnt+Ph4Jpq2trY0dOhQev78OZPjF4a+vj6lpKSoTI+IyMbGhs6dO8fpy+7PlJQUMjAwUOlnUQWXL1+mnTt30qdPn7h9+/fvp4SEBCZ6Qvjjf5XiMA4Kobl7924yMjKi8PBw0tXVpXnz5lG/fv1IU1OTjh49yovGjwwYMIAcHBzo4MGD9OHDB/rw4QMdOHCAHB0dadCgQUw0iYgMDAwoLS2NiArGCtnv5OHDh8xiO3R0dDhN+e8tNTWV2XzQwsKCjhw5orT/8OHDZGFhwUTzV+Hj3m3bti19+PCBiArW+tnZ2Xx8NFHzB7S0tOjevXtK++/evUva2trFSlcITaFsvkLoqlrzR/tjRkYGffnyhbmuUDF1QqxndHV16fr160r7r127Rnp6ekw0iYhiY2NJXV2dOnXqxPmpO3XqRBoaGrRx40ZmuqrAxMSEXr16RUQFMbcmJiZFbnwRHR3NxVquX7+eoqOji9z4RCKRcOt7VfsWS3zg+tq1a0lHR4emTp1Kp06dolOnTtGUKVNIV1eXVq9ezUxXX1+fW0QaGxvTzZs3iahg0LC1teVdz9LSUuVG4ODgYJo9e7ZKNY2NjenWrVtEpDjJPnPmjOCTfr7R0dEpNGjo5s2bpKurK8An+j8MDAx4NQjExsZShw4d6PPnz7wdky/+68YPoTS1tbU5p7j8sW/dusV04vQreHh4UEZGBi/HMjc355w18ud59OhRKlu2LC8ahfH+/XuaOXMmdezYkZo3b06TJk2ip0+fMtMjEmYyLJVKC3WQvH79mllAlpaWVqGG/fv37xcrB6eIiMi/G1lwr0QioXLlyikE/FaoUIGaNGlC58+fZ6KtqnmZzEHy4cMHOnHiBNWsWZPi4uLo9evXCq/JDMWsWLhwIUVERBAR0bFjx0hbW5u0tLRIKpXS4sWLmWqLiPzXaNu2LW3dulWlmmFhYWRmZka9e/em+fPnKyTyyH67fCPUmCTE9RVivq2rq6vyQBqiggSeY8eOqVTz37wuFgI+1+JEwowPv0pxsOsIpfvHH3+Qk5MT5zCxtramqKgo3o7/I1ZWVrRnzx6l/bt376YyZcow0y1q/H316hWpqanxrmdjY0N37tzh/bh/xZw5c2jkyJEq1RTKVvdv4cuXL5STk8P9v2nTJsrKyuLt+EeOHKEmTZpwwWD/JsSx93/n+/fvFBsbS8HBwTR48GBas2YN00AtbW3tQsekW7duMS1QJcTcV95XrCpat25N27dvV6mmjo4Od0/K35/Xrl0jQ0NDlX6Wfwt8+lHHjRtH06dP5+VYfFNcxkEhNE+fPk2NGjUic3Nz0tHRIR8fn0IDn/lCqOA+b29vOnz4MBERtWrVinr27EmPHz+mcePGkYODAxNNe3t7bv0v/71t2LCBWWHL4cOHU9myZWnLli2UkZFBGRkZtHnzZipbtqzK58M/wse9q6Ghwfmhi3qe8k1J0ZSnWrVqNHz4cKX9w4YNo+rVqxcrXSE0hbL5CqGras0NGzYUWvj027dvhRYM5AuhYuqEWM+YmJhQYmKi0v6EhAReA6t/xMXFhRYuXKi0f8GCBeTi4sK7nioLPQgVRF7SUP/rmuzFm8DAQHz79g2zZs3CjBkzAAB2dnZYuXIlevXqxUxXT08POTk5AAArKyukpqbC3d0dAPD69Wve9UaOHImlS5diyZIlvB+7KGbPno2WLVvi8OHDhbYmZ9FuXpVtC9u1a/fL7925cyev2gBQs2ZNTJs2DTExMdDW1gYAfPnyBaGhoahZsybven8H4rkF5oIFC5CamgpLS0vY2dkp3UtXrlzhVU+EPUK0uftV+Gxj7e/vj+nTp2Pbtm0ACsakjIwMjB8/Hu3bt+dFozCMjIwwadIkZscvDC0tLXz69Elpf1ZWFjQ1NZloElGh7XGysrK4cZFvnJycsG3bNvz+++8K+7du3Yry5cvzprNkyRIMGDAA2traf/nsHjFixH9at6RoCqUrarLTFFJX1r66fv362LlzJ0xMTHg7dmFUqVJFYbx98OAB83mZsbGxgiYRoWHDhgrvkT0HWLV3BoDRo0dzfzdq1Ah3795FUlISnJycULFiRWa6IiL/Rfz8/BAcHIzbt28XagPgvYUggNWrV0NfXx/x8fGIj49XeE0ikfA69spo1KgRAKh8TBLi+gox327QoAGSk5Ph5OTE5PhFERUVhUGDBuHJkyfw8PBQur4sxnxVrYv/qr2nPCzuo1+Fz7U4IMz4IMKe7t27o3v37sjOzkZWVhbztuxv374ttHW2i4sLry15ZXz8+BFUUGwInz59Uhhr8/LycPDgQSbnHBISgmnTpmH9+vXQ1dXl/fhFERQUBD8/Pzg6OsLNzU1p7GVhU1eVre7HNdTPUKVt+8fn98CBA1G9enU4ODjwcvzOnTsjOzsbjo6O0NXVVfpOWfxuRNijrq6OHj16qEzP0NAQGRkZSuNvZmYmDAwMmOkWNfd98+YN9PT0mGi2a9cOcXFxcHR0ZHL8woiKikLv3r1x8+bNQue9LOaD3t7eOHDgAIYPHw4A3HWOiori1Z/5d3zgQs8F+fSjfv36FatXr8bx48dRsWJFlfjjf5VffRYWF10+qVOnDo4dO6YyvezsbFhaWirtt7CwQHZ2NjPdkSNH4tmzZwCAadOmoVmzZti4cSM0NTURHR3NRLN///4YOXIk1q1bB4lEgqdPn+LcuXMICgrClClTmGjOnz8fEokEvXr1Qm5uLgBAQ0MDgwcPRnh4OBNNVeLi4oKJEyeifv36ICJs27YNhoaGhb6XrxiskqIpz9y5c+Hn54fjx49zz89z584hMzMTBw8e5F1PSF0hNIWy+Qqhq2rNgIAANGvWTMme8enTJwQEBDCLzRQqpk6I9UzLli0xYMAArF27FtWqVQMAXLhwAYMGDWJq73348CFatWqltN/f318pnoYPNmzYgPDwcKXr+OXLF8TExGDdunW8afXu3Zv7u0+fPrwd91dRU1PDs2fPlH43b968gYWFBbMxKSYmBp07d4aWlpbC/pycHGzZsoX336uE+I4w/Q/z6tUr6OjoQF9fn7lWmzZt4Ofnh/79+yMoKAh79uxBnz59uMCT48eP86rXtm1bnDx5EqampnB3d1eJEXjmzJmYOnUqnJ2dYWlpqbBIlEgkOHnyJO+ajx8/RtOmTUFESElJgbe3N1JSUmBmZobTp0/zatgPCAjg/iYi7Nq1C0ZGRvD29gYAJCUl4f3792jXrh3Wr1/Pm66MmzdvomnTpvj27RsqVaoEAEhOToa2tjaOHDnCJUIIgYGBAZKTk3kzeIeGhv709WnTpvGi879gaGiIa9eu8XauJUVzz5496N27NyZOnIjp06cjNDQU9+7dQ0xMDPbv34/GjRvzovO/wOf9++HDB3To0AGXL1/Gp0+fUKZMGTx//hw1a9bEwYMHmRm8379/j4sXL+Lly5fIz89XeI3VxL9Xr164cuWK0mS4f//++O2333g1MI0ZMwYAEBERgf79+ys4VfPy8nDhwgWoqakhMTGRN00ZO3bsQOfOndGoUSP4+PgAABITE3HixAls27YNbdu25UXH3t4ely9fhqmpKezt7Yt8n0QiwcOHD3nRFEq3pGgKpStqstMUUrco8vLycOPGDdja2vIazP5XczF5+JqX/Rhg9jPq1avHi+a/ie3bt2Pbtm3IyMjgEp5lsApsuXz5cpGaLNaLQMH6be/evYVqsnSsfv78GfHx8YXqsnJelwRNqVRa5Gusk0xUyV+NT6zGJFVeXyHn26tXr8bMmTMRGBiosgB9ADh//jy6deuG9PR0bp9EImHqJFLVuvjHe0d2XvL/yxDyd8q3LenfjBDnKtT1/a9/r9WrV0f16tWVAuGGDx+OS5cu4fz587zqSaXSnwZaSSQShIaG8l6soEqVKkhNTQURqbRoyLBhwxAVFYX69esr+Q8AMLGpq8pWJ7+G+vr1K1asWAE3NzfOOX7+/HncunULQ4YMwezZs3nR/F/g+ze6YcOGn74u7/hVNeLY+7+TkpKCuLi4Qm3NU6dO5UVDnhEjRmDXrl2YP38+atWqBaDA/hocHIz27dtj8eLFvOrJilTt2bMHzZo1U3DQ5+Xl4fr163B2dsbhw4d51QWAWbNmYfHixfDz8yt07sti3bZv3z707NkTHz9+VHqN1bw3ISEBzZs3R48ePRAdHY2BAwfi9u3bOHv2LOLj4/Hbb7/xovOjbe7Vq1fIzs6GsbExgAK/ia6uLiwsLFRip/sZfP5O69evX+RrrPzxv0pxGQd/BRa+25ycnELHXhsbG940ZDRs2BCmpqZKwX29e/fG27dveY9dKYrs7GzcvXsXNjY2MDMzY6JBRAgLC8Ps2bO5oHwtLS0EBQVxhS5ZkZ2djdTUVADgEv2Eho/fy9mzZzFmzBikpqbi7du3MDAwKHRdI5FIeEtkLCmaP/L06VMsX74cd+/eBQC4urpiyJAhKFOmDBM9IXVVrSmUzVcIXVVrSqVSvHjxAubm5gr7k5OTUb9+fWa/lxs3bqBZs2Yqj6lT9XoGKJjn9u7dG/v27ePWFLm5ufD390d0dDSMjIx41wQKij4GBwdj4MCBCvsjIyOxYMECpKSk8KIjK/RgYmKClJQUhXspLy8P+/btw4QJE/D06VNe9H5EiCByqVSK58+fK2k+ffoUjo6O+PLlC++agOrPVQxcF4iHDx8iKysLFStWxOfPnzF27FicPXsW5cuXx8KFC5WqLf1T5IOsC4OFEdjExASLFi1SeeZJbm4utmzZguvXryMrKwteXl7o3r07dHR0mGmOHz8eb9++RWRkJNTU1AAUDI5DhgyBoaEh5s2bx0Q3OzsbGzduVJissT7XX+G/7pT6O5QUgzcLzTNnzmD69OlITk7mfqtTp05FkyZNeNP4X2BxrgkJCQpjkiyLlQX79u1D9+7dkZWVBUNDQ6WkIVYT/59NhtevX88Zh/lAZoiNj49HzZo1FSq6a2pqws7ODkFBQbxWQJfnypUrWLhwIe7cuQOgYOwdO3as4N0CRERESh6jRo2Cp6cn+vbti7y8PNStWxfnzp2Drq4u9u/fD19fX8E+2+bNm+Hv788sSaswhgwZgunTp/9jp4ZQlfTl9SdNmoQ+ffpg9erVCAgIQGpqKi5duoShQ4di1qxZvGvKsuSbNm2Ko0ePokmTJrh//z5evHiBtm3bMlkvnjhxAv7+/nBwcMDdu3fh4eGB9PR0EBG8vLyYOVavXr2KFi1aIDs7G58/f0apUqXw+vVrps7rkqIpJDk5OUhLS4OjoyPU1Ut8c8F/jJDzbaESINzc3ODq6opx48YVGjzJt51OhqrXxcePH8f48eMRFhamULFq8uTJCAsLKzZJ5P8m3r9/r7Qe3rRpE1q3bs00mV3VmkXB5/f64sULBAUF4cSJE3j58qVSpVIW40N8fDz8/PxgY2NTaJW3OnXq8K5HRGjQoAF27NiBUqVKca9pamrC1taWiZNeqKIhBgYG2LJlC/z8/Jgc/2eo0lbXr18/WFlZKQVCTZs2DZmZmbxWBPu7FNextzA8PDxw6NAhlCtXrlhr8q27Zs0aDB48GGZmZihdurSSrZlFYktOTg6Cg4MRGRlZaFXaHyu//VNk/tMNGzagU6dOCv412dy3f//+TAIohSiCYGdnh5YtW2LKlCmFVldmRWpqKsLDwxXmvePHj4enpycTvU2bNmHFihVYu3YtnJ2dAQD37t1D//79MXDgQHTv3p2J7q9S3MbfooppJCQkoGrVqrz/boXWLQw+v9OUlBQEBgbi7NmzCvtZJlYLEdz3/ft3uLi4YP/+/XB1deX9+IWRl5eHxMREVKxYEbq6unjw4AGysrLg5uamkuKW/0b4Ho+KCrRjSUnRFBH5ryHrRJacnAx3d3cFu31eXh7S0tLQrFkzriMaC4SIqVP1eoaIkJmZCXNzczx58kQhhoV1V9OVK1di1KhRCAwMVAjSj46ORkREhFJA+/+KUIUe5PVVFUQu80uPHj0aM2bMUJif5OXl4fTp00hPT8fVq1d505RH1YkmYuA6VF/NTn5CzGcgHx8kJibC29ubl4GydOnSOHPmDLPAwX8T5ubmSEhI4IwfMu7du4datWrhzZs3An0yYShuBheRksV//f6tUKECWrRogbCwMEEy9R88eKCyyXBAQAAiIiKKbMPGN9+/f8fAgQMxZcqUnzoVRERERFSFtbU19uzZA29vb+zevRtDhw5FXFwcYmNjcfLkSSaVcH+V/3KHGKEr6bu4uGDatGno2rWrwrxk6tSpePv2LZYtW8a7ZsWKFTFw4EAMHTqU07S3t8fAgQNhZWX1t6ru/yrVqlVD8+bNERoaymlaWFige/fuaNasGQYPHsy7JgD4+vqiQoUKiIyMhJGREZKTk6GhoYEePXpg5MiRXLU9UfOf8fXrV65CF0uys7MxfPhwrrrn/fv34eDggOHDh8Pa2hoTJkxgonvmzBmsWrUKDx8+xJ9//glra2vExsbC3t4etWvXZqIpj6qur6rn20Kip6eH5ORk5sZ8ofHw8EBkZKTSfXrmzBkMGDCAW8sJAYu1uKo7e8yZMwd2dnbo3LkzAKBTp07YsWMHSpcujYMHD3IBIP91zaJgHTDfvHlzZGRkYNiwYbCyslJyWLVu3fofaxSGEJXlHj16BBsbm5865YSA7+RUW1tbHDlyRKl9dnHDyMgIly9fVvKTyDrGfvjwQaBPxtYO+vXrV6Wxl8WcIjMzExKJBGXLlgUAXLx4EZs2bYKbmxsGDBjAu55QmkLp2traYsiQIRg/fjyT4/8MVVelDQ0NRVBQkMqTvFSNgYEBrl27BkdHR6E/ClMcHR2xfft2pWIzSUlJ6NChA9LS0gT6ZAX81/1QPxbTqFevHs6ePcu8mIZQuvKoIljex8cH6urqmDBhQqHzXlZzfCGC+6ytrXH8+HGVBa4DgLa2Nu7cucPcz/d3bG+sul3+CnyPR0KsZYqz5vXr1+Hh4QGpVIrr16//9L0VK1b8T+sKda7yCNHVXihdVWjK/EqhoaEYO3asQgCuLEG0ffv2CkVT+EKI5Cjg/+JBPT09oaWlpZL1TH5+PrS1tXHr1i1B4jN37dqFBQsWKMQIBQcH82qnE6rQgxBB5LL5yaNHj1C2bFmueDLwf7+b6dOno3r16rxpAsIlmpT4wHUhqtkBqpsQ/134DDCZPXs2nj179pdVCvnm6dOnSEhIKPQBy6oFu4mJCaKjo5UG3j179qBPnz549+4dE10hzvVX4DtQKS8vD4sWLSoywYRFBWkhqjiVFM0fycrKUrp/hQyM4HuBfunSpSJbqbJwlOvp6eHGjRsqN3hOnz4dQUFBShPuL1++YN68eUzaxgqBkZERrl27ptLnd15eHqKjo7nf6Y/3EauKtELolhRNoXRFTXaaQulqa2vjwYMHKFu2LAYMGABdXV0sXrwYaWlpqFSpUqFtn1VFcekQIwS6urq4c+cObG1tYWFhgWPHjqFSpUpISUlBjRo1mCTF6unp4datW7Czs4OpqSlOnToFT09P3LlzBw0aNMCzZ89415R3lpuYmCAhIQHu7u5ITk5G69atkZ6ezrsmABgbG+PChQtwdnaGsbExzp07B1dXV1y4cAG9e/fmnHOi5t8nLy8PYWFhiIyMxIsXL7gg8ilTpsDOzg59+/blXXPkyJFITEzE4sWL0axZM1y/fh0ODg7Ys2cPQkJCmFSd2LFjB3r27Inu3bsjNjYWt2/fhoODA5YtW4aDBw/i4MGDvGsCwlzffzOenp44ePAgbxVMW7VqhT59+qB9+/a8HO/voqp1sY6ODi5dugQPDw+F/devX0f16tWZtRj9Ffh+jgvR2cPe3h4bN25ErVq1cOzYMXTq1Albt27l7FlHjx4tFpqAMAHzBgYGOHPmDCpXrsz7sYsiIyMD5cqVKzQYISMjAzY2Nrxp/Ruc9H8F3zbf9evX4/Dhw1i/fr1Kiy+o2lZXunRphIeHK3WmjY6Oxvjx4/HixQveNX8Vvsfez58/Y/z48di2bVuh6xYWtuY6depgwIAB6NmzJ54/fw5nZ2e4u7sjJSUFw4cPZ2KTFEJTKF0hktIDAwMREREBAwMDhf2fP3/G8OHDBe1SIBR8fg+9e/dGnTp10K9fPx4+2d/j5cuXhY69LJ5rurq6iI+PR9WqVRX2X7x4Eb6+vsjOzuZd8+/A92/r8uXLRfpQWQTEli1bFrt371Z5MQ0hdIUIltfT00NSUpJKk/tOnz6NWrVqKXWxy83NxdmzZ1G3bl0mumFhYbh//z6ioqJU1kHP29sbc+bMQcOGDZnqyDp6/Aosul3+KnwkG5eUIGchNOWr/MoqDhcW4sd3NwYhdIU6VxlCdbUXQlfVmhs2bEDnzp1VUohFHiGSowBh4kHd3d2xdu1a1KhRQ2Waubm5CAsLQ2BgIJdczZqfJQ3xbacDhAsiBwq64u7cuVMhUZIlQiWalPj+yStWrMDq1avRtWtXREdHY9y4cQrV7Fjh4eGBhw8f/usC1/nMY7h48SJOnjyJ/fv3w93dHRoaGgqvs1goR0dHY+DAgdDU1ISpqanSA5ZVMHdAQAD69u2L1NRUVKtWDQBw4cIFhIeH/61Fyd9BqHP9FfjOhwkNDUVUVBTGjh2LyZMnY9KkSUhPT8fu3buZGYH79OmDjIwMTJkypdBsdlHzn5GWloZhw4bh1KlT+Pr1K7efZZs7IQgLC8PkyZPh7Oys1G6e1bVu2rQpLl++rPKgvdDQUAwaNEjJ0ZidnY3Q0FBmv1VVG2TbtGmD3bt3Y/To0bwfuyhGjhyJ6Oho+Pn5wcPDQ2W/UyF0S4qmULqiZvHTtbS0xO3bt2FlZYXDhw9j5cqVAArGXvnFs8j/hlAVGUqXLo23b9/C1tYWNjY2OH/+PCpVqoS0tDTe59kyTExM8OnTJwAFxrybN2/C09MT79+/Z+bM1dPT457dVlZWSE1N5doOv379mokmUNCSUSqVAgAsLCyQkZEBV1dXGBkZITMzU9T8B8yaNQsbNmzA3Llz0b9/f26/h4cHFi9ezCSwevfu3di6dStq1KihMO66u7tz1Uz4ZubMmYiMjESvXr2wZcsWbr+Pjw9mzpzJRBNQ3fVt164doqOjYWho+JfVwYSsCJaeno7v37/zdrxWrVph9OjRuHHjBjw9PZVsWP7+/rxpyRBiXVy1alWMGTMGsbGxsLS0BFCQ0B4cHMzZs4oLEydORFBQENfZY8eOHQqdPVjw/PlzLpli//796NSpE5o0aQI7OzsmDgyhNAEgMjISGzduBAAcO3YMx44dw6FDh7Bt2zYEBwczCZgvV64cs7lQUdjb2+PZs2dKrYDfvHkDe3t7Xn+nlStX5pz0lStXVrmT/lfg+/ovWbIEqampsLS0hJ2dndLYy6IbrhC2ulGjRmHw4MG4cuWKgu9g3bp1mDJlChNNoRg3bhzi4uKwcuVK9OzZE8uXL8eTJ0+watUqhIeHM9G8efMmd123bdsGDw8PJCYm4ujRoxg0aBATm6QQmkLpduzYkTu+qtiwYQPCw8OVAte/fPmCmJgYXgPXvby8cOLECZiYmHAV5oqCxZj0q/A5/laoUAETJ05EQkJCofNeFr7FpKQk9O7dG3fu3FE6F1bPtYYNG2LgwIGIioqCl5cX9zkGDx6MRo0a8a73d+HzO92yZQt69eqFpk2b4ujRo2jSpAnu37+PFy9eoG3btrzpyPP69WuULl0aAHDw4EF07NgRFSpU4BJPWCGE7vbt29GjRw8ABYF+aWlpuHv3LmJjYzFp0iQmwfJubm5MbWOFUb9+/ULnvR8+fED9+vWZzT8vXbqEEydO4OjRo/D09FQKnmZhd5g5cyaCgoIwY8YM/Pbbb0qafCWRCxGM/ncKSsrG+27duv1j3b9ay8j+53PMLymaaWlpMDc35/5WFULoCnWuMsaOHYvAwECVd7UXQlfVmr1792auURhDhw7FnDlzVJocBQgTDxoeHo7g4GCsXLlSqWAJK9TV1TF37lym3Qh+xMHBQWV2OuD/xiJVB5HLNAvr5MOqcOi0adMAAHZ2dujSpQsvXYR+hRIfuJ6RkYFatWoBKKg6JHPW9+zZEzVq1GDShh1Q3YRYSIyNjZm3H/+RKVOmYOrUqZg4cSLnpFcF8+fPR+nSpbFgwQKuGqGVlRWCg4MxduxYJppCneuvIPsd8cXGjRuxZs0a+Pn5ISQkBF27doWjoyMqVqyI8+fPMzGkJSQkqLyKU0nRBIAePXqAiLBu3TolJ5HQrFq1inPg/1MiIiKwbt06pYpKLPHz80NwcDBu376tsoAL4P+CK34kOTlZoVUPnwhhkC1fvjymT5+OxMTEQp/fLMajLVu2YNu2bWjRogXvx/636ZYUTaF0Rc3ipxsQEIBOnTpxyWcyx9uFCxdUWpGnuKKhoaEQSKgqGjRogL1796JKlSoICAjA6NGjsX37dly+fJnZ+qpu3bo4duwYPD090bFjR4wcORInT57EsWPHmFUfqlGjBhISEuDq6ooWLVpg7NixuHHjBnbu3Mm0KkSVKlVw6dIllC9fHvXq1cPUqVPx+vVrxMbGMjPolRTNmJgYrF69Gg0bNlQIbKlUqRKTCu8A8OrVKyUjJVBQjZHVGuPevXuFVhozMjLC+/fvmWgCqru+RkZG3LX7seJOcUZ2TadPn670GqtgGiHWxevWrUPbtm1hY2PDBTtnZmaifPny2L17N3N9Ge/fv4exsbHCPj7X4gBw584dbN68GUCBI+XLly/Q19fH9OnT0bp1awwePJg3LRkmJibIzMxEuXLlcPjwYS6ZhYiYBXoIoQkIEzC/ePFiTJgwAatWrYKdnR0TjR8pytaRlZXFe6UwoZ30QtCmTRuVawphq5swYQIcHBwQERGBP/74A0BB6+z169ejU6dOKvschWFra6tkO/wn7Nu3DzExMfD19UVAQADq1KkDJycn2NraYuPGjejevTtvWjK+f//OOVSPHz/O2T5dXFyYdI4SSlMoXScnJ0yZMgXnz59nHuT88eNHEBGICJ8+fVIYZ/Py8nDw4MFC5/7/hNatW3PXtHXr1iVi7hsVFQV9fX3Ex8cjPj5e4TVWRbECAwNRoUIFrF27VqXz3t69e8Pb25u7b3Nzc9G0aVNERUUx15eRl5eHGzduwNbWViHQ5dChQ7C2tuZFIywsDIsWLcLQoUNhYGCAiIgI2NvbY+DAgbCysuJF40eEKqYhhK4QwfJz5szBuHHjEBYWVujYyyKOpKh575s3b/5RJe6/wtjYWOWdz2T2e39/f4VzVkVxtZcvX+LevXsAAGdnZ96fa4sWLfql9/E93peUIGchNG1tbbm/Hz169NPOCPLv/S/qCnWuMp48eYIRI0aoNGhdKF1Va+bl5WHRokVFFiNkVVRYiOQoQJh40F69eiE7OxuVKlWCpqYmdHR0FF5ndY0bNmyI+Ph4ldrpCoOFnU4eVQeRA8IVDg0NDUXLli2Vzvf9+/fw8vLCw4cPedUr8YHrQlSzA4SdEKuKX80iTUxMhLe3Ny/ZGtnZ2ejSpYvKA7mlUinGjRuHcePG4ePHjwDYJx8Ica4vXrxAUFAQTpw4gZcvXyr9Rljdt8+fP4enpycAQF9fHx8+fAAAtGzZkllVGiGqOJUUTaAgmDkpKQnOzs4q0xwxYgScnJyUFuLLli3DgwcPsHjxYgD8ZJbLkEql8PHx4e14v4Ks+qKqAi5MTEwgkUggkUhQoUIFhWdaXl4esrKymFXkEcIgu3btWhgbGyMpKQlJSUkKr7Ey7GtqasLJyYn34/4bdUuKplC6ombx0w0JCYGHhwcyMzPRsWNHbj6tpqaGCRMmqPSzFFeEqMiwevVqrm320KFDYWpqirNnz8Lf3x8DBw5korls2TIuSH/SpEnQ0NDA2bNn0b59e0yePJmJ5sKFC5GVlQWgwBCSlZWFrVu3onz58li4cCETTaBg/iBLtJ01axZ69eqFwYMHo3z58sxazpcUzSdPnhQ6Dubn5/NaGVseb29vHDhwAMOHDwfwf5VSo6KiULNmTSaapUuXxoMHD5SMsQkJCUy7Hqnq+srbcqKjo3k77r8d2birSoRYFzs5OeH69es4duwYl/Dg6uqKRo0aMQsgmjNnDuzs7NC5c2cAQKdOnbBjxw6ULl0aBw8eRKVKlQDwuxYHhOns0a5dO3Tr1g3ly5fHmzdv0Lx5cwDA1atXmc0ThdAEhAmY79y5M7Kzs+Ho6AhdXV2lAB4+nXBjxowBUPBcmTJlioKTKC8vDxcuXOC9CIS8493S0lLlLbSFQFbN6a/YvHkz/P39eQmaEsJWBxSMfaoMUs/MzIREIuHadV+8eBGbNm2Cm5sbBgwYwL3v5s2bvOq+ffuWmw8ZGhpyv8vatWszSRgCCjrtREZGws/PD8eOHcOMGTMAAE+fPoWpqWmx0RRKd/Xq1SoLcjY2NlawM/+IRCLh2pfzhfw4FBISwuux/60IkRz18OFD7NixQ6V2M3Nzcxw8eBD379/n5r0uLi6F3lt8MmrUKHh6eqJv377Iy8tDvXr1cPbsWejq6mL//v3w9fUFUDAu8kVqair8/PwAFNgnZYnco0ePRoMGDXj/3QDCFdMQQleIYHnZef1YTIJFHImsSIZEIkGfPn0U4jXy8vJw/fp1rggkC4SoSh4XF6dyzY8fP2Lo0KHYsmUL9/2pqamhc+fOWL58OYyMjHjRESoBVn4twyKguCRryiNUZwQhdIXQFKqrvRC6qtYMDQ1FVFQUxo4di8mTJ2PSpElIT0/H7t27mQXfAsIkRwHCxIMuWrRIkCTc5s2bY8KECbhx40ahQfp8FdWUt9NNnTpVJXY6eYQIIheicChQ0Om2sHv027dvePLkCe96JT5wXYhqdoAwE+J/K82bN8e1a9d4eSj27dsXf/75pyCBOrm5uTh16hRSU1M5Z9vTp09haGgIfX193vWEONc+ffogIyMDU6ZM4YwCqqBs2bJ49uwZbGxs4OjoiKNHj8LLywuXLl1i1p5CiCpOJUUTKGhPnpmZqVIH/Y4dO7B3716l/bVq1UJ4eDgXuM4no0ePxvLly5kcuyhUHXCxePFiEBECAwMRGhqqYFzR1NSEnZ0ds6AhIQyyQrUmi4iIwLJly1S64BBCt6RoCqUrahZP3Q4dOijtE6rtXnFEiIoMUqlUITm1S5cu6NKlC+868sgbOaRSqUrWGPLrPz09PURGRjLXBAoCnWVYWFjg8OHDoiZPuLm54cyZM0qOm+3bt6NKlSpMNMPCwtC8eXPcvn0bubm5iIiIwO3bt3H27FmlwBq+6N+/P0aOHIl169ZBIpHg6dOnOHfuHIKCgpglVgPCXN+ZM2eie/fuKm1r+m/H09MTBw8e5CpN/xOEWBcDBQb+Jk2aoG7dutDS0mI+b4mMjMTGjRsBAMeOHcOxY8dw6NAhbNu2DcHBwTh69CgTXSE6eyxatAh2dnbIzMzE3LlzOXvgs2fPMGTIkGKjCQgTMK9KJ9zVq1cBFDiJbty4AU1NTe41TU1NVKpUCUFBQcz0LSws0LZtW/To0QMNGzb813XbVDUDBw5E9erVefEfCGGrAwoqU23fvh0PHz5EUFAQSpUqhStXrsDS0pK3irvydOvWDQMGDEDPnj3x/PlzNG7cGO7u7ti4cSOeP3/OLDjAwcEBaWlpsLGxgYuLC7Zt24Zq1aph3759Sp02+GLOnDlo27Yt5s2bh969e3MJUXv37kW1atWKjaZQuqq0hcbFxYGI0KBBA+zYsUNhnaqpqQlbW1uUKVOGmX6/fv3Qo0cPLrC4pGNoaMib77Zhw4ZITk4WpNCEnZ0diAiOjo4qKUiwfft29OjRA0BBF4q0tDTcvXsXsbGxmDRpEhITE3nXNDEx4RLXra2tcfPmTXh6euL9+/fIzs7mXQ8QrpiGELpCBMufPHlSZfNemU+PiGBgYKBQoVVTUxM1atTgCmaxoEGDBti5c6fSPOHjx49o06YNTp48ybtmvXr1eD/mX9G/f39cvXoV+/fv53ym586dw8iRIzFw4EBs2bKFmXZOTg7S0tKYjoOF+d+Lgq8gxpKiKY9QnRGE0BVCU6iu9kLoqlpz48aNWLNmDfz8/BASEoKuXbvC0dERFStWxPnz55kUBgSESY4ChIkHVWVXOXlktsfCilHxGaQvtJ1OlUHkQhUOlX/GHTlyRCHuKy8vDydOnGASUyghIUrt/ovIz89Hfn4+N0nbsmULzp49i/Lly2PgwIEKNzufZGRkoFy5cko3NhEhMzMTNjY2THT/Cj4NEb+KgYEBkpOTedHMy8tDy5Yt8eXLl0IfsKwq9z169AjNmjVDRkYGvn37hvv378PBwQEjR47Et2/fmARhCHGuBgYGOHPmDNNMpcKYMGECDA0N8fvvv2Pr1q3o0aMH7OzskJGRgdGjRyM8PJx3TRMTE2RnZyM3N5d5FaeSpgkUBBwPGjQIPXr0gIeHh5JuxYoVedfU1tbGzZs3lYyjDx48gIeHB1dllE/y8/Ph5+eH+/fvw83NTek8WQS7ff36VeVVuXJzc7Fx40Y0aNCAlwCOX6Vs2bI4dOgQPD09UbFiRUycOBFdu3bFuXPn0KxZM647A59Mnz4dQUFBStmUfLcB+jF57uTJkyhVqhTc3d2Z3kdC6P4/9s47Koqk68O/GYLkJOAKEgWVZEDXHFExY07AqpgVlQXzqgiKGHYVMKwJFTCAijkBBgygrgkQ14AiCAbMCVEk3O8PvumXEVBcu6ZVeM7pc6Rn7Gd6QnV11a17K4pTKG+l8+f7TJcvX47Ro0dDSUkJy5cv/+xzWQ32lAdbW1scOXJEpteFcePGYf78+dDV1eXtmG5ubp99nK+Br6tXr8LW1hZisRhXr1797HP56ie9efOGqxIlqRpVFqyrSVXyc7Bv3z4MHToUM2fOxLx58+Dr64tbt24hLCwMBw8eRMeOHZl47969i4ULFyIpKQnZ2dmwt7fH9OnTuapdfENE8Pf3x8KFC7kggCpVqnDlP1khxPtbr149XLt2DU2aNIGrqysGDBjAaxv7LfA5liSUV4j74sLCQixYsABr1qzB48ePufGrOXPmwNTUFCNGjODdqaysjJSUFBgZGcHDwwMfPnzA2rVrkZKSgiZNmuDly5e8O4GitiE7Oxt169bFu3fvMHnyZG7Md9myZYJkR/uZyMvLQ1BQEDIzMzFs2DBuAU1AQADU1dUxcuRIgV8hP7i5uWH58uVQV1eXqXfPnj3Ytm0bDh06BE1NTQwcOBCurq5SC9OE4Gdoe4UYq7t69So6dOgATU1NpKen49atWzA3N8fs2bORkZGBsLAw3p3a2to4f/48ateujeXLl2P79u2Ij49HTEwMxo4dy3tpZwkBAQGQk5PDpEmTcOzYMfTo0QNEhLy8PCxbtgweHh5MvAUFBXjz5g20tbW5fenp6VBRUSmRpfFHdgrhvXv3rkx/8/n5+Rg1ahTmzZsn0/EEAOjZsyeio6Ohp6eHQYMGwdXVlVscIDQ/+tzts2fPMHToUDRu3LjUfi+LgKycnBxMnDgRoaGhAMD1eydOnAhDQ0NmQc5KSkq4c+cOatSogdGjR0NFRQWBgYFIS0tDvXr1vjj+8l9wdnZGo0aN4OXlhfnz52PFihXo2bMnjh49Cnt7eybXtuIIMScla29kZCQXLC+pZhIaGgotLS307NlTJq+BJZLkVCtWrGCSjO9ziMViZGVllbiGPXnyBIaGhswq+L18+RIbNmzAjRs3ABQlC3Bzc2OWwVRVVRXR0dElqi2cOXMGnTt3xrt373h3yrId/HShrUgkkqr4/mnQXaXz65DMQ+3btw+dO3cutTJC7dq1eU9cIoRXqHMFSn6+xWGVJVsor6ydqqqquHHjBoyNjVG9enUcOnQI9vb2uHv3Lho0aMAkpgMQZnEUIEw8qJycXKlVCp4/fw59fX1m319Z4+bmhqCgIJnNWUqCyF+/fg0NDY0yg8hXrVrFmzM0NJTrmwUGBsoscaikXfj02gYACgoKMDU1xdKlS9G9e3devRU643p+fj78/f0xfPhw7iZDFtnsAMDMzKzURuPFixcwMzMTrNH40dcxLFy4ENHR0Vy2quKNBsuVyR4eHmjUqBGSkpKkSjL27t2b2SpkIc7VyMhIkO9I8cD0gQMHwtjYGOfOnYOlpSV69OjBxCnrrDsVyQkAT58+RWpqqlQwmOQCyKoDbmFhgaioKEyYMEFq/5EjR5gN+E6aNAmxsbFo164dqlatKpMMCVpaWmjcuDHatGmDtm3bonnz5lIZElggLy+PcePGcQM8sqJ169Y4evQo7Ozs0L9/f3h4eODEiRM4evRoiRKKfCGrMkCflgXs3bs3L8f9Hr0VxSmUt9L583kDAgLg4uICJSUlBAQElPk8vkt2SxCi5HxUVBTU1NS4gf1Vq1Zh/fr1sLa2xqpVq7gJe0mpXj6RVUaG+vXrc5M09evXL3VgAOB30FBbW5u7J5WUZP8UvvtmOjo6SElJga6uLjfgUxZ8LqC0t7fH8ePHoa2tjQYNGnzWe+XKlUrnf6Rnz544cOAA5s2bB1VVVXh7e8Pe3h4HDhxgElSdl5eHMWPGYM6cOVi/fj3vxy+NgoICxMfHw93dHVOnTsWdO3eQnZ0Na2tr5pO7sn5/gaKMIf/++y+2bt2Kv/76C7///js6duwIFxcX9OrVq0SfuJKvQ4j7Yj8/P4SGhmLJkiVS41W2trYIDAxkEriura2NzMxMGBkZISoqCn5+fgCKrjEsxz+FquyxefNmrF27Fnfv3sW5c+dgYmKCwMBAmJmZMQtqEcKpoKBQaiYjT09PJj4AGDJkCNq1a4fWrVujZs2azDwS8vLysHnzZkyePBm2trbMfcXp3bs3evfujbdv3yIyMhLh4eFo2rQpzM3N4erqyrSU9ucwMTEpEWz4oyHEWJ2XlxeGDRuGJUuWSC2C6Nq1K1e5lW/y8vK4II9jx45xQaF16tTBo0ePmDgB6TagQ4cOuHnzJi5fvgwLCwsmC7IkEBEuX77MVcNVV1eHoqIi076KEE4hvBYWFqhRowY31tymTRumWbPl5eURGRmJuXPnMnOUxb59+/Dy5Uvs3LkT27Ztw7Jly1CnTh24uLjA2dlZphVrP+VHn7s9d+4c4uPjceTIkRKPser3zpw5E0lJSTh58iQ6d+7M7e/QoQN8fHyYBa5Xq1YN169fR/Xq1REVFcWNVeXk5EBOTo6Jc+XKlVxiplmzZkFBQQFnz55F3759MXv2bCbOgoIC+Pv7y3RBrJBeScXL4gmwWFa8bN26NdfmtmjRgnmAPhFh69at+OOPP2BpacnUJaF44o7r168jKyuL+7ugoABRUVFMqtIAwOnTp9GjRw9oampyC0OXL1+OefPm4cCBA2jdujXvzqpVq5aYSwCK5heKL0bjE1m2g8WrgR87dgzTp0+Hv7+/VHb52bNnw9/fv9L5HxCqMoIQXiGrQMi6qr2QXlk7a9SogUePHsHY2Bg1a9ZETEwM7O3tcfHiRanFCXxz8uRJfPz4scT+Dx8+4MyZM8y8QsSDlnW/kJubyyxhMwCEhYVh4MCBJT7Hjx8/IiIiAkOGDOHVJ5mzvXPnDlJTU9G6dWsoKyuXmRH9WwkMDOSCyH19fWUSRC7pY5qZmaFFixYyqRoF/K9dMDMzw8WLF2WXwIgqOKqqqpSWliZzr0gkoidPnpTYn56eTioqKjJ/PUKipqZGqampvBxLS0uLNm3axMuxvgYdHR26efMmEUmfT1paGikrKzNxCnGu0dHR5OjoKMhvppKfCysrK+rTpw+dP3+e0tLSKD09XWpjwYYNG0hZWZm8vb3p5MmTdPLkSZozZw6pqKjQunXrmDjV1NTo4MGDTI5dFmfOnKEFCxZQx44dSVVVlapUqUItWrSgP/74g2JiYph527RpQ3v27GF2/NJ4/vw5PXjwgIiICgoKaOHChdSjRw/y8vKiFy9eMHGWdf0+fvw46erqMnGWl7i4OPrw4UOF8FYUp1DeSufP6eWLli1bUlhYGBERPXr0iDQ0NKhZs2akq6tLvr6+TJy2trZ06NAhIiK6evUqValShWbOnElNmzalYcOGMXHKmvT0dCosLOT+/bmNL06ePEl5eXncvz+38UVISAj3/Q8JCfnsxic+Pj707t077t+f2yqd/428vDzy9fWlzMxM3o/9OTQ0NOju3bsydVapUkXmTqHe30+Ji4uj8ePHk56eHqmrq8vM+/LlyxL7tm7dStnZ2TJ7DRL4HMMS4r64Zs2adOzYMSKSPpcbN26QlpYWE6e7uzuZmJhQhw4dqGrVqvT27VsiIgoPD6cGDRowcQrF33//Tbq6uuTn50fKysrc+7tp0yZq27btT+OUEBYWRi1atKDq1atz39mAgADau3cvE9+IESPI0tKSRCIR1ahRg1xcXGj9+vWUkpLCxEdEZGZmRomJicyO/zX8+++/VL9+fRKLxbwfOyMjQ+oa888//5CHhwetXbuWd9d/gc+2V4ixOg0NDbpz5w7nl5xLeno6ValShYmzcePGNH36dDp9+jQpKSlx3+Nz586RoaEhE6dQpKenU506dUhFRYXk5OS493fSpEk0ZsyYn8YplPf+/fu0ZcsWGjVqFNWqVYtEIhEZGhqSs7MzrV+/nonTycmJ93vC/0JmZiYtWbKE6tSpQ3JycjJx5ufnU0JCQomx7TNnzsh8LInPttfExITc3d0pKyuLl+OVB2NjYzp37hwRSZ/L7du3md7LzJ07lzQ1NalOnTpkbGzMfW4bNmygpk2bMvPKGl9fXzI3N6ctW7ZI9UEjIiKYnqcQ3vz8fJo3bx4ZGBhItb2zZ8+m4OBgJs758+eXmOObNWsWxcTEcOM+fGNtbc39ZmSBSCQisVhMYrGYRCJRiU1FRYU2bNjAxG1ra0ujRo2i/Px8bl9+fj6NHj2abG1tmTjXrl1LHTp0oEeP/js1WQABAABJREFUHnH7Hj16RI6OjrRmzRomTqHaQRsbGzpz5kyJ/adPn6Y6depUOr8BHx8fQcbChPAK4fzcuCvL9lEIr6yd06dPpwULFhBR0TVbXl6eLCwsSFFRkaZPn867LykpiZKSkkgkElFsbCz3d1JSEl25coX8/f3JxMSEd68EWcaDBgUFUVBQEInFYlqwYAH3d1BQEC1btox69epF9evX59VZHLFYTI8fPy6x/9mzZ0zGr54/f04ODg5cP0JybXNzcyMvLy/efRKKz6fKkjt37tCsWbNo0KBB3Pt8+PBhunbtmkz879+/Z+6o8IHrsh4A8fT0JE9PTxKLxTRmzBjub09PT5o0aRI1adKEmjdvzrs3KyuLXF1dqXr16iQnJ8fdCEg2IeFz8KNatWpMJyvKQktLi/79918ikj6fM2fOkL6+PhOnEOeqpaVFioqKJBaLSU1NjbS1taU2Ptm3bx99/PiR+/fnNlYIcRGoKE4VFRW6ffs2s+OXxd9//02GhobcwIeZmRmFhoYy8xkbG9ONGzeYHf9L5OXl0dmzZ2no0KEkLy/PtL3fvn07mZub04oVK+js2bNSNwBJSUnMvLJCS0uLtLW1SSwWc/+WbBoaGiQWi2n8+PGCvkZ1dXXerqffu7eiOIXyVjp/Ti9faGlpcQs2g4KCuHuX6OhoMjMzY+Isvth47ty51LdvXyIiunz5MlWrVo2Jszg7d+6k/v37U5MmTahBgwZSG998/PiR3NzcZBoUK0RAbF5eHoWGhsp00pqoaBLq1KlTpQbBVjq/HSESAwwZMoSWLVsmU2fDhg25wF9ZIlTiheIkJCTQ5MmTydDQkJSUlJg4Fi1aRBEREdzf/fv3J7FYTAYGBt9F8CifY1hC3BcrKSlxAcbFz+Xff/8lVVVVJs6PHz/Sn3/+SZMmTaIrV65w+5ctW8Z7wJu2tjY9ffqUiKjEfRvLMSwJVlZW3ILu4u9vcnIyVa1a9adxEgkbMH///n3atm0bjRkzhurUqUNisZhZIG5wcDB17dqVnj9/zuT4X+L9+/e0fft26tmzJ1WpUoWMjY2ZTOoKsTj1a+Cz7RVirE5PT49r/4qfS0xMDNWoUYOJMzY2lrS0tEgsFpObmxu3f+bMmdS7d29eXUFBQdxkZvFJ8tI2FvTs2ZNcXV0pNzdX6v2NjY0lCwuLn8YppLc4KSkpzMeaV69eTb/88gtNnjyZtm3bJrP5oOJ8/PiR9uzZQ3379iUlJSUyMDBg4vHw8OACX/Pz86lFixYkEolIVVWVYmNjmTjLC9+LhiQLeGRF8f5J8XNJTEwkDQ0Npu6dO3fSsmXLpMZZQkJCeF3c9/r1a6l/f25jgRALYoXyChWkT/S/Ob6FCxdSp06dSEFBgdmit/3791PLli0pOTmZyfE/JT09ndLS0kgkEtHFixelFnE/fPhQKqicb5SUlLjx7eLcvHmT17GO+vXrS40jq6mpkYKCAtWsWZNq1qxJCgoKpKamxmxBt1DtoJKSUqnfo6SkJGZjSRXFWQlbrKysSr33j4uLI01NzZ/KK9S5Sjh79iwtXbqU9u/fz+T4Qi2OEiIe1NTUlExNTUkkEpGRkRH3t6mpKdWqVYscHR3p/PnzvDqLU1aQfmJiIpPx199++406depEmZmZUte2qKgosra25t1XHFnH1Z08eZKUlZWpQ4cOpKioyJ3rwoULuXlyFhQUFMh00aZs8sl/x3Tp0gUzZsxAcnIyGjZsCFVVVanHJSUU+SIhIQFAUZmG5ORkqZIMioqKqFevXqllVr+VYcOGISMjA3PmzEH16tVlUgKzvPD5Wjw8PLBixQosX76ct2OWB0dHRwQGBmLdunUAis4pOzsbc+fORdeuXZk4hTjXwMBAmbl69eqFrKws6Ovro1evXmU+j1UZwVOnTqFLly5o0aIFTp8+jQULFkBfXx9JSUnYsGEDIiMjK53fgIODA5KSkpiWFS2NcePGYdy4cXj69CmUlZWhpqbG1Ofj44O5c+di06ZNzMvEFiclJQUnT57kttzcXHTv3h1t27Zl5hw0aBCAopLLEliUuX/z5g00NDS4f38OyfP4QIgyQF8LCVQyVghvRXEK5a10/jjegoIChISE4Pjx43jy5EmJ8n4nTpzgzSVBiJLzioqKyMnJ4ZyS0nI6OjpfvBZ8K8uXL8esWbMwbNgw7Nu3D25ubkhNTcXFixfh7u7Ou09BQQG7du3CnDlzeD92WcjLy+PPP//kvWTfl5xjx47FjRs3ZOYEADk5OTg6OuLGjRvQ0tKqdPJM+/btcerUKZiamsrMaWlpiXnz5iE+Pr7UMZ3ifVO+8PPzw5QpUzB//vxSnXz2QYsjxPsLAGlpadi2bRu2bduGW7duoU2bNvD19eVKpfPNmjVrsHXrVgDA0aNHcfToURw5cgQ7duzA1KlTERMTw8QrBELcF1tbW+PMmTMwMTGR2h8ZGYkGDRowcSooKJQ61unp6cm7KyAgAOrq6gBkO4YlIS0trdT3sUqVKnj37t1P4wSAFStWYP369ejVqxcWLVrE7W/UqBGTse3iaGtro2rVqtDW1oaWlhbk5eWhp6fHxLVy5UrcuXMHBgYGMDExKdHmX7lyhYk3Ojoa27Ztw969eyEvL49+/fohJiYGrVu3ZuK7du0aGjduDADYsWMHbG1tER8fj5iYGIwdOxbe3t5MvEIgxFidk5MT5s2bhx07dgAoGi/LyMjA9OnT0bdvXybOtm3b4tmzZ3jz5g20tbW5/aNHj+b9vAMCAuDi4gIlJSUEBASU+TyRSMSkb3bmzBmcPXu2RPlzU1NTPHjwgHefUE6hvDk5OYiLi+PGmRMSElCnTh1MmDCB2Vjz+PHjAQDLli0r8Rir+SAJsbGx2LZtG3bt2oXCwkL06dMHBw8ehIODAxNfZGQkXF1dAQAHDhxAWloabt68ic2bN2PWrFmIj49n4i0PfM7d9unTB7GxsahZsyZvx/wSjRo1wqFDhzBx4kQA/zuf4OBg5uP4knulDx8+cPuGDh3Kq0NbWxuPHj2Cvr4+tLS0Sv28+J6bKc6DBw9KvY8pLCxEXl4e7z4hvWFhYVi3bh3at2+PsWPHcvvr1auHmzdvMnFKuHv3LpKTk5GUlISrV69CXV2dWX9wyJAhyMnJQb169aCoqAhlZWWpx1+8eMGrT3JP+ul4dll069YNwcHBqF69+je77e3tcePGDdSuXVtq/40bN1CvXr1vPr6Ez8U3yAKh2sFff/0VXl5e2Lx5M6pVqwYAePz4MaZOncrdc1Q6/zuRkZHYsWMHMjIy8PHjR6nHWN2fCuWVtbNp06ZwdHREbGwsN7Z0+vRp9OjRAz4+Prz7hPQKda4SmjVrxrQdSktLAxHB3NwcFy5ckBozUlRUhL6+PuTk5Hj3ChEPmpaWBgBo164ddu/eLXX/z5IGDRpAJBJBJBKhffv2kJf/X/hxQUEB0tLS0LlzZ969MTExiI6ORo0aNaT2W1pa4t69e7z7JAgRVzdjxgz4+fnBy8uL+50CRXMKK1eu5N0nwc/PD6GhoViyZAlGjRrF7be1tUVgYCBGjBjBq6/CB67LegAkNjYWAODm5oagoKAvTmjev38fBgYGEIvF3+SNi4vDmTNnUL9+/W86Dgv4DN65cOECTpw4gYMHD8LGxgYKCgpSj+/evZs3V3GWLl2KTp06wdraGh8+fICzszNu374NXV1dhIeHM3EKca58D6x8juI3quW9aeUTIS4CFcUJAD169ICnpyeSk5NhZ2dX4vvL96KhT2E1ofkpy5cvR2pqKqpVqwZTU9MS58nipsrQ0BDv379H27Zt0bZtW0yfPh1169ZlvmBJ0ilmjVADspL2z8zMDM2bNy/xWVZSSSWVCIGHhwdCQkLQrVs32NraymRxqo2NDdasWYNu3brh6NGjmD9/PgDg4cOHqFq1KhNny5Yt4eXlhRYtWuDChQvYvn07gKKFWp8OTvDN33//jXXr1mHw4MEICQnBtGnTYG5uDm9vb94nbCT06tULe/fuZRLQVxYODg4yD4ht3LgxEhISSgRPssbW1hZ3796FmZlZpZNnZJ0YAAA2bNgALS0tXL58GZcvX5Z6jFVwlGRxupOTk1S7yzIoABDm/W3atCkuXryIunXrws3NDYMHD4ahoSHvnuJkZWXByMgIAHDw4EEMGDAAjo6OMDU1RZMmTZi6ZY0Q98Xe3t4YOnQoHjx4gMLCQuzevRu3bt1CWFgYDh48yLtPwubNm7F27VrcvXsX586dg4mJCQIDA2FmZoaePXvy5pHct+Xn50MkEqFTp07cBLIsMDMzQ2JiYolrW1RUFKysrH4aJyBMwPwff/zBBU1aWVmhTZs2mDFjBlq3bs1sYk6oYJPevXuje/fuCAsLQ9euXZmPQQixOPVrMDEx4e09EGKsbunSpejXrx/09fXx/v17tGnTBllZWWjWrBkWLFjAu08CEeHy5ctITU2Fs7Mz1NXVoaioyHvgevExQVmNDxansLCw1P7X/fv3pca7f3SnUF4tLS1oa2vDxcUFM2bMQKtWrZgHQwgxHwQUjau/ePECnTt3xrp169CjRw+ubWTFs2fP8MsvvwAADh8+jP79+6NWrVoYPnw4goKCmLq/BJ9zt7Vq1cLMmTMRFxdXar+XxX2bv78/unTpguvXryM/Px9BQUG4fv06zp49i1OnTvHuk1BQUAB/f3+sWbMGjx8/RkpKCszNzTFnzhyYmpryFuhx4sQJ6OjoAPhf7IEsEWJBrFBeIYLlnZ2dcerUKeTm5qJ169Zcv5flXJ8QC3+/htOnT+P9+/e8HGvSpEnw8PDAnTt30LRpUwDA+fPnsWrVKixatAhXr17lnlu3bt3/7Jk7d+5X/5/w8HA4OTmVGPP5LwjVDm7cuBG9e/eGsbExN76TmZkJS0tL7N27t9L5Dcg6yY6QXiGcwcHB6NevH3r06IHo6GicPXsWTk5O8PPzg4eHBxOnUF5ZOU+fPl2u5/G9KOtrF0fxxdfGg7JwywrJeFliYiI6deoklTBUkvSRxUL9d+/elTqm8eLFC6b3bkLE1SUnJ2Pbtm0l9uvr6+PZs2dMnIDsF21W+MB1oQZANm3aVK7nWVtbIzExEebm5t/kMzIyEiyr5Jd4+/Ytb8fS0tJCnz59eDteealRowaSkpIQERGBq1evIjs7GyNGjICLi0uJFcl8IdS5pqamYtOmTUhNTUVQUBD09fVx5MgRGBsbw8bGhndfXl4eOnfujDVr1sDS0pL345eFEBeBiuIEwF3g5s2bV+IxPoM97O3tcfz4cWhra3Or/sqCxcSUEBOcenp6uHnzJrKyspCVlYXHjx/j/fv3zLNIySroTOgB2TZt2qCwsBApKSmlZjdmle2ikkoqqaQ0IiIisGPHDmYVfkpj8eLF6N27N/78808MHTqUy0Kzf/9+ZplEVq5cifHjxyMyMhKrV6/mgiaPHDnCZMV+cTIyMtC8eXMAgLKyMnfv8ttvv6Fp06ZMBiSEyCAtREDs+PHjMXnyZNy/f79U57dMDH0OIbJlVxSnrBMDEBFOnjwJfX19ZvfdpSFEHxQQJvNk+/btsXHjRlhbW/N+7LLQ1tZGZmYmjIyMEBUVBT8/PwBFnzfL7Jql8erVqxJVC9auXctbILSs7ouL07NnTxw4cADz5s2DqqoqvL29YW9vjwMHDqBjx468+wBg9erV8Pb2xu+//44FCxZw56WlpYXAwEBeA9clCFXZw8vLC+7u7vjw4QOICBcuXEB4eDgWLlyI4ODgn8YJCBMwv2jRIujp6WHu3Lno06cPatWqxcRTnP8SbMIHjx8/Zhr8+ilCLE4FigI7RCIRtxj1woUL2LZtG6ytrTF69GjuedeuXePNKcRYnaamJo4ePYq4uDhu7sDe3h4dOnRg5rx37x46d+6MjIwM5ObmomPHjlBXV8fixYuRm5uLNWvW8O7My8tDnTp1cPDgQaYLZz5FiGq4QjiF8nbt2hVxcXGIiIjgxpvbtm0rkzZY1vj4+KB///4yrVpVrVo1XL9+HdWrV0dUVBRWr14NoCjTPYsskKVRUFCA5ORkmJiYSC1KOHLkCG+LVoODg6GmpoZTp06VCJZkteC4ZcuWSExMxKJFi2BnZ4eYmBjY29vj3LlzsLOz490nYcGCBTLJUNimTRsARQs2T506heHDhzNP7lAcoRbECuEVIlg+IiICurq6GDlyJBwcHNCyZUvmc3yyTF4nNIMHDwYATJs2rdTHWFSTLi9jxoxBkyZNvjk2CBCuHbSwsMDVq1dx9OhRLsDNysoKHTp0YLbwoqI4hUiyI5RXCKdYLEZERAS6desGBwcHXL16FQsXLsSECROY+IT0ysr5uQpNkt+JSCRCfn4+r97i3L59G7GxsaXGdbCqLlfeeFA+kXWFbsl4mampKQYOHAglJSVej18WrVq1QlhYGDduJRKJUFhYiCVLlqBdu3bMvELE1WlpaeHRo0clklMlJCQwTS4k80WbVMEJDQ2lDx8+lNifm5tLoaGhArwiadTU1Cg1NfWbjxMdHU2Ojo6Ulpb27S+qnGRlZZGrqytVr16d5OTkSCwWS21CEhcXV+rn/jPC57mePHmSlJWVqUOHDqSoqMh9NxcuXEh9+/blxVEaurq6lJKSwuz4pWFoaEjx8fFEJP073L17N5mbm1c6fxB8fHzo3bt33L8/twnJtm3bKDs7m7fjvXz5kvbt20deXl7UsGFDUlZWpmbNmtEff/zBm+NTQkNDP7vxTV5eHvn6+lJmZibvx/4c586dIzMzMxKLxSQSiaQ2oa9tfPUZfgRvRXEK5a10/jje6tWr061bt3g51teQn59PL168kNqXlpZGjx8/lvlrYY2ZmRlduXKFiIgaNmxIa9asIaKi+yttbW0mTlNT0zI3MzMzJs5Pr2myuL6V5WJ9Tf3UJ9lkda4/s1PWFBQUkIKCgkzvFT9+/EgODg4yvz+tSLi7u5OJiQl16NCBqlatSm/fviUiovDwcGrQoAEz76JFiygiIoL7u3///iQWi8nAwIASExOZeSsCVlZWtGfPHiKS7gclJydT1apVmXnbtGnDeWXJli1byMLCgmuDDQ0NKTg4+Kdzrl+/ngwNDSkiIoJUVVUpPDyc/Pz8uH+zIDExkYKCgqh3796kq6tLBgYGNHjwYFq7dq0gfWK+ef36tdS/P7fxTWxsLGlpaZFYLCY3Nzdu/8yZM6l37968+yS0bNmSwsLCiIjo0aNHpKGhQc2aNSNdXV3y9fVl5i0PfI/VyZqePXuSq6sr5ebmSrW9sbGxZGFhwcxrYGBA169fZ3b80sjMzCRra2uysrIieXl5atq0KVWtWpVq167N7B5VCKeQXiKipKQkWr58OfXt25f09fXJwMCAnJ2dmbh8fX0/u/1MzJ07lzQ1NalOnTpkbGzMzeVt2LCBmjZtysTp4eHB9RPy8/OpRYsWJBKJSFVVlWJjY5k4KxI1a9akY8eOEZF03/fGjRukpaXFxKmmpibT+X8Jp0+fpg4dOpCenh4pKytTixYtKDo6+qfz7t27lzQ1NWnRokWkoqJCf/75J40cOZIUFRUpJiaGifPFixe0b98+8vT0JHt7e26Ob+bMmczO9d69e5/dhIbPMfX09PRyb7JGqDkLIbC1taWMjIxK51egrKzMfS/19PS48aqUlBTS0dHhxfG9eGXlTEpKKrHFxcWRkZERjR07Vmo/nwjhFcL56tWrUreHDx/S9OnTSVlZmWxsbHjzfcq6detITk6OqlWrRvXq1aP69etzG8tx5uzsbJo9ezY1a9aMatasSWZmZlIbC9zd3UlVVZUGDBhAHh4e9Pvvv0ttrMnNzaXMzEzm/Yfk5GTS19enzp07k6KiIvXr14+srKyoWrVqdOfOHd59EoSIq5s8eTK1bNmSHj16ROrq6nT79m2Ki4sjc3NzpvFt9vb2tHnzZiKSPldfX19q2bIl7z4R0XeahltGyMnJ4dGjR9DX15fa//z5c+jr68t8FeWnqKurIykp6ZtXVWprayMnJwf5+flQUVEpUYaNxaq0Ll26ICMjAxMmTED16tVLrCxkkVGpvGhoaPCSyb44Dx8+RFxcXKmrl1hkCygvfJ5rs2bN0L9/f678heS7eeHCBfTp0wf379/n4RWXxNPTE1WqVMGiRYuYHL80pkyZgn/++Qc7d+5ErVq1cOXKFTx+/BhDhgzBkCFDmGRcqijOr8HOzg6HDx/mSmz9VwoKChAfH4+6devKNGNKeWHRJgFF17KTJ09i3759CA8PL7OcLB98WiI2Ly8POTk5XAliFtcZdXV1JCcnw9TUlPdjl0X9+vVRq1Yt+Pr6lnpt09TUlNlr+RRW36Pv0VtRnEJ5K50/jnfp0qW4e/cuVq5cySyLx6e8f/8eRMRl+bl37x727NkDKysrdOrUiTfPmzdvuIzQb968+exzWZbbGzlyJIyMjDB37lysWrUKU6dORYsWLXDp0iX06dMHGzZsYOb+2bl3795nH2dVzeVLpXAlWcsqnV9HXl4elJWVkZiYCFtbW16P/TlsbGywYcMGrrSzLNDT08PZs2dlWhFMlu+vl5cX5s+fD1VVVXh5eX32uaVlf/9W8vLyEBQUhMzMTAwbNozLYBcQEAB1dXWMHDmSdydQlD1669ataN68OY4ePYoBAwZg+/bt2LFjBzIyMhATE8PEWx74ui/+lOzs7BLjVyyuqcrKyrh58yZMTEykxpJu376NunXr8lbu/VN27NiBmTNnwtPTU6aVPSTk5OQgOzu7xJjzz+TcunUrfHx8kJqaCgAwMDCAr68vb5lEv0RSUhICAgKwdetWZuMdYrH4s/1sPp3F5ynK8hLDzI8FBQV48+aN1PhOeno6VFRUmH2ntLW1cf78edSuXRvLly/H9u3bER8fj5iYGIwdOxZ3795l4i0PfN8vXrx4scwsbyyup1WrVsXZs2dRu3ZtqbY3PT0d1tbWyMnJ4d0JAP7+/khJSUFwcDDk5WVX8Dk/P1+qGq69vT3TarhCOYX0EhESEhIQGxuL2NhYREdHg4iYZEf8NINxXl4e0tLSIC8vj5o1a/JaObVPnz4ICQmBhobGFysc7969mzdvcSIjI5GZmYn+/ftzGbNDQ0OhpaXFZB61Ro0a2Lt3Lxo1aoS9e/fC3d0dsbGx2Lx5M06cOIH4+HjeneWFxVjdkydPSm17WfUFy+r7Xr9+HY0bN0Z2djbvzp49e6JPnz4VKmO2rDlz5gzmzZuHpKQkru319vaGo6OjTPx37tyBn5/fT9Pv/S/wFTPzNXTr1g3BwcGoXr26zJx8n2dBQQH27NnDVSOztrZGz549ZdpPKwshPtMf3Wlubo5du3ahQYMGaNSoEUaNGoUxY8YgJiYGgwYNYpaJXAivrJyStq942GTxv1lVYBDCK9S5FqewsBAbN26Er68vxGIxfHx8MHToUIjFYiY+ExMTjB8/HtOnT2dy/LIYPHgwTp06hd9++63UeBIPDw/enbq6uggLC5NphW6gKKP98OHDcfbsWan9LL9Lr1+/xsqVK6X6Ze7u7kyv10LE1X38+BHu7u4ICQlBQUEB5OXlUVBQAGdnZ4SEhDCr0LVv3z4MHToUM2fOxLx58+Dr6ytV4Yjvqq3C90gERvJj+ZT79+8LGnzGN4GBgTJ3xsXF4cyZM6hfv77M3V+C7/UaISEhGDNmDBQVFVG1alWp7xSrMnflhc9zFaL8BVA0GLtx40YcO3as1MlGFoP7/v7+cHd3h5GREQoKCmBtbc1dBGbPns27ryI5v4b09HReyo3IycnB0dERN27c+C4D1/n8ne7evRsnT57EyZMncf36dejo6KBly5ZYunQpk6AoCS9fviyx7/bt2xg3bhymTp3KxOng4IBTp07JNHD99u3biIyMLLU8jtAItRZRCG9FcQrlrXR+395PJ1JPnDiBI0eOwMbGpsTiVBaTqpLJsLFjx+LVq1do0qQJFBQU8OzZMyxbtgzjxo3jxaOtrc0F7mhpack8cEfCunXruMlNd3d3LgDEyckJY8aMYeatCLAKTP8SLPtDFdmpoKAAY2NjmU9kLlq0CFOnTsXq1atlFjDv6uqKDRs2yHRhtSzf34SEBO4eLCEhgbnvUxQUFDBlypQS+z09PZl6s7KyuMDwgwcPYsCAAXB0dISpqSmaNGnC1P0l+LovBoC0tDRMmDABJ0+exIcPH7j9LK+pZmZmSExMLNHuR0VFwcrKinefhEGDBgGQTiYhy5LvKioq3EI/WSFrp4uLC1xcXGQWMC8JmpSMecTFxeHNmzeoW7cus+venj17pP7Oy8tDQkICQkND4evry6vrxIkT0NHRAQDExsbyeuzyQES4fPkyUlNT4ezsDHV1dS4ZASvy8vJQpUoVAMCxY8fg5OQEAKhTpw4ePXrEzFse+Lxf9Pf3x+zZs1G7dm1Uq1atxNwBC8oKart//z7U1dWZOIGiAP3jx48jJiYGdnZ2JcbxWQX+ysvLw9XVlcmxvyenEN5ly5Zxbe7bt29Rr149tG7dGqNHj0arVq2YOEvrg7558wbDhg1D7969eXVpampyv0MNDQ2ZJQUoTr9+/QBAqm/GMgD52bNn+OWXXwAAhw8fRv/+/VGrVi0MHz4cQUFBzLzlgc+29/Llyxg6dChu3LhR4rgs+4LW1tY4c+ZMib5vZGRkiUUZfNGlSxfMmDEDycnJpc6hSq6vlfx3WrVqhaNHj8rM9/z5c5w6dUpqrk9LSws9evRg1u/9tO2V9HuXLVuGBQsWMHF+75w+fZrZQmtZ8O+//8LJyQlZWVmoXbs2AGDx4sXQ09PDgQMHZJp4ohJ+cHBwwP79+9GgQQO4ubnB09MTkZGRXJKdn8krK2daWhpvx/revUKdq4Tdu3fjjz/+wNOnTzFz5kxMnDiRGw9gxcuXL9G/f3+mjtI4cuQIDh06hBYtWsjMqaioKEj8yrBhwyAvL4+DBw+WGqTPAk1NTcyaNYu5pzhCxNUpKipi/fr1mDNnDq5du4bs7Gw0aNCAeUKlnj174sCBA5g3bx5UVVXh7e0Ne3t7HDhwgPegdQCosBnXGzRoAJFIhKSkJNjY2EitKiwoKEBaWho6d+6MHTt2CPgqhVn1xxfW1tbYunUrsxvxb4Hv99XIyAhjx47FzJkzma0G+6/wea41atTAjh070Lx5c6nj7tmzB1OmTOEyLPFNu3btynxMJBLhxIkTTLwAkJGRIdOLQEVylgc+v7+NGjXC4sWL0b59ex5eGb/weZ76+vpo3bo12rZtizZt2sDOzo6HV/jfuXTpElxdXXHz5k3ej71mzRr4+vrCxcVFZgOyDg4OmDZtGjp37sz7sSuppJJKyoObm1u5n7tp0ybe/bq6ujh16hRsbGwQHByMFStWICEhAbt27YK3tzeXveVbOXXqFFq0aAF5eXlBslULzf3797F//35kZGTg48ePUo+xWLQJAO/evcOpU6dKdbJciHv9+vVSnawnVnNyckr1sszA+7M7N2zYgN27d2Pz5s1c4B1rileXU1RULJFpkkXGn4kTJyIsLAyWlpYyW1gNCPP+CsXmzZuxdu1a3L17F+fOnYOJiQkCAwNhZmbGrHqfgYEBIiMj0bx5c9SuXRt+fn7o378/bt26hV9//fWL1T9Ywuf9YosWLUBE8PDwKBE8CbC5pgYHB8PHxwdLly7FiBEjEBwcjNTUVCxcuBDBwcFcgDnfyKqyh729PY4fPw5tbW1uvLks+MoQK4Tze0BbWxvZ2dmoV68e2rRpg7Zt26JVq1aCJCjYtm0btm/fjn379jE5fkZGBoyMjEp8tkSEzMxMGBsb8+q7d+8eOnfujIyMDOTm5iIlJQXm5ubw8PBAbm4u1qxZw6tPQpMmTdCuXTt069YNjo6OOH/+POrVq4fz58+jX79+zKp7lgc+295q1aph8eLFGDZs2Le/sHIycOBAaGpqYt26dVBXV8fVq1ehp6eHnj17wtjYmMm9IvDl+1W+vPv370eXLl2goKCA/fv3f/a5fN1XCOEU0ivh119/lWpzhUz4lZycjB49eiA9PV2w18A3BQUF8Pf3x5o1a/D48WOu/Z0zZw5MTU2ZVDExMTHB+vXr0b59e5iZmWH16tXo1q0b/v33X7Rs2bLUBDWygs+2t169eqhZsyamT59ear+X1WJ6WWcoBPDZeWk+g/R1dHSQkpICXV1daGtrf7YPyue9uFBeIZGTk4Ouri5atWrFtcFCzfUdOnQIf/75J06ePCmIX8KPnilbCGezZs2gp6eH0NBQrqrSy5cvMWzYMDx9+rREdlxZ86O/v0I4CwsLUVhYyMW2RUREcFUhJUk2WSCEV6hzLQ9CVGMQysuH89SpU5g+fTqSk5Ph4eGB6dOny+yeYsSIEfj1118xduxYmfgkmJmZ4fDhw0wTdnyKEBW6AUBVVRWXL19GnTp1ZOK7evVqqftFIhGUlJRgbGzMdEHE9xpX9yNTYTOu9+rVCwCQmJiITp06QU1NjXtMUVERpqam6Nu3r0Cv7n/w2aCkpqZi06ZNSE1NRVBQEPT19XHkyBEYGxvDxsaGN4+EwMBAzJgxA2vXrpVpNlwhyMnJwaBBg767oHW+GTRoEKZPn46dO3dCJBKhsLAQ8fHxmDJlCoYMGcLMK0SWIQnGxsa8TwZVOoXBz88PU6ZMwfz580sNMGFREl0Injx5IvRLkEJeXh4PHz5kcuzx48cDKD04iFXWlIkTJ2Ly5MnIysqCnZ1diezGLILAHj9+jClTpuD48eN48uRJiQwxrLLDCOGtKE6hvJVOdk5Zev/LRH98fDwaNWrEy816Tk4Ol6EvJiYGffr0gVgsRtOmTb8YIPY1FA+cEzIw3cLCAq6urnB2dkatWrVk4jx+/DicnJxgbm6OmzdvwtbWFunp6SAi2NvbM3EmJCSga9euyMnJwbt376Cjo4Nnz55BRUUF+vr6TALX7969i969eyM5OblESUqA3W/16dOncHNzw5EjR0p9nIW3ojhXrlyJO3fuwMDAACYmJiX62yyCJ4WoLnft2jXut5iSkiL1GMtBYSHeX0nWxU8zs7579w4TJ07Exo0beXeuXr0a3t7e+P3337FgwQLuu6qlpYXAwEBmget9+vSBs7MzLC0t8fz5c3Tp0gVAUfv4PVZb+q8kJSXh8uXLXLY1WTBy5EgoKytj9uzZyMnJgbOzMwwMDBAUFMQsaB2QXWWPnj17cn2snj17ymRySAgnIHzA/JYtW9CqVavvYvymadOmGD16NLPjm5mZcdWHivPixQuYmZnxfh338PBAo0aNkJSUhKpVq3L7e/fujVGjRvHqKs7ixYvRu3dv/Pnnnxg6dCjq1asHoChQt3Hjxsy8skYsFss00xpQNGndqVMnWFtb48OHD3B2dsbt27ehq6uL8PBwZl5WAfGf0qtXL2RlZUFfX5+b6ysNPscHhXAK6ZVw8eJF3o/5X3n9+jVev37N7PgODg7YvXt3iQVRb968Qa9evZgkUFqwYAFCQ0OxZMkSqfbW1tYWgYGBTALX3dzcMGDAAC4jYocOHQAA//zzj8wCTmTB3bt3sWvXLpn35WWdoRAAVymQNQEBAdy9YUBAgMz6oEJ4hQ6Wv3r1KpPYjf9C7dq1mV4L3r17V2J8ozT++OOPn34RP98kJibi0qVLXNA6ULQYeMGCBfj1118FfGWV/Bfy8/Ph7++P4cOHo0aNGgCKYndYjqsI5RXqXMuLUNUYhPB+q7Nr1644duwYhg8fjr1793JVf2SFhYUF5syZg/Pnz5ca18EqYdP8+fPh7e2N0NBQmVVGjIuLQ2xsrEwrdANFCY2fPXvG5NilUb9+fa5f9umcIlBUzXXgwIFYu3YtlJSUePfLMq7Oy8ur1P2SIH0LCwv07Nnzh+8fVdiM6xJCQ0MxcODAL35hw8PD4eTkVK6OM5/wtQLv1KlT6NKlC1q0aIHTp0/jxo0bMDc3x6JFi3Dp0iVERkby9Ir/R/HMZyoqKiUaRiFXPfO9mnLatGnQ0dHBjBkzeDken/B5rh8/foS7uztCQkJQUFAAeXl5rvxFSEgI5OTkeHjFwlFWw18afGXRqyjO/wqf39/iC0uKd15kVSb8c/DdJsl6oRKAEhl/iAiPHj3CypUrYWRkVGbQ1I9GaQuUWJeb79KlCzIyMjBhwoRSSyyxCt4RwltRnEJ5K53snEJ6y4OGhgYSExN5uc7UrVsXI0eORO/evWFra4uoqCg0a9YMly9fRrdu3ZCVlcXDK5YmKioKampqaNmyJQBg1apVWL9+PaytrbFq1SqpwXe+CQgIwLZt23DlyhXY29vD1dUVAwcOZDrA1rhxY3Tp0gW+vr5cH0FfXx8uLi7o3Lkzxo0bx7uzbdu2qFWrFtasWQNNTU0kJSVBQUEBrq6u8PDwYFLys0ePHpCTk0NwcDDMzMxw4cIFPH/+HJMnT8Zff/3FrOy8i4sL7t27h8DAQLRt2xZ79uzB48eP4efnh6VLl6Jbt26Vzv+Ir6/vZx+fO3cu786KhBDvr5ycXKmBk8+ePcMvv/yC/Px83p3W1tbw9/dHr169pO6Trl27hrZt2zIbCM/Ly0NQUBAyMzMxbNgwrnqgJEhi5MiRTLzlgc/7xXbt2mHWrFlcgJKsycnJQXZ2donvFEuEquzxM+Lr64upU6dCRUUFPj4+nw3gYdnm37lzB6mpqWjdujWUlZW5+3FZ8f79e8ycORNHjhzBrVu3mDjEYjEeP34MPT09qf337t2DtbU13r17x6uvatWqOHv2LGrXri3V5qSnp8Pa2ho5OTm8+opTUFCAN2/eSPXp09PTuQWUQsFn27tkyRI8fPhQ5gvu8vPzERERgatXryI7Oxv29vZwcXEpUaGmkkq+xJkzZ7B27VqkpqYiMjIShoaG2Lx5M8zMzLj7dD5Zvny51N+ScebNmzejTZs22LZtG+9OoKjtlSwSKM6TJ09gaGiIvLw83p0WFhZYu3Yt2rdvL9Xu3Lx5E82aNWOW/TwyMhKZmZno378/FxAWGhoKLS0tQcev+Gx7e/Xqhd9+++27SFJXyY9HaGgoBg0ahCpVqiAkJOSzfc2hQ4cyeQ35+fk4efIkUlNT4ezsDHV1dTx8+BAaGhpSCRn54tMqY5K218fHBzdv3kRiYiLvTgBQU1PDgAEDMHz4cCbXlG9BiOzctra2OHLkCIyMjL75WPXq1UNAQAAcHByk9p84cQIeHh5ITk7+Zse38KNnPxfCqaamhmvXrsk8aagQXqHOtTwI8T0SyvutTrFYDHl5eaiqqgpSMcXMzKzMx0QiEe7evcvE26BBA6SmpoKIYGpqWiJWkkWyB1lVP/uUEydOYPbs2fD39y91cQDfySf27duH6dOnY+rUqVzCgwsXLmDp0qWYO3cu8vPzMWPGDAwcOBB//fUXb14hgsjbtWuHK1euoKCggEtCk5KSAjk5OdSpUwe3bt2CSCRCXFwcrK2tefOWtWiz+LkOGzbsqyrEf44Km3FdQnlvJsaMGYMmTZrwchHIy8uDsrIyEhMTYWtr+9nnXr9+HQYGBt/snDFjBvz8/ODl5SWVKcvBwQErV6785uOXhhCZz8oL35MZCxcuRPfu3REVFVVqYyxk8C+f56qoqIj169djzpw5Mi9/cenSJezYsaPUyUa+VoclJCSU63l8vqcVxfk9IGTmflny6UKlBQsWQF9fH0lJSdiwYQOThUoASmT8EYlE0NPTg4ODA5YuXcrEKQRpaWkyd8bFxeHMmTOoX7/+T++tKE6hvJXOn9NbHvhcq+zt7Q1nZ2d4enrCwcEBzZo1A1CUfV0S5Mc3U6dOxeLFiwEUlQb38vLC5MmTERsbCy8vL6ZZ/Tw9PeHp6YmUlBRs3boVq1atwpQpU9CuXTu4uroyqTp048YNLguivLw83r9/DzU1NcybNw89e/ZkEriemJiItWvXQiwWQ05ODrm5uTA3N8eSJUswdOhQJoHr586dw4kTJ6CrqwuxWAyxWIyWLVti4cKFmDRpUrn7rF/LiRMnsG/fPjRq1AhisRgmJibo2LEjNDQ0sHDhQiYB3RXFKURgekZGxmcf/5mqSsny/X3z5g2ICESEt2/fSiV7KCgowOHDh5kFE6alpZV6PalSpQrvgZrFUVBQwJQpU0rs9/T0ZOYUguDgYIwdOxYPHjyAra2tTCpIFUdFRUVmmYaEqOxhbm6OixcvSmWsBoBXr17B3t6eyYSYLJ3F2yEfHx/ejltenj9/jgEDBiA2NhYikQi3b9+Gubk5RowYAW1tbSZjD59O1kjaRRUVFWzZsoV3n2QiTCQSYc6cOVK/l4KCAvzzzz9M7jcKCwtL/U3cv3+/RNUNviEiXL58WSooS1FRUWZthSyYMmUKunXrhpo1a8La2lpmmc/k5eXh6urK5NifIzIyssxxfBYT9GFhYRg4cGCJCmMfP35EREQEk3s2IZxCeXft2oXffvsNLi4uSEhIQG5uLoCi7Of+/v44fPgw786AgACpv8ViMfT09DB06FDMnDmTd1/xcvPXr1+XWpBfUFCAqKgoGBoa8u4FgAcPHpSaEbywsJBJoLyEfv36AQA+fPjA7WMVfPs18DknFRwcjKFDh+LatWul9nt/tkWM7969w6lTp0pte1lkEy1rkfPz58+hr6/PLFGUrLzFfw/Dhg3j5Zhfw71799C5c2dkZGQgNzcXHTt2hLq6OhYvXozc3FysWbOGd6eWllaJ3yARwcjIiGm1li1btiAkJAQODg4wNTXF8OHDMWTIEF7iY35Erl27xtuxJGOsPj4+aNq0KQDg/PnzmDdvHhYvXiy1WOF7qGpVyZdp3749Tp06JfNgbiG8Qp1rJfwiq4pcZSFEXAdQMm5GFgj1XkuSo7Rv315qP6ukjwsWLEBQUBA6derE7bOzs0ONGjUwZ84cXLhwAaqqqlyCLL5ISEj4bBD533//jcmTJ/MaRC4JhN+0aRN3nX79+jVGjhyJli1bYtSoUdx8fXR0NC9OoCgOYMGCBejSpYvU4oCoqCi4u7sjLS0N48aNQ35+Pi9VGit84Hp54TPYQ0FBAcbGxuX6gfKxmhIoCvAoLQuBvr4+s2xV38MgR1nwXWhg4cKFiI6O5hqo4jd2Qgf/siiqIMvyFwC4QddOnTohJiYGjo6OSElJwePHj9G7d2/ePP8lsPn+/fswMDAoNQtzpfP7wszMDEZGRqUOvGRmZgr0qoowMTEpMXD6XxFioRLw+XKULIu7yHpAVlbl5otjZGTE9D38nrwVxSmUt9L5c3plTb9+/dCyZUs8evQI9erV4/a3b9+e135ZcdLS0rgb/V27dqFHjx7w9/fHlStX0LVrVybOT6lVqxZ8fX3h6+uL8+fPY9y4cXBzc2MSGKCqqspd06pXr47U1FSuYgqrezcFBQWun6evr4+MjAxYWVlBU1OTWT+poKCA66vo6uri4cOHqF27NkxMTJhlLwWK+g6SCU5tbW08ffoUtWrVgp2dHZNAmorkFAJTU9PP3nOzmCxv167dZ50nTpzg3SlrJBPWIpEItWrVKvG4SCT6Ygb4/4qZmRkSExNL9LujoqJgZWXFxClh8+bNWLt2Le7evYtz587BxMQEgYGBMDMzEzTzJJ88ffoUqampUhlRWFSQsre3x/Hjx6GtrY0GDRp89jfDqk3y8PCAmZkZjh8/XmplDxakp6eX+h7m5ubi/v37P40TECZI39PTEwoKClw/RcLAgQPh5eXFJHD908QskuDJJk2aMKn6I1m4R0RITk6GoqIi95iioiLq1atX6iKbb8XR0RGBgYFYt24dgKJ2ITs7G3PnzmXa3xYiKKu88DlWN2nSJMTGxqJdu3aoWrUqs/mC/fv3o0uXLlBQUChRGfFTWAVsLl++HLNmzcKwYcOwb98+uLm5ITU1FRcvXoS7uzsTp5ubGzp37lwiiPHt27fM7tmEcArl9fPzw5o1azBkyBBERERw+1u0aAE/Pz/efcDnA0zev3/Pu09Sbl4kEpXISgsAysrKWLFiBe9eoKja0JkzZ0r0fSMjI5klBygoKIC/vz/WrFmDx48fIyUlBebm5pgzZw5MTU0xYsQIJt7ywOe42rlz5xAfH19qJVi+g2h0dHSQkpICXV3dMjMUSmCRUTQhIQFdu3ZFTk4O3r17Bx0dHTx79oyrXsJinqSszyo3N1eq//IzeIUI0vfw8ECjRo2QlJQk1d/u3bs3LwFCpfHp3LGk32thYQF5eXYhRb169UKvXr3w9OlTbN68GSEhIZgzZw46deqE4cOHw8nJiamfJV9qD4rDom3o3r07AGDAgAHc65D8hnr06MH9zXebeP/+fa6ax6ecP3+eC6Jfu3YtqlWrVun8Crp06YIZM2YgOTkZDRs2hKqqqtTjrPr4QniFOtdK+OV7iRn8+PEj0tLSULNmTZlcU4SqPCvrai2A7JOHJicnlxqvY2JiwlUSqV+/Ph49esSrV4gg8j///BNHjx6VWlymqakJHx8fODo6wsPDA97e3nB0dOTFJyEuLg5+fn4YO3as1P61a9ciJiYGu3btQt26dbF8+fLKwPUfmVmzZuGPP/7A5s2beS0VUBZaWlp49OhRiVIYCQkJzDIFAEBqaio2bdqE1NRUBAUFQV9fH0eOHIGxsTEXfCEEb9++5fV4S5cuxcaNGwVZdf0lvvVcyyp5URqsMsv7+/sjICAA7u7uUFdXR1BQEMzMzDBmzBhUr16dibO8WFtbIzExUaYleSqKE+D3Zs7MzKzUwaUXL17AzMyMyeDSxYsXUVhYiCZNmkjt/+effyAnJ4dGjRoB4HcFvRALlYCijtPUqVNL7C8oKICrqyuTjAxCDMgCRQEta9asQVpamkwCWgIDAzFjxgysXbtWpivLhfBWFKdQ3krnz+kVgl9++QXZ2dk4evQoWrduDWVlZfz666/MAjAUFRWRk5MDADh27Bg3Ga+jo1OijC1LLly4gG3btmH79u148+YN+vfvz8TTtGlTxMXFwcrKCl27dsXkyZORnJyM3bt3cwPefNOgQQNcvHgRlpaWaNOmDby9vfHs2TNs3rz5i1XC/iu2trZISkqCmZkZmjRpgiVLlkBRURHr1q1j2uesXbs2bt26BVNTU9SrV4/7za5Zs4bZvUVFcYrFYpkHkX+amT8vLw8JCQlYtmwZFixYwLsPQIlMt3l5eUhMTMS1a9eYDsbL8v2NjY0FEcHBwQG7du2SGrdSVFSEiYkJs+xnXl5ecHd3x4cPH0BEuHDhAsLDw7Fw4UIEBwczcQLA6tWr4e3tjd9//x0LFizg3k8tLS0EBgbKLHD91atX0NLSktrH533x8OHD0aBBA4SHh6NatWrMrt09e/bkssH27NlTkKQOsqzsUTxANDo6GpqamtzfBQUFXPA8nwjhLI4QAfMxMTGIjo4uERxgaWmJe/fuMXE2bNiwzL7Q3r17ec+iJZnwc3NzQ1BQkMwyHy5duhSdOnWCtbU1Pnz4AGdnZ9y+fRu6urpMM2wKEZSVmZkJkUjEfY8kfXxra2uMHj2aex6fY3WhoaHYtWsXk4o3xenVqxeysrKgr6//2e8mi6xnEv7++2+sW7cOgwcPRkhICKZNmwZzc3N4e3szK/8uCbj6lPv370u1jT+6UyjvrVu30Lp16xL7NTU18erVKybOSZMmYfny5SX2v3v3Dt27d+c9OCItLQ1EBHNzc1y4cAF6enrcY4qKitDX14ecnByvTgne3t4YOnQoHjx4gMLCQuzevRu3bt1CWFgYDh48yMS5YMEChIaGYsmSJVJtra2tLQIDA2USuF5QUMAFnRRfCHbkyBHe5qwnTpwIV1dXzJkzh7e+dFkEBARwC/MDAgJk3vf19PREjx49sGbNGmhqauL8+fNQUFCAq6srPDw8eHVJfpsikQjBwcFSQVAFBQU4ffo06tSpw6tTSC8gTLD8mTNncPbs2RLHNzU1xYMHD5g4CwsL0a5du1IfW7VqFbMFaBL09PTg5eUFLy8vrFixAlOnTsXhw4ehq6uLsWPHYsaMGbxV5Hn37l2JINjS+OOPP74pjufTRbCyRqhK5I6OjoiLiyvx3sXHx6Nbt25c/8HZ2bnS+ZWMHz8eQOkxOSz7+EJ4hTrXSn4ucnJyMHHiRISGhgIAt2Bz4sSJMDQ0xIwZM5i5X716hcjISKSmpmLq1KnQ0dHBlStXUK1aNSYxmkIlBmjTpg2T45ZFnTp1sGjRIqxbt47rJ+Xl5WHRokVcX/DBgwe89/+FCCJ//fo1njx5UiKD+9OnT7m5cS0trRLJPb+V6Ohorgp6cdq3b4/JkycDALp27crf74cqKRdqamqUmprK2/Hq169PampqVKVKFapVqxY1aNBAauObyZMnU8uWLenRo0ekrq5Ot2/fpri4ODI3NycfHx/efUREJ0+eJGVlZerQoQMpKipy79/ChQupb9++TJxZWVnk6upK1atXJzk5ORKLxVIbK6pVq0YpKSnMjl8asjrXtm3blmtr164db85PUVFRobS0NCIi0tHRoatXrxIR0fXr1+mXX35h5i0PfLcNFcU5ceJECgoKKrF/xYoV5OHhwZunOCKRiJ48eVJif3p6OqmoqDBx/vrrr7Rz584S+3ft2kWNGzdm4jQ0NKT4+Hgikv7cdu/eTebm5kycRER6enoUHBwstS8vL4/69etHderUYeJs06YNjRo1igoKCrhzzcjIoNatW9OuXbuYOP/++2/S1dUlPz8/UlZW5t7fTZs2Udu2bZk4tbS0SFFRkcRiMampqZG2trbUxgohvBXFKZS30vnzfablhc/r+LNnz8jBwYFEIhGJxWLuuG5ubuTl5cWL41N69OhBnTp1onnz5pGCggLdv3+fiIiio6PJ0tKSiVPCrVu3yNvbmywtLUleXp4cHR0pNDSU3r59y8yZmppKSUlJRESUnZ1NY8aMITs7O+rTpw+lp6czcV68eJFOnDhBRESPHz+mTp06kbq6Otnb21NiYiITZ1RUFHe9vn37NtWuXZtEIhHp6urS8ePHmTiJiDZv3kybNm0iIqJLly6Rrq4uicViUlJSooiIiErnN7B3716pbefOnfTHH3+QoaFhiX4iaw4ePEht2rSRqXPu3Lk0efJkZscX4v1NT0+nwsJCJsf+HFu2bCELCwsSiUQkEolk8h2ysrKiPXv2EJH0dTM5OZmqVq3KxLlo0SKp32P//v1JLBaTgYEBs7ZXRUWFbt++zeTY3xtaWlp09+5dIiIyNzfnrnN37twhZWVlXl2S76pYLOb+LdkUFRWpVq1adODAgR/eSUS0b98+2rdvH4lEIgoLC+P+3rdvH+3evZvc3d2pVq1avHuJin6bkvHX4r/Tixcvko6ODhOngYEB9z0qTmRkJLOxJCKiV69e0fPnz0vsf/78Ob1+/ZqJMy8vjzZv3kxTp06lcePG0fr16yknJ4eJS4KOjg7dvHmTiKQ/07S0NN5/pxJatmxJYWFhRET06NEj0tDQoGbNmpGuri75+voycRobG9ONGzeYHPt7Q1lZmbtn0dPT465nKSkpvP9O69evTw0aNCCxWEx2dnZS82t169YldXV16t+//w/vFNJLRGRmZkZHjx4lIunfaWhoKFlZWTFxmpubk7e3t9S+t2/fUsuWLally5ZMnEJy+vRp6tChA+np6ZGysjK1aNGCoqOjmflq1qxJx44dIyLpz/TGjRukpaXFxOnh4cH15/Pz86lFixYkEolIVVWVYmNjmTjV1NTozp07TI79vaGpqcldTzU1Nen69etERHT+/HmqXbs2ry5TU1MyNTUlkUhERkZG3N+mpqZUq1YtcnR0pPPnz/PqFMobFBREQUFBJBaLacGCBdzfQUFBtGzZMurVqxfVr1+fV6cELS0t+vfff4lI+nd65swZ0tfXZ+a8dOlSif2BgYGkrq7OxFmcrKwsWrx4MVlZWZGKigq5uLjQiRMnKCwsjGxsbKhjx468uVRVVcnNzY3OnDnD2zEr+R9ubm7UsGFDevPmDbfv1KlTpKGhQcuWLat0VvLDI0SsjlBeoc6VLyZNmkQNGzakM2fOkKqqKncue/fuZXYNJyJKSkoiPT09srCwIHl5ec47a9Ys+u2335g4e/bsSa6urpSbmyv1ucXGxpKFhQUTp4TTp0+Ti4sLNWvWjJu/DQsLY3KdjY+Pp6pVq5Kenh61b9+e2rdvT/r6+lS1alU6d+4c516yZAmv3rLuW2JjY0lNTY2IiuZ2+ewzOTs7k5mZGe3evZsyMzMpMzOTi/lydXUlIqLw8HBq2LAhb04iIiMjo1KvY8uWLSMjIyMiKvqOV6tWjRdfZcZ1geA7G8uX8Pf3h7u7O4yMjFBQUABra2sUFBTA2dkZs2fPZuKcMWMG/Pz84OXlxa00BwAHBwesXLmSiXPYsGHIyMjAnDlzUL16dZmtavfw8MCKFStKzQLBClmd639ZjXv//n0YGBhALBbz8hq0tbW5zPGGhoa4du0a7Ozs8OrVKy77ZiU/Frt27Sq1ZG3z5s2xaNEiXlehS6oGiEQizJkzR2pFfkFBAf75558SWRP54vr167C3ty+xv0GDBrh+/ToT56BBgzB9+nTs3LkTIpEIhYWFiI+Px5QpU5iVqQWAQ4cOwdHREZqamujXrx/y8/MxYMAA3Lx5k9mq/sTERKxduxZisRhycnLIzc2Fubk5lixZgqFDh6JPnz68O1esWIH169ejV69eWLRoEbe/UaNGTMp1A8JlZRDCW1GcQnkrnT+ntzzw2U/09PSEgoICMjIyYGVlxe0fOHAgvLy8sHTpUt5cElauXInx48cjMjISq1ev5rIRHDlyBJ07d+bdV5w6derg119/hbu7OwYNGsQ8SxcAqWzjqqqqzDIhFEdSBQYoqtISFRXF3NmpUyfu3xYWFrh58yZevHjxVWV0/wuurq7cvxs2bIh79+7h5s2bMDY2hq6ubqXzGygtI3W/fv1gY2OD7du3y7TkfO3atXHx4kWZ+YCi97xx48b466+/mBxfiPf3xIkTUFNTK1FhYufOncjJyWGWYd7FxQUuLi7IyclBdnZ2iapZLEhLS0ODBg1K7K9SpQrevXvHxLlmzRps3boVAHD06FEcPXoUR44cwY4dOzB16lTExMTw7nRwcEBSUhIsLCx4P3ZZmJub4+LFi1LZlIGizEP29va4e/cuE68sK3sUFhYCKKr0dvHiRWbtrNBO4H9j2iKRqEQboKCgAFNTUyb9QQBo1aoVwsLCMH/+fO41FBYWYsmSJWVmh/xWRo4ciQ4dOiA+Ph6//PILAGD79u0YPnw4QkJCmDiBorGdHj16cFnmJOzYsQP79+/H4cOHeXfKy8tL9R9kQWFhYamZ8u7fvy81n8An165dQ+PGjQEUvZ+2traIj49HTEwMxo4dC29vb96dPj4+mDt3LjZt2sRbptAvERYWhoEDB3LVLyR8/PgRERERzMYIf/nlF7x48QImJiYwNjbG+fPnUa9ePS6jNZ9I2qPExER06tRJKvuuoqIiTE1N0bdv3x/eKaQXAEaNGgUPDw9s3LgRIpEIDx8+xLlz5zBlyhTMmTOHiTMmJgatWrWCtrY2fv/9d7x9+xadOnWCvLw8jhw5wsQJAAsXLkS1atUwfPhwqf0bN27E06dPMX36dCbeVq1a4ejRo0yOXRoPHjwotS9YWFiIvLw8Js7IyEjuGnPgwAGkpaXh5s2b2Lx5M2bNmoX4+HjenX369EFsbCxq1qzJ+7E/h5ycXKmVf58/fw59fX0mGWIVFBS4+Vh9fX1uzE5TUxOZmZm8utLS0gAA7dq1w+7du6Uy5rNECG9AQACAoozra9askaq8IGl7WY3ZOTo6IjAwEOvWrQNQ1O/Nzs7G3Llz0bVrVybOP//8E126dJHKXr906VLMmzcPhw4dYuIEgN27d2PTpk2Ijo6GtbU1xo8fD1dXV6lKZM2bN5cah/5WtmzZgpCQEDg4OMDU1BTDhw/HkCFDmFWW+5QPHz6UyI7KqtLShw8fcPXqVTx58oS7h5Tg5OTExBkcHIx+/fqhR48eiI6OxtmzZ+Hk5AQ/Pz/eq0BUNGd5sbOzw+HDh2FkZPTTe/l0yqoaw/fgFepcZc3evXuxfft2NG3aVGrOycbGBqmpqcy8Xl5eGDZsGJYsWSI1ttG1a1deqzAUR4hqLUBR3Ndvv/0GFxcXXLlyBbm5uQCKsoX7+/vzPn7VvHlzpKWlYevWrUhJSQEA9O/fH87Oztx7/dtvv/HqBIrmZoYPH46lS5fi119/BQBcvHgRU6ZM4e7XL1y4gFq1avHmXLt2LTw9PTFo0CDk5+cDKBq7Gzp0KNdPrVOnDu9VaufMmYNx48YhNjaWGz+7ePEiDh8+zPV9jx49yl+2fV7C3ysAP/pKIgn37t2jQ4cO0fbt25lnCFdVVeUy0nyaMaVKlSpMnGpqapSQkMDk2J+jV69epKGhQWZmZtS9e3fq3bu31MYCoc61PKirq/P6exk8eDAtXbqUiIjmzZtHenp6NHLkSDIxMWH2/paXirKykW9nlSpVSs3ydvv2bd7bB0lVAJFIRM2bN5eqFODo6EijR49m1h7q6OjQ2bNnS+yPj49nlr0kNzeXRo4cSfLy8iQSiUhBQYHEYjG5urpSfn4+E6eE48ePk7q6Ou3bt4+cnJzI2tqasrKymPl0dXW5z87S0pKioqKIqCg7DKvMZ0pKSlzmqOK/i5SUFFJSUmLirKSSSir5Vvi8jlerVo3Lmlf8uKmpqaSqqsqL43uivH2Ebdu2UXZ2Ni/OESNGMMs4Vhbz588vNZsoSzZv3szbe/Y1CJFNqaI4y4Jl+/D69Wup7dWrV3Tjxg0aOHAg1atXj4mzLMLCwqh69eoydRKxfX8tLS25LNXFOXnyJLOMykJhZWVFe/fuJSLp69vy5cuZVEYkKrq3yMjIIKKiDECjR48moqJqH6zuF9euXUtGRkY0d+5cioyMlMqWvW/fPiZOkUhEjx8/LrE/KyuLFBQUmDiJhKvsUVEwNTWlp0+fytSZnJxM+vr61LlzZ1JUVKR+/fqRlZUVVatWjWlG1QkTJpCNjQ09f/6ctm7dSsrKyhQZGcnMR0Skra3NZUstzo0bN3jLWr1v3z76+PEj9+/PbawYMGAAjRo1ioiK2t67d+/S27dvycHBgYYNG8bEqaqqylX27NGjBy1atIiIiuZNWI3r1K9fn9TV1UlNTY1sbW2ZV98lIhKLxaW2vc+ePWNamXbEiBFchd+VK1dyFXm1tLRo+PDhTJwhISH0/v17Jsf+npxCeQsLC8nPz49UVVW5yh5KSko0e/Zspt6kpCTS0dGhoKAgatq0KbVp04b5/aOJiQlXybQ458+fJ1NTU6ZuWWJvb0+bN28mIul+r6+vL7OM9lWqVKHMzEwiIho1ahRXdffu3bvMMjn7+fmRrq4uDR06lP766y+pbNmlVQPmi7L6vg8ePGB2nenYsSNt3bqViIhGjhxJjRs3pi1btlCnTp2YVf6tSLRt25ZevHghU2dmZiZZW1uTlZUVycvLU9OmTalq1apUu3btUr9ffLF48WIyNDSktLQ0WrRoEWloaFBcXBwzHxGRhoYGjR49mi5cuFDmc3Jycrj+BZ88efKEli5dSnZ2diQvL0/dunWjXbt2UV5eHu+u7Oxscnd3Jz09PRKLxSU2Fhw5coT09PRKVOiSVO5iSW5uLnXo0IGaN29OampqtGLFCqa+iuQsD5UZwf8bQlVjEMJbUSpPKCsrc9+P4t+VxMRE0tDQYObV0NDgxqmKe9PT05nFSgpRrYWoaLwjNDS0hPfKlSu8ZeSW8PHjRzI3Ny91vIw1b9++pZEjR3KV18ViMSkqKtKoUaO4+9SEhATeYjjz8/Pp1KlT9OLFC3r79i0lJSVRUlIS02rgxYmLi6NBgwZx41aDBg0q9V6ZDyozrpcTExMTKCgo8HrMV69eITIyEqmpqZg6dSp0dHRw5coVVKtWjcsiyDfGxsYwNjZmcuxP0dLSwqNHj2BmZia1PyEhgdn5GRkZ8Z65ozxoaWkxyez7OYQ61/LA9+tauXIlPnz4AACYNWsWFBQUcPbsWfTt25dZxYBK2GJhYYGoqChMmDBBav+RI0d4z3wmyfbt5uaGoKAgZqvWS8PR0REzZ87Evn37oKmpCaCo7f/jjz/QsWNHJk5FRUWsX78e3t7eSE5ORnZ2Nho0aABLS0u8f/8eysrKTLxAUfa+sLAw9O3bF1ZWVjh16hTTrG8NGjTAxYsXYWlpiTZt2sDb2xvPnj3D5s2bYWtry8RpZmaGxMREmJiYSO2PioriNePDp6SmpmLTpk1ITU1FUFAQ9PX1ceTIERgbG8PGxuan8lYUp1DeSufP95mWB0nlGj549+5dqVkCX7x4USKbH58UFBRg7969uHHjBoCijAhOTk5S2Y5YYGlpWa7njRkzBk2aNOGlH/P06VN07twZenp6GDRoEFxdXVGvXr1vPu7n2LlzJ+bOnYsmTZrA1dUVAwYMYJ651dPTE2PHjoWTkxNcXV3RqVMn5p8nUNRfMTQ0xODBg+Hq6gpra+tKJ0Pev3+P5cuXMxsD0NLSKpGhn4hgZGSEiIgIJs5P7/2JCI8ePcKlS5eYZZ0sC9bvb0ZGRokxHaBojCwjI4M3j729PY4fPw5tbW00aNDgs1UXrly5wpu3OF5eXnB3d8eHDx9ARLhw4QLCw8OxcOFC3rOWSNDW1kZmZiaMjIwQFRUFPz8/AEXfKRaZGAFg7NixAIB58+aVeEwkEvHqLV5lLTo6mrsnBoqu68ePHy/1+8UXsqrssXz5cowePRpKSkpfrMQ4adKkH9b5KZKsl7LE1tYWKSkpWLlyJdTV1ZGdnY0+ffrA3d0d1atXZ+ZdsWIFXFxc0LRpUzx48ADh4eGlVsHgk9zcXC6bUnHy8vLw/v17Xhy9evVCVlYW9PX1P1sdlu+2oThLly5Fp06dYG1tjQ8fPsDZ2Rm3b9+Grq4uwsPDmThtbGywZs0adOvWDUePHuUy+D98+LBEZQi+kHX1XaDoWlJaW3f//n2p9phv1q1bx2XzdHd3R9WqVbnsk2PGjGHiZFUB5ntzCuXNz8/HrFmzMHXqVNy5cwfZ2dmwtraGmpoanj17xuy+sW7dujh48CA6duyIJk2a4ODBg0zHtQEgKyur1OuJnp4eHj16xJtHR0cHKSkp0NXV/WK/5MWLF7x5JXh7e2Po0KF48OABCgsLsXv3bty6dQthYWE4ePAg7z4AqFatGq5fv47q1asjKioKq1evBgDk5OQwGwcIDg6GmpoaTp06hVOnTkk9JhKJeO8jSfpkIpGIc0soKCiQymLNN/7+/tzY34IFCzBkyBCMGzcOlpaW2LhxI28eLy8vzJ8/H6qqqlyl47JYtmzZD++VwKqi8OeoUaMGkpKSsH37diQlJSE7OxsjRoyAi4sL07Zw2rRpeP78ORo1aoSCggJER0ejadOmzHwA8OjRoy9WpFFWVsbcuXN5d+vp6cHLywteXl5YsWIFpk6disOHD0NXVxdjx47FjBkzeKuWM23aNMTGxmL16tX47bffsGrVKjx48ABr166Vqu7MJxMnTkT//v3h7e3NvIro1atXS+zz8fHhxiVbt27NPadu3bqVzkq+S4SqxiCEV+jKE7KiUaNGOHToECZOnAjgf9Wpg4OD0axZM2beKlWq4M2bNyX2p6SkQE9Pj4lTiGotAHDr1i20bt26xH5NTU28evWKV5eCggIXNyhLCgoKcOXKFSxZsgQBAQFc9VBzc3OpPn/9+vV5c8rJycHR0RE3btyAmZmZzK4peXl5GDNmDObMmcNsXO5TRPS9Rr7KECECyK9evYoOHTpAU1MT6enpuHXrFszNzTF79mxkZGQgLCzsmx1funkrDosbuSlTpuCff/7Bzp07UatWLVy5cgWPHz/GkCFDMGTIECY3GDExMVi6dCnWrl0LU1NT3o//rcTHx6NRo0a8BPV8z+eqrq6OpKQk3gOQv0c0NDSQmJgo03P9GZwbN27EhAkTMHXqVDg4OAAAjh8/jqVLlyIwMBCjRo3ixVMad+7cQWpqKlq3bg1lZeUyJ3L44MGDB2jdujWeP3/OlZ1PTExEtWrVcPToUSalsiZNmlTqxPW7d+/QvXt3XgfZylqwc/78eVhYWEhNXOzevZs3r4RLly7h7du3aNeuHZ48eYIhQ4bg7Nmz3IAsiyC/4OBg+Pj4YOnSpRgxYgSCg4ORmprKBbQMGjSId+epU6fQpUsXtGjRAqdPn8aNGzdgbm6ORYsW4dKlS4iMjOTdKZS3ojiF8lY6f77P9PHjx5gyZQqOHz+OJ0+elFg8yCLApGvXrmjYsCHmz58PdXV1XL16FSYmJhg0aBAKCwuZnOedO3fQtWtXPHjwALVr1wZQNBhiZGSEQ4cOybzsc2nw3f99+fIldu7ciW3btuHMmTOoU6cOXFxc4OzszKzv/++//2Lr1q2IiIjA/fv30bFjR7i4uKBXr168TdIUJz8/H1FRUQgPD8e+ffugoqKC/v37w8XFBc2bN+fdJ+HZs2eIiIhAeHg4zp07h7p168LFxQWDBw9GjRo1Kp3fwKdBF0SEt2/fQkVFBVu2bGFSgvjkyZNSTrFYDD09PVhYWEBenk2uBjc3N6m/JU4HBwc4OjoycQLCvL/GxsZYuXJliWPv27cP7u7uuH//Pi8eX19fTJ06FSoqKvDx8fns/RmLsSQJW7duhY+PD1cq1sDAAL6+vhgxYgQT34QJE3Dw4EFYWloiISEB6enpUFNTQ0REBJYsWcIsSF9WiMViAEUTJZ/2URQUFGBqaoqlS5eie/fuTPxbtmxB7969y1X6+FswMzPDpUuXULVq1c8G4otEIm5i40d0AsIHzMfGxqJdu3alPrZq1Sq4u7vz4im+6EJCXl4ePD094ejoKNUmsmh7AaBdu3awtbXFihUrpPa7u7vj6tWrOHPmDBOvEOTn5yMiIgJXr15FdnY27O3tmQZlnTx5Er1798abN28wdOhQLqDvjz/+wM2bN5mMX5WX8PBwODk5fVO7JVkAlpSUBBsbG6n+UEFBAdLS0tC5c2fs2LGDj5csGEIE/goVbCx0kHPfvn0RGRlZwvv48WO0b98e165d48VT1uLFe/fuQV9fX6pNYNVHsrS0xNy5c+Hq6iq1f/PmzZg7dy5v19TQ0FAMGjQIVapUQUhIyGc/U1aLFc6cOYN58+ZxAbH29vbw9vZmdj/j4+ODwMBAVK9eHTk5OUhJSUGVKlWwceNGrF+/HufOnWPilSWSPtm9e/dQo0YNqYB8RUVFmJqaYt68eWjSpIlQL/GbadeuHfbs2QMtLa0y+2RAUR/0xIkTP7RX6GD58PBwDB48uNTHpk6dij///JMXT1l9+r/++gutW7dG48aNuX2sFsQCRX2UPXv2cAlLrKys0KtXL2bjOhIeP36M0NBQhISE4N69e+jduzdGjBiB+/fvY/HixTAwMEBMTAwvLmNjY4SFhaFt27bQ0NDAlStXYGFhgc2bNyM8PByHDx/mxVMcDQ0NJCQkyGTsXCwWl7j3L/635N98LoqtKM7/glCxOkJ4WTifPn2KzZs3IyQkBDdu3ECnTp0wfPhwODk5MW2XhPDKylnWtVQkEkFJSQkWFhbo2bMndHR0eHMCQFxcHLp06QJXV1eEhIRgzJgxuH79Os6ePYtTp06hYcOGvPokjBw5Es+fP8eOHTugo6ODq1evQk5ODr169ULr1q0RGBjIu/P+/fvo1KkTiAi3b99Go0aNuMQAp0+fhr6+Pu9OoCh4e926dejQoYPU7zEsLAyLFi3C9evXefX5+/sjJSUFwcHBzPsJxVFSUuKCyGVFo0aNsHjxYrRv315mTqBo0UFiYqLMzrXCB67LIoC8NDp06AB7e3ssWbJE6sd79uxZODs7Iz09/Zsdn7t5Kw7fN5ASPn78CHd3d4SEhKCgoADy8vIoKCiAs7MzQkJCmKyi19bWRk5ODvLz86GiolIiSz6Lgbuvgc/g3+/5XPnuIHbo0AGurq7o06ePTLNll4efpQMuhHP16tVYsGABHj58CAAwNTWFj48PhgwZwpujOC9evED//v0RGxsLkUiE27dvw9zcHMOHD4e2tjaWLl3KxPvu3Tts3boVSUlJUFZWRt26dTF48GDeq3hIqFmzJlxdXeHr6yv1Gjp37gwAvE5ufhq08zk2bdrEm1doZB3Q0qxZM/Tv3x9eXl5Sv8ULFy6gT58+vAUMfQ/eiuIUylvp/Pk+0y5duiAjIwMTJkxA9erVS0x2ssgEee3aNbRv3x729vY4ceIEnJyc8O+//+LFixeIj49nMhDetWtXEBG2bt3KDVw9f/4crq6uEIvFOHToEO/Or4Vl/+z+/fsIDw/Hxo0bcfv27VKzb/JNfHw8tm3bhp07d+LDhw+lZofgk5ycHOzZswfbtm3DsWPHUKNGDe46y5K0tDRs27YN4eHhuHnzJlq3bs3k3riiOD8NupAEdDdp0gTa2tq8+yoaQry/06dPx/bt27Fp0yYuc8qpU6cwfPhw9OvXD3/99RcTr9Dk5OQgOzub2YC+hLy8PAQFBSEzMxPDhg3jFjsHBARAXV0dI0eOZOr/HHZ2djh8+DAvi63NzMxw8eJF5pU8PkVPTw/v37+XeWWPnxmhAuYlaGtr49ixYyUmFoOCgjBnzhze+iuSRRdfgmUwQnx8PDp06IBff/2Vm6A6fvw4Ll68iJiYGLRq1YpXX1hYGAYOHFgi2crHjx8RERHBbKxOKAoKCvDmzRup62d6ejpUVFSYt/2fg4+5A8l4oK+vLyZPniyV/UsSONm3b18oKip+8+stDQsLC7i6usLZ2Rm1atVi4gCECfwVKthY6CDnX3/9FXXr1sWGDRu4fY8ePYKDgwNsbGx4W7xefCz7S7BayLhkyRIsWbIEf/75p1SynWnTpmHy5MmYOXMmE29FITIyEpmZmejfvz+3mDo0NBRaWlrMK5l8Dr6TNrVr1w67d++W6T2wn58fXFxcZBpI87MjVJC+BC0tLYSHh6NLly5S+z09PREREcFbFYjyfmdY9e+BokQaPXr0wOPHj7mEJZKMtAcOHGBSXXn37t3YtGkToqOjYW1tjZEjR8LV1RVaWlrcc1JTU2FlZYWPHz/y4lRTU8P169dhbGyMGjVqYPfu3WjcuDHS0tJgZ2eH7OxsXjzFGT58OFq0aMFs7rI49+7dK/dzP61oXenkn8rAdf6QVGP4+PEjk2oM35OXpbNdu3a4cuUKCgoKpNp6OTk51KlTB7du3YJIJEJcXBzvlWNTU1OxaNEiqQWb06dPh52dHa+e4rx+/Rr9+vXjkjAaGBggKysLzZo1w+HDh5kl2cjPz5eq1sI6MQAALFy4EFu2bMHGjRvRsWNHHD58GPfu3YOnpyfmzJnDZbvni969e+P48eNQU1ODnZ1difeSVTICIYLIo6KiMHPmTMyfPx8NGzYsca6sYieHDh2K+vXrw9PTk8nxS0AVnPbt29PUqVOJiEhNTY1SU1OJiCg+Pp5MTEyYeTU0NOjOnTslvOnp6VSlShVm3i+RmZlJBQUFvB7z3r17dOjQIdq+fTulpKTweuxPCQkJ+ewmNMU/62/lez5XPs+TiGjSpEn0yy+/kLKyMvXr14/27t1LHz9+5O34n+P27dsUFRVFOTk5RERUWFgo9XhGRgbl5+dXOr+BJ0+e0Nu3b5kcuzi//fYbderUiTIzM6W+o1FRUWRtbc3cLyvu3LlD1atXp4CAACIievPmDTVr1oxatWpF2dnZwr44IoqLi6MPHz7wcqz58+fT3bt3eTnWf+Hdu3f0+PHjUh/j8zxVVVW58yz+3U1LS2PaZxDCW1GcQnkrnT/fZ6qmpkYJCQlMjv05Xr16RX5+ftS/f3/q0qULzZo1ix4+fMjMp6KiQlevXi2xPzExkVRVVZl5vwa++78SPn78SHv27KG+ffuSkpISGRgY8O4ojYSEBJo8eTIZGhqSkpKSTJxPnz6lFStWkI2NDYnFYpk4iYjy8/PpwIEDVL9+fZl5K4pTFvj7+9OGDRtK7N+wYQMtWrSIifPChQt0/vz5EvvPnz9PFy9eZOIUitzcXBowYACJRCJSUFAgBQUFkpOTIzc3N8rNzWXiNDMzo2fPnpXY//LlSzIzM2PirKQkrK5rsiQvL48OHDhAzs7OpKqqSnp6ejR+/HiKj49n5jxz5gyzY39PTqFYv3496enp0Y0bN7h9f/31F2loaNDp06cFfGVsSEhIIGdnZ7K2tqaGDRuSm5sbs7F1sVhc6vjGs2fPeO837Nu3jxvX3bdv32c3VuTl5dHRo0dpzZo19ObNGyIievDggUzGJz8H33MH79+/5+VYX8OyZcuoUaNGJBaLqVGjRhQYGEiPHj2S+euohD+ePHlCderUIU9PTyIq+q3UqlWL+vfvz/tc4teybds2Xse7CwsLadq0aaSkpERisZjEYjGpqKiQr68vb45PkWX7+70gRNv0OX6Gfm/dunVJLBZTs2bNaNWqVfT06VPmzs2bN9O7d++Ye74Xr6w5ePAgaWpqSvX1J0yYQAYGBlJ94Z+Bpk2bUo8ePejFixfcvhcvXpCTkxM1a9aMiVNDQ4NGjx5NFy5cKPM5OTk55OPjw5vTzs6OTp48SURF8UmTJ08mIqKgoCAyNDTkzVOcd+/eUdeuXWno0KH0119/UVBQkNRWyc+LUNc2IbwsnFlZWbR48WKysrIiFRUVcnFxoRMnTlBYWBjZ2NhQx44defUJ6ZWVMyAggPr06UOvX7/m9r169Yr69etHgYGB9O7dO+rZsyc5Ojry4vtaFi5cSC9fvuT9uHFxcbRq1SpavHgxHT16lPfj/xe6du3K63xuYWEh+fn5kaqqKolEIhKJRKSkpESzZ8/mzVGcYcOGfXZjxZEjR6h+/fp04MABevjwIb1+/VpqY4Hk/RSJRNz9qVgs5v5mxfz580lLS4v69u1L/v7+zPsPFT5wXagAcj09Pbpy5UoJb0xMDNWoUYOZ90uoq6v/8Dfo3zM/wwBIeWDxPSooKKDo6GgaOnQoaWhokLa2No0aNYq7yeObZ8+eUfv27blGX3I+bm5u5OXlVen8AalWrRolJiYSkfRvMTU1ldegt+9hAi4pKYl0dHQoKCiImjZtSm3atPkugtaJ+G0fhBiQLS98nqehoSEXXFH8u7t7924yNzfnxfG9eCuKUyhvpfPn+0ytrKy4e4qfGW1t7VKDzOLi4khbW1uAV1QSvvv5J06coJEjR5K2tjZpamqSm5sbHTt2rMTiQj65e/cu+fn5kbW1NcnJyZGDgwMFBwfTq1evmDnfvXtHW7ZsoS5dupCioiLVrFmTZs+eLZNJuLi4OBo3bhzp6emRuro6ubq60pEjRyqd38DGjRtpx44dJfbv2LGD2eJqExOTUtuH8+fPk6mpKRPnr7/+Sjt37iyxf9euXdS4cWMmTiJh3l8Jt27doh07dtCBAwcoPT2dqUskEpUavJOVlUUKCgq8uho0aMBNjtevX58aNGhQ5saKsLAwatGiBVWvXp17bwMCAmjv3r3MnOXhW69rQUFBXFDSp4PbQkyWS643Xbt2JUVFRWZ9MwUFBTI1NaWZM2fStWvXmDi+ByeRcAHzixcvJkNDQ0pLS6NFixaRhoYGxcXFCfJaimNra0sZGRlCv4z/jEgkoidPnpTYn5iYyHt/u3g7X3wS7tON1SRceno61alTh1RUVEhOTo5r6yZNmkRjxoxh4iwvP9Pcwa1bt8jb25ssLS1JXl6eOnbsSKGhoUxc7du3p02bNjGbLP5enEJ6MzIyyNjYmDw9PcnS0pIGDhzILMnN18BqPvPt27d04cIFSk5O5i0xSVmU1fd98OABr4vItbW1ubFzLS0t0tbWLnNjQX5+Ps2bN48MDAyk2t7Zs2dTcHAwE2d54aPt9fT05OZfPD09P7ux4tq1azRz5kwyMzMjBQUF6tq1K23dupVZkLeuri6pqqrS4MGD6dChQzJrE4TwChUsv3XrVtLW1qZLly7RuHHjyMDAgG7duiXz1/EpfLe9SkpKpd7HJCcnM0umIcTnuWzZMu7+9+jRo6SkpERVqlQhsVhMgYGBTJzBwcEkLy9PampqZGJiQqamptzGMjGAEEkmKoqzvFQGrv83du3aRd27dycFBQWqV68erVixokQw8507d3gfnxTCK2ungYEB/fvvvyX2X7t2jUvWdPnyZapatSovvq9FqDhJIcaSWP1Oc3Nz6d9//6V//vmn1KQALJIoyxIhgshPnjz52Y0VxfsLn24s+g8VPnBdqADyESNGUK9evejjx4+kpqZGd+/epXv37lGDBg3Iw8ODmfdLfGsj9aUbclncnN+5c4dmzZpFgwYN4gZ8Dh8+LNPJm7Lg+yLwvZ4r607p+/fvaceOHVSvXj1mFwEhsnP/7E6hgwLU1NS4zFTFz/XixYuko6PDm0foCTgJZ8+eJVVVVXJwcOAy6X8P8N0+yHpAtrzweZ6TJ0+mli1b0qNHj0hdXZ1u375NcXFxZG5uzmvGh+/BW1GcQnkrnT/fZxodHU2Ojo6UlpbG5Phl8fLlS4qOjqbNmzdTaGio1MaC3377jWxsbOj8+fNUWFhIhYWFdO7cObK1taWhQ4cycX4tfLb7BgYGpKSkRL169aKdO3cynygnImrSpAmJxWKqX78+/fnnn3T//n3mzoEDB3IZcN3d3ens2bPMnUREM2bMIFNTU1JUVKRu3brRtm3bmPcbKorT0tKSTpw4UWL/yZMnqVatWkycVapUKbUCT2pqKtPKHqX93u/evUtqampMnETCvL+yRLK4VyQSUVhYmNSC3927d5O7uzvv5+nj48P9LubOnUs+Pj5lbiz4+++/SVdXl/z8/EhZWZn7Xm3atInatm3LxFlevvW6ZmpqymXOl/Vgd1nIorKHxNG8eXMSiURUr149WrJkCWVmZjLxCeUkEi5gnoho2rRpVLVqVdLS0qJz587J1F0WLMdC379/zyyTk2R8TiwWk52dndTYXN26dUldXZ369+/Pm+97oGfPnuTq6kq5ublSn1tsbCxZWFgI+tq+9XskdGBqWZw7d45p1R8hqrUKVSFWyMq0t27dIn19fXJxcWG6oPpr+JEXe0gW8InFYlqwYIHUor5ly5ZRr169qH79+rz5QkJCuLGFTZs2ybyas6+vL5mbm9OWLVuk+r0RERHUtGlTJs7ywsf3qG3btlywV9u2bcvc2rVrx8Mr/jJxcXE0fvx4bgE7C4SobiSUV6ggfSKiVatWUZUqVahGjRp0+/ZtmXk/B99tb926den48eMl9h8/fpxsbW1583xKfn4+7dy5k+bNm0fz5s2jnTt3Ul5eHjPfp6SlpdGuXbsoKSmJmaNatWq0YMECmQcKCpFkoqI4P3efX/zeeOvWrbwmtBPCK4RTiGoMQnll7VRVVaXY2NgS+2NjY7nx9NTUVGb9li9RudiDPXwvDnjy5AmdOXOGzpw5U2oiBr4RKoi8IlDhA9eFCiB/9eoVdejQgbS0tEhOTo6MjIxIQUGBWrduLWhW3G9tpD53Qy6Lm/OTJ0+SsrIydejQgRQVFblzWbhwIfXt25eJ82vg8yIg5Lnevn2boqKiuGDYTwcqMzIymN24P3r0iAICAqhhw4YkEomoSZMmTDyyys5dkZzFgwI+FxDAKiigS5cuXEkaSXtfUFBA/fv3/y7ah2+hrIUAOjo6VKdOHZlkCiwvLDvDshiQLS98nmdubi6NHDmS5OXlSSQSkYKCAonFYnJ1dWU6SCqEt6I4hfJWOn++z1RLS4sUFRVJLBaTmpqaTIIR9u/fT+rq6iQSiUhTU5O0tLS4jZXz5cuX5OTkRCKRiBQVFblz7tWrF5Pyff8FGxsb3jIjrFu3rlznxWeGgj/++KPUjBcscXZ2lvmEHxFR8+bNZV6ppaI4q1SpUupCmrS0NGZZsiwsLGjz5s0l9oeFhTELiNXR0Sl1oUV8fDxpaWkxcRIJ8/4SFbU1q1atounTpzNNSFB8ge+ni34VFRWpVq1adODAAV6dQmNlZUV79uwhIun7h+TkZMEyDEn4kQPBiiNkZQ9JJRMbGxuSk5OTSaCSLJ2yCpgvK1O/kZERubi4fDel7vn+zbx7947c3d1JT09PKpOTZOMLyTicSCSiKVOmSI3N+fv707Zt2yg3N5c336eEhoaWukgzNzeX2aJYHR0dunnzJhFJf25paWmkrKzMxFlevvV7JHRg6qf8888/5OHhQb/88gupqKjQwIEDmblkXa1VKKesvGUtfKhSpQrnFGIRxKew6K9cvHiRpk6dSgMHDqTevXtLbXwiWcQnEonIyMhIamFfrVq1yNHRkc6fP8+rU0hq1qxJx44dIyLpz+3GjRtM76HKw8/S7y1OQkICTZ48mQwNDZneK0qQVXUjobyyCpYvKxFgjRo1yMnJSSbJAcsD37+ZQ4cOkY2NDe3cuZMyMzMpMzOTdu7cSXZ2dnTo0CEmizevXbtGZmZmpKKiws2dqqqqkqmpKSUnJ/PmERptbW26c+eOzL1CJJmoKE4rKyt6/vx5if1xcXGkqanJxCmUVwinUEnxhPDK2uns7ExmZma0e/durq2XVKt2dXUlIqLw8HBq2LChTF+XhMrA9R/Hm52dTW5ubiQnJ8fNHcjLy9Pw4cMFT2zJgpcvX9Jff/1FI0aMoBEjRtCyZcuYVsn+FEkyOZZU+MB1oQPIz5w5Q6tWraLFixfT0aNHmfu+hBCNFJ8BF02bNqWlS5cSkfS5/PPPP2RoaMiL41vgcxWREOf67Nkzat++PTeZLHG6ubmRl5cXEycR0evXr2njxo3UoUMHkpeXp1q1apGvry/Tmy1ZZeeuiM78/Hw6deqUzAPNkpOTSV9fnzp37kyKiorUr18/srKyomrVqgly484nX1oIwHpRwNfA8joj6wHZz8HiPO/du0eHDh2i7du3c79bWSCEt6I4hfJWOn8e7+cCEVgFI1haWpKHh4cgAwC3b9+m/fv30/79+2WeZSg3N5cyMzPp3r17UpuQCFG+UAinEOUSiYi6du1KDx8+rHR+BUZGRrRv374S+/fu3cvsHnXx4sVUtWpV2rhxI6Wnp1N6ejpt2LCBqlatSv7+/kycgwYNojZt2kgNEL58+ZLatGnDNCutEO/vsWPHSEVFhWxtbUleXp7q169PWlpapKmpySwg1tTUVKYLLiSYmZlxGcKL8/LlS2aLIJSUlCg9PZ2IpO8fUlJSfqr7mTNnzvBynK9FqMoexcnPz6cDBw4wzTT8PThZBsx/LmO/UNn7S4PvMYDx48eTlZUVRUZGkrKyMm3cuJHmz59PNWrUoC1btvDmkRASEkLv37/n/bhfQiwWc1ULi/Ps2TNm318tLS1uwWbxz+3MmTOkr6/PxFlefobgyVu3bpG3tzdZWlqSvLw8OTo6UmhoaKmlwlkhi2qt34OTpfdLYw2yXgRRFnz/ZsLDw0lBQYG6d+9OioqK1L17d6pVqxZpamrSsGHDePMUp23btlyVWlkhRNtbVr/333//ZZa0qbzwPc6xefNmQcbMJP0xa2trkpOTIwcHBwoODpZZYIssqht9D16WwfJCJwcsL3y3vZ9Wqi6+mL3433x+vk2bNqUePXpItb8vXrwgJycnatasGW+eTzl27Bh169aNzM3NydzcnLp168Y0Puj333+nBQsWMDt+WQiRZKKiON3c3Khhw4b05s0bbt+pU6dIQ0ODli1bxsQplFeocxWqGoMQXlk63759SyNHjuSSUonFYlJUVKRRo0ZxcZkJCQmUkJDAxP8lfvRg7u/dyad39OjRZG5uTocPH+YWth06dIhq1qxJY8eO5eGVlo2sg8glMXuGhobcYuoaNWpQ1apV6fLly8y8REWJJmxtbalKlSpUpUoVsrOzo7CwMCauCh+4LuF7CyAXCiEaKT4HBVRVVbmVjZ9mTGG1svFr4PP9FeJcf/vtN+rUqRNlZmZKOaOiosja2pqJk6hoUKt69er0+++/08WLF5l5iiNEdu6K4iQqexUya169ekV+fn7Uv39/6tKlC82aNYt5cNCxY8do5syZNGLECHJzc5PaKiJ8X2eEHpAti59hsrGSSiqppDRUVFRk3r75+vqWOumXk5NDvr6+TN0pKSnUsmXLElku+Z4w+S9UlEGtH30grSI5p02bRiYmJnTixAnKz8+n/Px8On78OJmYmNDkyZN5cXxKYWEhTZs2jZSUlLjfp4qKCvn6+jLLBHH//n0yNzcnTU1NbuJYS0uLateuzXSRhRDv76+//kre3t5E9L/vytu3b8nJyYn+/vtvJk6hEIlEpQbwZGVlkYKCAhOnlZUV7d27l4ikf4vLly8XvFoWn22DgoICmZqa0syZM+natWu8HLM8CFXZg6goA9i4ceO4amCurq505MiRn85ZHCEC5r8n+L6GGxkZcWW01dXVuUWbYWFh1KVLF948QiMSiUot6ZyYmMgsk/OAAQNo1KhRRPS/sdC3b9+Sg4MDs8DU8sJnFaf27dvTpk2beM1OWh5EIhE1btyYAgMDKSsrS6ZuItlVaxXaKaT3e4LvttfOzo5WrlwpdezCwkIaNWoU1yf+GSir3/vgwQNmiyft7e254L7in5uvry+1bNmSibO88P090tXVJVVVVRo8eLDM+qJNmjQhsVhM9evXpz///JPu37/P3EkkXHUjIasqEQkXpP+9wPdv5uTJk+Xe+EJJSanUe9Pk5GRm7eCqVatIXl6eBg0axFWMGjx4MCkoKHDXHr6ZOHEiaWpqUuvWrWnChAlMq+gVR4gkExXFWVBQQL1796Y2bdrQhw8f6MSJE6SmpkaBgYFMfEJ6hXAKVY1BCK9Q5/r27VtKSkqipKQkmS5u/hKVc1A/jrdq1arceFlxTpw4Qbq6ut98/LIQIoi8ZcuWNGzYMKkFJXl5eTR06FBq1aoVEycR0dKlS0lFRYWmTZtG+/bto3379tHUqVNJRUWFycIheVQCAGjZsiVatmwpU+fx48cREBCAGzduAACsrKzw+++/o0OHDjJ9HcURiUQydxIRb8fS0tLCo0ePYGZmJrU/ISEBhoaGvHn+K2/fvuXtWEKca0xMDKKjo1GjRg2p/ZaWlrh37x4TJwDs378f7du3h1gs/uzz4uPj0ahRI1SpUuWbnUuWLEH79u1x6dIlfPz4EdOmTcO///6LFy9eID4+/puPX5GdAGBra4u7d++W+P6yRlNTE7NmzZKZz9fXF/PmzUOjRo1QvXp1mbSxmZmZEIlE3O/0woUL2LZtG6ytrTF69Gjm/i/B53vQtGlTXLx4EXXr1oWbmxsGDx78XbT1wLefp5eXV7mfu2zZsm9yCe2tKE6hvJVOdk4hvcVJTU3Fpk2bkJqaiqCgIOjr6+PIkSMwNjaGjY0N775OnTrh0qVLMDc35/3YZeHr64uxY8dCRUVFan9OTg58fX3h7e3NzD1s2DDIy8vj4MGDMruWV1LJj8r8+fORnp6O9u3bQ16+aLipsLAQQ4YMgb+/PxOnSCTC4sWLMWfOHNy4cQPKysqwtLTk5Z6wLAwNDXH16lVs3boVSUlJUFZW5vqiCgoKzLxCvL83btxAeHg4AEBeXh7v37+Hmpoa5s2bh549e2LcuHG8eJYvX47Ro0dDSUkJy5cv/+xzJ02axItTwv79+7l/R0dHQ1NTk/u7oKAAx48fZ3bf6uXlBXd3d3z48AFEhAsXLiA8PBwLFy5EcHAwE2dpvHr1ClpaWlL71q5di2rVqvFy/IcPHyIiIgLh4eFYtGgR6tatCxcXFwwePLjE+BKfbN26tVzPs7Ozw+HDh2FkZPTNzpkzZyIiIgIPHz5Ex44dERQUhJ49e5bow/CJEM7ixMfHY+vWrYiMjMSHDx/Qs2dPLFy4UCbugoICJCcnw8TEBNra2jJxyooXL15w/W0NDQ28ePECQNEcBl9tr46ODlJSUqCrqwttbe3P9nMlfr5o0KABRCIRRCKR1HUNKPpc09LS0LlzZ16dEpYuXYpOnTrB2toaHz58gLOzM27fvg1dXV3umsc35R2ru3btGm9OGxsbzJw5E+PHj0e3bt3g6uqKrl27Mu2rAMCtW7dgaWn5xeeFh4fDyckJqqqq3+x88+YNdu3ahW3btuHkyZMwNzeHi4sLtm/fjpo1a37z8b8Xp1DeK1euQEFBAXZ2dgCAffv2YdOmTbC2toaPjw8UFRWZeIUgNTUV3bp1AwAoKiri3bt3EIlE8PT0hIODA3x9fXnxeHl5Yf78+VBVVf3iuBKfY0mSfrZIJEJwcDDU1NS4xwoKCnD69GnUqVOHN19xvL29MXToUDx48ACFhYXYvXs3bt26hbCwMBw8eJCJ81PK6jccOXKE1zmFR48eISoqCuHh4RgwYABUVFTQv39/uLi4oHnz5rx5itO+fXts3LgR1tbWTI5fGoMGDcLBgwehoqKCAQMGYM6cOWjWrNlP683JycGePXuwdetWHD9+HEZGRhg8eDAiIyOZu4Gi9v/EiROoU6cOs99peeF7bLRNmza8Hq881KpVC48fPy4xdv7kyRNYWFgwcfr7+yMgIAATJkzg9k2aNAktWrSAv78/3N3deXcmJyejQYMGAEr2M1mOcU+dOhXPnz/H+PHj8fHjRwCAkpISpk+fjpkzZ1Y6vwGxWIyIiAh069YNDg4OuHr1KhYuXCj1vfpZvEI4R44cCVtbW1y+fJnrK7x8+RLDhg3D6NGjcfbs2Z/GK9S5qqmpQUdHh/t3JZV8LTk5OaWOWevr6yMnJ4eZ19PTE05OTli/fj03hpWfn4+RI0fi999/x+nTp3l3Xrp0ScoHFM3RTJs2DY0aNeLdJ2HFihVYvXo1hgwZwu1zcnKCjY0NfHx84Onpyauvwgeuz5s377OPswqC+Pvvv+Hh4YF+/frBw8MDAHD+/Hl07doVAQEBTDqn5YHPIHIhGDRoEKZPn46dO3dCJBKhsLAQ8fHxmDJlitSPim8eP36MKVOm4Pjx43jy5EmJ97GgoIB3pxDn+u7du1Invl68eME0MKBjx47lel6XLl2QmJjISyCVra0tUlJSsHLlSqirqyM7Oxt9+vSBu7s7qlev/s3Hr8hOAPDz88OUKVMwf/58NGzYsMQkhYaGBhPvhw8fcPXqVTx58gSFhYVSjzk5OfHuW7NmDUJCQvDbb7/xfuyycHZ2xujRo/Hbb78hKysLHTp0gK2tLbZu3YqsrCymwX3lgc/rjBADsuXlW88zISGhXM/je3BJCG9FcQrlrXSycwrplXDq1Cl06dIFLVq0wOnTp7FgwQLo6+sjKSkJGzZsYDJ50q1bN0ydOhXXr1+HnZ1dicAHFtdTIir1PUxKSuIGuViRmJiIy5cvCz4pVEklPwKKiorYvn07/Pz8kJiYCGVlZdjZ2cHExISZ8/Xr1ygoKICOjg5+/fVXbv+LFy8gLy/P7L5CVVVV5otChXh/VVVVucm36tWrIzU1lZvYffbsGW+egIAAuLi4QElJCQEBAWU+TyQS8R643qtXL+7YQ4cOlXpMQUEBpqamWLp0Ka9OCSNHjoSysjJmz56NnJwcODs7w8DAAEFBQRg0aBAT5+LFi2FqaoqBAwcCAAYMGIBdu3bhl19+weHDh1GvXj0ARfeVfKGrq4sJEyZgwoQJSEtLw7Zt2xAaGoqZM2eidevWOHHiBG+u/0J6ejry8vJ4Odbp06cxdepUDBgwALq6urwc83t0AsIEzP/++++ws7PDiBEjUFBQgNatW+PcuXNQUVHBwYMH0bZtW2ZuWWNubo60tDQYGxujTp062LFjBxo3bowDBw6UWGjyXwkICIC6ujr3b1ku0JS0vYmJiejUqZPUhLWioiJMTU3Rt29fJu4aNWogKSkJERERuHr1KrKzszFixAi4uLhAWVmZifPTsbqOHTvCxsaG6VhdUFAQAgICcOzYMWzbtg1DhgyBnJwc+vXrBxcXF2ZBYuUJWgeAMWPGoEmTJryM41erVg3a2toYOHAgFi5cyHQCV0inUN4xY8ZgxowZsLOzw927dzFw4ED06dMHO3fuRE5ODgIDA5m/hrIwMTHhdTGGtrY2l3zK0NAQ165dg52dHV69esVrEERCQgLX9/jcuBLf7bKkn01EWLNmDeTk5LjHJG3vmjVreHVK6NmzJw4cOIB58+ZBVVUV3t7esLe3x4EDB8o9//e1fNpvaNOmDc6ePVui38B3Ujt5eXl0794d3bt354Kdt23bhnbt2qFGjRpITU3l1QcACxYsKNfzNDQ0eJtDlZOTw44dO9CpUyep7xJrhPAKESw/YMAAtG7dGhMmTMD79+/RqFEjpKeng4gQERHBrJ9UHljEkrx69QobNmzgkj3a2Nhg+PDhUgvL+WThwoWYNGkSfHx80LRpUwBFcTrz5s3D4sWL8ebNG+65fI0rvXr1qtSFmY6Ojpg+fTovjk+JjY1lctwvIUSSiZ/ZefXq1RL7fHx8MHjwYLi6uqJ169bcc+rWrftDe4U6VwmJiYm4dOmS1AI3bW1tLFiwQGrc+WfwytpZWFgIPz8/LF26FNnZ2QAAdXV1TJ48GbNmzfpiAlPWtGrVitl4wPfGH3/8wXxetTT4urdp1qwZ5s6di7CwMCgpKQEA3r9/D19fX6b9MyGCyDU0NJCRkVFifjozM5Mbz2PBo0ePSl1w27x5czx69Ih/Ie853H8w6tevL7XZ2NiQiooKaWhoMC3La2hoSCtWrCixf+XKlWRgYMDMe/v2bYqKiqKcnBwiohKlszMyMmReQpfPUhS5ubk0cuRIkpeXJ5FIRAoKCiQWi8nV1ZXpeXXu3Jmsra3p77//pj179tDevXulNhYIca5dunSh2bNnE9H/SqkWFBRQ//79qW/fvkycX4NQZU0q+XpEIhG3icVibpP8zYIjR46Qnp6elLv4a2CBjo4O3blzh8mxy0JLS4tu3rxJRERBQUHUvHlzIiKKjo4mMzMzmb6W7wV1dfUK0TZkZmZSQUFBhfBWFKdQ3krnj+Nt2rQpLV26lIik+0H//PMPGRoa8uL4lNKuo6yup1paWqStrU1isZj7t2TT0NAgsVhM48eP59X5KY0aNaIzZ84wdfxXKkoZwR+9dGGlky2dO3emVatWldi/evVq6tKlCxOnv78/bdiwocT+DRs20KJFi5g4haJnz560bt06IiKaPHkyWVhYkJ+fH9nb21P79u0FfnX8YmpqSk+fPhXM/+7dO3r8+DFzj6mpKcXHxxMRUUxMDGlpaVF0dDSNGDGCOnbsyNxPRJSfn08HDhyg+vXrM7sX/xp+9HZQKJo3b06rVq2S6e/G0NCQLl68SEREe/bsIQMDA7p16xbNnj2bG/uQBS9fviyxb+vWrZSdnc2bY9myZRQUFEREREePHiUlJSWqUqUKicVi5mXgZUlISAi9f/9e6JfBnO9hrO79+/e0Y8cOqlev3k/X9sbExMj83l4Ip1BeDQ0Nbnx70aJF5OjoSEREcXFxVKNGDSbOjIwMyszM5P7+559/yMPDg9auXcvEJ2Hw4MHcGMu8efNIT0+PRo4cSSYmJtS7d2+mblnStm1bevHihdAvgznfS7/h6dOntGLFCrKxsRG8/a3s9/43nJ2d6dChQzKNn6hWrRolJiYSUVE/08LCgt69e0d///031a9fXyavIT8/nxISEkq0F2fOnKEPHz7w5rl48SLp6OiQoaEh9e7dm3r37k01atSgqlWr0uXLl3nzFKe0OerS/ubzNzt48GBasmRJif1//vknDRw4kDdPaXwpPoglmZmZUtf0SufXI/kufvq9/fTffF9jhPAKda4S6tatS8ePHy+x//jx42Rra8vEKZRX1s4ZM2aQnp4e/f3335SUlERJSUm0atUq0tPToz/++IN3nwSxWFzqeOuzZ8+Y9stCQ0NLvVbm5uZSaGgo9zffY0lhYWHUvHlzql69OqWnpxMRUUBAALOYxa+Br37o1atXycDAgKpWrUoODg7k4OBAVatWJUNDQ7p27RoPr7R09PX1KTo6usT+qKgo0tfXZ+KcOHEi1ahRgyIiIigjI4MyMjIoPDycatSoQR4eHkycREQ2Nja0YMGCEvvnz5/PpH0QEf3gKbYZ8ObNGwwbNgy9e/dmliVXTU0NiYmJJcoN3b59Gw0aNOBWGfHF8+fPMXDgQJw4cQIikQi3b9+Gubk5hg8fDm1tbWbZo8qDuro6kpKSeFnhLSEjIwPXrl1DdnY2GjRoUO5MH/8VdXV1nDlzBvXr12fqKQ1Znuu1a9fQvn172Nvb48SJE3BycsK///6LFy9eID4+nmkZzPLA53dp06ZNUFNTQ//+/aX2SzKJfJqJjQ8qihMoyhD7OVhk/bG0tISjoyO8vb15K3n+JaZPnw41NTXMmTNHJj6g6Ppy7do1mJqawsnJCS1atMD06dORkZGB2rVr4/3790y8QlSeKC98tg3f83nymTHle/dWFKdQ3krnj+NVU1NDcnIyzMzMpNq69PR01KlTBx8+fODhFQtHaGgoiAjDhw9HYGCgVJYdSTYw1hmOTpw4gdmzZ8Pf37/UDPOssjmXh4ryu2Fxv/i9en90Z9++fdG4ceMSmaKWLFmCixcvYufOnd/s+BQdHR3Ex8fDyspKav/NmzfRokULPH/+nHenqakptm3bViLrxD///INBgwYhLS2NdycgzPt79+5dZGdno27dunj37h0mT56Ms2fPwtLSEsuWLWOS7T0uLo73rIeV/A9lZWWkpKTAyMgIHh4e+PDhA9auXYuUlBQ0adIEL1++ZOaOj4/H1q1bERkZiQ8fPqBnz55wcXEpNeucLPnWdnD//v3o0qULFBQUsH///s8+l6/KNEI4vweUlJRw584d1KhRA6NHj4aKigoCAwORlpaGevXqSWVG5IvyVilgzb1793D58mVYWFgwySzXoUMHuLq6ok+fPoL2b1kh9G9GqLE6CVlZWYiIiMCWLVtw5coVNG7cGOfPn2fq/BJC9fEr+Xo0NDRw+fJlWFpaomPHjujevTs8PDyYfn9btWolVaWgdu3asLGxwe3btzFx4kRmFUVfvHiBDx8+wMDAAIWFhViyZAnX9509e7ZURkq+2LJlC/r06cO0YklFRYh+gwRJpvWtW7fi+PHjMDIywuDBg+Hi4iJoRb9vbXuXL1+O0aNHQ0lJCcuXL//sc/mslCWUV0iK37cNGTIEBgYGWLRoETIyMmBtbc17HAlQ/ioFfNOqVStYWFhIZTHNz8/HyJEjcffuXZw+fZp355fmqIvzLfPVxb+vb968wV9//YUWLVpw49nnz59HfHw8Jk+ejNmzZ/9nT1k8f/4cAwYMQGxsrEzjg4TIrPwzO+/du1fu5/I5TieEV6hzlXD48GFMmzat1GoMixYtkhqv5PO+WQivrJ0GBgZYs2ZNifvtffv2Yfz48Xjw4ME3O0pDLBYjKysL+vr6UvsfPnyImjVrMrsXl5OTw6NHj0p4nz9/Dn19fSbxJKtXr4a3tzd+//13LFiwANeuXYO5uTlCQkIQGhrKvArHnTt3kJqaitatW0NZWblEJe3MzEwYGBjwUjEnJycHW7duxc2bNwEAVlZWTKvoAUV9zD179uCvv/7i5oXi4+MxdepU9O3bl0klso8fP2Lq1KlYs2YN8vPzARRViB03bhwWLVrErKrIrl27MHDgQHTo0AEtWrQAUHSux48fx44dO9C7d29effJffkrFQ0NDA76+vujRowezwHUnJyfs2bMHU6dOldq/b98+dO/enXefp6cn5OXlkZGRITWhO3DgQHh5eQkauM6iDKmxsTGMjY15P25ZGBkZMSmNVR5kea62trZISUnBypUroa6ujuzsbPTp0wfu7u6oXr26TF6DrFi4cCHWrl1bYr++vj5Gjx7NJKC7ojgBwMzMDEZGRiV+/0SEzMxMJs7Hjx/Dy8tLZkHrAPDhwwesW7cOx44dQ926dUsEuy1btox3p42NDdasWYNu3brh6NGjmD9/PoCiDnjVqlV590kYNmwYMjIyMGfOHFSvXl2mJaZlyfd8nkJdh4TwVhSnUN5K54/j1dLSwqNHj2BmZia1PyEhAYaGhrx5ivPhwweu/Bprhg4divz8fIhEIjg4OMDIyEgm3uJ06NABANC+fXup/ZJBFyEXLFWk300lPwanT5+Gj49Pif1dunRhNuaQm5vLDdoVJy8vj9nAc1ZWVqn3v3p6emxKJf4/Qry/xQMaVFVVsWbNmlKfFx4eDicnJ6iqqn6z08HBAYaGhlxgh42NzTcfsyyECICwt7fH8ePHoa2tjQYNGnz2fuLKlSu8OIujra2NzMxMGBkZISoqCn5+fgCK2ndW17SZM2ciIiICDx8+RMeOHREUFISePXv+NAFavXr14ibBevXqVebz+Ow3COEEhA/+rVatGq5fv47q1asjKioKq1evBlA0YcXHxFdprFmzBlu3bgUAHD16FEePHsWRI0ewY8cOTJ06FTExMUy8n2JiYlLqxLydnR0OHz78zf1kGxsbzJw5E+PHj0e3bt3g6uqKrl27lhjH4gMdHR2kpKRAV1cX2tran20HX7x4wYtTqN+MBCHG6t68eYNdu3Zh27ZtOHnyJMzNzeHi4oLt27cLnnyGD4S4ngp1DRe679CoUSP4+fmhQ4cOOHXqFNf2pqWlMRtnv3btGho3bgwA2LFjB2xtbREfH4+YmBiMHTuWWeC6jo4O92+xWIwZM2aU+rxFixZh7Nix0NLS+manp6cnxo4dCycnJ7i6uqJTp05MrmleXl6YP38+VFVV4eXl9dnn8jVnIUR7Xxwh+g0AMGjQIBw8eBAqKioYMGAA5syZwzzpgqwICAiAi4sLlJSUEBAQUObzRCIRrwHkQniFDpb/P/bOOyyK6/vDn12a9A4BCyxWigjqVxPsomCL2LBhwxZbrIjYwS5qADWJXWzYewMVgwo2LIBdqoBiRY2AjeX8/uDZ+bHuakicu6PA+zzzxL1L5t3ZMnPn3nPPqVq1Ki5cuAATExNERkZix44dAICXL18yG5fds2cP+vXrBwA4fPgw0tPTcffuXWzZsgXTp09HXFwcE++VK1fkgtYBQF1dHf7+/mjYsCETJ4vkacr49PtqbGyM27dv4/bt21ybkZERNmzYwCRwfcKECdDQ0FB5fND06dOxfv16LFq0iAt4i42NRWBgIN69e4f58+dXOP8FLAK0v1WvUMcqQxan17NnT67fIpsP+fnnn7nHfN83CuFVtTM3N1fp4r06deow6QfKrt0ikQjr1q2Dnp4e95xUKsXZs2eZLib8NGhbRnZ2tlyCLj5ZsWIF1q5diy5dumDRokVce8OGDeHn58fECXw+ifKQIUPkFkl9zbhVyXviOXPmwM/PD8OGDePrEErF0qVLIRKJMGDAAKVB5HyRlJQEJycniMViaGpqIiwsDAsXLkRqaioAoHr16szH1Lt3745Lly4hJCQEBw4cAFC8OODy5ctwdXXl3VcRuP4ZXr9+jdevXzPbv4ODA+bPn4+YmBilqypL3gTxccNz4sQJREVFoUqVKnLtNWvW/Fcr11jwtcEP/zTIUhIWQaIAEBoaioCAAKxevRq2trZMHMC3cayGhoaYPn06k31/S2RmZioEgQHFHebMzMwK51cikUiUrjLMzc2FRCJhMknUo0cPxMTEqHRyJikpiavEcPPmTbnnWAU8L168GF27dsWSJUswcOBALvvXoUOHuAF/FsTGxgpWeUKVlJfjrKCCCr4PevfujSlTpmD37t0QiUQoKipCXFwc/Pz8MGDAACZOIyMjNGrUCC1atEDLli3h5ubGdBW7uro6Ro4ciTt37jBzfAnWWQi+htu3b8Pa2lqlzuPHjzNbFPE5Vq9erdKFhzKmTZsmF7hQ4fxn8vLyoKmpqdCuoaHBLJtdo0aNsGbNGqxYsUKufdWqVWjQoAETZ9WqVREXF6dwHxUXF8f0NynE+1tafvnlFzRu3JiXrKmPHj3Cjh07sH37dixatAjOzs7w8fFBnz59FMa0vhYhAiC8vLy4bCheXl4qXwjbrVs39O3bFzVr1sSLFy/Qvn17AMWL3j6tCskXZ8+exeTJk9GzZ0+YmZkxcQhJUVGR0n+XNScgfPCvr68vevbsyS0ily0wvHTpErMJx8ePH3OTa0eOHEHPnj3h4eEBW1tbNG7cmInz35CRkYGPHz9+9X7CwsIQEhKCU6dOISIiAgMGDICamhp69OgBHx8fXoN7QkJCoK+vz/1bFedBoX4zMoQYq7O0tISxsTF69eqFhQsXMgv8EgohrqdCXcOF7juEhobCx8cHBw4cwPTp07n+wp49exQqEPHFx48fuWM+deoUtxiqTp06TBeKlpYFCxagZ8+evASu5+TkIDIyEtu3b0fPnj2ho6MDb29v+Pj48Pr+Xr9+nbteXL9+/bN/x+f3S4jzfUmE6DcAxRk2d+3axWwRgpCUrC7GqtLYt+IVKkhfxvjx4+Hj4wM9PT3Y2Nhw2c7Pnj2LunXr8u4DgOfPn+OHH34AUJyJ19vbG7Vq1cLgwYMRFhbGxAkUJ5TMzMxU+F1mZWVx5xAWvHr1CuvXr+fGnB0dHTF48GBeAwpV+TtRhlDxQZs2bcK6devkFjM7OzujcuXKGDVqFJMg8vLiXLhwISwtLTF48GC59g0bNuDZs2cKVRq/Z68QTqHmgoTwqtpZr149rFy5UmEx2MqVK5lUspNdu4kIq1atkuuTyao5fy5By9cgW2gsEong7u4utyhLKpUiPT2dWeXJ9PR0pUHFWlpayM/PZ+IEVJNE+c6dO8jPz4exsTGCgoIwYsQIlSREESKI3NXVlYujs7OzQ3x8PExNTZn1/2SUXOh89uxZuLm5YevWrUydMsp94PqnJ0YiQk5ODrZs2cJN3rBg/fr1n11VuX79eu4xXzc8+fn5Sn8wubm5zMoHyPinkhBfG3DxpUGWkrAcFOnVqxcKCgq4E9On2Wj4WiUm9LFu3LgRenp68Pb2lmvfvXs3CgoKmGXnLi18HreFhQWSkpIUFiIkJiYyy4RTXpzA51cZ5uXlMcsWsHLlSnh7e+PcuXOoW7euwu+UxeCSEDcaLVu2xPPnz/H333/LlS+VlcOUERcXh4YNG/J2DRCy8oQqKS/HWUEFFXwfLFiwAKNHj0bVqlUhlUrh4OAAqVSKvn37MsnSAhRPGp89exYxMTEICQlBYWEhGjZsyAWyt23blndno0aNcP36dUEybqgqA09pSE1NxbBhw3D69GkAX5eh4HM8evQIq1evRkpKCqysrDB06FC5iaOSJSK/hufPn2PDhg24cOECHj9+DAD44Ycf4ObmhkGDBsHc3Jz72759+/LiBIpL6x04cECp18vLSy4oeOrUqd+tsyREhJiYGO4z9fT0lOsH8+msW7cudu7cqZABcceOHXBwcODNUxJZ9sfExESuMkJ0dDTi4+OZZcEdNmwYxo8fj48fP6J169ac09/fH5MmTWLiBIR5f0sLn/1jMzMzjBkzBmPGjEF6ejoiIiKwadMmTJ06Fc2bN+fOgXwgRADE7NmzuX8ry6DPmpCQENja2iIrKwvBwcFcxqGcnByMGjWKiZNVZr5vkc2bN6NXr14K99kfPnzAjh07mCwsVKVT6ODfwMBAODk5ISsrC97e3twxq6mpfTYr7tciRJUCoRCLxfDw8ICHhwdWrVqFw4cPY/78+Vi/fj2vx1py/HjQoEG87be0CPE7Le1YHZ8cOnQI7u7uEIvFTPYvNEJcT4W6hgvdd3B2dsaNGzcU2pcsWSIXAMJnBR6hKoqWFj77vurq6ujUqRM6deqEgoIC7N+/HxEREWjVqhWqVKnCBUV8LSXnKVQ1ZyH0+V6IfgMArlLLtwifc6iybJefXsfevn2LJUuWMKuMoCqvUEH6MkaNGoXGjRsjMzMTbdu25a7ndnZ2XH+Ub4SqUtCrVy8MGTIES5cu5RbsxMXFYfLkyejTpw8T55UrV+Dp6QltbW1uEeFvv/2G+fPn48SJE6hfvz4TrwzZdYT1gh6h4oNUnVm5PDlXr16NiIgIhXZHR0cuyVFZ8QrhFGouSAivqp3BwcHo2LEjTp06xSX2vXDhArKysnDs2DHefbJrd6tWrbBv3z65+3CWyJI8JCQkwNPTUy7Tuyxgvnv37kzcEokECQkJCvOokZGRcgHlfKOKRVIuLi7w9fVF06ZNQURYunSp3HtbEj77oEIEkRsZGSE9PR0WFhbIyMhQ2fjrihUrMGXKFOjq6qJVq1ZKk9Ayg8o5tra2cpudnR01btyYpk6dSn///bfQL4832rdvTzNmzCAiIj09PUpLSyOpVEre3t7UvXt3Js7nz5+Tu7s7iUQiEovFlJqaSkREvr6+NHHiRCbO0pKVlUVSqZS3/YWHh39xExI+j7VmzZp0+vRphfaYmBiqVasWL46vQU9Pj/uefS3+/v5kY2NDp0+fpsLCQiosLKTo6GiysbGhSZMm8eIoj84JEybQhAkTSCwW0y+//MI9njBhAo0dO5YaN25Mbm5uvHuJiNatW0fq6uqkp6dHNjY2cud+iUTCxFmSrKwsysrKYu4pLfr6+rz9XoiIoqKiyMPDg9LT03nbJ1/weazf8nHyeQ781r3lxSmUt8L5/XkfPHhAR48epZ07d9L9+/d53feX+PjxI50/f54GDhxI6urqJBaLmXh27txJdnZ2tGLFCjp//jwlJibKbax5+fIlLV26lIYMGUJDhgyh3377jV69esXc+ykJCQm8v8fa2tr09OlTIiK6desWGRoaUo0aNcjb25vq1KlDOjo6vL/Hly9fJmNjY6pcuTINHDiQ/P39yd/fnwYOHEhVqlQhExMTio+P59VJRJScnEx2dnZUqVIlatGiBfXs2ZN69uxJLVq0oEqVKlGNGjUoOTn5u3e2b9+e+36+ePGCGjduTCKRiMzNzUksFlOdOnW4z5xvDh06ROrq6jRgwADuXrh///6krq5O+/fvZ+IkIrp+/Tr16dOHHBwcqEGDBuTr68v0XFhUVET+/v5UqVIlEovFJBaLSUdHh4KCgpg5iYR7f0sDy2tqYWEhHT58mFxcXJhdZ4iIzp07x2zfn0MikdDz588V2l++fKmSe1SWHDx4kD58+MD9+0ubKnn58qVC27Zt2ygvL4+X/YvFYnry5IlC+/Pnz5l9f4VwEhFt2rSJ3r17p9D+/v172rRpEzNvaXBycqLMzExe9jV69GiysbGhNm3akKmpKb1584aIiLZv306urq68OL4GFuffnJwcCgkJoQYNGpBIJKLGjRvzuv+SuLu708aNG+n169fMHJ8i1G/m48ePdPLkSVq1ahU37/Tw4UPuO1XecHR05O13KsT1VKhr+Lfcd+Bz/PWvv/4iIyMjEovF5Ovry7VPnTqVunbtyovja2DZ93327BmtWLGCHB0dmZ2TtmzZQvn5+Uz2/TmEOvfKePv2LdP9h4WFcY6wsLAvbkLC53dXqM9UCG9QUJDS30xBQQHzcYB/gs9z7+zZs8nQ0JDq1KlD1apV4/r669evpx9//JEXhzLev39PY8eOJU1NTW6MRUtLi8aPH6/0foMPmjZtSoMGDaKPHz9ybR8/fqSBAwdSs2bNmDiJiu+hnJycSEtLi7S0tKhu3bq0efNmZj4h4oOIiBo1akS//vqrQvuYMWOY3VuUF6eWlhalpaUptKemppKWlhYTp1BeoY5VqLkgIbyqdj58+JCmTZtG3bp1o27dutH06dPp4cOHzHxCEh4ezrz/+Slr166lypUr044dO0hXV5e2b99O8+bN4/7NCj09PW4upmRfMz4+nkxMTHhx3L17l3r16kUNGzYksVhMTk5O5OLiorDxPU5nYmJCFy9eJCIikUjEbF6tJMOGDSMtLS2ytbUlsVhM1apVI4lEonTjkxo1atC0adMoJiaGRCIRHThwgM6cOaN045tyH7j+rcPXDceNGzfIwsKC2rVrR5qamtSjRw+yt7cnS0tLSklJ4eGVKtK/f3/y9PSkrKwsuRNUZGQkOTg4MHGWFr4DNr9l+DxWLS0tpcGa6enpVKlSJV4c3wrv37+nnj17kkgkIg0NDdLQ0CA1NTXy9fWl9+/fVzj/Iy1btqSWLVuSSCQiNzc37nHLli3Jw8ODhg8fzizIxNLSkubPn8/ropV/QiqVUlBQEBkYGHADLoaGhjRnzhyVvg5l8D3AbmRkxA0s6enpkbGxsdwmJHwe67d8nEJd24TwlhenUN4KZ9n08sm9e/do9erV1KdPH7KysiITExPq0qULhYaGMvGJRCKFTSwWc/9liWxwpXLlytS1a1fq2rUrValShUxNTenq1au8uv5pctPf35/34xWJRNyEn5eXF/3888/cpI1UKqXevXtTp06deHU2btyYhg8fTkVFRQrPFRUV0fDhw5lMiLVp04a8vLyUBka9fv2avLy8yMPD47t3lvxMR44cSQ4ODtwgf1ZWFjVo0IBGjBjBq7MkR44cITc3N9LR0SFTU1Nq1aoVxcTEMPMJyZs3b+jy5ct048YNZpOpn/Ktvr8sgndiY2Np5MiRZG5uTvr6+tSvXz86fvw4r46SaGhokK2tLU2dOpVu3rzJzFOSkr/Xkjx+/Jg0NDSYeTdv3kxNmjQhKysrysjIICKikJAQOnDgAG+Oksem7Dpe8nrOikWLFtGOHTu4x97e3iQWi8na2poSEhKYOD83iZGQkMDsflEIJ5HwAWhfgs9z0ocPH2jJkiU0duxYunbtGtf+22+/0dq1a3lxfA18Hevr169pw4YN1KZNG1JXV6datWpRUFAQs3kDGWPHjqUffviBtLW1qUePHnTgwAFu0QsrhPjNZGRkcItC1dTUuM9s7Nix9Msvv/DmcXV1pdzcXCIibtL2cxsrMjMz5RJ3XLp0icaNG0erV69m5hTieirUNVwob2nguz9YWFjIfZ9lpKenKz1+VcP3sebn59PWrVupffv2pKmpSdWrV6cZM2bQnTt3eHOUxMzMjHR1dalPnz509OhRKiwsZOIpyee+uw8fPmQ2t1hYWEhz5swha2truXPvjBkzaN26dby6bG1tuUUlnybMU3UCJaLiY79+/brCb+jcuXO83bt+7noaHR1NZmZmvDi+FW956fcSEe3evZt+++03uWt5eHg4r/eKJSksLKQzZ85Qbm4u5efnU1JSEiUlJTFfXFOpUiWl59hbt26RtrY2E+eyZctIR0eH/P39uUXckydPJh0dHfrtt9+YOIWIDyIqTnioq6tL9vb2NHjwYBo8eDDZ29uTnp4enT17tsL5FdSoUYO2bNmi0L5582am1xghvEI4VTkXJLRXqGP9lKysLBo2bBiz/RcWFtK6deuoT58+5O7uTq1atZLbWPP+/XvKysqiBw8eyG2s2Lp1K9WoUYMbd61cuTLv/d5PUfUiqc/dV7BAqCDy48eP04oVK0gkEtHcuXMpNDRU6cYn+/fvJ0tLS7n5d1WN5aurJq97Bf8V4qnknJOTE+7fv4+VK1dCX18feXl56NatG0aPHg0rKyteHJ+iipIQ/xW+3teSpKamYuPGjUhNTUVYWBgsLCxw/PhxVKtWDY6Ojrz7Sgufx2phYYGkpCTY2trKtScmJjIt0fjkyRP4+fkhOjoaT58+VTgmFqV5NTU1sXPnTsydOxeJiYnQ1tZG3bp1FUqrVDj/HbIylL6+vggLC4OBgQETjzI+fPiAXr16qbRE7vTp07F+/XosWrQITZo0AQDExsYiMDAQ7969w/z581X2WlgTGhqqcmdpy0IeP34clStX5sUpxHGWFhbXtm/VW16cQnkrnN+2d+LEiaX+299+++2rXMqoXLky3r59i5YtW6Jly5aYMmUKnJ2dmZY2FaIkr4wJEyagc+fOWLt2LdTVi2+fCwsLMXToUIwfPx5nz57lzTV+/HhYWVlBU1NT6fMfPnzgzaWMa9euYdu2bdxxisVi+Pv7o2PHjrx6EhMTER4ervQ7IxKJMGHCBLi6uvLqBIrLDF++fFlp/9PAwABz585F48aNv3tnSU6fPo3g4GBIJBIAQJUqVbB48WIMGzaMmbNjx468f2f+CalUigMHDuDOnTsAikvGdu7cmWkpawDQ09PjxlNYllguiRDvr6qZOnUqduzYgUePHqFt27YICwuDl5eX0vLWfPLo0SPs2LED27dvx6JFi+Ds7AwfHx/06dNHYVzrazl06BD376ioKBgaGnKPpVIpoqOjud8t3/z555+YNWsWxo8fj/nz53PjKUZGRggNDYWXlxcvnpJlTFVV0vRTVq1ahW3btgEATp48iZMnT+L48ePYtWsXJk+ejBMnTvDmcnV1hUgkgkgkgru7O3ctBYo/0/T0dLRr1443n1DOkhCR0mt5dna23Hf6e0dDQwN+fn4K7RMmTBDg1bDD0tISxsbG6NWrFxYuXIiGDRuqxBsWFoaQkBCcOnUKERERGDBgANTU1NCjRw/4+PjwWr5cyN/MuHHj0LBhQ4Ux9K5du/LaL/Py8uL6JF5eXkzv0T5H3759MXz4cPTv3x+PHz9G27Zt4ejoiG3btuHx48e8lu0W4noq1DVcyL6DUBARrl69itTUVPTt2xf6+vrQ1NRk3idUNb1798aRI0ego6ODnj17YubMmfjpp5+YOnNychAZGYnt27ejZ8+e0NHRgbe3N3x8fODm5sara/ny5QCK7/XXrVsHPT097jmpVIqzZ8+iTp06vDplzJ8/H5s2bUJwcLDcudbJyQmhoaEYMmQIb66S41ZCjGGNHz8edevWxZAhQyCVStGiRQucP38eOjo6OHLkCFq2bAkAaNq06Ve7jI2NuetprVq15K41UqkUeXl5GDFixFd7vhUv8Pl+b2JiIkxMTJg4haJHjx4AgHfv3nFtAwcOZOZTU1ODh4cH7ty5A4lEgrp16zJzlcTAwACZmZkK55+srCzo6+szca5YsQJ//vknBgwYwLV17twZjo6OCAwMZHJ/IUR8EAC0aNEC9+/fx++//467d+8CALp164ZRo0bB2tq6wvkVDBs2DOPHj8fHjx/RunVrAEB0dDT8/f0xadIkJk6hvEI4VTkXJLRXqGP9lBcvXmD9+vVYs2YNk/2PGzcO4eHh6NixI5ycnFR2j5ycnIzBgwfj/Pnzcu2yPgWL+DYA8PHxgY+PDwoKCpCXlwcLCwsmnpIEBwfD3d0dV65cwYcPH+Dv749bt24hNzcXcXFxvPtKO87csWNHrFu37quud2vWrEG3bt2QkpKCsWPHYtiwYcz6CSWRjU1dvXoV48aN+0dndnY2rK2tvyoOrkuXLujSpQvy8vJgYGCAe/fuqeT7AwDlPuN6ly5duBVE/7QJAcuSc6xRRUmI/wrf72tMTAxpa2tTmzZtSFNTk9v3woULmZZaKg18Hqu/vz/Z2NjQ6dOnqbCwkAoLCyk6OppsbGxo0qRJvDiU0a5dO3JwcKA//viD9u/fTwcOHJDbKvh+SU5OpsjISCooKCAiUpp5ky/Gjx9P8+fPZ7Z/ZVhZWSktfX7gwAGytrZW6Wv5lO/5+iLjW850wYJ/+r1kZmYyyZAjhLe8OIXyVjjZOVXhLVmt5Esbq2wB9erVIy0tLfrpp59o6tSpFBUVpfIS06pElRl4bG1taefOnZ99/vr167xf38RiMZepysbGhhITE+WeT0tL4z37ma2tLW3atOmzz2/atIlsbGx4dRIV98sOHz782ecPHTpEVlZW372zZPYxCwsLhczRGRkZTMupEhFduXKFtmzZQlu2bJHLTsuC5ORkqlWrFuno6HAZRHV0dKh27drMskcJXVVJle9vaeHz3sLNzY1+//13evbsGS/7+y+kpaXRvHnzyNHRkdTU1Hi/pn5aPaTkpqmpSbVq1friueNrsLe3p/379xOR/Od248YNMjU1ZeLctGmT0syO79+//+L14GupVKkSZWZmElFxVuPhw4cTUXHlGCMjI15dgYGBFBgYSCKRiPz8/LjHgYGBtGDBAoqIiOC9qp0QTqL/z+IsFoupbt26chmcnZ2dSV9fn7y9vXn3/hv4Hu9QRZWC/wpfx3rixAnBKwMSEb19+5Z27dpF9erV473fK9Rvhqi4vPTdu3eJSP4zS09PZ5bVUyiMjIy4Yw0LCyM3NzciIoqKiuI9C5kQ11OhruFC9h1KC5/nXlVVKfiv8Hmsffv2VVnWc2XIsr136NCBNDU1yc7Ojtf9yzKNi0Qiqlq1qlz28Vq1apGHhwddvHiRV6eM6tWr06lTp4hI/jO7c+cO733BkgQFBSkdJysoKKCgoCAmzsqVK1N8fDwRFWdLtLa2pnv37tGMGTO48zBfhIeH08aNG0kkElFYWBiFh4dzW0REBJ0/f55Xn5BeIyMjMjY2JrFYzP1btsnGA0aNGsW799/A5/lIlVUKStKgQQPut6oqfv31V6pSpQrt2LGDMjMzKTMzk7Zv305VqlShcePGMXFqaWlRcnKyQvv9+/eZj9NVUHYoKioif39/qlSpEjcmqaOjw+z6IqRXCKcQ1RiE8gp1rJ+SkJDANKbD1NSUjh49ymz/n8PNzY2aN29Ox44do+vXr1NCQoLcxoK0tDQuPrMk9+/fp/T0dCZOGa9evaJ58+aRt7c3tW/fnqZPn06PHj1i6vwn+B4bHDRoEP3999//+HdZWVkqH1/ju9J7TEwMV5n7SyxcuJBevnz51b5yn3Hd0NAQ+/fvh6GhIZdJ5OrVq3j9+jW6dOkiSFYKFmzcuBF6enrw9vaWa9+9ezcKCgqYrJZt1qwZNm/ejLlz5wIoXlFfVFSE4OBgtGrVinefkAQEBGDevHmYOHGi3GqX1q1bY+XKlQK+Mn6ZO3cuMjIy5LLSFBUVYcCAAViwYAEzb2xsLM6dOwcXFxdmDmVkZ2fj0KFDyMzMVMhwySKDaXly5ubmwtvbG3/99RdEIhGSk5NhZ2eHIUOGwNjYGMuWLePdKZVKERwcjKioKDg7O0NDQ0PueRbHmpubqzRjSJ06dZCbm8u7T2hUXXmCBMp0oerjfPHiBXr16oXTp09/8fdStWrV795bXpxCeSucZeMzlVUv+TfwsdpaRkJCAl69eoWzZ8/izJkzmDZtGm7fvg0XFxe0atWKSTWRzZs3f/H5kplq+EaVGXgaNGiAq1evomfPnkqfF4lEvFcKICIuU1VeXh6SkpLg7OzMPZ+SkoIffviBV6efnx+GDx+Oq1evwt3dHZaWlgCKqyxFR0dj7dq1WLp0Ka9OABg6dCgGDBiAmTNnKvXOmzcPv/7663fvBIBBgwZBS0sLHz9+RHp6ulz/5PHjxzAyMuLdCQBPnz5F7969ERMTwzlevXqFVq1aYceOHTA3N+fdOXbsWNjZ2eHChQtc/+/Fixfo168fxo4di6NHj/LuFKqqkhDvb2mxsbFRuL/6r7DIxPJvkUgkCAgIQL169TBz5kycOXOG1/3LMsNIJBLEx8fDzMyM1/1/ifT0dKVVLbS0tJCfn8/E6evri3bt2ilkaXnz5g18fX2ZXceNjY2RlZWFqlWrIjIyEvPmzQNQfO3jO7PR7NmzAQC2trbo3bu3SqowCOEEijPwAMV9Qk9PT7nMqZqamrC1tUX37t1V8lpUgaqqFHzK5s2b0atXL4XP9cOHD9ixYwf3u1m9ejXXv/ga2rZt+9X7+FoeP36MHTt2YOvWrUhKSkKjRo143X/J30yvXr1QqVIlXvf/JYqKipSed7Kzs5ll67Kzs0N8fLxCldRXr16hfv36SEtLY+L9+PEj9709deoUOnfuDKB4LDQnJ4dXlxDXU6Gu4UL2HYRAVVUK/ivNmjWDtrY2L/uSVYcRCh0dHXh6euLly5d48OABV8WKL2TZx1u1aoV9+/bB2NiY1/1/iYcPH6JGjRoK7UVFRfj48SMzb1BQEEaMGKFQHaCgoABBQUG8Vp6Q8fz5c27s5tixY/D29katWrUwePBghIWF8eqSxRNIJBI0adJEroIJS4TwhoaGgogwePBgBAUFyVW7kPV7WVdIUCWqrFJQknnz5sHPzw9z585FgwYNoKurK/c8i8rdS5cuhUgkwoABA1BYWAiguNLSyJEjsWjRIt59AFCjRg3s2rUL06ZNk2vfuXMnatasyZsnKSmp1H9bcgz4e/SWF2dJRCIRFi9ejJkzZ+LOnTvQ1tZGzZo1mY8HCOEVwilENQahvEIdq6rR1NRU2h9kTUJCAq5evcqsspAyBg0ahMGDBytcUy5duoR169YhJiaGmdvQ0BDTp09ntv9vgY0bN5bq7xwcHJCQkAA7OzvGr+j/4XveuLTVDxcsWICePXt+/XzjV4e+f+f4+/vT0KFD5VazFxYW0vDhw8nPz0/AV1YMX6tAatasSadPn1Zoj4mJoVq1an31/pVx48YNsrCwoHbt2pGmpib16NGD7O3tydLSklnms9LC9+oaXV1dSktLU9h3enq64KtkWWRVvnfvHu3atYsOHz7MZRpiib29vcozyZ06dYp0dHTIycmJ1NXVycXFhYyMjMjQ0JBZBtPy4iQi6t+/P3l6elJWVpbcdzQyMpIcHByYOIXIStuoUSP69ddfFdrHjBlDjRs3ZuIsLSxW3qmq8oSQmS6EqLAhxO9FKG95cQrlrXCWvc+0tPB9zpfx/Plz2rNnD/Xv35/U1dWZZUYwMjKS23R1dUkkEpGWlhYZGxszccpQZQaeW7ducRmylPHhwwfe+94lM1SFh4fThQsX5J6fM2cOTZgwgVcnEdGOHTuocePGpK6uzmUKVFdXp8aNG38x6/zXsmjRIrKysuKyFcoyFlpZWdHixYvLhHPQoEFy26fv5+TJk8nT05N3LxFRz549qWHDhnT79m2u7datW9SwYUPq3bs3E6eOjg4lJSUptCckJJCuri4Tp1BVlYR4f4mIXr58SWvXrqWAgAB68eIFERFdvXqVsrOzeXMcPHiQPnz4wP37SxtrYmNjaeTIkWRubk76+vrUr18/On78OHOvqrC3t+eyRJfsryxfvpxcXV2ZOEtWgihJQkIC0+v46NGjycbGhtq0aUOmpqb05s0bIiLavn07s2O9fPmy0qyhFy9e/OI1/ntzEhX3IZRl0v8W4HMsVIgqBUSqqTDn6upKubm5RPT/mfQ/t7Hi9evXtGHDBmrTpg2pq6tTrVq1KCgoSPC5A77p2bMnDRs2jIiKv0dpaWn05s0bat26NQ0aNIiJUyQSKf0OPX78mDQ0NJg4iYrHQqdMmUJnz56lSpUqcdnkLly4QJUrV2bmrUB4+Dz3qrJKwevXr0u98UVYWBi9ffuW+/eXNlbIMq23b9+eNDU1qXr16jRjxgylmTe/V+rXr09btmwhIvnvUVBQEDVt2pSZ93N93+joaDIzM2PirFatGkVFRVFhYSFVrVqVjhw5QkREN2/eZJZd/ujRoxQZGanQHhkZSceOHWPiFMpb2qyTQsDnmK9QVQpKVhGRjZvJxs5YjDUXFhbSmTNnKDc3l/Lz8ykpKYmSkpKYVxTds2cPqampkaenJ82ZM4fmzJlDnp6epK6uTvv27ePN87kKLZ9ufL+3QnjLi/NzZGVlUVZWFnPPt+BVlVOIagxCeYU61k9hnXF96dKlNGrUKIXK2Kxp2LAhnTt3TqVOfX19pZU9kpOTydDQkJl3w4YNtGvXLoX2Xbt2UXh4ODPvP8EiTvJb9X7vx1ruM65v2LABsbGxUFNT49rU1NQwceJEuLm5YcmSJQK+OvCW8T0zMxMSiUSh3cbGBpmZmbw4PsXJyQn379/HypUroa+vj7y8PHTr1g2jR4+GlZUVE2dp4TuTvpGREXJychTe4+vXr6Ny5cq8uv4tLKoG1KpVC7Vq1eJ9v58jNDQUAQEBWL16NWxtbVXinDp1Kvz8/BAUFAR9fX3s3bsXFhYW8PHxQbt27SqcX8mJEycQFRWFKlWqyLXXrFkTDx48YOL8Lxlqv5bg4GB07NgRp06d4jIvXLhwAVlZWTh27JjKX09JiOeVd6qsPCFkpgshKmwI8XsRyltenEJ5K5xl7zMtLXye8/ft24eYmBjExMTg9u3bMDExQdOmTbFs2bJSr8L+t7x8+VKhLTk5GSNHjsTkyZOZOGWoMgOPg4PDF5/X0NCAjY0N9zguLg4NGzb8qiwj/1R5a+bMmXKP+XACQK9evdCrVy98/PgRz58/BwCYmZnxlrH5c0yZMgVTpkxBeno6Hj9+DAD44YcflN4rf6/Of8r8MHv2bLnxDz6JjIzEqVOnYG9vz7U5ODjg999/h4eHBxOnlpYW3rx5o9Cel5cHTU1NJk6hqioJ8f4mJSWhTZs2MDQ0REZGBoYNGwYTExPs27cPmZmZ/1gRo7R06dIFjx8/hoWFBZfNWRkikYj3TNkypk6dih07duDRo0do27YtwsLC4OXlpZAp8WtZvnw5hg8fjkqVKmH58uVf/NuxY8fy6gaAiRMnYvTo0Xj37h2ICJcvX8b27duxcOFCrFu3jleXq6srRCIRRCKRXOU+oLgiWnp6OtNxh5CQENja2iIrKwvBwcFcZvCcnByMGjWKiXP06NHw9/dH48aN5dofPnyIxYsX49KlS2XCCfx/BqFPvZcuXYKamhpX2fR7R4gqBcDnK8xlZ2fLjYF8DV5eXlyfzsvLS5DKs5aWljA2NkavXr2wcOFCZt8bExMT3L9/H2ZmZjA2Nv7isbK4li9btgyenp5wcHDAu3fv0LdvXyQnJ8PMzAzbt2/n1XXo0CHu31FRUXLfF6lUiujoaKZ938WLF6Nr165YsmQJBg4ciHr16nGvi+8s+jLGjh2LGjVqKFw3V65ciZSUFISGhpYJp5De0sBnBR5VVikwMjIq9fmPr35oSEgIfHx8UKlSJYSEhHz270QiEZP+YO/evXHkyBHo6OigZ8+emDlzJpOx9IkTJ2Lu3LnQ1dXFxIkTv/i3LKrhzpo1CwMHDsTDhw9RVFSEffv24d69e9i8eTOOHDnCu092fRGJRFxlOxlSqRR5eXkYMWIE716guMJRz549YWVlBZFIhDZt2gAo7pexyvQZEBCgdFyMiBAQEID27duXGW9+fj6io6Ph6ekp1x4VFYWioiJmx1oa+BzzFapKgarnbtXU1ODh4YE7d+5AIpGgbt26KvF2794dly5dQkhICA4cOAAAsLe3x+XLl5Xeb/xXZJUuVI0Q3vLiLElRURHmzZuHZcuWIS8vDwCgr6+PSZMmYfr06bxU3P1WvEI4hajGIJRXVc5u3bp98flXr17x5lJGbGws/vrrLxw/fhyOjo4K9yv79u1j4l28eDH8/f2xYMEC1K1bV8HLopqISCRSOk/y+vVrZuPpALBw4UKsXr1aod3CwgLDhw//xznICioo94HrhYWFuHv3LmrXri3XfvfuXa78npDwdcNhYWGBpKQkhaDfT0vt8c23WhKC74DN3r17Y8qUKdi9ezdEIhGKiooQFxcHPz8/ZiWPSwvfx5qdnY1Dhw4hMzMTHz58kHuOxeASUBzYUlBQgOrVq0NHR0fhws5iQuHOnTvcxIG6ujrevn0LPT09zJkzB15eXhg5cmSF8yvIz89XGgCQm5urkvLW2dnZAKAQXMg3LVq0wP379/H777/j7t27AIo76KNGjYK1tTVT9z+hrOP6Ndy4cQMREREK7RYWFlxAGl+ULAvp5ubGPMitJKo8ThlC/V6E8JYXp1DeCmfZ+0yFYMSIEWjevDmGDx+OFi1aqGxw/1Nq1qyJRYsWoV+/ftw1lgWampoICwvDwoULkZqaCgBcn1Ro2rdvr/KSc3w7NTQ0BFnULJFImAbsfCtOZXxacplPioqKlPbLNDQ0mI2vdOrUCcOHD8f69eu5YKhLly5hxIgR6Ny5MxNnvXr1sHLlSoWg45UrV3LBWSwQ4v2dOHEiBg0ahODgYLkgoQ4dOqBv3768eUq+fqHG4s6ePYvJkyejZ8+eMDMzY+YROlBp6NCh0NbWxowZM1BQUIC+ffvC2toaYWFh6N27N68u2SKEhIQEeHp6coHjwP8vOO7evTuvzpJoaGjAz89PoX3ChAnMnLdv30b9+vUV2l1dXXH79u0y4wSEC5j/lFevXimUpF29ejUsLS152b9EIkFCQoLc4kGgeDFRyYVEfKHKBR+zZ8/m/h0YGMjLPv8thw4dgru7O7MACxkhISHcdSwkJETlQfpVqlRBYmIiduzYgaSkJOTl5WHIkCHw8fGBtrY2ry7ZuVckEilMEGtoaMDW1hbLli3j1VmSli1b4vnz5/j7779hbGzMtQ8fPpzZPdTevXvlAvZluLm5YdGiRUyCuYVwCuXNysqCSCTixtEvX76MiIgIODg4YPjw4dzf3bx5kzenh4cHQkNDsWbNGgDF3+e8vDzMnj0bHTp04M0DyAdMZmRkICAgAIMGDZJLQrNp0yYsXLiQN2fJoDchAuDU1NSwa9cueHp6MlvUDBQn9pIFu16/fv2zf8fqnOzl5YXDhw9jzpw50NXVxaxZs1C/fn0cPnwYbdu25d0nZLKdwMBAODk5ISsrC97e3tw4pJqaGgICApg4k5OTlSZgqFOnDlJSUpg4hfIKFaRfEqlUihs3bsDGxkbu+nr8+HHeEug5ODjg3LlzCv3ePXv28BpY/SkSiQRVq1ZVOBcQEbKyspg4nZyckJaWpvJxugYNGmDr1q1MHZ9+fqWhY8eOWLdu3VeN0f4X79dSXpwlmT59OtavX49FixahSZMmAIoDcwMDA/Hu3TvMnz+/zHhV7ZRKpbh48SICAwNVOhckhFeVzn9aeG9oaMg0ns7IyAhdu3Zltv/PIVtE6O7uLtcuS1LAIpC8efPmWLhwIbZv38718aVSKRYuXIimTZvy7pMhRBLlCsoYX52z/TtnwoQJZGpqSsuWLaNz587RuXPnaOnSpWRmZsakJPrnKCwspOvXr3PlOWWcO3eOl7Kr/v7+ZGNjQ6dPn6bCwkIqLCyk6OhosrGxoUmTJn31/pUhZEmI5ORkioyMpIKCAiIihdIfmZmZVFhYyJvv/fv3NHToUK7UvYaGBonFYurXrx+vHmWo8lhPnTpFOjo65OTkROrq6uTi4kJGRkZkaGhIrVq14sWhjPDw8C9uLLC0tORKsNvb23MlyVmWnC8vTiKi9u3b04wZM4jo/0vkSqVS8vb2pu7duzNxSqVSCgoKIgMDA67UnKGhIc2ZM4ekUikTpxA8fvyY+vXrR1ZWVqSmpiZXWo9lqaXKlStTXFwcEcmXhdm3bx/Z2dkx80qlUrp37x6dO3eOzpw5I7exQIjjFOL3IpS3vDiF8lY4y95nWlqEKhPGmuvXr5O+vr7QL0MwymrJuZSUFGb3Fo8ePaItW7bQ0aNH6f3793LP5eXlUVBQEBOvjIcPH9KsWbOob9++NGnSJCZl2Dt16kSbN2/m7g9VSefOnal58+b08OFDri07O5tatGhBXbp0YeJ8+fIlde7cmUQiEWlqapKmpiaJxWLq0qULvXr1iokzJiaGdHV1yd7engYPHkyDBw8me3t70tPTo7NnzzJxEgnz/hoYGFBKSgoRyf/+MzIySEtLi4lz06ZNSsfB3r9/T5s2bWLiLK/k5+fTkydPmHvCw8N5Gdv8L2zevJmaNGlCVlZWlJGRQUREISEhdODAASY+ExMTOn/+vEJ7XFwcGRkZlRknEZGurq7SPkFaWhrp6ekxcS5atIh27NjBPfb29iaxWEzW1taUkJDAxLl27VqqXLky7dixg3R1dWn79u00b9487t98ExgYSIGBgSQSicjPz497HBgYSAsWLKCIiAiFPgwfSCQSev78uUL7y5cvSSKR8O6rgD22trb07NkzQdwfP36kkydP0qpVq+jvv/8mouJ+8Js3b5j4tLS0PlsSnVV/RQinUN6mTZvS5s2biYgoJyeHDAwM6KeffiIzMzNm909ZWVnk4OBA9vb2pK6uTj/++COZmppS7dq1mfZdWrduTREREQrt27ZtoxYtWjBxBgUFUX5+vkJ7QUEB8/vTCtgQExNDHz9+FMz/9u1blXgsLS0pOjpaof3kyZNkbm5epryVKlWi9PR0hfb09HTS0dFh4hw3bhytW7eOiIpjSJo0aUIikYh0dXXpr7/+YuI8cOAAGRoa0qJFi0hHR4eWLFlCQ4cOJU1NTTpx4gQTJxGRWCxWem5//vw5sznN48ePk4uLCx0+fJgePXpEr1+/ltv44tP9fmkTEhbjvXfv3qXRo0dT69atqXXr1jR69Gi6e/cur47y6LSysuJiOUpy4MABsra2LlNeIZxaWlqUlpbGZN/fmleoYy0vxMTEfHFjwa1bt8jU1JSqV69OgwYNokGDBlH16tXJ3Nycbty4wcRJRFS1atXP/lYrV67MzPtPCDUvLoRXX1//uz7Wch+4LpVKafHixWRtbU0ikYhEIhFZW1vT4sWLmQYcq/qG4/3799SzZ08uqFpDQ4PU1NTI19eXyWA3EVHNmjXp9OnTCu0xMTFUq1YtJs7nz5+Tu7s7iUQiEovF3I/E19eXJk6cyMRZkgcPHtDRo0dp586ddP/+faYuIY71f//7H82aNYuI/v8k9ObNG+rcuTP98ccfTJxC4eXlRWvWrCEiokmTJlGNGjVo3rx5VL9+fXJ3d69wfiU3btwgCwsLateuHWlqalKPHj3I3t6eLC0tucAIvgkICCBzc3P6448/KDExkRITE+n3338nc3NzmjZtGhMnUfFA4aVLl+jw4cN08OBBuY0F7dq1IwcHB/rjjz9o//79dODAAbmNFZMmTaKmTZtSTk4O6evrU3JyMsXGxpKdnR0FBgYycV64cIEkEgmJxWLuGi7bWA1oCXGcQvxehPKWF6dQ3gpn2ftMSwvfN8opKSk0ffp06t27NzexcOzYMbp58yZvjpJ8ev08cOAA/fnnn+To6Ejt2rVj4pTx9u1bCg4Opvbt21ODBg3I1dVVbhOSshq4npCQwOQ6fvnyZTIyMiIDAwPS1tamGjVqyH1nHz9+zLtXW1ubnj59SkTFA4eGhoZUo0YN8vb2pjp16pCOjg4lJiby6hSJRKSurk6GhoY0YsQIunLlCq/7/xKZmZnk4uJCGhoaZGdnR3Z2dqShoUGurq6UlZXF1J2cnEyHDh2iQ4cOKQ3m4ZuHDx/StGnTqFu3btStWzeaPn26XEA5C4R4f83NzenatWtEJP/7P3HiBFWpUoWJU5WT1gcPHqQPHz5w//7SxoJz584x2e+3xuXLl+nixYsK7RcvXqT4+Hhm3j/++IPMzMxo3rx5pK2tzX1/N27cSC1btmTi7N27N7Vo0UJu4czLly+pRYsW5O3tXWacRMIEzNva2nILyU+cOEFGRkYUFRVFQ4YMobZt2zJxEhFt3bqVatSowY03VK5cmRvXZ0FhYSGFh4fTo0ePmDk+RSQSKT33Pn78mDQ0NHh1ubq6csl7XFxcFPrXrPva7u7utHHjRuYBQkJfY4QiIyOD6+eqqalx596xY8fSL7/8wsTp6OhIK1asUGhfvnw52dvblxmnUF4jIyMuACssLIzc3NyIiCgqKorpwpaPHz/Sli1baPLkyTRy5Ehau3Yt88W52traSuf17t27R9ra2kycqur7hoWFcQHNYWFhX9xYsGXLFqUB+mWRo0ePUmRkpEJ7ZGQkHTt2jImzsLCQ5syZQ9bW1nLn3hkzZjDrswwfPpzq1q0rN+aZnJxMzs7ONGTIECZOobxCBMtXrlyZu1fav38/WVtb071792jGjBnceZgFZ8+epTZt2pC5uTlpa2tTkyZNKCoqipmPqLgfKhs7K0lGRgazhQGfziXKNr7nFj/dv7KN5XxmaeF7vHfPnj3cwrMJEybQhAkT6KeffiJ1dXXas2cPb57y6NTS0qJ79+4ptN+9e5cqVarExCmUVwhngwYN6NSpU0z2/a15hTrWCtjy8OFDmjp1KnXo0IG6d+9OQUFB9OLFC6ZOVSZR/vDhA/n6+pZq0cWCBQvo5cuXvPpLgxBB5N97kL6IiEjorO/fCn///TcAwMDAgLmrSpUqOHDgABo2bIgDBw5g9OjR+Ouvv7BlyxacPn0acXFxTLz3799HYmIitLW1UbduXablbCpVqoS7d+/C1tZWrj0jIwP29vZ4+/Yt784BAwbg6dOnWLduHezt7ZGYmAg7OztERUVh4sSJuHXrFu9OoRDiWPX19ZGQkIDq1avD2NgYsbGxcHR0RGJiIry8vJCRkcG7U0Zqaio2btyI1NRUhIWFwcLCAsePH0e1atXg6OjIuy8tLQ15eXlwdnZGfn4+Jk2ahPPnz6NmzZr47bffmPx2yotTxuvXr7Fy5UokJiYiLy8P9evXx+jRo7+qFNmXsLa2xqpVq9C5c2e59oMHD2LUqFF4+PAh787IyEgMGDAAz58/V3iOVRkgfX19nDt3Di4uLrzv+0t8+PABo0ePRnh4OKRSKdTV1SGVStG3b1+Eh4czKTvq4uKCWrVqISgoCFZWVgqlBP+p/NR/QYjjBFT/exHSW16cQnkrnGXvMy0NBgYGSEhIgJ2d3Vfv68yZM2jfvj2aNGmCs2fP4s6dO7Czs8OiRYtw5coV7Nmzh4dXLI9YLJZ7LBKJYG5ujtatW2PZsmVM318fHx+cOHECPXr0gKWlpcK1Zvbs2czc/4S+vj53D/A9OZcvX/7F5x8+fIilS5fy3k9q27YtqlatinXr1iE/Px9TpkzBrl27cPLkSbi6uuLJkyewtrbm1SsWi/H48WNYWFigS5cuKCoqwr59+6Curo6ioiL4+PggLy8Phw8f5tV58+ZNnDhxAhs2bMCtW7dQt25dDB06FD4+PnIlpVlARDh16hTu3r0LALC3t+dKYwoJn+fB0jJq1CjMmTMHZmZmvO1T1e/v0KFD8eLFC+zatQsmJiZISkqCmpoaunTpgubNmyM0NJR3p1gsxpMnT2Bubi7XnpiYiFatWiE3N5dXl+w3+um1piSs7t00NTVRuXJl9OnTBz4+PkzGNgCgfv36iI6OhrGxMVxdXRWuZSW5du0a7/5GjRrB398fPXr0kGvft28fFi9ejEuXLvHuBIpL3S9YsABdunSRu37dvHkTLVu2VHqf/rU8fPgQzZs3x4sXL+Dq6goASEhIgKWlJU6ePImqVauWCScA9OnTBzk5OTh48CB37/3q1St06dIFFhYW2LVrF+9ObW1t3L9/H1WrVsW4cePw7t07rF69Gvfv30fjxo3x8uVL3p0lKSgoQF5eHiwsLJh6gOJx9Tt37igtt8wnhw4dAgB06dIFmzZtkhtHkUqliI6OxsmTJ3Hv3j3enEFBQZg8eTJ0dHQQGBj4xXMSi772uHHjsGvXLrx+/RodO3ZEv3790KFDB2hoaPDqEfoaM3bsWNSoUQNjx46Va1+5ciVSUlKYXMMBcOfc9evXw9TUlDv3xsTEYNiwYUhOTubduWHDBowZMwaTJ09G69atAQDR0dFYtmwZQkNDMWzYsDLhFMqrp6eHmzdvwtbWFp07d0aTJk0wZcoUZGZmonbt2kzm+YSidu3a8PLyQnBwsFy7v78/Dh48yOu5UMbn+r6nT59Gr1698OzZM148EokEV65cgamp6RevLSKRCGlpabw4S2Jubo63b9+ic+fO6NevHzw9PZmMo5uYmOD+/fswMzODsbHxF68xfN5XlMTZ2RmLFi1Chw4d5NojIyMxZcoUJCYm8u6cM2cONm3ahDlz5mDYsGG4efMm7OzssHPnToSGhuLChQu8O1+/fo127drhypUrqFKlCgAgOzsbzZo1w759+2BkZMS7UyjvL7/8ggsXLmD//v2oXr06ACAlJQXdu3fH//73P6xbt453Z6VKlZCSkoIqVapg+PDh0NHRQWhoKNLT01GvXj0upuV7ZuLEiQCAsLAwDBs2DDo6OtxzUqkUly5dgpqaGpOYmTNnznzx+RYtWqjEw8L5X+B7jLl69erw8fHBnDlz5Npnz56NrVu3IjU1lRdPeXQ2btwYjRs3Vhhf//XXXxEfH4+LFy/y7hTKK4QzMjISU6dOxdy5c9GgQQPo6urKPc8qjlAIr1DHKgR79uzBrl27kJmZiQ8fPsg9x2IctCQFBQVKvc7Ozky9quTDhw/o378/du/eDXV1dQBAUVERBgwYgFWrVkFTU5NXn6GhIRISEpiPl/1XhJi3zcrKgrW1NbM4pc/RoUMHrF+//qvn6CsC1wWiPNxwVKtWDStXrlQaJDp69GhkZ2fz7vzhhx8QFRWFevXqyZ0Q0tLS4OzsjLy8PN5cshuq0vDbb7/x5pWhymMt6fzrr79gb28PBwcHLFq0CJ07d0ZiYiKaNGnCxAmoPkBKKpUiLi4Ozs7OzAZXyqtTSCpVqoSkpCTUqlVLrv3evXtwcXFhMshes2ZNeHh4YNasWbC0tOR9/8pwcHDAtm3buAlrVZOZmYmbN28iLy8Prq6uqFmzJjOXrq4uEhMTUaNGDWaOz6HK46ygggoq+Fr4vFH+6aef4O3tjYkTJ8rt9/Lly+jWrRuTPv6XIKIvTkR+LYaGhjh27BiaNGnCzPFf+V4D18ViMaysrD47YPXhwwc8fvyY9wAeExMTXLx4Ua4vuGjRIgQHByMqKgrVqlVjGrherVo1bNu2Dc2aNeOev379Ojp27IhHjx4xcQLA5cuXsX79euzcuRMfPnxAly5dMHToUC7QRQjq1q2LY8eOMQumVIYQvxchguUBft/f169fo0ePHrhy5QrevHkDa2trPH78GD/99BOOHTumMKnxNcgCqhMTE+Ho6MgNdAPF967p6elo164dk2BYoXj+/Dl27NiB7du348KFC3B2doaPjw/69OnDBWHwgdBBonp6ekhKSlL4LaSnp8PZ2Rlv3rzh3QkUBznfvXsXNjY2cueA5ORkODs7Mwu0y8/Px7Zt27jEIc7OzujTpw/vQbFCO4UImLe2tsaePXvg5uaG2rVrY968efD29sa9e/fwv//9r0yMp8to2LAhFi9eDHd3d6YeWUC1SCTCp9NEGhoasLW1xbJly9CpUyemr0PVFBUV4dSpU4iIiMD+/fuhpqaGHj16wMfHR9CgIT6pXLkyDh06hAYNGsi1X7t2DZ07d2Z232Zqaorz58+jdu3acufejIwMODg4oKCggIn3zz//xPz587l+ta2tLQIDAzFgwAAmPqGcQngbN26MVq1aoWPHjvDw8MDFixdRr149XLx4ET169ODtu3To0CG0b98eGhoa3KKaz/HpnCNfHDt2DN27d0eNGjXQuHFjAMX3U8nJydi7d69CIPLXIAuqfv36NQwMDOT6Z1KpFHl5eRgxYgR+//133pxCUlhYiMjISGzfvh0HDx6Ejo4OvL294ePjAzc3N948mzZtQu/evaGlpYXw8PAv9nsHDhzIm7ck2trauHPnjtKkbo6OjsjPz+fdWaNGDaxevRru7u5y5967d+/ip59+Yra4j4hw8uRJuT5o8+bNmbiE9AoRLG9jY4O1a9fC3d0dEokEf/75Jzp27Ihbt26hadOmzBdsqoJWrVoBKI4B+Omnn+TGCTU1NWFraws/Pz8mc2+ZmZmoWrWqwjmCiJCVlYVq1arx7vyW4XvMTEdHB0lJSQpzt8nJyahXrx6T/mB5cZ45cwYdO3ZEtWrV8NNPPwEALly4gKysLBw7dkxu3Pl79wrhLLnguOT5QTYHxWLBsVBeoY5V1SxfvhzTp0/HoEGDsGbNGvj6+iI1NRXx8fEYPXo05s+fz8T77Nkz+Pr64vjx40qfZ/X+vnr1CpcvX8bTp09RVFQk9xzr+1RVJVEeOHAgXFxcMGHCBCb7V8bHjx+hra2NhIQEODk5ffFvvzaIvFu3bqX+23379v0nhzL+zZgq3wtb1P/5T8oeQmcaAgBLS0vcvn0bVlZWiIyMxJ9//gmgeMUNq1UQ2dnZOHTokNIVPSwCq/v06YOxY8dCX1+fu2E8c+YMxo0bh969e/PuA4onakquyJWRm5sLLS0tXl3Xr18v1d+xCqRR5bHK+PHHHxEbGwt7e3t06NABkyZNwo0bN7Bv3z78+OOPTJwAEBAQgHnz5nEBUjJat26NlStX8u5TU1ODh4cH7ty5o7KA7vLiLMm7d++QlJSktOPEYvC5Xr16WLlypcLK3JUrV6JevXq8+wDgyZMnmDhxosqC1gEgNDQUAQEBWL16tcLgqCqoVq2aygZ1GjdujJSUFEEC11V5nBs3boSenh68vb3l2nfv3o2CggJmg+xCeMuLUyhvhbPsfaYyUlJSkJqaiubNm0NbW1shmPv27duwtrbmxXXjxg1EREQotFtYWDDJXAoAS5YsweTJkxXapVIp+vXrh+3btzPxAsUBHyX7n98SLAP2WTptbGywePFi9OzZU+nzCQkJCgE2fPHu3Tu5xwEBAVBXV4eHhwc2bNjAu08kEnHvmVgsVqgGY2RkxHyysVGjRmjUqBFCQkKwa9curF+/Hm3bthV08DkjIwMfP34UzK8qhMoTwef7a2hoiJMnTyI2NhZJSUlcNREWWd67dOkCoPgc4OnpCT09Pe452aR19+7deffK2Lx5M3r16qUwnvLhwwfs2LGDyeC+mZkZxowZgzFjxiA9PR0RERHYtGkTpk6diubNm+P06dO8eEoGowcGBvKyz3+DlpYWnjx5ojAJnpOTI7dAgW8kEgkSEhIUJkoiIyNhb2/PzKurq4umTZuiWrVq3PirbKKKVaCdEM7KlSsjKSlJLmDe19eXacB8t27d0LdvX9SsWRMvXrxA+/btARSP0fI5LvAtzB3MmzcPfn5+zLOfycbjJBIJ4uPjea0SUhrs7OwQHx8PU1NTufZXr16hfv36TLL+AsX9Mg8PD3h4eGDVqlU4fPgw5s+fj/Xr1zPpIwlxjXnx4oXSSoQGBgbM7tuA4u+UsvcwOzub6X3VyJEjMXLkSDx79gza2tpy/Yiy5BTCu3jxYnTt2hVLlizBwIEDuXH0Q4cOoVGjRrx5unTpIlet6nOwDKTp0KEDkpOT8ccff3AVjn7++WeMGDGC9wVZoaGhICIMHjwYQUFBcr9XWd9XFqTFN3PmzIGfn5/C/OLbt2+xZMkSzJo1i3enuro6OnXqhE6dOqGgoAD79+9HREQEWrVqhSpVqvCWlbbk2NugQYN42ee/xdDQEGlpaQpzMykpKbwu/C3Jw4cPlfaFioqKmN57i0Qi7nqqSlTtNTQ0xPnz51UaLO/r64uePXtylYZl9+CXLl1CnTp1ePMIWaXgr7/+AlB8rGFhYSrN7iuRSJCTk6NQSSk3NxcSiYTJdSYpKUlpu0gkQqVKlVCtWjVm8R2qpmXLljh37pzCeSk2NpZZYHV5cbZo0QL379/H77//zvVVunXrhlGjRvE2//OteIVwys5LqkYIr1DHqmr++OMPrFmzBn369EF4eDj8/f1hZ2eHWbNmMau+AwDjx4/Hq1evcOnSJbRs2RL79+/HkydPMG/ePCxbtoyJ8/Dhw1yF308XxopEIuaB67Vq1VJIIMqCmjVrYs6cOYiLi1M6XvZp1Tk+0NDQQLVq1UrVP/ja+0Zl4ziqwMjI6B/nf1ktbCmXgeteXl5cx+9LAyAsUdUNh4zo6Gh07tyZW2Ht5OSEjIwMEBHq16/Puw8A5s6di4yMDLi7uyuUhFiwYAETZ7NmzbB582bMnTsXQPEJuKioCMHBwdzKXb74Lxfz7OxsWFtbf7E8aGlR5bHK+O2337is6kFBQcjLy8POnTtRs2ZNJosfZAgRIOXk5IS0tDSVlhgpL06geKJ4wIABSj8/VoPPwcHB6NixI06dOqV0ZS4LevTogZiYGK58oCro1asXCgoKUL16dejo6ChMGPPZCRe68sSvv/6KSZMm4fHjx6hbt67CsfJVZkno41y4cCFWr16t0G5hYYHhw4czC4YVwltenEJ5K5xl7zN98eIFevXqhdOnT0MkEiE5ORl2dnYYMmQIjI2NuQEQPidYjYyMkJOTo9B3uH79OipXrsybpyRLliyBiYkJhgwZwrUVFhaiT58+uHnzJhOnjGXLlmHKlClYtWoVswwB/xUhgmL5cDZo0ABXr179bOC6soyffODk5ITz588r9A/8/PxQVFSEPn368O4kItSqVQsikQh5eXlISkqS86ekpOCHH37g3asMHR0dDBo0CIMGDcL9+/dV4qyg7NC0aVM0bdqUqUMWXG1ra8tlSVQlvr6+aNeuncLE9Zs3b+Dr68t8cF8ikSAgIAD16tXDzJkz/1VJ8X+DEEGiHh4emDp1Kg4ePMgNvr969QrTpk1D27ZteffJmDhxIkaPHo13796BiHD58mVs374dCxcuxLp165g409LS0LVrV9y4cYO7nn2aQbUsOGWoOmA+JCQEtra2yMrKQnBwMBesmZOTg1GjRvHmKTl34OXlJchiQVlW386dO6sk+1l6ejqv+ystGRkZSo/l/fv3Kqnk9PjxY+zYsQNbt25FUlISr0G4JRHiGlOjRg1ERkZizJgxcu3Hjx9nWg3Gw8MDoaGhWLNmDQBw/eDZs2fzmq36c5ibmzN3fAtOVXpbtmyJ58+f4++//4axsTHXLqskzRclE9t8muRGlVSpUoXZ/GVJZGNEEokETZo0YbqY71OCgoIwYsQIhc+voKAAQUFBTALXS6KjowNPT0+8fPkSDx48wJ07d5h41NTUlAamvnjxAhYWFsz6SF5eXhg/fjz279/PzQulpKRg0qRJzBYUOjg44Ny5cwrjVnv27GFamTc/Px9nzpxRmjCPRdCQkF5VB8sHBgbCyckJWVlZ8Pb25vqmampqCAgI4M0TEhLCLSwLCQkRpN+7ceNGlTs/V8EzLy8PlSpVYuJ0cXH54vuroaGBXr16YfXq1cxeA0tKVkvp3LkzpkyZgqtXr3KJDy9evIjdu3cjKCiowvmVWFtbM8sS/a15Ve2USCRfrMZQlrxCHauqyczM5Kr7aGtrc1Uf+/fvjx9//JFJklQAOH36NA4ePIiGDRtCLBbDxsYGbdu2hYGBARYuXIiOHTvy7pw0aRIGDx6MBQsW8Hqf9k9IpVKEh4cjOjpaacJSvhKzyFi/fj2MjIxw9epVXL16Ve45kUjErC84ffp0TJs2DVu2bIGJiQkTByBMvwgQdjGLiIRKAVUB9uzZw91wyEpLbdq0CUZGRvDy8uLV1ahRI7Rv3x5BQUFcuR8LCwv4+PigXbt2GDlyJK++kqiqJAQA3Lx5E+7u7qhfvz5Onz6Nzp0749atW8jNzUVcXJxKg0eVwWepcFUfq1QqRVxcHJydnVWenbtKlSrYtWsX3Nzc5MpV7d+/H35+frxlYyhJZGQkpk6dyjyzUXl0AsUr4Tw8PDBr1iyVZiN/9OiR3Mpce3t7pitzCwoK4O3tDXNzc6WB1Sw6Tps2bfri83wGTpZ2kYxIJOK9UwpA6SKgkhP1fA0+C32clSpVwt27d5WWF7W3t2dW4l4Ib3lxCuWtcJa9z3TAgAF4+vQp1q1bB3t7e66PFBUVhYkTJ+LWrVu8O/38/HDp0iXs3r0btWrVwrVr1/DkyRMMGDAAAwYMkMvqyhfx8fHw8PDA2rVr0aNHDxQWFqJnz564e/cuTp8+zTTw99mzZ+jZsyfOnj3LfEHYpzx9+hT37t0DANSuXVthsvV7dd6+fRsFBQVo2LCh0uc/fvyIR48e8X7fuG7dOpw5cwZbtmxR+vzixYuxatUqXgO3Pu2X1a5dW65S1dy5c/Hy5UteF761atUK+/fvF6SiUmnhuwRxhZOdd86cOV98nkVQS3x8PIqKitC4cWO59kuXLkFNTe2z546vRSwW48mTJwpBYImJiWjVqhXT831cXBy2bduGPXv24N27d/Dy8uLG6/hGLBZz2UxL8uTJE1StWlUh8IMPHj58iObNm+PFixdc4ExCQgIsLS1x8uRJ3jOYlmTbtm0IDAzkxo2sra0RFBQktxiOT37++Weoqalh3bp1kEgkuHTpEnJzczFp0iQsXbqUSdY1IZyAsAHz5YF/WrzSokULXn1jx45FjRo1FMapVq5ciZSUFISGhvLqkwV8dOnSBZs2bZLLKCWVShEdHY2TJ09y/VI++fvvv7F3715EREQgJiYGdnZ28PHxgY+PD7O5AyGuMRs2bMCYMWMwefJktG7dGkBxcqNly5YhNDQUw4YN490JFCfu8fT0BBEhOTkZDRs2RHJyMszMzHD27Flm9zR79uzBrl27lAYxsqqMIIRTKG9hYSFiYmKQmpqKvn37Ql9fH48ePYKBgQGTjO9CVCmQ8erVK1y+fFlp0AUL77Fjx6CmpgZPT0+59qioKBQVFXHVRfjkc+ek06dPo1evXnj27BnvTgBcpvVt27YhOjoaVatWRZ8+feDj48Mkodvn+r2PHj1C9erVmY0Pvn79Gu3atcOVK1e4uf/s7Gw0a9YM+/btY3KvfvDgQQwcOBBTp07FnDlzEBQUhHv37mHz5s04cuQIk8Wi169fR4cOHVBQUID8/HyYmJjg+fPn0NHRgYWFBbOqKUJ5hQrSB4qrB36PgcylJT8/H4sWLfpswBufn6ksSVVYWBiGDRsmF9gnlUq5cYe4uDjenDIOHjyIKVOmYPLkydxiycuXL2PZsmWYPXs2CgsLERAQgF69emHp0qW8OPPz80tV6WHhwoUYOXLkV52fSpu0kc+52/Li/Fy2fmXwldBNKK9QxypDqEVvQniFOlZVY2dnh71798LV1RUNGzbEsGHD8Msvv+DEiRPo3bs3s/FeAwMDJCUlwdbWFjY2NoiIiECTJk2Qnp4OR0dHFBQU8O7U1dXFjRs3VD4XMWbMGISHh6Njx45c4uaShISEqPT1sMLV1RUpKSn4+PEjbGxsFK6vLMcAyjxUARERvX//nrKysujBgwdymyp4+/Ytc4eenh6lpKQQEZGRkRHdvHmTiIgSEhLIxsaGuV+VvHr1iubNm0fe3t7Uvn17mj59Oj169Ejol0VExZ9Damoqb/tT9bFqaWlRWloas/1/jkmTJlHTpk0pJyeH9PX1KTk5mWJjY8nOzo4CAwOZOEUiEbeJxWJukz2ucH4d+vr63DmpLLNu3TpSV1cnPT09srGxIVtbW26TSCRCvzxByMrKIqlUysu+MjIyvrgJCZ/HWbVqVTp48KBC+4EDB6hy5cq8OL4Vb3lxCuWtcJa9z9TS0pISEhKISL6fmZqaSrq6ukyc79+/p6FDh5K6ujqJRCLS0NAgsVhM/fr1o8LCQiZOIqLo6GjS19engwcPUufOncnBwYEeP37MzCfD3d2datasSYsWLaKNGzdSeHi43MaCv//+m/r168e9xyKRiNTV1cnHx4devXpVZpylJTY2lt69e1cuvOXFyfd9cWnQ19dXuVOI4+Tb6+LiIrc5OjqSjo4OGRgYkKurKy+OT/nf//5Hu3fvVmjfu3cvNWrUiHefi4sLubq6klgsprp165Krqyu3OTs7k76+Pnl7e/PuJSIKCAggW1tb0tTUpI4dO1JERATl5+czcR08eJAOHjxIIpGINm/ezD0+ePAg7du3j0aPHk21atVi4iYiysvLo9WrV9OoUaNo0qRJtGnTJvrw4QMz36fk5+fTkydPmHtMTU0pMTGRiIgMDAzo7t27RFTcj3FxcSkzTiKiTp06kZeXFz179oz09PTo1q1bdO7cOWrUqBGdPXuWmXfz5s3UpEkTsrKy4u77Q0JC6MCBA0x8EomEnj9/rtD+8uXLMjWuY21tTVeuXFFov3r1KpN7mZJjkSXHJkUiEWlqalKtWrXo8OHDvHuJiCpVqkRWVlY0fvx4io+PZ+KQIeQ1hojojz/+oMqVK3PvrUQioU2bNjHzyfj48SNt2bKFJk+eTCNHjqS1a9dSQUEBM19YWBjp6enRmDFjSFNTk3755Rdq06YNGRoa0rRp08qMUyhvRkYG1alTh3R0dEhNTY3rZ44dO5Z++eUXJk6xWKz0uv38+XOmcxaHDh0ifX19EolEZGhoSEZGRtxmbGzMxFm3bl06evSoQvvx48fJ2dmZV5fsOMRiMfdv2WZgYEBisZhGjRrFq1NGr169SFdXl8zNzWn06NF0/vx5Jh6i4t9JWFgYicVimj9/Pvc4LCyMfvvtN+rSpQvTPhIRUVFREUVFRVFwcDCtWLGCzpw5w9RHRHT27Flq06YNmZubk7a2NjVp0oSioqKY+Vq0aEHDhg0jqVTK3YNmZmZS8+bNae/evWXKe+3aNfrhhx/IwMCA1NTUyNzcnEQiEenq6jLrDxYWFtKcOXPI2tpa7tw7Y8YMWrduHROnUOfe3r17k5WVFfn7+1NISAiFhobKbXzSsmVLatmyJYlEInJzc+Met2zZkjw8PGj48OF0//59Xp0y/ve//1FkZKRCe2RkJP3vf/8jIqL9+/eTnZ0db05dXV3y9fWlc+fO8bbPClTP5+6bPt34/p0K4RXqWEv6nz59qtCekZFBOjo6TJxCeYU6VlUzZMgQLp5s5cqVpK2tTW3atCEjIyMaPHgwM2/Dhg25c/7PP/9M/fv3p+zsbPL39+f1PF+Srl270s6dO5ns+0uYmpoqvZ8pawQGBn5xY8Xu3bvJ29ubGjduLDemxGpupiT5+fl0584dSkxMlNv4RnW1x75R7t+/jyFDhuD8+fNy7cSo7KYMqVSKBQsWYNWqVXjy5Anu378POzs7zJw5E7a2trxn/tHV1eVWAFtZWSE1NRWOjo4AgOfPn/PqKkl2djYOHTqkdAUyn1nlSmJoaIjp06cz2fe3hqqP1cnJCWlpaZBIJCpzAsCCBQswevRoVK1aFVKpFA4ODpBKpejbty9mzJjBxLlx40ZUrVoVampqcu1FRUXIzMyscH4lPXr0QExMjMqrIJw7dw6rV69GWloadu/ejcqVK2PLli2QSCRo2rQp777p06cjKCgIAQEBpV6FzQepqanYuHEjUlNTERYWBgsLCxw/fhzVqlXjzv1C4eDgwFvlCZYVPL4WPo+zT58+GDt2LPT19dG8eXMAxdnXxo0bh969e3/1/r8lb3lxCuWtcJa9zzQ/P19pybfc3FyFzGR8oampibVr12LWrFm4ceMG8vLy4Orqipo1a+Lt27fQ1tZm4m3dujU2b96M7t27w97eHmfOnIGZmRkTV0nOnz+PCxcuoF69esxdMoYOHYrr16/jyJEj+OmnnwAAFy5cwLhx4/DLL79gx44dZcJZWtq3b8/bNfVb95YXpxBQRbHB/8T169cV2v7++28MGjQIXbt2ZeK8ffs26tevr9Du6uqK27dv8+7r0qULgOIM4J6ennJZQzU1NWFra4vu3bvz7gWAs2fPYvLkyejZsyfza5rsOEUikUIVLg0NDdja2mLZsmXM/Lq6umjatCmqVavGjQ8eP34cQHF5bdbo6OiopEyuVCqFvr4+AMDMzAyPHj1C7dq1YWNjwyRztFBOoLifcPr0aZiZmUEsFkNNTQ1NmzbFwoULMXbsWKXnj6/lzz//xKxZszB+/HjMnz+fG7c3MjJCaGgo7xVMgeLqScrmB96/f4/s7GzefZ9SUFCgdFyd7+xyL168kMt6LsPAwIDJ3IEsk6ZEIkF8fLxK+vUyDh06BHd3d5WM0wl5jQGAkSNHYuTIkXj27Bm0tbWZZMZWhrq6Ovr166cSFwD88ccfWLNmDfr06YPw8HD4+/vDzs4Os2bNYpZBTwinUN5x48ahYcOGSExMhKmpKdfetWtXZpn76ZMqHjKys7OVnqv4YtKkSRg8eDAWLFigkn4DACQnJ8PBwUGhvU6dOkhJSeHVFRoaCiLC4MGDERQUJPdeys5JsvEAvlFTU8OuXbvg6empMBfFN7KsjkSEVatWyflkx7lq1Sqmr0EkEsHDwwMeHh5MPSVp1qwZTp48qTJfQkICVq9ezfUD379/Dzs7OwQHB2PgwIHo1q1bmfFOmDABP//8M1atWgVDQ0NcvHgRGhoa6NevH8aNG8e7DwDmz5+PTZs2ITg4WO5c6+TkhNDQUCYVpD43bvL+/Xtoamry7pNx/PhxHD16FE2aNGHmkPHXX38BAHx9fREWFsas6rgybty4oXRO08bGBjdu3AAAuLi4ICcnhzfn1q1bER4ejtatW8PW1haDBw/GgAEDmFUh/7fUrVsXx44dY1qFrSw4+awO+q17hTpWWTUGkUiEmTNnKq3G4OLiUia8Qh2rUKxZs4Ybfxg9ejRMTU1x/vx5dO7cGb/88gsz77hx47jz+ezZs9GuXTts27YNmpqaCA8PZ+Ls2LEjJk+ejNu3b6Nu3boK1aNZjb9qamqiRo0aTPb9OYSIQ2VRbfyfWL58OaZPn45Bgwbh4MGD8PX1RWpqKuLj4zF69Ghm3mfPnsHX15cbu/8U3uOoeQ+F/85wc3Oj5s2b07Fjx+j69euUkJAgt7EiKCiI7OzsaOvWraStrc2tlN2xYwf9+OOPvPu8vLxozZo1RFScvbpGjRo0b948ql+/Prm7u/PuIyI6deoU6ejokJOTE6mrq5OLiwsZGRmRoaEhtWrViolzw4YNtGvXLoX2Xbt2McuI+G/gM/OZEMd6/PhxcnFxocOHD9OjR4/o9evXchtrHjx4QEePHqWdO3cyW/EsQ4iV5eXFSVS8OqtDhw40cOBAWrp0qVzWi7CwMCbOPXv2kLa2Ng0dOpS0tLS43+KKFSuoffv2TJzGxsYqzywfExPDrRbV1NTkjnPhwoXUvXt3lb4WZfCdeXLz5s3k5uamsmxrpYXP43z//j317NmTy2ysoaFBampq5OvrS+/fv+fF8a14y4tTKG+Fs+x9pu3bt6cZM2YQUfF5Jy0tjaRSKXl7ezM75//6669K2/Py8qhly5a8ebp27ap0s7KyombNmsm1scTV1ZUuXLjA1PEpOjo6SjPhnD17llm2CyGcpaUsZK2ucLJzBgUFKc1QXVBQQEFBQdzjc+fO8ZZZ/sGDB1RUVKTQXlRUJFe5b8SIEfTs2TNenP8GVXymSUlJzKr3mZiYKM3AGBcXR0ZGRkycRETh4eGCVHdQNba2tir/XqamppKzs7Nc5qySFd/4xNXVlXJzc4no/zMdf25jQdOmTWn//v1ERNSnTx9q164dxcbG0oABA8jR0bHMOImKs7bKqjLa2dnR6dOniYgoJSWFtLW1mTjt7e25Yy15rrtx4waZmpry6hK6SsHTp0+pY8eOcr8VVr8bIiJHR0dasWKFQvvy5cvJ3t6ed195Izw8XCVVd4Xi4MGDXBWNkr8VZRsLtLW1uTFBc3Nzbl7v/v37ZGJiUmacQnlNTEy4ah4lz73p6em8n++FrlKgo6Oj8nsjS0tLio6OVmg/efIkmZubM3HGxMTQx48fmez7W6Jly5Zcv1DV5OXl0dGjR+nPP/9UydyXEJiZmXHztDVr1uSyit65c4fpOJIQXkNDQ+48aGhoSLdv3yYioosXL1Lt2rWZOKtXr06nTp0iIvlz7507d3i/Lxa6SoGtrS33npZlXFxcaODAgXLzBB8+fKCBAwdy729sbCzZ2try7n769CktW7aM6tatS+rq6tSxY0fau3ev4NeC731M8lt2VvDvEKoagxBeIStPlGfy8/Pp6tWrTMdkhahSQES0dOlSGjVqlNL5EhYIEYcqFLVr16aIiAgikr+WzJw5k0aPHs3M27dvX2rSpAnFx8eTrq4unThxgrZs2UK1a9emI0eO8O4r9xnXExIScPXqVdSpU0el3s2bN2PNmjVwd3fHiBEjuPZ69erh7t27vPt+++035OXlAQCCgoKQl5eHnTt3ombNmsxWnEydOhV+fn4ICgqCvr4+9u7dCwsLC/j4+KBdu3ZMnAsXLsTq1asV2i0sLDB8+HCFrFLfM0Ica4cOHQAUr8YqmfGCGFcokFGtWjVUq1aNqUMGfSarR15eHipVqlTh/Eq2b9+OEydOoFKlSoiJiZF7DSKRCGPHjuXdOW/ePKxatQoDBgyQyxrapEkTzJs3j3cfAAwcOBA7d+7EtGnTmOxfGQEBAZg3bx4mTpzIZV0DijPVrly5UmWvQxUIkW1NCDQ1NbFz507MnTsXiYmJ0NbWRt26dZlnnBfCW16cQnkrnGXvMw0ODoa7uzuuXLmCDx8+wN/fH7du3UJubi7i4uKYOI8ePQpjY2MEBQVxbfn5+bz37z+XRc3T05NXzz+xaNEiTJo0CfPnz1eapYBFZh5TU1Olx29oaAhjY2PefUI5Kyh7bN68Gb169VKo+PDhwwfs2LEDAwYMAACsXr0alpaWvDiDgoIwYsQIhYyIBQUFCAoKwqxZswCA1+pKEokEOTk5sLCwkGvPzc2FRCLh+qR//vknb05AmPf3c7x+/RqvX79msm8PDw9MnToVBw8e5M5Lr169wrRp09C2bVsmTuD/KyY1btxYrv3SpUtQU1NDw4YNefEcOnQI7du3h4aGBg4dOvTFv2WRCUeI7FXjxo2DRCJBdHQ0JBIJLl26hNzcXEyaNAlLly7l1eXl5cX9Rry8vJSOd7BkxowZyM/PBwDMmTMHnTp1QrNmzWBqaoqdO3eWGSdQnO0xMTEREokEjRs3RnBwMDQ1NbFmzRpmVTzS09Ph6uqq0K6lpcW9B3whdJWC8ePH49WrV7h06RJatmyJ/fv348mTJ5g3bx4T78SJEzFmzBg8e/YMrVu3BgBER0dj2bJlCA0N5d0nY+zYsahRo4bCOODKlSuRkpLCm7t+/fqIjo6GsbExXF1dv3huuHbtGi/Okgg1J7Fnzx7s2rVLaRYyPo+zS5cuePz4MSwsLLjfjjJYzR/88MMPyM3NhY2NDapVq4aLFy+iXr16SE9PZ1Z1RwinUN6ioiKln1t2drbc2DMfCF2lwNPTE1euXFFpNSovLy+MHz8e+/fv56rTpqSkYNKkScyyIubn5yM6OlphfCUqKgpFRUVo3749L57ly5dj+PDhqFSpEpYvX/7Fv2UxHyTLrKxqrl+/jg4dOqCgoAD5+fkwMTHB8+fPoaOjAwsLC96O1cTEBPfv34eZmRmMjY2/eG1jUZHB1dUV8fHxqFmzJlq0aIFZs2bh+fPn2LJlC5ycnHj3CenV0NDgKrVYWFggMzMT9vb2MDQ0RFZWFhPnw4cPlWYvLSoqwsePH3l1CV2lYO7cuZg1axY2bdqksmoX+fn5WLRoEaKjo/H06VMuG6+MtLQ03p2///47OnfujCpVqnDVk27cuAGpVIojR45w3lGjRvHuNjc3x8SJEzFx4kSsWLECkydPxrFjx2BmZoYRI0YgICBAZe99BV/PvXv3sGLFCty5cwcAYG9vj19//RW1a9cuc15VOYWqxiCEV8jKE6oiKSkJTk5OEIvFSEpK+uLf8l3N7nPo6OgorTDKJ59ey1RFbGws/vrrLxw/fhyOjo4Kc6j79u3j1SdEHCpQnGU8JCTks2MsLPrbmZmZcHNzAwBoa2vjzZs3AID+/fvjxx9/ZBb7dfr0aRw8eBANGzaEWCyGjY0N2rZtCwMDAyxcuBAdO3bk1VfuA9cdHByYlLv8J1R5wyGVSpGdnc2ddHV1dZmXQQOAO3fuYPv27QCKy0O+ffsWenp6mDNnDry8vDBy5EjenZmZmZBIJArtNjY2yMzM5N33b+FzwkyIY924cSOqVq2qUMqvqKiId6esTE1p4HPxRXkpySN0GaDp06cjKCgIAQEBKinNCxTf3DRv3lyh3dDQEK9evWLilEqlCA4ORlRUFJydnRU6aiwWDt24cQMREREK7RYWFoJc71iyYsUKrF27Fl26dMGiRYu49oYNG8LPz0/AV8aGWrVqoVatWuXCW16cQnkrnGXH6+TkhPv372PlypXQ19dHXl4eunXrhtGjR8PKyoqJ88SJE2jWrBmMjY0xfvx4vHnzBp6enlBXV/9s2bD/wsaNG//1/xMXF4eGDRsqBHV+DbKBDnd3d7l2lgs3Z8yYgYkTJ2LLli344YcfAACPHz/G5MmTMXPmTN59QjkrKHv4+vqiXbt2CgHdb968ga+vLxdY3bdvX96cn1uIm5iYCBMTE948pXGyXvwrxPv7aYAJESEnJwdbtmzhLaDlU5YuXYrmzZvDxsaGC1BNSEiApaUltmzZwsQJFJeL9ff3Vwhcf/jwIRYvXoxLly7x4hEiuE/ooKELFy7g9OnTMDMzg1gshpqaGpo2bYqFCxdi7NixuH79Om+ukmVbAwMDedtvaSkZAFajRg3cvXsXubm5/xhM9L05AWEC5iUSCRISEhQWhkZGRsLe3p5Xl2zCTyKRID4+HmZmZrzu/59Q9STR4MGD8f79e8yfPx9z584FANja2uLPP//kri8s2Lt3r9JFPG5ubli0aBFvgetCLGoROqBQlSWlS06QCzFZ3rp1axw6dAiurq7w9fXFhAkTsGfPHly5cgXdunUrM06hvB4eHggNDcWaNWsAFPdR8vLyMHv2bC7REV/IruO2trbo1asX0761Mjp27IjJkyfj9u3bSheuswgkDw4ORrt27VCnTh1UqVIFQPGigGbNmvG+wE9GQECA3Fi6DCJCQEAAb/38kJAQ+Pj4oFKlSlxgrDL4TGQ0ceJEzJ07F7q6uv84x8gqqduECRPw888/Y9WqVTA0NMTFixehoaGBfv36Ydy4cbx5QkJCuMUjISEhKl+wuWDBAi54Zv78+RgwYABGjhyJmjVrYsOGDWXKK0SwvIODA86dO6fQ792zZ4/ShZxfg2xxc6tWrbBv3z6VJ7BYtmwZUlNTYWlpCVtbW4VzL4tFhUOHDsWZM2fQv39/WFlZqeT34+bmhvT0dGzbtg33798HAHh7e6Nv377cb7l///5M3E+ePMGmTZsQHh6OBw8eoEePHhgyZAiys7OxePFiXLx4ESdOnGDiroBf9u7di969e6Nhw4b46aefAAAXL16Ek5MTduzYwWyBnxBeIZz/ZU7qe/UKdayqwMXFhRt7dXFxgUgkUrrIl+/5vW+hHyrj3bt3KruXMjIyQteuXVXiAoSJQwWKEyitW7cOkyZNwowZMzB9+nRkZGTgwIEDXPIkvhFqwXx+fj43B2VsbIxnz56hVq1aqFu3LpN+WbkPXF+8eDH8/f2xYMEClWXQA1R7w6GmpgYPDw/cuXMHRkZGvO77S+jq6nKrTKysrJCamgpHR0cAYBY8aWFhgaSkJNja2sq1JyYmwtTUlInz38DnyUOIYx08eLDSzHIvXrxAmzZteM0eU9qJS75vJmVeIsKNGzegqanJPaepqYl69erxHhBbXpwl+fDhA3r16qWyoHWg+MKekpKi8JuJjY1llkXlxo0b3Dn95s2bcs+xGggxMjJCTk6OwsKW69evo3LlykycQqHKbGtCk52djUOHDildwcny5kYIb3lxCuWtcJa9z9TQ0BDTp09nsm9lVK9eHZGRkWjVqhXEYjG2b98OLS0tHD16FLq6uip7Hcpo3749EhISeL2uC5Gh688//0RKSopctaHMzExoaWnh2bNnclWX+BokEMJZQdnjcwHd2dnZn62i8F+RBYCJRCLUqlVLziuVSpGXlydX3Y4PhF78q8r3V8anASZisRjm5uYYOHAgpk6dysRZuXJlJCUlYdu2bVwFE19fX/Tp00dhzI5Pbt++rTTzjaurK27fvs2bR4jgPiGChkoilUq5iXgzMzM8evQItWvXho2NDe7du8e7T4adnR3i4+MVxshevXqF+vXrM8mipwxWi2iEdgoRMD9x4kSMHj0a7969AxHh8uXL2L59OxYuXIh169YxcQpRpQBQ/SQRAIwcORIjR47Es2fPoK2tLZfpmBUvXrxQeg0zMDDgdf5AiEUtQgcU/vHHH1izZg369OmD8PBw+Pv7w87ODrNmzWISKC+jtBVi+GTNmjXcNXX06NEwNTXF+fPn0blzZ/zyyy+8+4RyCuVdtmwZPD094eDggHfv3qFv375ITk6GmZkZFzDAN0JVKRg2bBiA4gVZn8Jq4bqhoSHOnz+PkydPcn1fZ2dnpQl4+CI5ORkODg4K7XXq1EFKSgpvnpLXUFVdT69fv84lh/vSHCPLc3JCQgJWr17NLdh8//497OzsEBwcjIEDB/K2yKTk72TQoEG87PPfULIilYWFBSIjI5X+Hd9JJoTwChEsP2vWLAwcOBAPHz5EUVER9u3bh3v37mHz5s1cdm6+EapKwZcWdLPi+PHjOHr0KJo0aaJSr76+/j+OVXXs2BHr1q3jJSnNvn37sHHjRkRFRcHBwQGjRo1Cv3795OKF3NzceF8EXAE7/P39MXXqVIW+yuzZs+Hv788scF0IrxBOIaoxCOUV6lhVQXp6OszNzbl/q4qS/dBr1659tr/Jqh8qlUqxYMECrFq1Ck+ePMH9+/dhZ2eHmTNnwtbWFkOGDGHiVfUiCCHiUAFg27ZtWLt2LTp27IjAwED06dMH1atXh7OzMy5evMhkTF2oBfO1a9fGvXv3YGtri3r16mH16tVcBR4WSfPKfeB6mzZtAKg2gx6g+hsOJycnpKWlKc3QzYoff/wRsbGxsLe3R4cOHTBp0iTcuHED+/btw48//sjE2adPH4wdOxb6+vrcwM6ZM2cwbtw49O7dm4mzJCkpKUhNTUXz5s2hra2tMLF8+/ZtWFtb8+IS4lhVmVnuv9wgZ2dnw9ra+quCoctLSR6hywANHDgQO3fuxLRp01TmHDZsGMaNG4cNGzZAJBLh0aNHuHDhAvz8/JhkEpVKpQgKCkLdunVVmqGgd+/emDJlCnbv3g2RSISioiLExcXBz8+PaZas0sJnZ1yV2db+LXweZ3R0NDp37gw7OzvcvXsXTk5OyMjIABExLSslhLe8OIXyVjjL3me6ceNG6OnpwdvbW6599+7dKCgoYDbZ6+zsjCNHjqBt27Zo3Lgxjhw5Am1tbSaufwOLFeYtWrTgfZ//hBATNkI4S4uqg3yE9H6vTldXVy6I3N3dHerq/z/UJJVKkZ6eznuZxtDQUBARBg8ejKCgILmgN1kpa1k2Hr4QavGvEO+vDKECNnV1ddG0aVNUq1aNG4iWVfVgkekSKF78+uTJE4XFTzk5OXLvOZ+oKrhPiKChkjg5OSExMRESiQSNGzdGcHAwNDU1sWbNGmaLyAEgIyND6bju+/fvkZ2dzcxbnmEdMD906FBoa2tjxowZKCgoQN++fWFtbY2wsDBex0KFrlIAqH6SqCSyCV5VUKNGDURGRmLMmDFy7cePH2d2flDVohahAwqFKild2goxfCIWi+XmA3r37q30nDBq1CjMmTOHlwoKQjiF8lapUgWJiYnYsWMHkpKSkJeXhyFDhsDHx4fXcQChqxQAwlQMAIrvyTw8PODh4aESn6GhIdLS0hQS/KSkpDBLSDBnzhz4+fnJLf4FgLdv32LJkiW8ZSksOa8oVBCuhoYG9zu1sLBAZmYm7O3tYWhoiKysLCZONTW1zyYds7CwYBbrUBpYJJlQtVeIYHkvLy8cPnwYc+bMga6uLmbNmoX69evj8OHDaNu27VfvX8a3kB225AJDVWFsbCzIAuPScPbsWbx9+5aXffn6+qJ3796Ii4vD//73P6V/Y21trdKkOBV8HTk5OUr70/369cOSJUvKlFcIpxDVGITyCnWsqkAWN/Lx40cEBQVh5syZKomTLNn3jImJYe77lPnz52PTpk0IDg7mFuQCxeOyoaGhzALXAaCwsBAxMTFITU3lKok8evQIBgYGvCdFECIOFSiuUF23bl0AgJ6eHl6/fg0A6NSpE7Oq1UItmB83bhxycnIAFPfT2rVrh23btkFTUxPh4eG8+8p94LpQN66quuGQMW/ePPj5+WHu3Llo0KCBwuADi6DV3377DXl5eQCKyybk5eVh586dqFmzJrObm7lz5yIjI0NuMreoqAgDBgzAggULmDiB4pv/Xr164fTp0xCJREhOToadnR2GDBkCY2NjLFu2DABQtWpV3pyqPFahM8uVFgcHB94GIspLSR6hygBJpVIEBwcjKioKzs7OCpnzWJwjAgICUFRUBHd3dxQUFKB58+bQ0tKCn58ffv31V959JatdqDJwfcGCBRg9ejSqVq0KqVQKBwcHSKVS9O3bFzNmzFDZ6/gcfAYVCpFtrbTweZxTp06Fn58fgoKCoK+vj71798LCwgI+Pj7MgpSE8pYXp1DeCmfZ+0wXLlwolwlbhoWFBYYPH85b4LosaPJTtLS08OjRI7nsNGUxG/e7d++QlJSkNPMEiwBKISZshHCWFpYl77417/fqlC18SEhIgKenp9xgpCyInO8sOLLzm0QigZubG9NM3DKEWvwrxPsrJGlpaejatStu3LjBlXL9NKM+Czw8PDB16lQcPHiQWwjx6tUrTJs2jck4HSBMcF9sbCyaNm3K+36/xIwZM7iKWHPmzEGnTp3QrFkzmJqaYufOnbz7Dh06xP07KipKbmGLVCpFdHS0ShN7VMAvPj4+8PHxQUFBAfLy8hR+P3wgdJUCQPWTREBxJdhdu3YprR7Fqo8/ceJEjBkzBs+ePUPr1q0BFC8IXrZsGUJDQ5k4hVjU0qZNG/Tr1w/dunVTWf9BqJLSQlSIKS1bt26Fn58fb0Hk36qThVddXR39+vXjZV+fQ+gqBZ/y7t073pM1fY78/HycOXNG6fmXxXXGy8sL48ePx/79+1G9enUAxUHrkyZNYrZINCgoCCNGjFAIXC8oKEBQUBBvgesl2bp1K7p166bgZI2rqyvi4+NRs2ZNtGjRArNmzcLz58+xZcsWODk5MXF+7rz+/v17uQXXQlCexnT4DtJv1qwZTp48ycu+Pse3UKUAKL733rNnD1JTUzF58mSYmJjg2rVrsLS0ZFJJeu7cuZg1axY2bdqk8nOEKsnJyfnH49PW1v6mx4UrkKdly5Y4d+4catSoIdceGxuLZs2alSmvEE6hqjEI4RXqWFWJhoYG9u7dyyyo+HN8/PgR2traSEhIYNb3U8bmzZuxZs0auLu7y1X3qFevHu7evcvM++DBA7Rr1w6ZmZl4//492rZtC319fSxevBjv37/HqlWrePUJEYcKFC/ozsnJQbVq1VC9enWcOHEC9evXR3x8PG+VhT6ltAvX+abkvX+DBg3w4MED3L17F9WqVWMytiEioe4YKlApJb/MJW8uWGWWl0qliIuLg7Ozs1y5IVVx//59rqxe3bp1FbLx8s2AAQPw9OlTrFu3Dvb29khMTISdnR2ioqIwceJE3Lp1i5lbFcfaqlUrAMUZ3X/66SeFzHK2trbw8/NDzZo1eXf/G/T19bn3voJvG9l3ShkikQinT59m5v7w4QNSUlKQl5cHBwcHpqWPGzZsiMWLFytU9VAFmZmZuHnzJvLy8uDq6qqy3+c/VZ7IysqCtbU11NTUePFt27YNgYGBSE1NBVCcHSAoKIjpqlFAtcepr6+PhIQEVK9eHcbGxoiNjYWjoyMSExPh5eWFjIyMr3Z8K97y4hTKW+Ese59ppUqVcPfuXYUsWRkZGbC3t+ctO0tQUFCp/1bIgW4WfcHIyEgMGDBAaYk5lhW6AODq1au4c+cOAMDR0RGurq7MXEI6nz59inv37gEozi7KIgDtW/GWdeemTZvQq1cvlQV4yCgqKkJKSorSxSWy6mRlASHe365du5Z6gnrfvn28OH/++Weoqalh3bp1kEgkuHTpEnJzczFp0iQsXbqU2eTUw4cP0bx5c7x48YI79yUkJMDS0hInT57kNRGBDLFYjCdPnihkN05MTESrVq2YZBPV1NRE5cqV0adPH/j4+HClVFVNbm7uP2ZT/a/IxkBlCx9KoqGhAVtbWyxbtgydOl02Mz0AAQAASURBVHXi3V1BBawoKChgOkm0fPlyTJ8+HYMGDcKaNWvg6+uL1NRUxMfHY/To0Zg/fz7vThl//vkn5s+fj0ePHgEAbG1tERgYyPviHdmili5dumDTpk1KF7WcPHmS6zfxybhx47Br1y68fv0aHTt2RL9+/dChQwemC++GDh2KqlWrYvbs2fj9998xefJkNGnShCspvX79el59ssXOiYmJcHR0/GyFmF27dvHq/TcIMXcg1HzF13oPHTqE9u3bQ0NDQ25BmDJYBToLgVQqxYIFC7Bq1So8efIE9+/fh52dHWbOnAlbW1sm483Xr19Hhw4dUFBQgPz8fJiYmOD58+fQ0dGBhYUFb1UgSvL69Wu0a9cOV65cQZUqVQAULy5p1qwZ9u3bx2RO93P93tOnT6NXr1549uwZ705zc3O8ffsWnTt3Rr9+/eDp6cnbnMSXuHLlCt68eYNWrVrh6dOnGDBgAM6fP4+aNWtiw4YNqFevHm8uWWWYCRMmYO7cuXJzXVKpFGfPnkVGRsYXA5JZ872eB78XZ1kgKSkJbdq0gaGhITIyMnDv3j3Y2dlhxowZyMzMxObNm3l3urq6IjU1FUQEW1tbhT6ZkIlZ+P4eSaVS7N+/nxvvtbe3R5cuXZhVlgOKrymy68unXLx4kcuIGxERAS8vL16qfZRlZ8m+2KNHjzBr1iz07NmT2//Fixexe/dubpEYXwjhFepYZUgkEhw7dkzlVd2F8Ap1rKpm4MCBcHFxwYQJE1TqtbOzw/79+3nt9/0T2trauHv3LmxsbOSuJbdv30ajRo24YG++6dKlC/T19bF+/XqYmppy3piYGAwbNgzJyclMvKomICAABgYGmDZtGnbu3Il+/frB1tYWmZmZmDBhAhYtWsSLJykpCU5OThCLxUhKSvri3zo7O/PiFBwq55w5c+aLGysuX75MFy9eVGi/ePEixcfH8+4LDw+n6OhoiomJkdtOnz5N4eHhvPuIiLS0tCgtLY3Jvr81LC0tKSEhgYiI9PT0KDU1lYiIUlNTSVdXV8iXxiuDBg2i169fC/0yPkvJ976CCr4Fjh8/Ti4uLnT48GF69OgRvX79Wm4rSzx//pzc3d1JJBKRWCzmfou+vr40ceJE5v78/Hx68uQJc48Qx2lpaUm3b98mIiJ7e3s6ePAgERElJCQwvcYI4S0vTqG8Fc6y95lWrVqV85TkwIEDVLlyZSbObxkWfcEaNWrQqFGj6PHjx7zu90s8efKEWrVqRSKRiIyNjcnY2JhEIhG1bt2anj59Wmacf//9N/Xr14/U1dVJJBKRSCQidXV18vHxoVevXjFxCuUtL04Z79+/p6ysLHrw4IHcxoILFy6QRCIhsVjMHadsE4vFTJx5eXk0Y8YM+umnn6h69eokkUjkNtao8v0dOHAgGRgYUNWqValr167UtWtXqlatGhkaGtLAgQNp0KBB3MYXpqamlJiYSEREBgYGdPfuXSIiio6OJhcXF948ysjLy6PVq1fTqFGjaNKkSbRp0yb68OED7x4XFxdydXUlsVhMdevWJVdXV25zdnYmfX198vb25t1LRPTs2TNasWIFubm5kUgkonr16lFwcDBlZWUx8QmJra0tPXv2TOiXUcFX4urqSrm5uUT0/7+dz20sOHfuHJP9/hNBQUGUn5+v0F5QUEBBQUG8+2rXrk0RERFEJN+nnjlzJo0ePZp3nzKePn1Kb968Ybb/kv2DT/sMmpqaVKtWLTp8+DAzv1QqpaioKO7aamxsTMOGDaOYmBhmvo8fP3KPt2/fTr/++istX76c3r9/z7svMDCQAgMDSSQSkZ+fH/c4MDCQFixYQBEREUy8/wYh5g6Emq/4Wq9IJOLGWT/9vaiiv+3u7k4bN25U+fh5UFAQ2dnZ0datW0lbW5t7D3fs2EE//vgjE2eLFi1o2LBhJJVKuc8tMzOTmjdvTnv37mXiJCIqKiqiqKgoCg4OphUrVjCbDzcyMiJjY2MSi8Xcv2WbgYEBicViGjVqFBP3x48f6fDhw9S3b1/S1dUlc3NzGjVqFMXFxTHx/VtiY2Pp3bt3X7UPW1tbsrW1JZFIRFWrVuUe29raUq1atcjDw0NpLIIq+V7Pg0I4jY2NufuXT38vn24s2LJli9L+J2vc3d1p8uTJRCT/HsbFxZGNjQ0TZ8l+irJNSPj87t68eZMkEgnp6Ohw90y6urpka2tLN27c4MWhDHt7e3rx4oVCe2xsLBkaGlY4/yVf6oux7JcJ4RXqWGVs2bKFevToofJzoRBeoY5V1cydO5eMjIyoe/futGDBAgoLC5PbWLFu3Trq0KGD0nMEK+rXr09btmwhIvlrSVBQEDVt2pSZ18TEhBu/L+lNT08nbW1tJs6XL1/S2rVrKSAggHuPr169StnZ2Ux8yjh//jwtW7aMDh06xOt+P70XVzaGxeI8OGHCBMrLy+P+/aWNb9gtpftOaNmypUKbKkoQjx49Gv7+/mjcuLFc+8OHD7F48WJcunSJV9/gwYORk5OjkF3txYsXaNOmDVdmm0+cnJyQlpam8vK72dnZOHTokNKyeqxKQ+Tn5ysttZSbm8usLASg+mPduHEj7/usoAJZGd7PrUrmi89lCxSJRKhUqRJq1KiBvn37onbt2rw5O3ToAKA48wzLahcTJ04s9d+yOg9OmDAB6urqyMzMlFud26tXL0ycOBHLli1j4pWho6OjkpJ+Qhznjz/+iNjYWNjb26NDhw6YNGkSbty4gX379nGrzFkghLe8OIXyVjjL3mfap08fjB07Fvr6+lxW4TNnzmDcuHHMyoVlZWVBJBJx1+3Lly8jIiICDg4OGD58OBNnaWGRtfXJkyeYOHEiLC0ted/35/j111/x5s0b3Lp1i7vW3L59GwMHDsTYsWOxffv2MuEcOnQorl+/jiNHjuCnn34CAFy4cAHjxo3DL7/8gh07dvDuFMpbXpzJyckYPHgwzp8/L9fOd9+3JCNGjEDDhg1x9OhRWFlZMS9fDRS/t2fOnEH//v1V5gSEeX8tLS3Rs2dPrFq1istOKJVKMWrUKBgYGGDJkiW8O6VSKfT19QEAZmZmePToEWrXrg0bGxsmWXBLoquri6ZNm6JatWrcGMvx48cB8JtNtEuXLgCKM7p7enrKZUaUVbXr3r07b76SmJmZYcyYMRgzZgzS09MRERGBTZs2YerUqWjevDnT6meqJj09XeiXUAEPeHl5cWOrXl5eKjvnymjdurUgVQpkGeQ+HecoKChAUFAQZs2axasvMzMTbm5uAIqzdL158wYA0L9/f/z4449YuXIlrz5lfJqFl29kVVkkEgni4+OZZK7/EmKxGB4eHvDw8MCqVatw+PBhzJ8/H+vXr2dyDS9tSelRo0Zhzpw5X/1+yCpv2draClKBpwJ+KVnF6NOKRqrA0dERU6dOxahRo1RWpQAANm/ejDVr1sDd3V0ui2e9evVw9+5dJs6EhASsXr0aYrEYampqeP/+Pezs7BAcHIyBAweiW7duTLwikYg7J7EkNDQURITBgwcjKChIrtqFrN8ru1/lG3V1dXTq1AmdOnVCQUEB9u/fj4iICLRq1QpVqlThKrgKRfv27ZGQkPBVWZVl/d1WrVph3759MDY25uvlVSAAISEh3L1wSEiIyvu9EyZMwIgRI1RepSA+Ph6rV69WaK9cuTIeP37MxClkxVBVMnToUDg5OeHq1avc+eHly5cYNGgQhg8frjC+xBc//vgjPDw88Ndff3Hf6bNnz+Lnn39GYGBghfNfIkRfTCivUMcqY9myZUhNTYWlpaVKqzEI4RXqWFXN+vXrYWRkhKtXr+Lq1atyz4lEIowdO5aJd+XKlUhJSYG1tTVsbGwUKi6weH9nzZqFgQMH4uHDhygqKsK+fftw7949bN68GUeOHOHdJ6OoqEjpmEZ2djZ3buSTTyu1DBs2DCYmJti3bx+zSi3K+Omnn5jcx6Snp3PjY6oc275+/To+fvzI/VuVlPvA9ZcvX8o9/vjxI65fv46ZM2cyLYF5+/Zt1K9fX6Hd1dUVt2/f5t0nm8j8lLy8PGaDiPPmzYOfnx/mzp2LBg0aKJyMDQwMeHdGR0ejc+fOsLOzw927d+Hk5ISMjAwQkdL3my+aNWuGzZs3Y+7cuQCKL3JFRUUIDg5Gq1atmDiFOtYKKuCDoqIizJs3D8uWLePK0ujr62PSpEmYPn263MQKXxgaGuLAgQMwMjJCgwYNABR3Cl+9egUPDw/s3LkTixcvRnR0NJo0acKL86+//uJlP/9EaTsPLAe6Tpw4gaioKIUFCDVr1sSDBw9489SvXx/R0dEwNjbmyhB/DhadflUdZ0l+++037ncSFBSEvLw87Ny5EzVr1mS2EEEob3lxCuWtcJa9z3Tu3LnIyMiAu7s7V96zqKgIAwYMwIIFC5g4+/bti+HDh6N///54/Pgx2rRpAycnJ2zbtg2PHz/mPYjm30BEvO+zR48eiImJQfXq1Xnf9+eIjIzEqVOn5BZIOTg44Pfff2c2qSyE88iRI4iKikLTpk25Nk9PT6xduxbt2rVj4hTKW16cgwYNgrq6Oo4cOaKygO7k5GTs2bMHNWrUYO6Scfz4cRw9epS3e4bSIsT7u2HDBsTGxspNVqupqWHixIlwc3NjErju5OSExMRESCQSNG7cGMHBwdDU1MSaNWuYllxPS0tD165dcePGDYhEIoVxND6DCksG9/Xu3ZtpwoMvIZFIEBAQgHr16mHmzJk4c+aMIK+DT5YvX47hw4ejUqVKWL58+Rf/ltXkVAX8UjKohFXAwZd49OgRduzYge3bt2PRokVwdnaGj48P+vTpwzQBw+fG8hMTE2FiYsK774cffkBubi5sbGxQrVo1XLx4EfXq1UN6ejqTPnZJ9uzZg127dilNzMJiXEfoRS2PHz/Gjh07sHXrViQlJaFRo0aCvp6tW7fCz8+Pt0B+FgmSKhCWzZs3o1evXgr9lQ8fPmDHjh0YMGAA786wsDCEhITg1KlTiIiIwIABA6CmpoYePXrAx8cHLVq04N0JFCcWU3ZfUVRUxE3i842GhgY3F2JhYcElSzE0NERWVhYTJ1CcjOvMmTNKz7189pFk5wSJRIImTZpwY1eqRkdHB56ennj58iUePHiAO3fuCPI6SsLn9VVV81D/BVUHXwvt/RpKXkMHDRqkcn9OTg4iIyOxfft29OzZEzo6OvD29oaPjw+3wJEFWlpa+PvvvxXa79+/z3Rh46tXr7Bnzx6kpqZi8uTJMDExwbVr12BpaYnKlSsz86qShIQEXLlyRW5Ri7GxMebPn4///e9/zLzr1q1Djx498PPPPyMqKgrnz59H586dMW/ePIwbN67CqQLq1q2LY8eOoWrVqmXey6dTlmhC1QjhFepYVY1Q9/9CvL9eXl44fPgw5syZA11dXcyaNQv169fH4cOH0bZtW2ZeDw8PhIaGYs2aNQCK+2B5eXmYPXs2l+STTyZOnIhBgwYhODhYLjC+Q4cO6Nu3L+++kmzZsgWrVq1Ceno6Lly4ABsbG4SGhkIikcDLy4sXh42NDffvBw8ewM3NTeEeqrCwEOfPn5f726+l5P2Eyu8teM/hXkaIiYmh+vXrM9u/iYkJnT9/XqE9Li6OjIyMePPIUvWLxWL65Zdf5NL3jx07lho3bkxubm68+UryaZkC2cayfMv//vc/mjVrFhH9fxmKN2/eUOfOnemPP/5g4iQiunHjBllYWFC7du1IU1OTevToQfb29mRpaUkpKSlMnEId67eMvr6+ICXnKvj3BAQEkLm5Of3xxx+UmJhIiYmJ9Pvvv5O5uTlNmzaNiXPKlCk0cuRIkkqlXJtUKqUxY8bQ1KlTqaioiIYPH05NmjRh4v/WyMrKknsvvhY9PT26f/8+92/ZbzE+Pp5MTEx48wQGBnJlq4Qo56eq45RRWFhIZ86coZcvX/K+72/NW16cQnkrnGXTK+PevXu0a9cuOnz4MGVkZDB1GRkZcWXfwsLCuHuJqKgokkgkTN1CkJ+fTx06dKCBAwfS0qVLVVJKUE9Pj65fv67Qfu3aNdLX1y8zzqpVq1JSUpJCe2JiIlWuXJmJUyhveXHq6OjQnTt3mOz7c7Rq1YqOHz+uUqetrS3dvn1bpU4iYd5fIyMjOnDggEL7gQMHeB27KklkZCTt3buXiIiSk5Opdu3aJBKJyMzMjKKjo5k4iYg6depEXl5e9OzZM9LT06Nbt27RuXPnqFGjRnT27FkmzsuXL9PFixcV2i9evEjx8fFMnDJiY2Np5MiRZG5uTvr6+tSvXz+V/5ZYYGtrS8+fP+f+/bmtLPZZygMSiYT7fEvy8uVLlXymaWlpNG/ePHJ0dCQ1NTVq1aoV7w4jIyMyNjYmsVjM/Vu2GRgYkFgsplGjRvHuHTJkCDeOsnLlStLW1qY2bdqQkZERDR48mHefjLCwMNLT06MxY8aQpqYm/fLLL9SmTRsyNDRkNj7466+/Ku3Hr1ixgsaNG8fE+fr1a9qwYQO1adOG1NXVqVatWhQUFMRs3uDfUHJs679ibGxMz549IyJS+N5+ugkJH8f6PTj59orFYq5UeUmeP3/ObJ7vU96+fUu7du2ievXqMXXWr1+ftmzZQkTy72FQUBA1bdqUibNt27a0bds2IiIaOnQoNWrUiLZu3Uqenp7UqFEjJs5r167RDz/8QAYGBqSmpkbm5uYkEolIV1eX2fX06NGjFBkZqdAeGRlJx44dY+IkKh7T2bp1K7Vv3540NTWpevXqNGPGDJXfVynja3+nEyZMoLy8PO7fX9qEpCycB0sLn3PUQp97Zb+dDh06kKamJtnZ2TFzDRkyhLp06UIfPnwgPT09SktLowcPHpCrqyuzvlliYiKZm5tTjRo1SF1dnfvcpk+fTv3792filP1e/4kFCxbwNsfg7OysdBwlOjqanJyceHF8jvfv31ObNm3Izc2N9PT0aMWKFUx95clZGsrTuVeoY62gggqKycrKIgcHB7K3tyd1dXX68ccfydTUlGrXrq20L/O1GBgYcGMpJX//GRkZpKWlxbtPxh9//EFmZmY0b9480tbW5rwbN26kli1bMnEK1R/09fWlv//+W6E9Ly+PfH19efdVBK5/hjt37pCuri6z/ffu3ZtatGhBr1694tpevnxJLVq0IG9vb948LVu2pJYtW5JIJCI3NzfuccuWLcnDw4OGDx/OBeDxTXh4OEVHR1NMTIzcdvr0aQoPD2fi1NPT405SRkZGdPPmTSIiSkhIIBsbGyZOGa9evaJ58+aRt7c3tW/fnqZPn06PHj1i5hPyWL9VKjqm3w9WVlZ08OBBhfYDBw6QtbU1E6eZmRndu3dPof3evXtkampKRERJSUlkaGjIuzs/P5/u3LnDBenLNiHhe6FH+/btacaMGURE3OCSVColb29v6t69O28eoRHiOLW0tCgtLY3Jvr81b3lxCuWtcJZNr6rR1dWl9PR0IiL6+eefadGiRURE9ODBA6pUqRIT5+PHj6lfv35kZWVFampqcotiWU/WrFu3jtTV1UlPT49sbGxUEvTWuXNnat68OT18+JBry87OphYtWlCXLl3KjHP16tXUpk0bysnJ4dpycnLIw8ODVq1axcQplLe8OBs2bEjnzp1jsu/PsW/fPnJwcKCNGzfSlStXVNLf3rJlC/Xo0YNbTKkqhHh/J0yYQKamprRs2TI6d+4cnTt3jpYuXUpmZmYqDYB48eIFFRUVMXWYmppy3xkDAwNukVZ0dDS5uLgwcf7vf/+j3bt3K7Tv3buXWaBSQEAA2drakqamJnXs2JEiIiJU/l2uoIL/ikgkUjph8/jxY9LQ0FDJaygsLKTDhw+Ti4sLk35oeHg4bdy4kUQiEYWFhVF4eDi3RUREKE2EwwdSqZQ+fvzIPd6+fTv9+uuvtHz5cnr//j0TJxFR7dq1KSIigojkx3VnzpxJo0ePZuK0tramK1euKLRfvXqV2eK+SpUqkZWVFY0fP575wqR/Cx/j6eHh4fTu3TsiKp60Lfm9/XRjwYMHD5T2E4qKiujBgwfc4xEjRnAB9t+jUyivSCSip0+fKrQnJCSoZDFCTk4OhYSEUIMGDUgkElHjxo2ZuQ4cOECGhoa0aNEi0tHRoSVLltDQoUNJU1OTTpw4wcQZHx9Pp0+fJiKiJ0+ekKenJ+nr61P9+vUpISGBibNFixY0bNgwkkql3DkgMzOTmjdvzi0g5Zu6devS0aNHFdqPHz9Ozs7OTJy9evUiXV1dMjc3p9GjRzO7hv5Xvvb827JlSy64teTc/6cbi4V2FSiHzznqz/V7Hz58yGz89VOePXtGK1asIEdHR6bjr69eveIWTKqpqVHVqlVJQ0ODmjdvXupg73+Lu7s7TZ48mYjkP7e4uDhmMRa6urrk6+ur0nGdo0ePkqOjI+3evZuysrIoKyuLdu/ezZ2TX79+zW1fy6fjcYmJiRQbG0tVq1alESNGMBmrKy/O/0JF4Pp/5+XLl7R27VoKCAigFy9eEFHxvWJ2djZvjm/FK9SxqpqsrCz6/fffacqUKd/U4r6yxMePH2nLli00efJkGjlyJK1du5YKCgqYuMzNzenatWtEJP/7P3HiBFWpUoWJk4jI3t6e9u/fr+C9ceMGF2vGN5+7F7937x6zhGNEnw+Yf/bsGampqfHuE6Ym1zdEUlKS3GMiQk5ODhYtWgQXFxdm3qVLl6J58+awsbGBq6srgOJyPZaWltiyZQtvHlkKf19fX4SFhcHAwIC3ff8TgwcPRk5ODiwsLOTaX7x4gTZt2jApG6mrq8uVtbOyskJqaiocHR0BAM+fP+fdVxJDQ0NMnz6dqaMkQh6rUKSkpCA1NRXNmzeHtra2Qtnc27dvw9raWsBXWEFpyc3NRZ06dRTa69Spg9zcXCbOwsJC3L17F7Vq1ZJrv3v3Llf2vVKlSryWEHz27Bl8fX1x/Phxpc/zWW7+30I8l3oODg6Gu7s7rly5gg8fPsDf3x+3bt1Cbm4u4uLieHXJiI+PR1FRERo3bizXfunSJaipqaFhw4a8O4U4TicnJ6SlpUEikTDZ/7fkLS9OobwVzrLpzc7OxqFDh5SWd/7tt9949zk6OmLVqlXo2LEjTp48iblz5wIAHj16BFNTU959QHF53MzMTMycORNWVlYqLfc7ffp0BAUFISAggCvfzZqVK1eic+fOsLW15UpcZmVlwcnJCVu3bi0zzj///BMpKSmoVq0aqlWrBgDIzMyElpYWnj17htWrV3N/e+3ate/aW16cixcvhr+/PxYsWIC6detCQ0ND7nkW4xHdu3cHUDz+IEMkEnH3iiz628uWLUNqaiosLS1ha2urcJx8fl9LIsT7u3TpUvzwww9YtmwZcnJyABSPP0yePBmTJk3i3fc5TExMmDukUilXXtTMzAyPHj1C7dq1YWNjg3v37jFx3r59G/Xr11dod3V1xe3bt5k4z549i8mTJ6Nnz54wMzNj4vhWiI2NRdOmTYV+GRXwwKFDh7h/R0VFwdDQkHsslUoRHR3NvA8eFxeHbdu2Yc+ePXj37h28vLywcOFC3j2y8XKJRIImTZoolANmhVgsluvr9u7dG71791b4u1GjRmHOnDm8nT8yMzPh5uYGANDW1sabN28AAP3798ePP/6IlStX8uIpyYsXL+S+QzIMDAyYjakfOnQI7u7uKrufUDUl53kGDRqkcr9EIlE6D5WbmwuJRML1B//888/v2qlqr6urK0QiEUQiEdzd3eXOR1KpFOnp6WjXrt1Xe5Tx999/Y+/evYiIiEBMTAzs7Ozg4+ODnTt3onr16kycAODl5YXDhw9jzpw50NXVxaxZs1C/fn0cPnwYbdu2ZeIsOX5tYWGByMhIpX8XFxeHhg0bQktL66udCQkJWL16NcRiMdTU1PD+/XvY2dkhODgYAwcORLdu3b7a8SnJyclwcHBQaK9Tpw5SUlJ49wGAmpoadu3aBU9PT6ipqTFxCIls/v/Tf7NEdl4oDXzeFwvl/bfI+jFfw/LlywEUj2usW7cOenp63HNSqRRnz55VOrfKFwUFBdi/fz+2bduG6OhoVK1aFX369MGePXuYOQ0NDXHy5EnExsYiKSkJeXl5qF+/Ptq0acPMGR8fLzcuJqNy5cp4/PgxE+fWrVsRHh6O1q1bw9bWFoMHD8aAAQOYxjV06tQJANCzZ0/uNySbG/7555+5x3yMn7m4uHDjcTJkj1evXo01a9bwPlZXXpwVqI6kpCS0adMGhoaGyMjIwLBhw2BiYoJ9+/YhMzMTmzdvLjNeoY5V1URHR6Nz586ws7PD3bt34eTkhIyMDBCR0jFZvpBKpQgJCcGuXbuUzt2yiIf6P/bOPC6n9P//r7sUpUXotrbbSjIRsmWQnVSMSkkLM2LUtBHJVEoYWyYjRFokZJ+JkBFFRtrsqaQioaZGZauu7x/97vPrdmf5cM59Uuf5ePSg6+5xnte5uzvnOtf1vt5vCQmJj46XmLwmtWnTBjY2NowdvzEmJibw9/fHoUOHADRcgwsLC7F8+XJqrYgJHj58SMX2NqZt27aorq6m1SV4HuPxeLCzsxN6Bqyrq0N2djY1l0Yn//33H0hDAnS8fPkS7dq1E/LGx8eLzEXQQasPXG9qcAEAhoaG2Lt3L2PeHj16IDs7G/v370dWVhZkZGRgb28PKysrkcVHOggPD6f9mJ/i/aBiAVVVVUIfcDoxNDREcnIytLW1MXXqVLi7u+PmzZs4evQoDA0NGXECDe+vnJwcfvjhB6H2w4cPo6amhpEgfbbOlQ3KyspgYWGBCxcugMfj4cGDB9DU1ISjoyOUlJSwadMmAKCCbDiaPwMHDkRISAg1CSMgJCQEAwcOZMQ5b948ODo6YuXKlRgyZAiAhsmJtWvXwtbWFgCQlJREbQChg19++QUVFRW4du0avv/+exw7dgylpaUICAigPrctBV1dXeTk5CAkJATy8vKoqqqCubk5lixZgm7dujHiXLJkCZYtWyYSuP748WOsX78e165do93JxnkGBATAw8MDa9asweDBg9G+fXuh15nalMaGt7U42fJyTuacbHnZmHRZv349zMzM8Ntvv2H+/PnUffvkyZMYOnQoI87k5GRcvnyZ0Y3FH+Lt27ewsLAQa5CJiooK0tPTcf78edy7dw8AoK2tzeiCDRtOU1NTxo7d3LytxSn4vIwfP16onckFm4cPH9J+zE/B1meXjfdXQkICy5Ytw7Jly/Dff/8BYO4+yja6urrIysqChoYGhg0bhg0bNkBaWhq7du2CpqYmI862bduitLRU5PglJSWMBasytdm2OTJu3Dj06NEDVlZWsLa2pvVZn0O8CK67PB5PZI5VSkoK6urqjM2xrFixArGxsXjy5AkmTJiA4OBgzJw5E7Kysoz4BMjLy+Pu3bsYMGAAAODEiRMIDw+Hjo4OfH19IS0tzaj/Q0RHR8PDw4O2wPWuXbuivLwcampqUFVVRWpqKgYOHIiHDx/SnnBBQK9evXDmzBn8/PPPQu2nT59m7HrPVMBrc8TY2Bg2NjYwNzcX25iBjXUoNpzi9gquvZmZmZg0aZJQ8KS0tDTU1dUZCwzo0qULlJSUYGFhgaCgIEaSk3yI0aNH49y5cx/9mQMHDsDExERk3odJpkyZgszMTFquU1JSUtQcB5/PR2FhIbS1taGoqIiioqKvPn5TKCoqIj8/H+rq6kLtubm5jL2P+/fvZ+S4dEFnUobo6GiYm5szPj5p/Cz8+vVr/PHHH9DR0cHw4cMBAKmpqbh9+zYWL178zXvZCpbfsmULgIbrfWhoqNCmC8G1NzQ0lDZfYywtLfHnn39CVlYWc+bMgY+PD/UeM0lRURFUVFQwatQosW08btu2LTXH0ZicnBwoKysz4jQ1NYWpqSmeP3+OqKgo7Nu3Dz4+Ppg0aRIcHBxgYmJC+zyAuDa1AOzMz7UWJ4f4cHNzg52dHTZs2EAltwCAqVOnYu7cuS3Ky9a5ipsVK1bAw8MDfn5+kJeXx5EjR8Dn82Ftbc3YJlwA8PPzQ1hYGNzd3bFq1Sp4e3ujoKAAx48fx+rVqxlxHjt2TOj7d+/eISMjAxEREfDz82PECeCTmxwEcVh0sWnTJsyePRt8Ph+vXr3CmDFj8PTpUwwfPhyBgYG0uhqjoaGBzMxMqKmpCbWfOXMG2tratLoEyRYIIZCXl4eMjAz1mrS0NAwNDbFw4UJanQDQoUMHavP6+8lggYbnFyY+SzzC1AzgN8KjR4+EvpeQkICysjKjk0stHTc3NwBAcHAwFi5cKPSgXFdXR2XCZWKxLD8/H1VVVdDT00N1dTXc3d1x5coV9O7dG5s3bxa5iNBFnz59sHPnTowdO1aoPSkpCT/++CMj2bnYOlc2sLW1xbNnzxAWFgZtbW1kZWVBU1MTCQkJcHNzw+3bt9nuIsf/SFJSEqZNmwZVVVVq4uPq1asoKipCfHw8Ro8eTbuzrq4O69atQ0hICEpLSwE0TIIvXboUy5cvh6SkJAoLCyEhIYGePXvS4uzWrRtOnDiBoUOHQkFBAWlpaejTpw9OnjyJDRs2IDk5mRbPlyAvL0/9LX2ryMnJITs7W+QcHj58CD09PVoyXDQHGgdLNp4sZXrXPhve1uJky8s5W97vdOjQoZgyZQo16ZKVlSU06eLk5ES7E2i4p/73339QUlKi2goKCiArK0vttqYzG5iOjg7279/f5G52pnF1dYWysjJWrlwpNmdkZCQsLCxE3ru3b98iNjaW9oketpwcLY+kpKSPvj5mzBgx9aRlwr2/zJKQkIDq6mqYm5sjNzcX06dPR05ODjp16oSDBw9i3LhxtDutrKxQUlKCEydOUBPSFRUVMDU1BZ/PpzLHfC0nT57ElClTICUlJZS5uilMTExocTYHXrx4gdjYWBw4cABXr16Fnp4erK2tYWVlRdszP4d40dDQwPXr18VaLWDkyJGwtrYWe5WCIUOGwMvLC7NmzUJ+fj50dHRgbm6O69evY9q0adi6davY+tIYuueSFixYABUVFfz666/Yvn07PD09MXLkSKSlpcHc3Bx79uyhxdOYvXv34ueff4anpyd1bU9MTMSmTZuwdetW2hb/Bg0ahMTERCgpKX0y+I3N7LB0/05dXFxw6NAhVFZWYtq0abCxscHUqVMZSdbExjoUW2tfbK65RUREwMLCQqxrpufOnWvWVQoUFBRoCyL/XOj8W504cSLs7Owwd+5cLFy4ENnZ2XB2dkZUVBT+/fdfRpLB/PTTT7h69SqOHTtGZc3Pzc3FrFmzMGTIEISFhdHi2bZtG3788Ue0a9dOJGnS+zg7O9Pi/FLo/J0qKyvj1atXMDExgY2NjViyzC9YsADdunWjKjEK+PXXX1FUVMRYckBxeRsH5XwqWJ6JKjxjx47F0aNHheZemcba2hrW1tZir1IgKSmJUaNGwcbGBrNnzxbLOS9YsABlZWU4dOgQOnbsiOzsbEhKSsLU1BRGRkZiG2v//vvv8PT0xNu3b9G5c2csWrQIXl5ejG9CaS5MmzYNYWFhjCUFa81OtmIA2PDS6VRUVER6ejq0tLSEjvvo0SP07dsXr1+/pqHHzcPL1rmKG3l5eWRmZkJLSwtKSkpITk5G//79kZWVhZkzZ6KgoIARr5aWFrZt24Zp06YJ9WHbtm1ITU1FTEwMI96miImJwcGDB3HixAlGjv/+ffvdu3eoqamBtLQ0ZGVlGckuD0CslVoAICwsDL6+vti0aRMcHR0RFhaGvLw8BAUFISwsrMmqhV+Ln58fPDw8xLZhOikpCYQQjBs3DkeOHBGqgistLQ01NTVGKsW0+sD1z2XAgAGIj4+nPaPznTt3miwN8S0vFAmCt5OSkjB8+HChDDCC3cAeHh7o3bs3rd66ujqkpKRAT08PHTp0oPXYn6Jdu3a4d++eSLaAgoICaGtr49WrV7T62DxXNujatSsSEhIwcOBAoYFTfn4+9PT0UFVVxXYXOb6AJ0+eYPv27UJZPRcvXsxoWTQBH8sWSGegnYKCArKzs6Gurg41NTXExMRg5MiRePjwIfr374+ampqvdnwpdD88slF5olOnTvjzzz9Fsj5cuXIF06ZNw7///ku7k43zjIiIgIqKishkYX19PQoLCxlxsuVtLU62vJyz5f1O2Zp0+RzoXMg9e/YsNm3ahJ07d4qMt5nG2dkZkZGRGDhwIPT09EQCLjZv3ky7U1JSssny72VlZeDz+YxsgmDDKeDGjRu4e/cuAKB///5i26DAhre1ONmgJc6tsMW3EmgnDsrLy6GkpERrNsTGPH78GEZGRigrK6P+NjMzM9GlSxecO3eOtjlICQkJPH36FHw+/6MBYC25lPXDhw8RExODAwcO4N69ezAyMsKFCxfY7hYHxwdpvIi8fv16XLhwAQkJCUhJSYGlpSVjGXE/Bd1zSfX19aivr6eyS8bGxlKJWX766SfGMsvv2LEDgYGBePLkCQBAXV0dvr6+tG7W9PPzg6enJ2RlZeHr6/vRe8mvv/5Km1dAYWEhVFRURLyEEBQVFUFVVRUA4OTkhDVr1tC6MaO+vh7nz59HTEwMjh07BklJScyePRvW1ta0brRjYx2KrbUvtrwcTfOtB2WlpaXh5cuXGDt2LJ49ewZbW1vq2rt3715GKuJWVlZi8uTJSEtLozYQFhcXY/To0Th69Cht65waGhpIS0tDp06doKGh8cGf4/F4yM/Pp8XZHKitrcWZM2dw4MABnDhxArKysvjhhx9gbW2NESNGMOJUVFREWlqayHXnwYMHMDAwQGVlZYvxshWk31rIyMhATEwMYmNj8fz5c0yePBk2NjaYMWMGLeu0TVFZWYnZs2dT18Pu3btT2Vrj4+MZDRArLS1FREQE9u3bh0ePHsHMzAyOjo4oLi7G+vXr0b17d5w9e5Y2X0VFBfbs2SM0N+jg4EBtnmeTb/1+yjmbh5dOJ5/PR0JCAvT19YWOe+7cOTg4ODD2HM6Gl61zFTddu3bF33//DW1tbejo6GDdunUwMTFBVlYWRo4cyVicWfv27XH37l2oqqqiW7du+OuvvzBo0CDk5+dDX1+fsXFSU7ARU/fgwQM4OTnB09MTkyZNEpuXafbv3w9fX1/k5eUBALp37w4/Pz84Ojqy3DN6efToEVRUVMS2kZwLXP9M6L7J5ufnw8zMDDdv3gSPx6NKXwomElvCQpG9vT2Cg4PFWka6Xbt2uHv37kcnJJhAVVUVISEhIoviJ06cwJIlS1BcXEy7k61zZQN5eXmkp6ejd+/eQn+LaWlpmDRpEsrKytjuIkcLgs5AuyFDhiAgIACTJk2CiYkJOnTogKCgIGzbtg1xcXHUoIYN6M4Mw0blCXFlKGwMG+fJVjBhawmc5N5fzvkte9madPkc6Hx+UlJSQk1NDWprayErKysSPM7Ujn0AItf7xvB4PEaC3iQkJFBaWipSmjYrKwtjx45l5HzZcD579gyWlpa4ePEitUhdUVGBsWPHIjY2lrHSvGx4W4tTQE1NTZNB5Hp6erS72Jhbqaurw5YtW3Do0KEmz5PJaxLA/PvbONDuU6UfmQi0a21UV1dj//79yMrKgoyMDPT09GBlZcVIZtrWTl1dHU6fPg0fHx9kZ2e3iLnX1gAbmVObQ5UCBQUF3LhxA71798aECRMwffp0uLi4oLCwEH379qU9ScrnwlYAxOLFi+Hv70971vvnz59DRkYGcnJytB63OcDmxtTGvH79GqdOnUJgYCBu3rzJiNfe3h7btm0TKnHPNGw4xent2LEjcnJy0Llz509u4qNr7PstbZ781oOyPhc6E/wADRtnzp07JzTuNTIyouXYbPOpz2xjmP781tTU4NixY4iJicH58+fRs2dPRtahunbtinXr1sHOzk6ofd++fVi+fDlV9bgleMUVLO/m5oY1a9agffv2VKWND0FXIo3mVKWAEIKLFy8iJiYGR44cQX19PczNzRndGCDObK1Hjx5FeHg4EhISoKOjgwULFsDGxkZo405eXh60tbVF5nu+FEEchYyMDIYOHQoAuH79Ol69eoWzZ89i0KBBtHi+lNZyP6XTWVxc/MEKcqmpqTA0NATQkGF55syZtG3CYMPLhpOtagxseJtL5QmmMTU1xbRp07Bw4UJ4eHjgxIkTsLOzo6qanD9/nhFv3759ERkZiWHDhmHUqFGYPn06vLy8cPDgQSxduhTPnj1jxPs+r169wooVK3D69GlGYlg+RlpaGmxsbKgkpnSSmJiIxMREPHv2DPX19UKviWNDYU1NDaqqqkTmW+imtLQUHh4e1Lm+H97N5LxORUUF/vnnnybfY7ordLeh9Wgcn42Liws0NDSQmJgIDQ0N/PPPPygrK4O7uzs2btzIdvdoITw8XOxOXV1d5Ofniz2Y28rKCs7OzpCXl6cmWpKSkuDi4sJISQiAvXNlg9GjRyMyMpLazc7j8VBfX48NGzZ8NJiIo3lz+fJl7Ny5E/n5+Th8+DB69OiBqKgoaGhoYNSoUaz1i879XC4uLigpKQHQENQxefJk7N+/H9LS0ti3bx9tni+B7n1rhYWFTV6P1NTUUFhYSKtLwMaNG2FkZAQ1NTWRDIVRUVGMONk4T0JIkxPfVVVVjJbpZcPbWpxseTlny/udGhoaIjk5Gdra2pg6dSrc3d1x8+ZNHD16lJq4awmwOUn2999/i80lWOjk8XgYP348lXkSaJiAePjwISZPnvzNOwUsXboUL1++xO3bt6GtrQ2gIWv2/Pnz4ezsjAMHDrQYb2txPn/+HPb29jh9+nSTrzMxkcbG3Iqfnx/CwsLg7u6OVatWwdvbGwUFBTh+/DhWr17NiBMQ3/vbOBidC0xnnvbt22PUqFFQVVWlFqcFv2MmAmIjIyNhYWEhEoD09u1bxMbG0j7x3BxISUnB/v37ERcXh9evX2PmzJkICgpiu1scn8mWLVtgbW2Ndu3aYcuWLR/8OR6PR1swjampKVWlwNTU9KNOphaJDAwMEBAQAGNjYyQlJWHHjh0AGqoHdOnShRFncyY6OhoeHh60B64zuZGvMZqamrh+/To6deok1F5RUUFlXaMbtp6LG/P06VPExsYiOjoa2dnZVMAUnbx79w5RUVFwd3eHrq4u7cdvLk5xe7ds2UIFx2/ZsoWx6jONmTlzJjU+mTlzplicHB9nypQptCa+4fF4mDhxIiZOnEjL8T6Fv78/PDw8ICsrK9T+6tUr/Pbbb7Q+uzUeL7x+/Rp//PEHdHR0qEqxqampuH37NhYvXkyb80PIyspi0qRJ+Pfff/Ho0SMqyzLd/PLLL3ByckJ6ejp1fb927Rr27t0LHx8fRpxseWVkZJCSkiISuJ6SkkLrPTUjIwPv3r2j/v8h6Lw+sjHW/phj7NixGDt2LJycnODo6IiIiAhGAtCKioqgoqKCUaNGiW092t7eHpaWlkhJScGQIUOa/Jnu3bvD29ubNqerqytMTEywe/duas63trYWCxYswC+//IJLly7R5uIQDxMnTkRycjI6duwo1J6SkoJp06ahoqICADB37txv3suGc9OmTZg9ezb4fD5evXqFMWPGUNUYAgMDafM0By9b5ypuNm/eTCX48vPzQ1VVFQ4ePIjevXszUk1ZgJmZGRITEzFs2DAsXboUNjY22LNnDwoLC+Hq6sqI8/0Nx4QQvHz5ErKysoiOjmbE+THatGlDVbmjEz8/P/j7+8PAwADdunVj5blRVlZW5BmDCezs7FBYWAgfHx+xnuupU6dgbW2NqqoqKCgoCHl5PB4XuN5SuHr1Ki5cuIDOnTtDQkICEhISGDVqFIKCguDs7PzRBxKODxMQEAAPDw+sWbMGgwcPFtlZx1T29zVr1qCgoEAo2KO+vh62trZYu3YtI062zpUNNmzYgPHjxyMtLQ1v377FsmXLcPv2bZSXlyMlJYXt7nF8AUeOHMG8efNgbW2N9PR0vHnzBkBDeba1a9ciPj6e5R7Sg42NDfX/wYMH49GjR7h37x5UVVVpX2x7n9zcXOTl5cHIyAgyMjIiC1Z37txB9+7dafPx+XxkZ2dDXV1dqD0rK0tkYY4uevTogezsbKEMhfb29oxmKBTneQqyavB4PPj4+AgNgOvq6nDt2jV89913tDrZ8rYWJ1teztnyfqcC2Jp0ETfz589nuwsAQFVR+lCmj69FsNCZmZmJSZMmCWV+FJR/nzVr1jfvFHDmzBmcP3+eCqoGAB0dHWzfvp3RhWw2vK3F+csvv6CiogLXrl3D999/j2PHjqG0tBQBAQHYtGkTI0425lb279+P3bt3Y9q0afD19YWVlRW0tLSgp6eH1NRUxhZz2Xh/Bbx9+7bJ7BqqqqqMels6TVUMaPzMxlRW2smTJ4tkhHn58iXs7e1bVOD6ihUrEBsbiydPnmDChAkIDg7GzJkzxbKwwEEfDx8+bPL/TNL4Wvf+dU9cbN26FdbW1jh+/Di8vb3Rq1cvAEBcXBxGjBjBSp/YhO7kC3FxcR+snMJEJtyCgoImr+lv3ryhvVIrm8+nAPDff//hyJEjiImJwcWLF6GpqQlra2scPHgQWlpatPukpKSgqqoq1ioabDjF7W38DP5+VmOmaLxh0tfXVyzObwk2AjLovvZWV1cjKSmpyWsvE89Qfn5+WLRokcjYr6amBn5+frQGrjf+/C5YsADOzs5UIq7GP1NUVESb830Emdb379+PxMREqKiowMrKCnFxcYz4vLy8oKmpieDgYCoYSltbG+Hh4ZgzZw4jTra84gqWb5w8Q1yJNNgYa3+I4uJixMTEICYmBrdu3cLw4cOxfft2Rlzq6uoYNWoUbGxsMHv2bCgpKTHiaUxJScknn0VlZGRoTSCQlpYmFLQONAQSLlu2DAYGBrR5OMSHoaEhJk6ciL///pvaZHjp0iXMmDGD0fETG142nIqKijh37pxYqzGw5WXrXMXN2rVrqXid9u3bIzQ0VCzedevWUf+3sLCAmpoarly5gt69e2PGjBmMON/fcCwhIQFlZWUMGzaM0fvc+5UKCSEoKSlBSEgIRo4cSbsvNDQU+/btw7x582g/9sdgI/t5cnIyLl++zOgcTlO4u7vDwcEBa9euFcs8Ohe4zhJ1dXXUDbZz58548uQJ+vbtCzU1NbGXaGhJTJ06FUBDVqr3dxMxmQVHWloaBw8exJo1a6jgyQEDBkBNTY0RH8DeubKBrq4ucnJyEBISAnl5eVRVVcHc3BxLlixBt27d2O4exxcQEBCA0NBQ2NraIjY2lmofOXIkAgICWOwZs8jKyjJeeq2srAwWFha4cOECeDweHjx4AE1NTTg6OkJJSYkKalFRUaHVy0blCaDhIePHH39k7PjvI87zFARaEUJw8+ZNSEtLU69JS0tj4MCB8PDwoNXJlre1ONnycs6W9zsFGp4niouLoaenB0C8ky5skJeXh/DwcOTl5SE4OBh8Ph+nT5+Gqqoq+vfvz5i3vr6eCgoVbBKQl5eHu7s7vL29ISEhQZtLsDChrq4OCwuLT2ZtOnDgAExMTL6qDCYbTgH19fVNbjSTkpJiNEiMDW9rcV64cAEnTpyAgYEBJCQkoKamhgkTJkBBQQFBQUGYNm0a7U425laePn2KAQMGAADk5OSosuDTp09nNLMcG+9vTk4OHB0dceXKFaH2ljjvwAbvVwy4du0aysvLGa0Y8KEMvMXFxVBUVGTEyRaXLl2Cp6cn5syZw/jGcQ7xkJycLPYKfWxVKdDT08PNmzdF2n/77TdISkpS39M1NissLISKiorI9YEQgqKiImqjko2NzTefLGXbtm3w9vaGnZ0dTpw4AXt7e+Tl5eH69etYsmQJra7GC7gJCQlC19m6ujrq+k8nbD2fCujSpQuUlJRgYWGBoKAgsQRFeXt7Y+XKlYiKihLJyNiSnGx5jY2NYWNjA3Nzc7H9/bNRpaC5Q3cQubjJyMjA1KlTUVNTg+rqanTs2BEvXryArKws+Hw+I4HrHxr3ZmVlMfr3c/jwYaSlpYm029jYwMDAgJHs0ZaWlvjzzz8hKyuLOXPmwMfHh8r2ziRz5sxhNEi9uXjZCJaPjo6Gubm5WDfdirNKQWN27tyJmJgYqqqotbU1Tpw4wWiMRVpaGmJiYuDv74+lS5di8uTJsLGxwYwZM0TG/XQhKyuLuro6HDt2jKqEoK2tDVNTU6HAcjpRUFBAYWEh+vXrJ9ReVFREzaVxfFuEhYVh9uzZmDFjBhISEnDlyhWYmJggICAALi4uLcrLhpONagxsedk6V3Hz/PlzTJ48GcrKyrC0tISNjQ0GDhzIuPf169dCa22GhoaMV8kW14bj93m/UiGPx4OysjLGjRvHSLKdt2/fspLQgY3s5yoqKqw8Bz5+/BjOzs7iG4cSjs9CTk6O5OXl0Xa8UaNGkWPHjhFCCLGysiKTJ08mycnJxNbWlvTv3582T2tj3759JDExkVy8eFHo68KFC2Tfvn1sd49WWtO5crQ8ZGRkyMOHDwkhwtfXvLw80rZtWxZ7Ru/1vra2loSFhRErKysyfvx4MnbsWKEvJpg3bx6ZNGkSKSoqEjqXM2fOEB0dHUachBDy5s0bMmfOHMLj8YiUlBSRkpIikpKSxN7enrx584Y2z4kTJ8jbt2+p/3/siwnEdZ6NsbOzI5WVlYwcu7l5W4uTLS/nbHnetm3bkvz8fLE6Pxd5eXna7qcXL14kMjIyxNjYmEhLS1PHDQoKIrNmzaLF8SG8vLyIsrIy+eOPP0hWVhbJysoi27dvJ8rKymTlypWMuj8Fne8xG04TExNiZGREHj9+TLUVFxeTMWPGEFNTU1oczcXbWpzy8vLUGF9VVZUkJycTQgjJz88nMjIyjDjZmFvp06cPSU1NJYQQMnLkSBIUFEQIISQ2NpYoKysz4iSEnfd3xIgRxMjIiMTHx5OMjAySmZkp9MXxdXTq1IlkZWURQghRUFAg9+7dI4QQkpiYSL777jtaXd999x3R19cnEhISZMCAAURfX5/60tPTI/Ly8uSHH36g1cnBQTdSUlJEXV2drFixgty6dUssTgkJCVJaWirS/uLFCyIhISGWPnwMusZmzf086Zyr69u3L4mJiRE5ro+PD1myZAktDgE8Ho/weDwiISFB/V/wJS0tTfr06UNOnTpFq1OAnZ0d+e+//xg59sc4e/YsqaurE6vzu+++I3JycqRt27akT58+Qvc4fX39FuNky+vs7Ey6du1KZGRkyOzZs8nx48epuVmm4PF4TV6Tnj59SqSkpBh1fw79+/cnhYWFbHeDcei89o4ZM4YsXLiQ1NXVUcctLCwkRkZG5MiRI7Q4BHTo0IEoKSkRCQkJ6v+CLwUFBSIhIUEWL15Mq7MxXbp0IeHh4SLt4eHhhM/nM+KcO3cu+euvv0htbS0jx/8Yb968IUVFReTRo0dCXy3VKy46d+5M2rdvT6ysrMT2u2VrPNizZ0/i6enJyhxDfX09uXDhAlmwYAFRUlIiioqKxN7enhHXrVu3iIaGBpGVlaXu2+3btyfq6urk5s2bjDiXLl1KevbsSWJjY0lhYSEpLCwkBw4cID179iQuLi6MOP8X6I6/ai3ON2/eEGNjYzJixAgiJydHfv/9d9qO3dy84nZKSEgQIyMjsmvXLlJeXs6oi20vW+fKBuXl5WTnzp1kzJgxREJCgujo6JDAwEBqnp0J5OXlia2trVifjwXrl5/z9S2zbNky4u/vL3avnJwcycjIEKszISGBTJw4kdHPalOYmZmRgwcPis3HI+Qb36YtJuTl5ZGVlQVNTU1ajpeQkIDq6mqYm5sjNzcX06dPR05ODjp16oSDBw9i3LhxtHhaG5KSkigpKREpeVxWVgY+n89oNrDi4mKcPHmyyTJ3mzdvpt3H5rmKm/DwcMjJyeGHH34Qaj98+DBqamqESldyfBtoampi165dMDY2Frq+RkZGYt26dbhz5w5rfVNQUEBmZiYt1/uff/4Z+/btw7Rp05rcebdly5avdrxP165dkZCQgIEDBwq9t/n5+dDT06OyxTJFTk4Oo5UnJCQk8PTpU/D5/I9muWU6AyTT58nBwcHxORgYGGD9+vUYP348210Rgc7np+HDh+OHH36Am5ub0HH/+ecfmJubo7i4mIYeN0337t0RGhoKExMTofYTJ05g8eLFePz4MWPuT0H3M6q4nUVFRTAxMcHt27epSjBFRUXQ1dXFyZMn0bNnz692NBdva3EOGTIEAQEBmDRpEkxMTNChQwcEBQVh27ZtiIuLQ15eHu1ONuZWvLy8oKCggJUrV+LgwYOwsbGBuro6CgsL4erqKlQKlE7YeH/bt2+PGzduiGTn4qAHJSUlpKenQ0NDA1paWggLC8PYsWORl5eHAQMGoKamhjaXn58f9a+7uzvk5OSo16SlpaGuro5Zs2YJZeb9Fjl58iSmTJkCKSkpkVK17/P+vZ2j+fPixQvExsbiwIEDuHr1KvT09GBtbQ0rKyvGxg0SEhIoLS2FsrKyUHtWVhbGjh2L8vJyRryfC11jsw+d56NHj6Cjo4Pq6uqvOv7XQucYVFZWFnfv3oWamhr4fD7OnTuHgQMH4sGDBzA0NERZWRkNPRZGQ0MD169fF1v1h3fv3kFGRgaZmZnQ1dUVi5NNBPe4DyGoMvWtO9n01tfX4/z584iJicGxY8cgKSmJ2bNnw9raGmPGjKHNI7h3m5qaIiIioskqBefOnWO0anVFRQU1tvb09ETHjh2Rnp6OLl26oEePHrQ49PX1PztDX3p6Oi3OL4HOa2+HDh1w7do19O3bFx06dMDVq1ehra2Na9euYf78+bh37x4NPW4gIiIChBA4ODhg69atQp8jwbiXyWzk69atg5+fHxYuXIihQ4cCAK5du4a9e/fCx8cHXl5ejLnFyYMHD+Dg4CD26lxseYGGDJ/Pnj0TqWInqExDJ7W1tThz5gwOHDiAEydOQFZWFj/88AOsra0ZyzL6ofHghQsXYGFhgefPnzPiJYQgOTkZO3fuRH5+Pg4fPowePXogKioKGhoaYssEnJ6eDkdHR2RnZzPyORo+fDiUlZUREREBJSUlAMC///4LOzs7PH/+XOQzTQdv376Fp6cnQkNDUVtbC6ChEqOTkxPWrVvHWHb56urqz6oIFRQUBCcnJ3To0IFzfoTs7GyRtpcvX8LKygrTpk2Dk5MT1S6ozksHbHjZOlcBGRkZiImJQWxsLJWpm+lqDGx52TpXtikuLsaBAwewd+9ePHjwgLo20s2xY8cQExODv/76C4qKirCwsKCq7zCFhITEJ58xxDFeYhoXFxdERkZCT08Penp6IlWHmYjNBAAdHR3s378f+vr6jBy/KZSUlFBTU4Pa2lrIysqKnCtTc5J79uyBv78/7O3tMWDAABEv3XPqXOA6gMTERCQmJjb5sCEo2RUTE4OZM2fSUhL9Q5SXl0NJSUksJQVaKmxNsicmJsLExASampq4d+8edHV1UVBQAEIIBg0ahAsXLtDubO4LCnTSp08f7Ny5E2PHjhVqT0pKwo8//sjoRCUHMwQFBSE6Ohp79+7FhAkTEB8fj0ePHsHV1RU+Pj5YunQpa32jc0K2c+fOiIyMxNSpU2no2echLy+P9PR09O7dW+hc0tLSMGnSJEYW4Dg4ODg42OHMmTNYsWIF1qxZg8GDB4s8q4irjDfTyMnJ4ebNm9DQ0BC6txUUFKBfv354/fo1Y+527dohOzsbffr0EWq/f/8+vvvuO7x69Yox96f41gPXgYaJsvPnz1OL1Nra2jA2Nqbl2M3N2xqc0dHRqK2thZ2dHW7cuIHJkyejvLwc0tLS2LdvHywsLBhzN0bccytXr17F1atX0bt3b8yYMYMxDxvv75AhQ7Bly5YWXTKWTUaPHg13d3eYmppi7ty5+Pfff7Fq1Srs2rULN27cwK1bt2h3RkREwNLSssUuQjWXjc4czPPw4UPExMTgwIEDuHfvHoyMjGidfxUEFWZlZaF///5o06YN9VpdXR0ePnyIyZMn49ChQ7Q5v4SvHZu5ubkBAIKDg7Fw4UKhMsB1dXW4du0aJCUlkZKSQkt/vxQ6x6Campo4cuQI9PX1YWBggIULF+Knn37C2bNnYWlpyfpmBLrQ1NTEsWPHxFIGfdCgQUhMTISSktInA3LZDMLloIfXr1/j1KlTCAwMxM2bN2m9nwru3TweT6QkupSUFNTV1bFp0yZMnz6dNmdjsrOzYWxsDEVFRRQUFOD+/fvQ1NTEqlWrUFhYiMjISFo8jTcgvH79Gn/88Qd0dHSoYOrU1FTcvn0bixcvRlBQEC3OL4HOBD/Kysq4cuUKevfujT59+uD333/HpEmTcO/ePQwePJiR9cykpCSMHDlS6B4uLg4dOoTg4GDcvXsXQMOzuIuLC+bMmUObY9u2bfjxxx/Rrl07bNu27aM/6+zsTJtXgOC99fLyajJpE1P3Hza8bAbLA0BNTQ0VAHf+/Hn07NmT1o3rgvmTyspKKCgoCL2ndXV1qKqqwqJFi7B9+3banI05cuQI5s2bB2tra0RFReHOnTvQ1NRESEgI4uPjER8fz4gXaAhgjImJQUxMDG7duoXhw4fD2toaixYtot0lIyODtLQ09O/fX6j91q1bGDJkCO1zzHV1dUhJScGAAQPQtm1b6jOjpaUlNOZnAjk5OcyZMwcODg5im09qyU5BMGrjsVHj7wX/p/t6xIaXrXN9H0IILl68iJiYGBw5cgT19fUwNzenYgdbkpetc2WDd+/e4a+//kJ0dDT++usvdOzYkfHEVC9fvkRcXBwOHDiACxcuQFNTEzY2Nli9ejXtruPHj8PDwwOenp7Uc8XVq1exadMmbNiwQSjgms6EjIJ5pc+BjqDy92MGG8Pj8RiJzQSAs2fPYtOmTdi5cyfU1dUZcbxPRETER19nKsGvuOfUW33gup+fH/z9/WFgYNDkA86xY8dod7a2jBfigO1J9qFDh2LKlCnw8/OjJtL5fD6sra0xefJkod1/Xwvb58oG7dq1w71790RuAAUFBdDW1mY1YIjjyyCEYO3atQgKCqKyyLVt2xYeHh5Ys2YNy72jj+7du+PixYsiwW5MMnXqVAwePBhr1qyBvLw8srOzoaamBktLS9TX1yMuLo4xtzgqT3Ts2BE5OTno3LkzHBwcEBwcDHl5eVqO/bmIu8IGBwcHx4do/PDY+DmGycm70tJSeHh4UBt/33+cZMLZs2dPHDp0CCNGjBAKWjl27Bg8PDwYyTIsYNiwYRg2bJjIIuDSpUtx/fp1pKamMub+FN964HpkZCQsLCxEgiffvn2L2NhY2NrafrWjuXhbi/N9ampqcO/ePaiqqootw2hrQhzv74ULF7Bq1SqsXbu2yewaLWWDFFuwUTHg+vXrqK+vx7Bhw4TaBXNJTGb+4eCgm7q6Opw+fRo+Pj60Z0b8VqoUfO3YTLDgl5SUhOHDhwudj+A8PTw80Lt3b1r6+z6FhYVQUVERWZMhhKCoqIjKYOrk5IQ1a9bQcr9bsGABVFRU8Ouvv2L79u3w9PTEyJEjkZaWBnNzc+zZs+erHe/j7OyMXr16iQQOhoSEIDc3F1u3bqXduWfPHhw9ehRRUVHo2LEj7cdvjJ+fHzw9PSErKwtfX9+PBq4zlRGcQzw8ffoUsbGxiI6ORnp6OoYOHcrIM7G4qxQIMDY2xqBBg7Bhwwah6+uVK1cwd+5cFBQU0O5csGABunXrJrIm8uuvv6KoqIjVoCE6n/8nTpwIOzs7zJ07FwsXLkR2djacnZ0RFRWFf//9F9euXaOhx8LEx8dDUlISkyZNEmpPSEhAfX09pkyZQrtTnGhoaCAtLQ2dOnWChobGB3+Ox+MhPz+fdj9b1bnY8LIVpN8YQeWh0NBQ3L17l9ZxL9tVCvT19eHq6gpbW1uh605GRgamTJmCp0+f0u7cuXMnYmJikJycDG1tbVhbW2Pu3LmMVlYeOHAgtmzZIvKcf+HCBbi4uODmzZu0O9u1a4e7d+9+9BrBBMePH8e+ffsQHx8PdXV1ODg4wNbWFt27d+ecX8CjR48++2fp/Ayz4WXrXD8G09UYmpOXrXNlmr///lskMN/a2hrjxo0Ta1LhO3fuwNramrH3d+jQofD19RVJqBkfHw8fHx/cuHGDdifQMK+UkZGBd+/eoW/fvgCAnJwcSEpKYtCgQdTPMRlULg7Yyn7eGmj1gevdunXDhg0bMG/ePLF6xZnxojXA9iS7vLw8MjMzoaWlBSUlJSQnJ6N///7IysrCzJkzaZ3QYvtc2UBVVRUhISEiJSdOnDiBJUuWoLi4mKWecXwtb9++RW5uLqqqqqCjoyO0EEg3bATabdq0Cfn5+QgJCRHbwPfWrVsYP348Ve3BxMQEt2/fRnl5OVJSUqClpcWIV1yVJ+Tk5JCdnQ1NTU1ISkri6dOnIpUnmISNChscHBwcHyIiIgIqKiqQlJQUaq+vr0dhYSEju62nTJmCwsJC/Pzzz00u1sycOZN2p4eHB65du4bDhw+jT58+SE9PR2lpKWxtbWFra8to8ENSUhKmTZsGVVVVoSwFRUVFiI+Px+jRoxlzf4pvPXBdUlISJSUl4PP5Qu1lZWXg8/mMTY6y4W0tTnFhbm6Offv2QUFBAebm5h/92aNHj9LiPHnyJKZMmQIpKSmcPHnyoz9Ld6lENmmc9bIxLaGsaHOF6YoBQ4cOxbJlyzB79myh9qNHj2L9+vWMBA2xRXPYwMPBDCkpKdi/fz/i4uLw+vVrzJw5k0oeQjfNvUoBXWMze3t7bNu2TeyJAdgYr9TX16O+vp7KwBsbG0tlAf7pp58Y2YzQo0cPnDx5EoMHDxZqT09Ph4mJCSNz2/r6+sjNzcW7d++gpqYmUp2rJWU+r6urw5YtW3Do0KEmk0wwsYDMhpMt73///YcjR44gJiYGFy9ehKamJqytrWFtbc3YPDNbKCoqIj09HVpaWkLX10ePHqFv376MVHtTVFREWlqayHregwcPYGBggMrKStqdbJCWloaXL19i7NixePbsGWxtbalr7969exlZK9fT08O6detEgnfOnDmD5cuXIysri3ZnY96+fdtkpXfBpqxvHbaqc7HhZStIX5Bpff/+/UhMTISKigqsrKxgbW3NSF/YqlIgKyuLO3fuQF1dXejam5+fDx0dHUauvY3fS3HF6sTHx2PZsmXw9fWFoaEhgIYKG/7+/li3bp3QZ5quJAEGBgZYv349xo8fT8vx/leeP3+OqKgo7Nu3D3fv3sWkSZPg4OAAExMTxj5nrcX5KaZNm4awsDB069atxXuZcIqzGgPbXrbOVVz06NED5eXlmDx5MqytrTFjxgyxzu+8fv0aJ0+eRExMDM6cOYMuXbrAysoK69ato90lIyOD9PR0aGtrC7XfvXsXgwYNYiwZ7ObNm3Hx4kVERERASUkJAPDvv//C3t6eqjbaEmAr+3leXh7Cw8ORl5eH4OBg8Pl8nD59GqqqqiJVXJjg9evXaNeuHaMOdu6UzYi3b99ixIgRYvd6e3tj5cqVYsl40Rr4+++/ATRMsgcHB4s961f79u2pScJu3bohLy+Puki8ePGCVhfb58oGVlZWcHZ2hry8PIyMjAA0PEC7uLjA0tKS5d5xfA3S0tLQ0dERi8vOzg6FhYXw8fFpMtCOLt4Pnrlw4QJOnz6N/v37i+y8oyuQpjG6urrIyclBSEgI5OXlUVVVBXNzcyxZsoTRB8UVK1bAw8ODqjxx5MgRocoTdDF8+HCYmppi8ODBIITA2dkZMjIyTf4sExlpxHWeHBwcHJ+Dg4PDBwM9jI2NGXlQTk5OxuXLl/Hdd9/RfuwPsXbtWixZsgQqKiqoq6uDjo4O6urqMHfuXKxatYpR95gxY3D//n388ccfuHfvHoCGe/3ixYsZzdjSGhAEvr5PcXGxUHanluBtyU43NzesWbMG7du3/2RZSLoq0ygqKlLnxuRnpTGmpqZ4+vQp+Hw+TE1NP/hzdAdzs/H+NkYw/8AhPpieI7xz545QthsB+vr6uHPnDqNucWNvb4/JkyeLjJNevnwJe3t7LnD9G2TFihWIjY3FkydPMGHCBAQHB2PmzJmMlrrX0dFBZmZmi65S8O7dO0RFRcHd3V3s1WE/NF6pqqpibGFMQkJCqHKVpaVlk/PLixcvhr+/Py0Zn8vKypocsygoKNC+diDgY+MVJtHU1MT169fRqVMnofaKigoMGjSIkay/fn5+CAsLg7u7O1atWgVvb28UFBTg+PHjjJRgZ8vJlrdLly5QUlKChYUFgoKCxHLdY6NKAdBQEfa///4Tac/JyWEscYqMjAxSUlJEAtdTUlJovQ7q6+t/9noIExtbGn9u+Hw+zpw50+TPpaSkwMDAgJaAogcPHjS59tSvXz/k5uZ+9fE/5nVwcMCVK1eE2pnc/Ovv7w8PDw+RMdGrV6/w22+/MXJ9WL9+PZYtWyb26lxseHV0dBi7X38IS0tL/Pnnn5CVlcWcOXPg4+PDaNZzAKiurkZiYqLYqxR07doVubm5IlXXk5OTGUvWUVhYiOTkZPz222/Iz8/H4cOH0aNHD0RFRUFDQ4ORjRHTp08HAMyZM4e6HgsSrM2YMYP6ns7rREBAAFXpfPDgwSIbGZmOMVFWVoabmxvc3Nzw+++/w9PTE/Hx8ejcuTMWLVoELy8v2p/lWovzU1y6dImxINXm5qXT2VQ1hhMnTjCe3Z0NL1vnKm58fX3xww8/oEOHDmL1JiQkICYmBsePH0ebNm0we/ZsnD17lop1YwJtbW0EBQUhLCyM2pD/9u1bBAUFiQSz08mmTZtw9uxZKmgdaMhOHhAQgIkTJ9ISuM5GIqP3YSow/WMkJSVhypQpGDlyJC5duoTAwEDw+XxkZWVhz549iIuLY8RbV1eHtWvXIjQ0FKWlpcjJyYGmpiZ8fHygrq4OR0dHWn2tPnB9wYIFiImJgY+Pj1i9ggmW7t27t/iMF+IkPDycFa+hoSF1U586dSrc3d1x8+ZNHD16lNo1SzdsnSsbrFmzBgUFBRg/fjy1M7W+vh62trZYu3Yty73j+BLMzMyanCjl8Xho164devXqhblz51LlZOhAXIF27y9EmZmZMer7UB+8vb3F6rx79y4OHDgAAGjTpg1evXoFOTk5+Pv7Y+bMmXBycqLFEx0djS1btiAvLw8AUFlZyUjGhQ8hrvPk4ODg+BzYCPRQUVERqVrCNNLS0ti9ezd8fHxw69YtVFVVQV9fX2wVhnr06IHAwECxuP4X1NTURBbovgWnYMGcx+MJje+BhgmRhw8fMrIZjA1va3AKykACDfMYHwqGoHPTqOBZmBACPz8/KCsrf3AjI100zpL3fsY8JmHj/W3MmDFjGDkuB3u0bdsWpaWlIgEAJSUlrGUCYwq2NkhxMMelS5fg6emJOXPm0BJM/DksWbIEy5YtEwlcf/z4cbOoUkDH2ExKSgqqqqpiraIh2IzF4/Hg4+MjFMhRV1eHa9euiXWjbFNER0fDw8ODls9ar169cObMGfz8889C7adPn2YsIIvJqlQfo6CgoMnP0ps3bxirmrp//37s3r0b06ZNg6+vL6ysrKClpQU9PT2kpqaKBD9/q062vCdPnsT48eOFNnwwzZEjR5qscjRixAisW7eOscB1ExMT+Pv749ChQwAarlGFhYVYvnw5Zs2axYjzl19+gZOTE9LT0zF06FAADZuj9u7dS+u6dePNLK9fv8Yff/wBHR0dKhA2NTUVt2/fxuLFi2lzfglTpkxBZmYmLddGRUVF5OfniwTD5ubmiqzJ04mdnR3atGmDP//8k9EESo3x8/PDokWLRAIja2pq4Ofnx0jgurGxMQBg3LhxQufIdHUuNrxsBMtLSkri0KFDmDRpkkilTabw8vJqMgMsIQReXl6MBa4vXLgQLi4u2Lt3L3g8Hp48eYKrV6/Cw8ODsfido0ePYt68ebC2tkZ6ejrevHkDoGG9ce3atYiPj6fdyUZiAEHFCRMTE7H+nQooLS1FREQE9u3bh0ePHmH27NlwdHREcXEx1q9fj9TUVJw9e5ZzcjQbAgICYGVlhW3btomtGgNbXrbOVdwsXLiQFa+ZmRmmT5+OyMhITJ06VSzreKGhoZgxYwZ69uwJPT09AEB2djZ4PB5OnTrFmPe///7D8+fPRdqfP3+Oly9f0uJgI5ER0HBugnFeUxucG8PEeNDLywsBAQFwc3MTqpA4btw4hISE0O4TEBgYiIiICGzYsEHob0hXVxdbt27lAtfp5vXr19i1axfOnz8PPT09kQsGExmrAGDmzJlieVjlEA+bN29GVVUVgIYJgqqqKhw8eBC9e/dm7DPUmpCWlsbBgwexZs0aZGVlQUZGBgMGDGhxO/5aE4qKijh+/Dg6dOhAlclNT09HRUUFJk6ciIMHD2L9+vVITEzEyJEjaXGKK9DuSzaV0JlJJDw8HHJycvjhhx+E2g8fPoyamhrGdgOKq/JEly5dqMkzDQ0NREVFiWRxYhJxVtjg4ODg+BBsBnps3boVXl5e2Llzp8jiH9OoqqqKvaQyW/dVALhx4wbu3r0LoCG70/sZcm/duvVNOgUL5pmZmZg0aRLk5OSo16SlpaGurs5IUAAb3tbgbLzwdvHiRdqO+zkQQtCrVy/cvn1bbBtZ3r17h8mTJyM0NFQsTjbfX6AhSPRjMJklhoMZJk6ciBUrVuDEiRPURH9FRQVWrlyJCRMmsNw7emBrgxQH86SkpIjdyWaVgoqKCsTFxSEvLw+enp7o2LEj0tPT0aVLF/To0QMAfeNBcVeHzcjIANBwL7958yaVDQxoGK8MHDgQHh4ejPfjY9A5h+jm5oaff/4Zz58/x7hx4wAAiYmJ2LRpE2MBuOKmcZBxQkKC0GJyXV0dEhMToaGhwYj76dOnGDBgAABATk4OlZWVABoymzIV8MaGky0vG+MDNqoUAA3ZAmfPng0+n49Xr15hzJgxePr0KYYPH87YZnYvLy9oamoiODgY0dHRABqyJYaHh2POnDm0eRpvZlmwYAGcnZ2xZs0akZ8pKiqizfkl0HntnTlzJn755RccO3YMWlpaABqC1t3d3WFiYkKb530yMzNx48YN9OvXjzHH+3xow2ZWVhZj93W2qnOx4WUjWH7//v20H/NTsFWlwMvLC/X19Rg/fjxqampgZGSEtm3bwsPDA0uXLmXEGRAQgNDQUNja2iI2NpZqHzlyJAICAhhxspEYgK2/06NHjyI8PBwJCQnQ0dHB4sWLYWNjI5TxeMSIEbRmAG4tTg5mYaMaA1tets61tVBaWioUaPwh1q1bh0WLFtGSEX7o0KHIz8/H/v37qerRFhYWmDt3LqObNs3MzGBvb49NmzYJbcT19PT8ZHb0z6Vx/JU4E/wqKSlRVc87dOjQ5HibyfHgzZs3ERMTI9LO5/MZfS6OjIzErl27MH78eCxatIhqHzhwIPXZopNWH7ienZ1NBXW8P9HLZGC5r68vY8fmEC91dXUoLi6mdi21b98eoaGhLPeqZdKnTx/06dOH7W5w0EDXrl0xd+5chISEUNla6uvr4eLiAnl5ecTGxmLRokVYvnw5kpOTaXGyGWj3KejMJBIUFISdO3eKtPP5fPz444+MBdiJq/JEx44dkZOTg86dO2Ps2LFCi5vigI0KGxwcHBzvw2agh4WFBWpqaqClpQVZWVmRjb/l5eW0eATB+Z8DkxtF2bivPnv2DJaWlrh48SI1YVVRUYGxY8ciNjaWkRLl4nQKFszV1dVhYWHxyeoABw4cgImJyVdPrrHhbS1OoCGgW0ZGBpmZmdDV1f2qY30uEhIS6N27N8rKysQWuC4lJYXs7GyxuBrDxvsLAN9//71IW+O5MnFm5+Wgh40bN8LIyAhqamrQ19cH0BBc06VLF0RFRbHcO3pga4MUBzOcPHkSU6ZMgZSUVJPZdxvDRBAaW1UKsrOzYWxsDEVFRRQUFGDhwoXo2LEjjh49isLCQkRGRtLqE3d1WEEQjb29PbZt2/ZZC7rfMg4ODnjz5g0CAwOpQFF1dXXs2LEDtra2jDjr6uqwZcsWHDp0CIWFhVQSBgF0PbcJEFx7eTyeyDOSlJQU1NXVsWnTJlqdAnr27ImSkhKoqqpCS0sLZ8+exaBBg3D9+nVakoQ0F6c4vYMGDUJiYiKUlJSoDWEfgonq0WxUKQAaku2cO3cOycnJyM7ORlVVFQYNGkQFrTLFnDlzaA1S/xSHDx9GWlqaSLuNjQ0MDAywd+9esfWFSTZs2IDJkyejX79+6NmzJ4CGyjujR4/Gxo0bGfPq6OiILcGNkpIStWGzT58+Is9qVVVVQsEmdDJmzBhcvnwZO3fuRF5eHuLi4oQC3piCDa+4gn+3bduGH3/8Ee3atcO2bds++rNMVNhgq0oBj8eDt7c3PD09kZubi6qqKujo6Ag9x9HN/fv3m9yIr6ioiIqKCsa8FRUV2LNnD5U0pH///nBwcGAse6yGhgZUVFRE7uOEEEY3Ktnb28PS0hIpKSkYMmRIkz/TvXt3WiuHtxYnB7OwUY2BLS9b59pa+Nw5jrVr12LOnDm0BK4DDbGKP/74Iy3H+lxCQ0Ph4eGBuXPnUpVj27RpA0dHR/z2229i7QvdXLhwgdoEysZmsA4dOqCkpERkjJuRkUEltGCCx48fo1evXiLt9fX11O+YTnhE3HXeOQAAmpqauH79ukiW2IqKCgwaNAj5+fks9YzjS2jXrh3u3r3L6MN4a6e4uBgnT55scqKdy2r/7aGsrIyUlBSRjQg5OTkYMWIEXrx4gZs3b2L06NG0TRIoKSmhpqYGtbW1jAbafQny8vLIysqiZeK9Xbt2uHfvnsjkUkFBAbS1tfHq1auvdjRFfn4+qqqqoKenh+rqari7u+PKlStU5Qm6KiTIyckhOzsbmpqakJSUxNOnTxkJ4PsQ4jpPDg4Ojs/B3t4ewcHBjJQg+xAREREffZ2uQO6xY8d+1s/xeDxcuHCBFmdTsHFftbCwQH5+PiIjI6mMLHfu3MH8+fPRq1cvHDhwoEU4PxcFBQXaNvg1d++37tTU1MSxY8fEWl701KlT2LBhA3bs2CG2gG5XV1e0bdu2yRLaTMLG+yvI4ing3bt3yMjIgI+PDwIDAzF+/Hix9YWDPqqrq7F//36qop2enh6srKzEUrZWnERERMDS0pLRAEIO5pGQkMDTp0/B5/OpxAdNwVR2IysrK5SUlIhUKTA1NQWfz8ehQ4dodwINmT0HDRqEDRs2CM0ZXblyBXPnzkVBQQGtPj8/v4++3jhTL12wtSnrc6Fzrq4xz58/h4yMDKPBWACwevVqhIWFwd3dHatWrYK3tzcKCgpw/PhxrF69mpGAN6AhQOr69evo3LkzI8dvCi8vLygoKGDlypU4ePAgbGxsoK6ujsLCQri6ujIyZmPDKU6vn58fPD09ISsrC19f348GrjNxfdi7dy9+/vlneHp6NlmloHG58pbC27dv8ezZM9TX1wu1M1F1rmvXrli3bh3s7OyE2vft24fly5ejtLSUdufnQve1lxCCc+fOCY17ma4adeHCBaxatQpr167FgAEDRMbYdM7hRUREgBACBwcHbN26VSj4VbBhc/jw4bT5GnPkyBEq4C0qKgp37tyBpqYmQkJCEB8fz1jAG1vejwXL05WVVkNDA2lpaejUqdNH4w14PB4jcSQ//fQTrl69KlKlYNasWRgyZAjCwsJod7KFpqYmdu3aBWNjY6HrTmRkJNatW8dIZaW0tDRMmjQJMjIyVEba69ev49WrV9RGNLqRlJSkMsU2pqysDHw+n7FkBDU1NUIVYsVBa3F+Lkw9yzRHL51OfX19uLq6wtbWVui4GRkZmDJlCp4+fUpDj5uHl61z5RCG7r+ZqKgo7Ny5E/n5+bh69SrU1NSwZcsWaGpqYubMmbQ4PkR1dTXy8vIAAFpaWrRuevvUZurGMLGxmi08PDxw7do1HD58GH369EF6ejpKS0tha2sLW1tbRp7FAWDw4MFwdXWFjY2N0GfU398f586dw+XLl2n1tfqM62xRUFDQ5GDwzZs3KC4uZqFHHF+Drq4u8vPzucB1hkhMTISJiQk0NTVx79496OrqoqCgAIQQRh7kOJintrYW9+7dEwlcv3fvHnVtbNeuHa2VL1pK6d1PwefzkZ2dLRJgl5WVJbJZii7EWXli+PDhMDU1xeDBg0EIgbOzM2RkZJr8Wbqzw3AVNjg4OJob4iyJJoCpyh3v8yW714uLi9G9e/ePBjX9r7BxXz1z5gzOnz8vVEZUR0cH27dvx8SJE1uM83Nha689G95v3ent7Y2VK1ciKiqKsXLk72Nra4uamhoMHDgQ0tLSIuNCJjan1tbWYu/evTh//jwGDx4sMgnL1MZqNt7fprJ+TZgwAdLS0nBzc8ONGzfE0g8Oemnfvj1GjRoFVVVVKjHA6dOnATCTsZotdHR0kJmZiWHDhgm1X7t2DZKSkjAwMGCpZxz/C40D+N4P5hMHbFUpuH79epNVf3r06MHIAjJTi10fQ0pKCqqqqq2ueoe4ki/s378fu3fvxrRp0+Dr6wsrKytoaWlBT08PqampjAWuP3z4kJHjfozGwdoWFhZQU1OjkkzMmDGjxTjF6W18TWCjejQbVQoAwN/f/6Ovr169mnbngwcP4ODggCtXrgi1M1ly/pdffoGTkxPS09Op4Mlr165h79698PHxod3HJjweDxMnThTrvIYgQ/+4ceOE1reY+J0K5ug0NDQwcuRIRqvBvE9AQABCQ0Nha2uL2NhYqn3kyJEICAhoUd7GwfIZGRmMZaVtfA9l437KVpUCNli4cCFcXFywd+9e8Hg8PHnyBFevXoWHhwdj10FXV1eYmJhg9+7d1N9qbW0tFixYgF9++QWXLl2i3Sm47rxPVVXVJys0fg2ysrKoq6vDsWPHqOzy2traMDU1Zew61VqcHMzCVjUGNrxsnSsHc+zYsQOrV6/GL7/8goCAAGrMqaSkhK1btzIeuF5SUoKSkhIYGRlBRkbmg/egL0FQ4U3c/C+VdwXxQ3Sydu1aLFmyBCoqKqirq4OOjg7q6uowd+5crFq1inafgNWrV2P+/Pl4/Pgx6uvrcfToUdy/fx+RkZH4888/afdxd0wx07ikaUJCgtAiYF1dHRITE7ng52+QgIAAeHh4YM2aNU0uXIszC2ZLZMWKFfDw8ICfnx/k5eVx5MgR8Pl8WFtbY/LkyWx3j+MLmDdvHhwdHbFy5UqqfNb169exdu1aavI5KSkJ/fv3p80prkA7trGysoKzszPk5eWpB46kpCS4uLjA0tKSEaekpCQmTpyIu3fv0lbK6ENER0djy5YtyMvLA4/HQ2VlJV6/fs2oU4A4z5ODg4OjOZOXl4fw8HDk5eUhODgYfD4fp0+fhqqqKq337v8VQYAanRk92Liv1tfXN5n1VkpKirGALTacHC2PkJAQ5Obmonv37lBTUxN5LmYi2wUbm1Nv3bpFbaDOyckReo3Ojbfvw8b7+yG6dOmC+/fvi83HQR/5+fkwMzPDzZs3wePxRBYRWlIA6ZIlS7Bs2TKRwPXHjx9j/fr1uHbtGks94/hSIiMjYWFhIZJF/+3bt4iNjWUkmLFHjx7Izs4WqlJgb2/PeJWCtm3b4r///hNpz8nJEWvVOaZhY1MWW8TFxeHQoUNNVhNl4h7+9OlTDBgwAEBD9UJBFZXp06czGpjq7OyMXr16iQTGC8YxTIzdLl26hBEjRlABQoaGhjA0NERtbS0uXbrESHZlNpxsedmqHu3k5AQnJyexVSkAgGPHjgl9/+7dOzx8+BBt2rSBlpYWI4HrdnZ2aNOmDf78809069aN0ecJAV5eXtDU1ERwcDCio6MBNATahYeHY86cOYz7Pwbd519dXY2kpKQmr71MbeD5kkQMX0t1dTUSExMxadIkofaEhATU19djypQptDtbU3AfG8Hy/v7+8PDwEMnm/OrVK/z222+MXI8UFRVx5coVsVcpYAMvLy/U19dj/PjxqKmpgZGREdq2bQsPDw8sXbqUEWdaWppQ0DoAtGnTBsuWLaN9U7WbmxuAhmuqj4+P0Oeorq4O165dw3fffUerszG3b9/GjBkzUFpair59+wIA1q9fD2VlZZw6dYqRakutxVldXf1ZWYxXrlxJ6/MVG142nF27dkVubq5IEqPk5GRGs8iz4WXrXDmY4/fff8fu3bthamoqtOHZwMAAHh4ejHnLysowZ84c/P333+DxeHjw4AE0NTXh6OgIJSUlbNq06asdX5Js4cCBAzAxMfmqzO/fffcdNX/+MZjacCwtLY3du3fDx8cHt27dQlVVFfT19dG7d2/aXY2ZOXMmTp06BX9/f7Rv3x6rV6/GoEGDcOrUKUyYMIF+IeEQKzwej/B4PCIhIUH9X/AlLS1N+vTpQ06dOsV2Nzn+Rxr/HiUkJKgvwfccX4ecnBzJzc0lhBDSoUMHcuvWLUIIIZmZmURNTY3FnnF8KbW1tSQgIIB07dqV+tvp2rUrCQwMJLW1tYQQQh49ekSKiopo9ebm5hJvb29iaWlJSktLCSGExMfHU58ptpCTkyN5eXm0HOvNmzdkzpw5hMfjESkpKSIlJUUkJSWJvb09efPmDS2Ophg8eDA5f/48Y8dvCnV1dfLixQuxOtk4Tw4ODo7mxMWLF4mMjAwxNjYm0tLS1P0rKCiIzJo1i9W+0Xk/FcDGfdXExIQYGRmRx48fU23FxcVkzJgxxNTUtMU4Pxcmfq/N1futO319fT/6xfF1sPH+ZmVlCX1lZmaS06dPkzFjxpCRI0cy4uRglunTp5OZM2eS58+fEzk5OXL79m1y+fJlMnToUHLp0iW2u0cr7du3b/L6lp+fT+Tk5FjoEcfXIiEhQc3lNObFixeMz7/evn2bnD59mpw4cULoiykcHR2Jqakpefv2LZGTkyP5+fnk0aNHRF9fn7i4uNDuq62tJb/99hsZMmQI6dKlC1FSUhL6YorvvvuOyMnJkbZt25I+ffoQfX19oS8mePToEamvrxdpr6+vJ48ePaK+X7RoEXn+/DktzuDgYCInJ0d+/vlnIi0tTX766SdibGxMFBUVycqVK2lxvE+fPn1IamoqIYSQkSNHkqCgIEIIIbGxsURZWZkRJyGEdO/enaSlpYm037hxg/To0YMRJxvXBrauR2x4eTxek86nT58SKSkpRpzNicrKSmJmZkYiIyMZOb6srCy5e/cuI8f+FqHz+TQ9PZ107dqVKCgoEElJSaKsrEx4PB5p37490dDQoMXxIS5dukSsra2JoaEhKS4uJoQQEhkZSS5fvsyIb8CAAeSvv/4SaT99+jTR09NjxKmhoUHOnTtHCBH+vUVERBBtbW1GnGx5ZWRkyMOHD0WceXl5pG3btow42Rz3tibevHlDbt++Ta5du0ZevnzJqIvP55OEhASR9jNnzhA+n0+r6/vvvyfff/894fF4ZMSIEdT333//PZk4cSL58ccfSU5ODq3OxhgaGpIZM2aQ8vJyqq28vJyYmJiQ4cOHc86voH379sTe3p6x+0lz8rLhXLt2LdHR0SGpqalEXl6eXL58mURHRxNlZWWybdu2FuVl61w5hKFz7NuuXTtSUFAgctycnBzSrl07WhxNMW/ePDJp0iRSVFQk5D1z5gzR0dFhzPsp5OXlv/q9LSgo+Owvji+Hy7guZgTZ6jQ0NHD9+nV07tyZ5R5x0EF4eDhUVFQgKSkp1F5fX4/CwkKWetVyaN++PZUNoVu3bsjLy6Oyeb548YLNrnF8IZKSkvD29oa3tzeVQer9ygSqqqpISUmBsrKySDatLyEpKQlTpkzByJEjcenSJQQGBoLP5yMrKwt79uxBXFzcVzu+FDoziUhLS+PgwYNYs2YNlRVhwIABUFNTo83RFGxUnmhcLvH169eMlrYTwFXY4ODgaO14eXkhICAAbm5ukJeXp9rHjRuHkJAQFnvGDIL7akBAADIzM8VyXw0JCYGJiQnU1dWhoqICACgqKoKuri6VDa0lODlaHl+S+YJOXr9+LZJFryWNzdh4fz+UVcTQ0BB79+4Ve384vp6rV6/iwoUL6Ny5MyQkJCApKYlRo0YhKCgIzs7OyMjIYLuLtNG2bVuUlpaKZIoqKSnhynZ/o5APlBkuLi4WqmpKJ2xVKdi0aRNmz54NPp+PV69eYcyYMXj69CmGDx+OwMBA2n1+fn4ICwuDu7s7Vq1aBW9vbxQUFOD48eOMZPQUwEa5Zw0NDZSUlIDP5wu1l5eXQ0NDg/qd7tixgzbnH3/8gV27dsHKygr79u3DsmXLoKmpidWrV6O8vJw2T2PMzMyQmJiIYcOGYenSpbCxscGePXtQWFgIV1dXRpxAQ7a1pv4eFRQUGJvH/9C1oays7KuyqzU3p7i9bFePFneVgg+hoKAAPz8/zJgxA/PmzaP9+Do6Oqytcb19+xbPnj0TqbKmqqrKSn8A4OXLl7Qdy9XVFTNmzEBoaCgUFRWRmpoKKSkp2NjYwMXFhTbP+xw5cgTz5s2DtbU1MjIy8ObNGwBAZWUl1q5di/j4eNqdDx48gI6Ojkh7v379kJubS7sPABYuXAgXFxfs3bsXPB4PT548wdWrV+Hh4cFoZQ82vGxkpf3Q9T4rK4vRKjVsVClgE2lp6Sb/dpjAwsICjo6O2LhxI0aMGAEASElJgaenJ6ysrGh1CSo/2NvbIzg4WOxzY5mZmUhLS4OSkhLVpqSkhMDAQKoKO+f8MqKjo7Fv3z6MGzcO6urqcHBwgK2tLbp3786Ij00vG042qjGw5WXrXDmYQ0NDA5mZmSJrl2fOnIG2tjZj3rNnzyIhIQE9e/YUau/duzcePXrEmPdTvL+e8SV8yTrwtGnTEBYWhm7dun21v66uDvv27UNiYmKTz20XLlz4asfHENfzIjdLzxKNg+0+xoABAxAfH08FD3A0TxwcHJqc8C4rK4OxsTHmz5/PUs9aBoaGhkhOToa2tjamTp0Kd3d33Lx5E0ePHoWhoSHb3eP4Sj72wDxlyhRkZmbSMvnTnAPt6Bg4vU+fPn3Qp08f2o/7IaZOnQoAMDExEZpQE0ywMbGYW19fj8DAQISGhqK0tBQ5OTnQ1NSEj48P1NXV4ejoSLuTjfPk4ODgaE7cvHkTMTExIu18Pr9Fbyjs3bv3R8uvKSgo0DZmUVFRQXp6Os6fP4979+4BaCjbbWxs/NXHbk5ODg46qK6uxvLly3Ho0CGUlZWJvM7U2CwtLe2DgTRHjx5lxMkG789dSUhIQFlZWSwbRjmYoa6ujnoe7ty5M548eYK+fftCTU0N9+/fZ7l39DJx4kSsWLECJ06coILtKioqsHLlSmbKmnIwhr6+Png8Hng8HsaPHy+08aCurg4PHz7E5MmTGXG7uLhAQ0ODCtC8du0aysvL4e7ujo0bNzLiBABFRUWcO3cOycnJyM7ORlVVFQYNGsTY2Gz//v3YvXs3pk2bBl9fX1hZWUFLSwt6enpITU1lLFCJjU1ZHwoEq6qqYuz+VlhYSAUoycjIUIGZ8+bNg6GhISPzko1Lg1tYWEBNTQ1XrlxB7969MWPGDNp9Anr16oUzZ87g559/Fmo/ffo07cF95ubmABoSgtjZ2QklPqmrq0N2djb1vn/LTra8go0lPB5PZH1LSkoK6urqtJR9b4pt27bB29sbdnZ2OHHiBOzt7ZGXl4fr169jyZIljDg/RmVlJSorKxk59vr167Fs2TKsXbsWAwYMgJSUlNDrTAQbPnjwAA4ODrhy5YpQO93z24L79+fAxGaEzMxM7Ny5k9qs+ebNG2hqamLDhg2YP38+9XdFNwEBAQgNDYWtrS1iY2Op9pEjRyIgIIARp6KiIvLz80UCq3NzcxnbTNOagvvEGSyvpKREjXv79OkjsmGyqqoKixYtotUpICMjA1OnTkVNTQ2qq6vRsWNHvHjxArKysuDz+S0ycF2cbNy4ETweD7a2tqitrQXQcD91cnISGrfRSXh4OCPH/RR9+vRBaWkplYRQwLNnz9CrVy/O+RWYmprC1NQUz58/R1RUFPbt2wcfHx9MmjQJDg4OMDExYWSjPhteNpw8Hg/e3t7w9PREbm4uqqqqoKOjAzk5OVo9zcHL1rlyCDN69GjIyMjQciw3NzcsWbIEr1+/BiEE//zzDw4cOICgoCCEhYXR4miK6upqyMrKirSXl5fTkpz0W+PSpUt49eoVLcdycXHBvn37MG3aNOjq6tKaDPVjiOt5UQAXuN7MKSgowLt379juBscnYGPCuzWxefNmVFVVAWjIAFRVVYWDBw+id+/e2Lx5M8u942ASOgO6m3OgHZ2ZRICGbGMnT55sMpCGqb8ZNipPBAQEICIiAhs2bMDChQupdl1dXWzdupWRwHWuwgYHB0drp0OHDigpKRHJrJaRkYEePXqw1Cv2oXsTGo/Hw4QJE8QaWMeG83NQU1MTWbxvqd5v3VlXV4ctW7Z8MKCbiYyiy5Ytw99//40dO3Zg3rx52L59Ox4/foydO3cytvAXGxsLW1tbTJo0CWfPnsXEiRORk5OD0tJSmJmZMeIE2Hl/PzerCJd04dtBV1cXWVlZ0NDQwLBhw7BhwwZIS0tj165djGULZIuNGzfCyMgIampq0NfXB9AQwNSlSxdERUWx3DuO/wVB8GRmZiYmTZoktJAqLS0NdXV1zJo1ixE321UKRo0ahVGjRjHqAICnT59iwIABAAA5OTkqQHP69OmMZk0VJ25ubgAaxrw+Pj5CC6t1dXW4du0avvvuO0bcXbt2RXl5OdTU1KCqqorU1FQMHDgQDx8+ZCSZBdCwWDpixAgqmMPQ0BCGhoaora3FpUuXYGRkxIjXzc0NP//8M54/f45x48YBABITE7Fp0yZs3bqVVpdgUxIhBPLy8kIL/tLS0jA0NBSaL/xWnWx52awezUaVAqAhYL4xhBCUlJQgKioKU6ZMYcQp2JA0btw4sSVJsbOzQ5s2bfDnn3+iW7dujAVANK6q8fr1a/zxxx/Q0dHB8OHDAQCpqam4ffs2Fi9ezIhfSkoKEhISABrWgAoLC6GtrQ1FRUUUFRUx4gSA+/fvN3mNVVRUREVFBSPOmTNn4pdffsGxY8egpaUFoCFo3d3dHSYmJow4W1NwnziD5bdu3QpCCBwcHODn5ydU7UIw7hX8DdENW1UKWgN1dXVITU2Fr68vgoKCkJeXBwDQ0tJqMtiPLqqrq7Fu3boPZmrNz89nxCt4VvL19aUSEKampsLf3x/r16+nKrED9G3Qai1OAcrKynBzc4Obmxt+//13eHp6Ij4+Hp07d8aiRYvg5eXFyGeLDS8bTnFWY2Dby9a5tkQa/81/CsE1gc5KPAsWLICMjAxWrVqFmpoazJ07Fz169EBwcDAsLS1p87zP6NGjERkZiTVr1gBoGKvV19djw4YNGDt2LGPe1kBsbCwOHTpEJdYUF+J6XhTABa5zcHwFbE54txbq6upQXFwMPT09AED79u0RGhrKcq84vkXYCLQrLS2Fh4cHNSnw/mIUExPPiYmJMDExgaamJu7duwddXV0UFBSAEIJBgwbR7hPARuWJyMhI7Nq1C+PHjxfKMjFw4EAqWyzdcBU2ODg4WjuWlpZYvnw5Dh8+TE1ApKSkwMPDA7a2tqz2TVy7zZlg27Zt+PHHH9GuXTuRxfL3oSvDERvOprhx4wbu3r0LoKFM+vvjlVu3brUYb0t3+vn5ISwsDO7u7li1ahW8vb1RUFCA48ePY/Xq1bR5GnPq1ClERkbi+++/h729PUaPHo1evXpBTU0N+/fvh7W1Ne3OtWvXYsuWLViyZAnk5eURHBwMDQ0N/PTTT7SUgPwQbLy/nwuXdOHbYdWqVaiurgYA+Pv7Y/r06Rg9ejQ6deqEgwcPstw7eunRoweys7Oxf/9+ZGVlQUZGBvb29rCysmJlQxTHlyPIyq2urg5LS0uxZmxiq0qBv7//R1+n+7rfs2dPlJSUQFVVFVpaWjh79iwGDRqE69evM/p+i3NTlmCTASEEN2/ehLS0NPWatLQ0Bg4cCA8PD9p8jRk3bhxOnjwJfX192Nvbw9XVFXFxcUhLS2Ms4+/YsWObnL+qrKzE2LFjGatK4+DggDdv3iAwMJBauFZXV8eOHTtof14UZBFVVlaGr68vtTYjGB9pa2vTHmzNhpNNL/D51aPphI0qBQCwZcsWoe8F1Ybmz5+PFStWMOL8+++/GTnux8jMzMSNGzfQr18/Rj2Nq2osWLAAzs7O1HWh8c8wFUSur6+P69evo3fv3hgzZgxWr16NFy9eICoqCrq6uow4gYbNSrm5uSLZz5OTkxnbKLphwwZMnjwZ/fr1Q8+ePQE0JDcaPXo0oxVigNYR3CfOYHnB+pKGhgZGjhzJSObkD8FWlYLWgKSkJCZOnIi7d+9CQ0OD2jDKNAsWLEBSUhLmzZsnlsAzAdOnTwcAzJkzh3IK1scFlX/o3qDVWpwCSktLERERgX379uHRo0eYPXs2HB0dUVxcjPXr1yM1NRVnz56l1cmWl61z5eD4X+nQocNnX2eZeB5/9eoVzMzMYG1tjZqaGty6dQspKSnU2JApNmzYgPHjxyMtLQ1v377FsmXLcPv2bZSXlyMlJYVRd0tHWlqasQoeH0Ncz4sCuMB1Do6vgM0J79ZC44e5Dh06sN0djm8YNgLt7OzsUFhYCB8fH7FNCqxYsQIeHh7w8/ODvLw8jhw5Aj6fD2tra8ZKZwPsVJ54/Phxk4O1+vp6xgJnuAobHBwcrZ21a9diyZIlUFFRQV1dHXR0dFBXV4e5c+di1apVrPaNqWyF4mDLli2wtrZGu3btRBbLG8Pj8WgLImfD2Zhnz57B0tISFy9epMb5FRUVGDt2LGJjY6GsrEy7ky1va3Hu378fu3fvxrRp0+Dr6wsrKytoaWlBT08PqampjHyOysvLqcV/BQUFKsBt1KhRcHJyot0HAHl5eZg2bRqAhuf+6upq8Hg8uLq6Yty4cfDz82PEy8b7y9HymDRpEvX/Xr164d69eygvL6dK0rc02rdvj1GjRkFVVZUKiD19+jQAMJZ9koM5dHR0kJmZiWHDhgm1X7t2DZKSkjAwMKDdyVaVgmPHjgl9/+7dOzx8+BBt2rSBlpYW7YHrZmZmSExMxLBhw7B06VLY2Nhgz549KCwshKurK62uxohzU5YgONTe3h7btm2jNiSIg127dlEZLpcsWYJOnTrhypUrMDExwU8//cSI80PzV2VlZWjfvj0jTgFOTk5wcnLC8+fPISMjw3j23YyMDERGRmLRokWoqKiAoaEhpKSk8OLFC2zevJmRMSEbTra8zs7O6NWrl8hYMyQkBLm5ubRn0gfYqVIAsBOkP2bMGFy+fBk7d+5EXl4e4uLi0KNHD0RFRYkk4KELHR0dsVegPXz4MNLS0kTabWxsYGBggL1799LuXLt2LbXpITAwELa2tnByckLv3r0Z8QlYuHAhXFxcsHfvXvB4PDx58gRXr16Fh4cHY1VMFBUVceXKFZw7d47asKmnp8dYdY3WijiD5aurq5GYmCj0/AYACQkJqK+vZ6QKBFtVCloLurq6yM/PZ+za3hSnT5/GX3/9hZEjR4rNCbCzKau1OI8ePYrw8HAkJCRAR0cHixcvho2NjVAMzYgRI6Ctrf3Ne9k6Vw6OL6XxNaGgoABeXl6ws7OjKqVcvXoVERERCAoKYsQ/c+ZMmJubY9GiRXj79i1MTEzE8oyqq6uLnJwchISEQF5eHlVVVTA3N8eSJUsYTfLTGnB3d0dwcDBCQkLEOm8v9udFwtGskZOTI3l5eWx3g+MT2NnZkcrKSra70WIZPHgwOX/+PNvd4GABOq+Bb968IQsWLCBt2rQhPB6PSElJEQkJCWJjY0Nqa2tpcbyPnJwcycjIYOTYH3Pm5uYSQgjp0KEDuXXrFiGEkMzMTKKmpka7z9XVlbi6uhIJCQny008/Ud+7uroSZ2dnMmzYMDJixAjavYQQMmjQIBIVFUUIEf6s+Pn5kVGjRtHqYvM8OTg4OJojjx49In/99Rc5ePAgycnJEYvzwYMH5MyZM6SmpoYQQkh9fb3Q64WFhYzd0z8F99z2vzNnzhxiYGBA7ty5Q7Xdvn2bGBgYEEtLyxblbS1OWVlZ8ujRI0IIIV27diU3btwghBCSl5dHFBQUGHEOGDCAXLx4kRBCyPjx44m7uzshhJDg4GDSo0cPRpw9evQg2dnZlD8mJoYQQsiVK1cYO09C2Hl/PxfuGsjRHMnLyyN6enqEx+MRCQkJ6l/BF8e3x5AhQ8jhw4dF2o8cOUKGDh3KiPPMmTPkyJEjhJCGsWjfvn0Jj8cjnTt3JomJiYw4P0RlZSUxMzMjkZGRjLuuXr1KNm3aRE6ePMmoR1NTk/z555+EEOH5rODgYGJlZUW77+3bt0RSUpLcvHmT9mPTgZOTE3n+/PlXHcPMzIyYmZkRCQkJMnXqVOp7MzMzYmJiQtTV1cmkSZNo6nHzoFOnTtT85+7du4menh6pq6sjhw4dIv369WsxTra83bt3J2lpaSLtN27cYGy87ejoSHx9fQkhhISEhBAZGRlibGxMOnToQBwcHBhxskVcXByRkZEhCxYsIG3btqXG1L///juZMmUKI87ExEQyfPhw8vfff5MXL16QyspKoS8m6NKlCwkPDxdpDw8PJ3w+nxHn55KcnExev35N2/Hq6+tJQEAAad++PeHxeITH45F27dqRVatW0ebgaPkMGDCA/PXXXyLtp0+fJnp6eow4J0yYQPbv308IIWTBggVk6NChJDo6mkyaNImxsXZr4vTp0+S7774jp06dIk+ePBHLtVddXV1oXpDj20dBQYH8+OOP5J9//vngz9TU1FDjqG/Zy9a5cnDQwbhx46g1g8bs37+fjBkzhhEnW8+ozZX+/fuTwsJCsXvpXCcxNTUlioqKRENDg0yfPl1ofsfMzIwWR1OI+3mRy7jOwUEDglKNHMwQEBAADw8PrFmzBoMHDxbJCqOgoMBSzziYhs6dY9LS0ti9ezd8fHxw69YtVFVVQV9fH71796bN8T4qKipiz/7avn17KpNct27dkJeXh/79+wMAIzvj2Kw8sXr1asyfPx+PHz9GfX09jh49ivv37yMyMhJ//vknrS6uwgYHBweHMKqqqlBVVRWLq6ysDBYWFrhw4QJ4PB4ePHgATU1NODo6QklJCZs2bQLQcN9lCzrHLP7+/vDw8KDKvwt49eoVfvvtN9qzT7LlPHPmDM6fPy+UFUVHRwfbt2/HxIkTafex6W0tzp49e6KkpASqqqrQ0tLC2bNnMWjQIFy/fh1t27ZlxGlvb4+srCyMGTMGXl5emDFjBkJCQvDu3Tts3ryZEaeRkRHOnTuHAQMG4IcffoCLiwsuXLiAc+fOYfz48Yw4AXbeXw6ObxkXFxdoaGggMTERGhoauHbtGsrLy+Hu7o6NGzey3T2OL+DOnTsYNGiQSLu+vj7u3LnDiLM5VSlQUFCAn58fZsyYgXnz5tF67EuXLmHEiBFo06ZhucjQ0BCGhoaora3FpUuXGMvY+vTpUwwYMAAAICcnh8rKSgDA9OnTGclKKyUlBVVVVUbKctNBdHQ0PDw80Llz5y8+hqKiIoCG+St5eXnIyMhQr0lLS8PQ0BALFy786r5+jLi4OBw6dAiFhYXUHKWA9PR02n01NTVUBv2zZ8/C3NwcEhISMDQ0xKNHj2j3seVky1tWVkZ9rhqjoKDAWBY2NqoUAA3VJz732n706FFanAEBAQgNDYWtrS1iY2Op9pEjRyIgIIAWx/sYGxsDAMaNGyd0vuT/VWpg4hr5yy+/wMnJCenp6Rg6dCiAhoope/fuZSwL+ecyZcoUZGZm0lZJhcfjwdvbG56ensjNzUVVVRV0dHQYrz5RXV2NpKSkJq+9XHWub48HDx40md29X79+yM3NZcTJVpWC1sLUqVMBNFT+Ete1d82aNVi9ejUiIiJE5nyZpqKiAnv27MHdu3cBAP3794eDg0OTYwrO+fmUlJR88ncpIyODX3/99Zv3snWuHBx0cPXqVYSGhoq0GxgYYMGCBYw42XpGPXPmDOTk5DBq1CgAwPbt27F7925qLUpJSYlW3/z58+Ho6PjJeapbt27R6mWDDh06wMzMTOxewfPi+2tdTI1ZuMB1Dg6OZg8bD3MczQMmgr7FGWi3detWeHl5YefOnVBXVxeL09DQEMnJydDW1sbUqVPh7u6Omzdv4ujRozA0NKTd17jUcnBwsFg3ksycOROnTp2Cv78/2rdvj9WrV2PQoEE4deoUJkyYQKuLzfPk4ODgYBs3N7fP/lkmAkVdXV3Rpk0bqkStAAsLC7i5uVGB62xC55jFz88PixYtEpmYrampgZ+fHyNB5Gw46+vrISUlJdIuJSVFBSkwARve1uI0MzNDYmIihg0bhqVLl8LGxgZ79uxBYWEhXF1dGXE2Pq6xsTHu3buHGzduoFevXtDT02PEGRISgtevXwMAvL29ISUlhStXrmDWrFlYtWoVI06AnfeXg+Nb5urVq7hw4QI6d+4MCQkJSEpKYtSoUQgKCoKzszO1OZnj26Ft27YoLS0VCSwrKSmhAq7FQceOHcXmep/KykoquJtOxo4di5KSEvD5fBHf2LFjGZt7ZWNTlre3N1auXImoqChWf5dNQcczhSDBjrKyMnx9fanxfUFBAY4fPw5tbe2vCoz/FNu2bYO3tzfs7Oxw4sQJ2NvbIy8vD9evX8eSJUsYcfbq1QvHjx+HmZkZEhISqHHRs2fPGJu/Y8PJlrdXr144c+YMfv75Z6H206dP0xbo+z4SEhKQkJCgvre0tISlpaXIzy1evBj+/v60faYVFRVx7NgxKCoqwsDAAABw48YNVFZWwtTUlJENS/fv328y6EJRUREVFRW0+4D/P88tTry8vKCpqYng4GBER0cDALS1tREeHo45c+aIvT+NYSrxkLS0dJOBx0yQkZGBqVOnoqamBtXV1ejYsSNevHgBWVlZ8Pl8LnD9G0RRURH5+fki64q5ubkiyd3oQnDdAwA+n48zZ840+XMpKSkwMDDgNtD/j7Bx7d20aRPy8vLQpUsXqKuri8wTMrGhEADS0tIwadIkyMjIUJuVNm/ejMDAQGq8zzm/DFlZWdTV1eHYsWNUsLy2tjZMTU0ZfSZmw8vWuXJw0IGKigp2796NDRs2CLWHhYUxloCLrWdUT09PrF+/HgBw8+ZNuLm5wd3dHX///Tfc3NxoTwJcWVkJY2NjqKmpwd7eHvPnz0ePHj1odTRFdXX1Z43BVq5cSdtcE1sJlMU9ZuERcaeC5RDh9evXaNeuXZOvxcTEYObMmYw9hHBwfAtERERARUUFkpKSQu319fUoLCzE/PnzWeoZR3OH7UA7JSUl1NTUoLa2FrKysiKTAuXl5bQ78/PzUVVVBT09PVRXV8Pd3R1XrlxB7969sXnzZqipqdHu5ODg4OBo2YwdO/azfo7H4+HChQu0+7t27YqEhAQMHDgQ8vLyyMrKgqamJvLz86Gnp4eqqiranQI+NxN5cnIyhgwZQsuijYSEBEpLS6GsrCzUfuHCBVhYWOD58+df7WgOzpkzZ6KiogIHDhxA9+7dAQCPHz+GtbU1lJSUcOzYMdqdbHlbi/N9UlNTqXHojBkzGHEUFRWxWm2BTcTx/n4uja/NHBzNBSUlJaSnp0NDQwNaWloICwvD2LFjkZeXhwEDBqCmpobtLnL8j1hZWaGkpAQnTpygMthVVFTA1NQUfD4fhw4dYrmH9LFt2zah7wkhKCkpQVRUFMaMGYOYmBhafR8aC+bk5MDAwAD//fcfrT4BXl5eUFBQwMqVK3Hw4EHY2NhAXV2d2pS1bt062p36+vrIzc3Fu3fvoKamJrLuwlQAz+dA5/10woQJmDVrFhYtWoSKigr069cPUlJSePHiBTZv3gwnJycaeixKv3798Ouvv8LKykrofFavXo3y8nKEhITQ7oyLi8PcuXNRV1eH8ePH4+zZswCAoKAgXLp0CadPn24RTra8e/fuxc8//wxPT0+MGzcOAJCYmIhNmzZh69atjGfw/xgKCgq0Zspevnw5ysvLERoaSq1F1dXVYfHixVBQUMBvv/1Gi6cxmpqa2LVrF4yNjYX+ZiIjI7Fu3TrGKopcvnwZO3fuRF5eHuLi4tCjRw9ERUVBQ0ODypbYWmgJzzLff/89+vTpg9DQUCgqKiIrKwtSUlKwsbGBi4sLzM3N2e4ix//ITz/9hKtXr+LYsWPQ0tIC0BC0PmvWLAwZMgRhYWGs9Y3ua29robCwECoqKiKboAghKCoqYiThmp+f30dfZypT9ejRo9GrVy/s3r2bCjCura3FggULkJ+fj0uXLnHOL+T27duYMWMGSktL0bdvXwANz2zKyso4deoUdHV1aXey5WXrXDk46CA+Ph6zZs1Cr169MGzYMADAP//8gwcPHuDIkSNU4lY6YesZVU5ODrdu3YK6ujp8fX1x69YtxMXFIT09HVOnTsXTp09pdz5//hxRUVGIiIjAnTt3YGxsDEdHR8ycObPJZE50ICcnhzlz5sDBwUHsz0vPnz/H/fv3AQB9+/YVmbv71uEC11mivr4egYGBCA0NRWlpKXJycqCpqQkfHx+oq6vD0dGR7S5ycDQbJCUlm8z6U1ZWBj6fz2Vc/wYpLS2Fh4cHEhMT8ezZM5GsFnT9TtkOtIuIiPjo63Rvuqirq0NKSgr09PTQoUMHWo/dnLlx44ZQGTZ9fX2We8TBwcHBUVxcjO7duwtlSftS5OXlkZ6ejt69ewstKAqympSVldHQ46YR5zhUSUkJPB4PlZWVUFBQEFrIqKurQ1VVFRYtWoTt27d/004BRUVFMDExwe3bt6nA46KiIujq6uLkyZPo2bMn7U62vK3F+bFN+UwhyKBsY2OD2bNn0156simMjY1hY2MDc3NzsVbhYeP9BRoCkwTPbe9n6xeUC+eSLnA0R0aPHg13d3eYmppi7ty5+Pfff7Fq1Srs2rULN27caBElY1sbjx8/hpGREcrKyqjn/szMTHTp0gXnzp1rURuZNDQ0hL6XkJCAsrIyxo0bhxUrVlDln78WQSDbiRMnMHnyZKFNmHV1dcjOzkbfvn0/mHGTbsSxKYutAJ7Pgc7gyc6dOyMpKQn9+/dHWFgYfv/9d2RkZODIkSNYvXo1NY9GN7Kysrh79y7U1NTA5/Nx7tw5DBw4EA8ePIChoSFjz25Pnz5FSUkJBg4cSD2D/vPPP1BQUEC/fv1ajJMt744dOxAYGIgnT54AABWUYGtry4jvc6E74FhZWRnJyclUcJSA+/fvY8SIEYx8foOCghAdHY29e/diwoQJiI+Px6NHj+Dq6gofHx8sXbqUdueRI0cwb948WFtbIyoqCnfu3IGmpiZCQkIQHx+P+Ph42p0C3r592+Rzhbgq5DZFSwhc79ChA65du4a+ffuiQ4cOuHr1KrS1tXHt2jXMnz8f9+7dY7uLHP8jlZWVmDx5MtLS0qj5m+LiYowePRpHjx5ldf2vJfzNsEFrinWQkZFBRkaGyLjkzp07MDAwYGQTeWtxDh8+HMrKyoiIiKDmQP/991/Y2dnh+fPnuHLlCu1OtrxsnSsHB10UFRVhx44d1DhMW1sbixYtYnTuio1nxY4dOyI5ORk6OjoYNWoUbG1t8eOPP6KgoAA6OjqMJw5JT09HeHg4wsLCICcnBxsbGyxevBi9e/em1XP8+HHs27cP8fHxUFdXh4ODA2xtbamkUUxQXV2NpUuXIjIyknp+kpSUhK2tLX7//XeRhGt0UlFRgT179gjFYDk4OFCJROiEq6HBEgEBAYiIiMCGDRuEMhLo6upi69atXOA6B0cjCCFNlmGsqqpiZeGe4+uxs7NDYWEhfHx80K1bN0bKbAJfVsaEzkA7cVcDkJSUxMSJE3H37t1WEbj+7NkzWFpa4uLFi9T5VlRUYOzYsYiNjW1xuw05ODg4viV0dHRoy74zevRoREZGYs2aNQAaNpzV19djw4YNn71J7Uv50Dg0KyuLtnJvArZu3QpCCBwcHODn5yc0ASAtLQ11dXUMHz78m3cKUFFRQXp6Os6fPy80eWdsbMyIj01va3Hy+XyYmZnBxsYG48ePp2U8/SnS0tIQExMDf39/LF26FJMnT4aNjQ1mzJjBWNnq/v37Y8WKFVi8eDGmTZsGGxsbTJ06lbFsHgLYeH/9/Pzg7+8PAwODjz63zZ07l/G+cHD8r6xatQrV1dUAGiqoTJ8+HaNHj0anTp1w8OBBlnvH8SX06NED2dnZ2L9/P7KysiAjIwN7e3tYWVkxfg0WNw8fPhSLRzD2I4RAXl4eMjIy1GvS0tIwNDRkNJvypUuXMGLECCpDoaGhIQwNDVFbW4tLly7ByMiIdiebgenipKamhtrgcPbsWZibm0NCQgKGhoZ49OgRY96uXbuivLwcampqUFVVRWpqKgYOHIiHDx+KJC6h29u1a1ehtqFDhzLmY8vJltfJyQlOTk54/vw5ZGRkICcnx6iPLWpra3Hv3j2RwPV79+6JBFrThZeXF+rr6zF+/HjU1NTAyMgIbdu2hYeHByNB60DD+nRoaChsbW0RGxtLtY8cORIBAQGMOB88eAAHBweRIDPBnEtLCthkAykpKer5kM/no7CwENra2lBUVERRURHLveP4EhQVFXHlyhWcO3eOGvfq6ekxMjbiEA9sxTpUVFQgLi4OeXl58PT0RMeOHZGeno4uXbqgR48ejDgVFBRQWFgoEiRZVFRE2wbc1urMzMxEWlqaUOIOJSUlBAYGYsiQIYw42fKyda4cHHShoqKCtWvXitXJxrPiqFGj4ObmhpEjR+Kff/6h5lxzcnIYS04loKSkBOfOncO5c+cgKSmJqVOn4ubNm9DR0cGGDRvg6upKm8vU1BSmpqZUtvd9+/bBx8cHkyZNgoODA0xMTKi5Lbpwc3NDUlISTp06hZEjRwJoqP7t7OwMd3d37Nixg1afAEHSOBkZGerzs3nzZgQGBuLs2bMYNGgQvULCwQpaWlrk/PnzhBBC5OTkSF5eHiGEkLt375IOHTqw2TUOjmaDq6srcXV1JRISEuSnn36ivnd1dSXOzs5k2LBhZMSIEWx3k+MLkJOTIxkZGWx3o0nk5eWpazId5ObmEm9vb2JpaUlKS0sJIYTEx8eTW7du0eZozODBg6n7S0tnzpw5xMDAgNy5c4dqu337NjEwMCCWlpYs9oyDg4ODo/Ezztdy8+ZNwufzyeTJk4m0tDSZPXs20dbWJl26dCG5ubm0ON6nQ4cORElJiUhISFD/F3wpKCgQCQkJsnjxYkbcFy9eJG/fvmXk2M3JydHyOHr0KJk9ezaRkZEhXbt2JS4uLuT69eticdfX15MLFy6QBQsWECUlJaKoqEjs7e0Z89XV1ZGEhAQyf/58oqCgQJSUlMjChQvJxYsXGXOy8f527dqVREZGMurg4BAnZWVlpL6+nu1ucHwlt2/fJqdPnyYnTpwQ+uL4cjw9PUl1dTX1/cOHD8mWLVvImTNnGPVKSEhQc2WNefHiBZGQkGDU3Ryh8xlqwIABJDg4mBQWFhIFBQVy5coVQgghaWlppEuXLrQ4msLR0ZH4+voSQggJCQkhMjIyxNjYmHTo0IE4ODgw5uVondD5N0NIw3pUp06dyKZNm8jly5fJ5cuXycaNG0nnzp2Jq6srbZ6mePPmDbl9+za5du0aefnyJaMuGRkZ8vDhQ0KI8HuYl5dH2rZty4hzxIgRxMjIiMTHx5OMjAySmZkp9MUmdK8HscGECRPI/v37CSGELFiwgAwdOpRER0eTSZMmkaFDh7LcO46WBt3X3pYOm7EOWVlZRFlZmfTq1Yu0adOG+r15e3uTefPmMeIkhJClS5eSnj17ktjYWFJYWEgKCwvJgQMHSM+ePYmLiwvn/Ar09PRIYmKiSHtiYiLR1dVlxMmWl61z5eCgi0uXLhFra2syfPhwUlxcTAghJDIykly+fJnlntHLo0ePyLRp04ienh4JCwuj2n/55ReydOlS2n1v374lcXFxZNq0aURKSooMHjyY7Nixg1RWVlI/c/ToUbHE3W7bto20bduW8Hg8oqysTHx8fITm1r6WTp06kb///luk/cKFC6Rz5860ed5n1KhRxM7Ojrx7945qe/fuHZk/fz4ZPXo07T4u4zpLPH78GL169RJpr6+vx7t371joEQdH8yMjIwNAwy7kmzdvQlpamnpNWloaAwcOhIeHB1vd4/gKVFRUGM2y8zXQ2a+kpCRMmTIFI0eOxKVLlxAYGAg+n4+srCzs2bMHcXFxtLkEBAQEwMPDA2vWrMHgwYPRvn17odcVFBRod7LFmTNncP78eWhra1NtOjo62L59OyZOnMhizzg4ODg46ERXVxc5OTkICQmBvLw8qqqqYG5ujiVLlqBbt26MONnMRD5mzBjq/69fv8bbt2+FXmfiXi4u57Zt2/Djjz+iXbt22LZt20d/1tnZmRYnW97W4myMmZkZzMzM8PLlS8TFxeHAgQMwNDSEpqYmbGxssHr1atqdAng8HsaOHYuxY8fCyckJjo6OiIiIwN69exnxSUhIYOLEiZg4cSJCQ0Nx6tQpBAYGYs+ePYxlC2Tj/X379i1GjBhB+3E5ONiC7mopHOIlPz8fZmZmuHnzJng8nkjWwpaUrdXMzOyzqxMePXr0q30ZGRmIjIzEokWLUFFRAUNDQ0hJSeHFixfYvHkznJycvtrRFO//DgWUlZWJzGfRRV1dHbZs2YJDhw6hsLBQZNxbXl5Ou7OwsBAqKioi50oIQVFREVRVVQEANjY2tI27V69ejblz58LV1RXjx4+nnl3Onj0LfX19WhxNsWvXLioz9ZIlS9CpUydcuXIFJiYm+OmnnxjzcjBLXFzcB/9m0tPTWeoV/WzcuBFdu3bFpk2bUFJSAgDo1q0bPD094e7uzqhbWloaOjo6jDoEdO3aFbm5uVBXVxdqT05OpqVqXlNkZmbixo0bIllpmwPNdZ3qf2Ht2rV4+fIlACAwMBC2trZwcnJC7969GXsm5mCe6upqJCUlNXntZWJOh4MZ2Ix1cHNzg52dHTZs2CCUAXzq1KmMVs7buHEjeDwebG1tUVtbC6ChMoSTkxPWrVvHOb+CoKAgODs7w9fXF4aGhgCA1NRU+Pv7Y/369fjvv/+on6VzDYENL1vnysFBB0eOHMG8efNgbW2N9PR0vHnzBgBQWVmJtWvXIj4+nuUe0oeqqir+/PNPkfYtW7YIfb9u3TosWrQIHTp0+Cpft27dUF9fDysrK/zzzz/47rvvRH5m7NixX+35EKWlpYiIiMC+ffvw6NEjzJ49G46OjiguLsb69euRmpqKs2fP0uKqqalBly5dRNr5fD5qampocTRFWloadu/eLZRBvk2bNli2bBkMDAxo9/FIS3gi+wYZPHgwXF1dYWNjA3l5eWRlZUFTUxP+/v44d+4cLl++zHYXOTiaDfb29ggODuYGnS2Is2fPYtOmTdi5c6fIBCnbNL4mfy3Dhw/HDz/8ADc3N6Hj/vPPPzA3N0dxcTENPRZGUBISgNCCGGmBZTfl5eVx+fJlkQFpRkYGxowZI/TQysHBwcEhXui8n7JJUlISRo4cSXuJt49RU1ODZcuW4dChQygrKxN5nYl7ubicGhoaSEtLQ6dOnaChofHBn+PxeMjPz6fFyZa3tTg/xZ07d2BtbY3s7GxGx6HFxcWIiYlBTEwMbt26heHDh8Pa2hqLFi1izAkAT58+RWxsLKKjo5Geno6hQ4ciNTWVUWdjmH5/ly9fDjk5Ofj4+NB+bA4ODo7/lRkzZkBSUhJhYWHQ0NDAtWvXUF5eDnd3d2zcuBGjR49mu4u0YWdnh2PHjkFRUZFaFLpx4wYqKythamoqNN8THh7+1b7OnTsjKSkJ/fv3R1hYGH7//XdkZGTgyJEjWL16Ne7evfvVjsaYm5sDAE6cOIHJkyejbdu21Gt1dXXIzs5G3759cebMGVq9QENAd1hYGNzd3bFq1Sp4e3ujoKAAx48fx+rVqxkJBJOUlERJSQn4fL5Qe1lZGfh8PmNjpKdPn6KkpAQDBw6k5gv/+ecfKCgosB48unjxYvj7+6Nz586s9oPj02zbtg3e3t6ws7PDrl27YG9vj7y8PFy/fh1LlixBYGAga31jct5BMK/cEtekgoKCEB0djb1792LChAmIj4/Ho0eP4OrqCh8fHyxdupR255AhQ7BlyxaMGjWK9mNzfD4pKSkwMDAQuu9yNE8yMjIwdepU1NTUoLq6Gh07dsSLFy8gKysLPp8vtjmdplBQUEBmZuY3P+crbtiIdVBUVER6ejq0tLSE7pmPHj1C37598fr1a9qddXV1SElJwYABA9C2bVvk5eUBALS0tCArK0u7rzU5gaZjAAThfo2/pzsegA0vW+fKwUEH+vr6cHV1ha2trdD1NyMjA1OmTMHTp0/Z7qLYoWv8EBUVhR9++AHt2rWjqWefx9GjRxEeHo6EhATo6OhgwYIFsLGxEQqQz8vLg7a2tsiGwy9l/Pjx6NSpEyIjI6nzffXqFebPn4/y8nKcP3+eFs/7dOnSBVFRUSKJQhMSEmBra4vS0lJafVzGdZZYvXo15s+fj8ePH6O+vh5Hjx7F/fv3ERkZ2eRuFA6O1gwdCzAczQsLCwvU1NRQD3BSUlJCrzOR3YgNbt68iZiYGJF2Pp+PFy9eMOIMDw+HiooKJCUlhdrr6+tRWFjIiJMtxo0bBxcXFxw4cADdu3cH0FDRRJBNioODg4OjZRAeHg45OTn88MMPQu2HDx9GTU0N5s+fz5hbXl4ed+/exYABAwA0BNeEh4dDR0cHvr6+Qlly6MLT0xN///03duzYgXnz5mH79u14/Pgxdu7cyVi2FnE5Hz582OT/mYYNb2txNsXr169x8uRJxMTE4MyZM+jSpQs8PT0Zce3cuRMxMTFISUlBv379YG1tjRMnTkBNTY0RH9AQxHLkyBHExMTg4sWL0NTUhLW1NQ4ePAgtLS3GvALE+f6+fv0au3btwvnz56Gnpyfy3LZ582ZGvBwcHBxNcfXqVVy4cAGdO3eGhIQEJCUlMWrUKCoTmyCbYUugS5cumDNnDkJDQ6n5nbq6OixevBgKCgr47bffaPXV1NRQWRjPnj0Lc3NzSEhIwNDQEI8ePaLVBYCqZkQIgby8PGRkZKjXpKWlYWhoiIULF9LuBYD9+/dj9+7dmDZtGnx9fWFlZQUtLS3o6ekhNTWVkcD1D2WWr6qqYnSxtWvXrujatatQ29ChQxnz/S9ER0fDw8ODC1z/Bvjjjz+wa9cuWFlZYd++fVi2bBk0NTWxevVqxubw2ahS8D4tMWBdgJeXF+rr6zF+/HjU1NTAyMgIbdu2hYeHByNB6wCwfv16LFu2DGvXrsWAAQNEnivoer/19fU/u2JJS6oW8LlMmTKFCzj+RnB1dcWMGTMQGhoKRUVFpKamQkpKCjY2NnBxcWG1b1xOzC+DjViHtm3bNpngKycnB8rKyow4JSUlMXHiRNy9excaGhrUnDqTtBYnAPz9999i8TQHL1vnysFBB/fv34eRkZFIu6KiIioqKsTfoWYAXeOHefPmUf8vKioCAKioqNBy7I9hb28PS0tLpKSkYMiQIU3+TPfu3eHt7U2bMzg4GJMmTULPnj0xcOBAAEBWVhbatWuHhIQE2jzvY2FhAUdHR2zcuJGqxpuSkgJPT09YWVnR7uMC11li5syZOHXqFPz9/dG+fXusXr0agwYNwqlTpzBhwgS2u8fBwcHBKFu3bmW7C2KhQ4cOKCkpEcl4mZGRgR49ejDidHBw+GAWJ2NjY0aD+8RNSEgITExMoK6uTg1Ii4qKoKuri+joaJZ7x8HBwdG6+dyFws8hKCgIO3fuFGnn8/n48ccfGb23/fTTT/Dy8sKAAQOQn58PCwsLmJubU0HzTIxpTp06hcjISHz//fewt7fH6NGj0atXL6ipqWH//v2wtrZuEU5/f394eHiIZKF59eoVfvvtN6xevZp2J1ve1uJMSEhATEwMjh8/jjZt2mD27Nk4e/Zsk5O0dBEQEAArKyts27aNmrxjmi5dukBJSQkWFhYICgpipDxiU7Dx/mZnZ1PVjW7duiX0Gp3XeQ4ODo7Poa6ujgqu7ty5M548eYK+fftCTU0N9+/fZ7l39LJ3714kJycLJSWQlJSEm5sbRowYQXvgeq9evXD8+HGYmZkhISEBrq6uAIBnz54xErwpCNxRVlaGr68vNV4RZD7X1tZmLKD56dOnVGCJnJwcKisrAQDTp0+nvcKIm5sbgIZ7po+Pj9C4rK6uDteuXWuyrHVrgAt6+3YoLCykFqtlZGTw8uVLAA0BA4aGhggJCaHdqaGh0eT8dnl5OTQ0NKismjt27Phq16BBg5CYmAglJaVPBj23lEBnHo8Hb29veHp6Ijc3F1VVVdDR0YGcnBxjTmNjYwANiWiYrBJrampK/f/169f4448/oKOjg+HDhwMAUlNTcfv2bSxevJgW37cGd+39dsjMzMTOnTupzZpv3ryBpqYmNmzYgPnz51PVa9hAcB/g+N+orq7GunXrkJiYiGfPnqG+vl7odSay6JuYmMDf3x+HDh0C0HD9LywsxPLlyzFr1izafQJ0dXWRn5//0WqQnPPLGDNmjNhcbHvZOlcODjro2rUrcnNzoa6uLtSenJzMbSD8Smpra+Hn54dt27ahqqoKQMPcztKlS/Hrr7+KbJCli5KSkk9W1JCRkcGvv/5Km1NXVxcPHjzA/v37ce/ePQCAlZUVrK2thRJA0M3GjRvB4/Fga2uL2tpaAICUlBScnJwYSa7GBa6zyOjRo3Hu3Dm2u8HBwcEhdppz8DSdARiWlpZYvnw5Dh8+DB6Ph/r6eqSkpMDDwwO2tra0eRrDVhYnNlBRUUF6ejrOnz9PDda0tbWpiXAODg4ODvagczGssLCwyQlgNTU1xquJ5OTkUMEkhw8fxpgxY6jszpaWlowErpeXl1OTVwoKClQWu1GjRsHJyYl2H1tOPz8/LFq0SGSyp6amBn5+fowFrrPhbS1OMzMzTJ8+HZGRkZg6dSpjk4SNKSws/Kzx++LFi+Hv709LENzJkycxfvx4oZK1TUF3GXY23l8uuxEHB0dzQldXF1lZWdDQ0MCwYcOwYcMGSEtLY9euXS1u4a+2thb37t1D3759hdrv3bsnEuRCB6tXr8bcuXOpCnaCAL+zZ89CX1+fdp+AjIwMREZGYtGiRaioqIChoSGkpKTw4sULbN68mZFxaM+ePVFSUgJVVVVoaWnh7NmzGDRoEK5fv07bPVuAoAoAIQQ3b94UqtYkLS2NgQMHwsPDg1YnBwfddO3aFeXl5VBTU4OqqipSU1MxcOBAPHz4kLEgWHHOb8+cOZP6228c9NwakJaWho6Ojlhc4nquaBwosmDBAjg7O2PNmjUiPyPIzsjB0VyRkpKi5hz4fD4KCwuhra0NRUVFWj+/XJUC8bFgwQIkJSVh3rx56Natm1iSAWzatAmzZ88Gn8/Hq1evMGbMGDx9+hTDhw9HYGAgY96AgAB4eHhgzZo1GDx4MNq3by/0OhMbY1uLEwAqKiqwZ88e3L17FwDQv39/ODg4UFWtmIINL1vnysHxtSxcuBAuLi7Yu3cveDwenjx5gqtXr8LDw4P2DfOtjaVLl+Lo0aPYsGEDNXd19epV+Pr6oqysjJbNzU0hKyuLuro6HDt2jLomaWtrw9TUFG3aMBd6LSsry1hFwg8hLS2N4OBgBAUFIS8vDwCgpaX1ycD9L4ULXOfg4ODgYIW8vDyEh4cjLy8PwcHB4PP5OH36NFRVVdG/f3/W+kXnhPvatWuxZMkSqKiooK6uDjo6Oqirq8PcuXOxatUq2jxA683ixOPxMGHCBK5aCQcHB4eYyc3NRV5eHoyMjCAjIyOysHznzh10796dFhefz0d2drZIdoKsrCx06tSJFseHIIRQwUHnz5/H9OnTATRsnnrx4gUjTk1NTTx8+BCqqqro168fDh06hKFDh+LUqVPo0KFDi3F+KBghKysLHTt2ZMTJlre1OEtLS6lMuB9j3bp1WLRoES2frc9d6IuOjoaHhwctgeufO+6kuww7G+8vBwcHR3Ni1apVqK6uBtBQWWT69OkYPXo0OnXqhIMHD7LcO3qxt7eHo6Mj8vLyMHToUADAtWvXsG7dOtjb29Pumz17NkaNGoWSkhKhCibjx4+HmZkZ7T4BGRkZ1EbQuLg4dOnSBRkZGThy5AhWr17NSOC6mZkZEhMTMWzYMCxduhQ2NjbYs2cPCgsLqUzzdCEI1LS3t8e2bds+6z7OwdHcGDduHE6ePAl9fX3Y29vD1dUVcXFxSEtLoz3jLxvz240DnenMjschzJgxY3D58mXs3LkTeXl5iIuLQ48ePRAVFcVYptrDhw8jLS1NpN3GxgYGBgbYu3cvI14ODjrQ19fH9evX0bt3b4wZMwarV6/GixcvEBUVBV1dXdo8XJUC8XH69Gn89ddfGDlypNicioqKOHfuHJKTk5GdnY2qqioMGjSI8eRfU6dOBdCQ8Z3JKhut0ZmWloZJkyZBRkaGek7cvHkzAgMDqQ25TMCGl61z5eCgAy8vL9TX12P8+PGoqamBkZER2rZtCw8PDyxdupTt7n3TxMTEIDY2FlOmTKHa9PT0oKKiAisrK8YC12/fvo0ZM2agtLSUSjKxfv16KCsr49SpU7SOzxpz//59/P7770LB8j///DP69evHiK8xsrKy1BoTU0HrAMAjXF0oVpCQkPjoAisTAxkODg6O5kJSUhKmTJmCkSNH4tKlS7h79y40NTWxbt06pKWlIS4ujjH3pwLtioqK0L17d6FyzF9LYWEhbt26haqqKujr66N37960HVvA2LFjATS8t8OHDxfJ4qSurg4PDw9G3Gzh7OyMXr16wdnZWag9JCQEubm5jGTB5eDg4GjtlJWVwcLCAhcuXACPx8ODBw+gqakJBwcHKCkpYdOmTbQ7ly9fjoMHDyI8PBxGRkYAGu53Dg4OmD17NjZu3Ei7U8C4ceOgoqICY2NjODo64s6dO+jVqxeSkpIwf/58FBQU0O7csmULJCUl4ezsjPPnz2PGjBkghODdu3fYvHkzXFxcvmmnkpISeDweKisroaCgIDQOq6urQ1VVFRYtWoTt27fT5mTL21qc/ysKCgq0BnR/DvLy8sjKymrxToCd95eDg4ODLcrLy6l7X0uivr4eGzduRHBwMEpKSgAA3bp1g4uLC9zd3Wmds2ITWVlZ3Lt3D6qqqpgzZw769+9PZcLt27cvampqGO9Damoqrly5gt69e2PGjBm0H//du3eQkZFBZmYmYwuZ3yJsjZM4/nfq6+tRX19PZZGLjY2l/mZ++uknoTnor6W5zG+/ffsWz549E6lwoaqqyqi3JXPkyBHMmzcP1tbWiIqKwp07d6CpqYmQkBDEx8cjPj6edmfXrl2xbt062NnZCbXv27cPy5cvR2lpKe3O5g537f12SEtLw8uXLzF27Fg8e/YMtra21LV37969QhsN6WLBggXo1q3bB6sUcJs9vg4NDQ3Ex8dDW1tbbM6ioiKoqKiIzScgKSnpo6+PGTOGc34ho0ePRq9evbB7925qbFZbW4sFCxYgPz8fly5dot3Jlpetc+XgoJO3b98iNzcXVVVV0NHRgZycHNtdYg26xqF8Ph9JSUki99O7d+/CyMgIz58//6rjf4jhw4dDWVkZERERUFJSAgD8+++/sLOzw/Pnz3HlyhXanUeOHIGlpSUMDAyENhVev34dsbGxmDVrFu1OoOFa6+fnh23btqGqqgoAICcnh6VLl+LXX3+lvRIwF7jOEidOnBD6/t27d8jIyEBERAT8/Pzg6OjIUs84ODg4mGf48OH44Ycf4ObmJjRI+eeff2Bubo7i4mLanWwE2rGBvb09goODGStB1pzo0aMHTp48icGDBwu1p6enw8TEhJHPEQcHB0drx9bWFs+ePUNYWBi0tbWpe3hCQgLc3Nxw+/Zt2p1v377FvHnzcPjwYWqSsr6+Hra2tggNDaV1ofx9srOzYW1tjcLCQri5uVEZ2JYuXYqysjLExMTQ6nv37h0mT56M0NBQajH+0aNHuHHjBnr16gU9PT1afWw4IyIiQAiBg4MDtm7dKlTaUxCMIJiE+da9rcX5v9JagsjZCgrgghE4ODg4Whb//fcfAOZKzbOJnp4eFixYADMzM+jq6uLMmTMYPnw4bty4gWnTpuHp06e0Oy9duoQRI0aIlHKura3FlStXqI2ydKKpqYljx44xEmT2rcKNV1oeixcvhr+/Py0VjtiqUpCTkwNHR0eRoAMmM6e2FvT19eHq6gpbW1uhv/+MjAxMmTKFkev9unXr4Ofnh4ULFwpVL9m7dy98fHzg5eVFu7O5w21ybnmkpKTAwMAAbdu2/epjKSoqIi0tTWRz0IMHD2BgYIDKysqvdrRmoqOjceLECURERDCatbQxkpKSGDVqFGxsbDB79mwq0I5pCgsLoaKiIrK5mBCCoqIiRjaCtRanjIwMMjIyRDLt3rlzBwYGBoxt/GXDy9a5cnDQQWRkJIYMGSISXP369WscOnQItra2LPWMPaZOnYo9e/agW7duX3Ucf39/3Lt3D+Hh4dT4582bN3B0dETv3r0Zq6IlIyODtLQ09O/fX6j91q1bGDJkCF69ekW7U0tLC9bW1vD39xdq//XXXxEdHY28/2Pv7uNqvv//gT9OqaSSjAjpwmWprDQrjJFrk4uZi0ou25jRp+TqQ0iUtbmcfaeNmtpy3YzN8OmSXI5SEVJJImM1F0eIc87vj26dn7PMbN7v80497rfb53bT630+5/E8s3Xe532e7+crP1/wTACYPn064uPjsWzZMvV3icePH8fSpUsxfPhwwafas3G9homLi8P27durNbYTEdUmxsbGyM7Oho2NjcaFysLCQnTs2BGPHj0SPFNbjXZVW5q+jNWrVwuSWVfVr18f586dQ9u2bTXW8/Ly4ODgIMq/R0REdV3z5s1x8OBBdO7cWeM9vKCgAE5OTuq7r8WQm5uLzMxMGBoawtHREVZWVqJl/Z1Hjx5BV1dX8DvLAaBp06bqKUraIkVmamoqunXrJso/w5qWW1cyX1ZdaSJn4zoREdGL7dq1C15eXlAoFPDw8MChQ4cAAOHh4Th8+DB++eUXwTN1dXVRUlICc3NzjfXS0lKYm5uL0pi6efNmxMfHIzY2Fo0bNxb8+WuSl23gmT59OkJDQwVpcqaaQaiGWCl3KejevTvq1auH+fPnw8LCotq/x7z55N9r0KABcnJyYG1tXe1akr29vWjX8Xfs2IF169bhwoULAAA7Ozv4+/tj9OjRouTVdPysWPsIeTMCdykQl7OzM/Lz86FSqWBtbV3tel16errgmRkZGYiLi8O2bdtw+/ZtDBw4ED4+Phg6dKggNzv8FSnOt+tKZrNmzRAbG4v+/ftrrB88eBC+vr6i/XcqRa5Ur5VICDo6OjAyMsK3336rMRX7t99+Q4sWLV77G2KrBiy8DKGHMIwYMQKJiYkwMDBQfz7LzMxERUUFPDw8NB4bHx8vWG7nzp2xZs0a9OnTR2M9KSkJ/v7+yM7OFiyrSoMGDZCVlVWtF+ry5cvo3LmzaDfwmJqaYtu2bRg0aJDG+v79+zFu3DjBb2as9/cPIW1yc3PDhx9+KHUZRESiatSoEUpKSmBjY6OxnpGRgZYtW4qSeejQIRw8eBCtWrXSWG/Xrh2uXr0qWE5GRsZLPa62bWMthbZt2+LAgQP45JNPNNZ/+eUXXnwlIhLJgwcPnjsVpqysTNQL3gDQvn17tG/fXtSMv3LmzBn1F5329vZwcXERLcvHxwebN2/GypUrRcuoCZnPbpf66NEjVFRUaBwXa6qoFLl1JZOIiIj+PRcXFyQmJsLMzAzOzs4vvG4kRmOLFEaNGoUePXqgpKREoyHUw8MDI0aMECWzanLyn5WWlsLIyEiUzA0bNiAvLw8tWrSAlZVVtZza8vcJADY2Ns9t4CkrK4ONjY36C3qhJ3SR9ISakaanp4fWrVtL0sxx9uxZnDlzptpkT3p1zZs3R15eHqytrTXW09LSRL2OP3r06DrbpP489+/fl7oEEpiQ8yn/85//YPr06UhPT3/uLgX0aoYPH671TGdnZzg7OyMiIgIpKSmIi4vDhx9+CKVSiZEjRyIqKkqU3L8635bL5ahfvz4zX8GYMWMwZcoUfP755+jWrRuAyp0X5syZg3HjxomSKVWuVK+VSCghISEYP348srOzsXTpUqnLEVSjRo1eutdJ6M91jRo10rgZAAAsLS0FzXie8PBwzJo1C0uXLoWbmxsA4MSJE1i2bBk+/fRTjWZ+ob57e/fdd3HkyJFqjetpaWl45513BMl4HgMDg2qf24DK6z1i7IDOxvUa5OHDh1i/fr1oTZtERDXF2LFjMW/ePOzcuRMymQxKpRJHjx5FUFCQaFvjaKvRLjk5+R//f4qLi9GiRQvo6OgIVkddEBgYiE8++QS3b99W392YmJiIVatWYe3atdIWR0RUS73zzjuIiYlBaGgoAKjfxyMiItC7d2/RcouLi7F3714UFRVVa8AVcweTW7duYcyYMUhNTUWjRo0AAHfu3EHv3r2xbds2NG3aVPDMp0+fIioqCgkJCejSpUu1xhYxXq8UmeXl5Zg7dy527NiB0tLSasfFalSQIreuZJIm3qhKRET/xLBhw9TXp6RobJFK8+bN0bx5c421qmYpIY0cORJA5fvzxIkTNa4FKhQKZGVlqRsihFaX/j6laOCh2mfhwoX473//q/VdCuzt7fH7779rLa8u8fPzg7+/P6KioiCTyXDjxg0cP34cQUFBojfEVlRU4NatW1AqlRrrVTtAvK7+7ia3Z9WmG6RIPPPnz4etrS3WrVuH7777DkDlLgXR0dG8AUQAS5YskSxbJpOhd+/e6N27N6ZPn44pU6Zgy5YtgjeuV+1ILpPJEBwcrPGdvEKhwMmTJ/Hmm28y8xV8/vnnkMlk8PX1xdOnTwFU3vQ3ffp0UQfSSJEr1WslEoqPjw+6deuGESNG4Ny5c4iNjZW6JME82w9VWFiI+fPnY+LEiXB3dwcAHD9+HFu2bEF4eLjg2dHR0YI/58t47733AFTeGFt1Dl51A+HQoUPVP8tkMsG+e/P09MS8efNw5swZjWb5nTt3IiQkBHv37tV4rFA++eQThIaGIjo6Wn3t7PHjx1ixYkW1gaJCkKmEvBWTXpqZmZnGB0qVSoX79++jQYMG+O677wT9l4qIqKapqKjAjBkz8O2330KhUKBevXpQKBTw8vLCt99+C11dXcEzBw8ejC5duiA0NBQmJibIysqClZUVxo4dC6VSiV27dgme+bKE3M6vrvnqq6+wYsUK3LhxAwBgbW2NpUuXinYDBBFRXXfu3Dl4eHjAxcUFSUlJ8PT0xPnz51FWVoajR4+iTZs2gmcmJibC09MTtra2uHjxIhwcHFBYWAiVSqWuQyxjxoxBQUEBYmJiYGdnBwDIycnBhAkT0LZtW2zdulXwzBfdACCTyUR5vVJkzpgxA8nJyQgNDcX48ePx5Zdf4vr164iMjMTKlSvh7e0teKZUuXUl82VJsT359OnTERoaiiZNmmgtU6pt2Ln9OxERUXWTJk0CAGzZsgWjR4+GoaGh+pi+vj6sra3h5+en1XOF2qSqgWfdunXw8/N7bgOPrq4ujh49KlWJJDIhz0GdnZ2Rl5eHJ0+eaHWXgqSkJCxatAhhYWFwdHSEnp6exnHuWvXvqVQqhIWFITw8XL2lvYGBAYKCgtSDEYR2+fJlTJ48GceOHatWi5ANJVIJCQlR//nRo0f4v//7P9jb26sbhk6cOIHz58/j448/FqVpiGoGfv5/vdy5cwe7du1Cfn4+5syZg8aNGyM9PR3NmjUTdbBlcXEx4uLiEBcXh3PnzsHd3R3e3t6YNm2aoDlV15dTU1Ph7u6uMZW16nw7KCgI7dq1Y+a/oFAocPToUTg6OsLAwAD5+fkAgDZt2jx3cN/rnCvVayUSiq6urnonsqKiInh6ekImk2Hjxo3o1q3ba38e+iwPDw9MnTq12k4IcXFx+Prrr5GSkiJK7u3bt3Hp0iUAQIcOHUQZMvas1NTUl37ss7shv4qXHXoq9GebESNGIDExEQYGBurdETMzM1FRUQEPDw+Nx8bHx79yHhvXJfLtt99qNK7r6OigadOmePvtt2FmZiZhZURE2lNUVIRz585BLpfD2dlZ8A9xz5Ki0e5l8eLSq7t9+zYMDQ1hbGxc7djRo0fh6uoq6GR9IqK67O7du9iwYQMyMzMhl8vh4uKCGTNmwMLCQpS8rl27YtCgQQgJCVG/Z5qbm8Pb2xsDBw7E9OnTRckFAFNTUyQkJOCtt97SWD916hT69++PO3fuiJZd27Vu3RoxMTF499130bBhQ6Snp6Nt27aIjY3F1q1bsX///lqTW1cyX9bgwYOxefPmf/07Iysr66Uf6+Tk9K8yXuThw4dQqVTqL0quXr2KH374Afb29ujfv7/gef/Uq/7zJSKimqO2TomV0ty5c7F06VL1+3hhYSH27NkDOzs7DBgwQOLqXl9SNfBQzSHk9e1nG3KfR6yptVWNAX+eYl1bGp1rgoqKCuTl5UEul8Pe3v651/KF0r17d9SrVw/z58+HhYVFtb/XqiaM2mDq1KmwsLCodhPAkiVLcO3aNcGnKlPNIcZ3izz/FEdWVhb69u0LU1NTFBYW4tKlS7C1tcWiRYtQVFSEmJgYwTMjIyMRFxeHtLQ02NnZwdvbG15eXrCyshI861mTJk3CunXrtHrDV13JrF+/Pi5cuAAbGxutZUqVK9VrJRKCjo4Obt68CXNzcwCVu+N6e3sjMTERDx48qFWfKxo0aIDMzMxqn/Vzc3Px5ptvqm9aFcqDBw8wc+ZMxMTEqM9VdHV14evriy+++II3twigavDDyxBiAj4b14mIqM7QdqPdy2Ljurg40Z6I6PVmYmKCs2fPok2bNjAzM0NaWho6deqEzMxMDBs2DIWFhaJmHzlypNr2nhkZGejVqxfu3bsnWnZtZ2xsjJycHLRu3RqtWrVCfHw8unbtiitXrsDR0RFyubzW5NaVTABQKpXIy8t77pecPXv2FCRDR0cHMplM3UDyImJcBO7fvz9GjhyJadOm4c6dO+jYsSP09PTw+++/Y/Xq1aLdTJOeng49PT04OjoCAH788UdER0fD3t4eS5cu1WgQIyKi11tubi6mTJlSa6fESqlfv354//33tfo+rlAosGbNGuzYsQNFRUWoqKjQOF5WViZ4plQmTZqE9evXw8TEROpSSMtqw/Xtv5uiJ9TkPNIOIyMjnDlzBh07dpS6FNGZmpri9OnT1RqGLl++DFdXV9y9e1eiykhsQn73Vdt3KZBa37594eLigoiICI33zGPHjsHLy0uU69uWlpYYN24cvL29a9XNOnWZq6srPv3002oTb2tjrlSvlUgIISEhmDNnTrUm6iVLluDw4cNITk6WqDLhdejQAcOGDUNERITG+ty5c/Hjjz+qp6IL5aOPPkJCQgI2bNiA7t27AwDS0tIwa9Ys9OvXD1999ZWgec+6c+cONm/ejAsXLgAAOnXqhMmTJ8PU1FS0zL9SXl5ea5r060ldQF0l9YQwIiJtq9oy9mWsXr1alBpMTU2xcOFCUZ6bai7eo0dEJJzo6GgYGxvjgw8+0FjfuXMnysvLMWHCBMEzjYyM1M0dFhYWyM/PR6dOnQAAv//+u+B5z+rTpw/8/f2xdetWtGjRAgBw/fp1BAQE8KLpK7K1tcWVK1fQunVrdOzYETt27EDXrl2xb98+NGrUqFbl1pXMEydOwMvLC1evXq12/iXkl5xXrlxR/zkjIwNBQUGYM2eOekv048ePY9WqVdUulgolPT0da9asAQDs2rULzZo1Q0ZGBnbv3o3FixeL1rj+0UcfYf78+XB0dERBQQHGjh2LESNGqH//rl27VpRcIiLSvkmTJqFevXr46aefnjsllv69jIwM9Xumtt7HQ0JCsGnTJsyePRuLFi3CwoUL1ZPeFy9eLHieVJ48eYLY2FjMnj0bDg4OUpdDAikqKoKlpeVzp5Bfu3ZNPYHXx8dHqxNHxcDG9NrF3t5e9GtGNYWhoSGOHj1arXH96NGjqF+/vkRVkTYI+d3XxIkTef4pol9//RWRkZHV1lu2bImbN2+KkllUVIS0tDR89tlnKCgowM6dO9GyZUvExsbCxsYGPXr0ECX3wYMHWLlyJRITE5872KKgoICZ/9Ly5csRFBSE0NBQdOnSBUZGRhrHxToXkyJXqtdKJIS/2iHq73aWeh2tWbMG77//Pn755Re8/fbbACp3rL58+TJ2794teN7u3buxa9cuvPvuu+q1wYMHw9DQEKNHjxatcf306dMYMGAADA0N0bVrVwCVPW0rVqzAoUOH4OLiInimh4cHYmJi0LJlS431kydPYvz48cjNzRU8EwAuXrz4lzf/Hjx4UPDdCtm4LpE333zzb0/4eQcrEdUmGRkZL/U4sS6GSNFoR0REVNuEh4c/9yK7ubk5PvzwQ1HeT93c3NRbmg4ePBizZ89GdnY24uPj4ebmJnjeszZs2ABPT09YW1vD0tISAHDt2jU4ODjgu+++EzW7tps0aRIyMzPRq1cvzJ8/H0OHDsWGDRvw5MkT0W5ilCq3rmROmzYNrq6u+Pnnn0X9kvPZLY0/+OADrF+/HoMHD1avOTk5wdLSEsHBwRg+fLjg+eXl5eopoocOHcLIkSOho6MDNzc3XL16VfC8KlXbawKVn2F69uyJuLg4HD16FGPHjmXjOhFRLXL27Nk6MyVW26R4H//+++/xzTffYMiQIVi6dCnGjRuHNm3awMnJCSdOnMCsWbNEydU2PT09tG7dmt9n1TI2NjYoKSlRb3NfpaysDDY2Nuq/byEbBKTapeDw4cMvPC7UDlKkHZ9++inmzp2LsLAwODo6Qk9PT+N4bWp4+89//oPp06cjPT1d3Uhz8uRJREVFITg4WOLqSEz3798X7Ll4/ikuAwOD5+7cmZubi6ZNm4qSGR8fj/Hjx8Pb2xvp6el4/PgxgMrdycPCwrB//35RcqdOnYrU1FSMHz9eazdB1JXMquufnp6eGnli95VJkSvVayX6t/bu3YtBgwZBT08Pe/fu/cvHyWQyDB06VIuViWvw4MHIzc3FV199hYsXLwIAhg4dimnTpqm/UxVSeXk5mjVrVm3d3Nwc5eXlgudVCQgIgKenJ7755hvUq1fZav306VNMnToV//nPf/72s+S/Ub9+fTg5OeH//u//MGbMGCiVSixbtgxhYWH4+OOPBc+r4uLigs8++wwzZsxQrz1+/BizZ8/Gpk2b8OjRI0HzZCqOIZXEnj17XjgVzNnZWf3YZ7+UJSKqS4qLi9GiRQvo6Oi88nO1b98ekZGR6N27t8Z6amoqPvzwQ8G3qfknhNzOj6qrDVvVEhHVFPXr18fFixdhbW2tsV5YWAg7Ozs8fPhQ8MyCggLI5XI4OTnhwYMHmD17No4dO4Z27dph9erVon9eUqlUSEhIUF90sbOzQ9++fUXNrO2ePHmCgQMHYuPGjeqJYFevXsWZM2fQtm1b0XYdkyK3rmQClbsjZGZmom3btqI8//MYGhoiPT0ddnZ2GusXLlyAi4uLKL+TnJycMHXqVIwYMQIODg44cOAA3N3dcebMGQwZMkS0SVkNGzbEmTNn0K5dO/Tr1w/vvfce/P39UVRUhA4dOojyWomISBpvvfUW1qxZI9oUxLpMivdxIyMjXLhwAa1bt4aFhQV+/vlnuLi4oKCgAM7Ozrh7967gmVLZvHkz4uPjERsbi8aNG0tdDglAR0cHv/32W7WmuqtXr8Le3h4PHjwQPHPx4sUv3KVArJs9nvcdxLONUmyQer08+/dZFxreduzYgXXr1uHChQsAKq9d+fv7Y/To0RJXRi/L2dn5pRtf09PTBc/n+ae4pk6ditLSUuzYsQONGzdGVlYWdHV1MXz4cPTs2VOUYQTOzs4ICAiAr6+vxvekGRkZGDRokGjXrxo1aoSff/4Z3bt3F+X563JmamrqC4+LtXuMFLlSvVaif0tHRwc3b96Eubn5C3ubauN5qDZ5eHjgjTfeQExMjHpnoYcPH2LChAkoKytDQkKCKLmGhobIyMiodoNfTk4OXF1dRWua//LLLzF37lwMGzYMhYWFuHr1KqKjo9G/f39R8oDKzxXTp0/H22+/jejoaJSUlMDLywtKpRKxsbF46623BM3jxHWJhIWFvXAq2JkzZySsjoioZrC3txesobuoqAg2NjbV1q2srFBUVPTKz/8qeA8ZERG9LszNzZGVlVWtcT0zMxNvvPGG4HkKhQLFxcXqRlsjIyNs3LhR8JwXkclk6NevH/r166fV3NpMT08PWVlZGmtWVlai34QgRW5dyQSAt99+G3l5eVptXLezs0N4eDg2bdoEfX19AEBFRQXCw8OrNbMLZfHixfDy8kJAQAA8PDzUwwgOHTqkMYRAaK6urli+fDn69u2L1NRU9VTLK1euPHfKCBERvb7q0pRYbZPifbxVq1YoKSlB69at0aZNG/U20r/++isMDAxEyZTKhg0bkJeXhxYtWsDKygpGRkYax8VotCNxBAYGAqj8PBwcHIwGDRqojykUCpw8eVK9G5DQpNql4I8//tD4+cmTJ8jIyEBwcDBWrFghSiaJJzk5WeoStGr06NFsUn/NPbtj3KNHj/B///d/sLe3V5+rnDhxAufPnxdtwibPP8W1atUqjBo1Cubm5nj48CF69eqFmzdvwt3dXbT3mEuXLj13txBTU1PcuXNHlEwAMDMz0/oNjHUl08bGBpaWltVuclGpVLh27VqtypXqtRL9W0ql8rl/rguOHDmCyMhIFBQUYOfOnWjZsiViY2NhY2Mj+A1xa9euxcCBA9GqVSt07twZQOX30/Xr18fBgwcFzXpWw4YNUVRUVK1x/dq1a+pd/cQwY8YMFBcX49NPP0W9evWQkpKCbt26iZYHVH6u6NatGyZNmoROnTrhwYMHmDhxIlatWqVxXUAobFyXSHZ29nMbKG1sbJCTkyNBRURENY+QDd3abrR7Vl5eHvLz89GzZ08YGhqqp3pUycnJQYsWLUStoS7TxvZsRER1xbhx4zBr1iyYmJioL3ynpqbC398fY8eOFTxPV1cX/fv3x4ULF9CoUSPBn/9l/Prrr0hOTsatW7eqXXBavXq1JDXVBj4+Pti8eTNWrlxZ63PrSubMmTMxe/Zs3Lx587lfcoox6X3jxo0YOnQoWrVqpX7+rKwsyGQy7Nu3T/A8ABg1ahR69OiBkpIS9cVRoHLax4gRI0TJBCovynp7e2PPnj1YuHCh+gaBXbt2iX6xkoiItKtqdx8PDw+N9do6JVabpHgfHzFiBBITE/H2229j5syZ6vO0oqIiBAQEiJIplWeb7uj1lpGRAaDy9052drb6JlEA0NfXR+fOnREUFCRKdtXnCQAwNjZW70rw3nvvITg4WJRMoLKR78/69esHfX19BAYGcuDYa6ZXr17qJpr8/Hzs2rVLo4mmNqqoqHjutavWrVtLVBH9E0uWLFH/eerUqZg1axZCQ0OrPUashs2q888+ffrUiV0KtM3U1BT/+9//kJaWhqysLMjlcri4uIi6q2fz5s2Rl5dX7XvxtLQ0UXeoDg0NxeLFi7FlyxZRGtzqcqaNjQ1KSkpgbm6usV5WVgYbGxvR/juVIleq10pE/8zu3bsxfvx4eHt7Iz09HY8fPwYA3L17F2FhYdi/f7+geY6Ojrh8+TK+//579S7Z48aNg7e3NwwNDQXNetaYMWMwZcoUfP755+rvYo4ePYo5c+Zg3LhxomT+8ccfmDp1KhITExEZGYnU1FT0798fERERot3I+KyKigooFAooFApYWFioJ9wLjY3rEpFiKhgRUV2m7UY7ACgtLcWYMWOQlJQEmUyGy5cvw9bWFlOmTIGZmRlWrVoFALC0tBQlnypxoj0RkXBCQ0NRWFgIDw8P1KtX+XFSqVTC19cXYWFhomQ6ODigoKBAki8Ww8LCsGjRInTo0AHNmjXT+OKGN0a9mqdPnyIqKgoJCQno0qVLtWmMYt0UIEVuXcl8//33AQCTJ09Wr8lkMlG/5OzatSsKCgo0LlSOGTMGXl5e1V6zkJo3b47mzZsDAO7du4ekpCR06NCh2sQNITk5OSE7O7va+meffQZdXV3RcomISPvq2pRYbXv2fbxK165dRct79kbCMWPGwMrKCseOHUO7du0wdOhQ0XKl8GzTHb3eqn4PTZo0CevXrxd1ityf1bRdCpo1a4ZLly5pPZdezbNNNBkZGaI30Ujp8uXLmDx5Mo4dO6axzobj19fOnTtx+vTpaus+Pj5wdXVFVFSU4Jk8/xTXtWvXYGlpiR49egg+ffav+Pn5wd/fH1FRUZDJZLhx4waOHz+OoKAgUW8EW7VqFfLz89GsWTNYW1tXG2whxg48dSXzz4PxqsjlctEaCqXKleq1Ev1b69evf+nHirWDlBSWL1+OjRs3wtfXF9u2bVOvd+/eHcuXLxc068mTJ+jYsSN++ukn+Pn5Cfrcf+fzzz+HTCaDr68vnj59CqBy5+Pp06eLNjzKwcEBNjY2yMjIgI2NDfz8/LB9+3Z8/PHH+Pnnn/Hzzz+Lkrtt2zZMnz4d77zzDnJzc3H27FlMmjQJBw8eRGxsrOA3v7FxXSJSTAUjIqrLpGi0CwgIQL169VBUVKRxU9KYMWMQGBioblwncd2/f1/qEoiIag19fX1s374doaGhyMzMhKGhIRwdHWFlZSVa5vLlyxEUFITQ0NDnNuCKuVXtunXrEBUVhYkTJ4qWUVedO3cOLi4uAIDc3FyNY2LeFCBFbl3JvHLliijP+yKHDx9Gt27d8OGHH2qsP336FIcPH37ulsivavTo0ejZsyc++eQTPHz4EK6urigsLIRKpcK2bdvUDfzawi9riIhqn169ekldAgmo6nyl6nqkm5sb3NzcRD1fIRLCkydPEBsbi9mzZ8PBwUFruVLtUpCVlaXxs0qlQklJCVauXIk333xTtFwShzabaKQ2ceJE1KtXDz/99BMsLCw4aKEWMDQ0xNGjR9GuXTuN9aNHj4p2DaAu7lKgTdbW1ujRowd8fHwwatQomJmZiZ45f/58KJVKeHh4oLy8HD179oSBgQGCgoIwc+ZM0XKl2IGntmcGBgYCqLymGxwcrDHhXaFQ4OTJk6Kcq0iRK9VrJXpVa9aseanHyWSyWtW4funSpede0zA1NcWdO3cEzdLT08OjR48Efc6XoVAocOLECSxduhTh4eHIz88HALRp00bUHTemTZuGhQsXQkdHR702ZswYdO/eHZMmTRItt2qy/PTp0wFU7kKWnZ2Njz76CG+++Sbu3bsnaJ5MxTGkknnw4IHGVDA7OzvRp4IREb1OTExMkJmZKehdW7m5uVprtGvevDkOHjyIzp07a7yWgoICODk5QS6Xi5ZdF/z2228ICgpCYmIibt26VW2yOieJEBHVDs9+KNf2VrUWFhY4fPhwtS+KiKhm0NXVfe62saWlpTA3Nxfl98Oz5/hxcXFYsmQJMjMzsWXLFnz99dfIyMgQLKtx48bIzc1FkyZNYGZm9sIGhLKyMsFyiYhIWocPH37hcTY6v16kOF+RikKhwJo1a7Bjxw4UFRWhoqJC4zjPV14/tra2+OGHH9C5c2fJajhx4oRWdinQ0dFR7xj1LDc3N0RFRYm6uxIJr0GDBsjJyYG1tXW172bs7e0laXoRi5GREc6cOcN/R2uRlStXIiQkBH5+fupdYU6ePImoqCgEBwdj/vz5gmc+u0tBbGwscnJyYGtriw0bNmD//v21apcCKWRkZCAuLg7btm3D7du3MXDgQPj4+GDo0KGi7yZSUVGBvLw8yOVy2Nvbw9jYWNQ8El7v3r0BVO4k7+7uDn19ffUxfX19WFtbIygoSPDvMKTIleq1EtG/Y2tri6+//hp9+/bVOOeOiYnBypUrkZOTI2heWFgYcnNzsWnTJvVwAG2oX78+Lly4INnNfI8ePdLaAKNLly6hQ4cOzz0WGxuL8ePHC5rHiesSMjIyqjYVjIiI/j8xJkO0b98e7du3F/x5n+fBgwfPvcuurKxMkm1Na5uJEyeiqKgIwcHBnCRCRKRFxcXF2Lt373MbEVavXi14XnR0NCwtLaGrq6uxrlQqUVRUJHjeswICAvDll19i7dq1ouYQ1SY5OTnP/f3g6ekpeNZfbRtbWloq2lCAu3fvonHjxgCAAwcO4P3330eDBg0wZMgQzJkzR9CsNWvWwMTERP1nnu8SEdUN7777brW1Z98DalOjc10gxfmKVEJCQrBp0ybMnj0bixYtwsKFC1FYWIg9e/Zg8eLFUpdH/8LChQvx3//+F7GxsepzYLFJtUvBn3eQ0tHRQdOmTbnD0WuqefPmyMvLg7W1tcZ6Wlqa4NvbS83e3h6///671GWQgObPnw9bW1usW7cO3333HYDKAYjR0dEYPXq0KJl1aZcCKTg7O8PZ2RkRERFISUlBXFwcPvzwQyiVSowcORJRUVGiZevr68Pe3l6053+eO3fuYNeuXcjPz8ecOXPQuHFjpKeno1mzZmjZsiUz/6Hk5GQAwKRJk7Bu3TpRd6CVOleq10pE/46fnx/8/f0RFRUFmUyGGzdu4Pjx4wgKCkJwcLDgeb/++isSExNx6NAhODo6VrumEh8fL3gmADg4OKCgoECrjetKpRIrVqzAxo0b8dtvvyE3Nxe2trYIDg6GtbU1pkyZIkpuhw4d8PTpU6SkpCA/Px9eXl4wMTHBjRs3MGLECMHzOHFdi/bu3YtBgwZBT08Pe/fufeFjxfhCl4jodSP0xHVtN9oNHjwYXbp0QWhoKExMTJCVlQUrKyuMHTsWSqUSu3btEjyzLjExMcGRI0e4JRgRkRYlJibC09MTtra2uHjxIhwcHFBYWAiVSgUXFxckJSUJninlhEKlUokhQ4YgNzcX9vb20NPT0zgu1kUQotdRQUEBRowYgezsbI1JhVWNWkL+tzpy5EgAwI8//oiBAwdq3BSqUCiQlZWFDh064MCBA4JlVmnfvj2WL1+OIUOGwMbGBtu2bUOfPn2QmZkJDw8PNgwQEdEru3v3rsbPT548QUZGBoKDg7FixQp4eHhIVBn9E1Ker0ilTZs2WL9+PYYMGQITExOcPXtWvXbixAnExcVJXSL9Q87OzsjLy8OTJ09gZWVVrTEgPT1d8MyavkuBo6Mj9u/fD0tLS0nroBcLDw/Hd999h6ioKPTr1w/79+/H1atXERAQgODgYMycOVPqEgWTlJSERYsWISwsDI6OjtWuXbHpj15GXdqloKZIT0/HlClTkJWVJfl7m5CysrLQt29fmJqaorCwEJcuXYKtrS0WLVqEoqIixMTEMJOIaj1t9yVJRaVSISwsDOHh4SgvLwcAGBgYICgoCKGhoYLnTZo06YXHo6OjBc8EKgcYLViwAKGhoejSpUu1z8VinG8vW7YMW7ZswbJly+Dn54dz587B1tYW27dvx9q1a3H8+HHBMwHg6tWrGDhwIIqKivD48WN1w7y/vz8eP36MjRs3CprHietaNHz4cNy8eRPm5uYYPnz4Xz5O7O3uiYhqiry8POTn56Nnz54wNDSsNoEoJycHLVq0ECTr7xrtxBAREQEPDw+cPn0aFRUVmDt3Ls6fP4+ysjIcPXpUlMy6xNLSstrWrUREJK4FCxYgKCgIISEhMDExwe7du2Fubg5vb28MHDhQlMy/mlAol8tFn3w2a9YsJCcno3fv3njjjTc47ZjoBfz9/WFjY4PExETY2Njg1KlTKC0txezZs/H5558LmmVqagqg8veDiYkJDA0N1cf09fXh5uYGPz8/QTOr/Oc//4G3tzeMjY3RunVr9VTcw4cPw9HRUZRMoPILTT09PXXGjz/+iOjoaNjb22Pp0qUaW+cSEdHrrep97ln9+vWDvr4+AgMDcebMGQmqon9KyvMVqdy8eVN9rmJsbKy+CeO9994TZdoaie9F32WKpabvUlBYWIgnT55IXQb9jfnz50OpVMLDwwPl5eXo2bOnuommNjWtA0Dfvn0BAH369NH4b6fqvyX2HLy+KioqcOvWLSiVSo311q1bC55Vl3YpkFJxcTHi4uIQFxeHc+fOwd3dHV9++aXUZQkqMDAQEydOREREhHoXQaBy2JuXlxczX8GDBw+wcuVKJCYmPvd3Q0FBQa3Jleq1EglBir4kqchkMixcuBBz5sxBXl4e5HI57O3tYWxsLEqeWI3pf2fw4MEAKodQa+t8OyYmBl9//TU8PDwwbdo09Xrnzp1x8eJFwfOq+Pv7w9XVFZmZmXjjjTfU6yNGjBDlGhYb17Xo2TfTP7+xEhHVJaWlpRgzZgySkpIgk8lw+fJl2NraYsqUKTAzM8OqVasAQNCpJVI02jk4OCA3NxcbNmyAiYkJ5HI5Ro4ciRkzZsDCwkKUzLpk7dq1mD9/PiIjI6tdTCMiInFcuHABW7duBQDUq1cPDx8+hLGxMZYtW4Zhw4Zh+vTpgmUFBgYCqLzwERwcjAYNGqiPKRQKnDx5UvRdN7Zs2YLdu3djyJAhouYQ1QbHjx9HUlISmjRpAh0dHejo6KBHjx4IDw/HrFmzkJGRIVhW1QXKpk2bYunSperfD4WFhdizZw/s7OzQpEkTwfKe9fHHH6Nr1664du0a+vXrBx0dHQCAra2tqNtnf/TRR5g/fz4cHR1RUFCAMWPGYOTIkdi5cyfKy8uxdu1a0bKJiKhmaNasGS5duiR1GfSSpDxfkUqrVq1QUlKC1q1bo02bNjh06BBcXFzw66+/akycp9fHkiVLtJZVtUuBTCbDxIkTn7tLQbdu3bRWD73etN1EI6Xk5GSpSyCBXb58GZMnT8axY8c01sVsjvLz84O/vz+ioqIgk8lw48YNHD9+HEFBQbz5TACRkZGIi4tDWloa7Ozs4O3tjR9//BFWVlZSlya4X3/9FZGRkdXWW7ZsiZs3bzLzFUydOhWpqakYP348LCwstDZkR4pcqV4rkRCk6EuSSkxMDN566y3Y2dnB3t5evf7o0SPs2LEDvr6+gub16dMH8fHxaNSokcb6vXv3MHz4cFF2BQekOd++fv062rZtW21dqVSKeiP1kSNHcOzYsWqDkqytrXH9+nXB89i4TkREWhcQEIB69eqhqKgIdnZ26vUxY8YgMDBQ3bguJG022j3L1NQUCxcuFOW567oxY8agvLwcbdq0QYMGDaptgVlWViZRZUREtZeRkZF6WzsLCwvk5+ejU6dOAIDff/9d0KyqJleVSoXs7GyND8n6+vro3LkzgoKCBM38s8aNG6NNmzaiZhDVFgqFQj1hqEmTJrhx4wY6dOgAKysr0ZrsMjIyEBMTg2nTpuHOnTtwc3ODnp4efv/9d6xevVq0c3xXV1c4OTnhypUraNOmDerVqyf6DS65ubnqm3V27tyJXr16IS4uDkePHsXYsWPZuE5EVItkZWVp/KxSqVBSUoKVK1eKfuMmCU+q8xUpjBgxAomJiXj77bcxc+ZM+Pj4YPPmzSgqKkJAQIDU5VENVxd3KSDx6evrazTR1Ea9evXCkSNHEBkZifz8fOzatQstW7ZEbGwsbGxspC6P/oWJEyeiXr16+Omnn7TWsFmXdimQwvLlyzFu3DisX78enTt3lrocURkYGODevXvV1nNzc9G0aVNmvoJffvkFP//8M7p37y7K89ekXKleK5EQpOpLksLEiRNhZGSEb7/9Fu+//756/e7du5g0aZLgjespKSnq76if9ejRIxw5ckTQrGfZ2NjA0tKy2jmZSqXCtWvXRMm0t7fHkSNHqt3ktmvXLjg7O4uSCVQ2xj/vJsni4mKNHUaEwsZ1CSUmJv7l1iZRUVESVUVEJL5Dhw7h4MGDaNWqlcZ6u3btcPXqVVEytdloVyU6OhrGxsb44IMPNNarpiJOmDBBlNy6gs05RETa5+bmpp4MM3jwYMyePRvZ2dmIj4+Hm5uboFlVd7BPmjQJ69atQ8OGDQV9/pexdOlSLFmyBNHR0RoT34moOgcHB2RmZsLGxgZvv/02IiIioK+vj6+//lq0baUzMjLU54S7du1Cs2bNkJGRgd27d2Px4sWiXAQuLy/HzJkzsWXLFgCVX0jZ2tpi5syZaNmyJebPny94JlB5EbTq2lFCQgLee+89AJW7VIn1eYaIiKTx5ptvQiaTQaVSaay7ubnxe4PXkBTnK1JZuXKl+s9jxoyBlZUVjh07hnbt2mHo0KESVkb/lkKhwJo1a7Bjxw4UFRVVaxIQcnBIXdylgEgIu3fvxvjx4+Ht7Y2MjAw8fvwYQGXDUFhYGPbv3y9xhfRPnT17FmfOnEHHjh21llmXdimQQlFREdLS0vDZZ5+hoKAAO3fu1LjBpEePHlKXKBhPT08sW7YMO3bsAFD571ZRURHmzZun0dTIzH/OzMwMjRs3FuW5a1quVK+VSAhS9CVJKSQkBOPHj0d2djaWLl0qSsazAx5ycnI0drZQKBQ4cOAAWrZsKUo2UNm4XlJSAnNzc431srIy2NjYiLIbzuLFizFhwgRcv34dSqUS8fHxuHTpEmJiYvDTTz8Jnlelf//+WLt2Lb7++msAle9vcrkcS5YsweDBgwXPY+O6REJCQrBs2TK4urpyaxMiqnMePHjw3OavsrIy0baN1WajXZXw8PDnbhNmbm6ODz/8kI3rr4j//IiItG/16tWQy+UAKj/TyOVybN++He3atcPq1atFyaz68loK69evR35+Ppo1awZra+tqu3ukp6dLVBlRzbNo0SI8ePAAALBs2TK89957eOedd/DGG29g+/btomSWl5erpzwcOnQII0eOhI6ODtzc3ES7IXbBggXIzMxESkqKxtaeffv2xdKlS0VrXHd1dcXy5cvRt29fpKam4quvvgIAXLlyBc2aNRMlk4iIpHHlyhWNn3V0dNC0aVPUr19fooroVUhxviKVw4cPo1u3bqhXr/KrRzc3N7i5ueHp06c4fPgwevbsKXGF9E+FhIRg06ZNmD17NhYtWoSFCxeqG8kXL14sSmZd2qWASAjLly/Hxo0b4evri23btqnXu3fvjuXLl0tYGf1b9vb2kjW21YVdCqQQHx+vvsEkPT29Vt9gsmrVKowaNQrm5uZ4+PAhevXqhZs3b8Ld3R0rVqxg5isIDQ3F4sWLsWXLFq0O2ZEiV6rXSiQEKfqSpOTj44Nu3bphxIgROHfuHGJjYwXPqBrwIJPJ0KdPn2rHDQ0N8cUXXwieW0WlUj23r1cul4t2rW7YsGHYt28fli1bBiMjIyxevBguLi7Yt28f+vXrJ0omUPn+NmDAANjb2+PRo0fw8vLC5cuX0aRJE/VOAkKSqf48toO0wsLCAhERERg/frzUpRARad3gwYPRpUsXhIaGwsTEBFlZWbCyssLYsWOhVCqxa9cuwTMLCgogl8vh5OSEBw8eYPbs2eqJP6tXr662xYoQ6tevj4sXL8La2lpjvbCwEHZ2dnj48KHgmXVNfn4+oqOjkZ+fj3Xr1sHc3By//PILWrdurb5zlYiIhKFQKHD06FE4OTmhUaNGUpejFSEhIS88vmTJEi1VQvR6Kisrg5mZmWg36zs5OWHq1KkYMWIEHBwccODAAbi7u+PMmTMYMmSIxuQNoVhZWWH79u1wc3ODiYkJMjMzYWtri7y8PLi4uDx3m2AhZGVlwdvbG0VFRQgMDFT//pk5cyZKS0sRFxcnSi4REdVcjo6O2L9/PywtLaUuhV5AivMVqejq6j53CllpaSnMzc1FmUJG4mrTpg3Wr1+PIUOGwMTEBGfPnlWvnThxQpRz0CZNmiA1NRWdOnXCpk2b8MUXX2jsUnDhwgXBM/+JZz8DENUEDRo0QE5ODqytrTX+/SwoKFA3nNDrJSkpCYsWLUJYWBgcHR2rDdKQYldKejXOzs4ICAiAr6+vxn+nGRkZGDRoUK06H6ySlpaGrKwsyOVyuLi4oG/fvsx8Rc7OzsjPz4dKpdLqkB0pcqV6rURCkKIvSSrPXgMoKiqCp6cnZDIZNm7ciG7dugl2DeDq1atQqVSwtbXFqVOn0LRpU/UxfX19mJubQ1dXV5CsZwUGBgIA1q1bBz8/P40baRQKBU6ePAldXV0cPXpU8OyXtXXrVnh6esLIyEiw53z69Cm2b9+OzMxM9fubt7c3DA0NBcuowonrEqmoqEC3bt2kLoOISBIRERHw8PDA6dOnUVFRgblz5+L8+fMoKysT5U1doVCguLgYTk5OACq359m4caPgOX9mbm6OrKysao3rmZmZeOONN0TPr+1SU1MxaNAgdO/eHYcPH8aKFStgbm6OzMxMbN68WZQbIIiI6jJdXV30798fFy5cqDON6y/bmC7GhQGi11VeXh7y8/PRs2dPNG7cGGLOS1i8eDG8vLwQEBAADw8PuLu7A6icZurs7CxK5u3bt6s1YwGVu0qJuZuek5MTsrOzq61/9tlnolyUJSKimq+wsBBPnjyRugz6G1Kcr0jlr6aQlZaW8rPSa+rmzZtwdHQEABgbG+Pu3bsAgPfeew/BwcGiZEq5S0FiYiISExNx69YtKJVKjWNRUVEAgMjISO54RDVK8+bNkZeXV+17qLS0NN5g8Zqqanzt06ePxvtq1fssbwR7/Vy6dOm5O8+Ymprizp072i9IRNeuXYOlpSV69OiBHj16MFNAw4cP10pOTciV6rUSCeHZ8y9t9SVJ5dnvflq3bo1jx47B29tb8IngVc3+f/6MJraMjAwAla8zOzsb+vr66mP6+vro3LkzgoKCtFrTn3300Ud4++23BT3vr1evHry9veHt7f2XjxkyZAg2bdoECwuLV8t6pf83/WtTp05FXFycaBd2iIhqMgcHB+Tm5mLDhg0wMTGBXC7HyJEjMWPGjFd+Y3seqRrtxo0bh1mzZsHExER9QSI1NRX+/v4YO3as1uqorebPn4/ly5cjMDBQ/WUGUHkxb8OGDRJWRkRUezk4OKCgoAA2NjZSl1KjiHFhgOh1U1paitGjRyM5ORkymQyXL1+Gra0tpkyZAjMzM6xatUrwzFGjRqFHjx4oKSlB586d1eseHh4YMWKE4HkA4Orqip9//hkzZ84EAPWXyJs2bVI3oonpzJkz6imT9vb2cHFxET2TiIiI/j0pzle0beTIkQAqz4smTpwIAwMD9TGFQoGsrCwOcnpNtWrVCiUlJWjdujXatGmDQ4cOwcXFBb/++qvG37OQ2rZtiz179mDEiBE4ePAgAgICAAC3bt0SdcpwSEgIli1bBldXV1hYWPzlTaleXl6i1UD0b/j5+cHf3x9RUVGQyWS4ceMGjh8/jqCgIPYhvKaSk5OlLoEEVpduMLG2tkaPHj3g4+ODUaNGwczMjJkCkWr3VylyudMt1RZyubxas3Vt2jllyZIlMDY2Vv/coEED/PDDD1iyZAkOHz4sSubly5eRnJz83JuNFy9eLGhW1TnZpEmTsG7duhr5dyfm4KgXOXz4MB4+fPjKz8PGdYk8evQIX3/9NRISEuDk5FRta5PVq1dLVBkRkXaYmppi4cKFWsuTotEuNDQUhYWF8PDwQL16lW+5SqUSvr6+CAsL01odtVV2dvZzt6M1NzfH77//LkFFRES13/LlyxEUFITQ0FB06dKl2tS8mvihXRukujBAVJMEBARAT08PRUVFsLOzU6+PGTMGgYGBojSuA5Vf/jVv3lxjrWvXrqJkAUBYWBgGDRqEnJwcPH36FOvWrUNOTg6OHTuG1NRU0XJv3bqFMWPGIDU1VX0z7p07d9C7d29s27ZNY3tMIiIiqlm0fb6ibaampgAqPxeZmJhobB+tr68PNzc3+Pn5SVUevYIRI0YgMTERb7/9NmbOnAkfHx9s3rwZRUVF6oZyoUm1S8HGjRvx7bffYvz48aJlEIlh/vz5UCqV8PDwQHl5OXr27AkDAwMEBQWpb7im10uvXr1w5MgRREZGIj8/H7t27ULLli0RGxvLYSKvqbp0g8np06cRFxeHZcuWYebMmRg4cCB8fHwwdOhQ0W56qyuZQOW1wF27diE/Px9z5sxB48aNkZ6ejmbNmqFly5a1Kleq10r0qq5cuYJPPvkEKSkpePTokXq9Nu6c8lc3mYSEhIiS980332D69Olo0qQJmjdvrnGzsUwmE7xxvUp0dLQoz0uATMVv2CXRu3fvvzwmk8mQlJSkxWqIiLQrOjoaxsbG+OCDDzTWd+7cifLyckyYMEHwzAMHDmDBggWSNNrl5uYiMzMThoaGcHR0VG9lQ6+mVatW2LFjB7p16wYTExNkZmbC1tYWP/zwA4KCgpCfny91iUREtY6Ojo76z9yq9v979n2IqK5q3rw5Dh48iM6dO2v8N1FQUAAnJyfI5XKpSxRMfn4+Vq5ciczMTMjlcri4uGDevHlwdHQULXPMmDEoKChATEyM+saAnJwcTJgwAW3btsXWrVtFyyYiopqJ56BU08ydOxdLly5FgwYNAACFhYXYs2cP7OzsMGDAAImrIyGcOHECx44dQ7t27TB06FDRcm7evKnepaDqOsSpU6fQsGFDdOzYUZTMN954A6dOnUKbNm1EeX4isVVUVCAvLw9yuRz29vYa0y/p9bJ7926MHz8e3t7eiI2NRU5ODmxtbbFhwwbs378f+/fvl7pE+odUKhXCwsIQHh6O8vJyAFDfYBIaGipxdeJQqVRISUlBXFwcdu/eDaVSiZEjRyIqKoqZ/1JWVhb69u0LU1NTFBYW4tKlS7C1tcWiRYtQVFSEmJgYwTOlypXqtRIJoXv37lCpVPD390ezZs2q7eTUq1cviSoTxt69ezFo0CDo6elh7969f/k4mUwm+GdGKysrfPzxx5g3b56gz/t3Hjx4gJUrVyIxMfG5k94LCgq0Ws+zpLo2KFQuG9eJiEjr2rdvj8jIyGo38aSmpuLDDz/EpUuXBM9ko13tExQUhJMnT2Lnzp1o37490tPT8dtvv8HX1xe+vr7cRoyISARbtmyBpaUldHV1NdaVSiWKiopEufnsdcCmIaLK/w7S09PRrl07jf8mTp8+jQEDBqC0tFTqEl9rpqamSEhIwFtvvaWxfurUKfTv3x937tyRpjAiIpIMz0GppunXrx/ef/99TJs2DXfu3EHHjh2hp6eH33//HatXr8b06dOlLpH+ocOHD6Nbt27q3USrPH36FMeOHUPPnj0lqkx48+bNg7Gxca2bfEtErx9nZ2cEBATA19dX43wvIyMDgwYNws2bN6Uukf6lunqDSXp6OqZMmYKsrCytfR9fGzP79u0LFxcXREREaPxuOHbsGLy8vFBYWCh4plS5Ur1WIiEYGxvjzJkz6NChg9SliEJHRwc3b96Eubm5Rg/Wn4nRg9WwYUOcPXtW69fBxo0bh9TUVIwfPx4WFhbVbkbw9/fXaj3Pet0b1+v9/UOIiIiEVVRU9Nzt7KysrFBUVCRKZnR09Asb7cRSXFyMvXv3oqioCBUVFRrHVq9eLVpuXRAWFoYZM2bA0tISCoUC9vb2UCgU8PLywqJFi6Quj4ioVpo8eTJKSkpgbm6usV5aWoq+ffvW2cZ1IgLeeecdxMTEqCdFyWQyKJVKREREvHDXudeRUqlEXl7ec6driNW8o1QqoaenV21dT0+vWg1EREREUsjIyMDatWsBALt27UKzZs2QkZGB3bt3Y/HixWxcfw317t37udcA7t69i969e9eqYTCPHj3C119/jYSEBDg5OVU79+a1fCLSlkuXLj332oKpqSlvWn/N6evrw97eXuoytKK4uBhxcXGIi4vDuXPn4O7uji+//JKZr+DXX39FZGRktfWWLVuKekOLFLlSvVYiIbz11lu4du1arW1cf/a7CG1/L/HBBx/g0KFDmDZtmlZzf/nlF/z888/o3r27VnPrAjauS6R3797V7sB4VlJSkharISLSLnNzc2RlZcHa2lpjPTMzE2+88YYomVI02iUmJsLT0xO2tra4ePEiHBwcUFhYCJVKBRcXF8Hz6hp9fX188803CA4Oxrlz5yCXy+Hs7Ix27dpJXRoRUa1VtVPJn8nlctSvX1+CioiopoiIiICHhwdOnz6NiooKzJ07F+fPn0dZWRmOHj0qdXmCOXHiBLy8vHD16lX8eRNDMXdy6tOnD/z9/bF161a0aNECAHD9+nUEBATAw8NDlEwiIpJOYmLiX25BXLXtfGRkJJo1ayZFeUTPVV5eDhMTEwDAoUOHMHLkSOjo6MDNzQ1Xr16VuDr6N/7qGkBpaSmMjIwkqEg8WVlZePPNNwEA586d0zj2ou9ziYiE1rx5c+Tl5VX7DjUtLY077VCNFxkZibi4OKSlpcHOzg7e3t748ccfYWVlxcxXZGBggHv37lVbz83NRdOmTWtVrlSvlUgImzZtwrRp03D9+nU4ODhUuyHWyclJospef23btkVwcDBOnDgBR0fHav9sZ82aJUqumZkZGjduLMpzvyorK6vnDjx6XbBxXSJVFz+qPHnyBGfPnsW5c+c4pZCIar1x48Zh1qxZMDExUU8NSE1Nhb+/P8aOHStKphSNdgsWLEBQUBBCQkJgYmKC3bt3w9zcHN7e3hg4cKAomXVR69at0bp1a6nLICKq1QIDAwFUflkbHByMBg0aqI8pFAqcPHmy2mecuuR1vzBAJAQHBwdcunQJX375JUxMTCCXyzFy5EjMmDEDFhYWUpcnmGnTpsHV1RU///zzc7eFFMuGDRvg6ekJa2trWFpaAgCuXbsGBwcHfPfdd1qpgYiItCMkJATLli2Dq6vrC99rvLy8tFwZ0Yu1bdsWe/bswYgRI3Dw4EEEBAQAAG7duoWGDRtKXB39EyNHjgRQeQ1g4sSJMDAwUB9TKBTIyspCt27dpCpPFMnJyVKXQEQEAPDz84O/vz+ioqIgk8lw48YNHD9+HEFBQQgODpa6PKIXWr58OcaNG4f169ejc+fOzBSQp6cnli1bhh07dgCoPE8rKirCvHnz8P7779eqXKleK5EQbt++jfz8fEyaNEm9JpPJ1P1Kr/uuVevXr3/pxwrdSP7111/D2NgYqampSE1N1Tgmk8lEa1wPDQ3F4sWLsWXLFo3vx8U0YcIETJky5W93+P3zTdev6sGDBy91k/p///tfQZr5Zao/j4ciSS1duhRyuRyff/651KUQEYmmoqIC48ePx86dO1GvXuU9VEqlEr6+vti4cSP09fUFy6pqtFu3bh38/Pye22inq6sryhRIExMTnD17Fm3atIGZmRnS0tLQqVMnZGZmYtiwYSgsLBQ8s7ar+vt8Gdy+lYhIOL179wZQeaOZu7u7xnu1vr4+rK2tERQUVGt3vThz5gwuXLgAALC3t+fOKUR/4dGjR8jKynrudFhPT0+JqhKWkZERMjMz0bZtW61nq1QqJCQk4OLFiwAAOzs79O3bV+t1EBGRuCwsLBAREYHx48dLXQrRP7Jr1y54eXlBoVDAw8MDhw4dAgCEh4fj8OHD+OWXXySukF5WVZPFli1bMHr0aBgaGqqPVV0D8PPzQ5MmTaQqkYio1lKpVAgLC0N4eDjKy8sBVE4fDgoKQmhoqMTVEb2YSqVCWloaIiMjUVBQgJ07d6Jly5aIjY2FjY0NevTowcx/6e7duxg1ahROnz6N+/fvo0WLFrh58ybc3d2xf/9+0XbDkSJXqtdKJAR7e3vY2dlh7ty5aNasWbVhBGLuzKANNjY2L/U4mUyGgoICkavRDmdnZ+Tn50OlUsHa2rraILP09HTBM4cPH479+/fDysoKkyZNwoQJE9CyZUvBc/7M2NgYo0ePxuTJk0V5L/szNq7XMHl5eejatSvKysqkLoWISHS5ubnIzMyEoaEhHB0dRTlJk7LRrnnz5khOToadnR3s7e2xcuVKeHp6IjMzE927d4dcLhc8s7ar+vv8OzKZDElJSSJXQ0RU90yaNAnr1q2rM9Pybt26hbFjxyIlJQWNGjUCANy5cwe9e/fGtm3buC0l0TMOHDiA8ePHo6ysDH++1FQbJolU6dOnD+bOnav1HZRiYmIwZswYjWmXQOVNwdu2bYOvr69W6yEiIvG88cYbOHXqFNq0aSN1KUT/2M2bN1FSUoLOnTtDR0cHAHDq1Ck0bNgQHTt2lLg6+qfmzp2LpUuXqofBFBYWYs+ePbCzs8OAAQMkro6IqHarqKhAXl4e5HI57O3tYWxsLHVJRH9r9+7dGD9+PLy9vREbG4ucnBzY2tpiw4YN2L9/P/bv38/MV5SWloasrCzI5XK4uLhobaiFFLlSvVaiVyHl4Ju6oqKiAleuXEGbNm3Ug1LFFBIS8sLjS5YsESX39u3biI2NxZYtW5CTk4O+fftiypQpGDZsmGi7gO/Zswfffvst9u/fD2tra0yePBm+vr5o0aKFKHlsXK9hYmNjMW/ePNy4cUPqUoiIahUpGu2GDx+OIUOGwM/PD0FBQfjxxx8xceJExMfHw8zMDAkJCVqrpS4rLi5GixYt1F+WERERvawxY8agoKAAMTExsLOzAwDk5ORgwoQJaNu2LbZu3SpxhUQ1R7t27dC/f38sXrwYzZo1k7oc0fzwww9YtGgR5syZA0dHx2oXCJ2cnETJ1dXVRUlJCczNzTXWS0tLYW5uXmtuDCAiImDevHkwNjZGcHCw1KUQUR3Xr18/vP/++5g2bRru3LmDjh07Qk9PD7///jtWr16N6dOnS10iERER1SDOzs4ICAiAr68vTExMkJmZCVtbW2RkZGDQoEG4efMmM/+la9euwdLSUvDnrYm5Ur1WIiEMHToUEydOxPvvvy91KbVOeXk5Zs6ciS1btgCoHJRqa2uLmTNnomXLlpg/f77EFYonPT0d0dHR2LRpE4yNjeHj44OPP/5YtJ3Qq5rmv/32W1y4cAEDBgzA5MmT4enpKejNAuLfdkDPNXLkSI2fVSoVSkpKcPr0aV6QJqI6obi4GHv37kVRUREqKio0jq1evVrwvOjoaMGf8++sXr1aPVU9JCQEcrkc27dvR7t27UR5jfR89vb2OHv2LGxtbaUuhYiIXjMHDhxAQkKCumkdqHxf+fLLL9G/f38JKyOqeX777TcEBgbW6qZ1AOoLzpMnT1avyWQyqFQqUSfLVz3/nxUXF8PU1FSUTCIiksajR4/w9ddfIyEhAU5OTtVukuI1JSLSloyMDKxduxYAsGvXLjRr1gwZGRnYvXs3Fi9ezMZ1IiIi0nDp0iX07Nmz2rqpqSnu3LnDzFdgbW2NHj16wMfHB6NGjYKZmZkoOTUhV6rXSiSEoUOHIiAgANnZ2c8dfOPp6SlRZeLQZt/XggULkJmZiZSUFI0dcfv27YulS5eK2rh+584d7Nq1C/n5+ZgzZw4aN26M9PR0NGvWDC1bthQtFwBKSkrwv//9D//73/+gq6uLwYMHIzs7G/b29oiIiEBAQIDgmU2bNkVgYCACAwPxxRdfYM6cOdi/fz+aNGmCadOmYf78+eqd2V4FG9cl8ucvFXV0dNChQwcsW7aMDRBEVOslJibC09MTtra2uHjxIhwcHFBYWAiVSgUXFxepyxOEQqFAcXGxeuKikZERNm7cKHFVdRM3lyEion9LqVQ+d7s1PT09KJVKCSoiqrlGjRqFlJQUtGnTRupSRHXlyhWt5jk7O0Mmk0Emk8HDw0NjmoVCocCVK1c0LtISEdHrLysrC2+++SYA4Ny5cxrHnncTExGRWMrLy2FiYgIAOHToEEaOHAkdHR24ubnh6tWrEldHRERENU3z5s2Rl5cHa2trjfW0tDTRBozVlczTp08jLi4Oy5Ytw8yZMzFw4ED4+Phg6NChMDAwECVTqlypXiuREKZNmwYAWLZsWbVjYg6+kYK2+7727NmD7du3w83NTeP6WKdOnZCfny94XpWsrCz07dsXpqamKCwshJ+fHxo3boz4+HgUFRUhJiZG8MwnT55g7969iI6OxqFDh+Dk5IT//Oc/8PLyQsOGDQFU7g48efJkURrXf/vtN2zZsgXffvstrl69ilGjRmHKlCkoLi7Gp59+ihMnTuDQoUOvnMPGdYm87OTfrVu3wtPTE0ZGRiJXRESkPQsWLEBQUBBCQkJgYmKC3bt3w9zcHN7e3rWm6UJXVxf9+/fHhQsX0KhRI6nLISIion+hT58+8Pf3x9atW9GiRQsAwPXr1xEQEAAPDw+JqyOqWTZs2IAPPvgAR44cee4kkVmzZklUmbCsrKy0mjd8+HAAwNmzZzFgwAAYGxurj+nr68Pa2prbjhIR1TLJyclSl0BEBABo27Yt9uzZgxEjRuDgwYPqL8Rv3bql/rKciIiIqIqfnx/8/f0RFRUFmUyGGzdu4Pjx4wgKCkJwcDAzX4GzszOcnZ0RERGBlJQUxMXF4cMPP4RSqcTIkSMRFRVVa3Kleq1EQqhLQ6+03fd1+/ZtmJubV1t/8OCBqIMeAgMDMXHiRERERKhv7AaAwYMHw8vLS5RMCwsLKJVKjBs3DqdOnVIPuHhW7969Be9Fi4+PR3R0NA4ePAh7e3t8/PHH8PHx0cjp1q2bxk7lr0Km4hjSGq1hw4Y4e/asaHflERFJwcTEBGfPnkWbNm1gZmaGtLQ0dOrUCZmZmRg2bBgKCwulLlEQrq6u+PTTT9nYJjETExNkZmbyvZSIiP6xa9euwdPTE+fPn4elpaV6zcHBAXv37kWrVq0krpCo5ti8eTOmTZuG+vXr44033tC4UCiTyVBQUCBhdcJp3bo13n33XfTq1QvvvvuuVibMKxQKfPfdd+jfvz8sLCxEzyMiIiIiAoBdu3bBy8sLCoUCHh4e6olq4eHhOHz4MH755ReJKyQiIqKaRKVSISwsDOHh4SgvLwcAGBgYICgoCKGhocwUWHp6OqZMmYKsrCytTnGWIleq10r0Tzx58gSGhoY4e/YsHBwcpC5HdNru++rZsyc++OADzJw5EyYmJsjKyoKNjQ1mzpyJy5cv48CBA4LmVTE1NUV6ejratGmj0Xt09epVdOjQAY8ePRI8MzY2Fh988AHq168v+HO/iKmpKcaOHYupU6firbfeeu5jHj58iIiICCxZsuSV8zhxvYbjfQVEVBsZGRmhoqICQOWdYvn5+ejUqRMA4Pfff5eyNEEtX75c/QG1S5cu1XbP4FQaIiKims3S0hLp6elISEjAxYsXAQB2dnbo27evxJUR1TwLFy5ESEgI5s+fDx0dHanLEU1YWBgOHz6MTz/9FH5+fmjZsiV69eqlbmRv166d4Jm6urr46KOPcOHCBcGfm4iIiIjor4waNQo9evRASUkJOnfurF738PDAiBEjJKyMiIiIaiKZTIaFCxdizpw5yMvLg1wuh729vcYOgsx8NcXFxYiLi0NcXBzOnTsHd3d3fPnll7UyV6rXSvRv6enpoXXr1nXm5gpt932FhYVh0KBByMnJwdOnT7Fu3Trk5OTg2LFjSE1NFTyvioGBAe7du1dtPTc3F02bNhUlc/z48eo/X7t2DQDUA9bEVFJSggYNGrzwMYaGhoI0rQOcuF7jcUosEdVGw4cPx5AhQ+Dn54egoCD8+OOPmDhxIuLj42FmZoaEhASpSxTEsw07z06cVKlUkMlkdeaEVWrcvYSIiIhIfI0bN8bFNcTAAABWv0lEQVSvv/6qlQnkNUVJSQlSU1Px008/Yfv27VAqlaKd43M3JyIiIiIiIiIioropMjIScXFxSEtLg52dHby9veHl5QUrK6talyvVayUSwubNmxEfH4/Y2Fg0btxY6nJEJUXfV35+PlauXInMzEzI5XK4uLhg3rx5cHR0FDyrytSpU1FaWoodO3agcePGyMrKgq6uLoYPH46ePXti7dq1gmc+ffoUISEhWL9+PeRyOQDA2NgYM2fOxJIlS6Cnpyd4ZhWFQoEffvhBPUjJzs4Ow4cPR716ws9HZ+N6DcfGdSKqjQoKCiCXy+Hk5IQHDx5g9uzZOHbsGNq1a4fVq1fXmg8dW7ZsgaWlJXR1dTXWlUolioqKMGHCBIkqq1v4XkpERP/E+vXr8eGHH6J+/fpYv379Cx87a9YsLVVFVPMFBASgadOm+O9//yt1KaIrLy9HWloaUlJSkJycjIyMDNjZ2eHdd9/FmjVrRMk8cOAAFixYwN2ciIiIiIiIiIiI6hhLS0uMGzcO3t7eGjvh1MZcqV4rkRCcnZ2Rl5eHJ0+ewMrKqtp1/PT0dIkqE15d6fu6e/cuRo0ahdOnT+P+/fto0aIFbt68CXd3d+zfv7/a37EQpk+fjvj4eCxbtgzu7u4AgOPHj2Pp0qUYPnw4vvrqK8EzAeD8+fMYOnQofvvtN3To0AHA/58sv2/fPjg4OAiax8b1Go7NdkRU2ygUChw9ehROTk5o1KiR1OWISldXFyUlJTA3N9dYLy0thbm5OSeuCyQvLw/5+fno2bMnDA0N1RPtq1y7dg0tWrSodgMBERHR89jY2OD06dN44403YGNj85ePk8lkKCgo0GJlRDXbrFmzEBMTg86dO8PJyanaxIfVq1dLVJmwunXrptGo3qtXL/Ts2RNmZmai5nI3JyIiIiIiIiIiorpJpVIhLS0NkZGRKCgowM6dO9GyZUvExsbCxsYGPXr0qDW5Ur1WIiGEhIS88PiSJUu0VEnt07dvX/j4+GDkyJGSDPJJS0tDVlaWetJ73759RcsyNTXFtm3bMGjQII31/fv3Y9y4cbh7964oue7u7mjatCm2bNmi/s7rjz/+wMSJE3H79m0cO3ZM0DzhZ7gTERG9gK6uLvr3748LFy7U+sb1PzdQV5HL5ahfv74EFdUupaWlGDNmDJKSkiCTyXD58mXY2tpiypQpMDMzw6pVqwBU3pVNRET0sq5cufLcPxPRi2VnZ8PZ2RkAcO7cOY1jzzsnfl1dvHgRRkZG6NixIzp27Ag7OzvRm9YBIDk5WfQMIiIiIiIiIiIiqnni4+Mxfvx4eHt7Iz09HY8fPwZQOQk4LCwM+/fvrzW5Ur1WIiHU1cZ0uVwOpVKpsSZ0c3mnTp2wYMECfPzxxxgyZAh8fHwwePDgakOUhHbt2jVYWlqiR48eWrtxxsDAANbW1tXWbWxsoK+vL1ru2bNncfr0aY3vvMzMzLBixQq89dZbgudx4noN5+DggF9++YVNd0RUq7i6uuLTTz+Fh4eH1KWIIjAwEACwbt06+Pn5oUGDBupjCoUCJ0+ehK6uLo4ePSpVibWCr68vbt26hU2bNsHOzk69Q8nBgwcRGBiI8+fPS10iERG95pYtW4agoCCN93IAePjwIT777DMsXrxYosqISCoqlQrZ2dlISUlBamoqDh8+DH19ffTq1Qu9e/eGn5+f1CUSERERERERERFRLeLs7IyAgAD4+vrCxMRE/b14RkYGBg0ahJs3b9aaXKleK5GQzpw5gwsXLgCobLiuGvpTm1y5cgWffPIJUlJS8OjRI/W6mLvEKpVKJCQkIC4uDj/88AN0dXUxatQoeHt7o1evXoLnAZXDWXv06AEfHx+MGjVKK4OMli1bhosXLyI6OhoGBgYAgMePH2PKlClo166daDdIdO7cGWvWrEGfPn001pOSkuDv74/s7GxB89i4LrFnf1HZ29vDxcVF4oqIiMR34MABLFiwAKGhoejSpQuMjIw0jkuxrYuQevfuDQBITU2Fu7u7xh1v+vr6sLa2RlBQENq1aydVibVC8+bNcfDgQXTu3FnjQ2tBQQGcnJwgl8ulLpGIiF5zurq6KCkpgbm5ucZ6aWkpzM3NRbnoQkSvD5VKhTNnzmDDhg34/vvvoVQqRfu9cPjw4Rce79mzpyi5REREREREREREJK0GDRogJycH1tbW1b4Xt7e312gafd1zpXqtREK4desWxo4di5SUFDRq1AgAcOfOHfTu3Rvbtm1D06ZNpS1QQN27d4dKpYK/vz+aNWtWbeddsRrJqzx69Aj79u3DihUrkJ2dLdp3MxkZGYiLi8O2bdtw+/ZtDBw4ED4+Phg6dKi6qVxoI0aMQGJiIgwMDNC5c2cAQGZmJioqKqoNiI2Pjxcsd//+/Zg7dy6WLl0KNzc3AMCJEyewbNkyrFy5UmPivBB9ffVe+RnoX6lLv6iIiP5s8ODBAABPT0+Nkxcx77zTpuTkZADApEmTsG7dute+Eb+mevDgQbUJuABQVlYm2gkiERHVLVXnJn+WmZmJxo0bS1AREUktPT0dKSkpSElJQVpaGu7fvw9HR0fMnDlT1Aux7777brW1Z38/ve6foYiIiIiIiIiIiOj5mjdvjry8PFhbW2usp6WlwdbWtlblSvVaiYQwc+ZM3L9/H+fPn4ednR0AICcnBxMmTMCsWbOwdetWiSsUTmZmJs6cOYMOHTpoPfvmzZvYtm0bvvvuO2RlZaFr166iZTk7O8PZ2RkRERFISUlBXFwcPvzwQyiVSowcORJRUVGCZzZq1Ajvv/++xpqlpaXgOX/23nvvAQBGjx6t/v6paib60KFD1T8L1dfHxnWJ1KVfVEREfxYdHQ1LS0vo6upqrCuVShQVFUlUlfCio6OlLqFWe+eddxATE4PQ0FAAlY07SqUSERER6qn3RERE/4aZmRlkMhlkMhnat29frTlULpdj2rRpElZIRFLp2rUrnJ2d0atXL/j5+aFnz54wNTUVPfePP/7Q+PnJkyfIyMhAcHAwVqxYIXo+ERERERERERERScPPzw/+/v6IioqCTCbDjRs3cPz4cQQFBSE4OLhW5Ur1WomEcODAASQkJKh7QQHA3t4eX375Jfr37y9hZcJ76623cO3aNa01rt+7dw+7d+9GXFwcUlJSYGtrC29vb2zfvh1t2rQRPV8mk6F3797o3bs3pk+fjilTpmDLli2iNK5L1WtWNaRVW2SqqrZ40ipTU1MkJCTgrbfe0lg/deoU+vfvjzt37khTGBGRFujq6qKkpATm5uYa66WlpTA3N+e0QHop586dg4eHB1xcXJCUlARPT0+cP38eZWVlOHr0qFZOTomIqHbasmULVCoVJk+ejLVr12o0perr68Pa2hru7u4SVkhEUrl3716N2lEpNTUVgYGBOHPmjNSlEBERERERERERkQhUKhXCwsIQHh6O8vJyAICBgQGCgoLUQ95qS65Ur5VICCYmJjhy5AjefPNNjfWMjAz06tUL9+7dk6YwEeTn52PatGnw8fGBg4MD9PT0NI47OTkJmmdoaAgzMzOMGTMG3t7ecHV1FfT5/05xcTHi4uIQFxeHc+fOwd3dHd7e3qIOOrt9+zYuXboEAOjQoQOaNm0qWpYU2Lgukbr0i4qI6M90dHTw22+/VXtTvXr1Kuzt7fHgwQOJKqPXzd27d7FhwwZkZmZCLpfDxcUFM2bMgIWFhdSlERFRLZCamopu3bpVu9hCRHXbnTt3sGvXLuTn52POnDlo3Lgx0tPT0axZM7Rs2VKrtVy8eBGurq6Qy+VazSUiIiIiIiIiIiLtqqioQF5eHuRyOezt7WFsbFxrc6V6rUSvYtiwYbhz5w62bt2KFi1aAACuX78Ob29vmJmZ4YcffpC4QuGcOHECXl5eKCwsVK/JZDKoVCrIZDLBB5b+73//g4eHB3R0dAR93r8TGRmJuLg4HD16FB07doS3tze8vLxgZWUlWuaDBw8wc+ZMxMTEQKlUAqgcEOvr64svvvgCDRo0EC37zp072Lx5My5cuAAA6NSpEyZPnizKzsNsXJdIXfpFRURUJTAwEACwbt06+Pn5abyZKhQKnDx5Erq6ujh69KhUJRIRERE916NHj1BRUaGxVpOmLhORdmRlZcHDwwONGjVCYWEhLl26BFtbWyxatAhFRUWIiYkRLfdZKpUKJSUlWLlyJZ48ecLPUEREREREREREREREErp27Ro8PT1x/vx5WFpaAgCKiorg6OiIvXv3olWrVhJXKBx7e3vY2dlh7ty5aNasGWQymcZxMRq7nz59ipSUFOTn58PLywsmJia4ceMGGjZsKNrNLZaWlhg3bhy8vb3RuXNnUTL+7KOPPkJCQgI2bNiA7t27AwDS0tIwa9Ys9OvXD1999ZUouadPn8aAAQNgaGiIrl27AgB+/fVXPHz4EIcOHYKLi4ugeWxcl8jzflFdu3YNDg4Ote4XFRFRld69ewOonF7q7u4OfX199TF9fX1YW1sjKCgI7dq1k6pEeo1ER0fD2NgYH3zwgcb6zp07UV5ejgkTJkhUGRER1Rbl5eWYO3cuduzYgdLS0mrHhZ4WQEQ1X9++feHi4oKIiAiYmJggMzMTtra2OHbsWLXpIkLS0dFRTyt5lpubG6Kjo9GhQwdRcomIiIiIiIiIiIiI6OWoVCokJiaqJ1bb2dmhb9++ElclPCMjI2RmZqJt27Zaybt69SoGDhyIoqIiPH78GLm5ubC1tYW/vz8eP36MjRs3ipJbNUFem5o0aYJdu3bh3Xff1VhPTk7G6NGjcfv2bVFy33nnHbRt2xbffPMN6tWrB6DyZoGpU6eioKAAhw8fFjSvnqDPRi/N0tIS6enpSEhIwMWLFwHU3l9URERVkpOTAQCTJk3CunXrOKWUXkl4eDgiIyOrrZubm+PDDz9k4zoREb2yOXPmIDk5GV999RXGjx+PL7/8EtevX0dkZCRWrlwpdXlEJIFff/31ueegLVu2xM2bN0XLXb58Oby9vdU/6+jooGnTpqhfvz7mzJmDzz77TLRsIiIiIiIiIiIiIiL6e0lJSUhKSsKtW7egVCqRkZGBuLg4AEBUVJTE1QmnT58+Wm1c9/f3h6urKzIzM/HGG2+o10eMGAE/Pz/RcmUyGY4cOYLIyEjk5+dj165daNmyJWJjY2FjY4MePXoInlleXo5mzZpVWzc3N0d5ebngeVVOnz6t0bQOAPXq1cPcuXPh6uoqeB4b1yUkk8nQr18/9OvXT+pSiIi0Kjo6WuoSqBYoKiqCjY1NtXUrKysUFRVJUBEREdU2+/btQ0xMDN59911MmjRJfae5lZUVvv/+e40mUiKqGwwMDHDv3r1q67m5uWjatKlouREREXB2dsagQYM01gMDA7F161Y2rhMRERERERERERERSSgkJATLli2Dq6srLCwstD6pW5uGDh2KgIAAZGdnw9HREXp6ehrHPT09Bc07cuQIjh07Bn19fY11a2trXL9+XdCsZ+3evRvjx4+Ht7c3MjIy8PjxYwDA3bt3ERYWhv379wue6e7ujiVLliAmJgb169cHADx8+BAhISFwd3cXPK9Kw4YNUVRUhI4dO2qsX7t2DSYmJoLnsXFdi9avX48PP/wQ9evXx/r161/42FmzZmmpKiIioteTubk5srKyYG1trbH+5zssiYiI/q2ysjLY2toCqPywXlZWBgDo0aMHpk+fLmVpRCQRT09PLFu2DDt27ABQOZSgqKgI8+bNw/vvvy9a7vfff49x48bhp59+Uk/wmDlzJnbv3q3e2YqIiIiIiIiIiIiIiKSxceNGfPvttxg/frzUpYhu2rRpAIBly5ZVOyaTyaBQKATNUyqVz33O4uJiUZqqqyxfvhwbN26Er68vtm3bpl7v3r07li9fLkrm2rVrMXDgQLRq1QqdO3cGUNkHVb9+fRw8eFCUTAAYM2YMpkyZgs8//xzdunUDABw9ehRz5szBuHHjBM9j47oWrVmzBt7e3qhfvz7WrFnzl4+TyWRsXCciIvob48aNw6xZs2BiYoKePXsCAFJTU+Hv74+xY8dKXB0REdUGtra2uHLlClq3bo2OHTtix44d6Nq1K/bt24dGjRpJXR4RSWDVqlUYNWoUzM3N8fDhQ/Tq1Qs3b96Eu7s7VqxYIVrukCFD8H//93/w9PTE//73P2zevBk//vgjUlJS0L59e9FyiYiIiIiIiIiIiIjo71VUVKgbfms7pVKp1bz+/ftj7dq1+PrrrwFU9tfK5XIsWbIEgwcPFi330qVL6n6kZ5mamuLOnTuiZDo6OuLy5cv4/vvvcfHiRQCV/VHe3t4wNDQUJRMAPv/8c8hkMvj6+uLp06cAAD09PUyfPh0rV64UPE+mUqlUgj8rERERkcgqKiowfvx47Ny5E/XqVd6Lp1Qq4evri40bN1bbIoiIiOifWrNmDXR1dTFr1iwkJCRg6NChUKlUePLkCVavXg1/f3+pSyQiiRw9ehSZmZmQy+VwcXFB3759oVKpRN/68//+7/8QGBiIpk2bIjk5GW3bthU1j4iIiIiIiIiIiIiI/t68efNgbGyM4OBgqUsR1ZMnT2BoaIizZ8/CwcFBK5nFxcUYMGAAVCoVLl++DFdXV1y+fBlNmjTB4cOHYW5uLkqura0tvv76a/Tt2xcmJibIzMyEra0tYmJisHLlSuTk5Aia9+TJE3Ts2BE//fQT7OzsBH3uF1EoFDh69CgcHR1hYGCA/Px8AECbNm3QoEEDUTLZuC6RZcuWISgoqNpf7MOHD/HZZ59h8eLFElVGRET0esnNzUVmZiYMDQ3h6OgIKysrqUsiIqJa4MmTJxg4cCA2btyIdu3aAQCuXr2KM2fOoG3btnBycpK4QiKSwmeffYY5c+ZUW1coFPDx8cHWrVsFywoMDHzu+s6dO+Hi4oI2bdqo11avXi1YLhERERERERERERER/TP+/v6IiYmBk5MTnJycoKenp3G8Nl3Ht7W1xQ8//IDOnTtrLfPp06fYvn27xlAhsaeQh4eH47vvvkNUVBT69euH/fv34+rVqwgICEBwcDBmzpwpeGbLli2RkJCg1cZ1AKhfvz4uXLgAGxsbreSxcV0iurq6KCkpqXa3R2lpKczNzaFQKCSqjIiIiIiIiACgadOmOHbsmLpxnYjI3Nwc4eHhmDJlinpNoVBg7NixOHfuHC5cuCBYVu/evV/qcTKZDElJSYLlEhERERERERERERHRP/Oia/q17Tr+5s2bER8fj9jYWDRu3FjqctSGDBmCTZs2wcLCQpDnU6lUCAsLQ3h4OMrLywEABgYGCAoKQmhoqCAZfxYWFobc3Fxs2rQJ9erVEyXjeVxdXfHpp5/Cw8NDK3lsXJeIjo4OfvvtNzRt2lRjPSkpCWPGjMHt27clqoyIiOj1UVxcjL1796KoqAgVFRUax2rT3apERCSNgIAAGBgYYOXKlVKXQkQ1xK+//or+/fvjm2++wahRo/D06VOMHj0aFy9eRFJSEpo3by51iURERERERERERERERKJxdnZGXl4enjx5AisrKxgZGWkcT09Pl6QuExMTZGZmwtbWVtDnraioQF5eHuRyOezt7WFsbKxxvLi4GC1atICOjs4rZ40YMQKJiYkwNjaGo6NjtX+28fHxr5zxPAcOHMCCBQsQGhqKLl26VMtt2LChoHnaa8knAICZmRlkMhlkMhnat28PmUymPqZQKCCXyzFt2jQJKyQiIno9JCYmwtPTE7a2trh48SIcHBxQWFgIlUoFFxcXqcsjIqJa4OnTp4iKikJCQsJzP6DzJimiuuett97C7t27MXz4cOjr62Pz5s3Iy8tDcnIymjVrJnV5REREREREREREREREoho+fLjUJWiVvr4+7O3t//K4vb09zp49K0jDfKNGjfD++++/8vP8U4MHDwYAeHp6avQ0q1QqyGQyKBQKQfM4cV3LtmzZApVKhcmTJ2Pt2rUwNTVVH9PX14e1tTXc3d0lrJCIiOj10LVrVwwaNAghISHquybNzc3h7e2NgQMHYvr06VKXSEREr7m6tKUfEf0ze/bswQcffAA7OzskJSWhSZMmUpdERERERERERERERERUZ4k1cb2m5gopNTX1hcd79eolaB4b1yWSmpqKbt26QU9PT+pSiIiIXksmJiY4e/Ys2rRpAzMzM6SlpaFTp07IzMzEsGHDUFhYKHWJRERERFQLjBw58rnrJ06cQNu2bTWa1sXaopGIiIiIiIiIiIiIiKgmOXPmDC5cuAAA6NSpE5ydnSWtpzY0rvfp0wfx8fFo1KiRxvq9e/cwfPhw0QarFRUVwdLSUmPaOlA5cf3atWto3bq1oHn1BH02emnP3oHw6NEjVFRUaBxv2LChtksiIiJ6rRgZGanfPy0sLJCfn49OnToBAH7//XcpSyMiIiKiWuTZ3fKeNWDAAC1XQkREREREREREREREJK1bt25h7NixSElJUTdY37lzB71798a2bdvQtGlTaQt8jaWkpFTrJQYqe4yPHDkiWq6NjQ1KSkpgbm6usV5WVgYbGxsoFApB89i4LpHy8nLMnTsXO3bsQGlpabXjQv9FExER1TZubm5IS0uDnZ0dBg8ejNmzZyM7Oxvx8fFwc3OTujwiIiIiqiWio6PVf3748CGUSiWMjIwAAIWFhdizZw/s7OzYyE5ERERERERERERERLXezJkzcf/+fZw/fx52dnYAgJycHEyYMAGzZs3C1q1bJa7w9ZOVlaX+c05ODm7evKn+WaFQ4MCBA2jZsqVo+SqVqtq0dQCQy+WoX7++4HlsXJfInDlzkJycjK+++grjx4/Hl19+ievXryMyMhIrV66UujwiIqIab/Xq1ZDL5QCAkJAQyOVybN++He3atcPq1aslro6IiIiIaqNhw4Zh5MiRmDZtGu7cuQM3Nzfo6enh999/x+rVqzF9+nSpSyQiIiIiIiIiIiIiIhLNgQMHkJCQoG5aBwB7e3t8+eWX6N+/v2R1/fe//0Xjxo21nvu8hu9/6s0334RMJoNMJkOfPn2qHTc0NMQXX3zxyjl/FhgYCKDyNQQHB6NBgwbqYwqFAidPnsSbb74peC4b1yWyb98+xMTE4N1338WkSZPwzjvvoG3btrCyssL3338Pb29vqUskIiKqsRQKBYqLi+Hk5AQAMDIywsaNGyWuioiIiIhqu/T0dKxZswYAsGvXLjRr1gwZGRnYvXs3Fi9ezMZ1IiIiIiIiIiIiIiKq1ZRKJfT09Kqt6+npQalUipIZGxuLjRs34sqVKzh+/DisrKywdu1a2NjYYNiwYQCABQsWiJL9d1Qq1Ss/x5UrV6BSqWBra4tTp06hadOm6mP6+vowNzeHrq7uK+f8WUZGBoDK15CdnQ19fX2N3M6dOyMoKEjwXDauS6SsrAy2trYAgIYNG6KsrAwA0KNHD37JSURE9Dd0dXXRv39/XLhwAY0aNZK6HCIiIiKqI8rLy2FiYgIAOHToEEaOHAkdHR24ubnh6tWrEldHREREREREREREREQkrj59+sDf3x9bt25FixYtAADXr19HQEAAPDw8BM/76quvsHjxYvznP//BihUroFAoAACNGjXC2rVr1Y3rYsnLy0N+fj569uwJQ0NDqFQqjSnrOTk56n8O/5aVlRUAiNb4/1eSk5MBAJMmTcK6devQsGFDreSycV0itra2uHLlClq3bo2OHTtix44d6Nq1K/bt28cGPCIiopfg4OCAgoIC2NjYSF0KEREREdURbdu2xZ49ezBixAgcPHgQAQEBAIBbt25p7WIeERERERERERERERGRVDZs2ABPT09YW1vD0tISAFBUVARHR0d89913gud98cUX+OabbzB8+HCsXLlSve7q6irKNPAqpaWlGDNmDJKSkiCTyXD58mXY2tpiypQpMDMzw6pVqwBA/c9AKJcvX0ZycjJu3bpVrZF98eLFgmZViY6OFuV5/4pMJcScevrH1qxZA11dXcyaNQsJCQkYOnQoVCoVnjx5gtWrV8Pf31/qEomIiGq0AwcOYMGCBQgNDUWXLl1gZGSkcZyNQ0REREQktF27dsHLywsKhQIeHh44dOgQACA8PByHDx/GL7/8InGFRERERERERERERERE4lKpVEhMTMSFCxcAAHZ2dujbt68oWYaGhrh48SKsrKxgYmKCzMxM2Nra4vLly3BycsLDhw9FyfX19cWtW7ewadMm2NnZqXMPHjyIwMBAnD9/XvDMb775BtOnT0eTJk3QvHlzjcnuMpkM6enpgmcCwIMHD7By5UokJiY+t2G+oKBA0Dw2rkvgyZMnGDhwIDZu3Ih27doBAK5evYozZ86gbdu2cHJykrhCIiKimk9HR0f952dP1Kq25KnaGoiIiIiISEg3b95ESUkJOnfurD4nPXXqFBo2bIiOHTtKXB0REREREREREREREZG4EhMT/7LJOSoqStAse3t7hIeHY9iwYRqN61988QWio6NFa+Zu3rw5Dh48iM6dO2vkFhQUwMnJCXK5XPBMKysrfPzxx5g3b57gz/0i48aNQ2pqKsaPHw8LCwuNPiwAgg/irifos9FL0dPTQ1ZWlsaalZUVrKysJKqIiIjo9RMdHQ1LS0vo6upqrCuVShQVFUlUFRERERHVds2bN0fz5s011rp27SpRNURERERERERERERERNoTEhKCZcuWwdXV9blNzkILDAzEjBkz8OjRI6hUKpw6dQpbt25FeHg4Nm3aJFrugwcP0KBBg2rrZWVlMDAwECXzjz/+wAcffCDKc7/IL7/8gp9//hndu3fXSh4nrkskICAABgYGWLlypdSlEBERvZZ0dXVRUlICc3NzjfXS0lKYm5tz4joRERERERERERERERERERERkYAsLCwQERGB8ePHay3z+++/x9KlS5Gfnw8AaNGiBUJCQjBlyhTRMgcPHowuXbogNDQUJiYmyMrKgpWVFcaOHQulUoldu3YJnjllyhS89dZbmDZtmuDP/SI2NjbYv38/7OzstJLHiesSefr0KaKiopCQkIAuXbrAyMhI4/jq1aslqoyIiOj1oFKpnnvXplwuR/369SWoiIiIiIiIiIiIiIiIiIiIiIio9qqoqEC3bt20munt7Q1vb2+Ul5dDLpdXG3IphoiICHh4eOD06dOoqKjA3Llzcf78eZSVleHo0aOiZLZt2xbBwcE4ceIEHB0doaenp3F81qxZouSGhoZi8eLF2LJly3OnzAuNE9cl0rt37788JpPJkJSUpMVqiIiIXh+BgYEAgHXr1sHPz0/jhEmhUODkyZPQ1dUV7SSRiIiIiIiIiIiIiIiIiIiIiKgumjdvHoyNjREcHKyVvCtXruDp06do166dxvrly5ehp6cHa2tr0bLv3r2LDRs2IDMzE3K5HC4uLpgxYwYsLCxEybOxsfnLYzKZDAUFBaLkOjs7Iz8/HyqVCtbW1tUa5tPT0wXN48R1iSQnJ0tdAhER0WspIyMDQOXE9ezsbOjr66uP6evro3PnzggKCpKqPCIiIiIiIiIiIiIiIiIiIiKiWunRo0f4+uuvkZCQACcnp2pNzqtXrxY0b+LEiZg8eXK1xvWTJ09i06ZNSElJETTvWaampli4cKFoz/9nV65c0VrWs4YPH67VPE5cJyIiotfSpEmTsG7dOjRs2FDqUoiIiIiIiIiIiIiIiIiIiIiIar3evXv/5TGZTIakpCRB8xo2bIj09HS0bdtWYz0vLw+urq64c+eOoHlVoqOjYWxsjA8++EBjfefOnSgvL8eECRNEyQWAiooKXLlyBW3atEG9erVvPnnte0VERERUJ0RHR0tdAhERERERERERERERERERERFRnZGcnKzVPJlMhvv371dbv3v3LhQKhWi54eHhiIyMrLZubm6ODz/8UJTG9fLycsycORNbtmwBAOTm5sLW1hYzZ85Ey5YtMX/+fMEzq9y5cwe7du1Cfn4+5syZg8aNGyM9PR3NmjVDy5YtBc3SEfTZiIiIiIiIiIiIiIiIiIiIiIiIiIiIiF5Rz549ER4ertGkrlAoEB4ejh49eoiWW1RUBBsbm2rrVlZWKCoqEiVzwYIFyMzMREpKCurXr69e79u3L7Zv3y5KJgBkZWWhffv2+PTTT/H555+rp9jHx8djwYIFgudx4joRERERERERERERERERERERERERERHVKJ9++il69uyJDh064J133gEAHDlyBPfu3UNSUpJouebm5sjKyoK1tbXGemZmJt544w1RMvfs2YPt27fDzc0NMplMvd6pUyfk5+eLkgkAgYGBmDhxIiIiImBiYqJeHzx4MLy8vATP48R1IiIiIiIiIiIiIiIiIiIiIiIiIiIiqlHs7e2RlZWF0aNH49atW7h//z58fX1x8eJFODg4iJY7btw4zJo1C8nJyVAoFFAoFEhKSoK/vz/Gjh0rSubt27dhbm5ebf3BgwcajexC+/XXX/HRRx9VW2/ZsiVu3rwpeB4nrhMREREREREREREREREREREREREREVGN06JFC4SFhWk1MzQ0FIWFhfDw8EC9epWt1kqlEr6+vqLV4urqip9//hkzZ84EAHWz+qZNm+Du7i5KJgAYGBjg3r171dZzc3PRtGlTwfNkKpVKJfizEhEREREREREREREREREREREREREREb2CO3fu4NSpU7h16xaUSqXGMV9fX1Gzc3NzkZmZCUNDQzg6OsLKykq0rLS0NAwaNAg+Pj749ttv8dFHHyEnJwfHjh1DamoqunTpIkru1KlTUVpaih07dqBx48bIysqCrq4uhg8fjp49e2Lt2rWC5rFxnYiIiIiIiIiIiIiIiIiIiIiIiIiIiGqUffv2wdvbG3K5HA0bNlRPIQcqJ5KXlZVJWJ3w8vPzsXLlSmRmZkIul8PFxQXz5s2Do6OjaJl3797FqFGjcPr0ady/fx8tWrTAzZs34e7ujv3798PIyEjQPDauExERERERERERERERERERERERERERUY3Svn17DB48GGFhYWjQoIHWchUKBb799lskJiY+d9J7UlKS1mrRlrS0NGRlZakb5vv27StKDhvXiYiIiIiIiIiIiIiIiIiIiIiIiIiIqEYxMjJCdnY2bG1ttZr7ySef4Ntvv8WQIUNgYWGhMekdANasWSN4Zt++feHj44ORI0eiYcOGgj//X7l27RosLS21lsfGdSIiIiIiIiIiIiIiIiIiIiIiIiIiIqpRRo4cibFjx2L06NFazW3SpAliYmIwePBgrWX6+/tjx44duHv3LoYMGQIfHx8MHjwYenp6oubq6uqiR48e8PHxwahRo2BmZiZqHhvXiYiIiIiIiIiIiIiIiIiIiIiIiIiIqEbZvHkzli1bhkmTJsHR0bFaE7enp6couS1atEBKSgrat28vyvP/FaVSiYSEBMTFxeGHH36Arq4uRo0aBW9vb/Tq1UuUzIyMDMTFxWHbtm24ffs2Bg4cCB8fHwwdOhQGBgaC57FxnYiIiIiIiIiIiIiIiIiIiIiIiIiIiGoUHR2dvzwmk8mgUChEyV21ahUKCgqwYcMGyGQyUTL+zqNHj7Bv3z6sWLEC2dnZor3WKiqVCikpKYiLi8Pu3buhVCoxcuRIREVFCZrDxnUiIiIiIiIiIiIiIiIiIiIiIiIiIiIiACNGjEBycjIaN26MTp06VZv0Hh8fL2r+zZs3sW3bNnz33XdIT09H165dceLECVEzn5Weno4pU6YgKytL8Ib5eoI+GxEREREREREREREREREREREREREREZGAHj16hPr162slq1GjRhgxYoRWsqrcu3cPu3fvRlxcHFJSUmBrawtvb29s374dbdq0ET2/uLgYcXFxiIuLw7lz5+Du7o4vv/xS8BxOXCciIiIiIiIiIiIiIiIiIiIiIiIiIqIaRaFQICwsDBs3bsRvv/2G3Nxc2NraIjg4GNbW1pgyZYrUJQrG0NAQZmZmGDNmDLy9veHq6qqV3MjISMTFxeHo0aPo2LEjvL294eXlBSsrK1HydER5ViIiIiIiIiIiIiIiIiIiIiIiIiIiIqJ/acWKFfj2228REREBfX199bqDgwM2bdokavbTp0+RkJCAyMhI3L9/HwBw48YNyOVyUfL27t2L4uJirFmzRmtN6wCwfPlyvP322zhz5gzOnTuHBQsWiNa0DnDiOhEREREREREREREREREREREREREREdUwbdu2RWRkJDw8PGBiYoLMzEzY2tri4sWLcHd3xx9//CFK7tWrVzFw4EAUFRXh8ePH6knv/v7+ePz4MTZu3ChK7tOnT5GSkoL8/Hx4eXnBxMQEN27cQMOGDWFsbCxKpkqlgkwmE+W5n4cT14mIiIiIiIiIiIiIiIiIiIiIiIiIiKhGuX79Otq2bVttXalU4smTJ6Ll+vv7w9XVFX/88QcMDQ3V6yNGjEBiYqIomVevXoWjoyOGDRuGGTNm4Pbt2wCATz/9FEFBQaJkAoBMJsORI0fg4+MDd3d3XL9+HQAQGxuLtLQ0wfPYuE5EREREREREREREREREREREREREREQ1ir29PY4cOVJtfdeuXXB2dhYt98iRI1i0aBH09fU11q2trdWN3UKTolkeAHbv3o0BAwbA0NAQGRkZePz4MQDg7t27CAsLEzyvnuDPSERERERERERERERERERERERERERERPQKFi9ejAkTJuD69etQKpWIj4/HpUuXEBMTg59++km0XKVSCYVCUW29uLgYJiYmomQeOXIEx44d02qzPAAsX74cGzduhK+vL7Zt26Ze7969O5YvXy54HieuExERERERERERERERERERERERERERUY0ybNgw7Nu3DwkJCTAyMsLixYtx4cIF7Nu3D/369RMtt3///li7dq36Z5lMBrlcjiVLlmDw4MGiZErRLA8Aly5dQs+ePautm5qa4s6dO4LnceI6ERERERERERERERERERERERERERER1TjvvPMO/ve//2k1c9WqVRgwYADs7e3x6NEjeHl54fLly2jSpAm2bt0qSmZVs/zXX38NQDvN8gDQvHlz5OXlwdraWmM9LS0Ntra2gufJVCqVSvBnJSIiIiIiIiIiIiIiIiIiIiIiIiIiInoNPX36FNu2bUNWVhbkcjlcXFzg7e0NQ0NDUfKKi4sxYMAAqFQqXL58Ga6urupm+cOHD8Pc3FyU3PDwcHz33XeIiopCv379sH//fly9ehUBAQEIDg7GzJkzBc1j4zoRERERERERERERERERERERERERERHVKDo6OpDJZH95XKFQaLEa8T19+hTbt29HZmamVprlAUClUiEsLAzh4eEoLy8HABgYGCAoKAihoaGC57FxnYiIiIiIiIiIiIiIiIiIiIiIiIiIiGqUH3/8UePnJ0+eICMjA1u2bEFISAimTJkiSm5MTMwLj/v6+oqS+zKGDBmCTZs2wcLCQtDnraioQF5eHuRyOezt7WFsbKxxvLi4GC1atICOjs4r5bBxnYiIiIiIiIiIiIiIiIiIiIiIiIiIiF4LcXFx2L59e7XGdqGYmZlp/PzkyROUl5dDX18fDRo0QFlZmSi5L8PExASZmZmwtbXVam7Dhg1x9uzZV859tbZ3IiIiIiIiIiIiIiIiIiIiIiIiIiIiIi1xc3NDYmKiaM//xx9/aPxPLpfj0qVL6NGjB7Zu3Spabk0m1Jx0Nq4TERERERERERERERERERERERERERFRjffw4UOsX78eLVu21Gpuu3btsHLlSvj7+2s1t7apJ3UBRERERERERERERERERERERERERERERM8yMzODTCZT/6xSqXD//n00aNAA3333ndbrqVevHm7cuKH13NqEjetERERERERERERERERERERERERERERUo6xZs0ajcV1HRwdNmzbF22+/DTMzM9Fy9+7dq/GzSqVCSUkJNmzYgO7du4uWWxewcZ2IiIiIiIiIiIiIiIiIiIiIiIiIiIhqlIkTJ0qSO3z4cI2fZTIZmjZtij59+mDVqlWS1CS1Z28geBVsXCciIiIiIiIiIiIiIiIiIiIiIiIiIqIaJSsr66Uf6+TkJFiuUqkU7LmE9t///heNGzfWeq5KpRLkeWQqoZ6JiIiIiIiIiIiIiIiIiIiIiIiIiIiISAA6Ojp/O+lbpVJBJpNBoVBoqSrxxMbGYuPGjbhy5QqOHz8OKysrrF27FjY2Nhg2bJio2Xl5ecjPz0fPnj1haGio/uda5dq1a2jRogV0dXVfKYcT14mIiIiIiIiIiIiIiIiIiIiIiIiIiKhGiY+PR1BQEObMmQN3d3cAwPHjx7Fq1SpERETA2dlZlNzAwMCXfuzq1asFyfzqq6+wePFi/Oc//8GKFSvUjfiNGjXC2rVrRWtcLy0txZgxY5CUlASZTIbLly/D1tYWU6ZMgZmZGVatWgUAsLS0FCSPE9eJiIiIiIiIiIiIiIiIiIiIiIiIiIioRunatSuWLl2KwYMHa6zv378fwcHBOHPmjCi5vXv3RkZGBp48eYIOHToAAHJzc6GrqwsXFxf142QyGZKSkgTJtLe3R1hYGIYPHw4TExNkZmbC1tYW586dw7vvvovff/9dkJw/8/X1xa1bt7Bp0ybY2dmpcw8ePIjAwECcP39e0DxOXCciIiIiIiIiIiIiIiIiIiIiIiIiIqIaJTs7GzY2NtXWbWxskJOTI1ru0KFDYWJigi1btsDMzAwA8Mcff2DSpEl45513MHv2bMEzr1y58twJ8gYGBnjw4IHgeVUOHTqEgwcPolWrVhrr7dq1w9WrVwXP0xH8GYmIiIiIiIiIiIiIiIiIiIiIiIiIiIhegZ2dHcLDw1FRUaFeq6ioQHh4OOzs7ETLXbVqFcLDw9VN6wBgZmaG5cuXY9WqVaJk2tjY4OzZs9XWDxw4IOprffDgARo0aFBtvaysDAYGBoLnceI6ERERERERERERERERERERERERERER1SgbN27E0KFD0apVKzg5OQEAsrKyIJPJsG/fPtFy7927h9u3b1dbv337Nu7fvy9KZmBgIGbMmIFHjx5BpVLh1KlT2Lp1K8LDw7Fp0yZRMgHgnXfeQUxMDEJDQwEAMpkMSqUSERER6N27t+B5MpVKpRL8WYmIiIiIiIiIiIiIiIiIiIiIiIiIiIhewYMHD/D999/j4sWLACqnsHt5ecHIyEi0TF9fXxw5cgSrVq1C165dAQAnT57EnDlz8M4772DLli2i5H7//fdYunQp8vPzAQAtWrRASEgIpkyZIkoeAJw7dw4eHh5wcXFBUlISPD09cf78eZSVleHo0aNo06aNoHlsXCciIiIiIiIiIiIiIiIiIiIiIiIiIiICUF5ejqCgIERFReHJkycAgHr16mHKlCn47LPPRG2ar8qXy+UwNzcXNafK3bt3sWHDBmRmZkIul8PFxQUzZsyAhYWF4FlsXCciIiIiIiIiIiIiIiIiIiIiIiIiIqIaJzY2FpGRkSgoKMDx48dhZWWFNWvWwNbWFsOGDRM1+8GDB+rp523atBG1Yf3KlSt4+vQp2rVrp7F++fJl6OnpwdraWrRsbdKRugAiIiIiIiIiIiIiIiIiIiIiIiIiIiKiZ3311VcIDAzEoEGD8Mcff0ChUAAAzMzMsHbtWtHzS0pKUFJSgnbt2sHIyAhizgqfOHEijh07Vm395MmTmDhxomi50dHR2LlzZ7X1nTt3YsuWLYLnsXGdiIiIiIiIiIiIiIiIiIiIiIiIiIiIapQvvvgC33zzDRYuXIh69eqp111dXZGdnS1abmlpKTw8PNC+fXsMHjwYJSUlAIApU6Zg9uzZomRmZGSge/fu1dbd3Nxw9uxZUTIBIDw8HE2aNKm2bm5ujrCwMMHz2LhORERERERERERERERERERERERERERENcqVK1fg7Oxcbd3AwAAPHjwQLTcgIAB6enooKipCgwYN1OtjxozBgQMHRMmUyWS4f/9+tfW7d++qJ82LoaioCDY2NtXWraysUFRUJHgeG9eJiIiIiIiIiIiIiIiIiIiIiIiIiIioRrGxsXnutPEDBw7Azs5OtNxDhw7h008/RatWrTTW27Vrh6tXr4qS2bNnT4SHh2s0qSsUCoSHh6NHjx6iZAKVk9WzsrKqrWdmZuKNN94QPK/e3z+EiIiIiIiIiIiIiIiIiIiIiIiIiIiI/l879x6kdX3dAfjzrruoLCg4XoKICEoVBBSKFVTIKAYrDqReMvUG1WJmMCoMgqmJEwVNRexIUqPjjRjFakwUMyEddRxAU1BHpmhwQRS5CAgYtSviulDI7ts/mjLZWhM7+b27IM8zwwzv+f7mfA7+fTy0nmuvvTZXXXVVtm/fnnK5nMWLF+enP/1ppk+fnlmzZlUs99NPP21xaf1/1NfXZ999961I5owZMzJs2LAce+yxGTp0aJJk4cKF2bp1axYsWFCRzCS56KKLMmHChHTs2DHDhg1Lkvz617/OxIkTc+GFFxaeVyqXy+XCuwIAAAAAAAAAAAAA/BkeffTRTJ06NatXr06SdO3aNVOnTs24ceMqljly5Mj85V/+ZW655ZZ07Ngxr7/+erp3754LL7wwzc3NefLJJyuSu2nTptx1111ZunRp9t9///Tv3z9XX311DjrooIrkJcmOHTsyZsyYPPHEE6mu/u976M3NzRk7dmzuvffetGvXrtA8i+sAAAAAAAAAAAAAwG5l27ZtKZfLad++fRobG7Ns2bK8+OKL6dOnT84666yK5S5btizDhw/PwIEDs2DBgowePTrLly9PfX19XnzxxRx99NEVy24rK1eu3LUw369fv3Tv3r0iORbXAQAAAAAAAAAAAIDdyogRI3Leeedl/Pjx2bJlS4477rjU1NTkww8/zMyZM3PllVdWLPvjjz/edf28oaEhAwcOzFVXXZUuXbpULHPLli1ZvHhx3n///TQ3N7d4Gzt2bMVyW5PFdQAAAAAAAAAAAABgt3LwwQfn17/+dY4//vjMmjUrP/rRj/Laa69lzpw5ufHGG7NixYq2HrEwv/rVr3LJJZekoaEhBxxwQEql0q63UqmU+vr6iuQ2NTXloYceyvz58//PhfkFCxYUmldVaDcAAAAAAAAAAAAAgD9TY2NjOnbsmCR57rnnct5556WqqiqDBw/OunXrKpb77LPPZtGiRbt+33333TnxxBNz8cUX56OPPqpI5uTJk/P3f//3aWhoyJYtW/LRRx/t+lOppfUkmThxYiZOnJimpqb07ds3J5xwQos/RXNxHQAAAAAAAAAAAADYrfTv3z9XXHFFzj333PTt2zfPPvtshgwZkiVLluScc87Je++9V5Hcfv36ZcaMGRk5cmTq6uoyaNCgTJ48Oc8//3yOO+64/OQnPyk8s7a2NnV1denZs2fhvf+Ygw8+OLNnz87IkSNbJc/FdQAAAAAAAAAAAABgt3LjjTdmypQpOeqoo3LyySdnyJAhSf77+vqAAQMqlrt27dr06dMnSTJnzpyMGjUqt956a+6+++4888wzFck866yz8u///u8V6f3HtGvXLsccc0yr5VW3WhIAAAAAAAAAAAAAwBdwwQUX5LTTTsvmzZtzwgkn7KoPHz485557bsVy27Vrl8bGxiTJvHnzMnbs2CTJQQcdlK1bt1Yk85xzzsl1112XN954I/369UtNTU2L99GjR1ckd/Lkyfnnf/7n3HXXXSmVShXJ+EOlcrlcrngKAAAAAAAAAAAAAMBubvTo0dmxY0dOPfXU3HLLLVm7dm26du2a5557LldffXVWrlxZeGZVVdXnvpVKpTQ1NRWemSTnnntunn/++Rx00EE5/vjjP7Mw/9RTTxWa5+I6AAAAAAAAAAAAAECSu+66K9/61rfy5JNP5p577knXrl2TJM8880z++q//uiKZzc3NFen7p3Tq1Kmi1+v/NxfXAQAAAAAAAAAAAAD+H2677baMHz8+nTp1KrTv9u3bs99++xXac3fx+XflAQAAAAAAAAAAAAD4jFtvvTX19fWF9Gpqasott9ySrl27pkOHDlmzZk2S5Hvf+15+/OMfF5LxeX73u99l3rx5ue+++/LJJ58kSTZt2pSGhobCsyyuAwAAAAAAAAAAAAD8P5TL5cJ6/eM//mMeeuih3H777WnXrt2uet++fTNr1qzCcv63devWpV+/fvn617+eq666Kh988EGSZMaMGZkyZUrheRbXAQAAAAAAAAAAAADayOzZs3P//ffnkksuyT777LOrfsIJJ+TNN9+sWO7EiRMzaNCgfPTRR9l///131c8999zMnz+/8LzqwjsCAAAAAAAAAAAAAPCFbNy4Mcccc8xn6s3Nzdm5c2fFchcuXJiXXnqpxZX3JDnqqKOycePGwvNcXAcAAAAAAAAAAAAAaCN9+vTJwoULP1N/8sknM2DAgIrlNjc3p6mp6TP1d999Nx07diw8z8V1AAAAAAAAAAAAAIA2cuONN+bv/u7vsnHjxjQ3N+epp57KW2+9ldmzZ+df//VfK5Y7YsSI/PCHP8z999+fJCmVSmloaMhNN92UkSNHFp5XKpfL5cK7AgAAAAAAAAAAAAB8SY0cOTI//vGP06VLl0L6LVy4MDfffHOWLl2ahoaGDBw4MDfeeGNGjBhRSP//y7vvvpuzzjor5XI5b7/9dgYNGpS33347Bx98cP7t3/4thx56aKF5FtcBAAAAAAAAAAAAgL3W1q1bv/C3BxxwQAUnaX2/+93v8vjjj+f111/ftTB/ySWXZP/99y88y+I6AAAAAAAAAAAAALDXqqqqSqlU+kLfNjU1VXiaL6/qth4AAAAAAAAAAAAAAKCtPP/887v+/s477+T666/PZZddliFDhiRJXn755Tz88MOZPn16RfL/1OJ8pZblZ8+e/Uffx44dW2iei+sAAAAAAAAAAAAAAEmGDx+eK664IhdddFGL+mOPPZb7778/L7zwQuGZv/zlL1v83rlzZ1577bU8/PDDmTZtWsaNG1d4ZpJ07tz5M7mNjY1p165d2rdvn/r6+kLzLK4DAAAAAAAAAAAAACRp3759li5dml69erWor1y5MieeeGIaGxtbbZbHHnssP/vZzz6z2F5Jb7/9dq688spcd911OeusswrtXVVoNwAAAAAAAAAAAACAPVS3bt3ywAMPfKY+a9asdOvWrVVnGTx4cObPn9+qmb169cptt92WiRMnFt67uvCOAAAAAAAAAAAAAAB7oB/84Ac5//zz88wzz+Tkk09OkixevDhvv/125syZ02pzbNu2LXfeeWe6du3aapn/o7q6Ops2bSq+b+EdAQAAAAAAAAAAAAD2QCNHjszKlStzzz335M0330ySjBo1KuPHj6/YxfXOnTunVCrt+l0ul/PJJ5+kffv2+Zd/+ZeKZCbJ3LlzW/wul8vZvHlz7rrrrpx66qmF55XK5XK58K4AAAAAAAAAAAAAAPxJDz30UIvF9aqqqhxyyCE5+eST07lz54rlVlVVtfhdKpVyyCGH5Iwzzsgdd9yRLl26FJpncR0AAAAAAAAAAAAA4PcWLlyY++67L2vWrMkTTzyRrl275pFHHkmPHj1y2mmntfV4e6zqth4AAAAAAAAAAAAAAGB3MGfOnIwZMyaXXHJJXn311fznf/5nkuTjjz/OrbfemqeffrrwzNdff/0Lf9u/f//C81uLi+sAAAAAAAAAAAAAAEkGDBiQSZMmZezYsenYsWOWLl2anj175rXXXsvZZ5+d9957r/DMqqqqlEqlP/pNuVxOqVRKU1NTYbnXXnvtF/525syZf3aei+sAAAAAAAAAAAAAAEneeuutDBs27DP1Aw88MFu2bKlI5lNPPZUpU6bkuuuuy5AhQ5IkL7/8cu64447cfvvtGTBgQEVyX3vttbz22mvZuXNnjj322CTJypUrs88++2TgwIG7vvtTS/VflMV1AAAAAAAAAAAAAIAkX/nKV7Jq1aocddRRLeqLFi1Kz549K5J566235s4778zIkSN31fr3759u3brle9/7XpYsWVKR3FGjRqVjx455+OGH07lz5yTJRx99lMsvvzxDhw7N5MmTC82rKrQbAAAAAAAAAAAAAMAe6pvf/GYmTpyYV155JaVSKZs2bcqjjz6aKVOm5Morr6xIZl1dXXr06PGZeo8ePfLGG29UJDNJ7rjjjkyfPn3X0nqSdO7cOd///vdzxx13FJ7n4joAAAAAAAAAAAAAQJLrr78+zc3NGT58eBobGzNs2LDsu+++mTJlSq655pqKZPbu3TvTp0/PrFmz0q5duyTJjh07Mn369PTu3bsimUmydevWfPDBB5+pf/DBB/nkk08KzyuVy+Vy4V0BAAAAAAAAAAAAAPZQO3bsyKpVq9LQ0JA+ffqkQ4cOFctavHhxRo0alXK5nP79+ydJXn/99ZRKpfzqV7/KX/3VX1Ukd+zYsVm4cGHuuOOOXRmvvPJKrrvuugwdOjQPP/xwoXkW1wEAAAAAAAAAAAAAksyePTsnnXTSZy6db9++PT//+c8zduzYiuR++umnefTRR/Pmm28m+e8r7BdffHFqa2srkpckjY2NmTJlSh588MHs3LkzSVJdXZ1x48bln/7pnwrPtrgOAAAAAAAAAAAAAJCkqqoqtbW1eeihh3L++efvqv/2t7/N4YcfnqampjacrjI+/fTTrF69Okly9NFHV2xZvqoiXQEAAAAAAAAAAAAA9kDTpk3LmDFjMnXq1FbLfOSRR3Laaafl8MMPz7p165IkP/jBD/LLX/6y4tmbN2/O5s2b06tXr9TW1qZSd9EtrgMAAAAAAAAAAAAA/N6ll16aBQsW5L777ssFF1yQbdu2VTTvnnvuybXXXpuzzz47H3300a6r7p07d84Pf/jDiuX+x3/8R4YPH56/+Iu/yMiRI7N58+Ykybhx4zJ58uTC8yyuAwAAAAAAAAAAAAAkKZVKSZLBgwfnlVdeyapVq3LKKafknXfeqVjmj370ozzwwAO54YYbUl1dvas+aNCg1NXVVSx30qRJqampyfr169O+fftd9b/927/Ns88+W3iexXUAAAAAAAAAAAAAgCTlcnnX34888si89NJLOeqoo/K1r32tYplr167NgAEDPlPfd9998+mnn1Ys97nnnsuMGTNyxBFHtKj36tUr69atKzzP4joAAAAAAAAAAAAAQJKbbropHTp02PW7ffv2+cUvfpFJkyZl2LBhFcns0aNHfvOb33ym/uyzz6Z3794VyUySTz/9tMWl9f9RX1+ffffdt/C86j/9CQAAAAAAAAAAAADAl99NN930f9anTZtWscxrr702V111VbZv355yuZzFixfnpz/9aaZPn55Zs2ZVLHfo0KGZPXt2brnlliRJqVRKc3Nzbr/99px++umF55XKf3jPHgAAAAAAAAAAAABgLzJ37tycffbZqampydy5cz/3u1KplFGjRlVkhkcffTRTp07N6tWrkyRdu3bN1KlTM27cuIrkJcmyZcsyfPjwDBw4MAsWLMjo0aOzfPny1NfX58UXX8zRRx9daJ7FdQAAAAAAAAAAAABgr1VVVZX33nsvhx56aKqqqj73u1KplKampsLzt23blnK5nPbt26exsTHLli3Liy++mD59+uSss84qPO8Pffzxx7nrrruydOnSNDQ0ZODAgbnqqqvSpUuXwrMsrgMAAAAAAAAAAAAAtJERI0bkvPPOy/jx47Nly5Ycd9xxqampyYcffpiZM2fmyiuvbOsRC/H5/0sAAAAAAAAAAAAAAAAV9eqrr2bo0KFJkieffDKHHXZY1q1bl9mzZ+fOO++sWO6zzz6bRYsW7fp9991358QTT8zFF1+cjz76qPC86sI7AgAAAAAAAAAAAADsIf4/y+ETJkwoPL+xsTEdO3ZMkjz33HM577zzUlVVlcGDB2fdunWF5/2P6667LjNmzEiS1NXV5dprr83kyZPz/PPP59prr81PfvKTQvNK5XK5XGhHAAAAAAAAAAAAAIA9RI8ePb7Qd6VSKWvWrCk8v3///rniiity7rnnpm/fvnn22WczZMiQLFmyJOecc07ee++9wjOTpEOHDlm2bFmOOuqoTJ06NcuWLcuTTz6ZV199NSNHjiw818V1AAAAAAAAAAAAAGCvtXbt2jbNv/HGG3PxxRdn0qRJGT58eIYMGZLkv6+vDxgwoGK57dq1S2NjY5Jk3rx5GTt2bJLkoIMOytatWwvPc3EdAAAAAAAAAAAAAKANvffee9m8eXNOOOGEVFVVJUkWL16cAw44IMcdd1xFMkePHp0dO3bk1FNPzS233JK1a9ema9euee6553L11Vdn5cqVheZZXAcAAAAAAAAAAAAA+L133303c+fOzfr167Njx44WbzNnzmyjqYq3fv36fOtb38qGDRsyYcKEjBs3LkkyadKkNDU15c477yw0z+I6AAAAAAAAAAAAAECS+fPnZ/To0enZs2fefPPN9O3bN++8807K5XIGDhyYBQsWtPWIre62227L+PHj06lTpz+rT1Ux4wAAAAAAAAAAAAAA7Nm+853vZMqUKamrq8t+++2XOXPmZMOGDfnqV7+ab3zjG209Xpu49dZbU19f/2f3sbgOAAAAAAAAAAAAAJBkxYoVGTt2bJKkuro627ZtS4cOHXLzzTdnxowZbTxd2yiXy4X0sbgOAAAAAAAAAAAAAJCktrY2O3bsSJJ06dIlq1ev3vX24YcfttVYXwrVbT0AAAAAAAAAAAAAAMDuYPDgwVm0aFF69+6dkSNHZvLkyamrq8tTTz2VwYMHt/V4ezSL6wAAAAAAAAAAAAAASWbOnJmGhoYkybRp09LQ0JCf/exn6dWrV2bOnNnG0+3ZSuVyudzWQwAAAAAAAAAAAAAAsPvp2LFjli5dmp49e/5ZfVxcBwAAAAAAAAAAAAD4XxoaGtLc3NyidsABB7TRNG1n6NCh2X///f/sPi6uAwAAAAAAAAAAAAAkWbt2ba6++uq88MIL2b59+656uVxOqVRKU1NTG07359u6desX/rboJX0X1wEAAAAAAAAAAAAAklx66aUpl8t58MEHc9hhh6VUKrX1SIXq1KnTF/43Fb2kb3EdAAAAAAAAAAAAACDJ0qVLs2TJkhx77LFtPUpFPP/887v+/s477+T666/PZZddliFDhiRJXn755Tz88MOZPn164dmlcrlcLrwrAAAAAAAAAAAAAMAe5vTTT88NN9yQM888s61Hqbjhw4fniiuuyEUXXdSi/thjj+X+++/PCy+8UGiexXUAAAAAAAAAAAAAgCSrV6/O+PHjc+mll6Zv376pqalp8d6/f/82mqx47du3z9KlS9OrV68W9ZUrV+bEE09MY2NjoXnVhXYDAAAAAAAAAAAAANhDffDBB1m9enUuv/zyXbVSqZRyuZxSqZSmpqY2nK5Y3bp1ywMPPJDbb7+9RX3WrFnp1q1b4XkurgMAAAAAAAAAAAAAJOnTp0969+6db3/72znssMNSKpVavHfv3r2NJive008/nfPPPz/HHHNMTj755CTJ4sWL8/bbb2fOnDkZOXJkoXkW1wEAAAAAAAAAAAAAktTW1mbp0qU55phj2nqUVrFhw4bcc889efPNN5MkvXv3zvjx411cBwAAAAAAAAAAAAColFGjRuWyyy7L+eef39ajfOlUt/UAAAAAAAAAAAAAAAC7g1GjRmXSpEmpq6tLv379UlNT0+J99OjRbTRZZSxcuDD33Xdf1qxZkyeeeCJdu3bNI488kh49euS0004rNMvFdQAAAAAAAAAAAACAJFVVVZ/7ViqV0tTU1IrTVNacOXMyZsyYXHLJJXnkkUfyxhtvpGfPnrnrrrvy9NNP5+mnny407/P/ywIAAAAAAAAAAAAA7EWam5s/98+XaWk9Sb7//e/n3nvvzQMPPNDisvypp56aV199tfA8i+sAAAAAAAAAAAAAwF5v586dqa6uzrJly9p6lFbx1ltvZdiwYZ+pH3jggdmyZUvheRbXAQAAAAAAAAAAAIC9Xk1NTY488sgv3WX1z/OVr3wlq1at+kx90aJF6dmzZ+F5FtcBAAAAAAAAAAAAAJLccMMN+e53v5v6+vq2HqXivvnNb2bixIl55ZVXUiqVsmnTpjz66KOZMmVKrrzyysLzSuVyuVx4VwAAAAAAAAAAAACAPcyAAQOyatWq7Ny5M927d09tbW2L91dffbWNJiteuVzOrbfemunTp6exsTFJsu+++2bKlCm55ZZbCs+zuA4AAAAAAAAAAAAAkGTatGl/9P2mm25qpUlaz44dO7Jq1ao0NDSkT58+6dChQ0VyLK4DAAAAAAAAAAAAAOxlZs+enZNOOim9e/duUd++fXt+/vOfZ+zYsYXmWVwHAAAAAAAAAAAAAPgDS5YsyYoVK5Ikxx9/fAYMGNDGExWvqqoqtbW1eeihh3L++efvqv/2t7/N4YcfnqampkLzqgvtBgAAAAAAAAAAAACwh3r//fdz4YUX5oUXXkinTp2SJFu2bMnpp5+exx9/PIccckjbDliwadOmZcyYMamrq8vUqVMrmlVV0e4AAAAAAAAAAAAAAHuIa665Jp988kmWL1+e+vr61NfXZ9myZdm6dWsmTJjQ1uMV7tJLL82CBQty33335YILLsi2bdsqllUql8vlinUHAAAAAAAAAAAAANhDHHjggZk3b15OOumkFvXFixdnxIgR2bJlS9sMVgH77LNPNm/enEMPPTTr16/P6NGjUyqVcu+99+aUU05JU1NToXkurgMAAAAAAAAAAAAAJGlubk5NTc1n6jU1NWlubm6DiSrnD++fH3nkkXnppZdy1FFH5Wtf+1pF8iyuAwAAAAAAAAAAAAAkOeOMMzJx4sRs2rRpV23jxo2ZNGlShg8f3oaTFe+mm25Khw4ddv1u3759fvGLX2TSpEkZNmxY4Xml8h+uygMAAAAAAAAAAAAA7KU2bNiQ0aNHZ/ny5enWrVuSZP369enXr1/mzp2bI444oo0n3HNZXAcAAAAAAAAAAAAA+L1yuZz58+dnxYoVSZLevXvnzDPPbOOpijF37tycffbZqampydy5cz/3u1KplFGjRhWabXEdAAAAAAAAAAAAAOD35s+fn/nz5+f9999Pc3Nzi7cHH3ywjaYqRlVVVd57770ceuihqaqq+tzvSqVSmpqaCs2uLrQbAAAAAAAAAAAAAMAeatq0abn55pszaNCgdOnSJaVSqa1HKtQfLuL/76X8SnNxHQAAAAAAAAAAAAAgSZcuXXL77bdnzJgxbT3Kl46L6wAAAAAAAAAAAAAASXbs2JFTTjmlrceomDvvvPMLfzthwoRCs11cBwAAAAAAAAAAAABI8g//8A/p0KFDvve977X1KBXRo0ePL/RdqVTKmjVrCs12cR0AAAAAAAAAAAAAIMn27dtz//33Z968eenfv39qampavM+cObONJivG2rVr2yzbxXUAAAAAAAAAAAAAgCSnn376576VSqUsWLCgFaf5crG4DgAAAAAAAAAAAACwF3r33Xczd+7crF+/Pjt27GjxVvR1+epCuwEAAAAAAAAAAAAAsNubP39+Ro8enZ49e+bNN99M3759884776RcLmfgwIGF51UV3hEAAAAAAAAAAAAAgN3ad77znUyZMiV1dXXZb7/9MmfOnGzYsCFf/epX841vfKPwvFK5XC4X3hUAAAAAAAAAAAAAgN1Wx44d85vf/CZHH310OnfunEWLFuX444/P0qVL8/Wvfz3vvPNOoXkurgMAAAAAAAAAAAAA7GVqa2uzY8eOJEmXLl2yevXqXW8ffvhh4XnVhXcEAAAAAAAAAAAAAGC3Nnjw4CxatCi9e/fOyJEjM3ny5NTV1eWpp57K4MGDC88rlcvlcuFdAQAAAAAAAAAAAADYba1ZsyYNDQ3p379/Pv3000yePDkvvfRSevXqlZkzZ6Z79+6F5llcBwAAAAAAAAAAAACgoqrbegAAAAAAAAAAAAAAANpOQ0NDmpubW9QOOOCAQjOqCu0GAAAAAAAAAAAAAMBub+3atTnnnHNSW1ubAw88MJ07d07nzp3TqVOndO7cufA8F9cBAAAAAAAAAAAAAPYyl156acrlch588MEcdthhKZVKFc0rlcvlckUTAAAAAAAAAAAAAADYrXTo0CFLlizJscce2yp5Va2SAgAAAAAAAAAAAADAbuOkk07Khg0bWi2vutWSAAAAAAAAAAAAAADYLcyaNSvjx4/Pxo0b07dv39TU1LR479+/f6F5FtcBAAAAAAAAAAAAAPYyH3zwQVavXp3LL798V61UKqVcLqdUKqWpqanQvFK5XC4X2hEAAAAAAAAAAAAAgN1anz590rt373z729/OYYcdllKp1OK9e/fuheZZXAcAAAAAAAAAAAAA2MvU1tZm6dKlOeaYY1olr6pVUgAAAAAAAAAAAAAA2G2cccYZWbp0aavlVbdaEgAAAAAAAAAAAAAAu4VRo0Zl0qRJqaurS79+/VJTU9PiffTo0YXmlcrlcrnQjgAAAAAAAAAAAAAA7Naqqqo+961UKqWpqanQPIvrAAAAAAAAAAAAAABU1OevyQMAAAAAAAAAAAAA8KWzc+fOVFdXZ9myZa2WaXEdAAAAAAAAAAAAAGAvUlNTkyOPPDJNTU2tlmlxHQAAAAAAAAAAAABgL3PDDTfku9/9burr61slr1Qul8utkgQAAAAAAAAAAAAAwG5hwIABWbVqVXbu3Jnu3buntra2xfurr75aaF51od0AAAAAAAAAAAAAANjt/c3f/E2r5rm4DgAAAAAAAAAAAABARbm4DgAAAAAAAAAAAACwl1qyZElWrFiRJDn++OMzYMCAiuRYXAcAAAAAAAAAAAAA2Mu8//77ufDCC/PCCy+kU6dOSZItW7bk9NNPz+OPP55DDjmk0LyqQrsBAAAAAAAAAAAAALDbu+aaa/LJJ59k+fLlqa+vT319fZYtW5atW7dmwoQJheeVyuVyufCuAAAAAAAAAAAAAADstg488MDMmzcvJ510Uov64sWLM2LEiGzZsqXQPBfXAQAAAAAAAAAAAAD2Ms3NzampqflMvaamJs3NzYXnWVwHAAAAAAAAAAAAANjLnHHGGZk4cWI2bdq0q7Zx48ZMmjQpw4cPLzyvVC6Xy4V3BQAAAAAAAAAAAABgt7Vhw4aMHj06y5cvT7du3ZIk69evT79+/TJ37twcccQRheZZXAcAAAAAAAAAAAAA2AuVy+XMnz8/K1asSJL07t07Z555ZkWyLK4DAAAAAAAAAAAAAOyF5s+fn/nz5+f9999Pc3Nzi7cHH3yw0KzqQrsBAAAAAAAAAAAAALDbmzZtWm6++eYMGjQoXbp0SalUqmiei+sAAAAAAAAAAAAAAHuZLl265Pbbb8+YMWNaJa+qVVIAAAAAAAAAAAAAANht7NixI6ecckqr5VlcBwAAAAAAAAAAAADYy1xxxRV57LHHWi2vutWSAAAAAAAAAAAAAADYLWzfvj33339/5s2bl/79+6empqbF+8yZMwvNK5XL5XKhHQEAAAAAAAAAAAAA2K2dfvrpn/tWKpWyYMGCQvMsrgMAAAAAAAAAAAAAUFFVbT0AAAAAAAAAAAAAAABfbhbXAQAAAAAAAAAAAACoKIvrAAAAAAAAAAAAAABUlMV1AAAAAAAAAAAAAAAqyuI6AAAAAAAAAAAAAAAVZXEdAAAAAAAAAAAAAICKsrgOAAAAAAAAAAAAAEBFWVwHAAAAAAAAAAAAAKCi/gt/uUVmaJTaBAAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "import numpy as np\n", - "from sklearn.preprocessing import Normalizer\n", - "from sklearn.preprocessing import StandardScaler, MinMaxScaler\n", - "from sklearn.decomposition import PCA\n", - "import matplotlib.pyplot as plt\n", - "import seaborn as sns\n", - "\n", - "X = imp_df\n", - "scaler = StandardScaler()\n", - "minmaxscaler = MinMaxScaler()\n", - "scaled_X_train = scaler.fit_transform(X)\n", - "normed_X = Normalizer(norm=\"l2\").fit_transform(X)\n", - "minmaxscaled_X = minmaxscaler.fit_transform(X)\n", - "\n", - "\n", - "import pandas as pd\n", - "from sklearn.decomposition import PCA\n", - "\n", - "pca = PCA(n_components=2).fit(minmaxscaled_X)\n", - "minmax_pca = PCA(n_components=2).fit(X)\n", - "scaled_pca = PCA(n_components=2).fit(scaled_X_train)\n", - "norm_pca = PCA(n_components=2).fit(normed_X)\n", - "\n", - "\n", - "X_train_transformed = pca.transform(X)\n", - "X_train_minmax_transformed = pca.transform(minmaxscaled_X)\n", - "X_train_std_transformed = scaled_pca.transform(scaled_X_train)\n", - "X_train_norm_transformed = norm_pca.transform(normed_X)\n", - "\n", - "\n", - "first_pca_component = pd.DataFrame(\n", - " pca.components_[0], index=X.columns, columns=[\"without scaling\"]\n", - ")\n", - "first_pca_component[\"with scaling\"] = scaled_pca.components_[0]\n", - "first_pca_component[\"with normalization\"] = norm_pca.components_[0]\n", - "first_pca_component.plot.bar(\n", - " title=\"Weights of the first principal component\", figsize=(30, 8)\n", - ")\n", - "\n", - "_ = plt.tight_layout()" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "id": "cb1665e3", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "(100,)\n", - "10: ['trace_len_min', 'mean_variant_occurrence', 'ratio_top_75_variants', 'ratio_top_50_variants', 'normalized_sequence_entropy', 'eventropy_k_block_diff_1', 'ratio_top_1_variants', 'normalized_sequence_eventropy_exponential_forgetting', 'eventropy_k_block_ratio_3', 'activities_min']\n", - "20: ['trace_len_min', 'mean_variant_occurrence', 'ratio_top_75_variants', 'ratio_top_50_variants', 'normalized_sequence_entropy', 'eventropy_k_block_diff_1', 'ratio_top_1_variants', 'normalized_sequence_eventropy_exponential_forgetting', 'eventropy_k_block_ratio_3', 'activities_min', 'end_activities_median', 'eventropy_k_block_diff_5', 'trace_len_mode', 'trace_len_geometric_std', 'eventropy_k_block_ratio_1', 'eventropy_k_block_ratio_5', 'end_activities_iqr', 'eventropy_knn_3', 'ratio_top_20_variants', 'normalized_sequence_eventropy_linear_forgetting']\n", - "30: ['trace_len_min', 'mean_variant_occurrence', 'ratio_top_75_variants', 'ratio_top_50_variants', 'normalized_sequence_entropy', 'eventropy_k_block_diff_1', 'ratio_top_1_variants', 'normalized_sequence_eventropy_exponential_forgetting', 'eventropy_k_block_ratio_3', 'activities_min', 'end_activities_median', 'eventropy_k_block_diff_5', 'trace_len_mode', 'trace_len_geometric_std', 'eventropy_k_block_ratio_1', 'eventropy_k_block_ratio_5', 'end_activities_iqr', 'eventropy_knn_3', 'ratio_top_20_variants', 'normalized_sequence_eventropy_linear_forgetting', 'trace_len_hist1', 'eventropy_global_block', 'trace_len_q3', 'trace_len_std', 'trace_len_median', 'activities_iqr', 'end_activities_kurtosis', 'trace_len_iqr', 'trace_len_skewness', 'ratio_top_10_variants']\n", - "40: ['trace_len_min', 'mean_variant_occurrence', 'ratio_top_75_variants', 'ratio_top_50_variants', 'normalized_sequence_entropy', 'eventropy_k_block_diff_1', 'ratio_top_1_variants', 'normalized_sequence_eventropy_exponential_forgetting', 'eventropy_k_block_ratio_3', 'activities_min', 'end_activities_median', 'eventropy_k_block_diff_5', 'trace_len_mode', 'trace_len_geometric_std', 'eventropy_k_block_ratio_1', 'eventropy_k_block_ratio_5', 'end_activities_iqr', 'eventropy_knn_3', 'ratio_top_20_variants', 'normalized_sequence_eventropy_linear_forgetting', 'trace_len_hist1', 'eventropy_global_block', 'trace_len_q3', 'trace_len_std', 'trace_len_median', 'activities_iqr', 'end_activities_kurtosis', 'trace_len_iqr', 'trace_len_skewness', 'ratio_top_10_variants', 'eventropy_prefix', 'end_activities_variance', 'end_activities_skewness', 'start_activities_median', 'eventropy_lempel_ziv', 'start_activities_mean', 'start_activities_iqr', 'activities_median', 'n_unique_traces', 'activities_std']\n", - "50: ['trace_len_min', 'mean_variant_occurrence', 'ratio_top_75_variants', 'ratio_top_50_variants', 'normalized_sequence_entropy', 'eventropy_k_block_diff_1', 'ratio_top_1_variants', 'normalized_sequence_eventropy_exponential_forgetting', 'eventropy_k_block_ratio_3', 'activities_min', 'end_activities_median', 'eventropy_k_block_diff_5', 'trace_len_mode', 'trace_len_geometric_std', 'eventropy_k_block_ratio_1', 'eventropy_k_block_ratio_5', 'end_activities_iqr', 'eventropy_knn_3', 'ratio_top_20_variants', 'normalized_sequence_eventropy_linear_forgetting', 'trace_len_hist1', 'eventropy_global_block', 'trace_len_q3', 'trace_len_std', 'trace_len_median', 'activities_iqr', 'end_activities_kurtosis', 'trace_len_iqr', 'trace_len_skewness', 'ratio_top_10_variants', 'eventropy_prefix', 'end_activities_variance', 'end_activities_skewness', 'start_activities_median', 'eventropy_lempel_ziv', 'start_activities_mean', 'start_activities_iqr', 'activities_median', 'n_unique_traces', 'activities_std', 'activities_skewness', 'end_activities_q1', 'end_activities_mean', 'start_activities_std', 'start_activities_q3', 'start_activities_max', 'activities_kurtosis', 'eventropy_trace', 'eventropy_k_block_diff_3', 'end_activities_min']\n", - "60: ['trace_len_min', 'mean_variant_occurrence', 'ratio_top_75_variants', 'ratio_top_50_variants', 'normalized_sequence_entropy', 'eventropy_k_block_diff_1', 'ratio_top_1_variants', 'normalized_sequence_eventropy_exponential_forgetting', 'eventropy_k_block_ratio_3', 'activities_min', 'end_activities_median', 'eventropy_k_block_diff_5', 'trace_len_mode', 'trace_len_geometric_std', 'eventropy_k_block_ratio_1', 'eventropy_k_block_ratio_5', 'end_activities_iqr', 'eventropy_knn_3', 'ratio_top_20_variants', 'normalized_sequence_eventropy_linear_forgetting', 'trace_len_hist1', 'eventropy_global_block', 'trace_len_q3', 'trace_len_std', 'trace_len_median', 'activities_iqr', 'end_activities_kurtosis', 'trace_len_iqr', 'trace_len_skewness', 'ratio_top_10_variants', 'eventropy_prefix', 'end_activities_variance', 'end_activities_skewness', 'start_activities_median', 'eventropy_lempel_ziv', 'start_activities_mean', 'start_activities_iqr', 'activities_median', 'n_unique_traces', 'activities_std', 'activities_skewness', 'end_activities_q1', 'end_activities_mean', 'start_activities_std', 'start_activities_q3', 'start_activities_max', 'activities_kurtosis', 'eventropy_trace', 'eventropy_k_block_diff_3', 'end_activities_min', 'start_activities_kurtosis', 'eventropy_knn_7', 'ratio_top_5_variants', 'Log Nature', 'eventropy_knn_5', 'skewness_variant_occurrence', 'end_activities_std', 'trace_len_hist3', 'start_activities_skewness', 'std_variant_occurrence']\n", - "70: ['trace_len_min', 'mean_variant_occurrence', 'ratio_top_75_variants', 'ratio_top_50_variants', 'normalized_sequence_entropy', 'eventropy_k_block_diff_1', 'ratio_top_1_variants', 'normalized_sequence_eventropy_exponential_forgetting', 'eventropy_k_block_ratio_3', 'activities_min', 'end_activities_median', 'eventropy_k_block_diff_5', 'trace_len_mode', 'trace_len_geometric_std', 'eventropy_k_block_ratio_1', 'eventropy_k_block_ratio_5', 'end_activities_iqr', 'eventropy_knn_3', 'ratio_top_20_variants', 'normalized_sequence_eventropy_linear_forgetting', 'trace_len_hist1', 'eventropy_global_block', 'trace_len_q3', 'trace_len_std', 'trace_len_median', 'activities_iqr', 'end_activities_kurtosis', 'trace_len_iqr', 'trace_len_skewness', 'ratio_top_10_variants', 'eventropy_prefix', 'end_activities_variance', 'end_activities_skewness', 'start_activities_median', 'eventropy_lempel_ziv', 'start_activities_mean', 'start_activities_iqr', 'activities_median', 'n_unique_traces', 'activities_std', 'activities_skewness', 'end_activities_q1', 'end_activities_mean', 'start_activities_std', 'start_activities_q3', 'start_activities_max', 'activities_kurtosis', 'eventropy_trace', 'eventropy_k_block_diff_3', 'end_activities_min', 'start_activities_kurtosis', 'eventropy_knn_7', 'ratio_top_5_variants', 'Log Nature', 'eventropy_knn_5', 'skewness_variant_occurrence', 'end_activities_std', 'trace_len_hist3', 'start_activities_skewness', 'std_variant_occurrence', 'trace_len_hist7', 'n_unique_start_activities', 'start_activities_variance', 'trace_len_geometric_mean', 'trace_len_variance', 'activities_q3', 'activities_variance', 'n_unique_end_activities', 'start_activities_q1', 'activities_mean']\n", - "80: ['trace_len_min', 'mean_variant_occurrence', 'ratio_top_75_variants', 'ratio_top_50_variants', 'normalized_sequence_entropy', 'eventropy_k_block_diff_1', 'ratio_top_1_variants', 'normalized_sequence_eventropy_exponential_forgetting', 'eventropy_k_block_ratio_3', 'activities_min', 'end_activities_median', 'eventropy_k_block_diff_5', 'trace_len_mode', 'trace_len_geometric_std', 'eventropy_k_block_ratio_1', 'eventropy_k_block_ratio_5', 'end_activities_iqr', 'eventropy_knn_3', 'ratio_top_20_variants', 'normalized_sequence_eventropy_linear_forgetting', 'trace_len_hist1', 'eventropy_global_block', 'trace_len_q3', 'trace_len_std', 'trace_len_median', 'activities_iqr', 'end_activities_kurtosis', 'trace_len_iqr', 'trace_len_skewness', 'ratio_top_10_variants', 'eventropy_prefix', 'end_activities_variance', 'end_activities_skewness', 'start_activities_median', 'eventropy_lempel_ziv', 'start_activities_mean', 'start_activities_iqr', 'activities_median', 'n_unique_traces', 'activities_std', 'activities_skewness', 'end_activities_q1', 'end_activities_mean', 'start_activities_std', 'start_activities_q3', 'start_activities_max', 'activities_kurtosis', 'eventropy_trace', 'eventropy_k_block_diff_3', 'end_activities_min', 'start_activities_kurtosis', 'eventropy_knn_7', 'ratio_top_5_variants', 'Log Nature', 'eventropy_knn_5', 'skewness_variant_occurrence', 'end_activities_std', 'trace_len_hist3', 'start_activities_skewness', 'std_variant_occurrence', 'trace_len_hist7', 'n_unique_start_activities', 'start_activities_variance', 'trace_len_geometric_mean', 'trace_len_variance', 'activities_q3', 'activities_variance', 'n_unique_end_activities', 'start_activities_q1', 'activities_mean', 'end_activities_q3', 'trace_len_harmonic_mean', 'start_activities_min', 'activities_max', 'end_activities_max', 'trace_len_hist10', 'trace_len_q1', 'trace_len_hist8', 'kurtosis_variant_occurrence', 'trace_len_skewness_hist']\n", - "90: ['trace_len_min', 'mean_variant_occurrence', 'ratio_top_75_variants', 'ratio_top_50_variants', 'normalized_sequence_entropy', 'eventropy_k_block_diff_1', 'ratio_top_1_variants', 'normalized_sequence_eventropy_exponential_forgetting', 'eventropy_k_block_ratio_3', 'activities_min', 'end_activities_median', 'eventropy_k_block_diff_5', 'trace_len_mode', 'trace_len_geometric_std', 'eventropy_k_block_ratio_1', 'eventropy_k_block_ratio_5', 'end_activities_iqr', 'eventropy_knn_3', 'ratio_top_20_variants', 'normalized_sequence_eventropy_linear_forgetting', 'trace_len_hist1', 'eventropy_global_block', 'trace_len_q3', 'trace_len_std', 'trace_len_median', 'activities_iqr', 'end_activities_kurtosis', 'trace_len_iqr', 'trace_len_skewness', 'ratio_top_10_variants', 'eventropy_prefix', 'end_activities_variance', 'end_activities_skewness', 'start_activities_median', 'eventropy_lempel_ziv', 'start_activities_mean', 'start_activities_iqr', 'activities_median', 'n_unique_traces', 'activities_std', 'activities_skewness', 'end_activities_q1', 'end_activities_mean', 'start_activities_std', 'start_activities_q3', 'start_activities_max', 'activities_kurtosis', 'eventropy_trace', 'eventropy_k_block_diff_3', 'end_activities_min', 'start_activities_kurtosis', 'eventropy_knn_7', 'ratio_top_5_variants', 'Log Nature', 'eventropy_knn_5', 'skewness_variant_occurrence', 'end_activities_std', 'trace_len_hist3', 'start_activities_skewness', 'std_variant_occurrence', 'trace_len_hist7', 'n_unique_start_activities', 'start_activities_variance', 'trace_len_geometric_mean', 'trace_len_variance', 'activities_q3', 'activities_variance', 'n_unique_end_activities', 'start_activities_q1', 'activities_mean', 'end_activities_q3', 'trace_len_harmonic_mean', 'start_activities_min', 'activities_max', 'end_activities_max', 'trace_len_hist10', 'trace_len_q1', 'trace_len_hist8', 'kurtosis_variant_occurrence', 'trace_len_skewness_hist', 'trace_len_hist6', 'trace_len_hist4', 'activities_q1', 'trace_len_kurtosis', 'trace_len_kurtosis_hist', 'ratio_unique_traces_per_trace', 'trace_len_hist9', 'ratio_most_common_variant', 'trace_len_coefficient_variation', 'trace_len_mean']\n", - "100: ['trace_len_min', 'mean_variant_occurrence', 'ratio_top_75_variants', 'ratio_top_50_variants', 'normalized_sequence_entropy', 'eventropy_k_block_diff_1', 'ratio_top_1_variants', 'normalized_sequence_eventropy_exponential_forgetting', 'eventropy_k_block_ratio_3', 'activities_min', 'end_activities_median', 'eventropy_k_block_diff_5', 'trace_len_mode', 'trace_len_geometric_std', 'eventropy_k_block_ratio_1', 'eventropy_k_block_ratio_5', 'end_activities_iqr', 'eventropy_knn_3', 'ratio_top_20_variants', 'normalized_sequence_eventropy_linear_forgetting', 'trace_len_hist1', 'eventropy_global_block', 'trace_len_q3', 'trace_len_std', 'trace_len_median', 'activities_iqr', 'end_activities_kurtosis', 'trace_len_iqr', 'trace_len_skewness', 'ratio_top_10_variants', 'eventropy_prefix', 'end_activities_variance', 'end_activities_skewness', 'start_activities_median', 'eventropy_lempel_ziv', 'start_activities_mean', 'start_activities_iqr', 'activities_median', 'n_unique_traces', 'activities_std', 'activities_skewness', 'end_activities_q1', 'end_activities_mean', 'start_activities_std', 'start_activities_q3', 'start_activities_max', 'activities_kurtosis', 'eventropy_trace', 'eventropy_k_block_diff_3', 'end_activities_min', 'start_activities_kurtosis', 'eventropy_knn_7', 'ratio_top_5_variants', 'Log Nature', 'eventropy_knn_5', 'skewness_variant_occurrence', 'end_activities_std', 'trace_len_hist3', 'start_activities_skewness', 'std_variant_occurrence', 'trace_len_hist7', 'n_unique_start_activities', 'start_activities_variance', 'trace_len_geometric_mean', 'trace_len_variance', 'activities_q3', 'activities_variance', 'n_unique_end_activities', 'start_activities_q1', 'activities_mean', 'end_activities_q3', 'trace_len_harmonic_mean', 'start_activities_min', 'activities_max', 'end_activities_max', 'trace_len_hist10', 'trace_len_q1', 'trace_len_hist8', 'kurtosis_variant_occurrence', 'trace_len_skewness_hist', 'trace_len_hist6', 'trace_len_hist4', 'activities_q1', 'trace_len_kurtosis', 'trace_len_kurtosis_hist', 'ratio_unique_traces_per_trace', 'trace_len_hist9', 'ratio_most_common_variant', 'trace_len_coefficient_variation', 'trace_len_mean', 'trace_len_entropy', 'trace_len_max', 'sequence_eventropy_linear_forgetting', 'normalized_variant_entropy', 'sequence_eventropy_exponential_forgetting', 'n_unique_activities', 'variant_entropy', 'trace_len_hist2', 'sequence_entropy', 'trace_len_hist5']\n", - "110: ['trace_len_min', 'mean_variant_occurrence', 'ratio_top_75_variants', 'ratio_top_50_variants', 'normalized_sequence_entropy', 'eventropy_k_block_diff_1', 'ratio_top_1_variants', 'normalized_sequence_eventropy_exponential_forgetting', 'eventropy_k_block_ratio_3', 'activities_min', 'end_activities_median', 'eventropy_k_block_diff_5', 'trace_len_mode', 'trace_len_geometric_std', 'eventropy_k_block_ratio_1', 'eventropy_k_block_ratio_5', 'end_activities_iqr', 'eventropy_knn_3', 'ratio_top_20_variants', 'normalized_sequence_eventropy_linear_forgetting', 'trace_len_hist1', 'eventropy_global_block', 'trace_len_q3', 'trace_len_std', 'trace_len_median', 'activities_iqr', 'end_activities_kurtosis', 'trace_len_iqr', 'trace_len_skewness', 'ratio_top_10_variants', 'eventropy_prefix', 'end_activities_variance', 'end_activities_skewness', 'start_activities_median', 'eventropy_lempel_ziv', 'start_activities_mean', 'start_activities_iqr', 'activities_median', 'n_unique_traces', 'activities_std', 'activities_skewness', 'end_activities_q1', 'end_activities_mean', 'start_activities_std', 'start_activities_q3', 'start_activities_max', 'activities_kurtosis', 'eventropy_trace', 'eventropy_k_block_diff_3', 'end_activities_min', 'start_activities_kurtosis', 'eventropy_knn_7', 'ratio_top_5_variants', 'Log Nature', 'eventropy_knn_5', 'skewness_variant_occurrence', 'end_activities_std', 'trace_len_hist3', 'start_activities_skewness', 'std_variant_occurrence', 'trace_len_hist7', 'n_unique_start_activities', 'start_activities_variance', 'trace_len_geometric_mean', 'trace_len_variance', 'activities_q3', 'activities_variance', 'n_unique_end_activities', 'start_activities_q1', 'activities_mean', 'end_activities_q3', 'trace_len_harmonic_mean', 'start_activities_min', 'activities_max', 'end_activities_max', 'trace_len_hist10', 'trace_len_q1', 'trace_len_hist8', 'kurtosis_variant_occurrence', 'trace_len_skewness_hist', 'trace_len_hist6', 'trace_len_hist4', 'activities_q1', 'trace_len_kurtosis', 'trace_len_kurtosis_hist', 'ratio_unique_traces_per_trace', 'trace_len_hist9', 'ratio_most_common_variant', 'trace_len_coefficient_variation', 'trace_len_mean', 'trace_len_entropy', 'trace_len_max', 'sequence_eventropy_linear_forgetting', 'normalized_variant_entropy', 'sequence_eventropy_exponential_forgetting', 'n_unique_activities', 'variant_entropy', 'trace_len_hist2', 'sequence_entropy', 'trace_len_hist5']\n", - "120: ['trace_len_min', 'mean_variant_occurrence', 'ratio_top_75_variants', 'ratio_top_50_variants', 'normalized_sequence_entropy', 'eventropy_k_block_diff_1', 'ratio_top_1_variants', 'normalized_sequence_eventropy_exponential_forgetting', 'eventropy_k_block_ratio_3', 'activities_min', 'end_activities_median', 'eventropy_k_block_diff_5', 'trace_len_mode', 'trace_len_geometric_std', 'eventropy_k_block_ratio_1', 'eventropy_k_block_ratio_5', 'end_activities_iqr', 'eventropy_knn_3', 'ratio_top_20_variants', 'normalized_sequence_eventropy_linear_forgetting', 'trace_len_hist1', 'eventropy_global_block', 'trace_len_q3', 'trace_len_std', 'trace_len_median', 'activities_iqr', 'end_activities_kurtosis', 'trace_len_iqr', 'trace_len_skewness', 'ratio_top_10_variants', 'eventropy_prefix', 'end_activities_variance', 'end_activities_skewness', 'start_activities_median', 'eventropy_lempel_ziv', 'start_activities_mean', 'start_activities_iqr', 'activities_median', 'n_unique_traces', 'activities_std', 'activities_skewness', 'end_activities_q1', 'end_activities_mean', 'start_activities_std', 'start_activities_q3', 'start_activities_max', 'activities_kurtosis', 'eventropy_trace', 'eventropy_k_block_diff_3', 'end_activities_min', 'start_activities_kurtosis', 'eventropy_knn_7', 'ratio_top_5_variants', 'Log Nature', 'eventropy_knn_5', 'skewness_variant_occurrence', 'end_activities_std', 'trace_len_hist3', 'start_activities_skewness', 'std_variant_occurrence', 'trace_len_hist7', 'n_unique_start_activities', 'start_activities_variance', 'trace_len_geometric_mean', 'trace_len_variance', 'activities_q3', 'activities_variance', 'n_unique_end_activities', 'start_activities_q1', 'activities_mean', 'end_activities_q3', 'trace_len_harmonic_mean', 'start_activities_min', 'activities_max', 'end_activities_max', 'trace_len_hist10', 'trace_len_q1', 'trace_len_hist8', 'kurtosis_variant_occurrence', 'trace_len_skewness_hist', 'trace_len_hist6', 'trace_len_hist4', 'activities_q1', 'trace_len_kurtosis', 'trace_len_kurtosis_hist', 'ratio_unique_traces_per_trace', 'trace_len_hist9', 'ratio_most_common_variant', 'trace_len_coefficient_variation', 'trace_len_mean', 'trace_len_entropy', 'trace_len_max', 'sequence_eventropy_linear_forgetting', 'normalized_variant_entropy', 'sequence_eventropy_exponential_forgetting', 'n_unique_activities', 'variant_entropy', 'trace_len_hist2', 'sequence_entropy', 'trace_len_hist5']\n", - "130: ['trace_len_min', 'mean_variant_occurrence', 'ratio_top_75_variants', 'ratio_top_50_variants', 'normalized_sequence_entropy', 'eventropy_k_block_diff_1', 'ratio_top_1_variants', 'normalized_sequence_eventropy_exponential_forgetting', 'eventropy_k_block_ratio_3', 'activities_min', 'end_activities_median', 'eventropy_k_block_diff_5', 'trace_len_mode', 'trace_len_geometric_std', 'eventropy_k_block_ratio_1', 'eventropy_k_block_ratio_5', 'end_activities_iqr', 'eventropy_knn_3', 'ratio_top_20_variants', 'normalized_sequence_eventropy_linear_forgetting', 'trace_len_hist1', 'eventropy_global_block', 'trace_len_q3', 'trace_len_std', 'trace_len_median', 'activities_iqr', 'end_activities_kurtosis', 'trace_len_iqr', 'trace_len_skewness', 'ratio_top_10_variants', 'eventropy_prefix', 'end_activities_variance', 'end_activities_skewness', 'start_activities_median', 'eventropy_lempel_ziv', 'start_activities_mean', 'start_activities_iqr', 'activities_median', 'n_unique_traces', 'activities_std', 'activities_skewness', 'end_activities_q1', 'end_activities_mean', 'start_activities_std', 'start_activities_q3', 'start_activities_max', 'activities_kurtosis', 'eventropy_trace', 'eventropy_k_block_diff_3', 'end_activities_min', 'start_activities_kurtosis', 'eventropy_knn_7', 'ratio_top_5_variants', 'Log Nature', 'eventropy_knn_5', 'skewness_variant_occurrence', 'end_activities_std', 'trace_len_hist3', 'start_activities_skewness', 'std_variant_occurrence', 'trace_len_hist7', 'n_unique_start_activities', 'start_activities_variance', 'trace_len_geometric_mean', 'trace_len_variance', 'activities_q3', 'activities_variance', 'n_unique_end_activities', 'start_activities_q1', 'activities_mean', 'end_activities_q3', 'trace_len_harmonic_mean', 'start_activities_min', 'activities_max', 'end_activities_max', 'trace_len_hist10', 'trace_len_q1', 'trace_len_hist8', 'kurtosis_variant_occurrence', 'trace_len_skewness_hist', 'trace_len_hist6', 'trace_len_hist4', 'activities_q1', 'trace_len_kurtosis', 'trace_len_kurtosis_hist', 'ratio_unique_traces_per_trace', 'trace_len_hist9', 'ratio_most_common_variant', 'trace_len_coefficient_variation', 'trace_len_mean', 'trace_len_entropy', 'trace_len_max', 'sequence_eventropy_linear_forgetting', 'normalized_variant_entropy', 'sequence_eventropy_exponential_forgetting', 'n_unique_activities', 'variant_entropy', 'trace_len_hist2', 'sequence_entropy', 'trace_len_hist5']\n", - "140: ['trace_len_min', 'mean_variant_occurrence', 'ratio_top_75_variants', 'ratio_top_50_variants', 'normalized_sequence_entropy', 'eventropy_k_block_diff_1', 'ratio_top_1_variants', 'normalized_sequence_eventropy_exponential_forgetting', 'eventropy_k_block_ratio_3', 'activities_min', 'end_activities_median', 'eventropy_k_block_diff_5', 'trace_len_mode', 'trace_len_geometric_std', 'eventropy_k_block_ratio_1', 'eventropy_k_block_ratio_5', 'end_activities_iqr', 'eventropy_knn_3', 'ratio_top_20_variants', 'normalized_sequence_eventropy_linear_forgetting', 'trace_len_hist1', 'eventropy_global_block', 'trace_len_q3', 'trace_len_std', 'trace_len_median', 'activities_iqr', 'end_activities_kurtosis', 'trace_len_iqr', 'trace_len_skewness', 'ratio_top_10_variants', 'eventropy_prefix', 'end_activities_variance', 'end_activities_skewness', 'start_activities_median', 'eventropy_lempel_ziv', 'start_activities_mean', 'start_activities_iqr', 'activities_median', 'n_unique_traces', 'activities_std', 'activities_skewness', 'end_activities_q1', 'end_activities_mean', 'start_activities_std', 'start_activities_q3', 'start_activities_max', 'activities_kurtosis', 'eventropy_trace', 'eventropy_k_block_diff_3', 'end_activities_min', 'start_activities_kurtosis', 'eventropy_knn_7', 'ratio_top_5_variants', 'Log Nature', 'eventropy_knn_5', 'skewness_variant_occurrence', 'end_activities_std', 'trace_len_hist3', 'start_activities_skewness', 'std_variant_occurrence', 'trace_len_hist7', 'n_unique_start_activities', 'start_activities_variance', 'trace_len_geometric_mean', 'trace_len_variance', 'activities_q3', 'activities_variance', 'n_unique_end_activities', 'start_activities_q1', 'activities_mean', 'end_activities_q3', 'trace_len_harmonic_mean', 'start_activities_min', 'activities_max', 'end_activities_max', 'trace_len_hist10', 'trace_len_q1', 'trace_len_hist8', 'kurtosis_variant_occurrence', 'trace_len_skewness_hist', 'trace_len_hist6', 'trace_len_hist4', 'activities_q1', 'trace_len_kurtosis', 'trace_len_kurtosis_hist', 'ratio_unique_traces_per_trace', 'trace_len_hist9', 'ratio_most_common_variant', 'trace_len_coefficient_variation', 'trace_len_mean', 'trace_len_entropy', 'trace_len_max', 'sequence_eventropy_linear_forgetting', 'normalized_variant_entropy', 'sequence_eventropy_exponential_forgetting', 'n_unique_activities', 'variant_entropy', 'trace_len_hist2', 'sequence_entropy', 'trace_len_hist5']\n", - "150: ['trace_len_min', 'mean_variant_occurrence', 'ratio_top_75_variants', 'ratio_top_50_variants', 'normalized_sequence_entropy', 'eventropy_k_block_diff_1', 'ratio_top_1_variants', 'normalized_sequence_eventropy_exponential_forgetting', 'eventropy_k_block_ratio_3', 'activities_min', 'end_activities_median', 'eventropy_k_block_diff_5', 'trace_len_mode', 'trace_len_geometric_std', 'eventropy_k_block_ratio_1', 'eventropy_k_block_ratio_5', 'end_activities_iqr', 'eventropy_knn_3', 'ratio_top_20_variants', 'normalized_sequence_eventropy_linear_forgetting', 'trace_len_hist1', 'eventropy_global_block', 'trace_len_q3', 'trace_len_std', 'trace_len_median', 'activities_iqr', 'end_activities_kurtosis', 'trace_len_iqr', 'trace_len_skewness', 'ratio_top_10_variants', 'eventropy_prefix', 'end_activities_variance', 'end_activities_skewness', 'start_activities_median', 'eventropy_lempel_ziv', 'start_activities_mean', 'start_activities_iqr', 'activities_median', 'n_unique_traces', 'activities_std', 'activities_skewness', 'end_activities_q1', 'end_activities_mean', 'start_activities_std', 'start_activities_q3', 'start_activities_max', 'activities_kurtosis', 'eventropy_trace', 'eventropy_k_block_diff_3', 'end_activities_min', 'start_activities_kurtosis', 'eventropy_knn_7', 'ratio_top_5_variants', 'Log Nature', 'eventropy_knn_5', 'skewness_variant_occurrence', 'end_activities_std', 'trace_len_hist3', 'start_activities_skewness', 'std_variant_occurrence', 'trace_len_hist7', 'n_unique_start_activities', 'start_activities_variance', 'trace_len_geometric_mean', 'trace_len_variance', 'activities_q3', 'activities_variance', 'n_unique_end_activities', 'start_activities_q1', 'activities_mean', 'end_activities_q3', 'trace_len_harmonic_mean', 'start_activities_min', 'activities_max', 'end_activities_max', 'trace_len_hist10', 'trace_len_q1', 'trace_len_hist8', 'kurtosis_variant_occurrence', 'trace_len_skewness_hist', 'trace_len_hist6', 'trace_len_hist4', 'activities_q1', 'trace_len_kurtosis', 'trace_len_kurtosis_hist', 'ratio_unique_traces_per_trace', 'trace_len_hist9', 'ratio_most_common_variant', 'trace_len_coefficient_variation', 'trace_len_mean', 'trace_len_entropy', 'trace_len_max', 'sequence_eventropy_linear_forgetting', 'normalized_variant_entropy', 'sequence_eventropy_exponential_forgetting', 'n_unique_activities', 'variant_entropy', 'trace_len_hist2', 'sequence_entropy', 'trace_len_hist5']\n", - "160: ['trace_len_min', 'mean_variant_occurrence', 'ratio_top_75_variants', 'ratio_top_50_variants', 'normalized_sequence_entropy', 'eventropy_k_block_diff_1', 'ratio_top_1_variants', 'normalized_sequence_eventropy_exponential_forgetting', 'eventropy_k_block_ratio_3', 'activities_min', 'end_activities_median', 'eventropy_k_block_diff_5', 'trace_len_mode', 'trace_len_geometric_std', 'eventropy_k_block_ratio_1', 'eventropy_k_block_ratio_5', 'end_activities_iqr', 'eventropy_knn_3', 'ratio_top_20_variants', 'normalized_sequence_eventropy_linear_forgetting', 'trace_len_hist1', 'eventropy_global_block', 'trace_len_q3', 'trace_len_std', 'trace_len_median', 'activities_iqr', 'end_activities_kurtosis', 'trace_len_iqr', 'trace_len_skewness', 'ratio_top_10_variants', 'eventropy_prefix', 'end_activities_variance', 'end_activities_skewness', 'start_activities_median', 'eventropy_lempel_ziv', 'start_activities_mean', 'start_activities_iqr', 'activities_median', 'n_unique_traces', 'activities_std', 'activities_skewness', 'end_activities_q1', 'end_activities_mean', 'start_activities_std', 'start_activities_q3', 'start_activities_max', 'activities_kurtosis', 'eventropy_trace', 'eventropy_k_block_diff_3', 'end_activities_min', 'start_activities_kurtosis', 'eventropy_knn_7', 'ratio_top_5_variants', 'Log Nature', 'eventropy_knn_5', 'skewness_variant_occurrence', 'end_activities_std', 'trace_len_hist3', 'start_activities_skewness', 'std_variant_occurrence', 'trace_len_hist7', 'n_unique_start_activities', 'start_activities_variance', 'trace_len_geometric_mean', 'trace_len_variance', 'activities_q3', 'activities_variance', 'n_unique_end_activities', 'start_activities_q1', 'activities_mean', 'end_activities_q3', 'trace_len_harmonic_mean', 'start_activities_min', 'activities_max', 'end_activities_max', 'trace_len_hist10', 'trace_len_q1', 'trace_len_hist8', 'kurtosis_variant_occurrence', 'trace_len_skewness_hist', 'trace_len_hist6', 'trace_len_hist4', 'activities_q1', 'trace_len_kurtosis', 'trace_len_kurtosis_hist', 'ratio_unique_traces_per_trace', 'trace_len_hist9', 'ratio_most_common_variant', 'trace_len_coefficient_variation', 'trace_len_mean', 'trace_len_entropy', 'trace_len_max', 'sequence_eventropy_linear_forgetting', 'normalized_variant_entropy', 'sequence_eventropy_exponential_forgetting', 'n_unique_activities', 'variant_entropy', 'trace_len_hist2', 'sequence_entropy', 'trace_len_hist5']\n", - "170: ['trace_len_min', 'mean_variant_occurrence', 'ratio_top_75_variants', 'ratio_top_50_variants', 'normalized_sequence_entropy', 'eventropy_k_block_diff_1', 'ratio_top_1_variants', 'normalized_sequence_eventropy_exponential_forgetting', 'eventropy_k_block_ratio_3', 'activities_min', 'end_activities_median', 'eventropy_k_block_diff_5', 'trace_len_mode', 'trace_len_geometric_std', 'eventropy_k_block_ratio_1', 'eventropy_k_block_ratio_5', 'end_activities_iqr', 'eventropy_knn_3', 'ratio_top_20_variants', 'normalized_sequence_eventropy_linear_forgetting', 'trace_len_hist1', 'eventropy_global_block', 'trace_len_q3', 'trace_len_std', 'trace_len_median', 'activities_iqr', 'end_activities_kurtosis', 'trace_len_iqr', 'trace_len_skewness', 'ratio_top_10_variants', 'eventropy_prefix', 'end_activities_variance', 'end_activities_skewness', 'start_activities_median', 'eventropy_lempel_ziv', 'start_activities_mean', 'start_activities_iqr', 'activities_median', 'n_unique_traces', 'activities_std', 'activities_skewness', 'end_activities_q1', 'end_activities_mean', 'start_activities_std', 'start_activities_q3', 'start_activities_max', 'activities_kurtosis', 'eventropy_trace', 'eventropy_k_block_diff_3', 'end_activities_min', 'start_activities_kurtosis', 'eventropy_knn_7', 'ratio_top_5_variants', 'Log Nature', 'eventropy_knn_5', 'skewness_variant_occurrence', 'end_activities_std', 'trace_len_hist3', 'start_activities_skewness', 'std_variant_occurrence', 'trace_len_hist7', 'n_unique_start_activities', 'start_activities_variance', 'trace_len_geometric_mean', 'trace_len_variance', 'activities_q3', 'activities_variance', 'n_unique_end_activities', 'start_activities_q1', 'activities_mean', 'end_activities_q3', 'trace_len_harmonic_mean', 'start_activities_min', 'activities_max', 'end_activities_max', 'trace_len_hist10', 'trace_len_q1', 'trace_len_hist8', 'kurtosis_variant_occurrence', 'trace_len_skewness_hist', 'trace_len_hist6', 'trace_len_hist4', 'activities_q1', 'trace_len_kurtosis', 'trace_len_kurtosis_hist', 'ratio_unique_traces_per_trace', 'trace_len_hist9', 'ratio_most_common_variant', 'trace_len_coefficient_variation', 'trace_len_mean', 'trace_len_entropy', 'trace_len_max', 'sequence_eventropy_linear_forgetting', 'normalized_variant_entropy', 'sequence_eventropy_exponential_forgetting', 'n_unique_activities', 'variant_entropy', 'trace_len_hist2', 'sequence_entropy', 'trace_len_hist5']\n" - ] - }, - { - "data": { - "text/plain": [ - "['trace_len_min',\n", - " 'mean_variant_occurrence',\n", - " 'ratio_top_75_variants',\n", - " 'ratio_top_50_variants',\n", - " 'normalized_sequence_entropy',\n", - " 'eventropy_k_block_diff_1',\n", - " 'ratio_top_1_variants',\n", - " 'normalized_sequence_eventropy_exponential_forgetting',\n", - " 'eventropy_k_block_ratio_3',\n", - " 'activities_min',\n", - " 'end_activities_median',\n", - " 'eventropy_k_block_diff_5',\n", - " 'trace_len_mode',\n", - " 'trace_len_geometric_std',\n", - " 'eventropy_k_block_ratio_1',\n", - " 'eventropy_k_block_ratio_5',\n", - " 'end_activities_iqr',\n", - " 'eventropy_knn_3',\n", - " 'ratio_top_20_variants',\n", - " 'normalized_sequence_eventropy_linear_forgetting']" - ] - }, - "execution_count": 4, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "weights = scaled_pca.components_[0]\n", - "series = pd.Series(weights, index=X.columns)\n", - "pca_weights = pd.DataFrame([series]).T\n", - "pca_weights.columns = ['weight']\n", - "\n", - "pca_weights['abs_weight'] = pca_weights.apply(lambda x: abs(x['weight']), axis=1)\n", - "ranked_features = pca_weights.sort_values('abs_weight', ascending = False).index\n", - "print(ranked_features.shape)\n", - "\n", - "for i in range(10,176,10):\n", - " print(f\"{i}: {list(ranked_features[:i])}\")\n", - " \n", - "list(ranked_features[:20])" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "id": "eac5f4c1", - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/var/folders/d0/btmbyskx4t106_l2zghzln2w0000gn/T/ipykernel_21410/2487822438.py:7: SettingWithCopyWarning: \n", - "A value is trying to be set on a copy of a slice from a DataFrame.\n", - "Try using .loc[row_indexer,col_indexer] = value instead\n", - "\n", - "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", - " df[col] = pd.DataFrame(min_max_scaler.fit_transform(pd.DataFrame(df[col])),columns=[col])\n", - "/var/folders/d0/btmbyskx4t106_l2zghzln2w0000gn/T/ipykernel_21410/2487822438.py:7: SettingWithCopyWarning: \n", - "A value is trying to be set on a copy of a slice from a DataFrame.\n", - "Try using .loc[row_indexer,col_indexer] = value instead\n", - "\n", - "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", - " df[col] = pd.DataFrame(min_max_scaler.fit_transform(pd.DataFrame(df[col])),columns=[col])\n", - "/var/folders/d0/btmbyskx4t106_l2zghzln2w0000gn/T/ipykernel_21410/2487822438.py:7: SettingWithCopyWarning: \n", - "A value is trying to be set on a copy of a slice from a DataFrame.\n", - "Try using .loc[row_indexer,col_indexer] = value instead\n", - "\n", - "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", - " df[col] = pd.DataFrame(min_max_scaler.fit_transform(pd.DataFrame(df[col])),columns=[col])\n", - "/var/folders/d0/btmbyskx4t106_l2zghzln2w0000gn/T/ipykernel_21410/2487822438.py:7: SettingWithCopyWarning: \n", - "A value is trying to be set on a copy of a slice from a DataFrame.\n", - "Try using .loc[row_indexer,col_indexer] = value instead\n", - "\n", - "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", - " df[col] = pd.DataFrame(min_max_scaler.fit_transform(pd.DataFrame(df[col])),columns=[col])\n", - "/var/folders/d0/btmbyskx4t106_l2zghzln2w0000gn/T/ipykernel_21410/2487822438.py:7: SettingWithCopyWarning: \n", - "A value is trying to be set on a copy of a slice from a DataFrame.\n", - "Try using .loc[row_indexer,col_indexer] = value instead\n", - "\n", - "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", - " df[col] = pd.DataFrame(min_max_scaler.fit_transform(pd.DataFrame(df[col])),columns=[col])\n", - "/var/folders/d0/btmbyskx4t106_l2zghzln2w0000gn/T/ipykernel_21410/2487822438.py:7: SettingWithCopyWarning: \n", - "A value is trying to be set on a copy of a slice from a DataFrame.\n", - "Try using .loc[row_indexer,col_indexer] = value instead\n", - "\n", - "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", - " df[col] = pd.DataFrame(min_max_scaler.fit_transform(pd.DataFrame(df[col])),columns=[col])\n", - "/var/folders/d0/btmbyskx4t106_l2zghzln2w0000gn/T/ipykernel_21410/2487822438.py:7: SettingWithCopyWarning: \n", - "A value is trying to be set on a copy of a slice from a DataFrame.\n", - "Try using .loc[row_indexer,col_indexer] = value instead\n", - "\n", - "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", - " df[col] = pd.DataFrame(min_max_scaler.fit_transform(pd.DataFrame(df[col])),columns=[col])\n", - "/var/folders/d0/btmbyskx4t106_l2zghzln2w0000gn/T/ipykernel_21410/2487822438.py:7: SettingWithCopyWarning: \n", - "A value is trying to be set on a copy of a slice from a DataFrame.\n", - "Try using .loc[row_indexer,col_indexer] = value instead\n", - "\n", - "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", - " df[col] = pd.DataFrame(min_max_scaler.fit_transform(pd.DataFrame(df[col])),columns=[col])\n", - "/var/folders/d0/btmbyskx4t106_l2zghzln2w0000gn/T/ipykernel_21410/2487822438.py:7: SettingWithCopyWarning: \n", - "A value is trying to be set on a copy of a slice from a DataFrame.\n", - "Try using .loc[row_indexer,col_indexer] = value instead\n", - "\n", - "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", - " df[col] = pd.DataFrame(min_max_scaler.fit_transform(pd.DataFrame(df[col])),columns=[col])\n", - "/var/folders/d0/btmbyskx4t106_l2zghzln2w0000gn/T/ipykernel_21410/2487822438.py:7: SettingWithCopyWarning: \n", - "A value is trying to be set on a copy of a slice from a DataFrame.\n", - "Try using .loc[row_indexer,col_indexer] = value instead\n", - "\n", - "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", - " df[col] = pd.DataFrame(min_max_scaler.fit_transform(pd.DataFrame(df[col])),columns=[col])\n", - "/var/folders/d0/btmbyskx4t106_l2zghzln2w0000gn/T/ipykernel_21410/2487822438.py:7: SettingWithCopyWarning: \n", - "A value is trying to be set on a copy of a slice from a DataFrame.\n", - "Try using .loc[row_indexer,col_indexer] = value instead\n", - "\n", - "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", - " df[col] = pd.DataFrame(min_max_scaler.fit_transform(pd.DataFrame(df[col])),columns=[col])\n", - "/var/folders/d0/btmbyskx4t106_l2zghzln2w0000gn/T/ipykernel_21410/2487822438.py:7: SettingWithCopyWarning: \n", - "A value is trying to be set on a copy of a slice from a DataFrame.\n", - "Try using .loc[row_indexer,col_indexer] = value instead\n", - "\n", - "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", - " df[col] = pd.DataFrame(min_max_scaler.fit_transform(pd.DataFrame(df[col])),columns=[col])\n", - "/var/folders/d0/btmbyskx4t106_l2zghzln2w0000gn/T/ipykernel_21410/2487822438.py:7: SettingWithCopyWarning: \n", - "A value is trying to be set on a copy of a slice from a DataFrame.\n", - "Try using .loc[row_indexer,col_indexer] = value instead\n", - "\n", - "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", - " df[col] = pd.DataFrame(min_max_scaler.fit_transform(pd.DataFrame(df[col])),columns=[col])\n", - "/var/folders/d0/btmbyskx4t106_l2zghzln2w0000gn/T/ipykernel_21410/2487822438.py:7: SettingWithCopyWarning: \n", - "A value is trying to be set on a copy of a slice from a DataFrame.\n", - "Try using .loc[row_indexer,col_indexer] = value instead\n", - "\n", - "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", - " df[col] = pd.DataFrame(min_max_scaler.fit_transform(pd.DataFrame(df[col])),columns=[col])\n", - "/var/folders/d0/btmbyskx4t106_l2zghzln2w0000gn/T/ipykernel_21410/2487822438.py:7: SettingWithCopyWarning: \n", - "A value is trying to be set on a copy of a slice from a DataFrame.\n", - "Try using .loc[row_indexer,col_indexer] = value instead\n", - "\n", - "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", - " df[col] = pd.DataFrame(min_max_scaler.fit_transform(pd.DataFrame(df[col])),columns=[col])\n", - "/var/folders/d0/btmbyskx4t106_l2zghzln2w0000gn/T/ipykernel_21410/2487822438.py:7: SettingWithCopyWarning: \n", - "A value is trying to be set on a copy of a slice from a DataFrame.\n", - "Try using .loc[row_indexer,col_indexer] = value instead\n", - "\n", - "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", - " df[col] = pd.DataFrame(min_max_scaler.fit_transform(pd.DataFrame(df[col])),columns=[col])\n", - "/var/folders/d0/btmbyskx4t106_l2zghzln2w0000gn/T/ipykernel_21410/2487822438.py:7: SettingWithCopyWarning: \n", - "A value is trying to be set on a copy of a slice from a DataFrame.\n", - "Try using .loc[row_indexer,col_indexer] = value instead\n", - "\n", - "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", - " df[col] = pd.DataFrame(min_max_scaler.fit_transform(pd.DataFrame(df[col])),columns=[col])\n", - "/var/folders/d0/btmbyskx4t106_l2zghzln2w0000gn/T/ipykernel_21410/2487822438.py:7: SettingWithCopyWarning: \n", - "A value is trying to be set on a copy of a slice from a DataFrame.\n", - "Try using .loc[row_indexer,col_indexer] = value instead\n", - "\n", - "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", - " df[col] = pd.DataFrame(min_max_scaler.fit_transform(pd.DataFrame(df[col])),columns=[col])\n", - "/var/folders/d0/btmbyskx4t106_l2zghzln2w0000gn/T/ipykernel_21410/2487822438.py:7: SettingWithCopyWarning: \n", - "A value is trying to be set on a copy of a slice from a DataFrame.\n", - "Try using .loc[row_indexer,col_indexer] = value instead\n", - "\n", - "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", - " df[col] = pd.DataFrame(min_max_scaler.fit_transform(pd.DataFrame(df[col])),columns=[col])\n", - "/var/folders/d0/btmbyskx4t106_l2zghzln2w0000gn/T/ipykernel_21410/2487822438.py:7: SettingWithCopyWarning: \n", - "A value is trying to be set on a copy of a slice from a DataFrame.\n", - "Try using .loc[row_indexer,col_indexer] = value instead\n", - "\n", - "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", - " df[col] = pd.DataFrame(min_max_scaler.fit_transform(pd.DataFrame(df[col])),columns=[col])\n", - "/var/folders/d0/btmbyskx4t106_l2zghzln2w0000gn/T/ipykernel_21410/2487822438.py:7: SettingWithCopyWarning: \n", - "A value is trying to be set on a copy of a slice from a DataFrame.\n", - "Try using .loc[row_indexer,col_indexer] = value instead\n", - "\n", - "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", - " df[col] = pd.DataFrame(min_max_scaler.fit_transform(pd.DataFrame(df[col])),columns=[col])\n", - "/var/folders/d0/btmbyskx4t106_l2zghzln2w0000gn/T/ipykernel_21410/2487822438.py:7: SettingWithCopyWarning: \n", - "A value is trying to be set on a copy of a slice from a DataFrame.\n", - "Try using .loc[row_indexer,col_indexer] = value instead\n", - "\n", - "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", - " df[col] = pd.DataFrame(min_max_scaler.fit_transform(pd.DataFrame(df[col])),columns=[col])\n", - "/var/folders/d0/btmbyskx4t106_l2zghzln2w0000gn/T/ipykernel_21410/2487822438.py:7: SettingWithCopyWarning: \n", - "A value is trying to be set on a copy of a slice from a DataFrame.\n", - "Try using .loc[row_indexer,col_indexer] = value instead\n", - "\n", - "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", - " df[col] = pd.DataFrame(min_max_scaler.fit_transform(pd.DataFrame(df[col])),columns=[col])\n", - "/var/folders/d0/btmbyskx4t106_l2zghzln2w0000gn/T/ipykernel_21410/2487822438.py:7: SettingWithCopyWarning: \n", - "A value is trying to be set on a copy of a slice from a DataFrame.\n", - "Try using .loc[row_indexer,col_indexer] = value instead\n", - "\n", - "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", - " df[col] = pd.DataFrame(min_max_scaler.fit_transform(pd.DataFrame(df[col])),columns=[col])\n", - "/var/folders/d0/btmbyskx4t106_l2zghzln2w0000gn/T/ipykernel_21410/2487822438.py:7: SettingWithCopyWarning: \n", - "A value is trying to be set on a copy of a slice from a DataFrame.\n", - "Try using .loc[row_indexer,col_indexer] = value instead\n", - "\n", - "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", - " df[col] = pd.DataFrame(min_max_scaler.fit_transform(pd.DataFrame(df[col])),columns=[col])\n", - "/var/folders/d0/btmbyskx4t106_l2zghzln2w0000gn/T/ipykernel_21410/2487822438.py:7: SettingWithCopyWarning: \n", - "A value is trying to be set on a copy of a slice from a DataFrame.\n", - "Try using .loc[row_indexer,col_indexer] = value instead\n", - "\n", - "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", - " df[col] = pd.DataFrame(min_max_scaler.fit_transform(pd.DataFrame(df[col])),columns=[col])\n", - "/var/folders/d0/btmbyskx4t106_l2zghzln2w0000gn/T/ipykernel_21410/2487822438.py:7: SettingWithCopyWarning: \n", - "A value is trying to be set on a copy of a slice from a DataFrame.\n", - "Try using .loc[row_indexer,col_indexer] = value instead\n", - "\n", - "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", - " df[col] = pd.DataFrame(min_max_scaler.fit_transform(pd.DataFrame(df[col])),columns=[col])\n", - "/var/folders/d0/btmbyskx4t106_l2zghzln2w0000gn/T/ipykernel_21410/2487822438.py:7: SettingWithCopyWarning: \n", - "A value is trying to be set on a copy of a slice from a DataFrame.\n", - "Try using .loc[row_indexer,col_indexer] = value instead\n", - "\n", - "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", - " df[col] = pd.DataFrame(min_max_scaler.fit_transform(pd.DataFrame(df[col])),columns=[col])\n", - "/var/folders/d0/btmbyskx4t106_l2zghzln2w0000gn/T/ipykernel_21410/2487822438.py:7: SettingWithCopyWarning: \n", - "A value is trying to be set on a copy of a slice from a DataFrame.\n", - "Try using .loc[row_indexer,col_indexer] = value instead\n", - "\n", - "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", - " df[col] = pd.DataFrame(min_max_scaler.fit_transform(pd.DataFrame(df[col])),columns=[col])\n", - "/var/folders/d0/btmbyskx4t106_l2zghzln2w0000gn/T/ipykernel_21410/2487822438.py:7: SettingWithCopyWarning: \n", - "A value is trying to be set on a copy of a slice from a DataFrame.\n", - "Try using .loc[row_indexer,col_indexer] = value instead\n", - "\n", - "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", - " df[col] = pd.DataFrame(min_max_scaler.fit_transform(pd.DataFrame(df[col])),columns=[col])\n", - "/var/folders/d0/btmbyskx4t106_l2zghzln2w0000gn/T/ipykernel_21410/2487822438.py:7: SettingWithCopyWarning: \n", - "A value is trying to be set on a copy of a slice from a DataFrame.\n", - "Try using .loc[row_indexer,col_indexer] = value instead\n", - "\n", - "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", - " df[col] = pd.DataFrame(min_max_scaler.fit_transform(pd.DataFrame(df[col])),columns=[col])\n", - "/var/folders/d0/btmbyskx4t106_l2zghzln2w0000gn/T/ipykernel_21410/2487822438.py:7: SettingWithCopyWarning: \n", - "A value is trying to be set on a copy of a slice from a DataFrame.\n", - "Try using .loc[row_indexer,col_indexer] = value instead\n", - "\n", - "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", - " df[col] = pd.DataFrame(min_max_scaler.fit_transform(pd.DataFrame(df[col])),columns=[col])\n", - "/var/folders/d0/btmbyskx4t106_l2zghzln2w0000gn/T/ipykernel_21410/2487822438.py:7: SettingWithCopyWarning: \n", - "A value is trying to be set on a copy of a slice from a DataFrame.\n", - "Try using .loc[row_indexer,col_indexer] = value instead\n", - "\n", - "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", - " df[col] = pd.DataFrame(min_max_scaler.fit_transform(pd.DataFrame(df[col])),columns=[col])\n", - "/var/folders/d0/btmbyskx4t106_l2zghzln2w0000gn/T/ipykernel_21410/2487822438.py:7: SettingWithCopyWarning: \n", - "A value is trying to be set on a copy of a slice from a DataFrame.\n", - "Try using .loc[row_indexer,col_indexer] = value instead\n", - "\n", - "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", - " df[col] = pd.DataFrame(min_max_scaler.fit_transform(pd.DataFrame(df[col])),columns=[col])\n", - "/var/folders/d0/btmbyskx4t106_l2zghzln2w0000gn/T/ipykernel_21410/2487822438.py:7: SettingWithCopyWarning: \n", - "A value is trying to be set on a copy of a slice from a DataFrame.\n", - "Try using .loc[row_indexer,col_indexer] = value instead\n", - "\n", - "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", - " df[col] = pd.DataFrame(min_max_scaler.fit_transform(pd.DataFrame(df[col])),columns=[col])\n", - "/var/folders/d0/btmbyskx4t106_l2zghzln2w0000gn/T/ipykernel_21410/2487822438.py:7: SettingWithCopyWarning: \n", - "A value is trying to be set on a copy of a slice from a DataFrame.\n", - "Try using .loc[row_indexer,col_indexer] = value instead\n", - "\n", - "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", - " df[col] = pd.DataFrame(min_max_scaler.fit_transform(pd.DataFrame(df[col])),columns=[col])\n", - "/var/folders/d0/btmbyskx4t106_l2zghzln2w0000gn/T/ipykernel_21410/2487822438.py:7: SettingWithCopyWarning: \n", - "A value is trying to be set on a copy of a slice from a DataFrame.\n", - "Try using .loc[row_indexer,col_indexer] = value instead\n", - "\n", - "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", - " df[col] = pd.DataFrame(min_max_scaler.fit_transform(pd.DataFrame(df[col])),columns=[col])\n", - "/var/folders/d0/btmbyskx4t106_l2zghzln2w0000gn/T/ipykernel_21410/2487822438.py:7: SettingWithCopyWarning: \n", - "A value is trying to be set on a copy of a slice from a DataFrame.\n", - "Try using .loc[row_indexer,col_indexer] = value instead\n", - "\n", - "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", - " df[col] = pd.DataFrame(min_max_scaler.fit_transform(pd.DataFrame(df[col])),columns=[col])\n", - "/var/folders/d0/btmbyskx4t106_l2zghzln2w0000gn/T/ipykernel_21410/2487822438.py:7: SettingWithCopyWarning: \n", - "A value is trying to be set on a copy of a slice from a DataFrame.\n", - "Try using .loc[row_indexer,col_indexer] = value instead\n", - "\n", - "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", - " df[col] = pd.DataFrame(min_max_scaler.fit_transform(pd.DataFrame(df[col])),columns=[col])\n", - "/var/folders/d0/btmbyskx4t106_l2zghzln2w0000gn/T/ipykernel_21410/2487822438.py:7: SettingWithCopyWarning: \n", - "A value is trying to be set on a copy of a slice from a DataFrame.\n", - "Try using .loc[row_indexer,col_indexer] = value instead\n", - "\n", - "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", - " df[col] = pd.DataFrame(min_max_scaler.fit_transform(pd.DataFrame(df[col])),columns=[col])\n", - "/var/folders/d0/btmbyskx4t106_l2zghzln2w0000gn/T/ipykernel_21410/2487822438.py:7: SettingWithCopyWarning: \n", - "A value is trying to be set on a copy of a slice from a DataFrame.\n", - "Try using .loc[row_indexer,col_indexer] = value instead\n", - "\n", - "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", - " df[col] = pd.DataFrame(min_max_scaler.fit_transform(pd.DataFrame(df[col])),columns=[col])\n", - "/var/folders/d0/btmbyskx4t106_l2zghzln2w0000gn/T/ipykernel_21410/2487822438.py:7: SettingWithCopyWarning: \n", - "A value is trying to be set on a copy of a slice from a DataFrame.\n", - "Try using .loc[row_indexer,col_indexer] = value instead\n", - "\n", - "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", - " df[col] = pd.DataFrame(min_max_scaler.fit_transform(pd.DataFrame(df[col])),columns=[col])\n", - "/var/folders/d0/btmbyskx4t106_l2zghzln2w0000gn/T/ipykernel_21410/2487822438.py:7: SettingWithCopyWarning: \n", - "A value is trying to be set on a copy of a slice from a DataFrame.\n", - "Try using .loc[row_indexer,col_indexer] = value instead\n", - "\n", - "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", - " df[col] = pd.DataFrame(min_max_scaler.fit_transform(pd.DataFrame(df[col])),columns=[col])\n", - "/var/folders/d0/btmbyskx4t106_l2zghzln2w0000gn/T/ipykernel_21410/2487822438.py:7: SettingWithCopyWarning: \n", - "A value is trying to be set on a copy of a slice from a DataFrame.\n", - "Try using .loc[row_indexer,col_indexer] = value instead\n", - "\n", - "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", - " df[col] = pd.DataFrame(min_max_scaler.fit_transform(pd.DataFrame(df[col])),columns=[col])\n", - "/var/folders/d0/btmbyskx4t106_l2zghzln2w0000gn/T/ipykernel_21410/2487822438.py:7: SettingWithCopyWarning: \n", - "A value is trying to be set on a copy of a slice from a DataFrame.\n", - "Try using .loc[row_indexer,col_indexer] = value instead\n", - "\n", - "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", - " df[col] = pd.DataFrame(min_max_scaler.fit_transform(pd.DataFrame(df[col])),columns=[col])\n", - "/var/folders/d0/btmbyskx4t106_l2zghzln2w0000gn/T/ipykernel_21410/2487822438.py:7: SettingWithCopyWarning: \n", - "A value is trying to be set on a copy of a slice from a DataFrame.\n", - "Try using .loc[row_indexer,col_indexer] = value instead\n", - "\n", - "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", - " df[col] = pd.DataFrame(min_max_scaler.fit_transform(pd.DataFrame(df[col])),columns=[col])\n", - "/var/folders/d0/btmbyskx4t106_l2zghzln2w0000gn/T/ipykernel_21410/2487822438.py:7: SettingWithCopyWarning: \n", - "A value is trying to be set on a copy of a slice from a DataFrame.\n", - "Try using .loc[row_indexer,col_indexer] = value instead\n", - "\n", - "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", - " df[col] = pd.DataFrame(min_max_scaler.fit_transform(pd.DataFrame(df[col])),columns=[col])\n", - "/var/folders/d0/btmbyskx4t106_l2zghzln2w0000gn/T/ipykernel_21410/2487822438.py:7: SettingWithCopyWarning: \n", - "A value is trying to be set on a copy of a slice from a DataFrame.\n", - "Try using .loc[row_indexer,col_indexer] = value instead\n", - "\n", - "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", - " df[col] = pd.DataFrame(min_max_scaler.fit_transform(pd.DataFrame(df[col])),columns=[col])\n", - "/var/folders/d0/btmbyskx4t106_l2zghzln2w0000gn/T/ipykernel_21410/2487822438.py:7: SettingWithCopyWarning: \n", - "A value is trying to be set on a copy of a slice from a DataFrame.\n", - "Try using .loc[row_indexer,col_indexer] = value instead\n", - "\n", - "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", - " df[col] = pd.DataFrame(min_max_scaler.fit_transform(pd.DataFrame(df[col])),columns=[col])\n", - "/var/folders/d0/btmbyskx4t106_l2zghzln2w0000gn/T/ipykernel_21410/2487822438.py:7: SettingWithCopyWarning: \n", - "A value is trying to be set on a copy of a slice from a DataFrame.\n", - "Try using .loc[row_indexer,col_indexer] = value instead\n", - "\n", - "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", - " df[col] = pd.DataFrame(min_max_scaler.fit_transform(pd.DataFrame(df[col])),columns=[col])\n", - "/var/folders/d0/btmbyskx4t106_l2zghzln2w0000gn/T/ipykernel_21410/2487822438.py:7: SettingWithCopyWarning: \n", - "A value is trying to be set on a copy of a slice from a DataFrame.\n", - "Try using .loc[row_indexer,col_indexer] = value instead\n", - "\n", - "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", - " df[col] = pd.DataFrame(min_max_scaler.fit_transform(pd.DataFrame(df[col])),columns=[col])\n", - "/var/folders/d0/btmbyskx4t106_l2zghzln2w0000gn/T/ipykernel_21410/2487822438.py:7: SettingWithCopyWarning: \n", - "A value is trying to be set on a copy of a slice from a DataFrame.\n", - "Try using .loc[row_indexer,col_indexer] = value instead\n", - "\n", - "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", - " df[col] = pd.DataFrame(min_max_scaler.fit_transform(pd.DataFrame(df[col])),columns=[col])\n", - "/var/folders/d0/btmbyskx4t106_l2zghzln2w0000gn/T/ipykernel_21410/2487822438.py:7: SettingWithCopyWarning: \n", - "A value is trying to be set on a copy of a slice from a DataFrame.\n", - "Try using .loc[row_indexer,col_indexer] = value instead\n", - "\n", - "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", - " df[col] = pd.DataFrame(min_max_scaler.fit_transform(pd.DataFrame(df[col])),columns=[col])\n", - "/var/folders/d0/btmbyskx4t106_l2zghzln2w0000gn/T/ipykernel_21410/2487822438.py:7: SettingWithCopyWarning: \n", - "A value is trying to be set on a copy of a slice from a DataFrame.\n", - "Try using .loc[row_indexer,col_indexer] = value instead\n", - "\n", - "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", - " df[col] = pd.DataFrame(min_max_scaler.fit_transform(pd.DataFrame(df[col])),columns=[col])\n", - "/var/folders/d0/btmbyskx4t106_l2zghzln2w0000gn/T/ipykernel_21410/2487822438.py:7: SettingWithCopyWarning: \n", - "A value is trying to be set on a copy of a slice from a DataFrame.\n", - "Try using .loc[row_indexer,col_indexer] = value instead\n", - "\n", - "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", - " df[col] = pd.DataFrame(min_max_scaler.fit_transform(pd.DataFrame(df[col])),columns=[col])\n", - "/var/folders/d0/btmbyskx4t106_l2zghzln2w0000gn/T/ipykernel_21410/2487822438.py:7: SettingWithCopyWarning: \n", - "A value is trying to be set on a copy of a slice from a DataFrame.\n", - "Try using .loc[row_indexer,col_indexer] = value instead\n", - "\n", - "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", - " df[col] = pd.DataFrame(min_max_scaler.fit_transform(pd.DataFrame(df[col])),columns=[col])\n", - "/var/folders/d0/btmbyskx4t106_l2zghzln2w0000gn/T/ipykernel_21410/2487822438.py:7: SettingWithCopyWarning: \n", - "A value is trying to be set on a copy of a slice from a DataFrame.\n", - "Try using .loc[row_indexer,col_indexer] = value instead\n", - "\n", - "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", - " df[col] = pd.DataFrame(min_max_scaler.fit_transform(pd.DataFrame(df[col])),columns=[col])\n", - "/var/folders/d0/btmbyskx4t106_l2zghzln2w0000gn/T/ipykernel_21410/2487822438.py:7: SettingWithCopyWarning: \n", - "A value is trying to be set on a copy of a slice from a DataFrame.\n", - "Try using .loc[row_indexer,col_indexer] = value instead\n", - "\n", - "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", - " df[col] = pd.DataFrame(min_max_scaler.fit_transform(pd.DataFrame(df[col])),columns=[col])\n", - "/var/folders/d0/btmbyskx4t106_l2zghzln2w0000gn/T/ipykernel_21410/2487822438.py:7: SettingWithCopyWarning: \n", - "A value is trying to be set on a copy of a slice from a DataFrame.\n", - "Try using .loc[row_indexer,col_indexer] = value instead\n", - "\n", - "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", - " df[col] = pd.DataFrame(min_max_scaler.fit_transform(pd.DataFrame(df[col])),columns=[col])\n", - "/var/folders/d0/btmbyskx4t106_l2zghzln2w0000gn/T/ipykernel_21410/2487822438.py:7: SettingWithCopyWarning: \n", - "A value is trying to be set on a copy of a slice from a DataFrame.\n", - "Try using .loc[row_indexer,col_indexer] = value instead\n", - "\n", - "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", - " df[col] = pd.DataFrame(min_max_scaler.fit_transform(pd.DataFrame(df[col])),columns=[col])\n", - "/var/folders/d0/btmbyskx4t106_l2zghzln2w0000gn/T/ipykernel_21410/2487822438.py:7: SettingWithCopyWarning: \n", - "A value is trying to be set on a copy of a slice from a DataFrame.\n", - "Try using .loc[row_indexer,col_indexer] = value instead\n", - "\n", - "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", - " df[col] = pd.DataFrame(min_max_scaler.fit_transform(pd.DataFrame(df[col])),columns=[col])\n", - "/var/folders/d0/btmbyskx4t106_l2zghzln2w0000gn/T/ipykernel_21410/2487822438.py:7: SettingWithCopyWarning: \n", - "A value is trying to be set on a copy of a slice from a DataFrame.\n", - "Try using .loc[row_indexer,col_indexer] = value instead\n", - "\n", - "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", - " df[col] = pd.DataFrame(min_max_scaler.fit_transform(pd.DataFrame(df[col])),columns=[col])\n", - "/var/folders/d0/btmbyskx4t106_l2zghzln2w0000gn/T/ipykernel_21410/2487822438.py:7: SettingWithCopyWarning: \n", - "A value is trying to be set on a copy of a slice from a DataFrame.\n", - "Try using .loc[row_indexer,col_indexer] = value instead\n", - "\n", - "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", - " df[col] = pd.DataFrame(min_max_scaler.fit_transform(pd.DataFrame(df[col])),columns=[col])\n", - "/var/folders/d0/btmbyskx4t106_l2zghzln2w0000gn/T/ipykernel_21410/2487822438.py:7: SettingWithCopyWarning: \n", - "A value is trying to be set on a copy of a slice from a DataFrame.\n", - "Try using .loc[row_indexer,col_indexer] = value instead\n", - "\n", - "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", - " df[col] = pd.DataFrame(min_max_scaler.fit_transform(pd.DataFrame(df[col])),columns=[col])\n", - "/var/folders/d0/btmbyskx4t106_l2zghzln2w0000gn/T/ipykernel_21410/2487822438.py:7: SettingWithCopyWarning: \n", - "A value is trying to be set on a copy of a slice from a DataFrame.\n", - "Try using .loc[row_indexer,col_indexer] = value instead\n", - "\n", - "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", - " df[col] = pd.DataFrame(min_max_scaler.fit_transform(pd.DataFrame(df[col])),columns=[col])\n", - "/var/folders/d0/btmbyskx4t106_l2zghzln2w0000gn/T/ipykernel_21410/2487822438.py:7: SettingWithCopyWarning: \n", - "A value is trying to be set on a copy of a slice from a DataFrame.\n", - "Try using .loc[row_indexer,col_indexer] = value instead\n", - "\n", - "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", - " df[col] = pd.DataFrame(min_max_scaler.fit_transform(pd.DataFrame(df[col])),columns=[col])\n", - "/var/folders/d0/btmbyskx4t106_l2zghzln2w0000gn/T/ipykernel_21410/2487822438.py:7: SettingWithCopyWarning: \n", - "A value is trying to be set on a copy of a slice from a DataFrame.\n", - "Try using .loc[row_indexer,col_indexer] = value instead\n", - "\n", - "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", - " df[col] = pd.DataFrame(min_max_scaler.fit_transform(pd.DataFrame(df[col])),columns=[col])\n", - "/var/folders/d0/btmbyskx4t106_l2zghzln2w0000gn/T/ipykernel_21410/2487822438.py:7: SettingWithCopyWarning: \n", - "A value is trying to be set on a copy of a slice from a DataFrame.\n", - "Try using .loc[row_indexer,col_indexer] = value instead\n", - "\n", - "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", - " df[col] = pd.DataFrame(min_max_scaler.fit_transform(pd.DataFrame(df[col])),columns=[col])\n", - "/var/folders/d0/btmbyskx4t106_l2zghzln2w0000gn/T/ipykernel_21410/2487822438.py:7: SettingWithCopyWarning: \n", - "A value is trying to be set on a copy of a slice from a DataFrame.\n", - "Try using .loc[row_indexer,col_indexer] = value instead\n", - "\n", - "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", - " df[col] = pd.DataFrame(min_max_scaler.fit_transform(pd.DataFrame(df[col])),columns=[col])\n", - "/var/folders/d0/btmbyskx4t106_l2zghzln2w0000gn/T/ipykernel_21410/2487822438.py:7: SettingWithCopyWarning: \n", - "A value is trying to be set on a copy of a slice from a DataFrame.\n", - "Try using .loc[row_indexer,col_indexer] = value instead\n", - "\n", - "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", - " df[col] = pd.DataFrame(min_max_scaler.fit_transform(pd.DataFrame(df[col])),columns=[col])\n", - "/var/folders/d0/btmbyskx4t106_l2zghzln2w0000gn/T/ipykernel_21410/2487822438.py:7: SettingWithCopyWarning: \n", - "A value is trying to be set on a copy of a slice from a DataFrame.\n", - "Try using .loc[row_indexer,col_indexer] = value instead\n", - "\n", - "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", - " df[col] = pd.DataFrame(min_max_scaler.fit_transform(pd.DataFrame(df[col])),columns=[col])\n", - "/var/folders/d0/btmbyskx4t106_l2zghzln2w0000gn/T/ipykernel_21410/2487822438.py:7: SettingWithCopyWarning: \n", - "A value is trying to be set on a copy of a slice from a DataFrame.\n", - "Try using .loc[row_indexer,col_indexer] = value instead\n", - "\n", - "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", - " df[col] = pd.DataFrame(min_max_scaler.fit_transform(pd.DataFrame(df[col])),columns=[col])\n", - "/var/folders/d0/btmbyskx4t106_l2zghzln2w0000gn/T/ipykernel_21410/2487822438.py:7: SettingWithCopyWarning: \n", - "A value is trying to be set on a copy of a slice from a DataFrame.\n", - "Try using .loc[row_indexer,col_indexer] = value instead\n", - "\n", - "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", - " df[col] = pd.DataFrame(min_max_scaler.fit_transform(pd.DataFrame(df[col])),columns=[col])\n", - "/var/folders/d0/btmbyskx4t106_l2zghzln2w0000gn/T/ipykernel_21410/2487822438.py:7: SettingWithCopyWarning: \n", - "A value is trying to be set on a copy of a slice from a DataFrame.\n", - "Try using .loc[row_indexer,col_indexer] = value instead\n", - "\n", - "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", - " df[col] = pd.DataFrame(min_max_scaler.fit_transform(pd.DataFrame(df[col])),columns=[col])\n", - "/var/folders/d0/btmbyskx4t106_l2zghzln2w0000gn/T/ipykernel_21410/2487822438.py:7: SettingWithCopyWarning: \n", - "A value is trying to be set on a copy of a slice from a DataFrame.\n", - "Try using .loc[row_indexer,col_indexer] = value instead\n", - "\n", - "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", - " df[col] = pd.DataFrame(min_max_scaler.fit_transform(pd.DataFrame(df[col])),columns=[col])\n", - "/var/folders/d0/btmbyskx4t106_l2zghzln2w0000gn/T/ipykernel_21410/2487822438.py:7: SettingWithCopyWarning: \n", - "A value is trying to be set on a copy of a slice from a DataFrame.\n", - "Try using .loc[row_indexer,col_indexer] = value instead\n", - "\n", - "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", - " df[col] = pd.DataFrame(min_max_scaler.fit_transform(pd.DataFrame(df[col])),columns=[col])\n", - "/var/folders/d0/btmbyskx4t106_l2zghzln2w0000gn/T/ipykernel_21410/2487822438.py:7: SettingWithCopyWarning: \n", - "A value is trying to be set on a copy of a slice from a DataFrame.\n", - "Try using .loc[row_indexer,col_indexer] = value instead\n", - "\n", - "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", - " df[col] = pd.DataFrame(min_max_scaler.fit_transform(pd.DataFrame(df[col])),columns=[col])\n", - "/var/folders/d0/btmbyskx4t106_l2zghzln2w0000gn/T/ipykernel_21410/2487822438.py:7: SettingWithCopyWarning: \n", - "A value is trying to be set on a copy of a slice from a DataFrame.\n", - "Try using .loc[row_indexer,col_indexer] = value instead\n", - "\n", - "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", - " df[col] = pd.DataFrame(min_max_scaler.fit_transform(pd.DataFrame(df[col])),columns=[col])\n", - "/var/folders/d0/btmbyskx4t106_l2zghzln2w0000gn/T/ipykernel_21410/2487822438.py:7: SettingWithCopyWarning: \n", - "A value is trying to be set on a copy of a slice from a DataFrame.\n", - "Try using .loc[row_indexer,col_indexer] = value instead\n", - "\n", - "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", - " df[col] = pd.DataFrame(min_max_scaler.fit_transform(pd.DataFrame(df[col])),columns=[col])\n", - "/var/folders/d0/btmbyskx4t106_l2zghzln2w0000gn/T/ipykernel_21410/2487822438.py:7: SettingWithCopyWarning: \n", - "A value is trying to be set on a copy of a slice from a DataFrame.\n", - "Try using .loc[row_indexer,col_indexer] = value instead\n", - "\n", - "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", - " df[col] = pd.DataFrame(min_max_scaler.fit_transform(pd.DataFrame(df[col])),columns=[col])\n", - "/var/folders/d0/btmbyskx4t106_l2zghzln2w0000gn/T/ipykernel_21410/2487822438.py:7: SettingWithCopyWarning: \n", - "A value is trying to be set on a copy of a slice from a DataFrame.\n", - "Try using .loc[row_indexer,col_indexer] = value instead\n", - "\n", - "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", - " df[col] = pd.DataFrame(min_max_scaler.fit_transform(pd.DataFrame(df[col])),columns=[col])\n", - "/var/folders/d0/btmbyskx4t106_l2zghzln2w0000gn/T/ipykernel_21410/2487822438.py:7: SettingWithCopyWarning: \n", - "A value is trying to be set on a copy of a slice from a DataFrame.\n", - "Try using .loc[row_indexer,col_indexer] = value instead\n", - "\n", - "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", - " df[col] = pd.DataFrame(min_max_scaler.fit_transform(pd.DataFrame(df[col])),columns=[col])\n", - "/var/folders/d0/btmbyskx4t106_l2zghzln2w0000gn/T/ipykernel_21410/2487822438.py:7: SettingWithCopyWarning: \n", - "A value is trying to be set on a copy of a slice from a DataFrame.\n", - "Try using .loc[row_indexer,col_indexer] = value instead\n", - "\n", - "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", - " df[col] = pd.DataFrame(min_max_scaler.fit_transform(pd.DataFrame(df[col])),columns=[col])\n", - "/var/folders/d0/btmbyskx4t106_l2zghzln2w0000gn/T/ipykernel_21410/2487822438.py:7: SettingWithCopyWarning: \n", - "A value is trying to be set on a copy of a slice from a DataFrame.\n", - "Try using .loc[row_indexer,col_indexer] = value instead\n", - "\n", - "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", - " df[col] = pd.DataFrame(min_max_scaler.fit_transform(pd.DataFrame(df[col])),columns=[col])\n", - "/var/folders/d0/btmbyskx4t106_l2zghzln2w0000gn/T/ipykernel_21410/2487822438.py:7: SettingWithCopyWarning: \n", - "A value is trying to be set on a copy of a slice from a DataFrame.\n", - "Try using .loc[row_indexer,col_indexer] = value instead\n", - "\n", - "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", - " df[col] = pd.DataFrame(min_max_scaler.fit_transform(pd.DataFrame(df[col])),columns=[col])\n", - "/var/folders/d0/btmbyskx4t106_l2zghzln2w0000gn/T/ipykernel_21410/2487822438.py:7: SettingWithCopyWarning: \n", - "A value is trying to be set on a copy of a slice from a DataFrame.\n", - "Try using .loc[row_indexer,col_indexer] = value instead\n", - "\n", - "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", - " df[col] = pd.DataFrame(min_max_scaler.fit_transform(pd.DataFrame(df[col])),columns=[col])\n", - "/var/folders/d0/btmbyskx4t106_l2zghzln2w0000gn/T/ipykernel_21410/2487822438.py:7: SettingWithCopyWarning: \n", - "A value is trying to be set on a copy of a slice from a DataFrame.\n", - "Try using .loc[row_indexer,col_indexer] = value instead\n", - "\n", - "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", - " df[col] = pd.DataFrame(min_max_scaler.fit_transform(pd.DataFrame(df[col])),columns=[col])\n", - "/var/folders/d0/btmbyskx4t106_l2zghzln2w0000gn/T/ipykernel_21410/2487822438.py:7: SettingWithCopyWarning: \n", - "A value is trying to be set on a copy of a slice from a DataFrame.\n", - "Try using .loc[row_indexer,col_indexer] = value instead\n", - "\n", - "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", - " df[col] = pd.DataFrame(min_max_scaler.fit_transform(pd.DataFrame(df[col])),columns=[col])\n", - "/var/folders/d0/btmbyskx4t106_l2zghzln2w0000gn/T/ipykernel_21410/2487822438.py:7: SettingWithCopyWarning: \n", - "A value is trying to be set on a copy of a slice from a DataFrame.\n", - "Try using .loc[row_indexer,col_indexer] = value instead\n", - "\n", - "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", - " df[col] = pd.DataFrame(min_max_scaler.fit_transform(pd.DataFrame(df[col])),columns=[col])\n", - "/var/folders/d0/btmbyskx4t106_l2zghzln2w0000gn/T/ipykernel_21410/2487822438.py:7: SettingWithCopyWarning: \n", - "A value is trying to be set on a copy of a slice from a DataFrame.\n", - "Try using .loc[row_indexer,col_indexer] = value instead\n", - "\n", - "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", - " df[col] = pd.DataFrame(min_max_scaler.fit_transform(pd.DataFrame(df[col])),columns=[col])\n", - "/var/folders/d0/btmbyskx4t106_l2zghzln2w0000gn/T/ipykernel_21410/2487822438.py:7: SettingWithCopyWarning: \n", - "A value is trying to be set on a copy of a slice from a DataFrame.\n", - "Try using .loc[row_indexer,col_indexer] = value instead\n", - "\n", - "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", - " df[col] = pd.DataFrame(min_max_scaler.fit_transform(pd.DataFrame(df[col])),columns=[col])\n", - "/var/folders/d0/btmbyskx4t106_l2zghzln2w0000gn/T/ipykernel_21410/2487822438.py:7: SettingWithCopyWarning: \n", - "A value is trying to be set on a copy of a slice from a DataFrame.\n", - "Try using .loc[row_indexer,col_indexer] = value instead\n", - "\n", - "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", - " df[col] = pd.DataFrame(min_max_scaler.fit_transform(pd.DataFrame(df[col])),columns=[col])\n", - "/var/folders/d0/btmbyskx4t106_l2zghzln2w0000gn/T/ipykernel_21410/2487822438.py:7: SettingWithCopyWarning: \n", - "A value is trying to be set on a copy of a slice from a DataFrame.\n", - "Try using .loc[row_indexer,col_indexer] = value instead\n", - "\n", - "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", - " df[col] = pd.DataFrame(min_max_scaler.fit_transform(pd.DataFrame(df[col])),columns=[col])\n", - "/var/folders/d0/btmbyskx4t106_l2zghzln2w0000gn/T/ipykernel_21410/2487822438.py:7: SettingWithCopyWarning: \n", - "A value is trying to be set on a copy of a slice from a DataFrame.\n", - "Try using .loc[row_indexer,col_indexer] = value instead\n", - "\n", - "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", - " df[col] = pd.DataFrame(min_max_scaler.fit_transform(pd.DataFrame(df[col])),columns=[col])\n", - "/var/folders/d0/btmbyskx4t106_l2zghzln2w0000gn/T/ipykernel_21410/2487822438.py:7: SettingWithCopyWarning: \n", - "A value is trying to be set on a copy of a slice from a DataFrame.\n", - "Try using .loc[row_indexer,col_indexer] = value instead\n", - "\n", - "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", - " df[col] = pd.DataFrame(min_max_scaler.fit_transform(pd.DataFrame(df[col])),columns=[col])\n", - "/var/folders/d0/btmbyskx4t106_l2zghzln2w0000gn/T/ipykernel_21410/2487822438.py:7: SettingWithCopyWarning: \n", - "A value is trying to be set on a copy of a slice from a DataFrame.\n", - "Try using .loc[row_indexer,col_indexer] = value instead\n", - "\n", - "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", - " df[col] = pd.DataFrame(min_max_scaler.fit_transform(pd.DataFrame(df[col])),columns=[col])\n", - "/var/folders/d0/btmbyskx4t106_l2zghzln2w0000gn/T/ipykernel_21410/2487822438.py:7: SettingWithCopyWarning: \n", - "A value is trying to be set on a copy of a slice from a DataFrame.\n", - "Try using .loc[row_indexer,col_indexer] = value instead\n", - "\n", - "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", - " df[col] = pd.DataFrame(min_max_scaler.fit_transform(pd.DataFrame(df[col])),columns=[col])\n", - "/var/folders/d0/btmbyskx4t106_l2zghzln2w0000gn/T/ipykernel_21410/2487822438.py:7: SettingWithCopyWarning: \n", - "A value is trying to be set on a copy of a slice from a DataFrame.\n", - "Try using .loc[row_indexer,col_indexer] = value instead\n", - "\n", - "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", - " df[col] = pd.DataFrame(min_max_scaler.fit_transform(pd.DataFrame(df[col])),columns=[col])\n", - "/var/folders/d0/btmbyskx4t106_l2zghzln2w0000gn/T/ipykernel_21410/2487822438.py:7: SettingWithCopyWarning: \n", - "A value is trying to be set on a copy of a slice from a DataFrame.\n", - "Try using .loc[row_indexer,col_indexer] = value instead\n", - "\n", - "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", - " df[col] = pd.DataFrame(min_max_scaler.fit_transform(pd.DataFrame(df[col])),columns=[col])\n" - ] - }, - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/var/folders/d0/btmbyskx4t106_l2zghzln2w0000gn/T/ipykernel_21410/2487822438.py:7: SettingWithCopyWarning: \n", - "A value is trying to be set on a copy of a slice from a DataFrame.\n", - "Try using .loc[row_indexer,col_indexer] = value instead\n", - "\n", - "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", - " df[col] = pd.DataFrame(min_max_scaler.fit_transform(pd.DataFrame(df[col])),columns=[col])\n" - ] - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
countmeanstdmin25%50%75%max
n_traces34.00.0978700.2134760.00.0033220.0123790.0693311.0
n_unique_traces34.00.1225210.2493170.00.0063880.0299810.0456311.0
ratio_unique_traces_per_trace34.00.4666110.4154710.00.0572820.3864070.9568951.0
trace_len_min34.00.0754480.1811120.00.0000000.0000000.0869571.0
trace_len_max34.00.0913130.2021470.00.0078230.0334790.0496301.0
...........................
normalized_sequence_entropy31.00.5714590.2597350.00.3886290.6104290.7926361.0
sequence_eventropy_linear_forgetting31.00.0685220.2004690.00.0025050.0095570.0179761.0
normalized_sequence_eventropy_linear_forgetting31.00.5795320.2797330.00.3328920.6359970.8047941.0
sequence_eventropy_exponential_forgetting31.00.0693870.1982770.00.0028830.0109800.0176681.0
normalized_sequence_eventropy_exponential_forgetting31.00.5771050.2621150.00.4032060.6328200.7837651.0
\n", - "

100 rows × 8 columns

\n", - "
" - ], - "text/plain": [ - " count mean std \n", - "n_traces 34.0 0.097870 0.213476 \\\n", - "n_unique_traces 34.0 0.122521 0.249317 \n", - "ratio_unique_traces_per_trace 34.0 0.466611 0.415471 \n", - "trace_len_min 34.0 0.075448 0.181112 \n", - "trace_len_max 34.0 0.091313 0.202147 \n", - "... ... ... ... \n", - "normalized_sequence_entropy 31.0 0.571459 0.259735 \n", - "sequence_eventropy_linear_forgetting 31.0 0.068522 0.200469 \n", - "normalized_sequence_eventropy_linear_forgetting 31.0 0.579532 0.279733 \n", - "sequence_eventropy_exponential_forgetting 31.0 0.069387 0.198277 \n", - "normalized_sequence_eventropy_exponential_forge... 31.0 0.577105 0.262115 \n", - "\n", - " min 25% 50% \n", - "n_traces 0.0 0.003322 0.012379 \\\n", - "n_unique_traces 0.0 0.006388 0.029981 \n", - "ratio_unique_traces_per_trace 0.0 0.057282 0.386407 \n", - "trace_len_min 0.0 0.000000 0.000000 \n", - "trace_len_max 0.0 0.007823 0.033479 \n", - "... ... ... ... \n", - "normalized_sequence_entropy 0.0 0.388629 0.610429 \n", - "sequence_eventropy_linear_forgetting 0.0 0.002505 0.009557 \n", - "normalized_sequence_eventropy_linear_forgetting 0.0 0.332892 0.635997 \n", - "sequence_eventropy_exponential_forgetting 0.0 0.002883 0.010980 \n", - "normalized_sequence_eventropy_exponential_forge... 0.0 0.403206 0.632820 \n", - "\n", - " 75% max \n", - "n_traces 0.069331 1.0 \n", - "n_unique_traces 0.045631 1.0 \n", - "ratio_unique_traces_per_trace 0.956895 1.0 \n", - "trace_len_min 0.086957 1.0 \n", - "trace_len_max 0.049630 1.0 \n", - "... ... ... \n", - "normalized_sequence_entropy 0.792636 1.0 \n", - "sequence_eventropy_linear_forgetting 0.017976 1.0 \n", - "normalized_sequence_eventropy_linear_forgetting 0.804794 1.0 \n", - "sequence_eventropy_exponential_forgetting 0.017668 1.0 \n", - "normalized_sequence_eventropy_exponential_forge... 0.783765 1.0 \n", - "\n", - "[100 rows x 8 columns]" - ] - }, - "execution_count": 5, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "from sklearn import preprocessing\n", - "scaler = preprocessing.MinMaxScaler()\n", - "min_max_scaler = preprocessing.MinMaxScaler()\n", - "\n", - "def scaleColumns(df, cols_to_scale):\n", - " for col in cols_to_scale:\n", - " df[col] = pd.DataFrame(min_max_scaler.fit_transform(pd.DataFrame(df[col])),columns=[col])\n", - " return df\n", - "\n", - "scaled_dmf = scaleColumns(ft_preselection, ft_preselection.drop(cols_to_drop, axis=1).columns)\n", - "stats = ft_preselection.describe().transpose()\n", - "#stats = scaled_dmf.describe().transpose()\n", - "\n", - "#print(stats.index)\n", - "stats" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "id": "54c59f5b", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "36" - ] - }, - "execution_count": 6, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABNoAAANBCAYAAAA2jdNEAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAACK00lEQVR4nOzdeXidZ3kn/u+RvChxZMVLZMmJQxxnFSYxTmLHEHYnMVC3QGECrQsEBlq3ZUrTlKUdYlzohFA6pRTG/Mq0UDAFOsBAzSIKpmGZmqjEZDHKRlDIJi+xiOQ4kRed8/vDkbBsyTq2ZR0tn8916VL0vs95dR9DYuvr+3nuQqlUKgUAAAAAOC5VlS4AAAAAAMYDQRsAAAAADANBGwAAAAAMA0EbAAAAAAwDQRsAAAAADANBGwAAAAAMA0EbAAAAAAwDQRsAAAAADINJlS5gNCoWi3n00UdTW1ubQqFQ6XIAAAAAqKBSqZRdu3Zl7ty5qaoavG9N0DaARx99NPPmzat0GQAAAACMIg899FDOOOOMQe8L2gZQW1ub5MAv3vTp0ytcDQAAAACV1NXVlXnz5vVlRoMRtA2gd7vo9OnTBW0AAAAAJMmQR4wZhgAAAAAAw0DQBgAAAADDQNAGAAAAAMNA0AYAAAAAw0DQBgAAAADDQNAGAAAAAMNA0AYAAAAAw0DQBgAAAADDQNAGAAAAAMNA0AYAAAAAw0DQBgAAAADDQNAGAAAAAMNA0AYAAAAAw0DQBgAAAADDQNAGAAAAAMNA0AYAAAAAw0DQBgAAAADDQNAGAAAAAMNA0AYAAAAAw0DQBgAAAADDQNAGAAAAAMNA0AYAAAAAw0DQBgAAAADDQNAGAAAAAMNA0AYAAAAAw0DQBgAAAADDQNAGAAAAAMNgUqULAAAAAGB86CmW0tLWke27ulNfW5Ml82emuqpQ6bJGjKANAAAAgEGVG541b2nP2g2tae/s7rvWWFeTNSubsmJh40iWXDGCNgAAAIAJZrjDs+Yt7Vm9fnNKh7x+a2d3Vq/fnHWrFk+IsE3QBgAAADCBDHd41lMs5b3/2nrYuiQpJSkkWbuhNVc2NYz7baSFUqk00K/DhNbV1ZW6urp0dnZm+vTplS4HAAAAYFgMFp71xl8Hh2dX3PTdfmHcoaZOqspZs05Oe2d3urr3D/m9P/eWy7NswaxjL76Cys2KdLQBAAAATAA9xVLWbhi88yxJ3vmlO/PjX/wytz/0+BFDtiTZs7+Ye7Y9Ufb3377ryM8bDwRtAAAAABNAS1vHkOFZ51P78r9/0Fb2M3/vBWfnrFnT8q4v3znk2vramrKfO1ZVVboAAAAAAE68cjvKXnDeaXnDsmeUubY+r7l0XhrrajLY6WuFHDgDbsn8meUVOoYJ2gAAAAAmgHI7yn7vBQtyw8pnlh2eVVcVsmZlU9/1Q9clyZqVTeN+EEIiaAMAAACYEJbMn3nCwrMVCxuzbtXiNNT1D/Ma6mr6BixMBKaODsDUUQAAAGA8Knfq6MHr125o7Xe2W2NdTdasbBowPOspltLS1pHtu7pTX/ur0G6sKzcrErQNQNAGAAAAjFef+o+2vPdfW/tdm4jh2dEoNysydRQAAABgAnlqbzFJ8qzTp+e/Pu/sIcOz6qpCli2YNZIljlmCNgAAAIAJpHlLe5LkmsvOzG8sOr3C1YwvhiEAAAAATBCPPP5Ubn+4M4VCctUz51S6nHFH0AYAAAAwQfzbT7cmSS59xozU19YMsZqjJWgDAAAAmCC+ueVA0Hb1MxsqXMn4JGgDAAAAmAB27NqT/3ygI0myYqGg7UQQtAEAAABMAN+5a1tKpeRZp9fljBknV7qccUnQBgAAADAB9G4b1c124gjaAAAAAMa5zqf25T9+9lgSQduJJGgDAAAAGOe+e/e27C+Wcm79KVlw2imVLmfcErQBAAAAjHPNto2OCEEbAAAAwDj25N79+d69O5IkVz9T0HYiCdoAAAAAxrHv3bMj3fuKmTfzpDxz7vRKlzOuCdoAAAAAxrHmnz69bfSZDSkUChWuZnwTtAEAAACMU3v29+S7d21P4ny2kSBoAwAAABin/uNnO7Nrz/7U107Ns+fNqHQ5456gDQAAAGCc6p02evUzG1JVZdvoiSZoAwAAABiH9vcU82+tT5/PZtvoiBC0AQAAAIxDLQ905JdP7supJ0/O0vkzK13OhCBoAwAAABiHvvX0ttErL5yTSdUioJHgVxkAAABgnCkWS2n+qW2jI03QBgAAADDO3Pbw49nWtSenTJ2U554zu9LlTBiCNgAAAIBxpnfb6IsuqE/N5OoKVzNxTKp0AQAAAAAMj55iKS1tO/OlzQ8nSa66cE6FK5pYBG0AAAAA40Dzlvas3dCa9s7uvmvv/0ZrJk8qZMXCxgpWNnHYOgoAAAAwxjVvac/q9Zv7hWxJsr1rT1av35zmLe0VqmxiEbQBAAAAjGE9xVLWbmhNaYB7vdfWbmhNT3GgFQwnQRsAAADAGNbS1nFYJ9vBSknaO7vT0tYxckVNUII2AAAAgDFs+67BQ7ZjWcexE7QBAAAAjGH1tTXDuo5jJ2gDAAAAGMOWzJ+ZxrrBQ7RCksa6miyZP3PkipqgRkXQ9rGPfSxnnXVWampqsnTp0rS0tJT1us9//vMpFAp5xSte0e96qVTKDTfckMbGxpx00klZvnx57rvvvhNQOQAAAEBlVVcVsmZl04D3Ck9/XrOyKdVVhQHXMHwqHrR94QtfyHXXXZc1a9Zk8+bNufjii3P11Vdn+/btR3zdAw88kOuvvz7Pe97zDrv3wQ9+MB/5yEfy8Y9/PLfcckumTZuWq6++Ot3d9iIDAAAA48+KhY05/dTDu9oa6mqybtXirFjYWIGqJp5CqVSq6GzXpUuX5rLLLstHP/rRJEmxWMy8efPytre9Le9617sGfE1PT0+e//zn501velN+8IMf5PHHH89XvvKVJAe62ebOnZs/+ZM/yfXXX58k6ezszJw5c/KpT30qr33ta4esqaurK3V1dens7Mz06dOH540CAAAAnCD373giL/nr76W6kHz8dy7Jk3t7Ul97YLuoTrbjV25WVNGOtr179+bWW2/N8uXL+65VVVVl+fLl2bRp06Cv+4u/+IvU19fnzW9+82H32trasnXr1n7PrKury9KlSwd95p49e9LV1dXvAwAAAGCs+MYd7UmSK849LVc2NeQ3Fp2eZQtmCdlGWEWDtsceeyw9PT2ZM2dOv+tz5szJ1q1bB3zND3/4w/zDP/xDPvGJTwx4v/d1R/PMG2+8MXV1dX0f8+bNO9q3AgAAAFAxX7/zQND28otsEa2kip/RdjR27dqV3/md38knPvGJzJ49e9ie++53vzudnZ19Hw899NCwPRsAAADgRPrZ9l25e+uuTK4u5OqmhkqXM6FNquQ3nz17dqqrq7Nt27Z+17dt25aGhsP/j3H//ffngQceyMqVK/uuFYvFJMmkSZNyzz339L1u27ZtaWz8VYq7bdu2LFq0aMA6pk6dmqlTpx7v2wEAAAAYcV+/48AOvivOmZ26kydXuJqJraIdbVOmTMkll1ySjRs39l0rFovZuHFjli1bdtj6Cy64IHfeeWduu+22vo9f//Vfz4te9KLcdtttmTdvXubPn5+GhoZ+z+zq6sott9wy4DMBAAAAxrKv3/lokuRlz7JttNIq2tGWJNddd13e8IY35NJLL82SJUvy4Q9/OLt37861116bJHn961+f008/PTfeeGNqamqycOHCfq8/9dRTk6Tf9be//e15//vfn3PPPTfz58/Pe97znsydOzeveMUrRuptAQAAAJxw923blXu3PZHJ1YVcZdtoxVU8aLvmmmuyY8eO3HDDDdm6dWsWLVqU5ubmvmEGDz74YKqqjq7x7h3veEd2796dt771rXn88cdzxRVXpLm5OTU1NSfiLQAAAABURO8QhOede5pto6NAoVQqlSpdxGjT1dWVurq6dHZ2Zvr06ZUuBwAAAGBAV/7P7+W+7U/kr19zcX7zkjMqXc64VW5WNKamjgIAAABwwL3bduW+7U9kSnVVljfNqXQ5RNAGAAAAMCZ97Y4D20aff97s1J1k2+hoIGgDAAAAGGNKpVK+8fT5bKaNjh6CNgAAAIAx5t5tT+Rnto2OOoI2AAAAgDHm63c8miR5/nmnZXqNbaOjhaANAAAAYAwplUr52tPbRn/tIttGRxNBGwAAAMAYcvfWXfn5jt2ZMqkqL7mwvtLlcBBBGwAAAMAY0jsE4QXnnZZa20ZHFUEbAAAAwBhRKpXy9TtsGx2tBG0AAAAAY8Rd7bvy88d6t42aNjraCNoAAAAAxoiv33lg2uiLzj8tp0ydVOFqOJSgDQAAAGAMOHjb6MsvmlvhahiIoA0AAABgDGht78oDO5/M1ElVeckFpo2ORnoMAQAAAEaxnmIpLW0d+ccf/jxJ8sLzTss020ZHJf+rAAAAAIxSzVvas3ZDa9o7u/uu3dLWkeYt7Vmx0NTR0cbWUQAAAIBRqHlLe1av39wvZEuSzqf2ZfX6zWne0l6hyhiMoA0AAABglOkplrJ2Q2tKA9zrvbZ2Q2t6igOtoFIEbQAAAACjTEtbx2GdbAcrJWnv7E5LW8fIFcWQBG0AAAAAo8z2XYOHbMeyjpEhaAMAAAAYZepra4Z1HSND0AYAAAAwyiyZPzONdTUpDHK/kKSxriZL5s8cybIYgqANAAAAYJSpripkzcqmAYch9IZva1Y2pbpqsCiOShC0AQAAAIxCKxY25rVL5h12vaGuJutWLc6KhY0VqIojmVTpAgAAAAAY2KOPHxh28LrL5uXyBbNSX3tgu6hOttFJ0AYAAAAwCu3q3pdN9z+WJHnz887OOfWnVLgihmLrKAAAAMAo9P17H8u+nlLmz56WBadNq3Q5lEHQBgAAADAKfeeubUmSK5vmpFCwVXQsELQBAAAAjDL7eor57t3bkyTLL5xT4Wool6ANAAAAYJT58QO/TOdT+zLj5Mm55BkzKl0OZRK0AQAAAIwy3249sG30xRfMMWF0DBG0AQAAAIwipVIp375ra5ID57MxdgjaAAAAAEaRe7c9kYc6nsqUSVV53rmzK10OR0HQBgAAADCK9E4bveKc2Zk2dVKFq+FoCNoAAAAARpHe89lMGx17BG0AAAAAo8T2ru7c9tDjSZLlF9ZXthiOmqANAAAAYJTYePf2JMnF805N/fSaClfD0RK0AQAAAIwSvdtGrzJtdEwStAEAAACMAk/u3Z8f/uyxJM5nG6sEbQAAAACjwPfvfSx79xdz5syTc96cUypdDsdA0AYAAAAwCnznrl9NGy0UChWuhmMhaAMAAACosJ5iKd99ehDClc5nG7MEbQAAAAAVtvnBX6Zj997UnTQ5l501o9LlcIwEbQAAAAAV1jtt9MUX1GdStbhmrPK/HAAAAECFfaf1V+ezMXYJ2gAAAAAq6Gfbn8jPH9udKdVVecH5p1W6HI6DoA0AAACggnqnjV6+YFZOmTqpwtVwPARtAAAAABXUez6baaNjn6ANAAAAoEIee2JPNj/4yyTJ8gvrK1wNx0s/IgAAAMAI6ymW0tLWkX+9/ZGUSsnCudPTWHdSpcviOAnaAAAAAEZQ85b2rN3QmvbO7r5rD+x8Ms1b2rNiYWMFK+N42ToKAAAAMEKat7Rn9frN/UK2JHliz/6sXr85zVvaK1QZw0HQBgAAADACeoqlrN3QmtIR1qzd0Jqe4pFWMJoJ2gAAAACGSU+xlE3378xXb3skm+7f2S80a2nrOKyT7WClJO2d3Wlp6xiBSjkRnNEGAAAAMAwGOnutsa4ma1Y2ZcXCxtzx8ONlPWf7rsHDOEY3QRsAAADAceo9e+3QTZ9bO7vze+s3Z8Fp03L/jt1lPau+tmb4C2RE2DoKAAAAcByOdPZa77X7d+xOIcnUSYNHMYUc6IBbMn/mCaiSkSBoAwAAADgOQ5291utjv704f/vaRSnkQKh2sN6v16xsSnXVoXcZKwRtAAAAAMeh3DPV9vUUs2JhY9atWpyGuv7bQxvqarJu1eKsWNh4IkpkhDijDQAAAOAY7e8p5scP/LKstb1nr61Y2JgrmxrS0taR7bu6U197YLuoTraxT9AGAAAATDg9xVLZQddga1vaOnLDV7fk7q27jvi9CjnQsXbw2WvVVYUsWzBrON8So4CgDQAAAJhQmre0Z+2G1n7nqjXW1WTNyqbDtm4OtLa+dmrmz56WW9o6kiQzTp6clz+rMZ+95cEk6TcUwdlrE0uhVCoNNBRjQuvq6kpdXV06Ozszffr0SpcDAAAADJPmLe1ZvX7zYRNCeyOwg89JG2ztwV635My84+rzM2PalKMK8Bhbys2KdLQBAAAAE0JPsZS1G1oHDM56r/35/92S6TWT01Ms5d1f3nLEkG32KVPy/lcs7OtUc/YagjYAAABgQmhp6+jXbTaQnbv35rf+9y1lPe+xJ/ampa2j31lrzl6b2KoqXQAAAADASNi+68ghW68506dmbl3NsD6TiUFHGwAAADAh1NeWF559+JpnJ0le94kfDdszmRgEbQAAAMCEsGT+zDTW1WRrZ/eAZ68VkjTUHThXLclRrYXE1lEAAABggqiuKmTNyqYB7/WOK1izsinVVYV+aw8dZXDoWuglaAMAAAAmjBULG7Nu1eLUTO4fiTTU1WTdqsVZsbDxsLUNh5zXNtBaSGwdBQAAACaYFQsbc8a37snPduzO7z7/7Lzw/PosmT9zwO60FQsbc2VTQ1raOrJ9V3fqa2sGXQuCNgAAAGBC6d7Xk58/tjtJ8qYr5mfO9CMPNKiuKmTZglkjURpjnK2jAAAAwIRyz9ZdKZaSWdOmpL52aqXLYRwRtAEAAAATSmt7V5Kkae70FAq2gDJ8BG0AAADAhNL66NNBW+P0ClfCeCNoAwAAACaUgzvaYDgJ2gAAAIAJo1gs5a52HW2cGII2AAAAYML4RceTeXJvT6ZOqsr82dMqXQ7jjKANAAAAmDB6z2e7oKE2k6rFIgwv/48CAAAAJozW9s4kzmfjxBC0AQAAABOGiaOcSII2AAAAYMIwcZQTSdAGAAAATAiPPbEn27r2pFBIzm8QtDH8BG0AAADAhHDX091sZ82allOmTqpwNYxHgjYAAABgQnA+GyeaoA0AAACYEJzPxokmaAMAAAAmBB1tnGiCNgAAAGDc697Xk/t3PJFERxsnjqANAAAAGPfu2borxVIy+5Qpqa+dWulyGKcEbQAAAMC413s+24WN01MoFCpcDeOVoA0AAAAY9/rOZ7NtlBNI0AYAAACMe30TRw1C4AQStAEAAADjWrFYyl1PB23P1NHGCSRoAwAAAMa1X3Q8mSf39qRmclXmzz6l0uUwjgnaAAAAgHGt93y28xump7rKIAROHEEbAAAAMK61tncmcT4bJ56gDQAAABjXTBxlpAjaAAAAgHHNxFFGiqANAAAAGLcee2JPtnXtSaGQXNBQW+lyGOcEbQAAAMC4ddfT3WzzZ03LtKmTKlwN452gDQAAABi3fvr0+WwXOp+NESBoAwAAAMatvkEIzmdjBAjaAAAAgHGrbxCCjjZGgKANAAAAGJee2tuTn+94IknyTB1tjABBGwAAADAu3bNtV4qlZPYpU3Ja7dRKl8MEIGgDAAAAxqXe89kubJyeQqFQ4WqYCARtAAAAwLjU2t6ZxPlsjBxBGwAAADAumTjKSBO0AQAAAONOT7GUu7fuSpI8U0cbI0TQBgAAAIw7v9i5O0/u7UnN5KrMn31KpcthghC0AQAAAONOa/uBbaPnN0xPdZVBCIwMQRsAAAAw7jifjUoQtAEAAADjTm9Hm4mjjCRBGwAAADDu6GijEgRtAAAAwLiyY9eebN+1J4VCckFDbaXLYQIRtAEAAADjyl1PbxudP2tapk2dVOFqmEgEbQAAAMC40ns+24XOZ2OECdoAAACAcaOnWMr3792RJDll6qT0FEsVroiJRNAGAAAAjAvNW9pzxU3fzX/cvzNJ8oX/fChX3PTdNG9pr3BlTBSCNgAAAGDMa97SntXrN6e9s7vf9a2d3Vm9frOwjREhaAMAAADGtJ5iKWs3tGagTaK919ZuaLWNlBNO0AYAAACMaS1tHYd1sh2slKS9szstbR0jVxQTkqANAAAAGNO27xo8ZDuWdXCsBG0AAADAmFZfWzOs6+BYCdoAAACAMW3J/JmZM33qoPcLSRrrarJk/syRK4oJSdAGAAAAjGnVVYVcfMapA94rPP15zcqmVFcVBlwDw0XQBgAAAIxp27u68/37diRJZpw8ud+9hrqarFu1OCsWNlaiNCaYSZUuAAAAAOB4fOS796V7XzGLzzw1//K7y/KfD/wy23d1p772wHZRnWyMlFHR0faxj30sZ511VmpqarJ06dK0tLQMuvbLX/5yLr300px66qmZNm1aFi1alM985jP91rzxjW9MoVDo97FixYoT/TYAAACAEfaLnbvz+ZaHkiTvWHFBJlVXZdmCWfmNRadn2YJZQjZGVMU72r7whS/kuuuuy8c//vEsXbo0H/7wh3P11VfnnnvuSX19/WHrZ86cmT//8z/PBRdckClTpuRrX/tarr322tTX1+fqq6/uW7dixYp88pOf7Pt66tTBD0UEAAAAxqa/+fa92V8s5fnnnZbLz55V6XKY4Cre0fY//+f/zFve8pZce+21aWpqysc//vGcfPLJ+cd//McB17/whS/MK1/5ylx44YVZsGBB/uiP/igXXXRRfvjDH/ZbN3Xq1DQ0NPR9zJgxYyTeDgAAADBC7t7ala/e/miS5E+vOr/C1UCFg7a9e/fm1ltvzfLly/uuVVVVZfny5dm0adOQry+VStm4cWPuueeePP/5z+937+abb059fX3OP//8rF69Ojt37hz0OXv27ElXV1e/DwAAAGB0+9C37kmplLzsWQ151hl1lS4HKrt19LHHHktPT0/mzJnT7/qcOXNy9913D/q6zs7OnH766dmzZ0+qq6vzv/7X/8qVV17Zd3/FihV51atelfnz5+f+++/Pn/3Zn+WlL31pNm3alOrq6sOed+ONN2bt2rXD98YAAACAE+rWX3TkO3dtT1Uhue5K3WyMDhU/o+1Y1NbW5rbbbssTTzyRjRs35rrrrsvZZ5+dF77whUmS1772tX1rn/WsZ+Wiiy7KggULcvPNN+clL3nJYc9797vfneuuu67v666ursybN++Evw8AAADg6JVKpXyw+Z4kyasvOSPn1J9S4YrggIoGbbNnz051dXW2bdvW7/q2bdvS0NAw6OuqqqpyzjnnJEkWLVqUu+66KzfeeGNf0Haos88+O7Nnz87PfvazAYO2qVOnGpYAAAAAY8T373sst7R1ZEp1Vf5o+XmVLgf6VPSMtilTpuSSSy7Jxo0b+64Vi8Vs3Lgxy5YtK/s5xWIxe/bsGfT+ww8/nJ07d6axsfG46gUAAAAqq1Qq5a++deC4qVWXPyOnn3pShSuCX6n41tHrrrsub3jDG3LppZdmyZIl+fCHP5zdu3fn2muvTZK8/vWvz+mnn54bb7wxyYHz1C699NIsWLAge/bsyTe+8Y185jOfybp165IkTzzxRNauXZvf/M3fTENDQ+6///684x3vyDnnnJOrr766Yu8TAAAAOH7f3LI1Wx7pyrQp1fmDFy2odDnQT8WDtmuuuSY7duzIDTfckK1bt2bRokVpbm7uG5Dw4IMPpqrqV413u3fvzu///u/n4YcfzkknnZQLLrgg69evzzXXXJMkqa6uzh133JF/+qd/yuOPP565c+fmqquuyvve9z7bQwEAAGAM6imW0tLWka2dT+WD3zpwNtubn3d2Zp3i53xGl0KpVCpVuojRpqurK3V1dens7Mz06dMrXQ4AAACMO73h2fZd3amvrcmS+TNTXVU4bF3zlvas3dCa9s7uvmuFQvI/X3NxXrn4jJEsmQms3Kyo4h1tAAAAwMQyUHjWWFeTNSubsmJhY791q9dvzqEdQqVSct2/3J6TplT3Ww+VVtFhCAAAAMDE0hueHRyyJcnWzu6sXr85zVvakxzoeFu7ofWwkO1gaze0pqdoox6jh442AAAAYEQcKTzrvfbn/3dLOp/al/9s++VhYdyh69s7u9PS1pFlC2adiHLhqAnaAAAAgBHR0tZxxPAsSXbu3pt3funOsp+5fdeRnwcjydZRAAAAYESUG4qd31CbF51/Wllr62trjqckGFaCNgAAAGBElBuKvXflM/O/33BZGutqcvgc0gMKOTBAYcn8mcNWHxwvQRsAAAAwIpbMn5mGusHDtoPDs+qqQtasbOq7fui6JFmzsinVVYNFcTDyBG0AAADAiKiuKuT5584e8N5A4dmKhY1Zt2rxYeFcQ11N1q1anBULG09kuXDUDEMAAAAARsSdD3fmKz95NEkyvWZSurr3991rqKvJmpVNh4VnKxY25sqmhrS0dWT7ru7U1/6q4w1GG0EbAAAAcMJ1de/LH/zz5uztKeaqpjn5X7+9OP/5wC/LCs+qqwpZtmDWCFcMR0/QBgAAAJxQpVIp7/7ynXmw48mcfupJ+atXX5xJ1VXCM8YdZ7QBAAAAJ9Rnb3kwX7+jPZOqCvnobz07dSdPrnRJcEII2gAAAIAT5qePduYvvtaaJHnnigvy7DNnVLgiOHEEbQAAAMAJ8cSe/fnDf/5J9u4v5iUX1Oe/Pm9+pUuCE8oZbQAAAMCw6SmWDkwI7erOv/z4obQ9tjuNdTX50GsuTqFgUijjm6ANAAAAGBbNW9qzdkNr2ju7+13/7aVnZsa0KRWqCkaOraMAAADAcWve0p7V6zcfFrIlyV//271p3tJegapgZAnaAAAAgOPSUyxl7YbWlI6wZu2G1vQUj7QCxj5BGwAAAHBEPcVSNt2/M1+97ZFsun/nYYFZS9vOATvZepWStHd2p6Wt4wRXCpXljDYAAABgUAOdu9ZYV5M1K5vyvHNPy1dvezQf/feflfWs7bsGD+NgPBC0AQAAAAPqPXft0A2f7Z3d+b31m1MzqSrd+4tlP6++tmZ4C4RRxtZRAAAA4DDlnLvWvb+YZ8w8KX/2sgsyZ/rUFAZZV8iBLrgl82eegEph9NDRBgAAABympa3jiOeu9brxVRflOefMzpkzT87q9ZtTSPqFc73h25qVTamuGiyKg/FBRxsAAABwmHLPU9vxxJ4kyYqFjVm3anEa6vpvD22oq8m6VYuzYmHjsNcIo42ONgAAAOAw5Z6ndvC6FQsbc2VTQ1raOrJ9V3fqaw9sF9XJxkQhaAMAAAAOs2T+zDTW1Qy6fbSQA91qh567Vl1VyLIFs0agQhh9bB0FAAAADlNdVcialU0D3nPuGgxMRxsAAAAwoHPqawe83lBXkzUrm5y7BocQtAEAAAAD+tR/tCVJll9YnzdfcbZz12AIgjYAAADgMJ1P7suXbn0kSfKm58537hqUwRltAAAAwGH+5ccP5al9PTl/Tq2QDcokaAMAAAD66SmW8k+bHkiSXPvcs1Io2CYK5RC0AQAAAP18u3VbHv7lUzn15Ml5xbNPr3Q5MGYI2gAAAIB+Pvn/DgxBeN2SM1MzubrC1cDYIWgDAAAA+rQ+2pVb2jpSXVXI71z+jEqXA2OKoA0AAADo86n/ONDNtmJhQ+aeelKFq4GxRdAGAAAAJEl2PrEnX7nt0STJm557VmWLgTFI0AYAAAAkST7X8mD27i/mojPqsvjMGZUuB8YcQRsAAACQfT3FfOZHv0iSvPE5Z6VQKFS4Ihh7BG0AAABAvrlla7Z17cnsU6bm5Rc1VrocGJMEbQAAAEA++f8ODEFYdfmZmTqpusLVwNgkaAMAAIAJ7raHHs9PHnw8U6qr8ttLn1HpcmDMErQBAADABNfbzfZrFzfmtNqpFa4Gxq5JlS4AAAAAGHk9xVJa2jpy3/Zd2XD7o0mSa58zv8JVwdgmaAMAAIAJpnlLe9ZuaE17Z3fftcnVhTzy+JN51hl1FawMxjZbRwEAAGAc6SmWsun+nfnqbY9k0/0701Ms9bvfvKU9q9dv7heyJcm+nlJWr9+c5i3tI1kujCs62gAAAGCcGKhTrbGuJmtWNmXFwsb0FEtZu6E1pSM8Y+2G1lzZ1JDqqsKJLxjGGUEbAAAAjAO9nWqHhmhbO7uzev3m/OUrF2Zb157DOtkOVkrS3tmdlraOLFsw64TWC+ORoA0AAADGuCN1qvVe+7P/u6Xs523fNXgYBwzOGW0AAAAwxrW0dRyxU63XnOlTy3pefW3N8ZYEE5KgDQAAAMa4cjvQ3rXigjTW1WSw09cKOXCm25L5M4etNphIBG0AAAAwxpXbgdZQd1LWrGxKksPCtt6v16xsMggBjpGgDQAAAMa42x765RHvH9yptmJhY9atWpyGuv7hXENdTdatWpwVCxtPYKUwvhmGAAAAAGPYx/79Z/mrb93T93Uh6TcUYaBOtRULG3NlU0Na2jqyfVd36msPhHA62eD4CNoAAABgjPrb79yXv/nOvUmSP15+Xs5vOCVrN7T2G4zQUFeTNSubDutUq64qZNmCWSNaL4x3gjYAAAAYY0qlUv7m2/fmI9/9WZLkT68+P3/wonOSRKcaVJCgDQAAAEa5nmLpoPBsam6+d0f+v+/9PEnyZy+7IG99/oK+tTrVoHIEbQAAADCKNW9pP2w7aK/3/FpT3nzF/ApUBQxE0AYAAACjVPOW9qxev7nfcIODnX5qzSB3gEqoqnQBAAAAwOF6iqWs3dA6aMhWSLJ2Q2t6ioOtAEaaoA0AAABGoZa2jgG3i/YqJWnv7E5LW8fIFQUckaANAAAARqHtuwYP2Y5lHXDiCdoAAABgFKqvLe/8tXLXASeeoA0AAABGoSXzZ6axbvAQrZCksa4mS+bPHLmigCMStAEAAMAoVF1VyJqVTQPeKzz9ec3KplRXFQZcA4w8QRsAAACMUisWNmbh3OmHXW+oq8m6VYuzYmFjBaoCBjOp0gUAAAAAA3ty7/7cu/2JJMlfvfqiTJlUlfraA9tFdbLB6CNoAwAAgFHqB/c9lr37i5k386S8+pIzUigI12A0s3UUAAAARqmNd21LkrzkgjlCNhgDBG0AAAAwChWLpXz37h1JkuUXzqlwNUA5BG0AAAAwCt3+8ON57Ik9qZ06KUvmz6x0OUAZBG0AAAAwCm28a3uS5Pnnn5Ypk/z4DmOBf1MBAABgFPrO0+ezLb+wvsKVAOUStAEAAMAo8/Avn8zdW3elqpC88DxBG4wVgjYAAAAYZXq3jV76jJmZMW1KhasByiVoAwAAgFGmd9voS2wbhTFF0AYAAACjyBN79ueWn3ckSV5y4ZwKVwMcDUEbAAAAjCI/uHdH9vYUM3/2tCw4bVqlywGOgqANAAAARpFv924bvaA+hUKhwtUAR0PQBgAAAKNET7GUm+/ZkcS2URiLBG0AAAAwSvzkwV+mY/feTK+ZlEvPmlHpcoCjJGgDAACAUeI7d21Pkrzw/PpMrvYjO4w1/q0FAACAUWJj7/lsF9ZXuBLgWAjaAAAAYBT4xc7duW/7E5lUVcgLzxO0wVgkaAMAAIBRoHfb6GVnzUzdyZMrXA1wLARtAAAAMArYNgpjn6ANAAAAKqyre19a2jqSJMsvnFPhaoBjJWgDAACACvvePTuyv1jKgtOm5azZ0ypdDnCMBG0AAABQYb3bRnWzwdgmaAMAAIAK2t9TzL/fsyNJsrxJ0AZjmaANAAAAKujHv/hlOp/alxknT87iM2dUuhzgOEyqdAEAAAAwEfUUS2lp68jff//+JMkLzzst1VWFClcFHA9BGwAAAIyw5i3tWbuhNe2d3X3X/v3eHWne0p4VCxsrWBlwPGwdBQAAgBHUvKU9q9dv7heyJUnnk/uyev3mNG9pr1BlwPEStAEAAMAI6SmWsnZDa0oD3Ou9tnZDa3qKA60ARjtBGwAAAIyQlraOwzrZDlZK0t7ZnZa2jpErChg2gjYAAAAYIdt3DR6yHcs6YHQRtAEAAMAIqa+tGdZ1wOgiaAMAAIARctEZdZkyafAfxQtJGutqsmT+zJErChg2gjYAAAAYAXv3F/PfPveT7N1fHPB+4enPa1Y2pbqqMOAaYHQTtAEAAMAJtq/nQMi28e7tmTqpKm9ffm4a6/pvD22oq8m6VYuzYmFjhaoEjtekShcAAAAA41lPsZTr/uX2NP90a6ZUV+XvX39pXnDeaXnbi89NS1tHtu/qTn3tge2iOtlgbBO0AQAAwDDqKZb6ArTTTpma/3PrQ9lw+6OZXF3IulWL84LzTkuSVFcVsmzBrApXCwwnQRsAAAAMk+Yt7Vm7oTXtnd39rlcVkr973bPzkgvnVKgyYCQI2gAAAGAYNG9pz+r1m1Ma4F5xoIvAuGMYAgAAABynnmIpaze0DhiyJQcmiq7d0JoeiRuMa4I2AAAAOE4tbR2HbRc9WClJe2d3Wto6Rq4oYMQJ2gAAAOA4bd81eMh2LOuAsUnQBgAAAMepvrZmWNcBY5NhCAAAAHCcpk46ch9LIUlDXU2WzJ85MgUBFaGjDQAAAI7DA4/tzls+/eO+rwuH3O/9es3KplRXHXoXGE8EbQAAAHCMHntiT97wyZbs3L03C0+fnr+5ZlEa6vpvD22oq8m6VYuzYmFjhaoERoqtowAAAHAMnty7P2/+1H/mFzufzLyZJ+Uf33hZ6mtr8usXz01LW0e27+pOfe2B7aI62WBiELQBAADAUdrfU8wffHZzbn+4MzNOnpx/unZJ36CD6qpCli2YVeEKgUoQtAEAAMAQeoqlg7rUpubLmx/Jv9+zIzWTq/IPb7wsZ592SqVLBEYBQRsAAAAcQfOW9qzd0Jr2zu5+1wtJ/u51i7P4zBmVKQwYdQRtAAAAMIjmLe1ZvX5zSgPcKyXpKRZHuiRgFDN1FAAAAAbQUyxl7YbWAUO25EBH29oNrekpDrYCmGgEbQAAADCAlraOw7aLHqyUpL2zOy1tHSNXFDCqCdoAAABgANt3DR6yHcs6YPwTtAEAAMAA6mtrhnUdMP4J2gAAAGAAS+bPTGPd4CFaIUljXU2WzJ85ckUBo5qgDQAAAAZQXVXImpVNA94rPP15zcqmVFcVBlwDTDyCNgAAABjE8887LTWTDv/RuaGuJutWLc6KhY0VqAoYrSZVugAAAAAYrZq3bE33/mLmzTgpH3z1Rdm+a0/qaw9sF9XJBhxK0AYAAACD+OKtDydJXnPpvCxbMLvC1QCj3ajYOvqxj30sZ511VmpqarJ06dK0tLQMuvbLX/5yLr300px66qmZNm1aFi1alM985jP91pRKpdxwww1pbGzMSSedlOXLl+e+++470W8DAACAceShjifzH/fvTKGQvGrx6ZUuBxgDKh60feELX8h1112XNWvWZPPmzbn44otz9dVXZ/v27QOunzlzZv78z/88mzZtyh133JFrr7021157bb71rW/1rfngBz+Yj3zkI/n4xz+eW265JdOmTcvVV1+d7u7ukXpbAAAAjHFf2nygm+05C2bljBknV7gaYCwolEqlUiULWLp0aS677LJ89KMfTZIUi8XMmzcvb3vb2/Kud72rrGcsXrw4L3/5y/O+970vpVIpc+fOzZ/8yZ/k+uuvT5J0dnZmzpw5+dSnPpXXvva1Qz6vq6srdXV16ezszPTp04/9zQEAADAmFYulvOBD/56HOp7K31xzcV757DMqXRJQQeVmRRXtaNu7d29uvfXWLF++vO9aVVVVli9fnk2bNg35+lKplI0bN+aee+7J85///CRJW1tbtm7d2u+ZdXV1Wbp06aDP3LNnT7q6uvp9AAAAMHHd0taRhzqeSu3USVnxTJNFgfJUNGh77LHH0tPTkzlz5vS7PmfOnGzdunXQ13V2duaUU07JlClT8vKXvzx/93d/lyuvvDJJ+l53NM+88cYbU1dX1/cxb96843lbAAAAjHG9QxB+7eLGnDSlusLVAGNFxc9oOxa1tbW57bbb8p//+Z/5y7/8y1x33XW5+eabj/l57373u9PZ2dn38dBDDw1fsQAAAIwpT+zZn2/c2Z4kefUltowC5ZtUyW8+e/bsVFdXZ9u2bf2ub9u2LQ0NDYO+rqqqKuecc06SZNGiRbnrrrty44035oUvfGHf67Zt25bGxl+1927bti2LFi0a8HlTp07N1KlTj/PdAAAAMB584872PLWvJ2fPnpbFZ86odDnAGFLRjrYpU6bkkksuycaNG/uuFYvFbNy4McuWLSv7OcViMXv27EmSzJ8/Pw0NDf2e2dXVlVtuueWongkAAMDE9MUfH9g2+puXnJFCoVDhaoCxpKIdbUly3XXX5Q1veEMuvfTSLFmyJB/+8Ieze/fuXHvttUmS17/+9Tn99NNz4403Jjlwntqll16aBQsWZM+ePfnGN76Rz3zmM1m3bl2SpFAo5O1vf3ve//7359xzz838+fPznve8J3Pnzs0rXvGKSr1NAAAAxoAHHtudlgc6UlVIfnOxbaPA0al40HbNNddkx44dueGGG7J169YsWrQozc3NfcMMHnzwwVRV/arxbvfu3fn93//9PPzwwznppJNywQUXZP369bnmmmv61rzjHe/I7t2789a3vjWPP/54rrjiijQ3N6empmbE3x8AAABjx5c2H+hmu+Lc09JQ52dI4OgUSqVSqdJFjDZdXV2pq6tLZ2dnpk+fXulyAAAAGAHFYilX3PTdPNrZnb973bOz8uK5lS4JGCXKzYrG5NRRAAAAGG7/cf/OPNrZnek1k3Jl05xKlwOMQYI2AAAASPLFWx9Kkvz6ormpmVxd4WqAsUjQBgAAwITX1b0v39yyNUnymkvmVbgaYKwStAEAADDhfe329uzZX8y59afkojPqKl0OMEYJ2gAAAJjwereNvubSM1IoFCpcDTBWTap0AQAAAFAJPcVSWto6cucjndn84OOpKiSvePbplS4LGMMEbQAAAEw4zVvas3ZDa9o7u/uuTa6uyuZf/DIrFjZWsDJgLLN1FAAAgAmleUt7Vq/f3C9kS5I9+4tZvX5zmre0V6gyYKwTtAEAADBh9BRLWbuhNaUjrFm7oTU9xSOtABiYoA0AAIAJo6Wt47BOtoOVkrR3dqelrWPkigLGDUEbAAAAE8b2XYOHbMeyDuBggjYAAAAmjPrammFdB3AwQRsAAAATxjPnTs+U6sF/FC4kaayryZL5M0euKGDcELQBAAAwIXQ+uS9v+GRL9vYUB7xfePrzmpVNqa4qDLgG4EgEbQAAAIx723d155q/35SfPPh46k6anHeuuCCNdf23hzbU1WTdqsVZsbCxQlUCY92kShcAAAAAw6mnWEpLW0e27+pOfW1N5p5akzf8Y0se2PlkTqudmvVvXprzG2rz1uef3W/dkvkzdbIBx0XQBgAAwLjRvKU9aze0pr3zV1NDqwpJsZScMeOkfPa/Ls0zZk1LklRXFbJswaxKlQqMQ4I2AAAARr1Du9QG6j5r3tKe1es3p3TIa4tPX/iDFy3oC9kAToSyg7Y77rij7IdedNFFx1QMAAAAHGqgLrXGupqsWdnUd55aT7GUtRtaDwvZDvaRjT/Lf7n0TNtDgROm7KBt0aJFKRQKKZVKKRSO/B+lnp6e4y4MAAAAButS29rZndXrN+dDr7ko5zdMz8a7tvUL4gbS3tmdlrYO20WBE6bsoK2tra3vn3/yk5/k+uuvz5/+6Z9m2bJlSZJNmzblr//6r/PBD35w+KsEAABgwjlSl1rvtT/5P+XvvkoOTB8FOFHKDtqe8Yxn9P3za17zmnzkIx/Jy172sr5rF110UebNm5f3vOc9ecUrXjGsRQIAADDxtLR1DNmlliTTaybntNopuX/H7iHX1tfWDEdpAAOqOpYX3XnnnZk/f/5h1+fPn5/W1tbjLgoAAADK7T573yuemX/74xeksa4mgx10VMiBc92WzJ85bPUBHOqYgrYLL7wwN954Y/bu3dt3be/evbnxxhtz4YUXDltxAAAATFzldp/V19akuqqQNSubkuSwsK336zUrmwxCAE6osreOHuzjH/94Vq5cmTPOOKNvwugdd9yRQqGQDRs2DGuBAAAATExL5s/MjJMn55dP7hvwfiFJw0FdaisWNmbdqsWHTShtOGRCKcCJckxB25IlS/Lzn/88n/3sZ3P33XcnSa655pr81m/9VqZNmzasBQIAADAxde/rSWGQzaCDdamtWNiYK5sa0tLWke27ulNfeyCI08kGjIRjCtq+//3v5znPeU7e+ta39ru+f//+fP/738/zn//8YSkOAACAiet/fvvedDy5NzNPnpLJkwrZ1rWn796RutSqqwpZtmDWSJYKkOQYg7YXvehFaW9vT319fb/rnZ2dedGLXpSenp5hKQ4AAICJ6faHHs8n/19bkuR/XnNxnnfuabrUgFHvmIK2UqmUQuHw/6Dt3LnT1lEAAACOy76eYt75pTtSLCWvWDQ3Lzz/QJOHLjVgtDuqoO1Vr3pVkqRQKOSNb3xjpk6d2nevp6cnd9xxR57znOcMb4UAAABMKH///Z/n7q27MuPkyXnPrzVVuhyAsh1V0FZXV5fkQEdbbW1tTjrppL57U6ZMyeWXX563vOUtw1shAAAAE0bbY7vztxvvS5K859eaMuuUqUO8AmD0OKqg7ZOf/GSS5LTTTst73/venHzyyUmSBx54IF/5yldy4YUXZvbs2cNfJQAAAONeqVTKu798R/buL+Z5587OK599eqVLAjgqVcfyop/85Cf59Kc/nSR5/PHHc/nll+ev//qv84pXvCLr1q0b1gIBAACYGP7lxw/lRz/vyEmTq/M/XvmsAc8GBxjNjjloe97znpck+eIXv5g5c+bkF7/4RT796U/nIx/5yLAWCAAAwPjUUyxl0/0789XbHsk3t7Tn/V9rTZJcd+V5mTfz5ApXB3D0jmnq6JNPPpna2tokyb/927/lVa96VaqqqnL55ZfnF7/4xbAWCAAAwPjTvKU9aze0pr2zu9/1M2eenGufe1ZligI4TsfU0XbOOefkK1/5Sh566KF861vfylVXXZUk2b59e6ZPnz6sBQIAADC+NG9pz+r1mw8L2ZLkwY4n8527tlWgKoDjd0xB2w033JDrr78+Z511VpYuXZply5YlOdDd9uxnP3tYCwQAAGD86CmWsnZDa0qD3C8kWbuhNT3FwVYAjF7HtHX01a9+da644oq0t7fn4osv7rv+kpe8JK985SuHrTgAAADGl5a2jgE72XqVkrR3dqelrSPLFswaucIAhsExBW1J0tDQkIaGhn7XlixZctwFAQAAMPr0FEtpaevI9l3dqa+tyZL5M1NddfhU0KHWbd81eMh2sHLXAYwmxxy0AQAAMPqUG4gdzdqBBhc01tVkzcqmrFjYWPa6nzz4y3x6U3kD9Opra8p9ywCjRqFUKtn4foiurq7U1dWls7PTcAcAAGDMKDcQO5q1vYMLDv3BsTeOW7dqcVYsbDziulKS8+acknu3PTHkeygkaairyQ/f+eJBA0KAkVZuVnRMwxAAAAAYXQab5Lm1szur129O85b2o157pMEFvdfWbmjN3v3FIdfdu+2JVBeS11xyRtasbEohvwrrevV+vWZlk5ANGJNsHQUAABgDjrTNc6hArHeS55VNB87ZHioUe89Xf5qZ06bm1l+UN7jgNz72wyOu6/W3r312fu3iuUkOdM8d2lHXMEj3HcBYIWgDAAAY5Yba5lnuJM+X/u3301MsDRmK7di1J//l/9tUdn13te8qa13PQScXrVjYmCubGso+Tw5gLBC0AQAAVEg5wwgGO/usd5vn215yTu4pM+gq54y0XjOnTc70msl5YOeTQ6696sI5+be7tg257tABB9VVhSxbMKvsmgBGO0EbAABABZQzjKCcM9I+svFnZX/PP15+bqqrCvnQv9075NqP/dYlWTJ/Zq646bvZ2tk9YA29gws++tuL84K/+vch1y2ZP7PsWgHGIsMQAAAARlg5wwi69/Xks7f8oqyzz567YFam10we9H4hB0K8P3zxuVn9wnPSWFdz2CCCQ9f2dtetWdnUd/3QdcmBwQVTJlWVtc62UGC8E7QBAACMoKG61EpJ3va5n2Thmubc8NWflvXM/3LZvHzw1c8qa5JnueFZbyi2YmFj1q1anIa6/ts+G+pqsm7V4r7uu3LXAYxnhVKpNNB/3ye0rq6u1NXVpbOzM9OnT690OQAAwDiy6f6ded0nflTW2uk1k9LVvX/IdZ97y+VZtmBWWdtRex3N2qS88+SOZh3AWFJuVuSMNgAAgBG0fdfQW0GTZM2vNeV3lj0jz/tg+WefHc0kz6Od+lnu4AIDDoCJTNAGAAAwgg6dvDmYCxqnZ1L1gbPPVq/fnELSL2wb7Oyzowm6hGIAw8sZbQAAACOo44k9R7x/8DCCxNlnAGOJjjYAAIARUCqV8pGNP8vffOfevmvldqkd7TZPACpD0AYAADCMBhoGsHd/Mdf/n9vz9TvbkyRveu78XPKMU/P+r9/VbxhBwxGGEdjmCTD6CdoAAACGyUCTPOtrp2bqpKo89MunMrm6kPe/YmGuuezMJAc61XSpAYwfgjYAAIBh0LylPavXbz5sOuj2XQfOZDtl6qT84xsv6zt7LdGlBjDeGIYAAABwnHqKpazd0HpYyHawk6dU55JnzBixmgAYeYI2AACA49TS1tFvu+hAtu/ak5a2jhGqCIBKELQBAAAcp+27jhyyHe06AMYmQRsAAMBxqq+tGdZ1AIxNgjYAAIDjtGT+zDTWDR6iFZI01tX0G4QAwPgjaAMAADhO1VWF/LeXnDPgvcLTn9esbEp1VWHANQCMD4I2AACA41QqlfKd1u1JksnV/cO0hrqarFu1OCsWNlaiNABG0KRKFwAAADDWbbijPRvv3p7J1YX86x9ekcef3Jftu7pTX3tgu6hONoCJQdAGAABwHDp27817//WnSZI/fNG5ubBxeoUrAqBSbB0FAAA4Dn+x4afp2L0358+pzeoXLqh0OQBUkKANAADgGH337m35ym2PpqqQ3PTqizJlkh+xACYyvwsAAAAcg13d+/Lf/++WJMmbr5ifRfNOrWxBAFScoA0AAOAYfLD5njza2Z0zZ56c6648v9LlADAKCNoAAACOUktbRz7zo18kST7wm8/KSVOqK1wRAKOBqaMAAABl6CmW0tLWkUcefzIf+ta9SZLXXjYvz1kwu8KVATBaCNoAAACG0LylPWs3tKa9s7vvWlUhuWz+zApWBcBoI2gDAAA4guYt7Vm9fnNKh1wvlpLr/+X2TJtSnRULGytSGwCjizPaAAAABtFTLGXthtbDQraDrd3Qmp7ikVYAMFEI2gAAAAbR0tbRb7vooUpJ2ju709LWMXJFATBqCdoAAAAGsX3X4CHbsawDYHwTtAEAAAyivrZmWNcBML4J2gAAAAaxZP7MNNYNHqIVkjTW1WSJ6aMARNAGAAAwqOqqQlZdfuaA9wpPf16zsinVVYUB1wAwsQjaAAAAjuD2hzqTJCdNru53vaGuJutWLc6KhY2VKAuAUWhSpQsAAAAYre7f8US+fde2JMlX/uA56di9L9t3dae+9sB2UZ1sABxM0AYAADCI//2Dn6dUSpZfWJ/zG6ZXuhwARjlbRwEAAAawfVd3vnTrI0mS333BggpXA8BYIGgDAAAYwKf+3wPZ21PM4jNPzaXPmFHpcgAYAwRtAAAAh3hiz/585ke/SHKgm61QcBYbAEMTtAEAABzi8y0PZlf3/pw9e1quvHBOpcsBYIwQtAEAABxkX08x//DDtiTJW55/dqpMFgWgTII2AACAg2y4/dG0d3Zn9ilT88pnn17pcgAYQwRtAAAATyuVSvn/vvfzJMm1zz0rNZOrK1wRAGOJoA0AAOBpN9+7I/ds25VpU6qzaukzKl0OAGOMoA0AAOBpf/90N9vrlpyZupMnV7gaAMYaQRsAAECS2x96PJt+vjOTqgp50xXzK10OAGOQoA0AACDJ33//QDfbr188N3NPPanC1QAwFk2qdAEAAACV0lMspaWtI62PduYbd7YnSd76grMrXBUAY5WgDQAAmJCat7Rn7YbWtHd2912bOqkqDzy2Oxc0TK9gZQCMVbaOAgAAE07zlvasXr+5X8iWJHv2F7N6/eY0b2mvUGUAjGWCNgAAYELpKZaydkNrSkdYs3ZDa3qKR1oBAIcTtAEAABNKS1vHYZ1sByslae/sTktbx8gVBcC4IGgDAAAmlO1dg4ds/dbtKm8dAPQyDAEAABhXeieJbt/VnframiyZPzPVVYUkyUMdT+ZT//FAWc+pr605gVUCMB4J2gAAgHFjoEmijXU1+bOXXZgHO57M3333vnTvKx7xGYUkDXUHAjoAOBqCNgAAYFzonSR66AiD9s7uvO1zP+n7+vKzZ+bqZzbkLza0Jkm/9YWnP69Z2dTXBQcA5RK0AQAAY145k0SrCslfvfqivGrxGSkUCmmsqzms+62hriZrVjZlxcLGE180AOOOoA0AABjzhpokmiTFUjL31JNTKBzoVFuxsDFXNjUMep4bABwtQRsAADDmlTsh9NB11VWFLFsw60SUBMAEVFXpAgAAAI5XuRNCTRIF4EQStAEAAGPekvkz01g3eIhWyIHpoyaJAnAiCdoAAIAxr7qqkHe/9IIB75kkCsBIEbQBAADjws+2P5HkwHTRgzXU1WTdqsUmiQJwwhmGAAAAjHn3btuVdd+7P0nyd699dmaeMtUkUQBGnKANAAAY04rFUt71pTuyr6eUK5vm5GUXNaZQEKwBMPJsHQUAAMa0z97yi2x+8PFMm1Kdv/iNZwrZAKgYQRsAADBmbe3szk3N9yRJ3rHigjTWnVThigCYyARtAADAmLXmX7fkiT378+wzT82qy59R6XIAmOAEbQAAwJjUvGVrvvXTbZlUVciNr3qWgQcAVJygDQAAGHO6uvdlzb9uSZL87gvOzgUN0ytcEQCYOgoAAIwRPcVSWto6sn1Xd752e3u2de3J/NnT8rYXn1vp0gAgiaANAACooIPDs/ramiyZP3PALaDNW9qzdkNr2ju7+13/jUVzUzO5eqTKBYAjErQBAAAVMVB41lhXkzUrm7JiYWO/davXb05pgGf87XfuywUNtf3WA0ClOKMNAAAYcb3h2aEdals7u7N6/eY0b2lPcqDjbe2G1gFDtl5rN7Smp3ikFQAwMnS0AQAAI+pI4VnvtXd96c78/LHd2fJw52Fh3KHr2zu709LWkWULZp2IcgGgbII2AABgRLW0dRwxPEuSx5/alw8231P2M7fvOvLzAGAk2DoKAACMqHJDscvOmpGVF5d39lp9bc3xlAQAw0JHGwAAMKLKDcWuu/L8LJk/Mz9+4JfZ2tk94FbTQpKGugPTSgGg0nS0AQAAI+qiM+oypXrwH0UKOTB9dMn8mamuKmTNyqa+64euS5I1K5tSXXXoXQAYeYI2AABgxHTv68nvrb81e3uKA94fKDxbsbAx61YtTkNd/064hrqarFu1OCsWlre9FABONFtHAQCAEbFnf09+9zO35gf3PZaTp1Tn91+4IJ+95cF+gxEa6mqyZmXTYeHZioWNubKpIS1tHdm+qzv1tb/qeAOA0WJUdLR97GMfy1lnnZWamposXbo0LS0tg679xCc+kec973mZMWNGZsyYkeXLlx+2/o1vfGMKhUK/jxUrVpzotwEAAAxiz/6erF6/Od+7d0dOmlydT77xsvzhi8/ND9/54nzuLZfnb1+7KJ97y+X54TtfPGiHWnVVIcsWzMpvLDo9yxbMErIBMOpUvKPtC1/4Qq677rp8/OMfz9KlS/PhD384V199de65557U19cftv7mm2/O6173ujznOc9JTU1Nbrrpplx11VX56U9/mtNPP71v3YoVK/LJT36y7+upU6eOyPsBAICJrqdY6td5tmjeqXnb536S7969PTWTq/IPb7w0S8+eleRX4RkAjAeFUqk00PCeEbN06dJcdtll+ehHP5okKRaLmTdvXt72trflXe9615Cv7+npyYwZM/LRj340r3/965Mc6Gh7/PHH85WvfOWYaurq6kpdXV06H30006dPP6ZnAADARPTtn27N//jmXdnauafv2tRJVdmzv5ipk6qybtXiLFswu4IVAsDR6+rqSt3cuens7DxiVlTRjra9e/fm1ltvzbvf/e6+a1VVVVm+fHk2bdpU1jOefPLJ7Nu3LzNn9h/nffPNN6e+vj4zZszIi1/84rz//e/PrFkD/03Znj17smfPr/4g0NXVdeAf5s49yncEAAAT25VPfwzqr0aoEACogIqe0fbYY4+lp6cnc+bM6Xd9zpw52bp1a1nPeOc735m5c+dm+fLlfddWrFiRT3/609m4cWNuuummfO9738tLX/rS9PT0DPiMG2+8MXV1dX0f8+bNO/Y3BQAAAMCEVPEz2o7HBz7wgXz+85/PzTffnJqaX436fu1rX9v3z8961rNy0UUXZcGCBbn55pvzkpe85LDnvPvd7851113X93VXV9eBsO3RRxNbRwEAYMAtoQ11U/NnL70wVz6zIbf8fGfe+Mn/HPI5n7r2sr7z2QBgzOjqKmvnY0WDttmzZ6e6ujrbtm3rd33btm1paGg44ms/9KEP5QMf+EC+853v5KKLLjri2rPPPjuzZ8/Oz372swGDtqlTpw48LGHatAMfAAAwgTVvac/qL9+dUgrJlF/9BfcDTyVv+fLd+a2Hd+e2hzvz1EH3BrO1p9qfsQEYewbZJXmoim4dnTJlSi655JJs3Lix71qxWMzGjRuzbNmyQV/3wQ9+MO973/vS3NycSy+9dMjv8/DDD2fnzp1pbBx4TDgAADCwnmIpaze0ZqAJar3X/rnlobQ+2lXW8+prhw7jAGCsqmjQliTXXXddPvGJT+Sf/umfctddd2X16tXZvXt3rr322iTJ61//+n7DEm666aa85z3vyT/+4z/mrLPOytatW7N169Y88cQTSZInnngif/qnf5of/ehHeeCBB7Jx48b8xm/8Rs4555xcffXVFXmPAAAwVrW0daS9s3vIda+59IzMPmVKCoPcLyRprKvJkvkzB1kBAGNfxc9ou+aaa7Jjx47ccMMN2bp1axYtWpTm5ua+AQkPPvhgqqp+lQeuW7cue/fuzatf/ep+z1mzZk3e+973prq6OnfccUf+6Z/+KY8//njmzp2bq666Ku973/sG3h4KAAAMavuuoUO2JLninNl5yQX1Wb1+cwpJvw643vBtzcqmVFcNFsUBwNhXKJVKA3WBT2hdXV2pq6tLZ2dnphuGAADABLbp/p153Sd+NOS6z73l8ixbMCvNW9qzdkNrvy64xrqarFnZlBULHeUCwNhUblZU8Y42AABg9Foyf2Ya62oG3T5aSNJw0JbQFQsbc2VTQ1raOrJ9V3fqaw/c08kGwEQgaAMAAAZVXVXImpVN+b31mw+7N9iW0OqqQpYtmDVCFQLA6FHxYQgAAMDodvUzGzLrlCmHXW+oq8m6VYttCQWAp+loAwAAjujORzqz84m9qZlUlY//ziXpfGqfLaEAMABBGwAAcERfu6M9SbK8aU5eeH59hasBgNHL1lEAAGBQpVIpX386aPu1i2wRBYAjEbQBAACD+slDj+eRx5/KtCnVutkAYAiCNgAAYFBfP2jbaM3k6gpXAwCjm6ANAAAYULFYyjfuPBC0vfxZto0CwFAEbQAAwIA2P/jLtHd2p3bqpDz/vNMqXQ4AjHqCNgAAYEC900avtG0UAMoiaAMAAA7Tc/C2UdNGAaAsgjYAAOAwP36gI9t37UltzaQ871zbRgGgHII2AADgMF9/upvt6mc2ZMokPzYAQDn8jgkAAPRzYNvo1iTJr9k2CgBlE7QBAAD93NK2M489sSd1J03Oc8+ZXelyAGDMELQBAAD99E4bXfHMhkyu9iMDAJTL75oAAECf/T3FNG95etvoxbaNAsDRELQBAAB9Nv18Zzp2783MaVOy7OxZlS4HAMYUQRsAANDn673bRhc2ZJJtowBwVPzOCQAAJEn29RTT/NOnt40+y7ZRADhagjYAACBJ8v9+9lgef3JfZp8yJUvmz6x0OQAw5gjaAACAJL/aNvrShY22jQLAMfC7JwAAkL37i/nW09tGX36RbaMAcCwEbQAAQH74sx3p6t6f+tqpuews20YB4FhMqnQBAABA5fQUS2lp68i6m+9PcmDaaHVVocJVAcDYJGgDAIAJqnlLe9ZuaE17Z3ffta/f0Z7nLJiVFQttHwWAo2XrKAAATEDNW9qzev3mfiFbknTs3pvV6zeneUt7hSoDgLFL0AYAABNMT7GUtRtaUxrgXu+1tRta01McaAUAMBhBGwAATDAtbR2HdbIdrJSkvbM7LW0dI1cUAIwDgjYAAJhgtu8aPGQ7lnUAwAGCNgAAmGDqa2uGdR0AcICgDQAAJpgl82dmzvSpg94vJGmsq8mS+TNHrigAGAcEbQAAMMFUVxVyYcP0Ae8Vnv68ZmVTqqsKA64BAAYmaAMAgAlm84O/zPfu25EkmTltSr97DXU1WbdqcVYsbKxEaQAwpk2qdAEAAMDI2bu/mHd/6c6USslvLj4jH3z1RWlp68j2Xd2prz2wXVQnGwAcG0EbAABMIJ/4wc9zz7ZdmTltSv785RemuqqQZQtmVbosABgXbB0FAIAJou2x3fnbjfclSd7zaxcetm0UADg+gjYAAJgASqVS/uzLd2bv/mKed+7svGLR6ZUuCQDGHUEbAABMAF+89eFs+vnO1Eyuyl++4lkpFJzDBgDDTdAGAADj3GNP7MlffuOuJMnbl5+XM2edXOGKAGB8ErQBAMA49/6vtebxJ/flwsbpefMV8ytdDgCMW6aOAgDAONNTLKWlrSPbd3WnvbM7X7nt0RQKyQde9axMrvZ37QBwogjaAABgHGne0p61G1rT3tnd7/oLzz8tF887tTJFAcAE4a+zAABgnGje0p7V6zcfFrIlyc1370jzlvYKVAUAE4egDQAAxoGeYilrN7SmdIQ1aze0pqd4pBUAwPEQtAEAwDjQ0tYxYCdbr1KS9s7utLR1jFxRADDBCNoAAGAc2L5r8JDtWNYBAEdP0AYAAONAfW3NsK4DAI6eqaMAADDGlUql/PBnO464ppCkoa4mS+bPHJmiAGACErQBAMAYtnd/Me/68h358uZH+q4Vkn5DEQpPf16zsinVVYUAACeGoA0AAMaInmIpLW0d2b6rO/W1NbmgsTZv++ef5Ic/eyzVVYX8j1cuTN1Jk7N2Q2u/wQgNdTVZs7IpKxY2VrB6ABj/BG0AADAGNG9pPyxAm1RVyP5iKSdPqc7HfntxXnR+fZLkyqaGfoHckvkzdbIBwAgQtAEAwCjXvKU9q9dv7rcdNEn2Fw9ceftLzu0L2ZKkuqqQZQtmjWCFAEBi6igAAIxqPcVS1m5oPSxkO9gn/+OB9BSPtAIAGAmCNgAAGMVa2jr6bRcdSHtnd1raOkaoIgBgMII2AAAYxbZ2PlXWuu27jhzGAQAnnjPaAACggg6dJNo7uKBUKuXme3fkr/7tnrKeU19bc4IrBQCGImgDAIAKGWiSaGNdTd78vPn53j078oP7HkuSFApJaZAj2ApJGuoOBHQAQGUJ2gAAoAIGmyTa3tmd93/triTJ5OpCrn3u/JzfUJvr/+X2JOm3vvD05zUrm1JdVQgAUFmCNgAAGGHlTBKtmVyVb/y35+Xs005JkkybUn1Y91tDXU3WrGzKioWNJ7hiAKAcgjYAABhh5UwS7d5XzLauPX1B24qFjbmyqWHA89wAgNFB0AYAACOs3Amhh66rripk2YJZJ6IkAGAYVFW6AAAAmGjKnRBqkigAjC2CNgAAGGFL5s9MY93gIVohB6aPmiQKAGOLoA0AAEZYdVUhf/Cicwa8Z5IoAIxdgjYAAKiAW9o6kiRTqvv/kbyhribrVi02SRQAxiDDEAAAYITd/tDj2XD7oykUki+uXpbde3pMEgWAcUDQBgAAI6hUKuV/fOOuJMkrn316Ljrj1MoWBAAMG1tHAQBgBG28a3tuaevIlElV+ZOrzq90OQDAMBK0AQDACNnfU8yN3zzQzfam587P6aeeVOGKAIDhJGgDAIAR8oUfP5T7d+zOjJMn5/dftKDS5QAAw0zQBgAAI2D3nv35m2/flyT5by85N9NrJle4IgBguAnaAABgBPz993+ex57Yk2fMOjm/vfQZlS4HADgBBG0AAHCCbe/qzt9//+dJkndcfUGmTPLHcAAYj/wODwAAJ9jffOfePLWvJ88+89S87FkNlS4HADhBJlW6AAAAGG96iqW0tHVk+67u7NtfzOdbHkqS/NnLLkyhUKhwdQDAiSJoAwCAYdS8pT1rN7SmvbO73/WLz6jLZWfNrFBVAMBIsHUUAACGSfOW9qxev/mwkC1Jbn+4M81b2itQFQAwUgRtAAAwDHqKpazd0JrSIPcLSdZuaE1PcbAVAMBYZ+soAADjzsFnpNXX1mTJ/Jmprhr4bLThWtvS1jFgJ1uvUpL2zu60tHVk2YJZx/0eAYDRR9AGAMC4MtAZaY11NVmzsikrFjaesLU/27GrrPq27xo8jAMAxrZCqVTSu36Irq6u1NXVpbOzM9OnT690OQAAlKn3jLRD/4Db25+2btXivgBtONb2Orf+lNy3/YmyavzcWy7X0QYAY0y5WZEz2gAAGBeOdEZa77XeM9LKWbvmX3+aHbv2ZHtXd2746k8HDdmS9IVsk6sH3nKaHAjwGusObDcFAMYnW0cBABgXyj0j7ZlrmtPTU8q+IwwlKCXZ1rUnl/3ld8r+/h953aJMqa7K6vWb+57Rqzd+W7OyadDz3wCAsU9HGwAA40K5Z5917yseMWQ7VqVSsmJhY9atWpyGupp+9xrqavptRQUAxicdbQAAjAv1tTVDL0ryN//l4kyqrsrbPveTIdd+9r8uTSHJb/3vW8r+/isWNubKpoayJ5kCAOOHoA0AgHHh0cefPOL9Qg50lv36otOTJP/jG3dla2f3gGev9a69/OwDQwsa62qGXHvw2WvVVQUDDwBgArJ1FACAMW3v/mJu+OqW/Mn/uaPv2qG9Y4eekVZdVcialU3DvhYAmNgEbQAAjBk9xVI23b8zX73tkWy6f2ce+eVTee3fb8qnN/0iSfLfXnJu/tdvlXdG2tGcp+bsNQCgHIVSqTT8J8GOcV1dXamrq0tnZ2emT59e6XIAAEjSvKU9aze09pssWlVIiqVkes2k/M01i/KSC+ckORDIlXtG2olaCwCMH+VmRc5oAwCgosoJr5q3tGf1+s2HnZHWOzz0T68+vy9kS47ujLQTtRYAmHgEbQAAVMxAXWqNdTVZs7KpbztmT7GU925oHXAQQXLgnLT/dfP9+a2lz9BdBgBUlKANAICKGKxLbWtnd35v/easWnpmqqsKueXnHdl6UBB3qFKS9s7utLR16DYDACpK0AYAwIjrKZaydpAutd5r62958KieuX3X4GEcAMBIMHUUAIAR19LW0W+76GBetrAhq1+woKxn1tfWDL0IAOAEErQBADDiyu0+u3phQ66/+vw01tVksNPXCjlwrtuS+TOHrT4AgGMhaAMAYETt6t6XL936cFlr62trUl1VyJqVTUlyWNjW+/WalU0GIQAAFSdoAwBg2PUUS9l0/8589bZHsun+nekpHjh57ccPdORlH/lBvn/fY0d8/aFdaisWNmbdqsVpqOu/PbShribrVi3um1AKAFBJhiEAAFC2nmIpLW0d2b6rO/W1B4KwQzvJmre0Z+2G1n5nsDVMr8mzzzw13/rp1hRLyRkzTsprL5uXv/63e5Ok31CEwbrUVixszJVNDUN+fwCAShG0AQBQloECtMa6mqxZ2dTXUda8pT2r128+bJro1q7ufHPL1iTJqxafnvf++jMzvWZyzqk/5fBQ7pBnHqy6qpBlC2YN/5sDABgGhVKpNNBU9Qmtq6srdXV16ezszPTp0ytdDgBAxQ0WoPX2kq1btThXNjXkipu+e8RpoqeePDm3/vcr+3WhldMlBwBQSeVmRTraAAA4op5iKWs3tB4WsiW/2vJ5/f+5PZc+48EjhmxJ8viT+9LS1tGvK02XGgAwXgjaAAAmuKE6ylraOoYM0J7Y05Ob7z3ygINe23cd+VkAAGOVoA0AYAI70rlrVzU15Ja2jvzNt+8t61lLz5qRWx745ZDr6mtrhlwDADAWCdoAACaowc5da+/szu+t35xZ06Zk5+69ZT/vv73kvFz/xduztbN7wG2mhRwYdLBk/szjKRsAYNSqqnQBAACMvCOdu9Zr5+69OWVKda657IzMmjYlg40nKORAF9zlC2ZlzcqmvmuHrkmSNSubDDoAAMYtQRsAwARUzrlrSfKxVYtz029enL985cIkQwdoKxY2Zt2qxWmo6789tKGuJutWLc6KhY3DUD0AwOhk6ygAwARU7kCCx5/clyR9Adqh57k1PH2e28EB2oqFjbmyqeGIAxYAAMYjQRsAwARUXzu1zHW/6kw7mgCtuqqQZQtmDVu9AABjgaANAGCC2bu/mC/e+vAR1ww2uECABgAwOEEbAMAE0vnkvvze+luz6ec7U0hSSvo+9zK4AADg2AjaAADGoZ5i6bAtno/88qlc+6mW3L9jd6ZNqc5Hf3tx9uzrKevcNQAAhiZoAwAYZ5q3tB8Wns2aNiV79hfzxJ79aayryT+84bI0zZ2eJAYXAAAME0EbAMA40rylPavXb+63FTRJdu7emySZN+OkfHH1czJn+q+GHDh3DQBgeFRVugAAAIZHT7GUtRtaDwvZDravp5TZp5Q3cRQAgKMjaAMAGCda2jr6bRcdyNau7rS0dYxQRQAAE4ugDQBgnNi+68gh29GuAwDg6DijDQBgDBlommh1VSG/2Lk7X7z14bKeUV9bM/QiAACOmqANAGCMGGia6Gm1U3Ne/Sn5UVtHeopHOp0tKSRpqDsQzgEAMPwEbQAAJ8BgnWfHunawaaI7du3Jjl17kiQvPP+0XH72rNz0zbuTpN/a3qetWdk0aB0AABwfQRsAwFEoNxQ7tPOssa4ma1Y2ZcXCxqNeW8400VmnTMk/vOGyVFcVctaskw97ZsMg3x8AgOFTKJVKR95jMAF1dXWlrq4unZ2dmT59eqXLAQBOsHK7z8oJxQbrPOt92rpVi8te+7aXnJOpk6pz8z3b858P/HLI9/G5t1yeZQtmHdV7AgBgaOVmRTraAIAxpdwAaTjDs951A4ViWzu7s3r95qxbtThXNjUM2nlWyoEAbe2G1lzZ1JDufT254as/HXRtknxk48+G+uXo5+BpotVVhb7QDQCAkSFoAwAq7kSEYsMVnq1Y2FhWKPanX7wjVzVt6/c9B1rb3tmdC97zzezrKW9TwbIFs7Jg9rSsv+XBIdeaJgoAUFm2jg7A1lEAGDnHG4oduiWz3HU9xVKe84GN2da1Z9DaqqsKOXlyVXbt6Tnm93e8/va1i/JrF83NFTd9N1s7uwcM+3qnif7wnS+2PRQA4AQoNyuqGsGaBvWxj30sZ511VmpqarJ06dK0tLQMuvYTn/hEnve852XGjBmZMWNGli9fftj6UqmUG264IY2NjTnppJOyfPny3HfffSf6bQAAR6k3FDu0C6y3o6x5S3uSIw8D6L22dkNr9u4v5r1HWFdK8vYv3Jbf+OgP8+y/+Lcjhmy93/doQramueX9Bd1HXrso//sNl5a1tr62JtVVhaxZ2ZTkV4FhL9NEAQBGj4oHbV/4whdy3XXXZc2aNdm8eXMuvvjiXH311dm+ffuA62+++ea87nWvy7//+79n06ZNmTdvXq666qo88sgjfWs++MEP5iMf+Ug+/vGP55Zbbsm0adNy9dVXp7t78K0cAMDIGio8KyX571/Zkm/c0Z73fa21rC2Z5//3b2brEdYlSfe+Ym5/uDNd3fvLqvPPXnZB/v53Lilr7Z+/9MI01tUcFob1KuRAt97LL5qbF51fX9baJfNnJklWLGzMulWL01DXf3toQ11NvwELAABUTsW3ji5dujSXXXZZPvrRjyZJisVi5s2bl7e97W1517veNeTre3p6MmPGjHz0ox/N61//+pRKpcydOzd/8id/kuuvvz5J0tnZmTlz5uRTn/pUXvva1w75TFtHAeDE23T/zrzuEz+qyPd+03PPyjn1p+TP/u+WIdd+7i2XZ8n8mWVv3fx269asXr85SfqtPdLU0XLW9jJNFABg5I2JraN79+7NrbfemuXLl/ddq6qqyvLly7Np06aynvHkk09m3759mTnzwN/2trW1ZevWrf2eWVdXl6VLl5b9TADgxDt4QuaRPGPmyVly1oyy1v7RS84ta92VTQ255rIzy+4oO5qtm0fTeXYsXWq900R/Y9HpWbZglpANAGAUqejU0cceeyw9PT2ZM2dOv+tz5szJ3XffXdYz3vnOd2bu3Ll9wdrWrVv7nnHoM3vvHWrPnj3Zs+dXZ7R0dXWV/R4AgIEdqfOqp1jKlkc6y3rOB37zorI7yv7gRefkX3780JDrDg7PVq/fnEIG7ig7+Nyz3lDs0MENDQMMblixsDFXNjWU1Xl2NGsBABjdKhq0Ha8PfOAD+fznP5+bb745NTXHPs7+xhtvzNq1a4exMgCY2I40SbS2ZnLe97XW3L111xGfcSyh2JRJVScsPOtdX24o1tt5Vo6jWQsAwOhV0aBt9uzZqa6uzrZt2/pd37ZtWxoaGo742g996EP5wAc+kO985zu56KKL+q73vm7btm1pbPzVH463bduWRYsWDfisd7/73bnuuuv6vu7q6sq8efOO9u0AAPnVuWOHdpS1d3bn954+jyxJptdMylXPbMiXbn04yfCFYicyPEuEYgAADK6iQduUKVNyySWXZOPGjXnFK16R5MAwhI0bN+YP//APB33dBz/4wfzlX/5lvvWtb+XSSy/td2/+/PlpaGjIxo0b+4K1rq6u3HLLLVm9evWAz5s6dWqmTp06LO8JACayI00SPdjrlz0jf7z8vMyYNiXLL6wf9lBMeAYAQCVUfOvoddddlze84Q259NJLs2TJknz4wx/O7t27c+211yZJXv/61+f000/PjTfemCS56aabcsMNN+Sf//mfc9ZZZ/Wdu3bKKafklFNOSaFQyNvf/va8//3vz7nnnpv58+fnPe95T+bOndsX5gEAJ0ZLW0e/wGwwL13YmBnTpiQ5caGY8AwAgJFW8aDtmmuuyY4dO3LDDTdk69atWbRoUZqbm/uGGTz44IOpqvrVcNR169Zl7969efWrX93vOWvWrMl73/veJMk73vGO7N69O29961vz+OOP54orrkhzc/NxneMGAAyt3Emih64TigEAMB4USqXSULs7Jpyurq7U1dWls7Mz06dPr3Q5ADBmbLp/Z173iR8Nue5zb7lcsAYAwJhRblZUNegdAICjtGT+zMx6ekvoQAo5MH10yfyZI1cUAACMEEEbADBs7t22K7v37h/w3kCTRAEAYDwRtAEAw+IXO3fn9f/Yku59xSw4bVoapvef6N1QV5N1qxYfNkkUAADGi4oPQwAAxr7tXd35nX9oyY5de3JBQ22+8LvLcsrUSWVPEgUAgPFA0AYAHJfOJ/fl9f/Ykgc7nsyZM0/Op9+0JHUnTU4SAw8AAJhQBG0AwFHpKZb6OtVOPWlyPrLxvty9dVdOq52a9W9emvrpNZUuEQAAKkLQBgD0C8+OtM2zeUt71m5oTXtnd7/rNZOr8uk3LcmZs04eqZIBAGDUEbQBwAQ3UHjWWFeTNSub+g0uaN7SntXrN6c0wDO69xXzi527c2Hj9BGoGAAARidTRwFgAusNzw7tUNva2Z3V6zeneUt7kgMdb2s3tA4YsiVJIcnaDa3pKQ62AgAAxj8dbQAwQR0pPOu9dt2/3J6v3dGen+/YfVgYd+j69s7utLR1GIAAAMCEJWgDgAmqpa3jiOFZkjy5tydfu6O97Gdu33Xk5wEAwHhm6ygATFDlhmKvWDQ3f/CiBWWtra81cRQAgIlL0AYAE1SxzPPUrrnszFx35flprKvJ4XNIDyjkwACFJfNnDlt9AAAw1gjaAGAC+uad7fnvX9lyxDUHh2fVVYWsWdnUd/3QdUmyZmVTqqsGi+IAAGD8E7QBwDjVUyxl0/0789XbHsmm+3emp1jKvp5i3ve11qz+7Obs3tuTc047JUl54dmKhY1Zt2pxGur6bw9tqKvJulWLs2Jh4wl+RwAAMLoZhgAA41Dzlvas3dDab9hBfe3U1NZMyv07didJfvf5Z+f6q8/Pxru2Hba2oa4ma1Y2HRaerVjYmCubGtLS1pHtu7pTX/urjjcAAJjoCqVSqbwDWiaQrq6u1NXVpbOzM9OnT690OQDQp6dYGjLkat7SntXrN2ew3+BrJlXlb1/37Fz9zIajei4AAExU5WZFOtoAYIwYqEut8ZDOs55iKWs3tA4asiXJ9JMmZ/mFc/pdq64qZNmCWSeibAAAmDCc0QYAo8BA56kdrLdL7eCQLUm2dnZn9frNad7SniT57t3bDltzqO279qSlrWN43wAAAKCjDQAqbahOtSN1qfVee/vnb8vMaa15dIiQrdf2XeWtAwAAyidoA4AKGuw8td5OtXWrFqfupClDdql17y+WHbIlSX1tzdCLAACAoyJoA4AKKadT7Y+/cHvqTirvt+s/fNE5edMV8/Pyj/wgWzu7B3xuIQcmii6ZP/MYqwYAAAbjjDYAqJCWto4hO9We2teTrV17ynrec8+ZnZnTpmTNyqYkB0K1g/V+vWZlk4miAABwAgjaAKBCyj0n7U1XnJX62qmHBWe9Cjlwpltvl9qKhY1Zt2pxGur6bw9tqKvJulWL+yaUAgAAw8vWUQCokHLPSbvywoYsOWtmVq/fnELSb0voYF1qKxY25sqmhrS0dWT7ru7U1x4I4nSyAQDAiSNoA4AKWTJ/ZuZMn5ptg2wNPfg8teqqQtatWnzYdNKGg6aTHqq6qpBlC2adqPIBAIBDCNoAoEKqqwo5b07tgEHbQJ1qutQAAGB0E7QBQIV8p3VbfnDfY0mSmdOmpGP33r57g3Wq6VIDAIDRS9AGABWwY9eevPNLdyRJ3vK8+XnXSy/UqQYAAGOcoA0ARlipVMo7v3RHdu7emwsaanP91efrVAMAgHGgqtIFAMBEs/6WB/Pdu7dnyqSq/O1rn52pk6orXRIAADAMBG0AMIJ+tv2J/OXXW5Mk71pxQc5vqK1wRQAAwHARtAHACNm7v5i3f+En6d5XzPPOnZ03PuesSpcEAAAMI0EbAIyQv914b7Y80pVTT56cD73m4lQZdgAAAOOKYQgAcIL0FEt9k0Q7du/Nx/79/iTJja98VuZMr6lwdQAAwHATtAHACdC8pT1rN7SmvbO73/VlZ8/KS5/VWKGqAACAE8nWUQAYZs1b2rN6/ebDQrYk+dHPd6Z5S3sFqgIAAE40QRsADKOeYilrN7SmdIQ1aze0pqd4pBUAAMBYJGgDgGHU0tYxYCdbr1KS9s7utLR1jFxRAADAiBC0AcAw2tY1eMh2sO27ylsHAACMHYYhAMBROHiSaH1tTZbMn5nqqkKS5M6HO/N3372vrOfU15o6CgAA442gDQBy5ACt10CTRBvranL9Vedl84OP559bHkyplBSSQc9oKyRpqDvwfAAAYHwRtAEw4Q0WoK1Z2ZQVCxv71qxev/mwAK29szt/8n/u6Pv6FYvmZtnZs/KuL9+ZpH/g1hvbrVnZdFiIBwAAjH2CNgDGrXK71AYK0LZ2dmf1+s1Zt2pxrmxqGHKS6KSqQj79piV5zjmzkyR1J08+LLxrOCS8AwAAxhdBGwDjUjldaj3F0qABWu+1P/r8bTmnftoRJ4kmyf5iKYXCr0K8FQsbc2VTw5BBHwAAMH4I2gAYU4ajS+1//fbiXNg4PZ+95RdDBmh79hfz00d3lVXboZNEq6sKWbZgVlmvBQAAxj5BGwCjwvEMIzjaLrU/+OfNKR5pH+ghrrxwTr5917Yh15kkCgAAE5ugDYATppzwLDm+YQQHn6V29TMbsvGubUN2qRVLSXVVcu5ptbl729Ddam98zlnZ8mhntnZ2DxjgmSQKAAAkgjYAnlZuKDac4VnvuuMZRtB77W2f+0lOmlydru79Zb3fm151UV65+IxccdN3hwzQLl8wK2tWNmX1+s0pxCRRAABgYIVSqXQUm2cmhq6urtTV1aWzszPTp0+vdDkAx+xEhGLHE571fud1qxZnxcLG9BRLee4HNmZr155B30PNpKo8Y9bJuWfbE0f35ofwubdcnmULZvXVmgwcoPXWmpT//gEAgPGl3KxI0DYAQRswmo1UR9mhQVO563bv2Z8Xfujm7Ng1eHg2qaqQWdOmpGP33uw7msPShvDOFefndy4/K1f+zfeG7FL74Ttf3PfrdjQBWrm//gAAwPghaDsOgjZgtDoRHWVX3PTdQc806w2l/u/vPzcr/+6H2fHEkcOzaVOr0/lUeVs3j8bVz5yTb/106GEEx9Kl1kuABgAADEbQdhwEbcBoNFzhWZLMnDYla36tKbc//Hj+8f89cKJKPqI/ueq8PGPmyflvn79tyLWfffPSXP/F209YlxoAAMCRlJsVGYYAMEocqaOqp1gachjAu750Z36244lseaRzyKmbHbv35o++cNuw1p8k737pBVlw2in5r5/+8ZBrL33GzCyZPzM3fvPuEzKMYMXCxlzZ1KBLDQAAGDGCNoCjdDRbDIfrPLWWto4hw7PHn9qXD33r3rLfx4LTpmXGyVPy41/8csi1f/ayC/I/vnH3kOsuOuPULJk/M411NUOGZ72/FuUGaCsWNmbdqsWH/To1HKFLrbqqkGULZg1ZNwAAwHCwdXQAto7C+DHcodjRbEccjvPUSklet2RetjzSmTsf6Rry/S45a2bm1NVkw+2PDrn2c2+5PEvmz8wVN313yFDse3/6orzgr/697K2bR3tGmmEEAADAaOaMtuMgaIPxYbhDsXLPSDuateWcp3Y0jiY8O9pQ7ESGZ4kADQAAGL0EbcdB0AajW7mdZ8MZil3Z1FDWdM4fvvPFSTJkeHbqyZPz1uefndsefDz/1jr0NM1XX3J6/v2eHel4Ym9FO8qEZwAAwEQkaDsOgjYYvcoJeobqEjvaUGzGyZPzG4vm5lP/8Ysh65s346QkyUO/fKrct1SWv33tokydVDUqOsqEZwAAwEQjaDsOgjY4shMxDKCctUN1nn30t56di844Nd/csjX/4xt3Dfk+Tj1pckpJOp/aV8a7Hn6XPuPUnH7qyflqmeepLVswS0cZAABABZSbFZk6CvSp1DCActb2FEtZu6F1wG2Tvdf+4J9/clTv9/GjCNjOnj0tP39s95Dr/vvLLkySvL+MoO9PrrogS+bPTMsDHWVN6EySFQsbc2VTQ9nhmambAAAAI0dH2wB0tDERVWoYQDlrr7vyvGzb1Z31P3pwyPcxqaqQ+ulT8+jjQw8XuPFVC1NIIe/68p1Drv3sm5fm+i/eXtaAgSQnZBgBAAAAlVFuVlQ1gjUBo1Rv0HPoOWVbO7uzev3mNG9pH7KjrJTkv39lS/7zgY785wMd+fP/u+WIa//8K1vS0rYzLW07h1z719++t6yQLUk+9JqL84N3vDiNdTUZbINkIQdCxP9y6Zl5zaXzylp7+YJZWbOyqe/aoWuSZM3KplRXFVJdVSh7bXKgS23dqsVpqKvpt7ahrkbIBgAAMIboaBuAjjYmkqEGByTJSZOrs+C0adnyaNcIVtbfeXNOyb3bnhhy3cFnmZXbJXa0a0/E1tnEeWoAAACjlWEIx0HQxkSy6f6ded0nfjRsz5s5bXIKKWTn7r1Drp19ypQkyWNPDL32b/7Lxfngt+4peztmcuJCsRM1DAIAAIDRSdB2HARtjHbDFfQUi6Xc+M278okftA35PZdfWJ/v3LV9yHWfe8vlSVJWeHe0azuf2nvUZ5kJxQAAADhepo7CCXSiwpuRmvr55y+/MPt6ill38/1lbcdMkmufMz8/fbSr7OmYjXU1w762uqqQdasWH/aeGo6wHfNopm6a0AkAAMDx0NE2AB1to99YD7qOde1wTPI81LQp1UmS3Xt7Brx/8JbMb7duPWHnnh1Np5rOMwAAAEaSraPHQdA2uo31oOtY117Z1HDEoQUHB2LFYinP++B3s7Vrz4Brk6SqkPzxlefl9cvOyqb7H6v4MICjHRwAAAAAI0XQdhwEbZUzVKfSWAm6kuS5N303W48wyXP2KVOybtUlKRZLWf3Zzek4wvCAaVOrs2T+zPz73TsGXdOrqpAUy/y3undCZzI6hgHoVAMAAGA0ErQdB0FbZQwV9PQUS0cVdB1pbZLU107NP7zhsuzeuz+r19+aXz65b9C1p0ytzgvOOy1fv3PrkO9j1rTJ6d5XHHQr5mjyt69dlN9YdHrf14IuAAAAOJyg7TgI2kZeOR1lUyZV502f+s8hn7Vw7vTs6ynmnjIP+a+kmdMmp6pQyGNPDN7N1mvJWTPS8sAvh1z3sd9anElVye8+vRX0SA7uaAMAAAAGZuooY0ZPsZS1G1oHPLS/91o5h/r32vJoV9nfu3bqpEydXFVW0PXseafmJw89PuS6979iYWomV+f6/3P7kGs/9luXJEle94kfDbn2j15yXq7/4u1DTudcsbAhydFN/QQAAACOX1WlC2D86ymWsun+nfnqbY9k0/0703PIAWKb7n/siFs8k5QdsiXJH75oQf54+bllrf3711+av3vd4rLWXn/V+Wmsq8lgGykLORBuvW7JmXnls08va+2S+TOzZP7MstZevmBW1qxs6rt26JokWbOyKdVVhVRXFcpeCwAAAAwPQRsnVPOW9lxx03fzuk/8KH/0+dvyuk/8KFfc9N00b2nPz7bvyo3fuCurPzv0Fsck+cBvPqusQOqP///27j2qqjrv4/jnAHKRq6BwIAW0wfBCiiKI1LKUBG2clB5NFymjLmfNDIwgWtmUUo1pmrY0c3R0Jp2ZbLJmssmmmHzIS5oi4lCZ5G1oYcolLwhoinH280ePZ+YkctEjR/D9Wuus5fntH3t/d6vvWvjxt/fvgbuUMSyizQRdLZmb3DdYqx4dILOvu808s6+7zeYOklo0FwAAAAAA3Dje0dYA3tFmH9d679r1+sv0wTr3bZ1+8f/vHvvv8za2k+jNmNvc3Tlv1lx28gQAAAAAoPWwGcINIGhrWlPhTVM7hF4xPDJQ/zOwq57dfFAV1Y2/T2znE8Pk7GRq10EXoRgAAAAAALcegrYbQNDWuOYEUruPndLEtflNnuvKrpctWVEmEXQBAAAAAIDWQ9B2A27noK2poOlaj4NemfHkqEidPl+nNwuO6+yFy01eb/mE/nqo/x3Wczd3RRkAAAAAAEBraW5W5NKKNeEW11TQVW8x9Ozmgw0+3nllbMH7X7bomoHe/3lRf3LfYD3Q28yKMgAAAAAA0CYRtEHStVeqlZ+7qF+8tl+rHh0gXw/XJt+5Jkmx4Z00OT5c8/9xUBXVlxp971psd3+bcWcnk+LvDLju+wAAAAAAAHAUgjY0a6Va9pufKsDTtVnnSx0cph/3C5GLs0m/eG2/TGr4vWs5o3uzWg0AAAAAALQbTo4uAI63t+RMkyvVLtTV6/jZb5t1viuPgyb3DdaqRwfI7Otuc9zs637V5gYAAAAAAABtHSvaoMqaph8HlaS0+DC9/3mZTtXWNftxUN67BgAAAAAAbhcEbbDZkKAxyX2DFX9nQIsfB+W9awAAAAAA4HbAo6NQbHd/BXm7XfO4Sd/vPhrb3Z/HQQEAAAAAAK6BFW2Qs5NJPwr0UkXNpauONbRSjcdBAQAAAAAArkbQBu376ox2HTstSQrwdNXp83XWY2Zfd+WM7n3VSjUeBwUAAAAAALBF0Habu1xv0dPvHJAkPRLTTQtSolipBgAAAAAAcB0I2m5z63aV6MvyGnXq2EFzRkayUg0AAAAAAOA6sRnCbexE1bda9r9HJElPjuqlTp6uDq4IAAAAAACg7SJou409++4XulBXr0HhnfQ/A7o6uhwAAAAAAIA2jaDtNvW/Byv04cEKuTiZNH9MlJx4DxsAAAAAAMANIWi7DV2o+045734hSZp2b3fdZfZ2cEUAAAAAAABtH0HbbWjFR0d1oupb3eHnoczhEY4uBwAAAAAAoF0gaLvNHK6o0dod/5YkPfOTPuroysazAAAAAAAA9kDKchuotxjaW3JGldUXtWrbMX1nMfRA7yA90DvI0aUBAAAAAAC0GwRt7VzugTI9u/mgys5dtBm/764uDqoIAAAAAACgfSJoa8dyD5TpF6/tl9HAsac3HVCAp6uS+wa3el0AAAAAAADtEe9oa6fqLYae3XywwZDtimc3H1S9pbEZAAAAAAAAaC6CtnZqb8mZqx4X/W+GpLJzF7W35EzrFQUAAAAAANCOEbS1U5U11w7ZrmceAAAAAAAAGkfQ1k4FervbdR4AAAAAAAAaR9DWTsV291ewr7tM1zhukhTs667Y7v6tWRYAAAAAAEC7RdDWTjk7mZQzurckXRW2XfmeM7q3nJ2uFcUBAAAAAACgJQja2rHkvsFa9egAmX1tHw81+7pr1aMDlNw32EGVAQAAAAAAtD8uji4AN1dy32A90NusvSVnVFlzUYHe3z8uyko2AAAAAAAA+yJouw04O5kUf2eAo8sAAAAAAABo13h0FAAAAAAAALADgjYAAAAAAADADgjaAAAAAAAAADsgaAMAAAAAAADsgKANAAAAAAAAsAOCNgAAAAAAAMAOCNoAAAAAAAAAOyBoAwAAAAAAAOyAoA0AAAAAAACwA4I2AAAAAAAAwA4I2gAAAAAAAAA7IGgDAAAAAAAA7ICgDQAAAAAAALADgjYAAAAAAADADgjaAAAAAAAAADsgaAMAAAAAAADsgKANAAAAAAAAsAOCNgAAAAAAAMAOCNoAAAAAAAAAO3B40LZy5UqFh4fL3d1dcXFx2rt37zXnfvHFF3r44YcVHh4uk8mkZcuWXTXnmWeekclksvlERkbexDsAAAAAAAAAHBy0bdy4UdnZ2crJydH+/fvVr18/JSUlqbKyssH5Fy5cUI8ePfTCCy/IbDZf87x9+vRRWVmZ9bNz586bdQsAAAAAAACAJAcHbS+99JKmT5+uKVOmqHfv3lq9erU6duyoV199tcH5gwYN0osvvqgJEybIzc3tmud1cXGR2Wy2fjp37nyzbgEAAAAAAACQ5MCgra6uToWFhUpMTPxPMU5OSkxM1O7du2/o3EeOHFFISIh69Oih1NRUlZaWNjr/0qVLqq6utvkAAAAAAAAALeGwoO3UqVOqr69XUFCQzXhQUJDKy8uv+7xxcXFav369cnNztWrVKpWUlOjee+9VTU3NNX9m4cKF8vX1tX66det23dcHAAAAAADA7cnhmyHY28iRIzVu3DjdfffdSkpK0vvvv6+qqiq9+eab1/yZJ598UufOnbN+jh8/3ooVAwAAAAAAoD1wcdSFO3fuLGdnZ1VUVNiMV1RUNLrRQUv5+fmpZ8+eOnr06DXnuLm5NfrONwAAAAAAAKApDlvR5urqqoEDByovL886ZrFYlJeXp/j4eLtdp7a2VseOHVNwcLDdzgkAAAAAAAD8kMNWtElSdna20tLSFBMTo9jYWC1btkznz5/XlClTJEmTJ0/WHXfcoYULF0r6fgOFgwcPWv984sQJFRUVycvLSz/60Y8kSbNnz9bo0aMVFhamkydPKicnR87Ozpo4cWKz6zIMQ5LYFAEAAAAAAADWjOhKZnQtDg3aHnnkEX3zzTeaN2+eysvL1b9/f+Xm5lo3SCgtLZWT038W3Z08eVLR0dHW70uWLNGSJUs0dOhQbdu2TZL09ddfa+LEiTp9+rS6dOmie+65R3v27FGXLl2aXdeVjRPYFAEAAAAAAABX1NTUyNfX95rHTUZTUdxtyGKx6OTJk/L29pbJZHJ0OXZRXV2tbt266fjx4/Lx8XF0OUCbR08B9kdfAfZFTwH2R18B9tWWesowDNXU1CgkJMRmUdgPOXRF263KyclJXbt2dXQZN4WPj88t/z8v0JbQU4D90VeAfdFTgP3RV4B9tZWeamwl2xUO2wwBAAAAAAAAaE8I2gAAAAAAAAA7IGi7Tbi5uSknJ0dubm6OLgVoF+gpwP7oK8C+6CnA/ugrwL7aY0+xGQIAAAAAAABgB6xoAwAAAAAAAOyAoA0AAAAAAACwA4I2AAAAAAAAwA4I2gAAAAAAAAA7IGi7DaxcuVLh4eFyd3dXXFyc9u7d6+iSgDZj4cKFGjRokLy9vRUYGKgxY8bo0KFDNnMuXryo9PR0BQQEyMvLSw8//LAqKiocVDHQtrzwwgsymUzKysqyjtFTQMudOHFCjz76qAICAuTh4aGoqCjt27fPetwwDM2bN0/BwcHy8PBQYmKijhw54sCKgVtXfX295s6dq+7du8vDw0N33nmnfvOb3+i/9xGkp4DG7dixQ6NHj1ZISIhMJpPeeecdm+PN6aEzZ84oNTVVPj4+8vPz07Rp01RbW9uKd3F9CNrauY0bNyo7O1s5OTnav3+/+vXrp6SkJFVWVjq6NKBN2L59u9LT07Vnzx5t2bJFly9f1ogRI3T+/HnrnJkzZ2rz5s166623tH37dp08eVIpKSkOrBpoGwoKCvS73/1Od999t804PQW0zNmzZ5WQkKAOHTrogw8+0MGDB7V06VJ16tTJOmfx4sV6+eWXtXr1auXn58vT01NJSUm6ePGiAysHbk2LFi3SqlWr9Morr6i4uFiLFi3S4sWLtWLFCuscegpo3Pnz59WvXz+tXLmywePN6aHU1FR98cUX2rJli9577z3t2LFDP/vZz1rrFq6fgXYtNjbWSE9Pt36vr683QkJCjIULFzqwKqDtqqysNCQZ27dvNwzDMKqqqowOHToYb731lnVOcXGxIcnYvXu3o8oEbnk1NTVGRESEsWXLFmPo0KFGZmamYRj0FHA9nnjiCeOee+655nGLxWKYzWbjxRdftI5VVVUZbm5uxl/+8pfWKBFoUx588EFj6tSpNmMpKSlGamqqYRj0FNBSkoxNmzZZvzenhw4ePGhIMgoKCqxzPvjgA8NkMhknTpxotdqvByva2rG6ujoVFhYqMTHROubk5KTExETt3r3bgZUBbde5c+ckSf7+/pKkwsJCXb582abPIiMjFRoaSp8BjUhPT9eDDz5o0zsSPQVcj3fffVcxMTEaN26cAgMDFR0drbVr11qPl5SUqLy83KavfH19FRcXR18BDRgyZIjy8vJ0+PBhSdKnn36qnTt3auTIkZLoKeBGNaeHdu/eLT8/P8XExFjnJCYmysnJSfn5+a1ec0u4OLoA3DynTp1SfX29goKCbMaDgoL05ZdfOqgqoO2yWCzKyspSQkKC+vbtK0kqLy+Xq6ur/Pz8bOYGBQWpvLzcAVUCt7433nhD+/fvV0FBwVXH6Cmg5f79739r1apVys7O1q9//WsVFBRoxowZcnV1VVpamrV3GvqdkL4CrjZnzhxVV1crMjJSzs7Oqq+v1/PPP6/U1FRJoqeAG9ScHiovL1dgYKDNcRcXF/n7+9/yfUbQBgDNlJ6ergMHDmjnzp2OLgVos44fP67MzExt2bJF7u7uji4HaBcsFotiYmK0YMECSVJ0dLQOHDig1atXKy0tzcHVAW3Pm2++qQ0bNuj1119Xnz59VFRUpKysLIWEhNBTAJrEo6PtWOfOneXs7HzVTm0VFRUym80OqgpomzIyMvTee+9p69at6tq1q3XcbDarrq5OVVVVNvPpM6BhhYWFqqys1IABA+Ti4iIXFxdt375dL7/8slxcXBQUFERPAS0UHBys3r1724z16tVLpaWlkmTtHX4nBJrnscce05w5czRhwgRFRUVp0qRJmjlzphYuXCiJngJuVHN6yGw2X7WJ43fffaczZ87c8n1G0NaOubq6auDAgcrLy7OOWSwW5eXlKT4+3oGVAW2HYRjKyMjQpk2b9NFHH6l79+42xwcOHKgOHTrY9NmhQ4dUWlpKnwENGD58uD7//HMVFRVZPzExMUpNTbX+mZ4CWiYhIUGHDh2yGTt8+LDCwsIkSd27d5fZbLbpq+rqauXn59NXQAMuXLggJyfbvyo7OzvLYrFIoqeAG9WcHoqPj1dVVZUKCwutcz766CNZLBbFxcW1es0twaOj7Vx2drbS0tIUExOj2NhYLVu2TOfPn9eUKVMcXRrQJqSnp+v111/X3//+d3l7e1vfB+Dr6ysPDw/5+vpq2rRpys7Olr+/v3x8fPSrX/1K8fHxGjx4sIOrB2493t7e1nccXuHp6amAgADrOD0FtMzMmTM1ZMgQLViwQOPHj9fevXu1Zs0arVmzRpJkMpmUlZWl+fPnKyIiQt27d9fcuXMVEhKiMWPGOLZ44BY0evRoPf/88woNDVWfPn30r3/9Sy+99JKmTp0qiZ4CmqO2tlZHjx61fi8pKVFRUZH8/f0VGhraZA/16tVLycnJmj59ulavXq3Lly8rIyNDEyZMUEhIiIPuqpkcve0pbr4VK1YYoaGhhqurqxEbG2vs2bPH0SUBbYakBj/r1q2zzvn222+NX/7yl0anTp2Mjh07GmPHjjXKysocVzTQxgwdOtTIzMy0fqengJbbvHmz0bdvX8PNzc2IjIw01qxZY3PcYrEYc+fONYKCggw3Nzdj+PDhxqFDhxxULXBrq66uNjIzM43Q0FDD3d3d6NGjh/HUU08Zly5dss6hp4DGbd26tcG/R6WlpRmG0bweOn36tDFx4kTDy8vL8PHxMaZMmWLU1NQ44G5axmQYhuGgjA8AAAAAAABoN3hHGwAAAAAAAGAHBG0AAAAAAACAHRC0AQAAAAAAAHZA0AYAAAAAAADYAUEbAAAAAAAAYAcEbQAAAAAAAIAdELQBAAAAAAAAdkDQBgAAcBtbv369/Pz8Gp3z5ZdfavDgwXJ3d1f//v1bpS4AAIC2iKANAACgjWlOOGZPOTk58vT01KFDh5SXl2e385pMJr3zzjt2Ox8AAICjEbQBAAC0IZcvX271ax47dkz33HOPwsLCFBAQ0OrXb0pdXZ2jSwAAAJBE0AYAAHBT/fWvf1VUVJQ8PDwUEBCgxMREnT9/XpJksVj03HPPqWvXrnJzc1P//v2Vm5tr/dmvvvpKJpNJGzdu1NChQ+Xu7q4NGzZoypQpOnfunEwmk0wmk5555hlJ0qVLlzR79mzdcccd8vT0VFxcnLZt22ZTz/r16xUaGqqOHTtq7NixOn36dKP1m0wmFRYW6rnnnrO51vHjxzV+/Hj5+fnJ399fDz30kL766ivrzxUUFOiBBx5Q586d5evrq6FDh2r//v3W4+Hh4ZKksWPHymQyWb//9Kc/1ZgxY2xqyMrK0n333Wf9ft999ykjI0NZWVnq3LmzkpKSJEkHDhzQyJEj5eXlpaCgIE2aNEmnTp1q9P4AAADsiaANAADgJikrK9PEiRM1depUFRcXa9u2bUpJSZFhGJKk5cuXa+nSpVqyZIk+++wzJSUl6Sc/+YmOHDlic545c+YoMzNTxcXFuv/++7Vs2TL5+PiorKxMZWVlmj17tiQpIyNDu3fv1htvvKHPPvtM48aNU3JysvV8+fn5mjZtmjIyMlRUVKT7779f8+fPb/Ie+vTpo1mzZlmvdfnyZSUlJcnb21sff/yxdu3aJS8vLyUnJ1tXl9XU1CgtLU07d+7Unj17FBERoVGjRqmmpkbS90GcJK1bt05lZWXW7831xz/+Ua6urtq1a5dWr16tqqoqDRs2TNHR0dq3b59yc3NVUVGh8ePHt+i8AAAAN8LF0QUAAAC0V2VlZfruu++UkpKisLAwSVJUVJT1+JIlS/TEE09owoQJkqRFixZp69atWrZsmVauXGmdl5WVpZSUFOt3X19fmUwmmc1m61hpaanWrVun0tJShYSESJJmz56t3NxcrVu3TgsWLNDy5cuVnJysxx9/XJLUs2dPffLJJzar6H7IbDbLxcVFXl5e1uu99tprslgs+v3vfy+TySTp+8DMz89P27Zt04gRIzRs2DCb86xZs0Z+fn7avn27fvzjH6tLly6SJD8/P5v7aK6IiAgtXrzY+n3+/PmKjo7WggULrGOvvvqqunXrpsOHD6tnz54tvgYAAEBLsaINAADgJunXr5+GDx+uqKgojRs3TmvXrtXZs2clSdXV1Tp58qQSEhJsfiYhIUHFxcU2YzExMU1e6/PPP1d9fb169uwpLy8v62f79u06duyYJKm4uFhxcXE2PxcfH9/i+/r000919OhReXt7W6/j7++vixcvWq9VUVGh6dOnKyIiQr6+vvLx8VFtba1KS0tbfL2GDBw48Kqatm7danPvkZGRkmStCQAA4GZjRRsAAMBN4uzsrC1btuiTTz7Rhx9+qBUrVuipp55Sfn5+izYV8PT0bHJObW2tnJ2dVVhYKGdnZ5tjXl5eLa69qWsNHDhQGzZsuOrYlZVqaWlpOn36tJYvX66wsDC5ubkpPj6+yY0LnJycrI/WXtHQBhA//G9SW1ur0aNHa9GiRVfNDQ4ObvKeAAAA7IGgDQAA4CYymUxKSEhQQkKC5s2bp7CwMG3atEnZ2dkKCQnRrl27NHToUOv8Xbt2KTY2ttFzurq6qr6+3mYsOjpa9fX1qqys1L333tvgz/Xq1Uv5+fk2Y3v27GnxPQ0YMEAbN25UYGCgfHx8Gpyza9cu/fa3v9WoUaMkfb95wg83JujQocNV99GlSxcdOHDAZqyoqEgdOnRosqa//e1vCg8Pl4sLv+ICAADH4NFRAACAmyQ/P18LFizQvn37VFpaqrffflvffPONevXqJUl67LHHtGjRIm3cuFGHDh3SnDlzVFRUpMzMzEbPGx4ertraWuXl5enUqVO6cOGCevbsqdTUVE2ePFlvv/22SkpKtHfvXi1cuFD/+Mc/JEkzZsxQbm6ulixZoiNHjuiVV15p9P1s15KamqrOnTvroYce0scff6ySkhJt27ZNM2bM0Ndffy3p+3eo/fnPf1ZxcbHy8/OVmpoqDw+Pq+4jLy9P5eXl1kdqhw0bpn379ulPf/qTjhw5opycnKuCt4akp6frzJkzmjhxogoKCnTs2DH985//1JQpU64K8wAAAG4WgjYAAICbxMfHRzt27NCoUaPUs2dPPf3001q6dKlGjhwp6fvgKzs7W7NmzVJUVJRyc3P17rvvKiIiotHzDhkyRD//+c/1yCOPqEuXLtZNAdatW6fJkydr1qxZuuuuuzRmzBgVFBQoNDRUkjR48GCtXbtWy5cvV79+/fThhx/q6aefbvF9dezYUTt27FBoaKhSUlLUq1cvTZs2TRcvXrSucPvDH/6gs2fPasCAAZo0aZJmzJihwMBAm/MsXbpUW7ZsUbdu3RQdHS1JSkpK0ty5c/X4449r0KBBqqmp0eTJk5us6crqwPr6eo0YMUJRUVHKysqSn5+fnJz4lRcAALQOk/HDl2AAAAAAAAAAaDH+eQ8AAAAAAACwA4I2AAAAAAAAwA4I2gAAAAAAAAA7IGgDAAAAAAAA7ICgDQAAAAAAALADgjYAAAAAAADADgjaAAAAAAAAADsgaAMAAAAAAADsgKANAAAAAAAAsAOCNgAAAAAAAMAOCNoAAAAAAAAAOyBoAwAAAAAAAOzg/wBddtvDUH5EmAAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "THRESHOLD= 0.25\n", - "stats['var'] = stats.apply(lambda x: x['std']**2, axis=1)\n", - "sorted_features = stats.sort_values(\"var\", ascending=True)\n", - "\n", - "fig, ax = plt.subplots(figsize=(15, 10))\n", - "plt.xlabel(\"sorted feature\")\n", - "plt.ylabel(\"std\")\n", - "#plt.xticks(sorted_features.index)\n", - "\n", - "plt.plot(range(len(sorted_features)), sorted_features['std'], marker='o')\n", - "plt.axhline(y=0.25, color='r', linestyle='-')\n", - "\n", - "filtered_feat = sorted_features[sorted_features['std']>=THRESHOLD].index\n", - "len(filtered_feat)" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "id": "692820ab", - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAB0gAAAeLCAYAAAAuDfRQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeXhNV//+8ftIDBkkSsxTQkjN89AYHnMpNVSJGEOrhhoeFKVoaFEaBFGKh5SiRUxBW1WkxjZITA2JEm0JWipmIsnvD7/srxRJENlH835d17mcc/baa917n50In6y1LYmJiYkCAAAAAAAAAAAAgEwgi9kBAAAAAAAAAAAAACCjUCAFAAAAAAAAAAAAkGlQIAUAAAAAAAAAAACQaVAgBQAAAAAAAAAAAJBpUCAFAAAAAAAAAAAAkGlQIAUAAAAAAAAAAACQaVAgBQAAAAAAAAAAAJBpUCAFAAAAAAAAAAAAkGlQIAUAAAAAAAAAAACQadiaHQAAAAAAAAAAAADA0xk/fryWL1+uAQMGaODAgc/c39mzZ7V48WLt3LlT586dk52dnYoXL66WLVuqU6dOypEjR4b08TxZEhMTE01NAAAAAAAAAAAAAOCJ7d27V7169VJCQkK6FEhDQkI0ZMgQ3bhx45HbS5curblz56pIkSLPtY/njQIpAAAAAAAAAAAA8II5evSoevTooevXr0vSMxdIT5w4oQ4dOujOnTuysbHRm2++qerVq+vGjRtav369wsLCJEkeHh76+uuvZWdn91z6yAjcgxQAAAAAAAAAAAB4gYSEhKhnz55GcTQ9+Pr6GoXNuXPnasKECWrdurW8vb21YsUKde3aVdL9IuiSJUueWx8ZgQIpAAAAAAAAAAAA8AK4e/euZs2apb59++rq1avp1m9YWJgOHjwoSWrbtq3+85//JNtusVj0wQcfqGTJkpKkRYsWKS4uLt37yCgUSAEAAAAAAAAAAAArt2fPHrVo0UJz5sxRQkKC7O3t1bNnz3Tpe/Pmzcbzzp07P7JNlixZjG1XrlzRvn370r2PjEKBFAAAAAAAAAAAALByGzZs0B9//CFJKl++vFatWqWGDRumS9+hoaGSJGdnZ5UtW/ax7WrXrm0837lzZ7r3kVFsTRkVAAAAAAAAAAAAwBPJnTu3BgwYoE6dOsnGxkaXLl165j7j4+P166+/SpJKliypLFkeP7/Szc1NNjY2io+P1/Hjx9O1j4zEDFIAAAAAAAAAAADAynXp0kXbt29Xly5dZGNjk279/vXXX7p7964kqXDhwim2tbGxUd68eSVJ586dS9c+MhIFUgAAAAAAAAAAAMDKVahQQTly5Ej3fi9fvmw8f+mll1Jt7+zsLOn+PUTTs4+MxBK7AAAAAAAAAAAAwHPUuHHjFLf/8MMPGZTkYbdu3TKeZ8+ePdX2SW1u376drn1kJAqkAPCCi/vrlNkRJEk3Br5ldgRJUv89ucyOYMhusY6FGj6bUtHsCIY5w6PMjiBJis4SZ3YEw5u3EsyOIEn6M0s2syMY6pU6a3YESdLxE3nNjmB1CuW+ZnYESVLxjb5mRzBceXuk2REkSbNPp7x8UUaqas6/bR+SPTHR7AiGrLKOLGdtreO/AHImWMf5kKSbWSxmR5AktSj7u9kRDDaOZie474sDRc2OYLhtHZeJXOOs52vnVFazE9x3y2Id5ySLrOQikVQizjqytG93OfVGGSRobW6zI0iS2neINTuC1fl4nZX8pSNpSvQKsyO8cKzl/ySRPuLj443n2bKl/n9ESW3u3buXrn1kJOv41xEAAAAAAAAAAADwL2XmDNHUPDjjMy4u9YkFSfcazZr1/35rKj36yEjWMbUFAAAAAAAAAAAAQIZzcHAwnt+5cyfV9kltHrwfanr0kZEokAIAAAAAAAAAAACZVM6cOY3nsbGpLwme1CZ37v9bxjw9+shIFEgBAAAAAAAAAACATCpfvnzGDNBz586l2DY+Pl5//vmnJKlQoULp2kdGokAKAAAAAAAAAAAAZGIlS5aUJP36668ptjt16pTi4+MlSaVLl073PjIKBVIAAAAAAAAAAACkXUI8jyd9WLkaNWpIki5duqSoqKjHttu3b99D+6RnHxmFAikAAAAAAAAAAACQib366qvG86VLlz6yTXx8vJYvXy7p/j1H69atm+59ZBQKpAAAAAAAAAAAAEAmVqlSJVWpUkWStGrVKn3zzTfJticmJurjjz/WqVOnJEmdO3dWjhw50r2PjGJryqgAAAAAAAAAAAAAMsQff/yhxo0bS5IKFy6sbdu2PdRm7Nix8vLyUlxcnIYMGaJt27apbt26un37ttatW6eDBw9KklxdXdWnT59HjpMefWQECqQAAAAAAAAAAABAJleuXDn5+/tr+PDhunnzpjZs2KANGzYka1O8eHEtXLhQDg4Oz62PjECBFAAAAAAAAAAAAICaNGmiTZs2afHixfrxxx91/vx5WSwWubm56dVXX1W3bt1SLWymRx/PGwVSAAAAAAAAAAAApF1igtkJ8P/VqlVLJ06cSLVdkSJF0tROkgoVKqQPPvhAH3zwwVPnSo8+nqcsZgcAAAAAAAAAAAAAgIxCgRQAAAAAAAAAAABApkGBFIDVS0xM1GeffWa89vHxkY+PT6r7+fr6qkGDBsbrVatW6eLFi4/cZpb9+/fL09NT9vb28vDw0JIlS8yOBAAAAAAAAADAvxoFUgBW78cff9S7775rvJ45c6ZmzpyZ6n7vvfee1qxZI0k6c+aMOnbsqJs3bz60zSyxsbFq0aKF6tSpo6NHj2rcuHF6++23tXv3blNzAQAAAAAAAADwb2ZrdgAASE1iYmKy187Ozmnaz9HR8bF9PLjNLL///rtatGihqVOnymKxqESJEpo2bZp2796tOnXqmB0PAAAAAAAAAIB/JWaQAshQu3fvVt26dWVvby8HBwe99tpriomJkSR9++23qlq1quzt7VWpUiX98MMPio6OVsOGDSVJFotFO3bsMJbYjY2NVY4cObR9+3aj/2vXrilHjhzatWtXsmV03dzcjD8DAwMfWmJ3586dql69uuzs7FShQgUFBQUZ23777Tc1a9ZMjo6OypcvnwYOHKi4uLg0He+5c+f02muvycHBQVWqVNGcOXPk6uoqSSpfvryWLFkii8WihIQEBQcH68SJE6pfv/7Tnl4AAAAAAAAAeP4SEng86QNWhQIpgAwTGxurli1bqlmzZjp27Ji2bNmikydPavLkyTp27Jhef/11vfHGGzp06JC8vb3Vpk0bZc2a1ShWxsTEyNPT0+jP2dlZzZs3T7ZU7saNG5U3b96HZmD+/PPPxp9eXl7Jtp0/f16tWrWSj4+Pjhw5opEjR8rHx0c7d+6UJA0cOFCOjo4KDw/XunXrtHr1ai1YsCBNx9yuXTvFxcXpp59+0nvvvacxY8Y81Obu3bvKkSOHWrdure7du6t27dpp6hsAAAAAAAAAADw5ltgFkGFu3bqlsWPHaujQobJYLHJzc1P79u31888/63//+5/q1KljFBDff/993bhxQ9euXVPu3LklSQUKFHioz06dOum9997TrFmzZLFYtHr1anXs2FEWiyVZu7x58xp/2tnZJds2Z84cNWnSRAMGDJAkubu7KywsTP7+/qpXr56io6NVtWpVFS9eXO7u7tq8ebNeeumlVI/38OHD+vnnn3XmzBkVK1ZM5cuXV1hYmFavXv1Q23379un48eN69913VapUKQ0dOjQNZxQAAAAAAAAAADwpZpACyDAFChRQjx49NGPGDHXv3l3Vq1eXn5+f4uPjdeLECVWrVi1Z+48++kgvv/xyin2+/vrr+vvvv/XTTz/p5s2b+vbbb9WpU6cnyhUREaHg4GA5Ojoaj4CAAEVGRkqSRowYoWXLlilv3rzy9vbWmTNnjGVyU3L8+HHlzp1bxYoVM957cAZskmzZsqlq1arq3LmzPvjgA82aNeuxfd65c0dXr15N9rhz584THS8AAAAAAAAAAJkZBVIAGebs2bOqUKGCtm3bpmrVqmnGjBkaNmyYJClr1qxP1aeDg4Nef/11BQUF6ZtvvlGBAgVUo0aNJ+rj3r176tq1q8LDw43HsWPHtHHjRklSly5d9Ntvv+mTTz7RtWvX9Oabbz5yqdx/sre3V2JiYrL3smfPbjw/ffq0vvvuu2Tby5Ytq7/++uuxfU6ePFnOzs7JHlNmznuSwwUAAAAAAAAAIFOjQAogw6xdu1a5c+fWxo0bNXjwYNWrV0+nTp1SYmKiSpUqpUOHDiVr7+npqa+++uqh5XL/qVOnTtq0aZPWrVv30P1Fk6TUh4eHh6KiouTu7m481q9fr2XLlkmSPvjgA124cEF9+/bVxo0b9fHHHxv3RU1JmTJl9Pfff+vkyZPGe2FhYcbzn376SV5eXrp165bx3oEDB1SmTJnH9jlq1CjFxsYme4wc3DfVLAAAAAAAAAAA4D4KpAAyTJ48efTbb7/phx9+0KlTpzRlyhQFBQXpzp076tu3r3bu3Knp06fr5MmTmjx5so4dO6b69evLwcFB0v3i4e3btx/qt0WLFjp37lyKBdKkPg4dOqTr168n29a/f3/t379fY8aMUVRUlJYvX67Ro0erePHiku4vlTtgwAAdPnxYx44d0+bNm1WlSpVUj7dkyZJ644031LNnTx06dEjBwcGaPn26sb1Vq1ZydnZWnz59FBkZqeXLl2vq1Kkpzk7Nnj27nJyckj0enJUKAAAAAAAAAM9bYmICjyd8wLpQIAWQYTp27KiuXbvqzTffVPXq1bVt2zZNmzZNERERKlKkiIKCgrRo0SKVL19eq1evVnBwsAoVKqQKFSqoadOm8vT01ObNmx/qN3v27Grbtq2KFCmiSpUqPXJsFxcXde3aVR07dtTChQuTbStevLiCg4P1zTffqHz58hozZoymTZumLl26SJLmzp2r/Pnz6z//+Y9q166tQoUKpXif0ActXLhQBQsW1CuvvKJRo0bprbfeMrY5Ojrqu+++07lz51S1alV98MEH8vf3V5s2bdJ6SgEAAAAAAAAAwBOyJP7zBnkAgOcmMDBQvr6+io6OTrc+4/46lW59PYsbA99KvVEG6L8nl9kRDNkt1vF7SJ9NqWh2BMOc4VFmR5AkRWeJMzuC4c1b1vEbhH9myWZ2BEO9UmfNjiBJOn4ir9kRrE6h3NfMjiBJKr7R1+wIhitvjzQ7giRp9unCZkcwVH14wQ9TZLeif+pmlXVkOWtra3YESVLOBOs4H5J0M0vKt/PIKC3K/m52BIONo9kJ7vviQFGzIxhuW8dlItc46/naOZXV7AT33bJYxznJIiu5SCSViLOOLO3bXTY7giFobW6zI0iS2neINTuC1fl4nZX8pSNpSvQKsyO8cO6eO2Z2hBdOtkLlzI6AB1jH/9wCAAAAAAAAAAAAQAagQAoAT6latWpydHR87GPnzp1mRwQAAAAAAAAAAP9gHevrAMALaO3atbp79+5jtxcu/PBSdz4+PvLx8XmOqQAAAAAAAAAAQEookALAUypWrJjZEQAAAAAAAAAg4yUkmJ0AeCYssQsAAAAAAAAAAAAg06BACgAAAAAAAAAAACDToEAKAAAAAAAAAAAAINOgQAoAAAAAAAAAAAAg06BACgAAAAAAAAAAACDTsDU7AAAAAAAAAAAAAF4giQlmJwCeCTNIAQAAAAAAAAAAAGQaFEgBAAAAAAAAAAAAZBoUSAEAAAAAAAAAAABkGhRIAQAAAAAAAAAAAGQaFEgBAAAAAAAAAAAAZBoUSAEAAAAAAAAAAABkGrZmBwAAPJsbA98yO4IkyWH2/8yOIEna7t7K7AgGe9scZkeQJCUcy2p2BEPOBOv40WP33T/MjmCwtytmdgRJ0tjWsWZHMCxbW8TsCJKkSLt7ZkeQJGWRxewIhhy3cpsdQZI08K33zY5gsM1pdoL7jiVcMzuC4Ux26/h7JybhhtkRDC9lsY6fCZrEW8cFG5TNej6b2MS7ZkeQJLVv5Gp2BIMlezazI0iSosKs52eTHFYyv2Cz5U+zIxg8LC+ZHUGSFK9EsyNIkmyt5BqRpB26bHYESZLXm13MjmD4cv3XZkeQJHXq1MvsCFZnzbKpZkcwTDE7wIsoId7sBMAzsZ6/vQEAAAAAAAAAAADgOaNACgAAAAAAAAAAACDToEAKAAAAAAAAAAAAINOgQAoAAAAAAAAAAAAg06BACgAAAAAAAAAAACDTsDU7AAAAAAAAAAAAAF4giQlmJwCeCTNIAQAAAAAAAAAAAGQaFEgBAAAAAAAAAAAAZBoUSAEAAAAAAAAAAABkGhRIAQAAAAAAAAAAAGQaFEgBAAAAAAAAAAAAZBq2ZgcAAAAAAAAAAADACyQhwewEwDNhBikAAAAAAAAAAACATIMCKQAAAAAAAAAAAIBMgwIp8A/Xrl3TkiVLjNeurq4KDAw0L9BTCA8P1549e8yOkSns2LFDFoslXfq6e/euFixYkC59AQAAAAAAAACAR6NACvzD9OnTtWjRIuN1aGiovLy8TEz05Nq1a6fIyEizY2QKnp6eiomJSZe+VqxYoYkTJ6ZLXwAAAAAAAAAA4NFszQ4AWJvExMRkr/PmzWtSkqf3z2PA85MtWzYVKFAgXfricwMAAAAAAAAA4PljBin+9aKjo2WxWPTRRx/ppZde0rvvvqtJkybJzc1N2bJlU6FChTR+/HhJUmBgoMaPH6+QkBBj2dQHl9hNSEjQp59+qhIlSsjOzk4NGzbUkSNH0pRjx44dcnV11aJFi1SgQAG99NJLmjp1qn788Ue9/PLLypkzp7p3766EhIQ0jfX111/Lw8NDOXLkUNmyZbVu3TpJUoMGDXTmzBn17NlTPj4+acr25Zdf6uWXX5a9vb08PT0VFhZmbAsMDFSZMmVkZ2en6tWr68cffzS2JR1PjRo1ZGdnp2bNmunMmTNq37697O3tVblyZR07dszop0GDBpo4caJeeuklFShQQEuXLtXq1atVvHhx5cqVSyNHjjT6vn37tkaOHKmiRYvKwcFBrVu31u+//57sM12zZo1KliypHDlyqFWrVrp8+XKqx3r8+HFZLBadPn3aeC8qKkpZsmTR77//rrt372ro0KEqXLiwsmbNKldXV82fPz/ZMY8cOVIFCxZUlSpVtH379mRL7O7evVt169aVvb29HBwc9NprrxkzTJPOwYcffigXFxflypVLQ4cOVWJionbs2KGePXvqzJkzslgsio6OTtNnBwAAAAAAAAAZLTExgccTPmBdKJAi09i9e7f279+vfPnyyd/fXwsXLlRkZKTGjRsnX19fHTx4UF5eXho2bJheeeWVRy6bOmHCBPn5+cnf318HDx5U8eLF1bx5c924cSNNGc6dO6e1a9cqJCREH3zwgUaNGqX//ve/CgwM1IoVK/T1119r/fr1qY518eJFdevWTaNGjdKJEyfUq1cveXt76/Lly1qzZo2KFCkif39/zZw5M9VM3333nXr16qX//ve/Onz4sKpXr65WrVrp7t27CgwM1IABAzRq1CiFh4erSZMmeu2113T27Flj/zFjxmjy5MnatWuXwsLCVKVKFTVt2lShoaGyt7fX6NGjjbZ79+7VqVOnFBoaKm9vb/Xt21czZ85UcHCwpk+frqlTpxrF2b59+2rNmjVasmSJ9u7dq7i4OLVp08YoIEvSpEmTtGLFCoWEhCg0NFTTpk1L9XhffvllVapUSWvWrDHeW716tTw9PVW0aFFNnjxZmzZtUlBQkE6cOKEePXpowIABunDhgtF+2bJl2rJliwIDA5MVR2NjY9WyZUs1a9ZMx44d05YtW3Ty5ElNnjzZaLNnzx6dOHFCu3fvVkBAgGbOnKmtW7fK09NT/v7+KlKkiGJiYlS0aNFUjwUAAAAAAAAAADw5CqTINP773/+qZMmSql+/vhYvXqzGjRvL1dVVffv2VYECBXTs2DHZ2dnJ0dHxkcumJiYmavbs2froo4/UunVrlSlTRgsWLJCNjY2+/PLLNGWIi4vTtGnT5OHhoXfffVcJCQkaMGCAateurVatWqly5co6fvx4qmOdPXtWcXFxKlKkiIoXL65hw4Zp/fr1ypEjh3Lnzi0bGxs5OzvL2dk51Uyff/65OnfurL59+8rd3V1+fn5GsXXWrFkaNGiQunfvLg8PD33yySeqUKGCAgICjP19fHzUpEkTVatWTY0aNVL58uXVt29flStXTt26ddPx48eNtgkJCZo1a5bc3d31zjvv6ObNmxo/frwqVqyoXr16KV++fDp+/Lj+/vtvLV26VHPmzFHDhg1VsWJFLVu2TCdOnND3339v9Dd+/HjVrFlTtWrVUpcuXRQaGpqmz6FTp04KCgoyXq9evdq4z2ylSpX0v//9T7Vr11aJEiU0evRoxcXFJbuna9euXVWhQgVVqlQpWb+3bt3S2LFjNXbsWLm5ualOnTpq3769MYtWkuLj4zV//nx5eHioa9euqlSpkkJDQ5UtWzY5OzvLxsZGBQoUkI2NTZqOBQAAAAAAAAAAPBkKpMg0XF1dJUkNGzaUi4uLRo0apbZt26p48eI6f/684uPjU9z/4sWLunz5smrVqmW8lzVrVlWvXl0RERFpzlGiRAlJkp2dXbJcSe/duXMn1bEqV66sli1bqmnTpnr55Zf1/vvvy83NTfb29mnOkeTEiROqVq2a8Tpbtmzy8/NTgQIFFBERkSyDJL3yyivJjjfpeJLyP+p4kuTPn18ODg6pHn9kZKQSEhKSjZ07d255eHgkG7tUqVLGcycnJ8XFxaXpmDt16qSffvpJ586dU3R0tA4dOqQOHTpIktq2batbt25p2LBhatmypZHvwevjwcwPKlCggHr06KEZM2aoe/fuql69uvz8/JLtmz9/fjk5OT1Vbkm6c+eOrl69muxxJ57lGQAAAAAAAAAASCsKpMg0cuTIIUlauHChmjRpotu3b6t9+/b64YcfVKRIkTTv/0/x8fGpFlcfZGtrm+x1liwPfxmmNpbFYtHGjRv1008/6c0331RwcLCqVq2q8PDwNOdIkjVr1sdue1SOfx5vWo7ncW0f1z6t5zpbtmzJticmJj527Ae5urqqRo0aWrt2rYKCglS/fn1jxvCYMWPUtWtXZc2aVd27d9e+ffvSnO/s2bOqUKGCtm3bpmrVqmnGjBkaNmxYsjb/zPwkuSVp8uTJxuzgpMeMX86keX8AAAAAAAAAADI7CqTIdObNm6dx48ZpxowZ6tatm1xcXHThwgWjSPXgPSUf5OzsrPz58ycrmMXFxenAgQPy8PBI14ypjXX8+HG99957qlmzpj7++GMdO3ZMRYsW1XfffZfiMTxKqVKldOjQIeN1fHy83NzctHv3bnl4eDxUINy3b1+6H+8/lSxZUra2tsnGvnTpkqKiotJt7E6dOmnTpk1at26dOnXqZLw/b948BQQE6JNPPpGXl5dxf9m0FDHXrl2r3Llza+PGjRo8eLDq1aunU6dOpbkAmpbPbdSoUYqNjU32GFK2eJr6BwAAAAAAAAAA0sPTuYB/uTx58mjr1q1q06aNrl27ZtxjMmkpWAcHB2Pp1X8upTp06FCNGzdOhQoVkru7u6ZMmaLbt28b969MTymNFR8fr7lz5ypXrlzq0qWLjh07pujoaFWpUsU4huPHj+vy5cvKnTt3iuMMHDhQzZo1U7169VSnTh3NmjVLCQkJqlq1qoYOHapevXqpbNmyqlWrlhYtWqRDhw7piy++SPfjfZCjo6N69+6tAQMGaMGCBcqdO7dGjhypokWLqmnTpoqJiXnmMTp27KgxY8YoPj5e69atM97PkyePgoODVa1aNZ07d06DBw+WpGRLBT9Onjx59Ntvv+mHH36Qm5ubVq1apaCgINWoUSNNmRwcHPT3338rKipKbm5uj5xxmz17dmXPnj3Zewk2/K4LAAAAAAAAgAyUwG2/8GKjQIpMZ+bMmerZs6cqVaqkfPnyycvLSw4ODgoLC5MktWvXTvPmzVPZsmUVHR2dbN9hw4bp6tWr6t27t65evSpPT0/t2LFDefPmTfecqY21Zs0ajRw5UhMnTlS+fPk0efJkNWvWTJLUv39/jRgxQpGRkVqzZk2K49SvX1+fffaZJkyYoJiYGFWvXl0bN26UnZ2dOnbsqPPnz2vs2LE6f/68KleurC1btujll19O9+P9Jz8/P7333ntq37697t69qyZNmmjr1q0PFQefVqFChVS9enXZ2dkpT548xvuLFi1Sv379VK5cORUuXFi9e/eWra2twsLC1Lx58xT77Nixo3788Ue9+eabslgsqlGjhqZNm6YPP/wwTQXWRo0ayd3dXRUqVNCuXbtUvXr1Zz5OAAAAAAAAAACQnCXxSW5+BwCwOle8G5odQZLkMPt/ZkeQJBVzb2V2BIO97aPvV5vRDvcvbXYEw5eLrON3s+bdO212BEPTHMXMjiBJGtv6mtkRDMvW5jI7giQp0uae2REkSVmU9qXzn7ccVpJloOs5syMYbHNaxz+n3j7kZHYEg6Pl8fe4z0gxCTfMjmB4KYt1/EzQJD6n2REkSTtsrpsdwRCbeNfsCJKkVf3S/5dun5YlezazI0iS3psVa3YEQw4ruUNVaNyfZkcweGR9yewIkqR4Wcffw7ZWco1I0om4y2ZHkCR9t6yL2REMr3f72uwIkqSNq3qZHcHqVHh9qtkRDFF/HjA7wgvnTtQesyO8cLKX8jQ7Ah5gPX97AwAAAAAAAAAAAMBzRoEUSAcXL16Uo6Njig8zBAUFpZipRYsWpuR6nqZPn57iMfft29fsiAAAAAAAAAAAwETWsc4d8ILLkyePwsPDzY7xkFdffTXFXHZ2dhkXJoP06tVLrVu3fux2JyfrWX4OAAAAAAAAAABkPAqkQDqwsbGRu7u72TEe4ujoaJW5nqdcuXIpV65cZscAAAAAAAAAgH+vxASzEwDPhCV2AQAAAAAAAAAAAGQaFEgBAAAAAAAAAAAAZBoUSAEAAAAAAAAAAABkGhRIAQAAAAAAAAAAAGQaFEgBAAAAAAAAAAAAZBq2ZgcAAAAAAAAAAADACyQh3uwEwDNhBikAAAAAAAAAAACATIMCKQAAAAAAAAAAAIBMgwIpAAAAAAAAAAAAgEyDAikAAAAAAAAAAACATIMCKQAAAAAAAAAAAIBMw9bsAAAAAAAAAAAAAHiBJCaYnQB4JhRIAeAF139PLrMjSJK2u7cyO4Ik6beTG82OYEi8dc3sCJKk3vUmmB3B4FcmxuwIkiSfGb5mRzDcXTjL7AiSpOWrc5kdwdDO/Q+zI0iSHKo7mx3B6sRfumF2BEmS7/YCZkcw5JSN2REkScvn1jA7giHhQKjZESRJWUqUMTuCIfHvv82OIEmKPxFtdgRJUjf3omZHMFhcXMyOIElqMnKv2REMl+Ks42fYg+9XNjvC/4m7Z3YCSZLF7T9mR/g/V6+YneA+i5UsjmdNRQKnCmYnkCS5t5tmdgTDyc/eNDuCJMm1ua/ZEazOmd0BZkcAkIlZyU8RAAAAAAAAAAAAAPD8USAFAAAAAAAAAAAAkGlQIAUAAAAAAAAAAACQaVAgBQAAAAAAAAAAAJBp2JodAAAAAAAAAAAAAC+QhASzEwDPhBmkAAAAAAAAAAAAADINCqQAAAAAAAAAAAAAMg0KpAAAAAAAAAAAAAAyDQqkAAAAAAAAAAAAADINCqQAAAAAAAAAAAAAMg1bswMAAAAAAAAAAADgBZKYYHYC4JkwgxQAAAAAAAAAAABApkGBFAAAAAAAAAAAAECmQYEUAAAAAAAAAAAAQKZBgRRIBw0aNJCvr68kycfHRz4+Puk+xo4dO2SxWNK9X6Tu4sWLWrVqldkxAAAAAAAAAABAOrA1OwDwbzNz5kyzIyCdjRw5UomJierQoYPZUQAAAAAAAAAAwDOiQAqkM2dnZ7MjIJ0lJiaaHQEAAAAAAAAArEdCgtkJgGfCErt4YURHR8tisWjNmjUqWbKkcuTIoVatWuny5cuSpL1796pu3bpycHCQm5ub5s2bZ+ybtOxtpUqVlC9fPkVFRclisWjVqlUqU6aM7O3t5e3trdOnT6tRo0ayt7dXvXr1dPbsWUn3C2STJk2Sm5ubsmXLpkKFCmn8+PGPzPngEruurq6yWCwPPZJ8/vnncnNzk6Ojoxo0aKAjR44Y265evSpvb2/lzJlTpUuXVmhoaJrPVVxcnHr37i0XFxc5OjqqdevWxrFI0tq1a1W2bFnZ29urZs2aCgkJMbbdvXtXgwYNUq5cuVS0aFGtWrVKFotF0dHRkiSLxaIdO3YY7QMDA+Xq6mq8Pnr0qBo2bCg7Ozt5eHjos88+M7b5+vqqS5cu6tevn5ycnJQvXz5NnTrV2H7v3j2NHj1aBQsWlLOzszp06KBLly5Jku7cuaPBgwfLxcVFLi4u6tq1q/HZp8XOnTtVvXp12dnZqUKFCgoKCjK2+fj4aOjQofLy8pK9vb2KFi2qpUuXGpm/+OILffHFF8ZxWiwWjRs3Ti4uLmrdurWk1K+/QYMG6fXXX5ednZ2qVKmiPXv2SJImTpyoihUrJss6bdo01atXL83HBgAAAAAAAAAA0o4CKV44kyZN0ooVKxQSEqLQ0FBNmzZNERERatSokerXr6+DBw/K19dXw4YN09q1a439li5dqo8//libNm1SqVKlJEnjxo1TYGCgNm3apKCgIHl6eqpfv37as2ePYmJijOLdkiVL5O/vr4ULFyoyMlLjxo2Tr6+vDh48mGLW0NBQxcTEKCYmRidPnlTx4sU1bNgwSVJwcLB8fX01e/ZshYWFqV69emrYsKH+/vtvSVLfvn11/PhxhYSEaPbs2Zo2bVqaz1FAQIBCQkK0ZcsW7d+/X9euXdOQIUMkSYcOHVKPHj00ZswYHT58WF27dlWLFi108uRJSdKYMWO0YcMGbdiwQStWrNCHH36Y5nFv3bqlFi1aqG7dujp8+LD8/Pw0YcIEo9goSatWrVKOHDl08OBBDR8+XCNHjlRkZKQkaezYsfriiy+0ePFi7d27VxcuXFCfPn0kSaNHj1ZoaKg2b96s7du3KzY2Ns1L3p4/f16tWrWSj4+Pjhw5opEjR8rHx0c7d+5Mds6qVaumo0ePqn379urTp49iY2P13nvvqWPHjurYsWOyInVwcLB2796tTz75JE3X37x581SuXDmFhYXpP//5j1577TX99ddf6tSpk44cOWKcA0lauXKlOnXqlObzDgAAAAAAAAAA0o4ldvHCGT9+vGrWrClJ6tKli0JDQ3Xr1i1VqVJFkyZNkiR5eHgoIiJCU6dOVbt27SRJNWrU0Ouvv56sryFDhqhWrVqSpCpVqsjDw8MourVv317h4eGSpGLFimnx4sVq3LixpPvFy/Hjx+vYsWOqWrXqY7PmzZvXeO7t7a3ChQvrk08+kSRNnTpVo0ePVqtWrSRJH330kTZv3qwvv/xS3bt318qVK7V9+3aj/3Hjxundd99N0zmKjo6WnZ2dXF1dlTt3bgUGBhozMf38/NS7d2917txZkjRo0CCFhIRo7ty5+vTTT7Vo0SLNmDFD9evXN3L+87w9zvLly5UvXz599NFHkqRSpUrpgw8+kL+/v7p16yZJypMnj/z8/GRjY6Phw4frk08+0f79+1WqVCktWLBAfn5+at68uaT7RcWVK1fq5s2bCggI0P79+1WhQgVJ9wveefLk0ZEjR4z3HmfOnDlq0qSJBgwYIElyd3dXWFiY/P39jZmalSpV0ogRIyRJEyZM0MyZM3Xs2DF5enrKzs5OUvLPs0+fPvLw8JAkDR06NNXrr1y5csZnP336dG3YsEFfffWVBgwYoJo1a2rVqlX64IMPdObMGR08eFDBwcGPPJY7d+7ozp07yd6LT4yXjcUm5Q8HAAAAAAAAAABIYgYpXkBJsz8lycnJSXFxcYqIiDAKnUk8PT0VERFhvH5wGdgkJUqUMJ4nFRQffJ1UiGrYsKFcXFw0atQotW3bVsWLF9f58+cVHx+fpsyzZs3S1q1b9fXXX8vW9v7vJURERGjEiBFydHQ0HocOHVJkZKQiIyMVHx+vypUrG33UqFEjTWNJ0jvvvKOYmBgVKFBAzZo10+bNm1WmTBlj3ICAgGTjBgcHKzIyUn/99ZcuXbqUbFxPT880jxsREaFDhw4l63vEiBHJZke6ubnJxub/ink5c+ZUXFycMXa1atWMbWXLlpWvr69OnTqlu3fv6pVXXjH6LVKkiBISEpL1nVKu4ODgZLkCAgKS7fvP60q6v1Tx4zx4raTl+qtTp47xPEuWLKpSpYqx3dvbW6tWrZJ0f/ZogwYNlC9fvkeOO3nyZDk7Oyd7/BKb+jkAAAAAAAAAAAD3MYMUL5xs2bIle52YmKgcOXI81C4+Pj5ZAfNRbZKKlUmyZHn07wwsXLhQQ4YM0dtvv6327dvLz89PDRs2TFPePXv2aMSIEVq/fr2KFClivH/v3j35+/sbs1KTODk56cyZM8axJfnncaekXLlyio6O1qZNm7Rx40aNGjVKy5cv148//qh79+5p5MiR6t69e7J97OzsZG9v/9C42bNnT3Gse/fuJXveuHFjzZkz57HtH3UciYmJypo1a6pj7Nq1S46Ojsm25c+fP8V8Sft37dpVo0ePTvb+g2M+LtfjPHg9peX6++fxxcfHG9ebl5eXhg0bppMnT2r16tV65513HjvuqFGjNHTo0GTv9S7f9bHtAQAAAAAAAABAchRI8a/g4eGhkJCQZO/t3bvXWAL1Wc2bN0/jxo3T8OHDJUlXrlzRhQsXUiygSdKFCxfUoUMHDR8+XK+++upDmf/44w+5u7sb7/Xs2VPt2rVTgwYNlDVrVoWGhhoF1LCwsDTnXbJkibJnzy4vLy916NBB+/bt0yuvvKKLFy/Kw8NDp0+fTjbuiBEjVLp0ab399tsqWrSoQkNDVbFixUeOmy1bNl27ds14ferUqWTHtH79+mSzRL/88kuFhoZq5syZKWbOlSuXXFxcdOjQIWPJ3PDwcLVq1UoRERGysbFJNrv14sWLeuuttzRjxgzlzJkzxb49PDy0Z8+eZMc8bdo03blz56Gi6aNYLJYUP+u0XH9JyzVL94uj4eHhatmypSSpYMGCatCggRYtWqRDhw7pjTfeeOxY2bNnf6hozfK6AAAAAAAAADJSYmLaVlcErBVL7OJfoX///goPD9fo0aMVGRmpL774QnPmzEnzPTtTkydPHm3dulWRkZE6cOCAvLy8FBcX99C9IB8UHx+vTp06qVSpUho4cKDOnz9vPO7evauhQ4fK399fS5cu1a+//qqRI0dq5cqVKlOmjJycnNS9e3cNHDhQP/30k3bs2CFfX980542NjdXgwYP1ww8/6PTp01q2bJmKFCkiFxcXDRkyRF999ZVmzZqlX3/9Vf7+/po+fbpKly4tSRo+fLjGjh2r77//XgcOHNDAgQOT9V2jRg3Nnj1bUVFR2rBhgxYvXmxs69q1q27evKk+ffro+PHj2rx5swYNGvTY5WL/adCgQRo7dqy2b9+uY8eOafDgwXrllVeUM2dO9e7dW/369dOOHTv0yy+/qHv37jp58qTc3NxS7bd///7av3+/xowZo6ioKC1fvlyjR49W8eLF05TLwcFB0dHROnv27GP7T+3627Fjh6ZNm6YTJ05o8ODBunnzpnG/W+n+MrszZsxQ06ZN9dJLL6UpFwAAAAAAAAAAeHIUSPGvUKxYMW3cuFHffvutKlSooI8//ljTp09Xz54906X/mTNn6urVq6pUqZLeeOMNVapUSe3atUtxVufvv/+uHTt2KCQkRPnz51fBggWNx549e+Tl5aWJEydq7NixKl++vH744QcFBwcb98KcPXu2PD091bRpU/Xo0eOhQmVK3n33XfXo0UPdunVTmTJlFBYWpg0bNsjGxka1a9fW0qVL9dlnn6ls2bKaP3++VqxYofr16xv79urVS506dVLLli3l7e2drO/Zs2fr0qVLKl++vKZOnaoJEyYY23LmzKlvvvlGkZGRqly5snr37q0BAwZo1KhRacr9/vvv64033lDHjh1Vp04dFS1aVPPnz5d0f8ZnkyZN1L59e9WuXVu2trbavHlzsvuZPk7x4sUVHBysb775RuXLl9eYMWM0bdo0denSJU25unXrphMnTqhSpUqPnEmaluuvdevW2rZtmypXrqywsDB9//33ypUrl7G9ffv2unfvnjp16pSmTAAAAAAAAAAA4OlYElNbIxRAphYdHS03NzedPn1arq6uZsd5Ifn4+EiSAgMDH9smKipKlStX1oULFx66z2pqOhdv9wzp0s/22BNmR5Ak/XZyo9kRDIm3rqXeKAP0rjch9UYZxK/UX2ZHkCQ5zRhjdgTD3YWzzI4gSVq+2tnsCIa27n+YHUGS5FDdes6JtYi/dMPsCJIk3+0uZkcw5JR1LHU/ak4NsyMYEg6Emh1BkpSlhKvZEQyJf/9tdgRJUvyJaLMjSJJs3IuaHcFgcbGO7ydNRu41O4LhUpx1/Ax78P3KZkf4P3H3zE4gSbKkYQWlDHP1itkJ7rNYydyPxASzE/wfp1xmJ5Akuff52uwIhpOfvWl2BEmSW7+VZkewOmd2B5gdwZC9XGOzI7xwbh/abHaEF06OSq+ZHQEP4B6kAGCia9eu6bvvvtPnn38ub2/vJy6OAgAAAAAAAACAJ2Mlv2YFIK1CQ0Pl6Oj42Ee5cuXMjpih/g3n4+2339bly5c1ceJEs6MAAAAAAAAAAPCvxwxS4AVTsWJFhYeHP3Z71qxZ03U8V1fXR95301pk9Pl4GiktrZszZ05duXIlw7IAAAAAAAAAwDOzpuXFgadAgRR4wWTPnl3u7u5mx7AanA8AAAAAAAAAAPAkWGIXAAAAAAAAAAAAQKZBgRQAAAAAAAAAAABApkGBFAAAAAAAAAAAAECmQYEUAAAAAAAAAAAAQKZha3YAAAAAAAAAAAAAvEASEsxOADwTZpACAAAAAAAAAAAAyDQokAIAAAAAAAAAAADINCiQAgAAAAAAAAAAAMg0KJACAAAAAAAAAAAAyDQokAIAAAAAAAAAAADINGzNDgAAAAAAAAAAAIAXSGKC2QmAZ8IMUgAAAAAAAAAAAACZBjNIAeAFl91iHb/rYm+bw+wIkqTEW9fMjmCw2OU0O4IkyUE2Zkcw3LtlHddrlrzFzI5gde5azE7wf7Lnt5IwVvL91Zp+K9fmJXuzI0iSXkq0nu9ruROs5Hq9+rfZCf5PXJzZCSRJidevmx3h/9y8ZXYCSVLiLSv5bG5Yx/mQJNlYx9eOi411fH+1JgnnLpodwZB42zq+dmzzvGR2BEPilatmR5AkJd65a3YESZLF1np+NlFCotkJJEkvZbOOfw9LUmLsFbMjSLKuc2ItEi+fMzsCgEzMSv7XBwAAAAAAAAAAAACePwqkAAAAAAAAAAAAADINCqQAAAAAAAAAAAAAMg3uQQoAAAAAAAAAAIC0S4g3OwHwTJhBCgAAAAAAAAAAACDToEAKAAAAAAAAAAAAINOgQAoAAAAAAAAAAAAg06BACgAAAAAAAAAAACDToEAKAAAAAAAAAAAAINOwNTsAAAAAAAAAAAAAXiCJCWYnAJ4JM0gBAAAAAAAAAAAAZBoUSAEAAAAAAAAAAABkGhRIAQAAAAAAAAAAAGQa/5oCaYMGDeTr6ytJ8vHxkY+PT7qPsWPHDlkslnTvF89XeHi49uzZY3aMTOPB8/0kXzOBgYFydXVNU9vExES98847cnBwUIkSJZ426lO7e/euFixYYLy+du2alixZYrx2dXVVYGBghucCAAAAAAAAAACp+9cUSB80c+ZMzZw50+wYsBLt2rVTZGSk2TEyjQfPt6enp2JiYtJ9jEOHDmnBggVavXq1fvzxx3TvPzUrVqzQxIkTjdfTp0/XokWLjNehoaHy8vLK8FwAAAAAAAAAACB1tmYHeB6cnZ3NjgArkpiYaHaETOXB850tWzYVKFAg3ceIjY2VJDVv3tyUWd3/vKb++Tpv3rwZGQcAAAAAAAAAMlZCgtkJgGfyRDNIo6OjZbFYtGbNGpUsWVI5cuRQq1atdPnyZUnS3r17VbduXTk4OMjNzU3z5s0z9k1a9rZSpUrKly+foqKiZLFYtGrVKpUpU0b29vby9vbW6dOn1ahRI9nb26tevXo6e/aspPsFiEmTJsnNzU3ZsmVToUKFNH78+EfmfHCJXVdXV1ksloceST7//HO5ubnJ0dFRDRo00JEjR4xtV69elbe3t3LmzKnSpUsrNDQ0zecqLi5OvXv3louLixwdHdW6dWvjWCRp7dq1Klu2rOzt7VWzZk2FhIQY2+7evatBgwYpV65cKlq0qFatWiWLxaLo6GhJksVi0Y4dO4z2/1ya9OjRo2rYsKHs7Ozk4eGhzz77zNjm6+urLl26qF+/fnJyclK+fPk0depUY/u9e/c0evRoFSxYUM7OzurQoYMuXbokSbpz544GDx4sFxcXubi4qGvXrsZnnxY7d+5U9erVZWdnpwoVKigoKEiSdPz4cVksFp0+fdpoGxUVpSxZsuj333+XlPLn5Orqqs8++0y1a9dWjhw5VLlyZR04cEDS/aWXz5w5o549e8rHx0c7duyQq6ur+vXrJ2dnZ02ZMsU4h2XKlJGdnZ2qV6+ebFaiq6ur/P39VbFiRTk4OKhly5Y6f/68JKlp06YaNGhQsuN8/fXXNXbs2DSdk8ddB3/++afy5MmjCRMmSLp//Tdo0EDt2rUzjmv8+PGqW7eu8bVy/Phxo98//vhDHTt2VO7cueXi4qJBgwbpzp07xrE2aNBAH374oVxcXJQrVy4NHTo0WZEvPc/3g19vu3fvNjI7ODjotddee+IZpjt27FCDBg0kSVmyZDGW1t64caOqVq0qOzs7lS1bVmvWrDH2adCggQYOHKgSJUqoWLFiunbtmk6dOqUmTZrI3t5eFSpUkJ+fX7Kvo8ddrzt27FDPnj115swZWSwWBQYGavz48QoJCTGO9cEldhs0aKCJEyfq1VdflZ2dnUqXLq3vvvvOGOfSpUt644035OjoqBIlSmjevHks5Q0AAAAAAAAAwHP0VEvsTpo0SStWrFBISIhCQ0M1bdo0RUREqFGjRqpfv74OHjwoX19fDRs2TGvXrjX2W7p0qT7++GNt2rRJpUqVkiSNGzdOgYGB2rRpk4KCguTp6al+/fppz549iomJMYp3S5Yskb+/vxYuXKjIyEiNGzdOvr6+OnjwYIpZQ0NDFRMTo5iYGJ08eVLFixfXsGHDJEnBwcHy9fXV7NmzFRYWpnr16qlhw4b6+++/JUl9+/bV8ePHFRISotmzZ2vatGlpPkcBAQEKCQnRli1btH//fl27dk1DhgyRdH950B49emjMmDE6fPiwunbtqhYtWujkyZOSpDFjxmjDhg3asGGDVqxYoQ8//DDN4966dUstWrRQ3bp1dfjwYfn5+WnChAlaunSp0WbVqlXKkSOHDh48qOHDh2vkyJHGkqhjx47VF198ocWLF2vv3r26cOGC+vTpI0kaPXq0QkNDtXnzZm3fvl2xsbHq0KFDmnKdP39erVq1ko+Pj44cOaKRI0fKx8dHO3fu1Msvv6xKlSolK2itXr1anp6eKlq0aKqfkyR9+OGHev/993X48GE5OzsbRcs1a9aoSJEi8vf3N5ZdPnPmjG7fvq0DBw7I29tbgYGBGjBggEaNGqXw8HA1adJEr732WrKC9ocffqgRI0Zo3759unnzptq3by9J8vb21po1a4ziYmxsrLZs2aJOnTqlek5Sug7y5s0rPz8/TZkyRb///rv+97//6fDhw5o7d66x/+TJk/Xmm2/qwIEDKly4sF577TXduXNHd+/eVaNGjXTjxg2FhIRo5cqV2rRpk0aMGGHsu2fPHp04cUK7d+9WQECAZs6cqa1bt0pK/eviSc93ktjYWLVs2VLNmjXTsWPHtGXLFp08eVKTJ09O9Vw9yNPT0yhWxsTE6L333tO2bdv0xhtvqHv37jp06JDefvtteXl5GYVbSVq8eLG+/PJLrV27VnZ2dmrVqpVy5cql/fv3a9SoUcl+4SKl69XT01P+/v4qUqSIYmJi1KFDBw0bNkyvvPLKY4u9EydOlLe3t44eParKlSurd+/eSvj/v2HVqVMn/fnnn8Zn8bhf/AAAAAAAAAAAAOnjqZbYHT9+vGrWrClJ6tKli0JDQ3Xr1i1VqVJFkyZNkiR5eHgoIiJCU6dONWa91ahRQ6+//nqyvoYMGaJatWpJkqpUqSIPDw+j6Na+fXuFh4dLkooVK6bFixercePGku4XL8ePH69jx46patWqj8364FKX3t7eKly4sD755BNJ0tSpUzV69Gi1atVKkvTRRx9p8+bN+vLLL9W9e3etXLlS27dvN/ofN26c3n333TSdo+joaNnZ2cnV1VW5c+dWYGCgMRPTz89PvXv3VufOnSVJgwYNUkhIiObOnatPP/1UixYt0owZM1S/fn0j5z/P2+MsX75c+fLl00cffSRJKlWqlD744AP5+/urW7dukqQ8efLIz89PNjY2Gj58uD755BPt379fpUqV0oIFC+Tn56fmzZtLkubNm6eVK1fq5s2bCggI0P79+1WhQgVJ9wveefLk0ZEjR4z3HmfOnDlq0qSJBgwYIElyd3dXWFiY/P39Va9ePXXq1ElBQUFG8Xr16tXGLOCUPqeBAwdKuj9ruG3btpKkYcOG6c0335Qk5c6dWzY2NnJ2dk629PLIkSPl7u4uSZo1a5YGDRqk7t27S5I++eQThYSEKCAgwCje9erVS127dpUkLVq0SCVKlNDRo0f1xhtvGAX9OnXqaN26dSpdurTKlSuX6meV0nUwbdo09ezZU19++aX69u2rPXv2aNasWcmWq23RooX++9//SpIWLFigQoUK6fvvv1dCQoLOnj2rn376SS+99JJx/l9//XXjvpnx8fGaP3++nJyc5OHhoenTpys0NFRNmzZ9Ludbul+8Hzt2rIYOHSqLxSI3Nze1b99eP//8c6rn6kHZsmVT7ty5Jck4HwEBAXrzzTeN8zF06FD9/PPP8vPz04oVKyRJrVq1kqenpyRpy5Yt+v3337Vv3z45OTmpbNmyOnLkiNE2pes1KChIzs7OsrGxMcZ3dHRMcTnhli1bGtfzmDFjVKlSJZ0/f17Xr1/X1q1b9euvv6pEiRKqVKmSfH191bdv3yc6JwAAAAAAAAAAIO2eagZp0uxPSXJyclJcXJwiIiKMQmcST09PRUREGK8fXL4ySYkSJYznSQXFB18nLQvasGFDubi4aNSoUWrbtq2KFy+u8+fPKz4+Pk2ZZ82apa1bt+rrr7+Wre39unBERIRGjBghR0dH43Ho0CFFRkYqMjJS8fHxqly5stFHjRo10jSWJL3zzjuKiYlRgQIF1KxZM23evFllypQxxg0ICEg2bnBwsCIjI/XXX3/p0qVLycZNKuqkRUREhA4dOpSs7xEjRhgzRCXJzc1NNjY2xuucOXMqLi7OGLtatWrGtrJly8rX11enTp3S3bt39corrxj9FilSRAkJCcn6TilXcHBwslwBAQHGvp06ddJPP/2kc+fOKTo6WocOHTIK5Sl9TkkedU2m5MHr7FHX7iuvvJLs2q1Tp06y85c7d25FREQoV65catGihVatWiVJWrlyZZpmjyaN+7jrIMnnn3+uLVu2qGrVqkaB+1GZkpaBjoiIUEREhEqXLm0UR6X719C9e/eMWcr58+eXk5OTsf3Bc/Y8zrd0v5jZo0cPzZgxQ927d1f16tXl5+eX5q/hlDzp95/Dhw+rdOnSyc7BK6+8kqy/lK7XJ/XP8yXdX4b78OHDyp07d7Lvgw/meJQ7d+7o6tWryR7xic9+DgEAAAAAAAAAyCyeagZptmzZkr1OTExUjhw5HmoXHx+frPjxqDZJxcokWbI8uma7cOFCDRkyRG+//bbat28vPz8/NWzYME159+zZoxEjRmj9+vUqUqSI8f69e/fk7+9vzEpN4uTkpDNnzhjHluSfx52ScuXKKTo6Wps2bdLGjRs1atQoLV++XD/++KPu3bunkSNHGjMWk9jZ2cne3v6hcbNnz57iWPfu3Uv2vHHjxpozZ85j2z/qOBITE5U1a9ZUx9i1a5ccHR2TbcufP3+K+ZL279q1q0aPHp3s/aQxXV1dVaNGDa1du1a3b99W/fr1jdl4KX1OKR1TSh68FtNy7f7z3MTHxxvXqre3t9577z35+vpq69atmjVrVpoypHQdJPnll1+UmJiow4cP69KlS8qTJ0+qmR51LpKOJenPx10DSbnS+3xL0tmzZ1W9enVVq1ZNTZs2Ve/evbVp0ybt27fvifv6pyf9/mNra5vsa0xK/jWX2vX6pB53vlPL8SiTJ09+aBneSs4vq0qusk+VDQAAAAAAAACAzOapZpA+ioeHx0OFjr1798rDwyNd+p83b57GjRunGTNmqFu3bnJxcdGFCxdSLSZcuHBBHTp00PDhw/Xqq68+lPmPP/6Qu7u78Zg4caL27dsnDw8PZc2aVaGhoUb7sLCwNOddsmSJgoOD1aFDB33xxRf69ttvtWvXLl28eFEeHh46ffp0snHnz5+vb775Ro6OjipatGiK42bLlk3Xrl0zXp86dSrZMUVGRsrNzc3oe9++fZo9e3aqmXPlyiUXFxcdOnTIeC88PFxFihRRyZIlZWNjo0uXLhn9Ojk5aciQIbpw4UKqfXt4eCgqKirZMa9fv17Lli0z2nTq1EmbNm3SunXrks3CTOlzSguLxZJqtn/2lXQNPHgekpw8eVKxsbGqWLGiJKl169a6cuWK/Pz8VLFiRZUsWTJNuVK6DiTp+vXrGjBggKZMmaLSpUtr6NChyfZ/MFNsbKxOnjypihUrGtfA5cuXje179+6Vra1tmrI9r/O9du1a5c6dWxs3btTgwYNVr149nTp1KtWv4bR40u8/5cqVU1RUVLKvowfvV5ra9frPY0ztGnucsmXL6u+//9bp06cfmeNRRo0apdjY2GSPis7p830WAAAAAAAAANIkMYHHkz5gVdKtQNq/f3+Fh4dr9OjRioyM1BdffKE5c+ak+Z6dqcmTJ4+2bt2qyMhIHThwQF5eXoqLizOW4H2U+Ph4derUSaVKldLAgQN1/vx543H37l0NHTpU/v7+Wrp0qX799VeNHDlSK1euVJkyZeTk5KTu3btr4MCB+umnn7Rjxw75+vqmOW9sbKwGDx6sH374QadPn9ayZctUpEgRubi4aMiQIfrqq680a9Ys/frrr/L399f06dNVunRpSdLw4cM1duxYff/99zpw4IBx38ckNWrU0OzZsxUVFaUNGzZo8eLFxrauXbvq5s2b6tOnj44fP67Nmzdr0KBBypcvX5pyDxo0SGPHjtX27dt17NgxDR48WK+88opy5syp3r17q1+/ftqxY4d++eUXde/eXSdPnpSbm1uq/fbv31/79+/XmDFjFBUVpeXLl2v06NEqXry40aZjx4768ccftX//frVv3954P6XPKS0cHBx0/PjxZAXDBw0dOlSzZ8/W0qVLFRkZqffff1+HDh3S22+/bbSZOXOmNmzYoMOHD6tXr15q2rSpsWyqnZ2d2rRpo2nTpqV5eV1JqV4Ho0ePlpOTkwYPHqw5c+Zo2bJl2rp1q7H/8uXLtWTJEkVEROitt95S8eLF1bBhQzVt2lQlSpRQt27ddOTIEW3fvl0DBw5U586dlStXrlRzPa/znSdPHv3222/64YcfdOrUKU2ZMkVBQUEpfg2n1ZAhQ7R69WrNnDlTUVFRmjFjhtasWaP+/fs/sn3jxo1VtGhR9e7dWxEREca+SYXO1K5XBwcH/f3334qKitK9e/fk4OBgLA/9JEqXLq1XX31VvXr10uHDh/X9999r3LhxKe6TPXt2OTk5JXvYWGxS3AcAAAAAAAAAAPyfdCuQFitWTBs3btS3336rChUq6OOPP9b06dPVs2fPdOl/5syZunr1qipVqqQ33nhDlSpVUrt27VKc1fn7779rx44dCgkJUf78+VWwYEHjsWfPHnl5eWnixIkaO3asypcvrx9++EHBwcFG4Wv27Nny9PRU06ZN1aNHj4cKlSl599131aNHD3Xr1k1lypRRWFiYNmzYIBsbG9WuXVtLly7VZ599prJly2r+/PlasWKF6tevb+zbq1cvderUSS1btpS3t3eyvmfPnq1Lly6pfPnymjp1qiZMmGBsy5kzp7755htFRkaqcuXK6t27twYMGKBRo0alKff777+vN954Qx07dlSdOnVUtGhRzZ8/X5I0bdo0NWnSRO3bt1ft2rVla2urzZs3J7uf6eMUL15cwcHB+uabb1S+fHmNGTNG06ZNU5cuXYw2hQoVUvXq1dWgQYNkS8mm9jmlpn///goICEhW8HxQx44dNWnSJI0dO1YVK1bUjh07tGXLFr388stGGx8fH40aNUqenp4qWLCgvv7662R9eHl56c6dO/Ly8kpTJkkpXgehoaH67LPPFBAQIFtbW1WuXFl9+/ZV3759devWLUlSly5dNG/ePFWrVk3Xr1/XN998I1tbW9nY2GjDhg2SpFq1aqlTp05q06aNPv/88zTlel7nu2PHjuratavefPNNVa9eXdu2bdO0adMUERHxzEXSWrVqaenSpZo7d67Kly+vxYsXa+XKlWrUqNEj22fJkkVr1qzR2bNnVblyZX300Ufq2bOnsRRuatdro0aN5O7urgoVKig8PFzt2rVTQkKCypYtq4sXLz5R9sWLF8vBwUG1atVSv379kuUAAAAAAAAAAADpz5KYHutb4rmKjo6Wm5ubTp8+LVdXV7PjZDqurq7y9fWVj4/PY9ssWLBAX375pUJCQjIkU4MGDdSgQYMnmtWM/3Px4kWFhYUlW3b7008/1aZNm7Rjx44My3Hz5k1t3bpVLVq0MO5vumrVKg0fPvyJZqP2dG2feqMM8OP106k3ygARYYtTb5RBLHY5zY4gSRpc/X2zIxjGFvnT7AiSJJegeWZHMNye/J7ZESRJgUHOZkcwdPM8a3YESZJtsVxmR7jPmpbhSbCOfzpMD7KO76+SlDvh6ZbaT29vTU3bbR4yQsIvEWZHkCRZChc0O8L/ib1qdgJJ0r3IP8yOIEmyKWE9n43FydHsCJIk709/MzuC4a/4m2ZHkCR952093+sTb8eZHUGSZFv55dQbZZDEK9bxfS3xzl2zI0iSLLZWtLLTS7nMTiBJqjl2r9kRDD+Pr2V2BElStXHWc06sRVhQ2ickPW856nUzO8IL5/beFWZHeOHkeMU79UbIMOk2gxTIjE6ePKmvvvpKH3/8sXr37m12HDyB1q1ba+7cuTpz5oy2bt0qf39/dejQIUMz5MiRQ7169dKECRN0+vRp7d27V+PHj8/wHAAAAAAAAAAAZCYUSJ9CaGioHB0dH/soV66c2REzVGY+H6dPn9Zbb72lunXrqnPnzsb7QUFBKZ6TFi1amJjaumXEucuXL59WrlypuXPnysPDQ2+99ZYGDBjw2HuWPi9ZsmTRunXr9P3336tcuXJq166dmjdvro8//jhDcwAAAAAAAAAAkJnYmh3gRVSxYkWFh4c/dnvSUpnpxdXVVda8EnJGn4+MltJSp02bNtWNGzceev/VV19N8ZzY2dk9U6aMXAY2oz3vc5ekTZs2atOmTbr09Szq1q2rffv2mR0DAAAAAAAAANIuwYpuBwM8BQqkTyF79uxyd3c3O4bV4Hw8zNHRkXPylDh3AAAAAAAAAADgeWKJXQAAAAAAAAAAAACZBgVSAAAAAAAAAAAAAJkGBVIAAAAAAAAAAAAAmQYFUgAAAAAAAAAAAACZhq3ZAQAAAAAAAAAAAPACSUgwOwHwTJhBCgAAAAAAAAAAACDToEAKAAAAAAAAAAAAINOgQAoAAAAAAAAAAAAg06BACgAAAAAAAAAAACDToEAKAAAAAAAAAAAAINOwNTsAAAAAAAAAAAAAXhyJifFmRwCeCTNIAQAAAAAAAAAAAGQaFEgBAAAAAAAAAAAAZBqWxMTERLNDAACe3q2vx5sdQZKUcCzC7AiSpP5L4syOYHCQjdkRJEkz939idgTDB9U/MDuCJMlidoAH9Ml5yewIkqSfLuU1O4KhzVA7syNIkv766rTZESRJCfes53caXRpZx2dj06C+2REMCeFhZkeQJE1YlGB2BEOzW9aRZV8O67mjzCu3rePnk6is2cyOIEnKf886rhFJ2pPDOv5LZGzb62ZHsDqL1jibHcFw00p+ePzTcs/sCAZ7K5lzcVvW8TWc1Yr+hREr67hO/IbnMzuCYcynf5kdQZL08fv5zY5gdbpOto5/c0nSmjMbzI7wwrn1Y6DZEV44dvV9zI6AB1jHTzMAAAAAAAAAAAAAkAEokAIAAAAAAAAAAADINKxnzSEAAAAAAAAAAABYvwTruW0C8DSYQQoAAAAAAAAAAAAg06BACgAAAAAAAAAAACDToEAKAAAAAAAAAAAAINOgQAoAAAAAAAAAAAAg06BACgAAAAAAAAAAACDTsDU7AAAAAAAAAAAAAF4giQlmJwCeCQVSAAAAAAAAAAAA4AWQmJiojRs3KigoSBEREbp586by5s2rGjVqqEuXLqpYseIT9/nHH3+ocePGT5XnxIkTD73XqFEjnT17Nk3779q1S3nz5n2qsZ8FBVIAAAAAAAAAAADAyt2+fVuDBw/Wjh07kr1/9uxZnT17VsHBwfrvf/+rd955J0PyWCyWh967fv26zp07lyHjPwsKpAAAAAAAAAAAAICV++CDD4ziaMmSJdWxY0e5uLjo2LFj+uqrr3Tz5k1NmzZN+fPnV5s2bdLcb548eTRnzpw0tf3ss8907NgxSdLAgQMf2n7ixAklJiZKkvr27asKFSqk2J+zs3Oac6YnCqQAAAAAAAAAAACAFdu9e7c2btwoSapdu7bmz5+v7NmzS5JatWqlN998U507d9aVK1c0adIkNW7cWI6Ojmnq287OTk2aNEm1XXBwsFEc/c9//qP+/fs/1ObBJXfbtm0rNze3NGXIaFnMDgDg+QsPD9eePXvMjpGMr6+vGjRoYHaMVN29e1cLFiwwOwYAAAAAAAAAIBNbtGiRJMnW1lYff/yxURxNUrJkSY0dO1aSdOXKFa1atSpdx79w4YImTJggSXrppZc0adKkRy6xm1QgzZ49u4oXL56uGdITBVIgE2jXrp0iIyPNjvFCWrFihSZOnGh2DAAAAAAAAACwHgkJPJ708QyuXLliTIKqV6+eihYt+sh2r732mvLkySNJ+vbbb59pzH+aOHGirl69KkkaOXKkXFxcHtkuqUDq7u6uLFmstwxpvckApJuk9b7x5Dh3AAAAAAAAAAAz7d+/Xwn/v8hau3btx7bLkiWLatSoIUk6dOiQYmNj02X8vXv36rvvvpMkVatWTe3atXtku8TEREVFRUmSSpcunS5jPy8USIF/uQYNGujMmTPq2bOnXF1d5erqqn79+snZ2VlTpkzR3bt3NXToUBUuXFhZs2aVq6ur5s+fb+x/48YN9enTR3ny5FGePHn0zjvv6Pbt25Lu/9ZKt27d5OTkpEKFCmngwIG6devWU+XcuXOnqlevLjs7O1WoUEFBQUHGNh8fHw0dOlReXl6yt7dX0aJFtXTp0jT3/fvvv6t169ayt7eXq6urxo8fr/j4eElSYGCgGjRooA8//FAuLi7KlSuXhg4dqsTERO3YsUM9e/bUmTNnZLFYFB0drQYNGmjgwIEqUaKEihUrpmvXrumPP/5Qx44dlTt3brm4uGjQoEG6c+eO0X/dunX1/vvvK2fOnCpWrJgWLlwo6f6a8ba2tvrzzz+NrAcOHJC9vb2uXbv2VOcRAAAAAAAAAPDvklR0lFIvPLq7u0u6X6xMr5Ul/fz8jOfvv//+Y9udPXtW169flySVKlVKknT9+nXt379fISEhioiIMP5v3mwUSIF/uTVr1qhIkSLy9/fXzJkzdebMGd2+fVsHDhyQt7e3Jk+erE2bNikoKEgnTpxQjx49NGDAAF24cEGS9Pbbb2vXrl3asGGDvv/+e+3atUtjxoyRJL311luKjY3V7t27tW7dOoWGhmrAgAFPnPH8+fNq1aqVfHx8dOTIEY0cOVI+Pj7auXOn0SYgIEDVqlXT0aNH1b59e/Xp0ydNv/2SmJioN954Q/ny5VNYWJgCAwO1fPlyTZo0yWizZ88enThxQrt371ZAQIBmzpyprVu3ytPTU/7+/ipSpIhiYmKMZQsWL16sL7/8UmvXrlX27NnVqFEj3bhxQyEhIVq5cqU2bdqkESNGGP3//PPPCg8P1969e+Xr66v+/ftry5Yt8vT0VOHChbV27Vqj7cqVK9WyZUvlzJnzic8jAAAAAAAAAODf5+zZs8bzwoULp9i2QIECj9zvaW3dulVHjx6VJDVp0kQVK1Z8bNuk5XWl+7NZBwwYoJo1a6pLly5655131LZtW3l6emr27NnGRCyz2Jo6OoDnLnfu3LKxsZGzs7OcnZ0l3V8fPOm3SCpVqqTGjRsb0/JHjx6tCRMmKDIyUtmyZdOqVau0detW1alTR5L0+eefKzw8XL/++qvWrVuny5cvG/0uWLBAlStX1vTp04330mLOnDlq0qSJUVx1d3dXWFiY/P39Va9ePSNnUtFxwoQJmjlzpo4dOyZPT88U+962bZvOnDmjn376SVmyZJGHh4f8/Pzk4+Nj3LA6Pj5e8+fPl5OTkzw8PDR9+nSFhoaqadOmcnZ2lo2NTbK/VFq1amWMu2HDBp09e1Y//fSTXnrpJeN4Xn/9dePepVmyZNGSJUuUL18+lS9fXiEhIZo/f76aNWumTp06adWqVXrnnXckSatWrdKnn36a5nMHAAAAAAAAAPh3u3z5svE86f+hHydXrlzG8ytXrjzz2IGBgcbzt99+O8W2DxZIP/nkk0e2uXLligICAvTjjz/q888/V+7cuZ8549OgQApkQq6ursbztm3b6vvvv9ewYcN0/PhxHTx4UNL9ouHJkycVHx+vatWqGe3r1aunevXqaePGjUpISHjot1USEhJ08uTJZPukJiIiQsHBwXJ0dDTei4uLS7ZUQNJ0fElycnIy2qSl70uXLhn7JGW8deuWLl26JEnKnz9/su1OTk4p9v3g+YuIiFDp0qWT/aXk6empe/fu6eTJk5LuF3zz5ctnbK9evbrmzZsnSfL29tb06dN16dIlnTp1Sn/99Zdatmz52LHv3LljLN9rHE/cPWXPyrdzAAAAAAAAALBWjRs3TnH7Dz/88NhtD862zJ49e4r9ZMuW7ZH7PY3jx48rNDRUklSlShVVqVIlxfYPFkizZs2qnj17qm3btipatKiuXLmikJAQzZw5U3/++acOHz6sIUOGaPHixcqSJeMXvOV/1IFMKEeOHMbzMWPGaMGCBerZs6e6d++uzz77zCgAZs2a9bF93Lt3T87Oztq/f/9D21Kb4v+ovrp27arRo0cne//B8R/8pp4kMTExTX2//PLLWr9+/UPbkma5PmnfD56/B58nSVpDPenPf57H+Ph44xt+5cqV5e7urnXr1ikyMlJt2rR5ZJ9JJk+erPHjxyd7b3T7/2hMh4aP3QcAAAAAAAAA0lVigtkJMpV79+4Zzx/1/9kPenD7g/s9jSVLlhjPU5s9Ksm4dV/27Nm1aNEiVa9e3diWL18+dejQQfXr11fHjh11/vx57du3T5s3b1arVq2eKefToEAKZAIWi+Wx2+bNm6e5c+eqQ4cOkqRffvlF0v0CYYkSJWRjY6NDhw6pbt26kqT169dr/PjxWrZsmWJjY2WxWFSyZElJ0pEjRzRu3DgtXrxYdnZ2ac7n4eGhPXv2GMv+StK0adN0586dh4qmT8rDw0O//fab8ubNaxREv//+ewUGBib75v44KZ27pP4jIyN1+fJlYymAvXv3ytbWViVLltSRI0d08uRJXb9+3Zghu3///mTrtHfu3FnBwcE6efKkpkyZkuJ4o0aN0tChQ5O9l7CBJXkBAAAAAAAAwJqlNEM0NQ9OqomLi0uxSHr37l3jeWrF1JTcuHFDGzdulCQVKlRIjRo1SnWfr776StevX9e1a9dUsGDBR7bJnz+/xowZY9xyb+XKlaYUSDN+ziqADOfg4KDjx48nW6c8SZ48eRQcHKxTp05p165d6tatm6T7S7k6OTmpR48eGjRokH7++Wft379fo0ePVuPGjVWmTBk1b95cXbp0UWhoqA4ePCgfHx9dv3492RrnadG/f3/t379fY8aMUVRUlJYvX67Ro0erePHiz3zszZo1U/HixdW1a1cdOXJEO3fu1DvvvCN7e3vZ2Nikur+Dg4P+/vtvRUVFPfK3bZo2baoSJUqoW7duOnLkiLZv366BAweqc+fOxnm4fv26+vbtq+PHj2vBggVatWqV+vfvb/Th7e2t7777TjExMWrWrFmKebJnzy4nJ6dkD5bXBQAAAAAAAIB/L3t7e+P5P2/B9k8PFkhTW443JTt37jTGatasWZqXwXV0dHxscTRJo0aNjAlFYWFhSkjI+BnJFEiBTKB///4KCAh45BT4RYsWKTw8XOXKlZOPj486duyomjVrKiwsTJLk7++vSpUqqWnTpmrRooUaNmyojz/+WJK0dOlSubm5qXHjxmrSpIk8PDz01VdfPXG+4sWLKzg4WN98843Kly+vMWPGaNq0aerSpcuzHbgkGxsbbdiwQQkJCapVq5bat2+v1157TbNmzUrT/o0aNZK7u7sqVKig8PDwx/YvSbVq1VKnTp3Upk0bff7550abokWLqmDBgqpevbqmTp2qL7/8UnXq1DG2u7u7q2zZsnrjjTdSXNYYAAAAAAAAAJD5ODk5Gc+vXLmSYtsHtyetevg0tm3bZjx/9dVXn7qfR7GxsTEmSN29ezfVY3oemHYEZAL9+/dPNmPxQXXq1NHhw4eTvTdy5Ejjec6cObV48WItXrz4oX1dXFy0YsWKp8rk6+ub7HWTJk104MCBR7YNDAx86L203H80SYkSJbRp06ZHbvPx8ZGPj0+y93bs2GE8z507d7JcD25L4ubm9tj+JSlLliz69NNP9emnj14KNyEhQRcvXlTnzp0ffxAAAAAAAAAAgEzJ1dXVeB4TE6OiRYs+tu358+eN54UKFXqq8eLj4xUSEiLp/pK4VapUeap+UmL2ZCEKpABgok2bNum7776TnZ2d/vOf/5gdBwAAAAAAAABgZUqWLGk8j4qKUs2aNR/bNioqSpJksVhUqlSppxrv6NGjxqzORo0ayWKxpLrP77//rm3btunSpUuqWrWqGjRokGL7CxcuSLpfKHV2dn6qnM+CAimAdBcUFKQePXo8dnu9evX0zTffpMtYLi4uun379mO3//LLLypWrFi6jPU8+Pn56cSJE/r666/TvIY7AAAAAAAAAJjKhHtGZmZVqlRR1qxZFRcXp59++umxt6eLj49XaGioJOnll19OtjTvk0i6BZ8kVapUKU37XLx4UZMmTZJ0v6iaUoH09OnTiomJkSRVqFBBNjY2T5XzWVAgBZDuXn311UferzOJnZ1duo31888/p3gD56ddQiC9PGoJ3wdt374948IAAAAAAAAAAF44Tk5Oql27tnbu3Klt27bp3Llzj/y/702bNuny5cuSpBYtWjz1eEeOHDGelytXLk37lC9fXo6Ojrp+/bp27tz52IySNHfuXON5mzZtnjrns6BACiDdOTo6yt3dPUPGKlGiRIaMAwAAAAAAAACAWXx8fLRz507FxcVp6NChWrhwoRwdHY3tJ0+e1MSJEyVJDg4O6tChw1OPdfLkSUn3l799cHnflGTPnl0dO3bUokWLFBcXp2HDhmnBggXJMkrS//73P61fv17S/XurtmvX7qlzPgsKpAAAAAAAAAAAAIAVq1u3rl599VV99913CgsLU5s2beTt7a2CBQvql19+0YoVK3Tjxg1J0ogRI5Q7d+5k+//000/q3r27JKlmzZpaunTpY8f67bffJEm5cuV6ouVv+/fvr+3bt+v06dM6ePCgWrZsKS8vL7m6uurvv//W5s2btX//fkn3i7h+fn7Knj37E52H9EKBFAAAAAAAAAAAALByU6ZM0Y0bN7Rr1y798ccf+vTTT5Ntt1gsGjBggDp16vTUY1y/fl03b96UJOXMmfOJ9s2ZM6cWL16sAQMG6OjRozp//rxmzpz5ULuCBQtq2rRpqlChwlPnfFYUSAEAAAAAAAAAAAArZ2dnp4ULFyo4OFjr1q1TRESErl27ply5cqlatWrq3r27qlWr9kxjJM1Cle7f+/RJFSxYUF9//bU2btyoTZs26dixY7p69aocHR3l6uqqZs2aycvLSw4ODs+U81lRIAUAAAAAAAAAAEDaJSaYnSDTslgsat26tVq3bv1E+9WqVUsnTpxItV3+/PnT1C4ltra2atu2rdq2bftM/TxPWcwOAAAAAAAAAAAAAAAZhQIpAAAAAAAAAAAAgEyDAikAAAAAAAAAAACATIMCKQAAAAAAAAAAAIBMgwIpAAAAAAAAAAAAgEzD1uwAAAAAAAAAAAAAeIEkJJidAHgmzCAFAAAAAAAAAAAAkGlQIAUAAAAAAAAAAACQaVgSExMTzQ4BAHh6fsW6mh1BkpTTSlbVeKPM72ZHMNy7ZR2/hzTjjwJmRzBM3D/R7AiSpPMtepsdwfC/i9bx+dS8HW92BMNv2azjLhAXs/Bj8j+ViLOYHUGS9EdWsxP8n5J3reM6yZFoJX8RSzqVzcbsCJKknq9eNDuCYf53+cyOIElqmf2y2REkSVtv5zY7gsGn3RWzI0iSVq7JZXYEg5V8q1eee9bx/VWSciZYx89JrzT/0+wIhkPfWcfXsWPWu2ZHkCRZrOTrRpJKNL5hdgRJ0ufbrOPfOZLUv/1VsyNIkj4LcjI7gtV5p+45syMYci3bZnaEF86tb2aZHeGFY9dikNkR8ADr+J9bAAAAAAAAAAAAAMgAFEgBAAAAAAAAAAAAZBrWsX4ZAAAAAAAAAAAAXgwJ1nObD+BpMIMUAAAAAAAAAAAAQKZBgRQAAAAAAAAAAABApkGBFAAAAAAAAAAAAECmQYEUAAAAAAAAAAAAQKZBgRQAAAAAAAAAAABApmFrdgAAAAAAAAAAAAC8QBITzE4APBNmkAIAAAAAAAAAAADINCiQAgAAAAAAAAAAAMg0KJACAAAAAAAAAAAAyDQokAIAAAAAAAAAAADINCiQAgAAAAAAAAAAAMg0KJACSJPw8HDt2bPH7BjJ+Pr6qkGDBs99nOjoaFksFkVHRz9ye2BgoFxdXdPU16pVq3Tx4kXj9ZYtW1SpUiU5OjqqSZMmOnHiRDokBgAAAAAAAIDnKCGBx5M+YFUokAJIk3bt2ikyMtLsGFbJy8tLoaGhqbY7c+aMOnbsqJs3b0qSjh07ppYtW6pNmzY6cOCAqlatqkaNGun69evPOzIAAAAAAAAAAJkWBVIAaZKYmGh2BKtlZ2envHnzptrun+dw7ty58vT01IQJE+Th4aEpU6bI2dlZy5Yte15RAQAAAAAAAADI9CiQAkhVgwYNdObMGfXs2VOurq5ydXVVv3795OzsrClTpuju3bsaOnSoChcurKxZs8rV1VXz58839r9x44b69OmjPHnyKE+ePHrnnXd0+/ZtSdKVK1fUrVs3OTk5qVChQho4cKBu3br1VDl37typ6tWry87OThUqVFBQUJCxzcfHR0OHDpWXl5fs7e1VtGhRLV269In6X7t2rUqWLCl7e3u1bt1af//9t6SHl9gdPXq0ChYsKDs7OzVo0EDHjh2TJLm5uRl/BgYG6tSpU6pVq5axn8ViUYUKFbR3796nOn4AAAAAAAAAAJA6CqQAUrVmzRoVKVJE/v7+mjlzps6cOaPbt2/rwIED8vb21uTJk7Vp0yYFBQXpxIkT6tGjhwYMGKALFy5Ikt5++23t2rVLGzZs0Pfff69du3ZpzJgxkqS33npLsbGx2r17t9atW6fQ0FANGDDgiTOeP39erVq1ko+Pj44cOaKRI0fKx8dHO3fuNNoEBASoWrVqOnr0qNq3b68+ffooNjY2zWN88cUX+uqrr7R9+3YdOHBAU6ZMeajN2rVrNX/+fK1atUpHjx5VgQIF1LNnT0nSzz//bPzp5eWl/Pnz6+zZs8n2//333/XXX3898fEDAAAAAAAAAIC0sTU7AADrlzt3btnY2MjZ2VnOzs6SpJEjR8rd3V2SVKlSJTVu3Fi1a9eWdH8G5YQJExQZGals2bJp1apV2rp1q+rUqSNJ+vzzzxUeHq5ff/1V69at0+XLl41+FyxYoMqVK2v69OnGe2kxZ84cNWnSxCiuuru7KywsTP7+/qpXr56Rc8SIEZKkCRMmaObMmTp27Jg8PT3TNMbUqVNVo0YNSVLHjh116NChh9pER0crW7ZsKlasmIoVK6bZs2frxIkTkmQsw5s3b17Z2dnJy8tLrVu3lre3t5o3b65ly5YpNDRUDRs2TPNxAwAAAAAAAACAJ0OBFMBTeXBJ2bZt2+r777/XsGHDdPz4cR08eFCSFB8fr5MnTyo+Pl7VqlUz2terV0/16tXTxo0blZCQoMKFCyfrOyEhQSdPnky2T2oiIiIUHBwsR0dH4724uDiVLl3aeF2qVCnjuZOTk9EmrUqWLGk8d3Z2NpYJfpC3t7cCAgLk5uamV155RW3bttVbb731yP6aN2+uDz/8UO3bt9e9e/fUsGFDde/ePcVZrXfu3NGdO3eSvXcvMV62Fps0HwcAAAAAAAAAPJPEBLMTAM+EJXYBPJUcOXIYz8eMGaOuXbsqa9as6t69u/bt22dsy5o162P7uHfvnpydnRUeHp7sERUVpbJlyz5Rnnv37qlr167J+jl27Jg2btxotMmWLdtD+yUmJqZ5DBub5EXIR+1boEABHT9+XBs2bFCFChX06aefqnbt2rp58+Yj+/zggw909epVxcTEaOvWrbp27Vqy4vM/TZ482ZjJm/TYdvVYmo8BAAAAAAAAAIDMjgIpgDSxWCyP3TZv3jwFBATok08+kZeXl27cuCHpfgGxRIkSsrGxSbYc7fr161W1alV5eHgoNjZWFotF7u7ucnd3161btzR8+PCHZkmmxsPDQ1FRUUY/7u7uWr9+vZYtW/Z0B/yUNm3apIULF6ply5aaO3euDh06pMjISB05cuShc7hixQr997//Vfbs2ZUvXz7dunVL27dvT3GJ3VGjRik2NjbZo5FTued9WAAAAAAAAAAA/GtQIAWQJg4ODjp+/LguX7780LY8efIoODhYp06d0q5du9StWzdJ95eDdXJyUo8ePTRo0CD9/PPP2r9/v0aPHq3GjRurTJkyat68ubp06aLQ0FAdPHhQPj4+un79unLlyvVE+fr376/9+/drzJgxioqK0vLlyzV69GgVL148PQ4/zRISEvTee+9p7dq1io6O1uLFi2Vvb6/SpUvLwcFBknTo0CFdv35dpUuX1rx587RmzRpFRUWpc+fOKlq0qFq0aPHY/rNnzy4nJ6dkD5bXBQAAAAAAAAAg7SiQAkiT/v37KyAgQG+//fZD2xYtWqTw8HCVK1dOPj4+6tixo2rWrKmwsDBJkr+/vypVqqSmTZuqRYsWatiwoT7++GNJ0tKlS+Xm5qbGjRurSZMm8vDw0FdfffXE+YoXL67g4GB98803Kl++vMaMGaNp06apS5cuz3bgT+j111/XhAkTNGTIEL388sv6+uuvtX79er300ktycXFR165d1bFjRy1cuFDVqlXT3LlzNWzYMON+q5s2bVKWLHxrBgAAAAAAAADgebEkPskN+AAAVsevWFezI0iSclrJfdnfKPO72REM925ZR7F7xh8FzI5gmLh/otkRJEnnW/Q2O4Lhfxet4/OpeTve7AiG37LZmh1BknQxCz8m/1OJuMcvuZ+R/nj8Lc4zXMm71nGd5Ei0kr+IJZ3KZh2rW/R89aLZEQzzv8tndgRJUsvsD68GY4att3ObHcHg0+6K2REkSSvX5DI7gsFKvtUrzz3r+P4qSTkTrOPnpFea/2l2BMOh76zj69gx612zI0iSUrgrUYYr0fiG2REkSZ9vs45/50hS//ZXzY4gSfosyMnsCFbnnbrnzI5gyLVsm9kRXji31k81O8ILx67NCLMj4AHW8b9PAAAAAAAAAAAAeDEkWM8vaQJPwzqmtgDAPwQFBcnR0fGxj5Tu0/mkXFxcUhzrt99+S7exAAAAAAAAAACAuZhBCsAqvfrqqwoPD3/sdjs7u3Qb6+eff1ZCCr/xVKhQoXQbCwAAAAAAAAAAmIsCKQCr5OjoKHd39wwZq0SJEhkyDgAAAAAAAAAAMB9L7AIAAAAAAAAAAADINCiQAgAAAAAAAAAAAMg0WGIXAAAAAAAAAAAAaZeYYHYC4JkwgxQAAAAAAAAAAABApkGBFAAAAAAAAAAAAECmQYEUAAAAAAAAAAAAQKZBgRQAAAAAAAAAAABApkGBFAAAAAAAAAAAAECmYWt2AAAAAAAAAAAAALxAEhLMTgA8E2aQAgAAAAAAAAAAAMg0KJACAAAAAAAAAAAAyDQokAIAAAAAAAAAAADINLgHKQC84KKzxJkdQZK0++4fZkeQJPnM8DU7giFL3mJmR5AkWWr5mh3BcL5Fb7MjSJIKfLPA7AiGYePeNTuCJGnRxjxmRzD0bHrB7AiSJItDdrMj3GdF93WxOOQwO4Ik6X8r7M2OYLhjsZgdQZLUcpyL2REMDaPOmB1BkpSlYBGzIxj6FbhudgRJ0t3jN82OIEnq6W5ndgSDxSGX2REkSbtsb5kdwfBXwh2zI0iSvmxiPeck4Wa82REkSVkruJsdwVCt2FWzI0iSEm8kmh3hvqzW81+sWXIXNTuCJGnjlt/MjmAYULC42REkScH3rONnJElKkHV87Qzs2NzsCAAyMWaQAgAAAAAAAAAAAMg0rOfXmwAAAAAAAAAAAGD9rGi1I+BpMIMUAAAAAAAAAAAAQKZBgRQAAAAAAAAAAABApkGBFAAAAAAAAAAAAECmQYEUAAAAAAAAAAAAQKZBgRQAAAAAAAAAAABApmFrdgAAAAAAAAAAAAC8QBITzU4APBNmkAIAAAAAAAAAAADINCiQAgAAAAAAAAAAAMg0KJACAAAAAAAAAAAAyDQokAIAAAAAAAAAAADINCiQAgAAAAAAAAAAAMg0bM0OAAAAAAAAAAAAgBdIQoLZCYBnwgzS56hBgwby9fWVJPn4+MjHxyfdx9ixY4csFku694vnKzw8XHv27DE7xkN8fX3VoEEDSVJgYKBcXV1NzfM4t2/fVtu2bWVnZ2fkzUjXrl3TkiVLjNcXL17UqlWrjNcWi0U7duzI8FwAAAAAAAAAACB1FEgzyMyZMzVz5kyzY8BKtGvXTpGRkWbHSJGXl5dCQ0PNjvFI3377rb799lvt2rVLK1asyPDxp0+frkWLFhmvR44cqU2bNhmvY2Ji5OnpmeG5AAAAAAAAAABA6lhiN4M4OzubHQFWJDEx0ewIqbKzs5OdnZ3ZMR4pNjZW+fPnV7Vq1UwZ/5+f3z9fFyhQICPjAAAAAAAAAACAJ/DCzyCNjo6WxWLRmjVrVLJkSeXIkUOtWrXS5cuXJUl79+5V3bp15eDgIDc3N82bN8/YN2nZ20qVKilfvnyKioqSxWLRqlWrVKZMGdnb28vb21unT59Wo0aNZG9vr3r16uns2bOS7hdFJk2aJDc3N2XLlk2FChXS+PHjH5nzwSV2XV1dZbFYHnok+fzzz+Xm5iZHR0c1aNBAR44cMbZdvXpV3t7eypkzp0qXLv1EM/zi4uLUu3dvubi4yNHRUa1btzaORZLWrl2rsmXLyt7eXjVr1lRISIix7e7duxo0aJBy5cqlokWLatWqVbJYLIqOjpb08JKi/1ye9ejRo2rYsKHs7Ozk4eGhzz77zNjm6+urLl26qF+/fnJyclK+fPk0depUY/u9e/c0evRoFSxYUM7OzurQoYMuXbokSbpz544GDx4sFxcXubi4qGvXrsZnnxY7d+5U9erVZWdnpwoVKigoKEiSdPz4cVksFp0+fdpoGxUVpSxZsuj333+XlPLn5Orqqs8++0y1a9dWjhw5VLlyZR04cEDS/aWXz5w5o549e8rHx0c7duyQq6ur+vXrJ2dnZ02ZMsU4h2XKlJGdnZ2qV6+uH3/8MVn//v7+qlixohwcHNSyZUudP39ektS0aVMNGjQo2XG+/vrrGjt2bJrPS9L4SZ9hUsa5c+eqcOHCcnBwULdu3XTnzh2jfUrXz9WrV9WrVy/ly5dP2bJl08svv6x169YZ2y0Wi8aNGycXFxe1bt061Vw+Pj767bffZLFYFBgYmKbzNXLkSBUsWFBVqlRRYmKiDhw4oNq1a8vOzk6enp4aN25csuV6H3c8gYGBGj9+vEJCQmSxWOTr66svvvhCX3zxhXG+Hvx6SOlakKRTp06pSZMmsre3V4UKFeTn52e1SxsDAAAAAAAAAPBv8MIXSJNMmjRJK1asUEhIiEJDQzVt2jRFRESoUaNGql+/vg4ePChfX18NGzZMa9euNfZbunSpPv74Y23atEmlSpWSJI0bN06BgYHatGmTgoKC5OnpqX79+mnPnj2KiYkxindLliyRv7+/Fi5cqMjISI0bN06+vr46ePBgillDQ0MVExOjmJgYnTx5UsWLF9ewYcMkScHBwfL19dXs2bMVFhamevXqqWHDhvr7778lSX379tXx48cVEhKi2bNna9q0aWk+RwEBAQoJCdGWLVu0f/9+Xbt2TUOGDJEkHTp0SD169NCYMWN0+PBhde3aVS1atNDJkyclSWPGjNGGDRu0YcMGrVixQh9++GGax71165ZatGihunXr6vDhw/Lz89OECRO0dOlSo82qVauUI0cOHTx4UMOHD9fIkSONJWjHjh2rL774QosXL9bevXt14cIF9enTR5I0evRohYaGavPmzdq+fbtiY2PVoUOHNOU6f/68WrVqJR8fHx05ckQjR46Uj4+Pdu7cqZdfflmVKlXSmjVrjParV6+Wp6enihYtmurnJEkffvih3n//fR0+fFjOzs5G0XLNmjUqUqSI/P39jWWXz5w5o9u3b+vAgQPy9vZWYGCgBgwYoFGjRik8PFxNmjTRa6+9lqyg/eGHH2rEiBHat2+fbt68qfbt20uSvL29tWbNGmNWY2xsrLZs2aJOnTql+TN7lHPnzmn16tX69ttvtWbNGgUFBRn34Uzt+hk8eLBOnDihLVu26NixY6pXr57efvtt3b171+g/ODhYu3fv1ieffJJiDi8vL/n7+6tIkSKKiYmRl5dXms7XsmXLtGXLFgUGBurq1atq3ry5qlWrpvDwcHXu3FmTJ0822qZ0PF5eXho2bJheeeUVxcTE6L333lPHjh3VsWPHx/7CwuOuhXv37qlVq1bKlSuX9u/fr1GjRj32lywAAAAAAAAAAED6+NcssTt+/HjVrFlTktSlSxeFhobq1q1bqlKliiZNmiRJ8vDwUEREhKZOnap27dpJkmrUqKHXX389WV9DhgxRrVq1JElVqlSRh4eHUXRr3769wsPDJUnFihXT4sWL1bhxY0n3i5fjx4/XsWPHVLVq1cdmzZs3r/Hc29tbhQsXNopCU6dO1ejRo9WqVStJ0kcffaTNmzfryy+/VPfu3bVy5Upt377d6H/cuHF6991303SOoqOjZWdnJ1dXV+XOnVuBgYHGTEw/Pz/17t1bnTt3liQNGjRIISEhmjt3rj799FMtWrRIM2bMUP369Y2c/zxvj7N8+XLly5dPH330kSSpVKlS+uCDD+Tv769u3bpJkvLkySM/Pz/Z2Nho+PDh+uSTT7R//36VKlVKCxYskJ+fn5o3by5JmjdvnlauXKmbN28qICBA+/fvV4UKFSTdL3jnyZNHR44cMd57nDlz5qhJkyYaMGCAJMnd3V1hYWHy9/dXvXr11KlTJwUFBRnF69WrVxuzgFP6nAYOHCjp/qzhtm3bSpKGDRumN998U5KUO3du2djYyNnZOdnSyyNHjpS7u7skadasWRo0aJC6d+8uSfrkk08UEhKigIAAo5DXq1cvde3aVZK0aNEilShRQkePHtUbb7xhFPTr1KmjdevWqXTp0ipXrlyaPq/HiYuL06xZs1SuXDlVqFBBzZs3V2hoqHr37p3i9TNt2jT95z//0bBhw1S+fHlJ0nvvvaeFCxfqwoULKlq0qCSpT58+8vDwSDWHnZ2dnJ2dZWNjYyxlm5bz1bVrV+OamD9/vhwdHTVr1izZ2NjIw8NDu3fvVkxMjKSUvx6mTZsmR0dHZcuWzRg/aSniB7+2H/S4a2Hbtm36/ffftW/fPjk5Oals2bI6cuRIivdVvXPnTrKZu5IUnxgvG4tNqucOAAAAAAAAANJFQoLZCYBn8q+ZQZo0+1OSnJycFBcXp4iICKPQmcTT01MRERHG60ctZVmiRAnjeVJB8cHXScWJhg0bysXFRaNGjVLbtm1VvHhxnT9/XvHx8WnKPGvWLG3dulVff/21bG3v16ojIiI0YsQIOTo6Go9Dhw4pMjJSkZGRio+PV+XKlY0+atSokaaxJOmdd95RTEyMChQooGbNmmnz5s0qU6aMMW5AQECycYODgxUZGam//vpLly5dSjaup6dnmseNiIjQoUOHkvU9YsQIY4aoJLm5ucnG5v8KPDlz5lRcXJwx9oP3mixbtqx8fX31/9i787gqyv7/429AQBYR911RUUzFJTVN05vbNZfUJAETFVuszPSWStOwbHGp1NS0zLpdbs2d0HBJLUNRM5cADREwt25zKc19Bc7vD3/M13PLcnCbY+f1fDzm4Tkz11zznjmHA/LhuubAgQO6du2aHn30UaPfihUrKisry6rvvHLFxsZa5Zo2bZqxb1hYmH766Sf9/vvvOnTokJKSkoxCeV6vU7ac3pN5ufl9ltN799FHH7V677Zo0cLq+hUvXlwpKSny9fVVx44dtXTpUknSkiVL7nj0aLbczimv948k9e3bV2lpaRo8eLDat29vvH9u/lq5k2llbbleN/e/e/duPfzww1bvuUcffdSqv7zOp6Byu267d+9WzZo15ePjk2OOnIwbN84ormcvu86m5LkPAAAAAAAAAAD4P3+bEaRubm5Wzy0WiwoXLnxLu8zMTKuiTE5tsouV2Zydc64jf/nllxo6dKiee+45BQcHa8KECfrnP/9pU96tW7dq2LBhWrFihSpWrGisz8jI0OTJk41Rqdl8fHx0+PBh49yy/e9556VOnTo6dOiQVq1apZUrV2rEiBFasGCBNm3apIyMDA0fPtwYgZfNw8NDnp6etxzX3d09z2NlZGRYPW7Tpo2mT5+ea/uczsNiscjV1TXfY2zevFne3t5W28qUKZNnvuz9w8PDNXLkSKv12cf08/NTkyZNFBMToytXrqhVq1bGiMG8Xqe8zikvN78XbXnv/u+1yczMNN6rvXr10muvvabRo0fru+++09SpUwuUJTc5fZ1JyvP9I90okG7dulV9+vTRSy+9pHLlyt1SCMzpnG1V0K/1QoUKWb2fbz4XW86noHJ7L+SXIycjRoxQZGSk1brhgc/cVi4AAAAAAAAAABzR32YEaU4CAgK0bds2q3U//vijTdN42mLGjBl666239PHHH6tPnz4qWbKkTpw4kW+B48SJE+rZs6def/11dejQ4ZbM//3vf+Xv728sY8aM0bZt2xQQECBXV1er+xwmJCTYnPc///mPYmNj1bNnT82dO1fffvutNm/erJMnTyogIEAHDx60Ou7MmTO1Zs0aeXt7q1KlSnke183NTefPnzeeHzhwwOqc0tLSVLVqVaPvbdu26ZNPPsk3s6+vr0qWLKmkpCRjXWJioipWrKjq1avLxcVFp06dMvr18fHR0KFDdeLEiXz7DggIUHp6utU5r1ixQl999ZXRJiwsTKtWrdLy5cutRmHm9TrZwsnJKd9s/9tX9nvg5uuQbf/+/Tp79qzq1asnSeratavOnDmjCRMmqF69eqpevbpNuW5XXu+fc+fOacGCBVq8eLHeeecdPfnkkzp9+rSk/IuBBTl+ftfrZnXq1FFiYqKybpoGYteuXTadj3Tr65ff65mbOnXqKD093epr5+YcOXF3d5ePj4/VwvS6AAAAAAAAAADY7m9dIB04cKASExM1cuRIpaWlae7cuZo+fbrN9+zMT4kSJfTdd98pLS1Nu3btUmhoqK5fv37L/QFvlpmZqbCwMNWoUUOvvPKKjh8/bizXrl1TZGSkJk+erHnz5unXX3/V8OHDtWTJEj300EPy8fFR37599corr+inn35SXFycRo8ebXPes2fPasiQIfr+++918OBBffXVV6pYsaJKliypoUOHatGiRZo6dap+/fVXTZ48WZMmTVLNmjUlSa+//rpGjRql9evXa9euXcZ9NrM1adJEn3zyidLT0/XNN99o9uzZxrbw8HBdunRJL7zwgvbt26fVq1dr8ODBKl26tE25Bw8erFGjRumHH35QcnKyhgwZokcffVRFihTR888/r5deeklxcXHau3ev+vbtq/3796tq1ar59jtw4EDt3LlTUVFRSk9P14IFCzRy5EhVqVLFaBMSEqJNmzZp586dCg4ONtbn9TrZwsvLS/v27TMKhf8rMjJSn3zyiebNm6e0tDS98cYbSkpK0nPPPWe0mTJlir755hvt3r1bzzzzjNq1a2dM5erh4aFu3bpp4sSJd2163bzk9f4pXLiwvLy8FB0drUOHDmnt2rXGfV/z+lopCFuu18169eqlc+fOKTIyUmlpafriiy+0aNEio9CZ39eDl5eXMfVy9vNDhw7p6NGjBcrdpk0bVapUSc8//7xSUlK0bNkyTZky5bYLrgAAAAAAAAAAIH9/6wJp5cqVtXLlSn377bcKDAzU+++/r0mTJql///53pf8pU6bo3Llzql+/vnr06KH69evrySefzHNU52+//aa4uDht3LhRZcqUUbly5Yxl69atCg0N1ZgxYzRq1CjVrVtX33//vWJjY43C1yeffKLmzZurXbt26tev3y2Fyry8/PLL6tevn/r06aOHHnpICQkJ+uabb+Ti4qJmzZpp3rx5+vTTT1W7dm3NnDlTCxcuVKtWrYx9n3nmGYWFhalz587q1auXVd+ffPKJTp06pbp16+rDDz/Uu+++a2wrUqSI1qxZo7S0NDVo0EDPP/+8Bg0apBEjRtiU+4033lCPHj0UEhKiFi1aqFKlSpo5c6YkaeLEiWrbtq2Cg4PVrFkzFSpUSKtXr7a6t2RuqlSpotjYWK1Zs0Z169ZVVFSUJk6cqN69exttypcvr8aNGysoKEglSpQw1uf3OuVn4MCBmjZtWq4FvJCQEI0dO1ajRo1SvXr1FBcXp3Xr1qlWrVpGm4iICI0YMULNmzdXuXLltHjxYqs+QkNDdfXqVYWGhtqU6U7k9f5xc3PT/PnztWzZMtWuXVuRkZGKiopSuXLlCjQCOi+2XK+bZd9TdOPGjQoMDNTcuXPVu3dvYyrc/L4ennzySWVlZal27do6efKk+vTpo9TUVNWvX79Ao2KdnZ319ddf6+jRo2rQoIHee+899e/fv8DTMwMAAAAAAAAAANs5We7WHJdwKIcOHVLVqlV18OBB+fn5mR3H4fj5+Wn06NGKiIjItc0XX3yh+fPna+PGjfcv2APi4MGDOnr0qB577DFj3csvv6yLFy9qzpw59y3HyZMnlZCQYDXV9kcffaRVq1YpLi7O5n4G+d37Irgttlz5r9kRJEnbvhttdgSDc6nKZkeQJEU1HW12BMOgUifNjiBJKrvmC7MjGK68dXdmtrhTs1aWyL/RfdK/Xf5T5d8PTl5533P9vrlpSnizOXnd/j3D76Z/L/Q0O4KhRIbZCW7oMaqY2REMWemHzY4gSXIuV9LsCAbLuQtmR5AkXdtnH9+HXf3t53uOk5eH2REkSYO+vGx2BMOfWXdnpp87Nf8f9nNNsi5lmh1BkuT+qL/ZEQyWs+fMjiBJsly8YnaEG1wLmZ3A4Fy8qNkRJEmPTz1idgTDt/+qkn+j+6DDZPv4GUmSsmQfJYHvPn3c7AgGj27DzI7wwLk8/02zIzxwPMLHmB0BN/lbjyAFHNH+/fu1aNEivf/++3r++efNjmOXzp49q7Zt22rZsmU6fPiwvv76a82bN089e/a871m6du2qzz77TIcPH9Z3332nyZMnm5IDAAAAAAAAAABHQYH0b2LHjh3y9vbOdalTp47ZEe8rR74eBw8e1LPPPqvHHntMTz/9tLE+Ojo6z2vSsWNHE1P/n0mTJuWZ88UXX7zjYzRo0EDTpk3TiBEjFBAQoDfeeEOTJk1S586d78IZ2K506dJasmSJPvvsMwUEBOjZZ5/VoEGDNHDgwPuaAwAAAAAAAAAAR2I/8z/gjtSrV0+JiYm5bnd1db2rx/Pz8yvQvRbvt/t9Pe63Q4cO5bqtXbt2unjx4i3rO3TokOc18fCwj6mlnnnmGXXt2jXX7T4+PnflOM8991yu94C9n7p166Zu3bqZHQMAAAAAAAAAAIdBgfRvwt3dXf7+9nMvCrNxPW7l7e39QFwTX19f+fr6mh0DAAAAAAAAAAD8TTHFLgAAAAAAAAAAAACHwQhSAAAAAAAAAAAA2C4ry+wEwB1hBCkAAAAAAAAAAAAAh0GBFAAAAAAAAAAAAIDDoEAKAAAAAAAAAAAAwGFQIAUAAAAAAAAAAADgMCiQAgAAAAAAAAAAAHAYhcwOAAAAAAAAAAAAgAeIxWJ2AuCOMIIUAAAAAAAAAAAAgMOgQAoAAAAAAAAAAADAYVAgBQAAAAAAAAAAAOAwKJACAAAAAAAAAAAAcBiFzA4AALgzT13OMjuCJMnTo7LZESRJ176canYEu/NCkatmRzD8+2RZsyNIkl5962WzIxgKvzvd7AiSJP/oN82OYHDt+A+zI0iSCgU9bXYEu5Px87dmR5AkdfzmG7MjGEo3sI/PWCevSmZHMLgOeNXsCJKkP/u/Y3YEQ6mFH5odQZJ0fcTrZkeQJLn2H2p2BMPR4HfNjiBJGuZqP7+euXDJ3ewIkiS38MfNjvB//jhmdgJJ0tmZW8yOYCjStoLZESRJzlVLmh3hhiz7+H+5JJ1ZnGp2BEnSc7KP94gkHZt71OwIkqRQ53JmR7A7l2etMjuCwaPbMLMjALjP7OcncAAAAAAAAAAAANg/O/rjEOB2MMUuAAAAAAAAAAAAAIdBgRQAAAAAAAAAAACAw6BACgAAAAAAAAAAAMBhUCAFAAAAAAAAAAAA4DAokAIAAAAAAAAAAABwGIXMDgAAAAAAAAAAAIAHSFaW2QmAO8IIUgAAAAAAAAAAAAAOgwIpAAAAAAAAAAAAAIdBgRQAAAAAAAAAAACAw6BACgAAAAAAAAAAAMBhUCAFAAAAAAAAAAAA4DAKmR0AAAAAAAAAAAAADxBLltkJgDvCCFIA983Jkye1dOlSs2PcIi4uTk5OTqYce//+/erQoYO8vb1VuXJlffTRR6bkAAAAAAAAAADAUTCCFMB9M3z4cFksFvXs2dPsKHYhKytLnTt3VpMmTZSQkKD09HT16tVLFSpU0NNPP212PAAAAAAAAAAA/pYYQQrgvrFYLGZHsCsnTpxQgwYN9Nlnn6lGjRrq1KmT2rRpo82bN5sdDQAAAAAAAACAvy0KpICD+u2339S1a1d5enrKz89P77zzjjIzM1WhQgXNnj3baGexWFSxYkXNnz9fkhQfH6/GjRvLw8NDgYGBio6ONtpGREQoMjJSoaGh8vT0VKVKlTRv3jxJ0ujRozV37lzNnTtXfn5+kiQnJye99dZbKlmypLp27SpJ+vHHH/XYY4/Jy8tLVatW1YwZM6z6Hzx4sJ544gl5eHioYcOG2rp1qyRpzJgxqlevntU5Tpw4US1btizwtYmMjFTlypV15MgRzZkzR0FBQXr77bdVsmRJ+fr6KjIy0ij25nXO+SlXrpwWL16sIkWKyGKxaMuWLdq0aZOCgoIKnBkAAAAAAAAAANiGAinggCwWi3r06KHSpUsrISFBc+bM0YIFCzR27Fj17NlTX3/9tdF227ZtOnXqlLp166bjx4+rS5cuioiI0J49ezR8+HBFREQoPj7eaD9t2jQ1atRIv/zyi4KDg/XCCy/o7Nmzeu211xQSEqKQkBDt2LHDaB8bG6stW7Zo/PjxSklJUevWrdWqVSv9/PPPGj16tF599VXFxMQY7WfMmKE6deooISFB//jHP9SpUyf9+eefCgsL0549e5SWlma0XbJkicLCwgp0bSZNmqR58+Zp3bp1qly5siRp69atSk1N1ZYtWzRt2jRNmTJF3333Xb7nXBB+fn567LHH9Oijjyo4OLhA+wIAAAAAAAAAANtRIAUc0IYNG3T48GHNnDlTAQEBCgoK0oQJEzR58mSFhYVp/fr1On/+vCRp2bJl6tSpk4oUKaLp06erbdu2GjRokPz9/RUeHq4BAwZo8uTJRt/169fXsGHDVK1aNb377ru6fPmykpOT5e3tLQ8PD3l4eKhUqVJG+xdeeEEBAQGqXbu2vvjiCzVs2FBjx45VQECA+vXrp1deeUUffvih0b5OnToaP368atWqpUmTJql48eJatGiRqlevrkceeURLly6VJB0+fFg///xzge53unjxYr3zzjtas2aNatWqZazPzMw0rlV4eLjq169vVeTN7ZwLIjo6WrGxsUpMTNTQoUMLtC8AAAAAAAAA3E+WLAtLARfYl0JmBwBw/6WkpOjUqVPy8fEx1mVlZeny5cuqUaOGypUrp1WrViksLExff/21UaBMSUlRbGysvL29jf2uX7+umjVrGs9r1KhhPM7u//r167lmyZ5uN7v/pk2bWm1v3ry51TS7LVq0MB47OzurYcOGSklJkST16tVLc+bM0ZtvvqklS5YoKChIpUuXtumaSDemy3V3d1fFihWt1pcpU8bqWvn4+FidU0HPOSeNGzeWJF25ckW9e/fWhAkT5Obmdku7q1ev6urVq1brrlky5ebkUqDjAQAAAAAAAADgqBhBCjigjIwM1apVS4mJicaye/dupaenq2jRogoNDVV0dLR27dqlP/74Q507dzb2Cw8Pt9ovOTlZK1euNPrOqaiXfb/OnBQuXDjHx9kyMzOVmZlpPHd1db1lu7PzjY+y0NBQ7dmzR/v379eyZcsKPL3u/PnzFRAQoNdee81qfX7nVNBzznbixAktX77cal3t2rV17do1nTt3Lsd9xo0bp6JFi1otCy7uy/dYAAAAAAAAAADgBgqkgAMKCAjQkSNHVKpUKfn7+8vf318HDx7U22+/LScnJ4WFhWndunVatmyZunbtKk9PT2O/9PR0Yx9/f3+tWLFCX331lU3HdXJyyjfXtm3brNb9+OOPCggIMJ4nJiYajzMzM5WYmKh69epJksqVK6egoCDNmjVLSUlJ6tGjh025sgUHB2vq1KlauHChNm3aVKB9b8fBgwfVo0cPHT161Fi3a9culSpVSiVLlsxxnxEjRujs2bNWy9NetXJsCwAAAAAAAAAAbkWBFHBA7du3V5UqVRQeHq49e/YoPj5eAwYMkKenp1xcXNSgQQOVL19e06ZNU2hoqLHfwIEDtXPnTkVFRSk9PV0LFizQyJEjVaVKFZuO6+XlpUOHDlkVBG82cOBAJSYmauTIkUpLS9PcuXM1ffp0vfzyy0abuLg4TZw4UampqRoyZIguXbpkdZ/RXr166eOPP1a7du1UrFixAl+bpk2bqk+fPnr55ZeVkZFR4P0LokmTJmrUqJGeeeYZ7d27V6tXr9brr7+uN998M9d93N3d5ePjY7UwvS4AAAAAAAAAALajQAo4IBcXF33zzTfKyspS06ZNFRwcrE6dOmnq1KlGm9DQULm4uOjxxx831lWpUkWxsbFas2aN6tatq6ioKE2cOFG9e/e26bh9+vRRamqq6tevn+MUtJUrV9bKlSv17bffKjAwUO+//74mTZqk/v37G226du2qDRs2qEGDBkpISND69evl6+trbA8ODlZGRkaBp9e92fjx43X48GGr63EvuLi4aMWKFfLy8tKjjz6q5557ToMHD9bgwYPv6XEBAAAAAAAAAHBkhcwOAMAc1apV06pVq3LdPnr0aI0ePfqW9W3bttWuXbty3GfOnDm3rLu5ENq0aVMdO3Ysx23Z2rRpo59//jnXXMWKFcvxONn+/PNPubm5qVu3brm2+V9BQUFWWcqWLWt1D9CIiAir9nFxccbj/M45P+XLl9fXX39tc3sAAAAAAAAAMF1WltkJgDtCgRTA38L58+e1du1aff755+rVq5e8vb3NjgQAAAAAAAAAAOwQBVIAfxvPPfecqlevrvnz5xvrTp48qWrVquW534ULF+5JnpIlS+rKlSu5bt+7d68qV658T44NAAAAAAAAAAByRoEUwAMjr6l1ixQpojNnztyyvkSJEkpMTLxnmfKyfft2ZeUx1UT58uXvYxoAAAAAAAAAACBRIAXwN+fi4iJ/f39Tjp3fyFUAAAAAAAAAAHD/OZsdAAAAAAAAAAAAAADuF0aQAgAAAAAAAAAAwHaW3G8tBjwIGEEKAAAAAAAAAAAAwGFQIAUAAAAAAAAAAADgMCiQAgAAAAAAAAAAAHAYFEgBAAAAAAAAAAAAOAwKpAAAAAAAAAAAAAAcRiGzAwAAAAAAAAAAAOABkmUxOwFwRxhBCgAAAAAAAAAAAMBhUCAFAAAAAAAAAAAA4DAokAIAAAAAAAAAAABwGBRIAQAAAAAAAAAAADgMCqQAAAAAAAAAAAAAHIaTxWKxmB0CAHD7lpbrbXYESdLjPc+aHUGStOBrX7MjGK45mZ3ghpKZ9vOtvmhmptkRJEnp7oXMjmDwv2of16R98hizIxg+b/iW2REkSeWvZ5kdQZLkYnaAm6S428ffV5bJMDvB/2nsZh/f/369XMTsCIb/utrH++S8fcSQJJW0j496tfQ8bXYESdLGS8XNjmC4YCfvkwFdTpkdweBU2NXsCJKktKV28sO0pMJu9vGNZ0mGr9kRDM2v2McHW2En+8jh5mwfOSTpW1cPsyNIkl7taD+fa5+vLml2BEnSgA4nzY5gdyavK2V2BMNbh78yO8ID59InA82O8MDxfOVTsyPgJnbyXwEAAAAAAAAAAAAAuPcokAIAAAAAAAAAAABwGBRIAQAAAAAAAAAAADgMCqQAAAAAAAAAAAAAHAYFUgAAAAAAAAAAAAAOo5DZAQAAAAAAAAAAAPAAycoyOwFwRxhBCgAAAAAAAAAAAMBhUCAFAAAAAAAAAAAA4DAokAIAAAAAAAAAAABwGBRIAQAAAAAAAAAAADgMCqQAAAAAAAAAAAAAHEYhswMAAAAAAAAAAADgAWKxmJ0AuCOMIAUAAAAAAAAAAADgMCiQArBJYmKitm7danYMK6NHj1ZQUNA9P86hQ4fk5OSkQ4cO5bh9zpw58vPzs6mvpUuX6uTJk8bzr776SjVr1pSHh4eaN2+u7du334XEAAAAAAAAAAAgNxRIAdjkySefVFpamtkx7FJoaKh27NiRb7vDhw8rJCREly5dkiTFx8fr2Wef1VtvvaXk5GQ1b95cHTt21IULF+51ZAAAAAAAAAAAHBYFUgA2sTCnfK48PDxUqlSpfNv97zU8fvy4Ro0apfDwcFWrVk1vvfWWTp8+rb17996rqAAAAAAAAAAAODwKpADyFRQUpMOHD6t///7y8/OTn5+fXnrpJRUtWlQffPCBrl27psjISFWoUEGurq7y8/PTzJkzjf0vXryoF154QSVKlFCJEiU0YMAAXblyRZJ05swZ9enTRz4+PipfvrxeeeUVXb58+bZyxsfHq3HjxvLw8FBgYKCio6ONbREREYqMjFRoaKg8PT1VqVIlzZs3r0D9x8TEqHr16vL09FTXrl31119/Sbp1it2RI0eqXLly8vDwUFBQkJKTkyVJVatWNf6dM2eOevbsqTfffFOSdPnyZX388ccqXbq0ateufVvnDwAAAAAAAAAA8keBFEC+vv76a1WsWFGTJ0/WlClTdPjwYV25ckW7du1Sr169NG7cOK1atUrR0dFKTU1Vv379NGjQIJ04cUKS9Nxzz2nz5s365ptvtH79em3evFlRUVGSpGeffVZnz57Vli1btHz5cu3YsUODBg0qcMbjx4+rS5cuioiI0J49ezR8+HBFREQoPj7eaDNt2jQ1atRIv/zyi4KDg/XCCy/o7NmzNh9j7ty5WrRokX744Qft2rVLH3zwwS1tYmJiNHPmTC1dulS//PKLypYtq/79+0uScX/R7du3KzQ01Njn+++/l7e3t9555x1NnjxZ3t7eBT5/AAAAAAAAALhvsrJYCrrArhQyOwAA+1e8eHG5uLioaNGiKlq0qCRp+PDh8vf3lyTVr19fbdq0UbNmzSTdGEH57rvvKi0tTW5ublq6dKm+++47tWjRQpL0+eefKzExUb/++quWL1+u06dPG/1+8cUXatCggSZNmmSss8X06dPVtm1bo7jq7++vhIQETZ48WS1btjRyDhs2TJL07rvvasqUKca9P23x4YcfqkmTJpKkkJAQJSUl3dLm0KFDcnNzU+XKlVW5cmV98sknSk1NlSRjGt5SpUrJw8PD2Kdu3bratWuXVq5cqYiICFWtWtW4lgAAAAAAAAAA4O6iQArgttw8pWz37t21fv16vfrqq9q3b59+/vlnSVJmZqb279+vzMxMNWrUyGjfsmVLtWzZUitXrlRWVpYqVKhg1XdWVpb2799vtU9+UlJSFBsbazX68vr166pZs6bxvEaNGsZjHx8fo42tqlevbjwuWrSoMU3wzXr16qVp06apatWqevTRR9W9e3c9++yzefZbpkwZlSlTRg0aNNC2bds0Y8aMXAukV69e1dWrV63WXbdkytXJxebzAAAAAAAAAADAkTHFLoDbUrhwYeNxVFSUwsPD5erqqr59+2rbtm3GNldX11z7yMjIUNGiRZWYmGi1pKenF/g+nBkZGQoPD7fqJzk5WStXrjTauLm53bKfxWKx+RguLtZFyJz2LVu2rPbt26dvvvlGgYGB+uijj9SsWTNdunTplrY7duwwisnZateurT///DPXDOPGjTNG8mYvMReSbT4HAAAAAAAAAAAcHQVSADZxcnLKdduMGTM0bdo0jR8/XqGhobp48aKkGwXEatWqycXFxWo62hUrVujhhx9WQECAzp49KycnJ/n7+8vf31+XL1/W66+/fssoyfwEBAQoPT3d6Mff318rVqzQV199dXsnfJtWrVqlL7/8Up07d9Znn32mpKQkpaWlac+ePbdcw3//+98aMWKE1bpdu3bpoYceyrX/ESNG6OzZs1bLk9517sm5AAAAAAAAAADwd0SBFIBNvLy8tG/fPp0+ffqWbSVKlFBsbKwOHDigzZs3q0+fPpJuTAfr4+Ojfv36afDgwdq+fbt27typkSNHqk2bNnrooYf0+OOPq3fv3sZoyoiICF24cEG+vr4Fyjdw4EDt3LlTUVFRSk9P14IFCzRy5EhVqVLlbpy+zbKysvTaa68pJiZGhw4d0uzZs+Xp6amaNWvKy8tLkpSUlKQLFy5owIAB2rBhg6ZMmaL09HS9/fbb2r59u/71r3/l2r+7u7t8fHysFqbXBQAAAAAAAADAdhRIAdhk4MCBmjZtmp577rlbts2aNUuJiYmqU6eOIiIiFBISokceeUQJCQmSpMmTJ6t+/fpq166dOnbsqH/+8596//33JUnz5s1T1apV1aZNG7Vt21YBAQFatGhRgfNVqVJFsbGxWrNmjerWrauoqChNnDhRvXv3vrMTL6AnnnhC7777roYOHapatWpp8eLFWrFihYoVK6aSJUsqPDxcISEh+vLLL/Xwww8rJiZG//73v1WvXj2tXr1aa9euveWerAAAAAAAAABgV7IsLAVdYFecLAW5AR8AwO4sLXd/i8C5ebznWbMjSJIWfO1rdgTDtdxnpr6vSmbaz7f6opmZZkeQJKW7FzI7gsH/qn1ck/bJY8yOYPi84VtmR5Aklb+eZXYESZI9zROQ4m4ff19ZJsPsBP+nsZt9fP/79XIRsyMY/utqH++T8/YRQ5JU0j4+6tXS89bZYMyw8VJxsyMYLtjJ+2RAl1NmRzA4FXY1O4IkKW2pnfwwLamwm31841mS4Wt2BEPzK/bxwVbYyT5yuDnbRw5J+tbVw+wIkqRXO9rP59rnq0uaHUGSNKDDSbMj2J3J60qZHcHw1uH7e5uuv4NLE24dSIO8eb72pdkRcBM7+a8AAAAAAAAAAAAAANx7FEgB2KXo6Gh5e3vnunTs2PGuHatkyZJ5HuvIkSN37VgAAAAAAAAAAMBc9jO/HADcpEOHDkpMTMx1u4fH3ZsyZvv27crKyn0axfLly9+1YwEAAAAAAAAAAHNRIAVgl7y9veXv739fjlWtWrX7chwAAAAAAAAAAGA+CqQAAAAAAAAAAACwnSX3GfmABwEFUgAAAAAAAAAAAOABYLFYtHLlSkVHRyslJUWXLl1SqVKl1KRJE/Xu3Vv16tW7o/5bt26to0eP2tR28+bNKlWqVI7b0tLSNHv2bP300086efKkihQpourVq6t79+568skn5eLickc57xQFUgAAAAAAAAAAAMDOXblyRUOGDFFcXJzV+qNHj+ro0aOKjY3Vv/71Lw0YMOC2+r9w4YJ+//33O865dOlSvfPOO7p+/bqx7vTp0zp9+rR27NihmJgYTZ8+Xb6+vnd8rNtFgRQAAAAAAAAAAACwc2+++aZRHK1evbpCQkJUsmRJJScna9GiRbp06ZImTpyoMmXKqFu3bgXuPzU1VRaLRZL04osvKjAwMM/2RYsWvWVdfHy8Ro0aJYvFIg8PD4WFhalu3bo6deqUli1bprS0NO3cuVORkZH68ssv5ezsXOCcdwMFUgAAAAAAAAAAAMCObdmyRStXrpQkNWvWTDNnzpS7u7skqUuXLnrqqaf09NNP68yZMxo7dqzatGkjb2/vAh0jNTXVeNy9e3dVrVq1QPtfu3ZNo0ePlsVikaenp+bPn686deoY23v16qXIyEitX79eW7Zs0erVq9WlS5cCHeNuMacsCwAAAAAAAAAAAMAms2bNkiQVKlRI77//vlEczVa9enWNGjVKknTmzBktXbq0wMfILpC6u7urSpUqBd5/3bp1+u9//ytJeu6556yKo5Lk5uamDz74wJha9/PPPy/wMe4WCqQAAAAAAAAAAACwXZaFpaDLHThz5oy2bt0qSWrZsqUqVaqUY7tOnTqpRIkSkqRvv/22wMfJLpD6+/vf1tS3q1evliQ5OTmpV69eObbx8vJSjx49JElpaWk6ePBggY9zN1AgBQAAAAAAAAAAAOzUzp07lZWVJenG9Lq5cXZ2VpMmTSRJSUlJOnv2rM3HsFgsSk9PlyTVrFnztnLu2LFDkhQQEKDixYvn2u7mc9i0adNtHetOUSAFAAAAAAAAAAAA7FR24VLKv3jp7+8v6UbBMy0tzeZjHD16VBcuXJAk1ahRQ5J04cIF7dy5Uxs3blRKSooyMzNz3f/EiRM6d+6c1f65qV69uvF43759Nme8mwqZclQAAAAAAAAAAAAA+Tp69KjxuEKFCnm2LVu2rNV+2SNK85M9va50YyTqoEGDtGHDBquiqK+vr8LDw/X888+rcOHCVvtn33vUloxlypSRs7OzsrKy9Pvvv9uU725jBCkAAAAAAAAAAABgp06fPm08LlasWJ5tfX19jcdnzpyx+Rg3F0jHjx+v9evX3zJi9MyZM5o2bZr69OljlUmS/vrrL5szurq6ytPTs8AZ7yZGkAIAAAAAAAAAAAD3UJs2bfLc/v333+e67cqVK8Zjd3f3PPtxc3PLcb/83FwgdXV1Vf/+/dW9e3dVqlRJZ86c0caNGzVlyhT98ccf2r17t4YOHarZs2fL2fnGWMzLly/bnDG7zYULFwqU8W6iQAoAD7iWNY7m3+g++CqmotkRJElP+v83/0b3iXsZJ7MjSJLcmlTPv9F98p8p5vzA87/6tzthdgSDa8d/mB1BkvR5w7fMjmB4IeFdsyNIkjK2LTc7wg2ZGWYnMHRs0tnsCJKk61+ONTuCwXLZLf9G94H78tP5N7pP2keUMzuCJOnUsiNmRzCU6O1vdgRJUuqk82ZHkCSFP2M/n2vpcy+ZHUGSdGbHNbMjGC5fsJgdQZJUvETu97e63/74w9vsCJKkPsX+NDuC4fjVImZHkCRlyj7+z+XiZB9fN5IU7HzO7AiSpH2xHmZHMLR3PWt2BElSUqyP2RHszpMe9vF+xe2xZGWZHcGhZGT838/QNxdAc3Lz9pv3y8+JEzd+X+bu7q5Zs2apcePGxrbSpUurZ8+eatWqlUJCQnT8+HFt27ZNq1evVpcuXSTJarRpfhlvblOQjHcTBVIAAAAAAAAAAADgHsprhGh+br7f5/Xr1/MsQF679n9/fGdLoTLbokWLdOHCBZ0/f17lyuX8h69lypRRVFSUBg0aJElasmSJUSC9edTo9evX8z1edk5XV1ebM95N3IMUAAAAAAAAAAAAsFPZ9+uUpKtXr+bZ9uYCqS1T3d7M29s71+JottatW8vb+8YMGwkJCcr6/6OJC5Lx5jY3F3/vJwqkAAAAAAAAAAAAgJ3y8fm/abrPnDmTZ9ubtxcvXvyuZ3FxcVGVKlUk3SjGZh/v5oxnz+Y9vfn169d16dKle5bRFhRIAQAAAAAAAAAAADvl5+dnPD527FiebY8fP248Ll++/D3Jk9O0uAXJeOLECWPk6b3KmB/uQQoAAAAAAAAAAADYqerVqxuP09PT9cgjj+TaNj09XZLk5OSkGjVq2NT/b7/9pg0bNujUqVN6+OGHFRQUlGf7EydOSLpRKC1atKgkqVixYipRooROnTplZMjN/v37jcc1a9a0KePdxghSAAAAAAAAAAAA2C7LwlLQ5Q40bNjQGLX5008/5douMzNTO3bskCTVqlXLatrbvJw8eVJjx47V559/rsWLF+fZ9uDBg8YI0cDAQLm4uBjbmjRpIklKSUnR+fPnc+1j27ZtxuO8ir33EgVSAAAAAAAAAAAAwE75+PioWbNmkqQNGzbo999/z7HdqlWrdPr0aUlSx44dbe6/bt268vb2liTFx8fn2r8kffbZZ8bjbt26WW3r0KGDJCkjI0MLFy7Mcf8LFy4oJiZGklS1alXVqlXL5px3EwVSAAAAAAAAAAAAwI5FRERIkq5fv67IyEhduHDBavv+/fs1ZswYSZKXl5d69uxpc9/u7u4KCQkx+n/11Vdv6V+S/v3vf2vFihWSbtxz9Mknn7Ta3rZtW1WsWFGSNH36dO3cudNq+7Vr1zRs2DCdOXNGktS/f3+bM95t3IMUAAAAAAAAAAAAsGOPPfaYOnTooLVr1yohIUHdunVTr169VK5cOe3du1cLFy7UxYsXJUnDhg1T8eLFrfb/6aef1LdvX0k3prWdN2+e1faBAwfqhx9+0MGDB/Xzzz+rc+fOCg0NlZ+fn/766y+tXr3aKHh6eXlpwoQJcnd3t+rDzc1Nb775pgYOHKgrV64oIiJCPXv21MMPP6wzZ85oyZIlSktLkyQ9/PDDeuqpp+7JtbIFBVIAAAAAAAAAAADAzn3wwQe6ePGiNm/erP/+97/66KOPrLY7OTlp0KBBCgsLK3DfRYoU0ezZszVo0CD98ssvOn78uKZMmXJLu3LlymnixIkKDAzMsZ/WrVvr7bff1pgxY3T9+nUtWLBACxYssGoTGBioTz/91Or+pfcbBVIAAAAAAAAAAADAznl4eOjLL79UbGysli9frpSUFJ0/f16+vr5q1KiR+vbtq0aNGt12/+XKldPixYu1cuVKrVq1SsnJyTp37py8vb3l5+en9u3bKzQ0VF5eXnn206tXLzVu3Fhz587V1q1b9ccff8jV1VU1a9bUE088oZCQELm6ut52zruBAikAAAAAAAAAAABsZ8kyO4HDcnJyUteuXdW1a9cC7de0aVOlpqbm265QoULq3r27unfvfpsJb6hRo4bef//9O+rjXnI2OwAAAAAAAAAAAAAA3C8USAEAAAAAAAAAAAA4DAqkcBiHDh2Sk5OTDh06dMd9nTx5UkuXLr3jfubMmSM/P7877uduiouLk5OT013p69q1a/riiy/uSl8AAAAAAAAAAAB3AwVS4DYMHz5cq1atuuN+QkNDtWPHjruQ6O5p3ry5jh07dlf6WrhwocaMGXNX+gIAAAAAAAAAALgbCpkdAHgQWSyWu9KPh4eHPDw87kpfd4ubm5vKli17V/q6W9cJAAAAAAAAAADgbmEEKRzWJ598Il9fX02ePPmWKWUjIiIUEREhSRo9erS6d++uVq1aqXjx4vrnP/+puXPnau7cucb0uH/99ZcGDBigMmXKqGjRourTp4/++usvo7+RI0eqXLly8vDwUFBQkJKTkyXdOsVubu3ysm/fPjk5OengwYPGuvT0dDk7O+u3337TtWvXFBkZqQoVKsjV1VV+fn6aOXOm0dbPz0/Dhw9XuXLl1LBhQ/3www9W12PLli167LHH5OnpKS8vL3Xq1MkYYTpnzhwFBQXp7bffVsmSJeXr66vIyEhZLBbFxcWpf//+Onz4sM1TG+d3HXfs2GFkqVmzphYtWmRs+/bbb/Xwww/L09NT9evX1/fff2+8fkFBQVbH8fPz05w5cyRJQUFBeuWVV1StWjVVrlxZe/bskZOTk9577z0VK1ZMgwYNkiTFxMSodu3a8vT01COPPKKNGzca/QUFBWnMmDHq0KGDPDw8VLNmTa1du9bYfvLkSYWGhsrHx0dly5bVyJEjjeLxb7/9pq5du8rT01N+fn565513lJmZme+1AgAAAAAAAADTZFlYCrrArlAghUNatmyZRowYodjYWDVo0CDf9itWrNDTTz+tDRs26JtvvlFISIhCQkKM6XGffPJJJSYmauXKlVq/fr1SUlKMAmtMTIxmzpyppUuX6pdfflHZsmXVv3//W45ha7v/VatWLdWvX19ff/211fk1b95clSpV0rhx47Rq1SpFR0crNTVV/fr106BBg3TixAmj/VdffaV169Zpzpw5VsXRs2fPqnPnzmrfvr2Sk5O1bt067d+/X+PGjTPabN26VampqdqyZYumTZumKVOm6LvvvlPz5s01efJkVaxYUceOHVOlSpXyPZe8ruPJkyfVrl07NWjQQAkJCRo5cqT69eunpKQkJScn64knnlCPHj2UlJSkXr16qVu3bjp+/Hi+x5Sk2bNna/78+YqJiVGRIkUk3SgM79y5U0OGDFFSUpL69eunqKgo7d69W+Hh4erYsaP2799v9DFmzBj16tVLv/zyixo0aKDnn39eWVlZkqTu3bvr2LFj2rhxo5YsWaLZs2dr+vTpslgs6tGjh0qXLq2EhATNmTNHCxYs0NixY23KDQAAAAAAAAAACo4pduFw4uPjNXDgQC1evFgtW7ZUXFxcvvuUKVNGL774ovE8e1rcUqVKaffu3dq4caNSU1NVs2ZNSdL8+fP10EMPKTU1VYcOHZKbm5sqV66sypUr65NPPlFqauotx7C1XU7CwsIUHR2tV199VdKNAml2YbF+/fpq06aNmjVrJunGKNV3331XaWlpKlOmjCQpPDxcgYGBkmR1PS5fvqxRo0YpMjJSTk5Oqlq1qoKDg7V9+3ajTWZmpmbOnCkfHx8FBARo0qRJ2rFjh9q1a6eiRYvKxcXFpil787uOa9euVfHixTV16lQ5OzsrICBAp0+f1uXLl7VkyRK1aNFCUVFRkqQ33nhDFy9e1JkzZ2y6fl26dFHz5s0lyRjp+q9//UvVq1eXJPXp00fPP/+8nn76aUnS4MGDtXHjRn322WeaOHGiJKlz587GNY+KilL9+vV1/Phx/fnnn/rxxx914MABVa1aVZI0Y8YMXbhwQRs2bNDhw4f1008/Gec0YcIERUREaNSoUTZlBwAAAAAAAAAABcMIUjicAQMG6MqVK6pcubLN+9w8De7/SklJka+vr1HUk26M6ixWrJhSUlLUq1cveXh4qGrVqnrsscc0d+5c1alT55Z+bG2Xk7CwMP3000/6/fffdejQISUlJalnz56SboxevHz5sl599VV17tzZOJebp3HN7fzKli2rfv366eOPP1bfvn3VuHFjTZgwwWrfMmXKyMfHx3ju4+Oj69ev25T7Zvldx9TUVDVs2FDOzv/3sRUZGalmzZopNTVVjRo1survvffeU61atWw6dk7nf/O6lJQUTZs2Td7e3sYSGxurtLQ0o02NGjWMx9nX4/r160pNTVXx4sWN4qgkdevWTb1791ZKSopOnTolHx8fo9/Q0FCdPn1ap06dyjHr1atXde7cOavl6v8fqQoAAAAAAAAAAPJHgRQOZ+zYserevbtefvllSbrl/qOSlJGRYfW8cOHCufaX27bMzExlZmaqbNmy2rdvn7755hsFBgbqo48+UrNmzXTp0iWr9ra2y4mfn5+aNGmimJgYRUdHq1WrVsaozaioKIWHh8vV1VV9+/bVtm3bbD6Ho0ePKjAwUBs2bFCjRo308ccfG6NUs7m5ud2yX/b9NQsiv+vo6uqa6755bbvd1/fmdRkZGRo+fLgSExONZe/evZoxY4bRJrfrkFe2jIwM1apVy6rf3bt3Kz09XUWLFs1xn3Hjxqlo0aJWyye/Hcn1GAAAAAAAAAAAwBoFUjicJ598UhMmTNDOnTv1n//8xyhsnT9/3mhz4MCBPPu4uegWEBCgM2fOWE2Hu3fvXp07d04BAQFatWqVvvzyS3Xu3FmfffaZkpKSlJaWpj179lj1aWu73ISFhWnVqlVavny5wsLCjPUzZszQtGnTNH78eIWGhurixYuSbCtixsTEqHjx4lq5cqWGDBmili1b6sCBAzYXQHMqTuYmv+tYo0YN7d692+rYoaGh+uijj1SjRg0lJSVZ9de8eXMtWrRIbm5uVq/thQsXdPLkSZtzZWc7ePCg/P39jWXmzJlas2ZNvvvWqFFDp0+f1m+//Wasmzp1qrp3766AgAAdOXJEpUqVMvo9ePCg3n777Vyv3YgRI3T27Fmr5ZVKto+GBgAAAAAAAADA0VEghUOqUqWKhg0bpmHDhql27dry8PDQmDFjdPDgQX300UdKSEjIc38vLy8dOnRIR48eVa1atdSxY0f17dtXO3bs0Pbt29WvXz+1atVKdevWVVZWll577TXFxMTo0KFDmj17tjw9Pa2mkpVkc7vchISEaNOmTdq5c6eCg4ON9SVKlFBsbKwOHDigzZs3q0+fPpJuTNWanxIlSujIkSP6/vvvdeDAAX3wwQeKjo62ad/s6/TXX38pPT39llGb/yu/69i7d2+dOnVKw4YNU3p6uubMmaMVK1aoXbt2evHFFxUfH69JkyZp//79GjdunJKTk9WqVSs1adJESUlJWrp0qdLS0jRgwAC5uLjYlD/b0KFDtWjRIk2dOlW//vqrJk+erEmTJtn02tSpU0etW7fWs88+qz179iguLk7jx49Xu3bt1L59e1WpUkXh4eHas2eP4uPjNWDAAHl6euaa0d3dXT4+PlaLuzMf5QAAAAAAAADuo6wsloIusCv8Vh0Oa/jw4XJ3d9eoUaP0xRdfaOHChapTp46SkpI0aNCgPPft06ePUlNTVb9+fVksFv3nP/9RtWrV1KZNG3Xo0EF16tTR8uXLJUlPPPGE3n33XQ0dOlS1atXS4sWLtWLFChUrVsyqT1vb5aZ8+fJq3LixgoKCVKJECWP9rFmzlJiYqDp16igiIkIhISF65JFH8i0CSzeKruHh4XrqqafUuHFjbdiwQRMnTlRKSopNRdLWrVvL399fgYGBSkxMzLd9XtfR19dXq1at0qZNm1S3bl198MEHWrBggRo0aKDq1asrOjpas2bNUt26dbVs2TLFxsaqfPnyatOmjSIjIzVgwAA1b95cdevWVdOmTfPNcrNmzZpp3rx5+vTTT1W7dm3NnDlTCxcuVKtWrWzaf/78+fLy8lKzZs309NNPa8CAARo4cKBcXFz0zTffKCsrS02bNlVwcLA6deqkqVOnFigfAAAAAAAAAACwnZPldm4WCACwG8dbBZkdQZK0/GBFsyNIkp6s/l+zIxjcy9g+zfS95NakutkRDP+ZcsXsCJKkp9ufMDuCwbXjP8yOIEn699B9ZkcwvJDwrtkRJEkZ25abHeGGzLxnYbifXJp0NjuCJOn6l2PNjmCwXLaPz7Xfl180O4KhYkQ5syNIkk4ts5/7tJfo7W92BElS6qTjZkeQJNWM8DA7giF97iWzI0iSSpS2n6/hyxdczY4gSXJzzzQ7guGPP7zNjiBJKl7MPt6vknT8zyJmR5AkZco+/s/l4WI/P68VdrOPLFeuFTI7gsHd1T6uydkr7mZHsDu+HrbNUnc/BB6MNTvCA+fi6F5mR3jgeI1eaHYE3IQRpAAAAAAAAAAAAAAcBgVSwM5NmjRJ3t7euS4vvvii2RFt0qhRozzPIz4+3uyIAAAAAAAAAADAAdjPXAcAcvTMM8+oa9euuW738fG5j2luX0xMjK5du5br9goVKtzHNAAAAAAAAAAAwFFRIAXsnK+vr3x9fc2OcccqV65sdgQAAAAAAAAAwN2QZTE7AXBHmGIXAAAAAAAAAAAAgMOgQAoAAAAAAAAAAADAYVAgBQAAAAAAAAAAAOAwKJACAAAAAAAAAAAAcBgUSAEAAAAAAAAAAAA4jEJmBwAAAAAAAAAAAMADxJJldgLgjjCCFAAAAAAAAAAAAIDDoEAKAAAAAAAAAAAAwGFQIAUAAAAAAAAAAADgMCiQAgAAAAAAAAAAAHAYFEgBAAAAAAAAAAAAOAwKpAAAAAAAAAAAAAAcRiGzAwAA7sy+1FJmR5AkpXlkmB1BkuTVuKjZEf6Pk338HdKfiw6aHcFw0rms2REkSU5e7mZHMBQKetrsCJKk8tejzI5gyNi23OwIkqRCzbqbHcHuZOzdZHYESdKJpX+YHcFQvO51syNIkiq90dTsCAbnRzqYHUGS5LrqHbMjGAp1f97sCJKkqj++bnYESVKhpyPNjmDw/eZ9syNIks6e8jA7guHcZfv4OanhFy3MjmAoc+qk2REkSefm/Gh2BEODHsXMjiBJcvItYnYEu3P26/1mR5AkfXuwgtkRDP8oYh9fwz9k2dHvK+xE34f/NDsC7kSWxewEwB2xj9/cAgAAAAAAAAAAAMB9QIEUAAAAAAAAAAAAgMOgQAoAAAAAAAAAAADAYVAgBQAAAAAAAAAAAOAwKJACAAAAAAAAAAAAcBiFzA4AAAAAAAAAAACAB4clK8vsCMAdYQQpAAAAAAAAAAAAAIdBgRQAAAAAAAAAAACAw6BACgAAAAAAAAAAAMBhUCAFAAAAAAAAAAAA4DAokAIAAAAAAAAAAABwGIXMDgAAAAAAAAAAAIAHSJbF7ATAHWEEKQAAAAAAAAAAAACHQYEUAAAAAAAAAAAAgMOgQArgvjl58qSWLl1qdoxbxMXFycnJ6b4fd86cOXJycrplcXbmoxkAAAAAAAAAgHuFe5ACuG+GDx8ui8Winj17mh3FLoSGhurxxx83nl+/fl2tW7dWly5dTEwFAAAAAAAAAMDfGwVSAPeNxcKNu2/m4eEhDw8P4/m4ceNksVg0fvx4E1MBAAAAAAAAAPD3xjyOgIP67bff1LVrV3l6esrPz0/vvPOOMjMzVaFCBc2ePdtoZ7FYVLFiRc2fP1+SFB8fr8aNG8vDw0OBgYGKjo422kZERCgyMlKhoaHy9PRUpUqVNG/ePEnS6NGjNXfuXM2dO1d+fn6SJCcnJ7311lsqWbKkunbtKkn68ccf9dhjj8nLy0tVq1bVjBkzrPofPHiwnnjiCXl4eKhhw4baunWrJGnMmDGqV6+e1TlOnDhRLVu2LPC1iYyMVOXKlXXkyBHNmTNHQUFBevvtt1WyZEn5+voqMjLSKPbmdc4Fcfr0aX3wwQcaP3683N3dC7w/AAAAAAAAANw3WRaWgi6wKxRIAQdksVjUo0cPlS5dWgkJCZozZ44WLFigsWPHqmfPnvr666+Nttu2bdOpU6fUrVs3HT9+XF26dFFERIT27Nmj4cOHKyIiQvHx8Ub7adOmqVGjRvrll18UHBysF154QWfPntVrr72mkJAQhYSEaMeOHUb72NhYbdmyRePHj1dKSopat26tVq1a6eeff9bo0aP16quvKiYmxmg/Y8YM1alTRwkJCfrHP/6hTp066c8//1RYWJj27NmjtLQ0o+2SJUsUFhZWoGszadIkzZs3T+vWrVPlypUlSVu3blVqaqq2bNmiadOmacqUKfruu+/yPeeC+Oyzz1S+fHk99dRTBdoPAAAAAAAAAAAUDAVSwAFt2LBBhw8f1syZMxUQEKCgoCBNmDBBkydPVlhYmNavX6/z589LkpYtW6ZOnTqpSJEimj59utq2batBgwbJ399f4eHhGjBggCZPnmz0Xb9+fQ0bNkzVqlXTu+++q8uXLys5OVne3t7GlLKlSpUy2r/wwgsKCAhQ7dq19cUXX6hhw4YaO3asAgIC1K9fP73yyiv68MMPjfZ16tTR+PHjVatWLU2aNEnFixfXokWLVL16dT3yyCNaunSpJOnw4cP6+eefC3S/08WLF+udd97RmjVrVKtWLWN9Zmamca3Cw8NVv359qyJvbudsK4vFoi+//FKvvPKKzfsAAAAAAAAAAIDbQ4EUcEApKSk6deqUfHx85O3tLW9vb4WGhur06dOqUaOGypUrp1WrVkmSvv76a2MUZkpKimJjY419vL29NW3aNKtRmzVq1DAe+/j4SJKuX7+ea5bs6Xaz+2/atKnV9ubNmyslJcV43qJFC+Oxs7OzGjZsaGzv1auXUSBdsmSJgoKCVLp0aZuvS0REhJycnFSxYkWr9WXKlDHOJfu8bj6ngp7z/9q5c6f++9//2jTa9erVqzp37pzVcs2SafOxAAAAAAAAAABwdBRIAQeUkZGhWrVqKTEx0Vh2796t9PR0FS1aVKGhoYqOjtauXbv0xx9/qHPnzsZ+4eHhVvslJydr5cqVRt9ubm63HC/7fp05KVy4cI6Ps2VmZioz8/8KgK6urrdsd3a+8VEWGhqqPXv2aP/+/Vq2bFmBp9edP3++AgIC9Nprr1mtz++cCnrO/+vbb79Vq1atVKxYsXzbjhs3TkWLFrVaFlzcZ/OxAAAAAAAAAABwdBRIAQcUEBCgI0eOqFSpUvL395e/v78OHjyot99+W05OTgoLC9O6deu0bNkyde3aVZ6ensZ+6enpxj7+/v5asWKFvvrqK5uO6+TklG+ubdu2Wa378ccfFRAQYDxPTEw0HmdmZioxMVH16tWTJJUrV05BQUGaNWuWkpKS1KNHD5tyZQsODtbUqVO1cOFCbdq0qUD73omffvrJamRsXkaMGKGzZ89aLU971cp/RwAAAAAAAAAAIIkCKeCQ2rdvrypVqig8PFx79uxRfHy8BgwYIE9PT7m4uKhBgwYqX768pk2bptDQUGO/gQMHaufOnYqKilJ6eroWLFigkSNHqkqVKjYd18vLS4cOHdLRo0dz3D5w4EAlJiZq5MiRSktL09y5czV9+nS9/PLLRpu4uDhNnDhRqampGjJkiC5dumR1n9FevXrp448/Vrt27Wwakfm/mjZtqj59+ujll19WRkZGgfe/Hb/88otq165tU1t3d3f5+PhYLW5OLvc4IQAAAAAAAADcxJLFUtAFdoUCKeCAXFxc9M033ygrK0tNmzZVcHCwOnXqpKlTpxptQkND5eLioscff9xYV6VKFcXGxmrNmjWqW7euoqKiNHHiRPXu3dum4/bp00epqamqX79+jlPQVq5cWStXrtS3336rwMBAvf/++5o0aZL69+9vtOnatas2bNigBg0aKCEhQevXr5evr6+xPTg4WBkZGQWeXvdm48eP1+HDh62ux7104sSJ2yrmAgAAAAAAAACAgitkdgAA5qhWrZpWrVqV6/bRo0dr9OjRt6xv27atdu3aleM+c+bMuWXdzYXQpk2b6tixYzluy9amTRv9/PPPueYqVqxYjsfJ9ueff8rNzU3dunXLtc3/CgoKsspStmxZnTt3zngeERFh1T4uLs54nN852+Ly5csFag8AAAAAAAAAAG4fBVIAfwvnz5/X2rVr9fnnn6tXr17y9vY2OxIAAAAAAAAAALBDFEgB/G0899xzql69uubPn2+sO3nypKpVq5bnfhcuXLgneUqWLKkrV67kun3v3r2qXLnyPTk2AAAAAAAAAADIGQVSAA+MvKbWLVKkiM6cOXPL+hIlSigxMfGeZcrL9u3blZWV+823y5cvfx/TAAAAAAAAAAAAiQIpgL85FxcX+fv7m3Ls/EauAgAAAAAAAMADKctidgLgjjibHQAAAAAAAAAAAAAA7hcKpAAAAAAAAAAAAAAcBgVSAAAAAAAAAAAAAA6DAikAAAAAAAAAAAAAh0GBFAAAAAAAAAAAAIDDKGR2AAAAAAAAAAAAADw4LFkWsyMAd4QRpAAAAAAAAAAAAAAcBgVSAAAAAAAAAAAAAA6DAikAAAAAAAAAAAAAh0GBFAAAAAAAAAAAAIDDoEAKAAAAAAAAAAAAwGEUMjsAAAAAAAAAAAAAHiBZFrMTAHeEAikA4K5wlpPZEeyPJcvsBJKkrAwmjLhFln28NvbExewAN8vMMDsBcmMnr01WJt9z7JqTfXzfsWTxPkH+LHbyez1nJzsJIjvKYiefJZIkJz5P7JazHb1PgHw428nHKwDgBn6KAAAAAAAAAAAAAOAwKJACAAAAAAAAAAAAcBgUSAEAAAAAAAAAAAA4DAqkAAAAAAAAAAAAABxGIbMDAAAAAAAAAAAA4AGSlWV2AuCOMIIUAAAAAAAAAAAAgMOgQAoAAAAAAAAAAADAYVAgBQAAAAAAAAAAAOAwKJACAAAAAAAAAAAAcBgUSAEAAAAAAAAAAAA4jEJmBwAAAAAAAAAAAMADJMtidgLgjjCCFAAAAAAAAAAAAIDDoEAKAAAAAAAAAAAAwGFQIAUAAAAAAAAAAADgMCiQArhvTp48qaVLl5od4xZxcXFycnIy5dgxMTFycnKyWp566ilTsgAAAAAAAAAA4AgKmR0AgOMYPny4LBaLevbsaXYUu7F371498cQTmjlzprGucOHCJiYCAAAAAAAAAODvjQIpgPvGYrGYHcHupKSkqG7duipbtqzZUQAAAAAAAADANln8rhcPNqbYBRzUb7/9pq5du8rT01N+fn565513lJmZqQoVKmj27NlGO4vFoooVK2r+/PmSpPj4eDVu3FgeHh4KDAxUdHS00TYiIkKRkZEKDQ2Vp6enKlWqpHnz5kmSRo8erblz52ru3Lny8/OTJDk5Oemtt95SyZIl1bVrV0nSjz/+qMcee0xeXl6qWrWqZsyYYdX/4MGD9cQTT8jDw0MNGzbU1q1bJUljxoxRvXr1rM5x4sSJatmyZYGvTWRkpCpXrqwjR45ozpw5CgoK0ttvv62SJUvK19dXkZGRRrE3r3O2xd69e1WzZs0CZwQAAAAAAAAAALeHAinggCwWi3r06KHSpUsrISFBc+bM0YIFCzR27Fj17NlTX3/9tdF227ZtOnXqlLp166bjx4+rS5cuioiI0J49ezR8+HBFREQoPj7eaD9t2jQ1atRIv/zyi4KDg/XCCy/o7Nmzeu211xQSEqKQkBDt2LHDaB8bG6stW7Zo/PjxSklJUevWrdWqVSv9/PPPGj16tF599VXFxMQY7WfMmKE6deooISFB//jHP9SpUyf9+eefCgsL0549e5SWlma0XbJkicLCwgp0bSZNmqR58+Zp3bp1qly5siRp69atSk1N1ZYtWzRt2jRNmTJF3333Xb7nbMvrkJqaqrVr16pmzZqqXr263njjDV27dq1AmQEAAAAAAAAAgO0okAIOaMOGDTp8+LBmzpypgIAABQUFacKECZo8ebLCwsK0fv16nT9/XpK0bNkyderUSUWKFNH06dPVtm1bDRo0SP7+/goPD9eAAQM0efJko+/69etr2LBhqlatmt59911dvnxZycnJ8vb2loeHhzw8PFSqVCmj/QsvvKCAgADVrl1bX3zxhRo2bKixY8cqICBA/fr10yuvvKIPP/zQaF+nTh2NHz9etWrV0qRJk1S8eHEtWrRI1atX1yOPPKKlS5dKkg4fPqyff/65QPc7Xbx4sd555x2tWbNGtWrVMtZnZmYa1yo8PFz169e3KvLmds75OXLkiC5duiR3d3ctWbJEEyZM0FdffaXXX389132uXr2qc+fOWS3XLJk2nyMAAAAAAAAAAI6OAinggFJSUnTq1Cn5+PjI29tb3t7eCg0N1enTp1WjRg2VK1dOq1atkiR9/fXXxijMlJQUxcbGGvt4e3tr2rRpVqM2a9SoYTz28fGRJF2/fj3XLNnT7Wb337RpU6vtzZs3V0pKivG8RYsWxmNnZ2c1bNjQ2N6rVy+jQLpkyRIFBQWpdOnSNl+XiIgIOTk5qWLFilbry5QpY5xL9nndfE4FPedsVapU0alTpzR79mw1aNBATz75pCZPnqyZM2cqMzPnoue4ceNUtGhRq2XBxX02nyMAAAAAAAAAAI6OAinggDIyMlSrVi0lJiYay+7du5Wenq6iRYsqNDRU0dHR2rVrl/744w917tzZ2C88PNxqv+TkZK1cudLo283N7ZbjZd+vMyeFCxfO8XG2zMxMq2Khq6vrLdudnW98lIWGhmrPnj3av3+/li1bVuDpdefPn6+AgAC99tprVuvzO6eCnvPNihcvLicnJ+P5Qw89pCtXruj06dM5th8xYoTOnj1rtTztVSvHtgAAAAAAAAAA4FYUSAEHFBAQoCNHjqhUqVLy9/eXv7+/Dh48qLfffltOTk4KCwvTunXrtGzZMnXt2lWenp7Gfunp6cY+/v7+WrFihb766iubjntzITC3XNu2bbNa9+OPPyogIMB4npiYaDzOzMxUYmKi6tWrJ0kqV66cgoKCNGvWLCUlJalHjx425coWHBysqVOnauHChdq0aVOB9r0da9euVYkSJXTp0iVjXWJiokqUKGE1DfHN3N3d5ePjY7W4Obnc86wAAAAAAAAAkM1isbAUcIF9oUAKOKD27durSpUqCg8P1549exQfH68BAwbI09NTLi4uatCggcqXL69p06YpNDTU2G/gwIHauXOnoqKilJ6ergULFmjkyJGqUqWKTcf18vLSoUOHdPTo0Ry3Dxw4UImJiRo5cqTS0tI0d+5cTZ8+XS+//LLRJi4uThMnTlRqaqqGDBmiS5cuWd1ntFevXvr444/Vrl07FStWrMDXpmnTpurTp49efvllZWRkFHj/gmjevLk8PDz03HPPKTU1VWvWrNHrr7+uYcOG3dPjAgAAAAAAAADgyCiQAg7IxcVF33zzjbKystS0aVMFBwerU6dOmjp1qtEmNDRULi4uevzxx411VapUUWxsrNasWaO6desqKipKEydOVO/evW06bp8+fZSamqr69evn+BczlStX1sqVK/Xtt98qMDBQ77//viZNmqT+/fsbbbp27aoNGzaoQYMGSkhI0Pr16+Xr62tsDw4OVkZGRoGn173Z+PHjdfjwYavrcS8UKVJEa9eu1R9//KHGjRvr2Wef1YABA/T666/f0+MCAAAAAAAAAODICpkdAIA5qlWrplWrVuW6ffTo0Ro9evQt69u2batdu3bluM+cOXNuWXdzIbRp06Y6duxYjtuytWnTRj///HOuuYoVK5bjcbL9+eefcnNzU7du3XJt87+CgoKsspQtW1bnzp0znkdERFi1j4uLMx7nd875qVOnjtavX29zewAAAAAAAAAAcGcokAL4Wzh//rzWrl2rzz//XL169ZK3t7fZkQAAAAAAAAAAgB2iQArgb+O5555T9erVNX/+fGPdyZMnVa1atTz3u3Dhwj3JU7JkSV25ciXX7Xv37lXlypXvybEBAAAAAAAAAEDOKJACeGDkNbVukSJFdObMmVvWlyhRQomJifcsU162b9+urKysXLeXL1/+PqYBAAAAAAAAgLsky/bbjAH2iAIpgL81FxcX+fv7m3Ls/EauAgAAAAAAAACA+8/Z7AAAAAAAAAAAAAAAcL9QIAUAAAAAAAAAAADgMCiQAgAAAAAAAAAAAHAYFEgBAAAAAAAAAAAAOIxCZgcAAAAAAAAAAADAAyTLYnYC4I4wghQAAAAAAAAAAACAw6BACgAAAAAAAAAAAMBhUCAFAAAAAAAAAAAA4DAokAIAAAAAAAAAAABwGBRIAQAAAAAAAAAAADiMQmYHAAAAAAAAAAAAwIPDkmUxOwJwRxhBCgAAAAAAAAAAAMBhMIIUAB5w5YufNzuCJKnw5eJmR5AkZZ66aHYEg0sxT7MjSJJKtvYwO4Kh2iInsyNIkpy8CpsdwZDx87dmR5Akpbjbz9/NdWzS2ewIkqSMvZvMjnBDZobZCQyFAlubHUGSVLrFErMjGFxKlzQ7giTp3OxtZkcw+GRlmR1BkuRW1D5ySFLmpmizI0iS/rvDy+wIkqRqPywzO4LdcXO3n8969+v28auiS5/GmB3BcOawffzsWKSM2Qn+z+Gv7OP/oZJ95LCnr2GPovbxf67imfbzfbiQe6bZESRJxe0jhl25csI+3q8AHJP9/CYMAAAAAAAAAAAAAO4xCqQAAAAAAAAAAAAAHAYFUgAAAAAAAAAAAAAOwz5uLAEAAAAAAAAAAIAHQ5bF7ATAHWEEKQAAAAAAAAAAAACHQYEUAAAAAAAAAAAAgMOgQAoAAAAAAAAAAADAYVAgBQAAAAAAAAAAAOAwKJACAAAAAAAAAAAAcBiFzA4AAAAAAAAAAACAB0iW2QGAO8MIUgAAAAAAAAAAAAAOgwIpAAAAAAAAAAAAAIdBgRQAAAAAAAAAAACAw6BAir+VuLg4OTk5mR3jgXY3r+G1a9f0xRdf3JW+AAAAAAAAAAAA7gYKpACsNG/eXMeOHbsrfS1cuFBjxoy5K30BAAAAAAAAAADcDYXMDgDAvri5uals2bJ3pS+LxXJX+gEAAAAAAAAA2A9LFr/7xYONEaR4YE2dOlVVqlRR4cKF1bhxY23evPmWNpGRkapcubKOHDkiSYqPj1fjxo3l4eGhwMBARUdHS5JiYmJUunRpo6C3ZcsWOTk56YcffjD6qlChgr777jtFREQoMjJSoaGh8vT0VKVKlTRv3jyj3dWrVzVkyBCVLFlSJUuWVHh4uE6fPm1T7pEjR6pcuXLy8PBQUFCQkpOT870O+/btk5OTkw4ePGisS09Pl7Ozs3777Tddu3ZNkZGRqlChglxdXeXn56eZM2cabf38/DR8+HCVK1dODRs21A8//GA1xe6WLVv02GOPydPTU15eXurUqZMxwnTOnDkKCgrS22+/rZIlS8rX11eRkZGyWCyKi4tT//79dfjwYTk5OenQoUP5nstff/2lAQMGqEyZMipatKj69Omjv/76y9i+Y8cOI0vNmjW1aNEiY9u3336rhx9+WJ6enqpfv76+//57SdLo0aMVFBRkdRw/Pz/NmTNHkhQUFKRXXnlF1apVU+XKlbVnzx45OTnpvffeU7FixTRo0CBJN94jtWvXlqenpx555BFt3LjR6C8oKEhjxoxRhw4d5OHhoZo1a2rt2rXG9pMnTyo0NFQ+Pj4qW7asRo4cabzXfvvtN3Xt2lWenp7y8/PTO++8o8zMzHyvFQAAAAAAAAAAuD0USPFASkhI0Ouvv65PP/1U+/btU8uWLdWzZ09lZWUZbSZNmqR58+Zp3bp1qly5so4fP64uXbooIiJCe/bs0fDhwxUREaH4+Hi1adNGf/31l1GQ3Lhxo5ycnLRlyxZJUnJyss6ePauWLVtKkqZNm6ZGjRrpl19+UXBwsF544QWdPXtW0o0i544dO7R69Wr98MMPOnv2rHr27Jlv7piYGM2cOVNLly7VL7/8orJly6p///75XotatWqpfv36+vrrr411y5YtU/PmzVWpUiWNGzdOq1atUnR0tFJTU9WvXz8NGjRIJ06cMNp/9dVXWrdunebMmWNVHD179qw6d+6s9u3bKzk5WevWrdP+/fs1btw4o83WrVuVmpqqLVu2aNq0aZoyZYq+++47NW/eXJMnT1bFihV17NgxVapUKd9zefLJJ5WYmKiVK1dq/fr1SklJUUREhKQbRcZ27dqpQYMGSkhI0MiRI9WvXz8lJSUpOTlZTzzxhHr06KGkpCT16tVL3bp10/Hjx/M9piTNnj1b8+fPV0xMjIoUKSLpRmF4586dGjJkiJKSktSvXz9FRUVp9+7dCg8PV8eOHbV//36jjzFjxqhXr1765Zdf1KBBAz3//PPG+7F79+46duyYNm7cqCVLlmj27NmaPn26LBaLevToodKlSyshIUFz5szRggULNHbsWJtyAwAAAAAAAACAgmOKXTyQDh06JCcnJ1WpUkV+fn56//331aVLF6MgtXjxYr3zzjv6/vvvVatWLUnS9OnT1bZtW2NEoL+/vxISEjR58mRFR0eradOmiouLU926dbVp0yZ17NjRKJB+9913CgoKkru7uySpfv36GjZsmCTp3Xff1ZQpU5ScnKwGDRpo2rRp2rlzpwIDAyVJ8+bNU4kSJbRnz548cx86dEhubm6qXLmyKleurE8++USpqak2XY+wsDBFR0fr1VdflXSjQJpdWKxfv77atGmjZs2aSbpRwH333XeVlpamMmXKSJLCw8ONvHFxcUa/ly9f1qhRoxQZGSknJydVrVpVwcHB2r59u9EmMzNTM2fOlI+PjwICAjRp0iTt2LFD7dq1U9GiReXi4mLTlL27d+/Wxo0blZqaqpo1a0qS5s+fr4ceekipqalau3atihcvrqlTp8rZ2VkBAQE6ffq0Ll++rCVLlqhFixaKioqSJL3xxhu6ePGizpw5Y9P169Kli5o3by5JxkjXf/3rX6pevbokqU+fPnr++ef19NNPS5IGDx6sjRs36rPPPtPEiRMlSZ07dzaueVRUlOrXr6/jx4/rzz//1I8//qgDBw6oatWqkqQZM2bowoUL2rBhgw4fPqyffvrJOKcJEyYoIiJCo0aNsik7AAAAAAAAAAAoGAqkeCB16NBBgYGBCgwMVMOGDdWtWzc9//zzSktLkyRFRETI3d1dFStWNPZJSUlRbGysvL29jXXXr183inEdOnRQXFycXnrpJf3444+KiYlRjx49lJWVpe+++06PP/64sV+NGjWMxz4+PkZfBw4c0LVr1/Too49a5c3KylJaWpo6duyYY+5ChQqpV69emjZtmqpWrapHH31U3bt317PPPmvT9QgLC9Obb76p33//XdeuXVNSUpIxarV79+5av369Xn31Ve3bt08///yzJFlN4+rn55djv2XLllW/fv308ccfKzExUXv37lVSUpJatGhhtClTpoxxDbKvx/Xr123KfbOUlBT5+voar4d0Y3RssWLFlJKSotTUVDVs2FDOzv838D0yMlKS9N5776lRo0ZW/b333ns2Hzun8795XUpKipYsWaLPP//cWHft2jV16NDBeJ7beyI1NVXFixc3iqOS1K1bN0k3RiKfOnXK6vplZWXp8uXLOnXqlEqUKHFLrqtXr+rq1atW665lZcnNmQkBAAAAAAAAAACwBb9RxwPJ09NTP/30kzZs2KCgoCDNnj1bDz/8sI4ePSrpxsjDgIAAvfbaa8Y+GRkZCg8PV2JiorEkJydr5cqVkqT27dtr48aN+vnnn1W+fHkFBQXJyclJCQkJ2rhxo1WB1M3N7ZZMFotFGRkZkqTNmzdbHSc9PV3t27fPM3fZsmW1b98+ffPNNwoMDNRHH32kZs2a6dKlS/leDz8/PzVp0kQxMTGKjo5Wq1atjFGbUVFRCg8Pl6urq/r27att27bdsn/hwoVz7Pfo0aMKDAzUhg0b1KhRI3388cfGKNX8rkVB5ZYhMzNTmZmZcnV1zXXfvLbdPGVwtuzXKa9j37wuIyNDw4cPt3pN9+7dqxkzZhhtcrsOeWXLyMhQrVq1rPrdvXu30tPTVbRo0Rz3GTdunIoWLWq1fH7qQK7HAAAAAAAAAAAA1iiQ4oH0448/aty4cfrnP/+pSZMmKTU1VVeuXFGhQjcGRQcHB2vq1KlauHChNm3aJEkKCAhQenq6/P39jWXFihX66quvJElNmjRRVlaWvvjiC7Vs2VLOzs5q0aKFJkyYoNKlS8vf3z/fXNWrV5eLi4tOnTplHMPHx0dDhw7ViRMncs29efNmrVq1Sl9++aU6d+6szz77TElJSUpLS9OePXtsuiZhYWFatWqVli9frrCwMGP9jBkzNG3aNI0fP16hoaG6ePGiJNuKmDExMSpevLhWrlypIUOGqGXLljpw4IDNBdCcipO5CQgI0JkzZ6ymFd67d6/OnTungIAA1ahRQ7t377Y6dmhoqD766CPVqFFDSUlJVv01b95cixYtkpubm86fP2+sv3Dhgk6ePGlzruxsBw8etHrvzJw5U2vWrMl33xo1auj06dP67bffjHVTp05V9+7dFRAQoCNHjqhUqVJGvwcPHtTbb7+d67UbMWKEzp49a7W8UKJagc4HAAAAAAAAAO5IloWloAvsCgVSPJA8PDz0zjvv6Msvv9ShQ4e0aNEiXbhwQadPnzbaNG3aVH369NHLL7+sjIwMDRw4UDt37lRUVJTS09O1YMECjRw5UlWqVJEkOTs7q02bNpo7d64ee+wxSVLLli21ePFiq9GjeSlSpIief/55vfTSS4qLi9PevXvVt29f7d+/X1WrVs01d7169ZSVlaXXXntNMTExOnTokGbPni1PT0+rKWfzEhISok2bNmnnzp0KDg421pcoUUKxsbE6cOCANm/erD59+kjSLdO05qREiRI6cuSIvv/+ex04cEAffPCBoqOjbdpXkry8vPTXX38pPT39llGb/6tWrVrq2LGj+vbtqx07dmj79u3q16+fWrVqpbp166p37946deqUhg0bpvT0dM2ZM0crVqxQu3bt9OKLLyo+Pl6TJk3S/v37NW7cOCUnJ6tVq1Zq0qSJkpKStHTpUqWlpWnAgAFycXGxKX+2oUOHatGiRZo6dap+/fVXTZ48WZMmTbLptalTp45at26tZ599Vnv27FFcXJzGjx+vdu3aqX379qpSpYrCw8O1Z88excfHa8CAAfL09Mw1o7u7u3x8fKwWptcFAAAAAAAAAMB2/FYdD6QGDRpo1qxZ+uijj1SrVi2NHTtW8+fP10MPPWTVbvz48Tp8+LCmTp2qKlWqKDY2VmvWrFHdunUVFRWliRMnqnfv3kb7Dh066Nq1a1YFUovFYnOBVJImTpyotm3bKjg4WM2aNVOhQoW0evVqubi45Jn7iSee0LvvvquhQ4eqVq1aWrx4sVasWKFixYrZdNzy5curcePGCgoKsrp35axZs5SYmKg6deooIiJCISEheuSRR5SQkJBvnyEhIQoPD9dTTz2lxo0ba8OGDZo4caJSUlJsKpK2bt1a/v7+CgwMVGJiYr7t//Of/6hatWpq06aNOnTooDp16mj58uWSJF9fX61atUqbNm1S3bp19cEHH2jBggVq0KCBqlevrujoaM2aNUt169bVsmXLFBsbq/Lly6tNmzaKjIzUgAED1Lx5c9WtW1dNmzbNN8vNmjVrpnnz5unTTz9V7dq1NXPmTC1cuFCtWrWyaf/58+fLy8tLzZo109NPP60BAwZo4MCBcnFx0TfffKOsrCw1bdpUwcHB6tSpk6ZOnVqgfAAAAAAAAAAAwHZOltu5WSAAwG6kPWR7Af9e+s/l4mZHkCS9/s+CTaF8L7kU8zQ7gt1ZvsjH7AiSpO598r+/8/3i0qat2REkSVOe32p2BEPkjyPMjiBJyty/w+wIN2TmPQvD/VQosLXZESRJl0e8aHYEg0vpnO8bfr9d2PKH2REMPv0eMTuCJOnSsp/MjmDwDG1udgRJ0q+jbbt9x71W7fWqZkcwnJixz+wIkqTM6/bz9+vnLxQ2O4IkqXLgGbMjGM4cto9rUqTMFbMjGP485G12BLvi5m4/P695FL1udgRJ0s6DZc2OYGhY8YTZESRJ8b+XMzuC3Wld7ajZEQzlNv9gdoQHzple/zQ7wgPHdyHvM3tiPz+BAwAAAAAAAAAAAMA9RoEUsHOTJk2St7d3rsuLL9rPCIq8NGrUKM/ziI+PNzsiAAAAAAAAAABwAIXMDgAgb88884y6du2a63YfH/uYrjI/MTExunbtWq7bK1SocB/TAAAAAAAAAABuW5bZAYA7Q4EUsHO+vr7y9fU1O8Ydq1y5stkRAAAAAAAAAAAAmGIXAAAAAAAAAAAAgOOgQAoAAAAAAAAAAADAYVAgBQAAAAAAAAAAAOAwKJACAAAAAAAAAAAAcBiFzA4AAAAAAAAAAACAB4cly2J2BOCOMIIUAAAAAAAAAAAAgMOgQAoAAAAAAAAAAADAYVAgBQAAAAAAAAAAAOAwKJACAAAAAAAAAAAAcBgUSAEAAAAAAAAAAAA4jEJmBwAAAAAAAAAAAMADJMvsAMCdYQQpAAAAAAAAAAAAAIdBgRQAAAAAAAAAAACAw3CyWCwWs0MAAG7f1V+3mR1BknTm2TfMjiBJGn+orNkRDMUsLmZHkCS9/klDsyMYprySaHYESZKHHf3009HrT7MjSJK2nCtpdgRDyAv28QKdWPqH2REkSVmZTmZHMJRuYR+vjce4GWZHMJx/tr/ZESRJ0xMrmh3B0DnrgtkRJEnXMu3j+7AkeblfNzuCJGnr9aJmR5Ak1c24YnYEwx9yMzuCJKl5naNmRzA428cl0cJfKpkdwXDK2T6+/zW7kml2BMOOwvbxGXvByT7md/Sw2M8YlHpX7eP92qbjSbMjGH5YU9rsCJKk1p3t4/8X9mTKd/bx2kjSqMNfmR3hgfNXcJDZER44xaLjzI6Am9jPd28AAAAAAAAAAAAAuMcokAIAAAAAAAAAAABwGIXMDgAAAAAAAAAAAIAHhyXLPqb0Bm4XI0gBAAAAAAAAAAAAOAwKpAAAAAAAAAAAAAAcBgVSAAAAAAAAAAAAAA6DAikAAAAAAAAAAAAAh0GBFAAAAAAAAAAAAIDDKGR2AAAAAAAAAAAAADxAsswO4LgsFotWrlyp6OhopaSk6NKlSypVqpSaNGmi3r17q169enfc//fff68VK1Zo9+7dOn36tFxdXVWhQgW1aNFCffv2Vfny5fPso3Xr1jp69KhNx9u8ebNKlSp1R5lvBwVSAAAAAAAAAAAAwM5duXJFQ4YMUVxcnNX6o0eP6ujRo4qNjdW//vUvDRgw4Lb6P3v2rIYOHaotW7ZYrb927ZrS0tKUlpamr776Su+99566d++eYx8XLlzQ77//flvHv58okAIAAAAAAAAAAAB27s033zSKo9WrV1dISIhKliyp5ORkLVq0SJcuXdLEiRNVpkwZdevWrUB9Z2Vl6eWXX9aOHTskSeXLl1dwcLCqVaumixcvavPmzVq3bp2uXbumN954Qz4+PmrduvUt/aSmpspisUiSXnzxRQUGBuZ53KJFixYo591CgRQAAAAAAAAAAACwY1u2bNHKlSslSc2aNdPMmTPl7u4uSerSpYueeuopPf300zpz5ozGjh2rNm3ayNvb2+b+Y2JijOJos2bN9Nlnn8nT09PY3rNnT23YsEGvvPKKMjIyNHr0aLVo0cLIkC01NdV43L17d1WtWvW2z/lecjY7AAAAAAAAAAAAAIDczZo1S5JUqFAhvf/++7cUJqtXr65Ro0ZJks6cOaOlS5cWqP/FixdLktzd3TVhwgSr4mi21q1bKzw8XJJ04sQJbdq06ZY22QVSd3d3ValSpUAZ7icKpADuOovFok8//dR4HhERoYiIiHz3Gz16tIKCgoznS5cu1cmTJ3PcBgAAAAAAAACAIzhz5oy2bt0qSWrZsqUqVaqUY7tOnTqpRIkSkqRvv/3W5v4vXLig3bt3S5KaN2+uUqVK5dr28ccfNx4nJSXdsj27QOrv7y9nZ/stQ9pvMgAPrE2bNunll182nk+ZMkVTpkzJd7/XXntNX3/9tSTp8OHDCgkJ0aVLl27ZBgAAAAAAAAAwjyWLpaDLndi5c6eysm500qxZs1zbOTs7q0mTJpJuFC/Pnj1rU/9//fWXAgMDVapUKVWrVi3PtjffM/TcuXNW2ywWi9LT0yVJNWvWtOnYZuEepADuuuwbMGez9SbLN8+H/r99FGSudAAAAAAAAAAA/i6yi45S/oVHf39/STd+x56WlmYUTPNSqVIlm6fk/fXXX43Hvr6+VtuOHj2qCxcuSJJq1Kgh6cbo1H379unixYsqXbq0atasKRcXF5uOdS8xghRAnrZs2aLHHntMnp6e8vLyUqdOnXTs2DFJN4boP/zww/L09FT9+vX1/fff69ChQ/rnP/8pSXJyclJcXJwxxe7Zs2dVuHBh/fDDD0b/58+fV+HChbV582araXSzb9xctWpVzZkz55YpduPj49W4cWN5eHgoMDBQ0dHRxrYjR46offv28vb2VunSpfXKK6/o+vXrNp2vk5OTli5dqoceekienp7q1auXDh48qNatW8vT01MtW7bU0aNHjfYxMTGqXbu2PD099cgjj2jjxo3GtnPnzumZZ55R6dKl5ebmplq1amn58uVWx5o/f77q1q0rd3d3tWzZUgcPHrTthQEAAAAAAAAAOISbfyddoUKFPNuWLVs2x/3ulpt/F1+/fn2rbdnT60o3RrMOGjRIjzzyiHr37q0BAwaoe/fuat68uT755BNduXLlrmcrCAqkAHJ19uxZde7cWe3bt1dycrLWrVun/fv3a9y4cUpOTtYTTzyhHj16KCkpSb169VK3bt3k6upqfEAeO3ZMzZs3N/orWrSoHn/8caupcleuXKlSpUqpRYsWVsfevn278W9oaKjVtuPHj6tLly6KiIjQnj17NHz4cEVERCg+Pl6S9Morr8jb21uJiYlavny5li1bpi+++MLm837rrbc0Z84crVq1StHR0WrevLleeuklbd26VceOHdOHH34o6cYUBf369VNUVJR2796t8PBwdezYUfv375ckDRkyRKmpqVq3bp2Sk5PVsmVLPffcc7p27ZpxrLfffltTp07Vrl279OeffyoqKsrmnAAAAAAAAACAv7/Tp08bj4sVK5Zn25tHdZ45c+au5oiPjzcGQJUoUeKW3+vfXCAdP3681q9fr8zMTKs2Z86c0bRp09SnTx+r87rfmGIXQK4uX76sUaNGKTIyUk5OTqpataqCg4O1fft2/fvf/1aLFi2Mgt4bb7yhixcv6vz58ypevLgk679UyRYWFqbXXntNU6dOlZOTk5YtW6aQkBA5OTlZtcu+CXSpUqXk4eFhtW369Olq27atBg0aJOnGlAEJCQmaPHmyWrZsqUOHDunhhx9WlSpV5O/vr9WrV+f7TeNmQ4cOVdOmTSVJDRs2VEBAgHr27ClJCg4OVmJioiRpwoQJev755/X0009LkgYPHqyNGzfqs88+08SJE/WPf/xDr776qurWrSvpxn1Uv/zyS504ccK4iXZkZKRat24tSXrppZc0bdo0m3MCAAAAAAAAAP7+bh5t6e7unmdbNze3HPe7U8eOHdPw4cON5y+99JIKFy5s1ebmAqmrq6v69++v7t27q1KlSjpz5ow2btyoKVOm6I8//tDu3bs1dOhQzZ49W87O9388JwVSALkqW7as+vXrp48//liJiYnau3evkpKS1KJFC6WmpqpRo0ZW7d977z1JN0Z45uaJJ57Qs88+q59++kn16tXTt99+q7i4uALlSklJUWxsrNV9Sa9fv27MvT5s2DD1799fMTEx6tixo0JDQ9WwYUOb+7/5JtQeHh7y8/Ozen716lUjx5IlS/T5558b269du6YOHTpIkvr27avly5dr5syZ2rdvn3bt2iVJVn8xkz0PuyT5+PjkOxXw1atXjeP/38prcnd3y3kHAAAAAAAAAIDp2rRpk+f277//PtdtGRkZxuObC6A5uXn7zfvdidOnT+uZZ57RqVOnJEktWrRQeHj4Le1OnDgh6UYRd9asWWrcuLGxrXTp0urZs6datWqlkJAQHT9+XNu2bdPq1avVpUuXu5KzIJhiF0Cujh49qsDAQG3YsEGNGjXSxx9/rFdffVXSjb/+uB1eXl564oknFB0drTVr1qhs2bI23ST6ZhkZGQoPD1diYqKxJCcna+XKlZKk3r1768iRIxo/frzOnz+vp556qkBT1xYqZP23I7n99UpGRoaGDx9ulWPv3r2aMWOGpBsF0tdee03FihXTSy+9pFWrVt3Sx/9+M7NYLHlmGzdunIoWLWq1fDjjPzafGwAAAAAAAADcsSyWAi934OaRmvkNsrn5Fm/5FVNt8ccff6hv3746cOCAJKlKlSqaMGHCLbNCStKiRYu0a9curV271qo4erMyZcpY/b5+yZIld5zxdjCCFECuYmJiVLx4caPwKEmffPKJLBaLatSooYSEBKv2zZs31+DBg1WuXLk8+w0LC9PIkSN1/PjxW+4vmi2nD9dsAQEB2rp1q/z9/Y11EydO1NWrVzVy5Ei9+eabCgkJ0YsvvqgXX3xR48eP19y5c/X+++/bcto2CwgI0MGDB61yDBs2TDVr1lRISIgWLFign376ySgAr169WlL+RdC8jBgxQpGRkdYr/5t42/0BAAAAAAAAAO69vEaI5sfT09N4fPXq1TwLnzcXSPObjjc/R44c0XPPPafDhw9LksqVK6fZs2cbt9nLibe3t9Xsjzlp3bq1vL29deHCBSUkJCgrK+u+T7PLCFIAuSpRooSOHDmi77//XgcOHNAHH3yg6OhoXb16VS+++KLi4+M1adIk7d+/X+PGjVNycrJatWolLy8vSdKuXbtynOO8Y8eO+v3337V8+fJcC6TZfSQlJenChQtW2wYOHKidO3cqKipK6enpWrBggUaOHKkqVapIkvbt26dBgwZp9+7dSk5O1urVqws0xa6thg4dqkWLFmnq1Kn69ddfNXnyZE2aNEk1a9ZU4cKF5eXlpejoaB06dEhr16417pl6yxS5BeDu7i4fHx+rhel1AQAAAAAAAODvy8fHx3h85syZPNvevD2vQmZ+du/erbCwMKM4WqFCBc2bN08VKlS47T6zubi4GL/Pv3btWr7ndC9QIAWQq5CQEIWHh+upp55S48aNtWHDBk2cOFEpKSmqWLGioqOjNWvWLNWtW1fLli1TbGysypcvr8DAQLVr107Nmzc3Rk3ezN3dXd27d1fFihVVv379HI9dsmRJhYeHKyQkRF9++aXVtipVqig2NlZr1qxR3bp1FRUVpYkTJ6p3796SpM8++0xlypTRP/7xDzVr1kzly5fX1KlT7/r1adasmebNm6dPP/1UtWvX1syZM7Vw4UK1atVKbm5umj9/vpYtW6batWsrMjJSUVFRKleu3C0jbwEAAAAAAAAAyI2fn5/x+NixY3m2PX78uPG4fPnyt3W8+Ph49evXz7jnqL+/vxYuXKhKlSrdVn85ud3b+N0tTpY7mesRAGC6q79uMzuCJOnMs2+YHUGSNP5QWbMjGIpZXMyOIEl6/ZO7P4L6dk15JdHsCJIkDzv66aej159mR5AkbTlX0uwIhpAX7OMFOrH0D7MjSJKyMnOfdv5+K93CPl4bj3EzzI5gOP9sf7MjSJKmJ1Y0O4Khc9aF/BvdB9cy7eP7sCR5ued9j6D7Zev1omZHkCTVzbh1lhmz/CH7mI2leZ2jZkcwONvHJdHCX+7eL9/u1Cln+/j+1+xKptkRDDsK28dn7AWnO7yh213iYbGfMSj1rtrH+7VNx5NmRzD8sKa02REkSa0728f/L+zJlO/s47WRpFGHvzI7wgPnVOd/mB3hgVNi1cbb3nfjxo0aMGCAJOmtt94yBgvlZPDgwVq7dq2cnJy0fft2q9GnttiwYYMGDx5s3Ou0fv36+vzzz1WsWLE89/vtt9+0YcMGnTp1Sg8//LCCgoLybB8UFKRjx47J1dVVSUlJcnG5vz9f2M93bwAAAAAAAAAAAABWGjZsaIy4/Omnn3Jtl5mZqR07dkiSatWqVeDi6Pbt2zVkyBCjONqiRQvNmTMn3+KoJJ08eVJjx47V559/rsWLF+fZ9uDBg8ZI2MDAwPteHJUokAJwII0aNTJuEJ3TEh8fb3ZEAAAAAAAAALB7liyWgi53wsfHR82aNZN0Y4Tn77//nmO7VatW6fTp05Kkjh07FugYp06d0pAhQ3Tt2jVJ0j//+U/NmDFDnp6eNu1ft25deXt7S7oxRW9uGaUbt8nL1q1btwLlvFsokAJwGDExMUpMTMx1ady4sdkRAQAAAAAAAAC4RUREhCTp+vXrioyM1IUL1rc32b9/v8aMGSNJ8vLyUs+ePQvU/3vvvWcUV+vVq6cpU6bIzc32+y+4u7srJCTEyPjqq6/eklGS/v3vf2vFihWSbtxb9cknnyxQzrulkClHBQATVK5c2ewIAAAAAAAAAAAU2GOPPaYOHTpo7dq1SkhIULdu3dSrVy+VK1dOe/fu1cKFC3Xx4kVJ0rBhw1S8eHGr/X/66Sf17dtXkvTII49o3rx5xrZff/1V3377rfH88ccft2nGRV9fX6uBRwMHDtQPP/yggwcP6ueff1bnzp0VGhoqPz8//fXXX1q9erV27twp6UYRd8KECXJ3d7/9i3IHKJACAAAAAAAAAAAAdu6DDz7QxYsXtXnzZv33v//VRx99ZLXdyclJgwYNUlhYWIH6Xb58uSwWi/H8ww8/tGm//y20FilSRLNnz9agQYP0yy+/6Pjx45oyZcot+5UrV04TJ05UYGBggXLeTRRIAQAAAAAAAAAAADvn4eGhL7/8UrGxsVq+fLlSUlJ0/vx5+fr6qlGjRurbt68aNWpU4H7T0tLuWsZy5cpp8eLFWrlypVatWqXk5GSdO3dO3t7e8vPzU/v27RUaGiovL6+7dszbQYEUAAAAAAAAAAAAeAA4OTmpa9eu6tq1a4H2a9q0qVJTU3Pc9vnnn9+NaIZChQqpe/fu6t69+13t926iQAoAAAAAAAAAAADbZZkdALgzzmYHAAAAAAAAAAAAAPD/2LvzuKqq/f/j78MkkzjPJmgQdp1ALcuyyDlLHEiBHDqVQw5pF0uvSIrmlKmpaVeza5pmpuCEVGpfr2UO5QBeNBTspnbNoTRxVobz+8OfO08igtM+dl7Px2M/Hpu9117rvfdRQT+utXG3UCAFAAAAAAAAAAAA4DQokAIAAAAAAAAAAABwGhRIAQAAAAAAAAAAADgNCqQAAAAAAAAAAAAAnIab2QEAAAAAAAAAAABw77DlmZ0AuDXMIAUAAAAAAAAAAADgNCiQAgAAAAAAAAAAAHAaLLELAPe4kz2GmB1BkuRW3OwElxWXq9kRDKXzLGZHkCTlpaaYHcFw/yWzE1x20eIYn40klQ+5aHYESVLDLVlmRzDYznuYHUGSVLp2ttkRHI5r+bJmR5AknX75RbMjGIr/6yOzI0iSLjaMMzuCwdMjx+wIkqTPcr3NjmCIys01O4Ikx/kHAFcXx1mP7SsPx/hsWr35gtkR/nDmpNkJJElle203O4LB0+YYPzuu9jI7wR885Bi/j/1sjjH3w12O8WtEkr7ydIyfYZ9+rK7ZEQxf/fuQ2REkSS0f9Dc7gsPJ+OqE2REAODHH+CkCAAAAAAAAAAAAAO4CCqQAAAAAAAAAAAAAnIajrLADAAAAAAAAAACAe4DNMVZbB24aM0gBAAAAAAAAAAAAOA0KpAAAAAAAAAAAAACcBgVSAAAAAAAAAAAAAE6DAikAAAAAAAAAAAAAp0GBFAAAAAAAAAAAAIDTcDM7AAAAAAAAAAAAAO4dtjyzEwC3hhmkAAAAAAAAAAAAAJwGBVIAAAAAAAAAAAAAToMCKQAAAAAAAAAAAACnQYEUAAAAAAAAAAAAgNOgQAoAAAAAAAAAAADAaVAgBf6iTp8+rY8//tj4OiAgQHPnzr0tfa9bt07p6em3pa/COnHihCpUqKD9+/ff1XGvmDt3rgICAm5LX3/+bAAAAAAAAADgnmKzsBV1g0OhQAr8RU2ePFlz5swxvt66dasiIyNvS9/NmjXT0aNHb0tfhfH777+rbdu2Onbs2F0b888iIyO1devW29LXnz8bAAAAAAAAAABw91AgBf6ibDab3dflypWTl5eXSWlu3rfffqsGDRrozJkzpubw8vJSuXLlbktff/5sAAAAAAAAAADA3UOBFLhH7N+/XxaLRW+99ZZKlSqlfv36aezYsapevbo8PDxUuXJljRw5UtLl5WBHjhypr7/+WhbL5an7Vy+xm5eXp3feeUc1atSQl5eXnnrqKaWlpRUqx5VlZp966inFx8dLkjZv3qzHH39cPj4+ql69umbOnGm0t1qtGjBggNq2bSsvLy+FhoZq06ZNhb7v1atX66WXXlJiYmKhr5GkL7/8Ut7e3jp37pxxbM2aNfLz89P58+d16tQpvfTSSypfvrw8PDxUs2ZNLV++3GhrsVg0fPhwlS1bVuHh4dcssbty5UqFhobK09NTJUuWVHR0tFHEjY+PV5cuXdSnTx/5+fmpfPnymjBhgqT8P5t169YpJCREnp6eqlGjhmbNmlWkewUAAAAAAAAAAIVHgRS4x2zcuFHbtm1T+fLlNWXKFH344YfKyMjQ8OHDFR8frx07digyMlKDBg3So48+qsOHD1/Tx6hRozRx4kRNmTJFO3bskL+/v1q3bq2zZ8/ecPwry8wmJibq9ddfV3p6upo2baonnnhCO3bsUHx8vAYNGqRly5YZ18ycOVO1atVSSkqKnnzySbVp00a//fZboe73rbfeUlxcnNzc3Ar5hC5r3ry5fHx89MUXXxjHEhMTFR4eLi8vLw0cOFB79+7VmjVrtHv3bjVp0kQ9evTQpUuXjPZJSUnauHGjxo8fb9f3jz/+qOeee059+/bVnj17tHjxYn311Vf64IMPjDZLliyRp6enduzYoTfeeENDhgxRRkbGNZ9Nbm6uOnXqpE6dOmnPnj1666231LdvX/3www9Ful8AAAAAAAAAAFA4FEiBe8xrr72m+++/X0888YQ++ugjNWvWTAEBAXrllVdUsWJF7d69W15eXvL19ZWHh4cqVqxod73NZtN7772nt956S+Hh4XrwwQc1e/Zsubq6asGCBTcc/8oys6VLl5avr69mz56t0NBQjR07VsHBwXrhhRf06quvGjMmJalWrVoaP368atasqcmTJ6t06dJatGjR7X0wf+Lm5qaIiAhj5mlubq6WL19uvIf1ySef1KxZsxQSEqKgoCC9/vrrOn78uN27VXv37q3g4GD97W9/s+s7Ly9P7733nnr27KmAgAC1bNlSzZs31+7du402ZcqU0cSJExUYGKg33nhDpUuX1rZt2675bLKysnTixAlVqFBBAQEB6tKli7766itVqlTpjj4fAAAAAAAAAACcFQVS4B5z9RK3ZcuW1dChQ9W+fXv5+/vryJEjys3NLfD6Y8eO6cSJE2rUqJFxzN3dXQ0bNlR6enqR86Snp9v1JUmNGze26+uxxx4z9l1cXBQaGnpTYxVVVFSUkpOTdenSJW3YsEGXLl1Sq1atJEndu3dXRkaGBgwYoJYtW6px48aSZPf8rl5S92pBQUF6+umnNWbMGEVHR6tu3bpavHix3bXVq1eXq6ur8XXx4sWVnZ19TV+lS5dWnz591LNnT/n7+6t///4qUaKESpUqle/YFy9e1KlTp+y2i3l5RX42AAAAAAAAAHCzbHlsRd3gWCiQAvcYT09PSdKHH36o5s2b68KFC4qIiND//d//qWrVqoW+/s9yc3NvWFwtbH9/7svd3f2a8y4ud/6PnyeeeEK+vr5au3atEhMT1aFDB3l4eEi6XCB9/fXXVapUKfXp00fJycnXXH+9Z7Vz507VqlVLP/zwg5544gn961//UlRUlF2bK+NczWaz5dvf+++/r127dqlXr1767rvv1KhRI7ulga82btw4lShRwm6bduBggc8BAAAAAAAAAAD8gQIpcI+aOXOmhg8frnfffVfdunVT2bJldfToUaMIZ7FY8r2uRIkSqlChgrZs2WIcy87O1vbt2xUcHFzkHMHBwXZ9SdLmzZvt+kpNTTX2c3NzlZqaqrp16xZ5rKJycXFRp06dlJycrBUrVhhFzFOnTmnhwoX67LPPNHLkSHXo0EEnTpyQdP0i5tXmz5+vJ554Qp988on69Omjhx56SJmZmYW6VrL/bI4cOaJ+/fopMDBQw4YN09atW9WsWTOtXLky32uHDh2qrKwsu22Af7VCjQsAAAAAAAAAACiQAvesMmXK6KuvvlJGRoa2b9+uyMhIZWdn6+LFi5IkHx8f/fLLL9q/f/8118bExGj48OFKSkpSenq6evbsqQsXLhjv57wRHx8f7dq1S1lZWerbt69SU1MVGxurjIwMzZs3TzNmzFC/fv2M9uvXr9ekSZO0d+9eDRw4UOfOnVOnTp1uy3O4kaioKM2fP18XLlxQ06ZNJV2eGerj46PExETt379fq1evVv/+/SXJeH4FKVOmjP7zn//o+++/V0ZGhgYNGqStW7cW6lrJ/rMpXbq0li5dqr///e/68ccf9c033yg1NVWhoaH5XlusWDH5+fnZbcXuwmxcAAAAAAAAAAD+KvhXdeAeNXXqVJ06dUr16tVTx44dVa9ePXXo0EEpKSmSpA4dOigvL09/+9vfdOzYMbtrBw0apJ49e6pnz55q0KCB/ve//2n9+vUqV65cocYeMGCA3njjDcXHx6tatWpatWqVvvzyS9WpU0ejR4/W5MmT9eKLLxrtw8PDtW7dOoWEhCglJUVr165VyZIlb9uzKMgjjzyismXLKiIiQm5ubpIuL3+7YMECJSQk6G9/+5tiYmIUFxenSpUqGc+vIAMGDNCjjz6q5s2b6/HHH9eBAwc0fPjwQl0r2X82J0+e1MqVK41ZtZ07d9bLL7+sHj163NJ9AwAAAAAAAACA/FlshV0TEgBugtVqlSTNnTvX1Bx/ZUefetLsCJIkN1+zE1w2Ne3G7+K9W8rn5r/U9d32Yk/H+Vb/+T/NTnDZxessQ26GZ588ZHYESdLPWxzkN7Gk6lHXvsfZDDn7T5gdweG41yhrdgRJ0sVdx27c6C4p/q+PzI4gSRrZMM7sCIbnXbPMjiBJmpfrZ3YEQ1TeObMjSJJ25BU3O4IkqZaDPA9JWuDhbnYESdI7c1uZHeEPZ06anUCStLzXdrMjGM64OMbPjj+45ZgdweAhx3gmfjbHmPvh7iDPQ5L2Wy6ZHUGSNCnOcf5u/sZox/g714T+jvF92JH0fs9x/s41/8BSsyPcc448EWZ2hHtOxW/Wmx0BV3EzOwAAAAAAAAAAAADuHbY8x/nPIcDNcIz/ZgXAIRw7dky+vr4Fbo4y1muvvVbgtWPHjr1tWQEAAAAAAAAAwF8HM0gBGMqUKaPU1NTb2uf1lta91bGGDRum/v37X/d86dKlb7pvAAAAAAAAAADw10WBFIDB1dVVgYGB98RY5cqVU7ly5W5jIgAAAAAAAAAA4AxYYhcAAAAAAAAAAACA06BACgAAAAAAAAAAAMBpsMQuAAAAAAAAAAAACs2WZ3YC4NYwgxQAAAAAAAAAAACA06BACgAAAAAAAAAAAMBpUCAFAAAAAAAAAAAA4DQokAIAAAAAAAAAAABwGhRIAQAAAAAAAAAAADgNN7MDAAAAAAAAAAAA4N5hs1nMjgDcEmaQAgAAAAAAAAAAAHAaFEgBAAAAAAAAAAAAOA0KpAAAAAAAAAAAAACcBu8gBYB73Hs/VTE7giRpd95psyNIkhb+8yGzI/zh1O9mJ5AkxQ/NMDuC4XGb2Qkue2Z4WbMjGCw+95kdQZL0478PmB3BUGz5CbMjSJLu+0cjsyM4nFMfbTE7giTpg5+qmh3BcLFhnNkRJEkjto02O4IhZ+sqsyNIkuKSvjA7gsEtooPZESRJNY8dMjuCJMlSNdDsCIbany83O4Ik6aUXVpodwXDOlmN2BEnS4jUDzY7gcHI+m212BINbl35mR7jM1d3sBJflZpudwJCT4Bi/TpqPSDU7gmH18yXMjiBJavHuf82O4HC+er+12REAODFmkAIAAAAAAAAAAABwGswgBQAAAAAAAAAAQKHZ8sxOANwaZpACAAAAAAAAAAAAcBoUSAEAAAAAAAAAAAA4DQqkAAAAAAAAAAAAAJwGBVIAAAAAAAAAAAAAToMCKQAAAAAAAAAAAACn4WZ2AAAAAAAAAAAAANw7bHkWsyMAt4QZpAAAAAAAAAAAAACcBgVSAAAAAAAAAAAAAE6DAikAAAAAAAAAAAAAp0GBFAAAAAAAAAAAAIDToEAKAAAAAAAAAAAAwGm4mR0AAAAAAAAAAAAA9w6bzewEwK1hBingxI4dO6YlS5aYHeMa69evl8ViMTvGNeLj4xUWFnbL/YSFhSk+Pv6W+wEAAAAAAAAAAEXHDFLAiQ0ZMkQ2m02dOnUyO4pTWbp0qTw8PMyOAQAAAAAAAACAU6JACjgxG+sgmKJ06dJmRwAAAAAAAAAAwGmxxC7gIH7++WeFh4fL29tbAQEBGjlypHJzc1WlShV99NFHRjubzaaqVatqwYIFkqQNGzaoYcOG8vLyUp06dZSYmGi0tVqtiomJUWRkpLy9vXXfffdp/vz5ki4vFztv3jzNmzdPAQEBkiSLxaLhw4erbNmyCg8PlyRt3rxZjz/+uHx8fFS9enXNnDnTrv8BAwaobdu28vLyUmhoqDZt2iRJGjNmjOrWrWt3j5MmTVKTJk1u27ORpLlz5yosLExjxoxRqVKlVLFiRc2fP18JCQny9/dXyZIlNWTIEKOvgIAATZkyRXXr1pWPj4+eeeYZHTlyxDi/a9cuPfXUU/Ly8lJwcLDef//9IueVLj/LP2/Vq1eX9McSu3v27JHFYtFPP/1kXJeZmSkXFxf9/PPPNzUuAAAAAAAAAAAoGAVSwAHYbDZ17NhR5cuXV0pKiubOnauFCxdq7Nix6tSpk5YuXWq03bJli44fP6527drpyJEjevbZZ2W1WpWWlqYhQ4bIarVqw4YNRvvp06erQYMG2rVrlyIiItS7d29lZWXp9ddfV+fOndW5c2dt3brVaJ+UlKSNGzdq/PjxSk9PV9OmTfXEE09ox44dio+P16BBg7Rs2TKj/cyZM1WrVi2lpKToySefVJs2bfTbb78pKipKaWlpysjIMNouXrxYUVFRt+3ZXLF582b997//1datWxUdHa1XXnlFU6dOVVJSkiZPnqwJEyYoJSXFaD9ixAgNHjxYW7Zs0blz5xQRESFJOn/+vJ5++mk9/vjj+s9//qOJEydq1KhRRlG5KA4fPmxsO3bsUMmSJTVo0CC7NjVr1lS9evXsPt+EhAQ1btxY9913X5HHBAAAAAAAAAAAN8YSu4ADWLdunQ4cOKDvvvtOLi4uCg4O1sSJE2W1WpWcnKywsDCdPn1axYsXV0JCgtq0aaPixYtrwoQJat68ufr37y9JCgwMVEpKiqZMmWLM1KxXr54GDx4sSRo1apSmTp2q3bt3q3HjxvLy8pIklStXzsjSu3dvBQcHS5JiYmIUGhpqFCODg4OVnp6uCRMmLMFo5AABAABJREFUqEOHDpKkWrVqafz48ZKkyZMna+XKlVq0aJH69++vhx9+WEuWLNGwYcN04MAB7dixQ0lJSbft2bz55puSpLy8PE2bNk0+Pj7q1auXpkyZopEjR6pu3bqqW7euhg4dqj179ig0NFSS9NJLL6lr166SpDlz5qhGjRratWuXvvvuO5UvX15vvfWWJCkoKEjDhg3TlClT1K1btyLlrlixoiQpJydHnTp1UsuWLY3P6WpRUVFKTEw0iqcJCQmyWq3X7ffixYu6ePGi3bEcW67cLK5FygcAAAAAAAAAN8uWZzE7AnBLKJACDiA9PV3Hjx+Xn5+fcSwvL0/nz59XUFCQKlWqpOTkZEVFRWnp0qWaMGGCcV1SUpJ8fX2N67Kzs/XAAw8YXwcFBRn7V/rPzs6+bpYry+1e6b9Ro0Z25xs3bmy3zO5jjz1m7Lu4uCg0NFTp6emSpOjoaM2dO1fDhg3T4sWLFRYWpvLlyxfqmVyd4XrP5vjx45KkChUqyMfHR5KMou/V9+Hl5WVXVLw6c/Xq1VW6dGmlp6crPT1dO3futHueubm5cnO7+T8qBw8erGPHjunzzz/P93xUVJSGDRumX375RZcuXdLOnTvVqVOn6/Y3btw4jRw50u5YkxK19UTJOjedEQAAAAAAAAAAZ0KBFHAAOTk5qlmzplasWHHNuRIlSigyMlKJiYkKCgrSr7/+qmeeeca4rmvXroqNjbW7xt3d3dj38PC4pk+bzXbdLJ6envnuX5Gbm2u8//PPY1057+JyefXuyMhIDRo0SPv27VNCQoJ69ep13XGv50bPRlK+BcwrGfJzvcw5OTlq1qyZZsyYUeSc+VmyZIlmzpypLVu2qHjx4vm2CQgI0EMPPaRly5bpwoULeuKJJ4zZp/kZOnSoYmJi7I6NrdPztuQFAAAAAAAAAMAZ8A5SwAEEBwfr4MGDKleunAIDAxUYGKiffvpJI0aMkMViUVRUlNasWaOEhASFh4fL29vbuC4zM9O4JjAwUCtWrNAnn3xSqHEtloKXQQgODtaWLVvsjm3evNlYgleSUlNTjf3c3Fylpqaqbt26kqRKlSopLCxMc+bM0c6dO9WxY8dC5fpzhoKezc24OvO+ffuUlZWlunXrKjg4WBkZGapevbox1pYtW/Tee+8VeYz09HS99NJLeu+994zncT1RUVFKTk7W8uXLb/iO1mLFisnPz89uY3ldAAAAAAAAAAAKjwIp4ABatmwpf39/de3aVWlpadqwYYN69eolb29vubq6KiQkRJUrV9b06dMVGRlpXNe3b19t27ZNcXFxyszM1MKFCxUbGyt/f/9Cjevj46P9+/fr0KFD+Z7v27evUlNTFRsbq4yMDM2bN08zZsxQv379jDbr16/XpEmTtHfvXg0cOFDnzp2zWyI2Ojpa7777rlq0aKFSpUrd9mdzM6ZOnaqVK1fqP//5j1566SW1aNFCQUFB6tq1q86dO6fevXtrz549+vzzzzVgwIAiLwt85swZRUREqF27dmrXrp2OHDlibFfPvr2ic+fO+uabb7Rt2zZFRETc1D0BAAAAAAAAAIDCoUAKOABXV1etXLlSeXl5atSokSIiItSmTRtNmzbNaBMZGSlXV1e1bt3aOObv76+kpCR98cUXql27tuLi4jRp0iR16dKlUON269ZNe/fuVb169fJddrdatWpatWqVvvzyS9WpU0ejR4/W5MmT9eKLLxptwsPDtW7dOoWEhCglJUVr165VyZIljfMRERHKycm54czI6ynMsykqq9WqoUOHqnHjxqpUqZI+++wzSVLx4sX1xRdfKCMjQyEhIerZs6f69++voUOHFqn/bdu2KT09XZ988onKlSunSpUqGdvPP/98TfvKlSurYcOGCgsLU5kyZW76vgAAAAAAAAAAwI3xDlLAQdSoUUPJycnXPR8fH6/4+Phrjjdv3lzbt2/P95q5c+dec+zqQmijRo10+PDhfM9d0axZM+3YseO6uUqVKpXvOFf89ttv8vDwULt27a7b5s/CwsLsshT0bKxWq6xWq/F1QEDANfexf/9+u6/r1q2ryZMn59tf/fr19c033+R7Lr/nn58/5/+z9evXF+oYAAAAAAAAADgiW97Nvf4McBQUSAHcEadPn9bq1as1a9YsRUdHy9fX1+xIAAAAAAAAAAAALLEL4M7p0aOHTpw4oTFjxhjHjh07Jl9f3wI3Rzd58uQC87/yyitmRwQAAAAAAAAAANfBDFIAN62gpXWLFy+ukydPXnO8TJkySk1NvWOZbuTPy+3ejJdeeknh4eHXPe/n53fLYwAAAAAAAAAAgDuDAimAu8rV1VWBgYFmx7glJUuWVMmSJc2OAQAAAAAAAAAAbgJL7AIAAAAAAAAAAABwGswgBQAAAAAAAAAAQKHZbGYnAG4NM0gBAAAAAAAAAAAAOA0KpAAAAAAAAAAAAACcBgVSAAAAAAAAAAAAAE6DAikAAAAAAAAAAAAAp0GBFAAAAAAAAAAAAIDTcDM7AAAAAAAAAAAAAO4dtjyL2RGAW8IMUgAAAAAAAAAAAABOgwIpAAAAAAAAAAAAAKdBgRQAAAAAAAAAAACA06BACgAAAAAAAAAAAMBpuJkdAABwa+pfMDvBZQeKuZsdQZKUt32r2RH+kJ1tdgJJUsvzFrMjGHY5yK+TpzIPmB3B4N5rkNkRJEn/c59tdgRDS2slsyNIklwebmV2hMssjvN/Gv3y8syOIEl6ZvhesyMYPD1yzI4gScrZusrsCAa3h541O4IkKWf1WrMjGFyrh5gdQZJ0duZCsyNIknynRZkdwXDpxAKzI0iSWuWUMzuCIcvV7ASX2S6eNTuCwXbsoNkRLivmYXYCQ+76pWZHkCRZyjrI7x0H+RlJksP87NjA3UE+G0l5J383O4Ik6UH30mZHcDh5u3aZHeEP7cwOAOBuo0AKAAAAAAAAAACAQrPZHOc/5AM3wzH+SxEAAAAAAAAAAAAA3AUUSAEAAAAAAAAAAAA4DQqkAAAAAAAAAAAAAJwGBVIAAAAAAAAAAAAAToMCKQAAAAAAAAAAAACn4WZ2AAAAAAAAAAAAANw7bHlmJwBuDTNIAQAAAAAAAAAAADgNCqQAAAAAAAAAAAAAnAYFUgAAAAAAAAAAAABOgwIpAAAAAAAAAAAAAKdBgRQAAAAAAAAAAACA03AzOwAAAAAAAAAAAADuHXk2i9kRgFvCDFLgL+TYsWNasmSJ2TGKLD4+XmFhYYVqa7VaZbVab2qc/fv3y2KxaP/+/Tdsu379elks1/8mX5TMBQkLC1N8fPwt9wMAAAAAAAAAAAqHAinwFzJkyBAlJyebHQMAAAAAAAAAAMBhUSAF/kJsNpvZEQAAAAAAAAAAABwaBVLgDvn5558VHh4ub29vBQQEaOTIkcrNzVWVKlX00UcfGe1sNpuqVq2qBQsWSJI2bNighg0bysvLS3Xq1FFiYqLR1mq1KiYmRpGRkfL29tZ9992n+fPnS7q85Ou8efM0b948BQQESJIsFouGDx+usmXLKjw8XJK0efNmPf744/Lx8VH16tU1c+ZMu/4HDBigtm3bysvLS6Ghodq0aZMkacyYMapbt67dPU6aNElNmjQp1PPYvn27HnnkEXl5ealx48YaPnz4dZeoLSijJJ06dUrt27eXp6en6tSpo3//+9/GuUOHDum5555TqVKlVKxYMdWvX18bN24sVMb8vPfeeypbtqzKli2ruLi46xahb5R58uTJCggIkK+vr1q1aqWffvrpmj5+/PFHVahQQSNGjLjpvAAAAAAAAAAAoGAUSIE7wGazqWPHjipfvrxSUlI0d+5cLVy4UGPHjlWnTp20dOlSo+2WLVt0/PhxtWvXTkeOHNGzzz4rq9WqtLQ0DRkyRFarVRs2bDDaT58+XQ0aNNCuXbsUERGh3r17KysrS6+//ro6d+6szp07a+vWrUb7pKQkbdy4UePHj1d6erqaNm2qJ554Qjt27FB8fLwGDRqkZcuWGe1nzpypWrVqKSUlRU8++aTatGmj3377TVFRUUpLS1NGRobRdvHixYqKirrh88jKylLr1q3VoEEDpaam6vnnn9e4cePybVuYjMuWLVOdOnWUmpqqli1bqkOHDsrKypIkde3aVbm5udq8ebNSUlJUtWpV9enTpxCfWv4WLFigtWvXas6cOZoxY4bmzZtX5MyzZs3SyJEj9fbbbyslJUV+fn7q1KmTXR+//vqrWrVqpc6dO2vkyJE3nRcAAAAAAAAAABTMzewAwF/RunXrdODAAX333XdycXFRcHCwJk6cKKvVquTkZIWFhen06dMqXry4EhIS1KZNGxUvXlwTJkxQ8+bN1b9/f0lSYGCgUlJSNGXKFGOmZr169TR48GBJ0qhRozR16lTt3r1bjRs3lpeXlySpXLlyRpbevXsrODhYkhQTE6PQ0FCNHTtWkhQcHKz09HRNmDBBHTp0kCTVqlVL48ePl3R51uPKlSu1aNEi9e/fXw8//LCWLFmiYcOG6cCBA9qxY4eSkpJu+Dw+++wz+fr6atq0aXJ1dVVwcLA2btyow4cPX9N29uzZN8zYsGFDvfXWW5Kkd955R8uXL9enn36q3r17q3379oqIiFDVqlUlSf369VObNm0K/dn92Zw5c1SrVi2Fhobqtdde08yZM2W1WouUedasWfr73/+uyMhISZeL3BMnTtT58+clSWfPntUzzzyjRo0aadq0aTedFQAAAAAAAADuBpvNYnYE4JYwgxS4A9LT03X8+HH5+fnJ19dXvr6+ioyM1IkTJxQUFKRKlSopOTlZkrR06VJjFmZ6erqSkpKMa3x9fTV9+nS7WZtBQUHGvp+fnyQpOzv7ulmuLLd7pf9GjRrZnW/cuLHS09ONrx977DFj38XFRaGhocb56OhoLVmyRNLl2aNhYWEqX778DZ/Hf/7zH9WvX1+urq7GsUcffTTftoXJ+PDDD9tlDAkJUXp6uiwWi/r06aN169bplVdeUVhYmJ577jnl5eXdMGN+fHx8VKtWLePr+vXr2+UobOa9e/eqQYMGxrkKFSronXfeMQra06ZN07Zt21S1alVZLAX/YHHx4kWdOnXKbsu25d7U/QEAAAAAAAAA4IyYQQrcATk5OapZs6ZWrFhxzbkSJUooMjJSiYmJCgoK0q+//qpnnnnGuK5r166KjY21u8bd3d3Y9/DwuKbP670XU5I8PT3z3b8iNzdXubl/FNiuHuvKeReXy/+XIjIyUoMGDdK+ffuUkJCgXr16XXfcq7m5uV2T8XqZC5Px6kKrJOXl5cnDw0N5eXlq0aKFTp48qcjISLVt21aXLl1Sx44dC5Xzz67c95/HKWrmPz/TP6tfv75iYmLUpUsXWa1WPfjgg9dtO27cuGuW4O3sU1uRvnUKHAMAAAAAAAAAAFzGDFLgDggODtbBgwdVrlw5BQYGKjAwUD/99JNGjBghi8WiqKgorVmzRgkJCQoPD5e3t7dxXWZmpnFNYGCgVqxYoU8++aRQ495o9mFwcLC2bNlid2zz5s3GErySlJqaauzn5uYqNTVVdevWlSRVqlRJYWFhmjNnjnbu3FnowmOtWrWUmppqN5Nz+/btN50xLS3N2M/JydGOHTtUs2ZN/fDDD/rmm2/01VdfKTY2Vs8884yxjG9BReTrOX36tA4cOGB8/f3336tmzZpFzhwUFKSdO3ca544fP65y5cpp//79kqRWrVqpU6dOdssrX8/QoUOVlZVlt3X0+VuR7w0AAAAAAAAAAGdFgRS4A1q2bCl/f3917dpVaWlp2rBhg3r16iVvb2+5uroqJCRElStX1vTp0433UkpS3759tW3bNsXFxSkzM1MLFy5UbGys/P39CzWuj4+P9u/fr0OHDuV7vm/fvkpNTVVsbKwyMjI0b948zZgxQ/369TParF+/XpMmTdLevXs1cOBAnTt3Tp06dTLOR0dH691331WLFi1UqlSpQuWKjo7WqVOnFBMTo4yMDM2ePVuLFi3Kt6BbmIzffPONxowZoz179mjAgAG6dOmSoqOjVbJkSbm4uGjRokU6cOCAEhISNGLECEmXl6YtKhcXF3Xv3l2pqalasmSJpk2bpr///e9FzjxgwAC9++67WrFihTIyMvTKK6+oevXqdssfS9KUKVO0YcMGLVq06LqZihUrJj8/P7vN3eJ63fYAAAAAAAAAAMAeBVLgDnB1ddXKlSuVl5enRo0aKSIiQm3atNG0adOMNpGRkXJ1dVXr1q2NY/7+/kpKStIXX3yh2rVrKy4uTpMmTVKXLl0KNW63bt20d+9e1atXL98Zk9WqVdOqVav05Zdfqk6dOho9erQmT56sF1980WgTHh6udevWKSQkRCkpKVq7dq1KlixpnI+IiFBOTo7x3tTC8PX1VVJSkr7++mvVqVNH8+bNU5cuXfJdrrYwGV944QVt2LBB9erV0/fff6/k5GR5e3uratWq+uc//6m3335btWrV0rhx4zRt2jS5ubkpJSWl0HmvKFWqlJ555hmFhYXp1VdfVXx8fL6zZm+UuWvXrnr99dfVt29f1a9fX+fPn1dCQsI1/TzwwAMaOHCgBg0apNOnTxc5LwAAAAAAAAAAuDGL7WbWnQTwl2S1WiVJc+fOvW6bzMxMhYSE6OjRo/L19S1Uvz/99JMOHTqkxx9/3DjWr18/nT17tsCxUDhLKz5vdgRJ0rJiF8yOIEma+bKX2RH+kJ1tdgJJ0pYPCl5++27aVazgd/LeLS8/d8rsCAb3XoPMjiBJmt1ittkRDC/1d4xfJ67h3c2OcJnFcf5PY97mZLMjSJLSh+81O4LB0yPH7AiSpOrTW5kdweD20LNmR5AkXRg90OwIhmID3jQ7giTp7JDBZkeQJPlO+6fZEQzn418zO4IkaemqcmZHMGQ5yAI1vZc9Z3YEg+3YQbMjSJLytn9vdgSDpWwZsyNIkixlHeT3zlWvFDJbXuY+syNIkobOLvpKXnfK6Ba/mx1BkhSz1s/sCA5nak9vsyMYfIZ9bHaEe86eB9qYHeGeUzPjc7Mj4CpuZgcAcG84ffq0Vq9erVmzZik6OrrQxVFJysrKUvPmzbVgwQI99NBD2r59u+bPn69PP/30DiYGAAAAAAAAAAC4FgVSAIXWo0cP3X///VqwYIFx7NixY6pRo0aB1505c0bTp0/X0KFD9fPPP6tatWqaPHmynnnmmTsdOV+FzQwAAAAAAAAAAP56KJACMBS03G3x4sV18uTJa46XKVNGqampN+y7R48e6tGjx82Hu40KmxkAAAAAAAAAAPz1UCAFcEtcXV0VGBhodowiuRczAwAAAAAAAACA28PF7AAAAAAAAAAAAAAAcLcwgxQAAAAAAAAAAACFZrOZnQC4NcwgBQAAAAAAAAAAAOA0KJACAAAAAAAAAAAAcBoUSAEAAAAAAAAAAAA4DQqkAAAAAAAAAAAAAJwGBVIAAAAAAAAAAAAATsPN7AAAAAAAAAAAAAC4d9jyLGZHAG4JM0gBAAAAAAAAAAAAOA0KpAAAAAAAAAAAAACcBgVSAAAAAAAAAAAAAE6DAikAAAAAAAAAAAAAp0GBFAAAAAAAAAAAAIDTcDM7AADg1hSz2cyOIEk6nHfW7AiSJJcaD5odwWA7c8bsCJKkLZ6/mR3B8GrLY2ZHkCS5VKpqdgTDby+ONDuCJOm0S2WzIxiOJxw0O4IkyT3ZMT4bW57F7AgGjxJ5ZkeQJF3KLWN2BMNnud5mR5AkxSV9YXYEQ87qtWZHkCR5xk01O4LhwvB+ZkeQJP26y9PsCJIk90n/MDuCwTNugtkRJEmLvxhqdgTD+bxssyNIkl6aPdPsCIa8izlmR5Akeb31rtkRDBdGxJgdQZJk8SlmdgRJksXNceaguPeLNTuCJGnt1AFmRzBMGj3f7AiSpG+WdzE7gsNxbTrI7Ai4BXk2x/m7KnAzHOe7NwAAAAAAAAAAAADcYRRIAQAAAAAAAAAAADgNCqQAAAAAAAAAAAAAnAYFUgAAAAAAAAAAAABOgwIpAAAAAAAAAAAAAKfhZnYAAAAAAAAAAAAA3DtsNovZEYBbwgxSAAAAAAAAAAAAAE6DAikAAAAAAAAAAAAAp0GBFAAAAAAAAAAAAIDToEAKAAAAAAAAAAAAwGlQIAUAAAAAAAAAAADgNNzMDgAAAAAAAAAAAIB7h81mdgLg1jCDFAAAAAAAAAAAAIDToEAK/Elqaqo2bdpkdgw78fHxCgsLu+Pj7N+/XxaLRfv377/jY90JFotF69evNzsGAAAAAAAAAABwYBRIgT/p0KGDMjIyzI6Bm3D48GE1btzY7BgAAAAAAAAAAMCB8Q5S4E9sLJ5+z6pYsaLZEQAAAAAAAAAAgINjBilwlbCwMB04cEAvvviiAgICFBAQoD59+qhEiRJ6++23denSJcXExKhKlSpyd3dXQECAPvjgA+P6s2fPqnfv3ipTpozKlCmjXr166cKFC5KkkydPqlu3bvLz81PlypX16quv6vz58zeVc8OGDWrYsKG8vLxUp04dJSYmGuesVqtiYmIUGRkpb29v3XfffZo/f36R+l+2bJnuv/9+eXt7Kzw8XL///rtx7sMPP1TNmjXl4eGhsmXLql+/fsrNzTXGtlqtqlevnsqXL6/MzExZLBYtWbJEDz74oLy9vRUdHa2ffvpJTZs2lbe3t5o0aaJDhw4Z/a9atUr169eXl5eX/va3v2np0qXGubCwMI0ZM0atWrWSl5eXHnjgAa1evdo4f/USuwV9FgVZv369AgICNGfOHFWsWFGlSpXShAkT9M0336hmzZoqXry4unfvrry8PEmXC+pvvfWWKleurJIlS6pt27Y6ePCg0d8PP/ygVq1aqXjx4vL09FSTJk2Unp5uN9Y///lPValSRT4+PurWrZsuXrxYpM8LAAAAAAAAAAAUHgVS4CpLly5V1apVNWXKFE2dOlUHDhzQhQsXtH37dkVHR2vcuHFKTk5WYmKi9u7dqxdeeEH9+/fX0aNHJUk9evTQt99+q5UrV2rt2rX69ttvFRcXJ0l6+eWXlZWVpY0bN2r58uXaunWr+vfvX+SMR44c0bPPPiur1aq0tDQNGTJEVqtVGzZsMNpMnz5dDRo00K5duxQREaHevXsrKyur0GPMmzdPixYt0r///W9t375db7/9tiTp66+/1oABAzR27FhlZGRo5syZ+te//qUVK1YY186fP1+jR49WcnKygoKCJEnDhw/X3LlzjWfXuHFj9enTR5s2bdLhw4c1YcIESdK6devUsWNHde/eXTt37lSPHj0UGRmp7du3G/2PGTNG0dHR2rVrl0JCQtSzZ0+jWHm1gj6LG/nll1+0bNkyff311xo2bJiGDh2q1157TXPnztWnn36qzz77zLjn6dOn65NPPtHChQu1ZcsWVahQQS1btlR2drby8vLUtm1bVa9e3Xi3bU5OjoYMGWI3VkJCgr788kstXbpUiYmJ+vjjjwv9WQEAAAAAAADA3ZZns7AVcYNjYYld4CqlS5eWq6urSpQooRIlSkiShgwZosDAQElSvXr11KxZMz3yyCOSpNjYWI0aNUoZGRny8PDQkiVL9NVXX+mxxx6TJM2aNUupqan68ccftXz5cp04ccLod/bs2QoJCdHkyZONY4UxY8YMNW/e3CiuBgYGKiUlRVOmTFGTJk2MnIMHD5YkjRo1SlOnTtXu3bsL/X7OCRMm6KGHHpIkde7cWTt37pQk+fr66l//+pc6duwoSQoICNCkSZO0e/du49hDDz2ktm3b2vX397//XY0aNZIkhYaGKjg4WJ06dZIkRUREKDU1VdLlYuNzzz2n1157TZIUExOj77//XhMnTtSnn34qSXrmmWdktVolSXFxcapXr56OHDmiypUrG+P9/vvv1/0sCiM7O1uTJk3SAw88oGrVqumNN95Q//79jc89JCREe/bsMZ7V+++/r7CwMGOcSpUq6csvv1TTpk31yiuvqG/fvvLx8ZF0eZbtlYLwlbGmTZumWrVqqU6dOmrdurW2bt2qnj17FiorAAAAAAAAAAAoGgqkwA0EBAQY++3bt9fatWs1aNAg7dmzRzt27JAk5ebmat++fcrNzVWDBg2M9k2aNFGTJk20atUq5eXlqUqVKnZ95+Xlad++fXbX3Eh6erqSkpLk6+trHMvOztYDDzxgfH1l5qYk+fn5GW0K6/777zf2S5QoYSxN26BBA3l5eWnEiBHavXu30tLSlJmZqVatWhntr35eV9SoUcPY9/Lysmvj5eVlLCmbnp6uV155xe7axo0ba86cOUW6t4I+i8K6ktnLy+ua+7qS+cyZM/rf//6nyMhIubj8MSH//PnzysjIUNu2bdWnTx99/PHH2rZtm/FrpkKFCnZj/fmeCvqsLl68eM0SvNm2XLlbXAt9bwAAAAAAAAAAODMKpMANeHp6GvtxcXGaPXu2XnzxRXXv3l3vv/++UThzd3e/bh85OTkqUaKEtm3bds25PxdNbyQnJ0ddu3ZVbGys3fGrx/fw8LjmOpvNVugxXF3ti21Xrl29erXat2+v7t276+mnn9aIESPUt29fu7ZXP68r3Nzs/6i5uph4o2tzc3ONd5xKhbu3gj6LwipM5pycHEnSkiVLFBwcbHeudOnSOnPmjB566CGVLVtW4eHhio6O1p49ezRx4kS7tn++p4I+q3HjxmnkyJF2x6K9a6mLb50b3xQAAAAAAAAAAOAdpMCfWSzXXwt85syZmj59usaPH6/IyEidPXtW0uWCVo0aNeTq6mosRytJK1asUP369RUcHKysrCxZLBYFBgYqMDBQ58+f1xtvvHHNbMAbCQ4OVmZmptFPYGCgVqxYoU8++eTmbrgIZs+erZdeekmzZs3Syy+/rAcffFA//vhjkYqvBQkODtaWLVvsjm3evPma4uONFPRZ3E4lS5ZU+fLldeTIEeOzqFatmgYPHqy9e/dq/fr1+uWXX/Tvf/9bb7zxhpo3b66DBw/e0vMaOnSosrKy7LbOPn+7jXcFAAAAAAAAAMBfGwVS4E98fHy0Z88enThx4ppzZcqUUVJSkv773//q22+/Vbdu3SRdXvbUz89PL7zwggYMGKDvv/9e27ZtU2xsrJo1a6YHH3xQrVu3VpcuXbR161bt2LFDVqtVZ86cUcmSJYuUr2/fvtq2bZvi4uKUmZmphQsXKjY2Vv7+/rfj9gtUpkwZbdq0SWlpadq9e7esVqsOHz5c5CLv9fz9739XQkKCpk6dqszMTL377rtaunTpNbNUb6Sgz+J2i4mJ0bBhw5SUlKTMzEz16NFDGzduVM2aNVWmTBmdOXNGy5cv1/79+/Xhhx9q+vTpt/S8ihUrJj8/P7uN5XUBAAAAAAAAACg8CqTAn/Tt21fTp09Xjx49rjk3Z84cpaamqlatWrJarercubMefvhhpaSkSJKmTJmievXqqUWLFnr66af11FNPafTo0ZKk+fPnq3r16mrWrJmaN2+u4OBgLVq0qMj5/P39lZSUpC+++EK1a9dWXFycJk2apC5dutzajRdCfHy8ypcvr0ceeUQtWrSQp6en+vTpY9z/rWrUqJHmz5+vf/7zn6pdu7Y++ugjLV68WE2bNi1yXwV9FrfT66+/rh49eqhXr14KCQnRgQMHtHr1apUqVUqPPvqohg8frr59+6pu3bqaO3euZsyYoWPHjunQoUO3PQsAAAAAAAAA3A02m4WtiBsci8V2u9bGBACYIrlCtNkRJEnvelw769oMSeMamh3BYDtzxuwIkqR3x/1mdgTDqy1/NTuCJMntgapmRzD8vnS/2REkSR//UtnsCIau5Q+bHUGS5O6Ve+NGd4Etz3H+EuVRIs/sCJKkzJQyZkcwLPMoZnYESVJcm5NmR/iDh9uN29wFnnFTzY5guDC8n9kRJEmH/+0Yf/2v/Ixj/L6RJI+Bo8yOIElq/9hQsyMYzudlmx1BkrTyWcdZKSfvYo7ZESRJXm+9a3YEw4URMWZHkCRZfBzjzxOLm+PMQXHvF2t2BElSyKMDzI5g+E/afLMjSJJq1b7zkxvuNf9ZOcjsCAbPRx3j39fuJSnV2pkd4Z4TenCF2RFwFcf57g0AAAAAAAAAAAAAd5hj/NdewIklJibqhRdeuO75Jk2a6IsvvrgtY5UtW1YXLly47vkffvhB1apVuy1jOaJjx46pRo0aBbY54yAz/gAAAAAAAAAAwJ1BgRQwWatWrZSamnrd815eXrdtrO+//155eddfGq9yZcdZXvFOKFOmTIHPGgAAAAAAAAAA/PVRIAVM5uvrq8DAwLsy1o1mT/7Vubq63rVnDQAAAAAAAAAAHBMFUgAAAAAAAAAAABSazWZ2AuDWUCAFAAAAAAAAAAAA7gE2m02rVq1SYmKi0tPTde7cOZUrV04PPfSQunTporp1697yGBkZGfroo4/03Xff6dixYypevLjuv/9+tW/fXh06dJCrq+td6eNOokAKAAAAAAAAAAAAOLgLFy5o4MCBWr9+vd3xQ4cO6dChQ0pKStJrr72mXr163fQYS5Ys0ciRI5WdnW0cO3HihE6cOKGtW7dq2bJlmjFjhkqWLHlH+7jTKJACAAAAAAAAAAAADm7YsGFGcfT+++9X586dVbZsWe3evVuLFi3SuXPnNGnSJFWoUEHt2rUrcv8bNmzQm2++KZvNJi8vL0VFRal27do6fvy4EhISlJGRoW3btikmJkYffvihXFxc7kgfdwMFUgAAAAAAAAAAAMCBbdy4UatWrZIkPfLII/rggw9UrFgxSdKzzz6r5557Ts8//7xOnjypsWPHqlmzZvL19S10/5cuXVJ8fLxsNpu8vb21YMEC1apVyzgfHR2tmJgYrV27Vhs3btTnn3+uZ5999rb3cbeYU5YFAAAAAAAAAAAAUChz5syRJLm5uWn06NFGcfSK+++/X2+++aYk6eTJk1qyZEmR+l+zZo3+97//SZJ69OhhV9iUJA8PD7399tvGsrizZs26I33cLRRIAQAAAAAAAAAAUGh5NgtbEbdbcfLkSW3atEmS1KRJE9133335tmvTpo3KlCkjSfryyy+LNMbnn38uSbJYLIqOjs63jY+Pjzp27ChJysjI0E8//XTb+7hbKJACAAAAAAAAAAAADmrbtm3Ky8uTdHl53etxcXHRQw89JEnauXOnsrKyCj3G1q1bJUnBwcEqXbr0ddtdPf4333xz2/u4WyiQAgAAAAAAAAAAAA4qMzPT2H/ggQcKbBsYGChJstlsysjIKFT/R48e1alTpyRJQUFBBba9//77jf09e/bc1j7uJgqkAAAAAAAAAAAAgIM6dOiQsV+lSpUC21asWDHf6wpy5b2hhem/QoUKcnG5XF785ZdfbmsfdxMFUgAAAAAAAAAAAMBBnThxwtgvVapUgW1Llixp7J88ebJQ/f/++++F7t/d3V3e3t7X9H87+rib3EwZFQAAAAAAAAAAAHASzZo1K/D8//3f/1333IULF4z9YsWKFdiPh4dHvtcV5Pz584Xu/0qbM2fO2PV/O/q4myiQAsA9zl02syNIkkq5eJodQZJku+p/Kpnu3Pkbt7kLHr2QbXYEwwery5sdQZLUp+IZsyMYyn06wewIkqSyj08xO4KhTJdAsyNIktza9zQ7gsPJ/SbR7AiSJJ8fdpkdwRCVm2t2BEmSW0QHsyMYXKuHmB1BknRheD+zIxg8R80wO4IkqeLQV8yOIEkqNmi82REM5wb3NzuCJCkir5LZEQxnHGStMfduT5sdwWD7/ajZESRJlyYPMzuCwf3xULMjXFaytNkJLsvNMTuB4dLU0WZHkCS18K5udgTD2Zg+ZkeQJD3p4zjPxFHk/l+y2RH+8Gi02QnuOTabxewITiUn54/vNVcXQPNz9fmrrytI7lV/t71R/1e3ubr/29HH3USBFAAAAAAAAAAAALiDCpoheiOenn9MTsnOzi6wAHnp0iVjvzCFSsl+xmd29o0nW1wZw93d/bb2cTc5yP8LBAAAAAAAAAAAAPBnV97XKUkXL14ssO3VBdLCLHVb1P6vbnN14fZ29HE3USAFAAAAAAAAAAAAHJSfn5+xf/LkyQLbXn2+dOnCLUd/df9ZWVkFts3Ozta5c+eu6f929HE3USAFAAAAAAAAAAAAHFRAQICxf/jw4QLbHjlyxNivXLnybe//6NGjysvLu6b/29HH3USBFAAAAAAAAAAAAHBQ999/v7GfmZlZYNsr5y0Wi4KCggrVf6lSpVSmTJlC9b9v3z5j/4EHHritfdxNFEgBAAAAAAAAAABQaHk2C1sRt1sRGhoqd3d3SdJ333133Xa5ubnaunWrJKlmzZp2y97eyEMPPSRJSk9P1+nTp6/bbsuWLcb+ww8/fNv7uFsokAIAAAAAAAAAAAAOys/PT4888ogkad26dfrll1/ybZecnKwTJ05Ikp5++ukijdGqVStJUk5Ojj799NN825w5c0bLli2TJFWvXl01a9a87X3cLRRIAQAAAAAAAAAAAAdmtVolSdnZ2YqJidGZM2fszu/bt09jxoyRJPn4+KhTp05F6r958+aqWrWqJGnGjBnatm2b3flLly5p8ODBOnnypCTpxRdfvCN93C1upo0MAAAAAAAAAAAA4IYef/xxtWrVSqtXr1ZKSoratWun6OhoVapUST/88IM+/fRTnT17VpI0ePBglS5d2u767777Tt27d5d0eVnb+fPn25338PDQsGHD1LdvX124cEFWq1WdOnVS/fr1dfLkSS1evFgZGRmSpPr16+u55567JuPt6ONuoUAKAAAAAAAAAAAAOLi3335bZ8+e1bfffqv//e9/euedd+zOWywW9e/fX1FRUTfVf9OmTTVixAiNGTNG2dnZWrhwoRYuXGjXpk6dOnr//ffl6up6x/q4GyiQAgAAAAAAAAAAAA7Oy8tLH374oZKSkrR8+XKlp6fr9OnTKlmypBo0aKDu3burQYMGtzRGdHS0GjZsqHnz5mnTpk369ddf5e7urgceeEBt27ZV586d5e7ufsf7uNMokAIAAAAAAAAAAKDQbGYHcGIWi0Xh4eEKDw8v0nWNGjXS3r17C9U2KChIo0ePvpl4t7WPO8nF7AAAAAAAAAAAAAAAcLdQIAUAAAAAAAAAAADgNCiQAnAIx44d05IlS8yOka9169YpPT3d7BgAAAAAAAAAAOA2oEAKwCEMGTJEycnJZsfIV7NmzXT06FGzYwAAAAAAAAAAgNuAAikAh2Cz8VpvAAAAAAAAAABw51EgBXCNn3/+WeHh4fL29lZAQIBGjhyp3NxcValSRR999JHRzmazqWrVqlqwYIEkacOGDWrYsKG8vLxUp04dJSYmGm2tVqtiYmIUGRkpb29v3XfffZo/f74kKT4+XvPmzdO8efMUEBAgSbJYLBo+fLjKli2r8PBwSdLmzZv1+OOPy8fHR9WrV9fMmTPt+h8wYIDatm0rLy8vhYaGatOmTZKkMWPGqG7dunb3OGnSJDVp0uSGz+JKnqeeekrx8fGaO3euHnvsMXXo0EElSpTQJ598olOnTumll15S+fLl5eHhoZo1a2r58uVGH8eOHVNkZKT8/PxUsWJFxcbGGgXh6z1rAAAAAAAAAHBUeTYLWxE3OBYKpADs2Gw2dezYUeXLl1dKSormzp2rhQsXauzYserUqZOWLl1qtN2yZYuOHz+udu3a6ciRI3r22WdltVqVlpamIUOGyGq1asOGDUb76dOnq0GDBtq1a5ciIiLUu3dvZWVl6fXXX1fnzp3VuXNnbd261WiflJSkjRs3avz48UpPT1fTpk31xBNPaMeOHYqPj9egQYO0bNkyo/3MmTNVq1YtpaSk6Mknn1SbNm3022+/KSoqSmlpacrIyDDaLl68WFFRUTd8HlfyJCYm6vXXX5ckbdq0SbVq1dKWLVvUqlUrDRw4UHv37tWaNWu0e/duNWnSRD169NClS5ckSe3bt9fhw4f19ddfa/Hixfroo480Y8aMAp81AAAAAAAAAAC4M9zMDgDAsaxbt04HDhzQd999JxcXFwUHB2vixImyWq1KTk5WWFiYTp8+reLFiyshIUFt2rRR8eLFNWHCBDVv3lz9+/eXJAUGBiolJUVTpkwxZmrWq1dPgwcPliSNGjVKU6dO1e7du9W4cWN5eXlJksqVK2dk6d27t4KDgyVJMTExCg0NNYqHwcHBSk9P14QJE9ShQwdJUq1atTR+/HhJ0uTJk7Vy5UotWrRI/fv318MPP6wlS5Zo2LBhOnDggHbs2KGkpKQbPo8reUqXLi1fX19Jl2e3Dhs2zMj85JNPatCgQapdu7Yk6fXXX9eHH36oo0eP6vfff9fmzZv13//+V9WrV5d0uZB75syZAp/1m2++eVOfHwAAAAAAAAAAKBgFUgB20tPTdfz4cfn5+RnH8vLydP78eQUFBalSpUpKTk5WVFSUli5dqgkTJhjXJSUlGUVEScrOztYDDzxgfB0UFGTsX+k/Ozv7ulmuLG97pf9GjRrZnW/cuLHdMruPPfaYse/i4qLQ0FClp6dLkqKjozV37lwNGzZMixcvVlhYmMqXL1+oZ/Jn5cuXN4qjktS9e3ctX75cH3zwgfbs2aPt27dLknJzc7V3716VLl3aKI5KUrt27SRdnlF7vWd9/PhxlSlT5pqxL168qIsXL9odu2TLlYfF9abuBQAAAAAAAAAAZ0OBFICdnJwc1axZUytWrLjmXIkSJRQZGanExEQFBQXp119/1TPPPGNc17VrV8XGxtpd4+7ubux7eHhc0+eVd3Hmx9PTM9/9K3Jzc+3e13n1WFfOu7hcXkk8MjJSgwYN0r59+5SQkKBevXpdd9wb+XOW7t27a9OmTerWrZv69OmjSpUq6dFHH80309Vu9KzzM27cOI0cOdLuWFfvWurmW7uotwEAAAAAAAAAgFPiHaQA7AQHB+vgwYMqV66cAgMDFRgYqJ9++kkjRoyQxWJRVFSU1qxZo4SEBIWHh8vb29u4LjMz07gmMDBQK1as0CeffFKocS2Wgl9SHRwcrC1bttgd27x5s7EErySlpqYa+7m5uUpNTVXdunUlSZUqVVJYWJjmzJmjnTt3qmPHjoXKdSOnTp3SwoUL9dlnn2nkyJHq0KGDTpw4Iely8TcoKEgnTpzQzz//bFwzbdo0tW/f/obPOj9Dhw5VVlaW3Rbp8+BtuRcAAAAAAAAAAJwBBVIAdlq2bCl/f3917dpVaWlp2rBhg3r16iVvb2+5uroqJCRElStX1vTp0xUZGWlc17dvX23btk1xcXHKzMzUwoULFRsbK39//0KN6+Pjo/379+vQoUP5nu/bt69SU1MVGxurjIwMzZs3TzNmzFC/fv2MNuvXr9ekSZO0d+9eDRw4UOfOnVOnTp2M89HR0Xr33XfVokULlSpVqtDPxMfHR7t27VJWVtY15zw9PeXj46PExETt379fq1evNt7DevHiRdWqVUtNmzbVyy+/rLS0NK1fv17jx49XixYtbvis81OsWDH5+fnZbSyvCwAAAAAAAOBustksbEXc4FgokAKw4+rqqpUrVyovL0+NGjVSRESE2rRpo2nTphltIiMj5erqqtatWxvH/P39lZSUpC+++EK1a9dWXFycJk2apC5duhRq3G7dumnv3r2qV69evsvuVqtWTatWrdKXX36pOnXqaPTo0Zo8ebJefPFFo014eLjWrVunkJAQpaSkaO3atSpZsqRxPiIiQjk5OYqKiirSMxkwYIDeeOMNxcfHX3POw8NDCxYsUEJCgv72t78pJiZGcXFxqlSpklJSUiRJCxYskI+Pjx555BE9//zz6tWrl/r27VuoZw0AAAAAAAAAAG4v3kEK4Bo1atRQcnLydc/Hx8fnWyxs3ry5tm/fnu81c+fOvebY1YXQRo0a6fDhw/meu6JZs2basWPHdXOVKlUq33Gu+O233+Th4aF27dpdt01+xo4dq7FjxxpfW61Wu/Pt2rW7ps+XXnrJ2K9UqZKWLVuWb983etYAAAAAAAAAAOD2okAK4C/v9OnTWr16tWbNmqXo6Gj5+vqaHQkAAAAAAAAAAJiEAikAp9CjRw/df//9WrBggXHs2LFjqlGjRoHXnTlz5k5HAwAAAAAAAAAAdxEFUgB/CQUtrVu8eHGdPHnymuNlypRRamrqHcsEAAAAAAAAAAAcDwVSAE7L1dVVgYGBZscAAAAAAAAAgHtKntkBgFvkYnYAAAAAAAAAAAAAALhbKJACAAAAAAAAAAAAcBoUSAEAAAAAAAAAAAA4DQqkAAAAAAAAAAAAAJwGBVIAAAAAAAAAAAAATsPN7AAAAAAAAAAAAAC4d9hkMTsCcEuYQQoAAAAAAAAAAADAaVAgBQAAAAAAAAAAAOA0KJACAAAAAAAAAAAAcBoUSAEAAAAAAAAAAAA4DQqkAAAAAAAAAAAAAJwGBVIAAAAAAAAAAAAATsPN7AAAgFtzyM0x/ihvnlvc7AiSpNy9+82OYLCdzzY7giQp072C2REMzxQ7YXYESdKlPefMjmDIHvqG2REkSU28vcyOYNg7+bTZESRJ1Tc7xmfjSP631cfsCJKkTdklzY5gcIzvwlLNY4fMjmA4O3Oh2REkSb/u8jQ7gqHi0FfMjiBJ8ho30+wIkqTzDvI8JOnCz7lmR5Ak/epqdoI/uNnMTnBZ7jdrzI5gsPg6xve/Y2svmB3BUOnJsmZHuOzXI2YnuMzVUX4ikI5/c9HsCJKkyraSZkcwnNprMTuCJCnIVszsCA4nO/0XsyPgFuQ5yM8MwM1iBikAAAAAAAAAAAAAp0GBFAAAAAAAAAAAAIDToEAKAAAAAAAAAAAAwGlQIAUAAAAAAAAAAADgNCiQAgAAAAAAAAAAAHAabmYHAAAAAAAAAAAAwL0jTxazIwC3hBmkAAAAAAAAAAAAAJwGBVIAAAAAAAAAAAAAToMCKQAAAAAAAAAAAACnQYEUAAAAAAAAAAAAgNOgQAoAAAAAAAAAAADAabiZHQAAAAAAAAAAAAD3DpssZkcAbgkzSAEAAAAAAAAAAAA4DQqkAAAAAAAAAAAAAJwGBVLAwR07dkxLliwxO8Y11q9fL4vl5pZRsFqtslqt1z0fEBCguXPn3lyw/2///v2yWCzav3//LfWTX6awsDDFx8dLki5cuKD27dvLy8tLYWFh2rdvn0JCQuTp6ak333yz0P1fvHhRtWvX1vr1629LXgAAAAAAAAAAkD/eQQo4uCFDhshms6lTp05mR8H/t3TpUnl4eEiSvvzyS3355ZfauHGjKleurLfffluStHv3bpUuXbpQ/V24cEHPP/+8du/efccyAwAAAAAAAACAyyiQAg7OZrOZHQF/cnXhMysrSxUqVFCDBg2Mr+vVq6f777+/UH398MMPev755/mcAQAAAAAAAAC4S1hiFyiCn3/+WeHh4fL29lZAQIBGjhyp3NxcValSRR999JHRzmazqWrVqlqwYIEkacOGDWrYsKG8vLxUp04dJSYmGm2tVqtiYmIUGRkpb29v3XfffZo/f74kKT4+XvPmzdO8efMUEBAgSbJYLBo+fLjKli2r8PBwSdLmzZv1+OOPy8fHR9WrV9fMmTPt+h8wYIDatm0rLy8vhYaGatOmTZKkMWPGqG7dunb3OGnSJDVp0qTIzyYmJkbVqlXTwYMHC9X+1KlTat++vTw9PVWnTh39+9//zrddXl6e3nnnHdWoUUNeXl566qmnlJaWZpw/duyYIiMj5efnp4oVKyo2NjbfYuN7772nkiVLKjU1tVD5Zs2apWrVqsnPz0+jR4+2O3dlid25c+fKarXq4MGDslgsxjK8H3/8caGX9/3666/11FNPafPmzYXKBQAAAAAAAABmy2Mr8gbHQoEUKCSbzaaOHTuqfPnySklJ0dy5c7Vw4UKNHTtWnTp10tKlS422W7Zs0fHjx9WuXTsdOXJEzz77rKxWq9LS0jRkyBBZrVZt2LDBaD99+nQ1aNBAu3btUkREhHr37q2srCy9/vrr6ty5szp37qytW7ca7ZOSkrRx40aNHz9e6enpatq0qZ544gnt2LFD8fHxGjRokJYtW2a0nzlzpmrVqqWUlBQ9+eSTatOmjX777TdFRUUpLS1NGRkZRtvFixcrKiqqSM9m8uTJmj9/vtasWaNq1aoV6pply5apTp06Sk1NVcuWLdWhQwdlZWVd027UqFGaOHGipkyZoh07dsjf31+tW7fW2bNnJUnt27fX4cOH9fXXX2vx4sX66KOPNGPGDLs+EhISNHToUCUlJSkkJOSG2VavXq2BAwdqzJgx2rx5s7Zu3aoDBw5c0y4yMlJTpkxR1apVdfjwYe3cudP4vA4fPqz77rvvhmP16dNH7777rry9vW/YFgAAAAAAAAAA3DqW2AUKad26dTpw4IC+++47ubi4KDg4WBMnTpTValVycrLCwsJ0+vRpFS9eXAkJCWrTpo2KFy+uCRMmqHnz5urfv78kKTAwUCkpKZoyZYoxU7NevXoaPHiwpMsFwalTp2r37t1q3LixvLy8JEnlypUzsvTu3VvBwcGSLs/cDA0N1dixYyVJwcHBSk9P14QJE9ShQwdJUq1atTR+/HhJl4uZK1eu1KJFi9S/f389/PDDWrJkiYYNG6YDBw5ox44dSkpKKvRz+eyzzzRy5Ej93//9n2rWrFno6xo2bKi33npLkvTOO+9o+fLl+vTTT/XKK68YbWw2m9577z2NGzfOmC07e/Zs3X///VqwYIEeffRRbd68Wf/9739VvXp1SZeLwWfOnDH62LBhg/r27avPPvus0DNjP/zwQ3Xp0kXdunWTJM2ZM0dVq1a9pp2Xl5dKlCghV1dXVaxY0TgmyfgaAAAAAAAAAAA4FmaQAoWUnp6u48ePy8/PT76+vvL19VVkZKROnDihoKAgVapUScnJyZKkpUuXGrMw09PTlZSUZFzj6+ur6dOn283aDAoKMvb9/PwkSdnZ2dfNcmW53Sv9N2rUyO5848aNlZ6ebnz92GOPGfsuLi4KDQ01zkdHR2vJkiWSLs8eDQsLU/ny5Qv9XKxWqywWS74FxII8/PDDdplCQkLsMkuXl889ceKE3f25u7urYcOGSk9P1969e1W6dGmjOCpJ7dq1U5cuXYyve/XqpQsXLhR6Zqt0+b2gV880LVOmjGrUqFGU27tjLl68qFOnTtlt2bZcs2MBAAAAAAAAAHDPoEAKFFJOTo5q1qyp1NRUY/vPf/6jzMxMlShRQpGRkUpMTNT27dv166+/6plnnjGu69q1q911u3fv1qpVq4y+PTw8rhkvv/doXuHp6Znv/hW5ubnKzf2jaObu7n7NeReXy7/9IyMjlZaWpn379ikhIaHIy+suWLBAwcHBev3114t0naurq93XeXl51zyH/O5N+uP+/nxf+Rk7dqzat2+vfv36FSnfn59/fp+RGcaNG6cSJUrYbcmnd5sdCwAAAAAAAACAewYFUqCQgoODdfDgQZUrV06BgYEKDAzUTz/9pBEjRshisSgqKkpr1qxRQkKCwsPDjXdKBgcHKzMz07gmMDBQK1as0CeffFKocS0Wyw1zbdmyxe7Y5s2bjSV4JSk1NdXYz83NVWpqqurWrStJqlSpksLCwjRnzhzt3LlTHTt2LFSuKyIiIjRt2jR9+umn+uabbwp9XVpamrGfk5OjHTt2XLNEb4kSJVShQgW7+8vOztb27dsVHBysoKAgnThxQj///LNxftq0aWrfvr3xdYcOHTRx4kRt27ZNH3/8caGy1a5d2+6dr6dPn9a+ffsKfW930tChQ5WVlWW3PVO8ltmxAAAAAAAAAAC4Z1AgBQqpZcuW8vf3V9euXZWWlqYNGzaoV69e8vb2lqurq0JCQlS5cmVNnz5dkZGRxnV9+/bVtm3bFBcXp8zMTC1cuFCxsbHy9/cv1Lg+Pj7av3+/Dh06lO/5vn37KjU1VbGxscrIyNC8efM0Y8YMuxmT69ev16RJk7R3714NHDhQ586dU6dOnYzz0dHRevfdd9WiRQuVKlWqyM+mUaNG6tatm/r166ecnJxCXfPNN99ozJgx2rNnjwYMGKBLly4pOjr6mnYxMTEaPny4kpKSlJ6erp49e+rChQuKjIxUrVq11LRpU7388stKS0vT+vXrNX78eLVo0cKuD39/fw0ePFiDBw9WVlbWDbP1799fixcv1uzZs7Vnzx716tVL586dK9zDuMOKFSsmPz8/u83d4nrjCwEAAAAAAADgNrHJwlbEDY6FAilQSK6urlq5cqXy8vLUqFEjRUREqE2bNpo2bZrRJjIyUq6urmrdurVxzN/fX0lJSfriiy9Uu3ZtxcXFadKkSXbvySxIt27dtHfvXtWrVy/fZXerVaumVatW6csvv1SdOnU0evRoTZ48WS+++KLRJjw8XOvWrVNISIhSUlK0du1alSxZ0jgfERGhnJycIi+ve7Xx48frwIEDds+jIC+88II2bNigevXq6fvvv1dycrIx6/ZqgwYNUs+ePdWzZ081aNBA//vf/7R+/XqVK1dO0uUlfn18fPTII4/o+eefV69evdS3b99r+hkyZIiKFSumN99884bZmjRpoo8++kjjxo1Tw4YNVb58ebt3kgIAAAAAAAAAgHuXxVbQiw4B3POsVqskae7cuddtk5mZqZCQEB09elS+vr53Jxhum4+qdDU7giTpkoP8J6jn258wO4LBdj7b7AiSpE9XVzA7guEJL8f4fCqGOMascEmyuDnGb54j273MjmA4f+HG75i+G6o/esrsCA7nf1t9zI4gSdp4qaTZEQxuZgf4/55/536zIxguLP3a7AiSpF935f8+ezNUfDzP7AiSJK9xM82OIEk6P/QVsyMYzmdeMjuCJOmjn6qaHcHg5iD/StSnj+OslGPxdYzvf0c+cIxXv0hSpdHNzY5w2a9HzE5wmauj/EQgHZ2aYnYESdKi3x3n76HPlztsdgRJ0qJfK5kdweH0evwXsyMYSn6yzuwI95w1FW5+so2zanl0kdkRcBXH+e4N4K47ffq0Vq9erVmzZik6OpriKAAAAAAAAAAA+MtjiV3AyfXo0UMnTpzQmDFjjGPHjh2Tr69vgdv1TJ48ucDrXnnF3P8tnpiYWGC+p59++raNVbZs2QLHOnjw4G0bCwAAAAAAAAAAFA4zSIG/uIKW1i1evLhOnjx5zfEyZcooNTX1psZ76aWXFB4eft3zfn5+N9Xv7dKqVasC783L6/YtMfn9998rL+/6y6lVrlz5to0FAAAAAAAAAAAKhwIpgGu4uroqMDDwpq4tWbKkSpYseXsD3Ua+vr43fW9FVaNGjbsyDgAAAAAAAADcTdefFgLcG1hiFwAAAAAAAAAAAIDToEAKAAAAAAAAAAAAwGlQIAUAAAAAAAAAAADgNCiQAgAAAAAAAAAAAHAaFEgBAAAAAAAAAAAAOA03swMAAAAAAAAAAADg3pFndgDgFjGDFAAAAAAAAAAAAIDToEAKAAAAAAAAAAAAwGlQIAUAAAAAAAAAAADgNCiQAgAAAAAAAAAAAHAaFEgBAAAAAAAAAAAAOA03swMAAAAAAAAAAADg3mGTxewIwC2hQAoA97jieTazI0iSEj3Omh1BktQt8D6zIxhsZ8+bHUGSVCEnx+wIhq8ulDY7giTpxUAvsyMY3F/8u9kRJElfN51pdgRD15cc49es2/MxZkdwODX+nWB2BElS1sjDZkcwuLrkmR1BkmSpGmh2BIPvtCizI0iS3Cf9w+wIhmKDxpsdQZJ0fugrZkeQJHmNc5zvOZbh/cyOIEkq+aPZCf5wykHWGnNtE2l2BIPtxC9mR5AkVYg6Y3aEP5w5bXaCy+6rYXaCy7IvmZ3AUK5TJbMjSJJ+nO0Yfx+WpFIN3c2OIElK++Kc2REcjkeog/weBuCUHOTHXgAAAAAAAAAAAAC48yiQAgAAAAAAAAAAAHAaFEgBAAAAAAAAAAAAOA0KpAAAAAAAAAAAAACchpvZAQAAAAAAAAAAAHDvyLOYnQC4NcwgBQAAAAAAAAAAAOA0KJACAAAAAAAAAAAAcBoUSAEAAAAAAAAAAAA4DQqkAAAAAAAAAAAAAJwGBVIAAAAAAAAAAAAATsPN7AAAAAAAAAAAAAC4d+TJYnYE4JYwgxQAAAAAAAAAAACA06BACgAAAAAAAAAAAMBpUCAFAAAAAAAAAAAA4DQokAIwxbFjx7RkyRKzY9wVH3zwgcqVKydfX1+9//77slhYnx8AAAAAAAAAALNQIAVgiiFDhig5OdnsGHfF4MGD1bdvX+3evVsvv/yyDh8+bHYkAAAAAAAAAACclpvZAQA4J5vNZnaEuyYrK0thYWHy9/eXJFWsWNHkRAAAAAAAAABw85znX3fxV8UMUgD6+eefFR4eLm9vbwUEBGjkyJHKzc1VlSpV9NFHHxntbDabqlatqgULFkiSNmzYoIYNG8rLy0t16tRRYmKi0dZqtSomJkaRkZHy9vbWfffdp/nz50uS4uPjNW/ePM2bN08BAQGSJIvFouHDh6ts2bIKDw+XJG3evFmPP/64fHx8VL16dc2cOdOu/wEDBqht27by8vJSaGioNm3aJEkaM2aM6tata3ePkyZNUpMmTW74LNavX6+qVatq2rRpKlOmjCpUqKAxY8bYjWu1WlWvXj2VL19emZmZOnnypLp16yY/Pz9VrlxZr776qs6fP2/clyQ1bdpUYWFhWr9+vXHsX//6l4oVK6Z9+/ZJkvbs2SNPT0+tWLHihjkBAAAAAAAAAMDNoUAKODmbzaaOHTuqfPnySklJ0dy5c7Vw4UKNHTtWnTp10tKlS422W7Zs0fHjx9WuXTsdOXJEzz77rKxWq9LS0jRkyBBZrVZt2LDBaD99+nQ1aNBAu3btUkREhHr37q2srCy9/vrr6ty5szp37qytW7ca7ZOSkrRx40aNHz9e6enpatq0qZ544gnt2LFD8fHxGjRokJYtW2a0nzlzpmrVqqWUlBQ9+eSTatOmjX777TdFRUUpLS1NGRkZRtvFixcrKiqqUM/k6NGj+vjjj7V27VrNmjVLEyZM0OzZs43z8+fP1+jRo5WcnKygoCC9/PLLysrK0saNG7V8+XJt3bpV/fv3lyRjOd3ExES7ZylJL730kh599FH9/e9/l81mU69evdSxY0e1a9euUDkBAAAAAAAAAEDRscQu4OTWrVunAwcO6LvvvpOLi4uCg4M1ceJEWa1WJScnKywsTKdPn1bx4sWVkJCgNm3aqHjx4powYYKaN29uFAIDAwOVkpKiKVOmGDM169Wrp8GDB0uSRo0apalTp2r37t1q3LixvLy8JEnlypUzsvTu3VvBwcGSpJiYGIWGhmrs2LGSpODgYKWnp2vChAnq0KGDJKlWrVoaP368JGny5MlauXKlFi1apP79++vhhx/WkiVLNGzYMB04cEA7duxQUlJSoZ5JTk6O/vWvf6levXqqX7++XnvtNc2aNUs9e/aUJD300ENq27atJOnHH3/U8uXLdeLECZUoUUKSNHv2bIWEhGjy5MnGcrqlS5dW6dKl7caxWCz64IMPVK9ePXXt2lV79+69poj6ZxcvXtTFixftjmXbcuVucS3UvQEAAAAAAAAA4OyYQQo4ufT0dB0/flx+fn7y9fWVr6+vIiMjdeLECQUFBalSpUpKTk6WJC1dutSYhZmenq6kpCTjGl9fX02fPt1u1mZQUJCx7+fnJ0nKzs6+bpYry+1e6b9Ro0Z25xs3bqz09HTj68cee8zYd3FxUWhoqHE+OjpaS5YskXR59mhYWJjKly9fqGfi6+urevXqGV83bNjQbtw/58zLy1OVKlWM5/Doo48qLy/PWDq3IA888ID+8Y9/aOHChZo4caLKli1bYPtx48apRIkSdtuyM7sLdV8AAAAAAAAAAIAZpIDTy8nJUc2aNfN972WJEiUUGRmpxMREBQUF6ddff9UzzzxjXNe1a1fFxsbaXePu7m7se3h4XNOnzXb913d7enrmu39Fbm6ucnNz8x3rynkXl8v/7yMyMlKDBg3Svn37lJCQoF69el133D9zc7P/o/Hqfv+cLScnRyVKlNC2bduu6adKlSqFGm/nzp1ydXXVunXr1K1btwLbDh06VDExMXbHkh8o/L0BAAAAAAAAAODsmEEKOLng4GAdPHhQ5cqVU2BgoAIDA/XTTz9pxIgRslgsioqK0po1a5SQkKDw8HB5e3sb12VmZhrXBAYGasWKFfrkk08KNa7FYrlhri1bttgd27x5s7EErySlpqYa+7m5uUpNTVXdunUlSZUqVVJYWJjmzJmjnTt3qmPHjoXKJUknT57U/v37ja+3bdtm9JtfzqysLFksFuM5nD9/Xm+88cY1S+HmZ8WKFVq9erVWrVqlTz75ROvWrSuwfbFixeTn52e3sbwuAAAAAAAAgLspj63IGxwLBVLAybVs2VL+/v7q2rWr0tLStGHDBvXq1Uve3t5ydXVVSEiIKleurOnTpysyMtK4rm/fvtq2bZvi4uKUmZmphQsXKjY2Vv7+/oUa18fHR/v379ehQ4fyPd+3b1+lpqYqNjZWGRkZmjdvnmbMmKF+/foZbdavX69JkyZp7969GjhwoM6dO6dOnToZ56Ojo/Xuu++qRYsWKlWqVJGeS8+ePbVr1y4lJiZq2rRpduNe7cEHH1Tr1q3VpUsXbd26VTt27JDVatWZM2dUsmTJAsc4ffq0+vfvr7i4OLVu3VqvvvqqevfurQsXLhQpKwAAAAAAAAAAKDwKpICTc3V11cqVK5WXl6dGjRopIiJCbdq00bRp04w2kZGRcnV1VevWrY1j/v7+SkpK0hdffKHatWsrLi5OkyZNUpcuXQo1brdu3bR3717Vq1cv32V3q1WrplWrVunLL79UnTp1NHr0aE2ePFkvvvii0SY8PFzr1q1TSEiIUlJStHbtWruiZEREhHJycoz3phbF008/rccff1wDBw7U2LFj9fzzz1+37fz581W9enU1a9ZMzZs3V3BwsBYtWnTDMWJjY+Xl5aVBgwZJkuLj43X27FmNGjWqyHkBAAAAAAAAAEDh8A5SAKpRo4aSk5Ovez4+Pl7x8fHXHG/evLm2b9+e7zVz58695tjVhdBGjRrp8OHD+Z67olmzZtqxY8d1c5UqVSrfca747bff5OHhoXbt2l23zfXExMRc865PKf/7Klu2rD799NPr9nX1vYWFhRlfv/fee3btihcvrl9++aXIWQEAAAAAAAAAQOFRIAXwl3P69GmtXr1as2bNUnR0tHx9fc2OBAAAAAAAAAAAHARL7AL4S+rRo4dOnDihMWPGGMeOHTsmX1/fAjcAAAAAAAAAAPDXxgxSAPekgpbWLV68uE6ePHnN8TJlyig1NbXAfgMDA/Nd7hcAAAAAAAAAcFmexWJ2BOCWUCAF4DRcXV0VGBhodgwAAAAAAAAAAGAiltgFAAAAAAAAAAAA4DQokAIAAAAAAAAAAABwGhRIAQAAAAAAAAAAADgNCqQAAAAAAAAAAAAAnIab2QEAAAAAAAAAAABw77CZHQC4RcwgBQAAAAAAAAAAAOA0KJACAAAAAAAAAAAAcBoUSAEAAAAAAAAAAAA4DQqkAAAAAAAAAAAAAJwGBVIAAAAAAAAAAAAATsPN7AAAAAAAAAAAAAC4d+SZHQC4RcwgBQAAAAAAAAAAAOA0mEEKAPe4cy4WsyNIkrJsl8yOIEmylC1rdoQ/uP5udgJJ0iZPx8ghSW+GnzQ7giTJ4lPS7AiGQxGjzI4gSTrjUt7sCIbMeefMjiBJKrlytNkRJEk2m9kJHM+vKmd2BMNXHrlmR5Ak1f58udkRDJdOLDA7giTJM26C2REM5wb3NzuCJOnCz47x69UyvJ/ZEQyeo2aYHUGSlJDUx+wIhvM52WZHkCT1nT/L7Ah/cHU1O4Ekyb3XYLMjGHIW/9PsCJftP2B2AkmSxcNx/onVreOLZkeQJH095Q2zIxg8R31qdgRJ0pbEKLMjOByXxyPNjgDAiTGDFAAAAAAAAAAAAIDToEAKAAAAAAAAAAAAwGlQIAUAAAAAAAAAAADgNBxngXwAAAAAAAAAAAA4vDyL2QmAW8MMUgAAAAAAAAAAAABOgwIpAAAAAAAAAAAAAKdBgRQAAAAAAAAAAACA06BACgAAAAAAAAAAAMBpUCAFAAAAAAAAAAAA4DTczA4AAAAAAAAAAACAe0eeLGZHAG4JM0gBAAAAAAAAAAAAOA0KpAAAAAAAAAAAAACcBgVSAAAAAAAAAAAAAE6DAikAO6mpqdq0aZPZMezEx8crLCzM7Bi3bP369bJYWJsfAAAAAAAAAAAzUSAFYKdDhw7KyMgwOwYAAAAAAAAAAMAd4WZ2AACOxWazmR0BAAAAAAAAAODA+Fdk3OuYQQrAEBYWpgMHDujFF19UQECAAgIC1KdPH5UoUUJvv/22Ll26pJiYGFWpUkXu7u4KCAjQBx98YFx/9uxZ9e7dW2XKlFGZMmXUq1cvXbhwQZJ08uRJdevWTX5+fqpcubJeffVVnT9//qZybtiwQQ0bNpSXl5fq1KmjxMRE45zValVMTIwiIyPl7e2t++67T/Pnzy9Uv/v375fFYlFycrICAgLk6+urgQMHateuXWrYsKF8fHz07LPP6vTp08Y1c+fO1YMPPigvLy81bNhQ33zzjXHu1KlTio6OVvHixfXAAw9o69atduP9/PPPCg8Pl7e3twICAjRy5Ejl5ube1DMBAAAAAAAAAACFQ4EUgGHp0qWqWrWqpkyZoqlTp+rAgQO6cOGCtm/frujoaI0bN07JyclKTEzU3r179cILL6h///46evSoJKlHjx769ttvtXLlSq1du1bffvut4uLiJEkvv/yysrKytHHjRi1fvlxbt25V//79i5zxyJEjevbZZ2W1WpWWlqYhQ4bIarVqw4YNRpvp06erQYMG2rVrlyIiItS7d29lZWUVeozx48dr5cqVmj17tqZNm6YOHTpo3LhxWrNmjTZv3qwPP/xQ0uXiaP/+/TV06FClpqaqefPmatOmjQ4dOiRJeuWVV7Rnzx59/fXXeu+99zRp0iRjDJvNpo4dO6p8+fJKSUnR3LlztXDhQo0dO7bIzwQAAAAAAAAAABQeS+wCMJQuXVqurq4qUaKESpQoIUkaMmSIAgMDJUn16tVTs2bN9Mgjj0iSYmNjNWrUKGVkZMjDw0NLlizRV199pccee0ySNGvWLKWmpurHH3/U8uXLdeLECaPf2bNnKyQkRJMnTzaOFcaMGTPUvHlzo7gaGBiolJQUTZkyRU2aNDFyDh48WJI0atQoTZ06Vbt371bjxo0LNcabb76punXrqm7dunrttdcUHR2tFi1aSJKaN2+uPXv2SJKmTZumAQMGqHv37pIuF1a//vprTZ8+Xf/4xz+0ePFi/fvf/1b9+vUlScOHD1e/fv0kSevWrdOBAwf03XffycXFRcHBwZo4caKsVqvefPPNQj8PAAAAAAAAAABQNBRIARQoICDA2G/fvr3Wrl2rQYMGac+ePdqxY4ckKTc3V/v27VNubq4aNGhgtG/SpImaNGmiVatWKS8vT1WqVLHrOy8vT/v27bO75kbS09OVlJQkX19f41h2drYeeOAB4+ugoCBj38/Pz2hTWDVq1DD2vby87J6Bl5eXLl68aGQZMWKE3bWPPvqo0tPTlZGRodzcXIWEhBjnHnroIbv7OH78uJFPuvw8zp8/r+PHj6tMmTL5Zrt48aIx/hXZtly5W1wLfX8AAAAAAAAAADgzCqQACuTp6Wnsx8XFafbs2XrxxRfVvXt3vf/++0bx0N3d/bp95OTkqESJEtq2bds15/5cNL2RnJwcde3aVbGxsXbHrx7fw8PjmutstsK/NtzNzf6PRheX/Fcjv/rZXJGbm2v3HtGrx706V05OjmrWrKkVK1Zc00dBM2rHjRunkSNH2h1r71tHHfzqXvcaAAAAAAAAAADwB95BCsCOxWK57rmZM2dq+vTpGj9+vCIjI3X27FlJl4uANWrUkKurq3bu3Gm0X7FiherXr6/g4GBlZWXJYrEoMDBQgYGBOn/+vN54441rZkPeSHBwsDIzM41+AgMDtWLFCn3yySc3d8O3IDg4WFu2bLE7tmXLFgUHBys4OFju7u7aunWrcS4lJcXu2oMHD6pcuXLGffz0008aMWJEgZ/B0KFDlZWVZbc9W7zW7b85AAAAAAAAALiOPAtbUTc4FgqkAOz4+Phoz549OnHixDXnypQpo6SkJP33v//Vt99+q27dukm6vOyrn5+fXnjhBQ0YMEDff/+9tm3bptjYWDVr1kwPPvigWrdurS5dumjr1q3asWOHrFarzpw5o5IlSxYpX9++fbVt2zbFxcUpMzNTCxcuVGxsrPz9/W/H7RdJTEyM3nvvPc2fP18ZGRn6xz/+oZ07d6pHjx7y8/NT9+7d9eqrr+q7777T+vXrFR8fb1zbsmVL+fv7q2vXrkpLS9OGDRvUq1cveXt7y9X1+svlFitWTH5+fnYby+sCAAAAAAAAAFB4FEgB2Onbt6+mT5+uHj16XHNuzpw5Sk1NVa1atWS1WtW5c2c9/PDDxszIKVOmqF69emrRooWefvppPfXUUxo9erQkaf78+apevbqaNWum5s2bKzg4WIsWLSpyPn9/fyUlJemLL75Q7dq1FRcXp0mTJqlLly63duM3oXPnzho7dqzefPNN1a1bV+vXr9eaNWtUs2ZNSdJ7772nxo0bq0WLFnrhhRf06quvGte6urpq5cqVysvLU6NGjRQREaE2bdpo2rRpd/0+AAAAAAAAAABwJhZbUV7MBwBwOB9X6Wp2BEnSItdrZx2bIXFsqNkRDLbffzc7giQpfpJj5JCkN8NPmx1BkuRSvqTZEQxHPztmdgRJ0rKs8mZHMDSznDI7giSpZKnzZkeQJPHT+rV2Hi1ndgTDV565N250F4yPzjE7giHvxBmzI0iSPOMmmB3BcD42xuwIkqQLPzvGr1fvv3mZHcHgOWqG2REkSU+H9jE7guF8XrbZESRJq6OLmx3hDwWs8nM3ufcabHYEQ87if5od4bI8x/hByeLhZnYEg+uz3cyOIEmq88QbZkcw7N79qdkRJEl/qxVldgSHk5bkOH+ueT4SaXaEe46j/JvkvaT7oQVmR8BVmEEKAAAAAAAAAAAAwGlQIAVgqsTERPn6+l53e/rpp2/bWGXLli1wrIMHD962sQAAAAAAAAAAgGNynPUfADilVq1aKTU19brnvbxu3/Jb33//vfLy8q57vnLlyrdtLAAAAAAAAAD4q7r+v7IC9wYKpABM5evrq8DAwLsyVo0aNe7KOAAAAAAAAAAAwHGxxC4AAAAAAAAAAAAAp0GBFAAAAAAAAAAAAIDToEAKAAAAAAAAAAAAwGlQIAUAAAAAAAAAAADgNNzMDgAAAAAAAAAAAIB7h83sAMAtYgYpAAAAAAAAAAAAAKdBgRQAAAAAAAAAAACA06BACgAAAAAAAAAAAMBpUCAFAAAAAAAAAAAA4DQokAIAAAAAAAAAAABwGm5mBwAAAAAAAAAAAMC9I89idgLg1jCDFAAAAAAAAAAAAIDToEAKAAAAAAAAAAAAwGlYbDabzewQAICb92uLJ82OIEnybhpgdgRJUsvpP5sdwVDW1dvsCJKkBR0dZ82TxQklzI4gSfrW7bzZEQyD3R0jS9UWjvMj4cmtl8yOIEnKOu5ldgRJkovFcT4bj2I5ZkeQJPlVumB2BEPxN18wO4Ik6aUXVpodwdAqx9fsCJKkxa4nzI5giMgrbXYESdKvrmYnuKxkntkJ/pCgX82OIEn6IuWfZkf4Q2622QkkSRMffsvsCIYcOcb34nW5x8yOYKjk6hh/1ntaHOMPNkeagZKR/bvZESRJaz4fZHYEw9PPvGt2BEnSF592NzuCw2nw3HSzIxh2H/3O7Aj3nH9V7Wp2hHvOy/9bYHYEXMWRvn8DAAAAAAAAAAAAwB1FgRQAAAAAAAAAAACA03AzOwAAAAAAAAAAAADuHQ701gTgpjCDFAAAAAAAAAAAAIDToEAKAAAAAAAAAAAAwGlQIAUAAAAAAAAAAADgNCiQAgAAAAAAAAAAAHAaFEgBAAAAAAAAAAAAOA03swMAAAAAAAAAAADg3pFndgDgFlEgBQAAAAAAAAAAAJxEdna2Fi9erKSkJGVmZio7O1sVK1bUY489pm7duqlGjRq3ZYzk5GR9/vnn+uGHH3Ty5El5enqqWrVqCgsLU9euXVW6dOkCrw8NDVV2dvYNx/Lw8FBaWlqR8lEgBQAAAAAAwP9j787joqr3P46/B9xYBMR9A1QUixRM07JFMzW1RFzB7Yal5pZ11TSXFM0tt1xveu2appUbWqE3tVLUDHMBigwVM7FMRSNxV2D4/cGPc51AGdQ8GK/n4zGPx8yc7/I+ZxSRD9/vAQAAQCHwxx9/qE+fPjkKiklJSUpKStK6des0fvx4BQcH3/YcJ06c0CuvvKIDBw7YvJ+WlqYDBw7owIEDWr58ud555x098cQTuY5x9OhRu4qjt4sCKQAAAAAAAAAAAPA3l5GRoUGDBhnF0YCAAAUHB8vV1VX79+9XRESErl69qtGjR6tixYpq1KhRvue4dOmSevfuraNHj0qSfH19FRwcrMqVKys1NVVfffWVdu7cqfPnz2vAgAH68MMPVadOnRzjHDp0yHg+evRoVapU6aZzOjg45DsnBVIAAAAAAAAAAADgby4iIkL79u2TJAUFBentt982iotBQUF6/vnn9dJLL+natWsaP368NmzYkO/i43/+8x+jONq2bVtNnTpVRYr8rxzZtWtXffTRRxo/fryuXbumcePGad26dTnGyS6QOjg4qEuXLipRosRtnfPN5L+kCuC+cOHCBX3wwQfGax8fHy1duvSujL1161YlJCTclbHy8s4778hisdg8hg0bdk/mvlF4eLiaNm16V8ZKTk7WmjVr7spYAAAAAAAAAADYY8mSJZIkd3d3jRs3Lkfx85FHHtHAgQMlST/99JO+/PLLfI2fmZmp1atXS5LKli2rSZMm2RRHs3Xr1k0tWrSQJB04cEA//vhjjjbZBVIvL6+7XhyVKJACf1uzZs0yvthJ0t69exUSEnJXxn7mmWd0+vTpuzJWXn788UcNGDBAJ0+eNB7jxo27J3PfaNiwYbn+FsvtGDFihDZu3HhXxgIAAAAAAACAey3TwiO/D7MlJCTo559/lpS1stPV1TXXdl27dpWjo6MkadOmTfmaIzExUWfOnJEktWrVSsWLF79p21atWhnPv/vuuxzHswuktWrVylcGe1EgBf6mMjMzbV6XLVtWTk5OJqW5fQkJCQoICFCFChWMR8mSJe95DldXV3l6et6Vsf782QAAAAAAAAAA8Ffas2eP8fyxxx67aTs3Nzc9+OCDkqSvv/46X3NcunRJ/v7+8vT0VLVq1W7Z1t3d3Xh+/vx5m2N//PGHkpOTJVEgBQq9Y8eOyWKx6K233lKpUqU0cOBATZ48WdWqVVOxYsVUqVIljR8/XpK0dOlSjR8/Xtu3b5fFkvWrKTdusWu1WjV9+nRVr15dTk5Oevrpp42bMufFx8dHkvT0008rPDxckhQdHa0nnnhCLi4uqlatmhYuXGi0DwsL0+DBg9W2bVs5OTmpXr16+uabb+w+74SEhNv6Arhw4UIja7Z///vfqlmzpiTpxIkT6tSpk0qVKqXixYvr4Ycf1q5duyTlvNaDBg3KscXue++9p9q1a6tYsWIqU6aMBg4cqIyMDOOchwwZopCQEDk7O6tq1apavny5pKytepctW6Zly5YZ+VatWiU/Pz+VKFFCDz74oD755JN8ny8AAAAAAAAAADeTmJhoPM/+OfnN+Pr6SpJSU1P122+/2T1HvXr1tG7dOkVHR6t79+63bPvTTz8Zzz08PGyOHT58OEfWlJQU7d69Wzt37lRiYuIdL0SiQArcZ3bt2qV9+/apXLlymj17tt577z0dPnxYY8eOVXh4uGJiYhQSEqKhQ4fqscce08mTJ3OMMWHCBM2YMUOzZ89WTEyMvL291apVK126dCnP+ffu3Ssp62bOw4YNU0JCgpo1a6annnpKMTExCg8P19ChQ7V+/Xqjz8KFC+Xv76/Y2Fg1adJEbdq00dmzZ/Oc6/Tp00pJSdHSpUvl4+OjBx54QDNmzLDrC1+nTp104sQJ7d+/33gvIiLC2Ga4R48eysjIUHR0tGJjY1WlShX179/fZozsa/3qq6/avL99+3YNHjxYkydP1uHDh7Vw4UL95z//0aeffmq0mT9/vurXr68ffvhBHTt21Msvv6zU1FQNGzZMXbp0UZcuXbR3714lJyerZ8+eGjlypA4dOqQXX3xRXbt2VUpKSp7nCAAAAAAAAACAPU6cOCFJcnBwUMWKFW/ZtkKFCsbz/BRI7ZWZmamIiAjjdUBAgM3x7O11JenixYsKCwtT48aN9cILL6h37956/vnn1aRJE33wwQfGwqX8okAK3Gdee+011ahRQ0899ZTef/99PfPMM/Lx8VG/fv1UoUIFHThwQE5OTnJ1dVWxYsVsvpBJWV945s2bp7feektBQUF64IEHtHjxYjk6OmrFihV5zl+2bFlJkqenp1xdXbV48WLVq1dPkydPlp+fn1544QW98sormjZtmtHH399fU6dOVe3atTVr1ix5enpq5cqVec518OBBSVL58uUVGRmpkSNHauLEiZo9e3aefcuUKaNnnnnG+CL7xx9/aNu2bQoJCVFmZqaCg4M1b9481a5dWw8++KAGDhyoAwcO2IyRfa3//Ns0rq6u+s9//qMOHTrIx8dHnTp1Ur169Wz6BwQEaPjw4apevbomTJigK1eu6MCBA3J1dZWTk5OcnJxUtmxZnThxQmlpaapSpYq8vb01dOhQffrpp3/JTacBAAAAAAAAAIVT9qIcFxcXFStW7JZtb1zRee7cubueZdWqVcYq0Vq1aql27do2x28skI4ePVrR0dE5Fk6dPn1akyZN0oABA3T16tV8ZyhyG7kBmOjGLW6//fZbjRw5UgkJCYqNjdWpU6fy/G2J5ORkpaSkqFGjRsZ7RYsWVYMGDZSQkJDvPAkJCTZjSVLjxo1tttl9/PHHjecODg6qV6+eXXM1adJEZ8+eVenSpSVJderU0ZkzZ/Tuu+/qn//8Z579Q0NDNXXqVE2ePFmffvqpatasqTp16kiS+vfvr5UrV+qbb77RwYMHtX//flmtVpv+f96iN1v9+vXl5OSkcePG6cCBA4qPj1diYqKeffZZo82NRVU3NzdJUlpaWo6xAgMD9dxzz6lFixby8/NTu3bt1Lt3bzk7O+c697Vr13Tt2jXb96xWFXfg910AAAAAAAAAoKB65plnbnn8q6+++kvnzy4iFi9ePM+2NxZQr1y5cldzJCQkaMqUKcbr3H7Wf2OB1MXFRf369VPr1q1Vvnx5nTlzRlu2bNGCBQt04cIFRUVFKTw8XFOnTs1XDn6iDtxnslcWvvfee2revLmuXr2qjh076quvvlKVKlXs7v9nGRkZt7UUPbfx/jxW0aJFcxx3sLOgl10czfbAAw8YWwHkpX379jp27JgOHDhgs72u1WpVixYtNHPmTHl5een111/XBx98kKP/za7V5s2bVb9+fZ06dUqtW7fW2rVrbYrAknL9DZzctga2WCzasGGDvv32W3Xq1EmRkZF6+OGHFRcXl+vcU6ZMkbu7u81jzs/H87oUAAAAAAAAAHDXWHnk+3Entm3bJj8/v9t6/Prrr5Kk9PR0Sbn/7PrPbmxzu1vY5iYpKUm9e/c2irWdOnVSs2bNcrRLTk6WlLWSde3aterbt6+qVq2qYsWKqXLlyurVq5c++ugjubi4SJLWr1+v2NjYfGVhBSlwn1q4cKHGjh2r119/XVLWMvfTp08bRTiLxZJrP3d3d5UvX167d+829vVOS0vT/v371aJFi3zn8PPz0/bt223ei46Olp+fn/H6xmJfRkaG4uLi9Nxzz+U59nvvvafp06fr4MGDxvnExcXlWG5/M+7u7mrVqpVWr16tL7/8UjNnzpQk/fjjj9qxY4eSk5ONLYP/9a9/Scq9iPlnixcv1osvvqgFCxZIyvqH5aeffsr1C3luLBaLMc/Bgwf13nvvacaMGWrYsKHeeust+fv7a/PmzQoMDMzRd+TIkRoyZIjNe+fb530tAQAAAAAAAADm+atXiOYle0FQbjsd/tn169eN539eAHW7fvrpJ4WFhens2bOSsnZXfPPNN3Ntu2PHDp07d07Xr19XuXLlcm1Tq1YtDR482FiNunr1atWrV8/uPBRIgftU6dKl9eWXX6pdu3a6cOGCRo0apbS0NGP7VRcXF/322286duxYjq1ihwwZorFjx6pSpUry9fXV22+/ratXrxorLPPi4uKiH374QfXq1dOAAQM0Z84cjRo1SmFhYYqOjtaCBQs0f/58o31UVJRmzpyp559/XvPmzdPly5fVuXPnPOdp0aKFhgwZomHDhql///7at2+f3n77bS1evNju6xQaGqo+ffqodu3aqlWrlqSs3zpxcHDQypUrFRQUpL1792rcuHGSlGP72tyULl1a33zzjeLj4+Xg4KApU6bo5MmTdvWV/nf9Tpw4IQ8PD7377rvy8PBQ9+7ddeDAAR07duymX8iLFy+eYwuEa2yvCwAAAAAAAAB/W15eXnrxxRdvq2/JkiUlybitmz0/x76xQGrPlrx5+f777/Xyyy8b90GtXbu2/v3vf990F0fJ9j6oNxMUFGQUSPfv35+vTBRIgfvUnDlz1KtXLwUEBKhcuXIKCQmRi4uLsYy8ffv2WrhwoR588EEdO3bMpu/QoUN1/vx59enTR+fPn1fjxo0VFRVlrKbMy+DBg/X666/rp59+0jvvvKMNGzbo9ddfN7asnTVrlnr16mW0DwoK0tatWzVmzBg9/PDD+uKLL+z64ubt7a3//ve/ev311/Xuu++qfPnyevvtt9WlSxe7r1Pbtm1ltVoVGhpqvFelShW9++67mjBhgkaOHCk/Pz/NnTtX//jHPxQbG6uKFSvecszw8HCFhYXp0Ucflbu7u9q0aaP+/fvbvYS/Z8+eCg4OVkBAgM6cOaN169ZpxIgRmjRpksqVK6cpU6aoZcuWdp8jAAAAAAAAAODvq0aNGhoxYsQdjeHm5iZJunjxotLT01WkyM1LhOfOnTOee3p63tG827dv12uvvabLly9Lkvz9/fWf//xH7u7udzRudjYPDw+dO3fO2JbXXhRIgfuEj4+PzfavtWvXVnR09E3b16hRQ0eOHDFe31gkdXR01MSJEzVx4sTbyjJ58mRNnjzZeP3MM88oJibmpu1LlSqlpUuX3tZcTzzxxC3PMy8uLi66dOlSjvf79u2rvn372rzXtWtX4/mft9oNDw83nlesWFGbN2++6Zy5neuN4zVq1EgnT540Xj/77LN69tlnbzoeAAAAAAAAAAB3wsfHR19//bWsVqtOnz6typUr37TtqVOnjOe3apeXdevW6c033zTuf9qgQQMtXLjQWNV6N9zuFsAUSAEAAAAAAAAAAIC/sRo1ahjPjxw5csvCZ2JioiTJ3d1d5cuXv635Pv74Y40fP95YPPT0009r9uzZt9xWV5IOHjyo6OhonT17Vs2bN7/lfUWvX79urHa1d4fMbBRIARiSk5NVvXr1W7a5ePFigZirffv2+uKLL256fNGiRerevftt5wMAAAAAAAAA5M5qdgDkW8OGDY3nu3fvVpMmTXJtd/78eSUkJEiSHnnkkduaa8OGDTbF0eDgYE2aNOmW2/pmO3z4sKZOnSop636ptyqQ7tmzR2lpaZKkgICAfGWkQArAULp0acXFxd3VMW+2te6dzvWvf/0r161zs93ub7UAAAAAAAAAAPB34+vrq+rVq+vo0aNav369Bg0aJBcXlxztPvzwQ2VkZEiSWrdune95fvrpJ40aNcoojoaEhGj8+PGyWCx29W/UqJEcHBxktVq1ceNGvfbaa3J1dc3RLjMzU4sWLTJet2vXLl85KZACMDg6OsrX1/e+mKtixYp3MQ0AAAAAAAAAAH9vvXr10ptvvqk//vhDb7zxhmbOnKlixYoZx/fu3at3331XUta9R1u2bJnvOUaOHKlr165Jkpo3b56v4qiUtfipRYsW2rx5s1JSUjRy5MgcOa1WqyZPnqw9e/ZIylrp+sQTT+QrJwVSAAAAAAAAAAAA4G+uU6dOWrNmjb7//ntt2bJFnTp1UufOneXh4aGYmBitWbNGaWlpslgsCg8PtylKZlu3bp1GjhwpKetWeNnb4UrSzp079d1330nKWiT19NNP66uvvsozV8WKFeXv72+8fuONN7R//36dPXtWW7ZsUbt27dSpUydVqlRJp06d0ieffKKDBw9Kyrr36JQpU/JVhJUokAIAAAAAAAAAAAB/ew4ODlq0aJF69+6tAwcO6NChQ5o4caJNm6JFi2rcuHF66qmn8j3++vXrjecZGRkaPXq0Xf3+XGitVKmSlixZoldeeUVJSUk6evSopk2blqNfzZo1NWfOHFWtWjXfWSmQAgAAAAAAAAAAAIWAp6enVq9erVWrVmnDhg366aefdPnyZZUtW1aNGjVSr1695Ofnd1tjHz58+K7l9PPz02effaaIiAht2rRJhw8f1qVLl+Th4SFfX1+1bt1a7du3z3WVqz0okAIAAAAAAAAAAMBumWYHwB0pUqSIunfvru7du+e7b4cOHdShQ4dcj23YsOFOo9koUaLEbefMi8NdHxEAAAAAAAAAAAAACigKpAAAAAAAAAAAAAAKDQqkAAAAAAAAAAAAAAoNCqQAAAAAAAAAAAAACg0KpAAAAAAAAAAAAAAKjSJmBwAAAAAAAAAAAMD9w2oxOwFwZ1hBCgAAAAAAAAAAAKDQoEAKAAAAAAAAAAAAoNBgi10AuM85upqdIIuleDGzI0iSfk+7YHaEAsjF7ACGtAKy/cpZ6zWzIxguXi5udgRJkqVEhtkRDFcuZpodQZJ0/krB+GwcLAXjekhS8bSC8d8Hj2JXzY7wPxfPmZ1AknQ5M93sCIZUR7MTZLliTTM7guFiAfnV5CIF5MvJ+QJyPSTpSnoB+XOSUUBySJJjUbMTSJKuFKB//wqKS9brZkcwZDgWjM8nQwUjR8FIkeViAfm/jsXZw+wIhgLzPUHJUmYnKHAupF02OwKAQqwA/bcEAAAAAAAAAAAAAP5aFEgBAAAAAAAAAAAAFBoFY48sAAAAAAAAAAAA3BesZgcA7hArSAEAAAAAAAAAAAAUGhRIAQAAAAAAAAAAABQaFEgBAAAAAAAAAAAAFBoUSAEAAAAAAAAAAAAUGhRIAQAAAAAAAAAAABQaRcwOAAAAAAAAAAAAgPuH1ewAwB1iBSkAAAAAAAAAAACAQoMCKQAAAAAAAAAAAIBCgwIpAAAAAAAAAAAAgEKDAikAAAAAAAAAAACAQoMCKQAAAAAAAAAAAIBCgwIpcJ+6cOGCPvjgA+O1j4+Pli5delfG3rp1qxISEu7KWPZKSUlR+fLldezYMZv3Y2Nj1ahRIzk7O+uRRx7R/v3772mubGFhYQoLC7srYx09elSff/75XRkLAAAAAAAAAO61TB75fqBgoUAK3KdmzZqlJUuWGK/37t2rkJCQuzL2M888o9OnT9+Vsezxxx9/qG3btkpOTrZ5/9KlS2rTpo2efPJJ7d+/X40bN9Zzzz2nS5cu3bNs2ebMmaM5c+bclbFeeuklffvtt3dlLAAAAAAAAAAAkD8USIH7VGam7e+clC1bVk5OTialuX1ff/216tevr4sXL+Y4tmrVKjk5OWn69Ol64IEHNHv2bJUsWVJr1qy55znd3d3l7u5+V8b682cHAAAAAAAAAADuHQqkQAFx7NgxWSwWvfXWWypVqpQGDhyoyZMnq1q1aipWrJgqVaqk8ePHS5KWLl2q8ePHa/v27bJYLJJst9i1Wq2aPn26qlevLicnJz399NOKj4+3K4ePj48k6emnn1Z4eLgkKTo6Wk888YRcXFxUrVo1LVy40GgfFhamwYMHq23btnJyclK9evX0zTff2H3emzdv1osvvqiIiIgcx3bv3q0nnnjCOEeLxaLHH39c0dHReY77xhtvqEmTJjbvjRo1Ss2bN5ck/fjjj3r22WdVsmRJlShRQk8++aSxrXBUVJR8fHzUv39/ubu76+2337bZYjczM/Omn40kNW3aVJMmTdKzzz4rJycn1apVS5s3bzau1/bt2zV+/Hg1bdpUkjR37lx5e3urRIkSatCggb7++mu7rx8AAAAAAAAAAMgfCqRAAbNr1y7t27dP5cqV0+zZs/Xee+/p8OHDGjt2rMLDwxUTE6OQkBANHTpUjz32mE6ePJljjAkTJmjGjBmaPXu2YmJi5O3trVatWtm1Ne3evXslSRERERo2bJgSEhLUrFkzPfXUU4qJiVF4eLiGDh2q9evXG30WLlwof39/xcbGqkmTJmrTpo3Onj1r1/m+9dZbGjNmjIoUKZLj2MmTJ1WpUiWb98qXL69ff/01z3FDQ0P19ddf22zbGxERodDQUFmtVrVt21bVqlVTXFycvvnmG6Wnp2vEiBFG26SkJF29elX79+9X165dbcb+4IMPbvrZZJs0aZK6du2qH374QYGBgerTp4+sVqvmzJmjxx57TEOHDtW6desUGxur119/Xf/617908OBBPfnkk+rcubOsVqtd1w8AAAAAAAAAAOQPBVKggHnttddUo0YNPfXUU3r//ff1zDPPyMfHR/369VOFChV04MABOTk5ydXVVcWKFVOFChVs+mdmZmrevHl66623FBQUpAceeECLFy+Wo6OjVqxYkef8ZcuWlSR5enrK1dVVixcvVr169TR58mT5+fnphRde0CuvvKJp06YZffz9/TV16lTVrl1bs2bNkqenp1auXHnH1+Ly5csqXry4zXvFixfXtWvX8uwbGBioWrVq6ZNPPpEkxcfH6+eff1aHDh105coV9evXTzNnzlSNGjX08MMPKywsTAcOHLAZY8SIEfL19ZWXl5fN+15eXjf9bLI999xzCgsLU40aNTRmzBj98ssvOnXqlNzd3VWsWDG5urrK09PTWDns7e0tHx8fTZw4UStWrKBACgAAAAAAAADAXyTnki0Aprpxi9tvv/1WI0eOVEJCgmJjY3Xq1CllZGTcsn9ycrJSUlLUqFEj472iRYuqQYMGxhay+ZGQkGAzliQ1btzYZpvdxx9/3Hju4OCgevXq3dZcf1aiRIkcxdBr167J2dnZrv4hISFat26d+vbtq4iICLVo0UKenp6SpP79++uDDz7Qvn37dPDgQcXExKh8+fI2/bM/iz+z57OpWbOm8dzNzU2SlJaWlmOsZ599VnXq1FGdOnVUr149tWvXTn369Ml1RW32+ee4JhlWFXfk910AAAAAAAAA3BtWi9kJgDvDT9SBAqZEiRKSpPfee0/NmzfX1atX1bFjR3311VeqUqWK3f3/LCMjI8/iqr3j/XmsokWL5jju4HDnX14qV66sU6dO2bx36tQpVaxY0a7+oaGh2rp1q86dO6eIiAiFhIRIki5evKhHHnlEH330kWrXrq3x48dr+vTpOfrf7Fra89kUK1YsR7/MzMwc7zk7O+vbb7/V1q1b1bRpU73//vt6+OGHdeLEiVznnjJlitzd3W0esw8fz/NaAAAAAAAAAACALBRIgQJq4cKFGjt2rN555x317NlTZcqU0enTp40im8WS+6/ouLu7q3z58tq9e7fxXlpamvbv3y8/P7985/Dz87MZS5Kio6NtxoqLizOeZ2RkKC4uTnXr1s33XH/26KOP6ptvvjHOOTMzU7t27dKjjz5qV//atWvrwQcf1MKFC5WYmKjg4GBJUlRUlH777Tdt27ZNr7/+upo3b67jx4/nWsDMTV6fTV5u/Oyio6M1ZcoUPf3005o1a5YOHTqkq1ev6uuvv86178iRI5WammrzeK2WV65tAQAAAAAAAABAThRIgQKqdOnS+vLLL3X48GHt379fISEhSktLM7ZXdXFx0W+//aZjx47l6DtkyBCNHTtWkZGRSkhIUJ8+fXT16lVjBWVeXFxc9MMPPyg1NVUDBgxQXFycRo0apcOHD2vZsmVasGCBBg4caLSPiorSzJkzdejQIb366qu6fPmyOnfufMfXoFOnTjp37pxee+01/fjjj3rttdd06dIldenSxe4xQkNDNWnSJLVu3drY6rZ06dK6ePGiPvnkEx07dkzvvfee5s+fb9e9TbP73+qzyYuLi4sSExOVnJwsJycnjR8/Xu+9956OHTumlStX6uLFizctMBcvXlxubm42D7bXBQAAAAAAAADAfvxUHSig5syZo/PnzysgIEAdOnRQQECA2rdvr9jYWElS+/btZbVa9eCDDyo5Odmm79ChQ9WnTx/16dNH9evX16+//qqoqCiVLVvWrrkHDx6s119/XeHh4fLy8tKGDRu0adMm1alTRxMnTtSsWbPUq1cvo31QUJC2bt2qwMBAxcbG6osvvpCHh8cdXwM3Nzdt2LBBO3fuVP369bV7927997//lYuLi91jhIaG6uLFiwoNDTXee+yxxzR27FgNGDBAdevW1dKlS7VgwQIlJyffdGvbG+X12eSld+/e+vzzz9WqVSsFBgZqyZIlmj59umrXrq3JkydrxYoVeuCBB+w+RwAAAAAAAAAAYD9Lpr17QgJALsLCwiRJS5cuNTVHYZbSvonZESRJJZ6sZXYESdLDU+PMjmAoXbSk2REkSZs62/9LBX+1DyPczY4gSdpoOWd2BMPYjKJ5N7oHHgjJ/32q/yq/fX7d7AiSpLPnCsbfHQdLwfl2vXiRgvHnpKr/ObMjGFwGtjM7giQpdMBWsyMYmsnD7AiSpE+sp82OYAh2KG92BElSmtkB/p8197uFmOLT9N/MjiBJiop51+wI/+NYML43eavBm2ZHKHA2Xf/V7AiGakVLmR1BklTC4mh2BEkFawXKd9cKxr9/0TummR3B0KTJKLMjSJKi/jvM7AgFTq1mI82OYDieEm92hPvONO8eZke47wxPWmF2BNygiNkBAAAAAAAAAAAAcP+wmh0AuEMUSIFCJDk5WdWrV79lm4sXL94Xc9WvX1+HDh266fHPP/9cTz755G2PDwAAAAAAAAAA/p4okAKFSOnSpRUXF3dXx7zZ1rp/xVw3Wr9+va5fv/kWjJUrV/7L5gYAAAAAAAAAAPcvCqRAIeLo6ChfX9+/xVxeXl5/2dgAAAAAAAAAAODvqyDdQxwAAAAAAAAAAAAA/lIUSAEAAAAAAAAAAAAUGmyxCwAAAAAAAAAAALtlmh0AuEOsIAUAAAAAAAAAAABQaFAgBQAAAAAAAAAAAFBoUCAFAAAAAAAAAAAAUGhQIAUAAAAAAAAAAABQaFAgBQAAAAAAAAAAAFBoFDE7AAAAAAAAAAAAAO4fVmWaHQG4I6wgBQAAAAAAAAAAAFBoUCAFAAAAAAAAAAAAUGhQIAUAAAAAAAAAAABQaHAPUgC4zy3bX9XsCJKkxNhUsyNIkmLeCDQ7gsH6W7LZESRJ/1ld0uwIhkrpBeP+FCuaXzE7gqFYj1ZmR5AkJfT+wuwIBs/SGWZHkCTVW/y42RGyWArO7zRe/td6syNIkj76vmD82ydJZfruNzuCJGn1llfNjmDIvHbJ7AiSpBcXLzQ7gqFoz9ZmR5AkZezYYnYESZJjmxCzIxgGLF9kdgRJ0oyGb5kdwXDFUjC+X3tzX8G5JspIMzuBJGn47FFmRzAU6dDN7AiSJIfSBeN7gsz062ZHMKSvmG92BElS/xazzI5g+KKTq9kRJEl92i0xO0KBc3BUI7MjACjECs5PWwAAAAAAAAAAAADgL8YKUgAAAAAAAAAAANjNanYA4A6xghQAAAAAAAAAAABAoUGBFAAAAAAAAAAAAEChQYEUAAAAAAAAAAAAQKFBgRQAAAAAAAAAAABAoUGBFAAAAAAAAAAAAEChUcTsAAAAAAAAAAAAALh/ZJodALhDrCAFAAAAAAAAAAAAUGhQIAUAAAAAAAAAAABQaFAgBQAAAAAAAAAAAFBoUCAFAAAAAAAAAAAAUGhQIAUAAAAAAAAAAABQaBQxOwAAAAAAAAAAAADuH1azAwB3iBWkgImSk5O1Zs0as2PkEBUVJYvFclt9w8LCFBYWdtPjPj4+Wrp06e0F+3/Hjh2TxWLRsWPH7mgce8XFxembb76RdGfXJjezZs2Sl5eXnJ2d9eyzzyoxMfGujQ0AAAAAAAAAAHKiQAqYaMSIEdq4caPZMZCH9u3b6/Dhw5Kkxo0b6+TJk3dl3A8//FATJkzQwoUL9d1336lMmTJq27atMjMz78r4AAAAAAAAAAAgJ7bYBUxEIez+cOPnVKxYMVWoUOGujJuamqpp06apTZs2krIK5gEBATpz5ozKlSt3V+YAAAAAAAAAAAC2WEEK/L9ffvlFQUFBcnZ2lo+Pj8aPH6+MjAxVrlxZ77//vtEuMzNTVapU0YoVKyRJO3fuVIMGDeTk5KQ6deooIiLCaBsWFqYhQ4YoJCREzs7Oqlq1qpYvXy5JCg8P17Jly7Rs2TL5+PhIkiwWi8aOHasyZcooKChIkhQdHa0nnnhCLi4uqlatmhYuXGgz/uDBg9W2bVs5OTmpXr16xlawkyZNUt26dW3OcebMmXryySfzfW2GDBkiLy8vHT9+3K7258+fV3BwsEqUKKE6depo27ZtubazWq2aPn26qlevLicnJz399NOKj483jicnJyskJERubm6qUKGCRo0alWtRed68efLw8FBcXFye2cLDwxUcHKynnnpKnp6e2r59u06cOKFOnTqpVKlSKl68uB5++GHt2rVLktS0aVMlJSWpV69eCgsLy7HF7q+//qouXbrI09NTZcqU0eDBg3Xt2jW7rtOAAQPUt29fSVnF0gULFsjf319ly5a1qz8AAAAAAAAAAMg/CqSAsoqeHTp0ULly5RQbG6ulS5fqo48+0uTJk9W5c2etW7fOaLt79279/vvvateunU6dOqXnn39eYWFhio+P14gRIxQWFqadO3ca7efPn6/69evrhx9+UMeOHfXyyy8rNTVVw4YNU5cuXdSlSxft3bvXaB8ZGaldu3Zp6tSpSkhIULNmzfTUU08pJiZG4eHhGjp0qNavX2+0X7hwofz9/RUbG6smTZqoTZs2Onv2rEJDQxUfH29sDStJq1evVmhoaL6uzaxZs7R8+XJt2bJFXl5edvVZv3696tSpo7i4OLVs2VLt27dXampqjnYTJkzQjBkzNHv2bMXExMjb21utWrXSpUuXJEnBwcE6efKktm/frtWrV+v999/XggULbMZYu3atRo4cqcjISAUGBtqV79NPP1W3bt20detWNWzYUD169FBGRoaio6MVGxurKlWqqH///pKkdevWqUqVKpo9e7bmzJljM87169fVrFkzXbp0yci4ceNGDR8+3K4c2ZYsWSIPDw8tW7ZMCxYsuKv3OAUAAAAAAAAAALbYYheQtHXrViUlJenbb7+Vg4OD/Pz8NGPGDIWFhWnjxo1q2rSpLly4oJIlS2rt2rVq06aNSpYsqWnTpql58+YaNGiQJMnX11exsbGaPXu2sVIzICDAKJhNmDBBc+bM0YEDB9S4cWM5OTlJks2KwZdffll+fn6SslZu1qtXT5MnT5Yk+fn5KSEhQdOmTVP79u0lSf7+/po6daqkrGLmZ599ppUrV2rQoEFq2LCh1qxZo9GjRyspKUkxMTGKjIy0+7qsWrVK48eP11dffaXatWvb3a9BgwZ66623JEnTp0/XJ598oo8//lj9+vUz2mRmZmrevHmaMmWKsVp28eLFqlGjhlasWKHHHntM0dHROnr0qKpVqyYpqxh88eJFY4ydO3dqwIABWrVqVb5WxpYvX97IkpmZqeDgYHXs2FFVqlSRJA0cONDY9tbT01OOjo5yd3eXu7u7zTibNm3SiRMn9O2336pUqVKSpAULFqht27aaNGmSXF1d7crTvHlzxcTEaMmSJWrXrp1iY2ONc/6za9eu5Vihmp6ZoSIWR7vPHwAAAAAAAADuhJU1HrjPsYIUkJSQkKDff/9dbm5ucnV1laurq0JCQpSSkqKaNWuqYsWK2rhxo6SsFYXZqzATEhIUGRlp9HF1ddX8+fNtVm3WrFnTeO7m5iZJSktLu2mW7O12s8dv1KiRzfHGjRsrISHBeP34448bzx0cHFSvXj3jeNeuXbVmzRpJWatHmzZtmq97W4aFhclisRiFQ3s1bNjQJlNgYKBNZilr+9yUlBSb8ytatKgaNGighIQEHTp0SJ6enjaFwnbt2ql79+7G6759++rq1at2r2zNduM1tlgs6t+/v7Zu3ap+/fqpadOm6tSpk6xWa57jJCQkqFatWkZxVMr6fNLT03XkyBG783h5ealevXqaO3euqlatqmXLlt207ZQpU4xibfbjy/MH7J4LAAAAAAAAAIDCjgIpICk9PV21a9dWXFyc8fj++++VmJgod3d3hYSEKCIiQvv379eZM2f03HPPGf169Ohh0+/AgQPasGGDMXaxYsVyzJfbfTSzlShRItfn2TIyMpSRkWG8Llq0aI7jDg5Zf7VDQkIUHx+vI0eOaO3atfneXnfFihXy8/PTsGHD8tXP0dF2NaPVas1xHXI7N+l/5/fn88rN5MmTFRwcrIEDB+Yr341zW61WtWjRQjNnzpSXl5def/11ffDBB/keJ1v2Z3PjZ3Qz27Zt06FDh4zXFotFDzzwgM6ePXvTPiNHjlRqaqrNo7mbv115AQAAAAAAAAAABVJAUtbWtcePH1fZsmXl6+srX19f/fzzzxo3bpwsFotCQ0O1ZcsWrV27VkFBQXJ2djb6JSYmGn18fX316aef6sMPP7Rr3rzuNenn56fdu3fbvBcdHW1swStJcXFxxvOMjAzFxcWpbt26kqSKFSuqadOmWrJkib777jt16NDBrlzZOnbsqLlz5+rjjz/Wjh077O4XHx9vPE9PT1dMTEyOLXrd3d1Vvnx5m/NLS0vT/v375efnp5o1ayolJUW//PKLcXzu3LkKDg42Xrdv314zZszQvn377C5q/tmPP/6oHTt26Msvv9SoUaP03HPP6eTJk5L+V8i+2efk5+enw4cPKyUlxXgvOjpaRYoUUY0aNfKc++2339asWbOM19mf3wMPPHDTPsWLF5ebm5vNg+11AQAAAAAAAACwHwVSQFLLli3l7e2tHj16KD4+Xjt37lTfvn3l7OwsR0dHBQYGqlKlSpo/f75CQkKMfgMGDNC+ffs0ZswYJSYm6qOPPtKoUaPk7e1t17wuLi46duyYTpw4kevxAQMGKC4uTqNGjdLhw4e1bNkyLViwwGbFZFRUlGbOnKlDhw7p1Vdf1eXLl9W5c2fjeNeuXfXOO++oRYsWNlvB2qtRo0bq2bOnBg4cqPT0dLv67NixQ5MmTdLBgwc1ePBgXb9+XV27ds3RbsiQIRo7dqwiIyOVkJCgPn366OrVqwoJCZG/v7+aNWuml156SfHx8YqKitLUqVPVokULmzG8vb01fPhwDR8+XKmpqfk+Pw8PDzk4OGjlypVKSkrS2rVrNW7cOEky7vXp4uKigwcP2hRCJalFixaqXr26evbsqfj4eG3btk2vvPKKunXrJg8PjzznHjBggJYuXaqPPvpIhw4dUv/+/XXlyhW98MIL+T4PAAAAAAAAAABgHwqkgLK2hP3ss89ktVrVqFEjdezYUW3atNHcuXONNiEhIXJ0dFSrVq2M97y9vRUZGanPP/9cDz30kMaMGaOZM2fa3CfzVnr27KlDhw4pICAg1213vby8tGHDBm3atEl16tTRxIkTNWvWLPXq1ctoExQUpK1btyowMFCxsbH64osvbIpzHTt2VHp6er63173R1KlTlZSUZHM9buWFF17Qzp07FRAQoD179mjjxo3GqtsbDR06VH369FGfPn1Uv359/frrr4qKilLZsmUlZW3x6+LiokcffVTdunVT3759NWDAgBzjjBgxQsWLF9ebb76Z73OrUqWK3n33Xb399tvy9/fXlClTNHfuXBUpUkSxsbGSsgqZ8+fPV+/evW36Zv+5kbIKyaGhoWrXrp0WLVpk19xBQUF69913FR4ersDAQB05ckRbtmyRq6trvs8DAAAAAAAAAADYx5J5q5shAijQwsLCJElLly69aZvExEQFBgbq9OnTFN7+pt7x6mF2BElSosN1syNIkmYMdjc7gsH6W7LZESRJ/1ld0uwIhkppBePbjpbNT5kdwVCsR3uzI0iSEnp/YXYEg2fpy2ZHkCSVn9ja7AhZLAXndxov/2u92REkSR99X9XsCIYyGQXj61qHLWFmRzBkXrtkdgRJUtrihWZHMBTt2dPsCJKkjB1bzI4gSXJsE5J3o3skfbl9v9z4V5u3puB8v3bFUjC+rr257y2zI/xPRprZCSRJ12aPMjuCoUiHbmZHkCQ5lC4Y3xNkpheM/w9LUvqK+WZHkCS98oF9u5DdC3OCrpodQZI04NNiZkcocBa94ml2BIPzsPfMjnDfGeNTMP4tuJ9MPPaR2RFwgyJmBwDw17hw4YI2b96sRYsWqWvXrhRHAQAAAAAAAAAAxBa7wN9a7969lZKSokmTJhnvJScny9XV9ZaPm5k1a9Yt+/Xr1+9enNZNRURE3DJf69b3biVQQb9WAAAAAAAAAAAUVqwgBe5jt9pat2TJkjp37lyO90uXLq24uLjbmu/FF19UUFDQTY+7ubnd1rh3y7PPPnvLc3NycrpnWQr6tQIAAAAAAAAAoLCiQAoUMo6OjvL19b2tvh4eHvLw8Li7ge4iV1fX2z63u62gXysAAAAAAAAAAAorttgFAAAAAAAAAAAAUGiwghQAAAAAAAAAAAB2yzQ7AHCHWEEKAAAAAAAAAAAAoNCgQAoAAAAAAAAAAACg0KBACgAAAAAAAAAAAKDQoEAKAAAAAAAAAAAAoNCgQAoAAAAAAAAAAACg0ChidgAAAAAAAAAAAADcP6xmBwDuECtIAQAAAAAAAAAAABQaFEgBAAAAAAAAAAAAFBoUSAEAAAAAAAAAAAAUGhRIAQAAAAAAAAAAABQaRcwOAAC4M1ctZifIUqKg/M5NWrrZCQyZV9PMjiBJulxA/oxIUklrhtkRJEnWywUjhyTpzEmzE0iSShQrOH93zpxxNTuCJKn878lmR8hiKTh/ic8llTA7giTpd4dMsyMYSmQWnM+noMhMPm52BEmS9VrB+bqW+cdpsyNIkiyuLmZHkCRlpvxmdoT/cXQ0O4EkKV0F5+tagZFRML6XliQ5FjU7gSQp88IVsyMYLM4eZkfIUqJgfF2zpBWcH7FmXrxsdgRJkoOKmR2hwClSgL6vLzAyCtD/zQEUOgXnX28AAAAAAAAAAAAUeFZ+wQv3uQKy3AcAAAAAAAAAAAAA/noUSAEAAAAAAAAAAAAUGhRIAQAAAAAAAAAAABQaFEgBAAAAAAAAAAAAFBoUSAEAAAAAAAAAAAAUGkXMDgAAAAAAAAAAAID7R6bZAYA7xApSAAAAAAAAAAAAAIUGBVIAAAAAAAAAAAAAhQYFUgAAAAAAAAAAAACFBgVSAAAAAAAAAAAAAIUGBVIAAAAAAAAAAAAAhUYRswMAAAAAAAAAAADg/mE1OwBwh1hBCpgoOTlZa9asMTtGDlFRUbJYLLfVNywsTGFhYTc97uPjo6VLl95esP937NgxWSwWHTt27I7GsVdcXJy++eYbSXd2bXITEBAgi8Vi8/jhhx/u2vgAAAAAAAAAAMAWBVLARCNGjNDGjRvNjoE8tG/fXocPH5YkNW7cWCdPnrwr42ZkZOjw4cPavn27Tp48aTxq1659V8YHAAAAAAAAAAA5scUuYKLMzEyzI8AON35OxYoVU4UKFe7KuD///LOuX7+uhg0bqkSJEndlTAAAAAAAAAAAcGusIAX+3y+//KKgoCA5OzvLx8dH48ePV0ZGhipXrqz333/faJeZmakqVapoxYoVkqSdO3eqQYMGcnJyUp06dRQREWG0DQsL05AhQxQSEiJnZ2dVrVpVy5cvlySFh4dr2bJlWrZsmXx8fCRJFotFY8eOVZkyZRQUFCRJio6O1hNPPCEXFxdVq1ZNCxcutBl/8ODBatu2rZycnFSvXj1jK9hJkyapbt26Nuc4c+ZMPfnkk/m+NkOGDJGXl5eOHz9uV/vz588rODhYJUqUUJ06dbRt27Zc21mtVk2fPl3Vq1eXk5OTnn76acXHxxvHk5OTFRISIjc3N1WoUEGjRo3Ktag8b948eXh4KC4uLs9s4eHhCg4O1lNPPSVPT09t375dJ06cUKdOnVSqVCkVL15cDz/8sHbt2iVJatq0qZKSktSrVy+FhYXl2GL3119/VZcuXeTp6akyZcpo8ODBunbtml3X6ccff1TVqlUpjgIAAAAAAAAAcA9RIAWUVfTs0KGDypUrp9jYWC1dulQfffSRJk+erM6dO2vdunVG2927d+v3339Xu3btdOrUKT3//PMKCwtTfHy8RowYobCwMO3cudNoP3/+fNWvX18//PCDOnbsqJdfflmpqakaNmyYunTpoi5dumjv3r1G+8jISO3atUtTp05VQkKCmjVrpqeeekoxMTEKDw/X0KFDtX79eqP9woUL5e/vr9jYWDVp0kRt2rTR2bNnFRoaqvj4eGNrWElavXq1QkND83VtZs2apeXLl2vLli3y8vKyq8/69etVp04dxcXFqWXLlmrfvr1SU1NztJswYYJmzJih2bNnKyYmRt7e3mrVqpUuXbokSQoODtbJkye1fft2rV69Wu+//74WLFhgM8batWs1cuRIRUZGKjAw0K58n376qbp166atW7eqYcOG6tGjhzIyMhQdHa3Y2FhVqVJF/fv3lyStW7dOVapU0ezZszVnzhybca5fv65mzZrp0qVLRsaNGzdq+PDhduVISEhQsWLF9Pzzz6tChQpq0qSJ9uzZY1dfAAAAAAAAAABwe9hiF5C0detWJSUl6dtvv5WDg4P8/Pw0Y8YMhYWFaePGjWratKkuXLigkiVLau3atWrTpo1KliypadOmqXnz5ho0aJAkydfXV7GxsZo9e7axUjMgIMAomE2YMEFz5szRgQMH1LhxYzk5OUmSypYta2R5+eWX5efnJylr5Wa9evU0efJkSZKfn58SEhI0bdo0tW/fXpLk7++vqVOnSsoqZn722WdauXKlBg0apIYNG2rNmjUaPXq0kpKSFBMTo8jISLuvy6pVqzR+/Hh99dVX+bovZoMGDfTWW29JkqZPn65PPvlEH3/8sfr162e0yczM1Lx58zRlyhRjtezixYtVo0YNrVixQo899piio6N19OhRVatWTVJWMfjixYvGGDt37tSAAQO0atWqfK2MLV++vJElMzNTwcHB6tixo6pUqSJJGjhwoNq0aSNJ8vT0lKOjo9zd3eXu7m4zzqZNm3TixAl9++23KlWqlCRpwYIFatu2rSZNmiRXV9db5jh48KD++OMP9e7dWxMmTNDixYv1zDPPGCtLAQAAAAAAAKAgsorbx+H+RoEUUNZKvt9//11ubm7Ge1arVVeuXFHNmjVVsWJFbdy4UaGhoVq3bp2mTZtm9IuMjLQphKWlpalWrVrG65o1axrPs8dPS0u7aZbs7Xazx2/UqJHN8caNG9tss/v4448bzx0cHFSvXj0lJCRIkrp27aqlS5dq9OjRWr16tZo2bapy5crZdU2krC18ixcvbhQO7dWwYUObTIGBgUambMnJyUpJSbE5v6JFi6pBgwZKSEiQp6enPD09jeKoJLVr106SdOzYMUlS3759lZ6ebvfK1mw3XmOLxaL+/ftr5cqV+uabb3Tw4EHt379fVqs1z3ESEhJUq1YtozgqZX0+6enpOnLkSJ4rWhcvXqzLly8bfy7+9a9/adeuXVq+fLlGjRqVa59r167l2MI3PTNDRSyOeeYFAAAAAAAAAABssQtIktLT01W7dm3FxcUZj++//16JiYlyd3dXSEiIIiIitH//fp05c0bPPfec0a9Hjx42/Q4cOKANGzYYYxcrVizHfLndRzPbjfejzO3elBkZGcrIyDBeFy1aNMdxB4esv9ohISGKj4/XkSNHtHbt2nxvr7tixQr5+flp2LBh+ern6GhbrLNarTmuw83uu5l9fn8+r9xMnjxZwcHBGjhwYL7y3Ti31WpVixYtNHPmTHl5een111/XBx98kO9xsmV/Njd+RjdTpEgRm6K8xWJR7dq1deLEiZv2mTJlirGaNfsRlXrArrwAAAAAAAAAAIACKSApa+va48ePq2zZsvL19ZWvr69+/vlnjRs3ThaLRaGhodqyZYvWrl2roKAgOTs7G/0SExONPr6+vvr000/14Ycf2jWvxWLJM9fu3btt3ouOjja24JWkuLg443lGRobi4uJUt25dSVLFihXVtGlTLVmyRN999506dOhgV65sHTt21Ny5c/Xxxx9rx44ddveLj483nqenpysmJibHFr3u7u4qX768zfmlpaVp//798vPzU82aNZWSkqJffvnFOD537lwFBwcbr9u3b68ZM2Zo3759dhc1/+zHH3/Ujh079OWXX2rUqFF67rnndPLkSUn/K2Tf7HPy8/PT4cOHlZKSYrwXHR2tIkWKqEaNGnnO/fTTT2v8+PHGa6vVqu+///6W2xmPHDlSqampNo+m7v52nSsAAAAAAAAAAKBACkiSWrZsKW9vb/Xo0UPx8fHauXOn+vbtK2dnZzk6OiowMFCVKlXS/PnzFRISYvQbMGCA9u3bpzFjxigxMVEfffSRRo0aJW9vb7vmdXFx0bFjx266YnDAgAGKi4vTqFGjdPjwYS1btkwLFiywWTEZFRWlmTNn6tChQ3r11Vd1+fJlde7c2TjetWtXvfPOO2rRooXNVrD2atSokXr27KmBAwcqPT3drj47duzQpEmTdPDgQQ0ePFjXr19X165dc7QbMmSIxo4dq8jISCUkJKhPnz66evWqQkJC5O/vr2bNmumll15SfHy8oqKiNHXqVLVo0cJmDG9vbw0fPlzDhw9Xampqvs/Pw8NDDg4OWrlypZKSkrR27VqNGzdOkoytbF1cXHTw4EGbQqgktWjRQtWrV1fPnj0VHx+vbdu26ZVXXlG3bt3k4eGR59xt27bVO++8o88++0yHDh3SoEGDdO7cOYWFhd20T/HixeXm5mbzYHtdAAAAAAAAAADsR4EUUNaWsJ999pmsVqsaNWqkjh07qk2bNpo7d67RJiQkRI6OjmrVqpXxnre3tyIjI/X555/roYce0pgxYzRz5kx1797drnl79uypQ4cOKSAgINdtd728vLRhwwZt2rRJderU0cSJEzVr1iz16tXLaBMUFKStW7cqMDBQsbGx+uKLL2yKcx07dlR6enq+t9e90dSpU5WUlGRzPW7lhRde0M6dOxUQEKA9e/Zo48aNxqrbGw0dOlR9+vRRnz59VL9+ff3666+KiopS2bJlJWVt8evi4qJHH31U3bp1U9++fTVgwIAc44wYMULFixfXm2++me9zq1Klit599129/fbb8vf315QpUzR37lwVKVJEsbGxkrIK1fPnz1fv3r1t+mb/uZGyCsmhoaFq166dFi1aZNfc//znPzV8+HC98sorCggI0IEDB/Tll1+qZMmS+T4PAAAAAAAAAABgH0vmrW6GCKBAy15puHTp0pu2SUxMVGBgoE6fPi1XV9d7Ewz31BTvHmZHkCSdsdi3wvivNrG/k9kRDBm/nDY7giRpfqSn2REM9a4WjD8njZ44ZXYEQ4n2j5sdQZL087g4syMYLl3Nef9uMzw02S/vRvdCHlvy30u/TYsxO4IkafmFMmZHMFTOKBifzz82vWB2BIP1lwSzI0iSrq/+zOwIhmId25gdQZKU+fMRsyNIkiwPPWx2BEPGpv+aHUGS9M7KgvM9bFrB+LKmN78da3aE/3EsanYCSdLV8EFmRzAU6z/U7AiSJEupCmZHyJJ2zewEhutzws2OIEl6bV3B+J5ekt4Jump2BEnS4M+Kmx2hwFnQ383sCAbnEe+bHeG+80+f21+QU1i9c2yl2RFwgyJmBwDw17hw4YI2b96sRYsWqWvXrhRHAQAAAAAAAAAAxBa7wN9a7969lZKSokmTJhnvJScny9XV9ZaPm5k1a9Yt+/Xr1+9enNZNRURE3DJf69at71mWgn6tAAAAAAAAAAAorFhBCtzHbrW1bsmSJXXu3Lkc75cuXVpxcXG3Nd+LL76ooKCgmx53czN3W4xnn332lufm5HTvtq0q6NcKAAAAAAAAAIDCigIpUMg4OjrK19f3tvp6eHjIw8Pj7ga6i1xdXW/73O62gn6tAAAAAAAAAAAorNhiFwAAAAAAAAAAAEChwQpSAAAAAAAAAAAA2M1qdgDgDrGCFAAAAAAAAAAAAEChQYEUAAAAAAAAAAAAQKFBgRQAAAAAAAAAAABAoUGBFAAAAAAAAAAAAEChQYEUAAAAAAAAAAAAQKFRxOwAAAAAAAAAAAAAuH9kKtPsCMAdYQUpAAAAAAAAAAAAgEKDAikAAAAAAAAAAACAQoMCKQAAAAAAAAAAAIBCgwIpAAAAAAAAAAAAgEKDAikAAAAAAAAAAACAQqOI2QEAAHfGJy3T7AiSpP9azpgdQZJkqdbE7AiGIqVLmR1BknRmw29mRzA81qpg/DkpWsfX7AiG1H/vMjuCJGl1emWzIxh6ljprdgRJ0vml0WZHKHBKljc7QZZHz2SYHcGw2cnsBFnSVy02O8L/FC9mdgJJktNb75gdwXB91mizI0iSkr+4anYESVL50ItmRzAU7Tvc7AiSpK0fvml2BMMl63WzI0iShs8eZXYEQ+aFK2ZHkCSVCJ9vdgTD1fBBZkeQJFlKFpB/iK0F4//lklT8jZlmR5AkbVnawewIhuKvrzA7giTpixXdzY5Q4Di0mmZ2BNwBq9kBgDvEClIAAAAAAAAAAAAAhQYFUgAAAAAAAAAAAACFBgVSAAAAAAAAAAAAAIUGBVIAAAAAAAAAAAAAhQYFUgAAAAAAAAAAAACFRhGzAwAAAAAAAAAAAOD+YVWm2RGAO8IKUgAAAAAAAAAAAACFBgVSAAAAAAAAAAAAAIUGBVIAAAAAAAAAAAAAhQYFUgAAAAAAAAAAAACFBgVSAAAAAAAAAAAAAIVGEbMDAAAAAAAAAAAA4P6RaXYA4A6xghQAAAAAAAAAAABAoUGBFIVeXFycvvnmG7Nj2AgPD1fTpk3NjlGgXL9+XYsXL77p8WPHjslisejYsWP3LhQAAAAAAAAAALjvUCBFode+fXsdPnzY7BjIw8cff6xJkybd9HjVqlV18uRJVa1a9R6mAgAAAAAAAAAA9xvuQYpCLzOT3dLvB3l9To6OjqpQocI9SgMAAAAAAAAAAO5XrCBFoda0aVMlJSWpV69e8vHxkY+Pj/r37y93d3e9/fbbun79uoYMGaLKlSuraNGi8vHx0b///W+j/6VLl/Tyyy+rdOnSKl26tPr27aurV69Kks6dO6eePXvKzc1NlSpV0iuvvKIrV67cVs6dO3eqQYMGcnJyUp06dRQREWEcCwsL05AhQxQSEiJnZ2dVrVpVy5cvt3vso0ePqnnz5nJ2dladOnU0Y8YM+fj42DW3JC1dulQPPPCAnJyc1KBBA+3YscM45uPjoyVLluiRRx6Rk5OTWrZsqaSkJHXs2FHOzs4KDAzUgQMH8pwrKipKvXr1UlJSkrGNbtOmTfXKK6+oevXq8vLyUnx8vM0Wu8nJyQoJCZGbm5sqVKigUaNG2VUMX7p0qZo2bapJkyapVKlSqlChgpYvX661a9fK29tbHh4eGjFihNH+2rVrevXVV1WmTBmVKVNGPXr0UEpKinF8165deuKJJ+Ts7CwXFxe1adNGJ0+etJlr3LhxKlOmjDw8PDRkyBCK9gAAAAAAAAAA/IUokKJQW7dunapUqaLZs2drzpw5SkpK0tWrV7V//3517dpVU6ZM0caNGxUREaFDhw7phRde0KBBg3T69GlJUu/evfX111/rs88+0xdffKGvv/5aY8aMkSS99NJLSk1N1a5du/TJJ59o7969GjRoUL4znjp1Ss8//7zCwsIUHx+vESNGKCwsTDt37jTazJ8/X/Xr19cPP/ygjh076uWXX1ZqamqeY6enp+v555+Xh4eH9u3bp5EjR2r8+PF2z7106VINGjRII0eOVFxcnJo3b642bdroxIkTxhhjxozRlClT9PXXXys2Nlb16tVTixYttHfvXjk7O2vUqFF5ztW4cWPNnj1bVapUsdlG9/3339eKFSu0fv16lSxZ0ubcgoODdfLkSW3fvl2rV6/W+++/rwULFth1zaOjo3X06FHt3btXXbt2Vb9+/TRnzhxFRkZq1qxZmjZtmmJjYyVJo0aN0t69e/Xf//5X27ZtU2pqqjp37ixJSk1N1XPPPaeWLVvqwIED2rJli44cOaIpU6YYc33zzTc6dOiQdu3apfnz52vOnDn68ssv7coJAAAAAAAAAGawKpNHPh8oWNhiF4Wap6enHB0d5e7uLnd3d0nSiBEj5OvrK0kKCAjQM888o0cffVRSVjFswoQJOnz4sIoVK6Y1a9boyy+/1OOPPy5JWrRokeLi4vTTTz/pk08+UUpKijHu4sWLFRgYqFmzZhnv2WPBggVq3ry5UVz19fVVbGysZs+erSeffNLIOXz4cEnShAkTNGfOHB04cECNGze+5dhbt27VL7/8ot27d8vNzU0PPvig4uPj9fHHH9s199y5czV48GD94x//kCRNnTpV27dv1/z5840iYFhYmJo3by5JatasmU6ePKl+/fpJknr27KnZs2fnOVdERITc3d1zbKP7/PPPG+eYvXJUkr7//nujyFmtWjVJ0sKFC3Xx4kW7rrnVatXcuXPl4uKivn37avbs2Ro/frzq1q2runXrauTIkTp48KD8/Pw0f/587du3T3Xq1JEkLV++XKVLl1Z8fLzKli2rN998U0OGDJHFYlG1atXUsWNH7dmzx5grIyND//73v+Xm5iY/Pz/NmjVLe/fuVYsWLezKCgAAAAAAAAAA8ocCKfAnN24vGxwcrC+++EJDhw7VwYMHFRMTIymrqHXkyBFlZGSofv36Rvsnn3xSTz75pDZs2CCr1arKlSvbjG21WnXkyBGbPnlJSEhQZGSkXF1djffS0tJUq1Yt43XNmjWN525ubkabvHz//feqVauW0UeSHnvsMaNAmtfcCQkJGjdunM2Yjz32mBISEozX1atXN547OTnZXF8nJyddu3bN7vP8sxvHutGhQ4fk6elpFEclqV27djcd58/Kly8vFxcXI+Of58rOffToUV2/fl2PPfaYTX+r1arDhw+rTp06euGFF/TOO+8oLi5OP/74o7777jujoJ49143X383N7Zaf3bVr14xrli0tM0NFLY52nx8AAAAAAAAAAIUZBVLgT0qUKGE8HzNmjBYvXqxevXrpH//4h/71r38ZhbKiRYvedIz09HS5u7tr3759OY79uWial/T0dPXo0cPYijbbjfMXK1YsRz977mNZpEiRHO1ufJ3X3Ddeq2wZGRnKyMiwmeNGDg657+xtz3n+WW7z59XHHn/OLOWeOz09XZL09ddf2xR2pazC54kTJ9SgQQPVr19fLVq0UJ8+fbRx40bt3r3baJffz27KlCk22yBLUgfXh9SpZN1bnxQAAAAAAAAAAJDEPUgBWSyWmx5buHCh5s+fr6lTpyokJESXLl2SlFXAql69uhwdHfXdd98Z7T/99FM9/PDD8vPzU2pqqiwWi3x9feXr66srV67o9ddfz7H6Ly9+fn5KTEw0xvH19dWnn36qDz/88PZO+Ab+/v5KTEzUhQsXjPf2799v99x+fn42xT5J2r17t/z8/PKdJa+5bvU5/VnNmjWVkpKiX375xXhv7ty5Cg4OzneuW6lRo4YcHR31+++/G5nd3Nz0z3/+U6dPn9b69evl6empDRs26NVXX9WTTz6po0eP2lW8vpmRI0cqNTXV5tHO1f8unhUAAAAAAAAAAH9vFEhR6Lm4uOjgwYNKSUnJcax06dKKjIzU0aNH9fXXX6tnz56SsrY5dXNz0wsvvKDBgwdrz5492rdvn0aNGqVnnnlGDzzwgFq1aqXu3btr7969iomJUVhYmC5evCgPD4985RswYID27dunMWPGKDExUR999JFGjRolb2/vOz73Z555RlWrVlWfPn2UkJCgtWvXas6cOUYxMq+5hwwZonnz5mn58uU6fPiw3njjDX333Xfq3bt3vrPkNZeLi4v++OMPJSYmGis3b8bf31/NmjXTSy+9pPj4eEVFRWnq1Kl3/b6eJUuWVJ8+fdS/f39FRUXpxx9/1D/+8Q8dOXJE1apVU+nSpXX8+HF99dVXOnr0qN5++21FRETku0h+o+LFi8vNzc3mwfa6AAAAAAAAAADYjwIpCr0BAwZo/vz5uRb1lixZori4OPn7+yssLExdunRRw4YNFRsbK0maPXu2AgIC1KJFC7Vu3VpPP/20Jk6cKElavny5qlWrpmeeeUbNmzeXn5+fVq5cme983t7eioyM1Oeff66HHnpIY8aM0cyZM9W9e/c7O3FlbRu7bt06nThxQoGBgXrrrbfUq1cvY9vXvObu0qWLJk+erDfffFN169ZVVFSUtmzZotq1a9/182zWrJl8fX1Vp04dxcXF5TneihUr5OLiokcffVTdunVT3759NWDAgHznysvMmTPVvHlzdezYUY8++qiKFCmi//73v3J0dFSXLl3Uo0cPderUSQ0aNNDWrVs1c+ZMJSQk3FGRFAAAAAAAAADMZOWR7wcKFkvmnez1COC+lpycrNjYWD377LPGe9OnT9fGjRsVFRVlXjDky8eV7rxYfjf8y3LK7AiSpC3vNDE7wv+cP2d2AknS6Im/mR3BMK7JGbMjSJKK1qlmdgTD+c+OmB1BkrQwKX/3yP4r9Sx51uwIkiTXslfNjlDgWArIr1fG/FDR7AiGzU5mJ8gysWcB+u928Zz3WDdD0bARZkcwXJ812uwIkqTkLwrG17XyoRXMjmAoEnr3f4nydrRq8qbZEQyXrNfNjiBJ2vpCGbMjGDIvXDE7giSpRPh8syMYroYPMjuCJMlSsoD8Q2wtOD9eLT70bbMjSJJq1O5gdgTDke9WmB1BklQ9oGD8/KYgObJtmtkRDCUC2pgd4b7Tx6ez2RHuO4uPrTE7Am5QQH7EAcAsQUFBevfdd5WUlKQvv/xSs2fPVufO/OMGAAAAAAAAAAD+niiQAvdYRESEXF1db/po3br1XZurTJkyt5zr6tWrWr16td599135+fnppZde0qBBg/6SrWgLgr17997yevj7+5sdEQAAAAAAAAAA/MWKmB0AKGyeffbZW95D08np7m0Ps2fPHlmtN99urVKlSvLy8lK7du3u2pwFWd26dW957YsWLXrvwgAAAAAAAAAAAFNQIAXuMVdXV/n6+t6TuapXr35P5rlfFC9e/J5dewAAAAAAAAAAUDBRIAUAAAAAAAAAAIDdMpVpdgTgjlAgBQAAAAAAAAAAAAqJtLQ0rV69WpGRkUpMTFRaWpoqVKigxx9/XD179rzj3SnT0tJUr149paWl5dm2WLFiio+Pv+nxmJgYffDBB9q/f7/++OMPeXh4qHbt2urcubOeffbZ285IgRQAAAAAAAAAAAAoBP744w/16dMnR1EyKSlJSUlJWrduncaPH6/g4ODbnuPo0aN2FUfzMn/+fM2fP1+Zmf9bsXzmzBmdOXNGO3fuVMuWLTVz5kwVK1Ys32NTIAUAAAAAAAAAAAD+5jIyMjRo0CCjOBoQEKDg4GC5urpq//79ioiI0NWrVzV69GhVrFhRjRo1uq15Dh06ZDwfPXq0KlWqdNO2Dg4Oub6/evVqzZs3T5Lk4eGhbt26ydfXVydOnNDKlSt14sQJbdmyRePHj9ekSZPynZECKQAAAAAAAAAAAPA3FxERoX379kmSgoKC9PbbbxsFyqCgID3//PN66aWXdO3aNY0fP14bNmy4aQHzVrILpA4ODurSpYtKlCiRr/5//PGH3n77bUlS2bJltWrVKlWuXNk43q1bN/Xu3VuxsbFau3atOnXqpHr16uVrjvyfFQAAAAAAAAAAAID7ypIlSyRJ7u7uGjduXI7i5yOPPKKBAwdKkn766Sd9+eWXtzVPdoHUy8sr38VRKWv16MWLFyVJw4YNsymOSpKrq6tmzZqlokWLSpIWLVqU7zkokAIAAAAAAAAAAMBuVh75fpgtISFBP//8sySpbdu2cnV1zbVd165d5ejoKEnatGnTbc2VXSCtVavWbfX/73//K0lyc3NT27Ztc21TqVIlNWvWTJK0a9cuo6BqLwqkAAAAAAAAAAAAwN/Ynj17jOePPfbYTdu5ubnpwQcflCR9/fXX+Z7njz/+UHJysqTbK5CmpqYaBdZHHnnEKNbmJvseqdevX9fu3bvzNQ8FUgAAAAAAAAAAAOBvLDEx0Xhes2bNW7b19fWVlFWs/O233/I1z+HDh3PMk5KSot27d2vnzp1KTExUZmbmTfsfOXLEOG5vTkk6ePBgvnIWyVdrAAAAAAAAAAAAAPeVEydOSJIcHBxUsWLFW7atUKGC8fy3335TpUqV7J4ne/WnJF28eFFhYWHavXu3TVG0fPny6t27t7p3755jhWh2TkmqUqXKLee68TzyW8hlBSkAAAAAAAAAAADwN5aSkiJJcnFxUbFixW7Z1sPDw3h+7ty5fM1zY4F09OjRio6OzrFi9PTp05o0aZIGDBigq1ev5ppTkkqVKnXLudzd3W87JytIAQAAAAAAAAAAgL/QM888c8vjX3311V86f3Yhsnjx4nm2vbGAeuXKlXzNc2OB1MXFRf369VPr1q1Vvnx5nTlzRlu2bNGCBQt04cIFRUVFKTw8XFOnTs2R8885cnPjufy50JoXCqQAcJ87WtTsBFn8LLf+bZ575vw5sxMYMs+dNzuCJMm5AG0Y8d1mT7MjSJLqexWMz0aSSjavbHYESVLjBRlmRzCculbS7AiSpMAOBeTrWgGS9OEFsyNIkvaWcMy70T1STFazI0iSinQfaHYEQ0bUOrMjSJKujhtidgRD0SfqmR1BklSxSRmzI2S5WDC+lkhS+up3zY4gSaro6Gp2BEOG483vB3UvFenQzewIBouzh9kRJElXwweZHcFQIny+2REkSZnnz5odocC5NnWo2REkSXVdvcyOYEhbONHsCJKkeq4+ZkcocDL3bTU7wv8EtDE7wX0nUwXje4bCYtu2berXr99t9f3qq69UpUoVpaenS8q76PjnNhkZ+fuZUXJysqSsVagff/yxqlevbhyrXLmyevXqpccff1yhoaG6dOmS1q9fr5CQENWrl/X/puyc9mS98fiN/exBgRQAAAAAAAAAAAD4C/3VK0TzUqJECUlSWlpanm2vX79uPC9aNH8rdHbs2KFz587p+vXrKleuXK5tatWqpcGDB2vKlCmSpNWrVxsF0uyc9mS9k5wUSAEAAAAAAAAAAIACysvLSy+++OJt9S1ZMmunLmdnZ0nStWvX8uxzY+HRni15/+zGe5jeTFBQkFEg3b9/v/F+dk4p76w3Hr+xsGoPCqQAAAAAAAAAAABAAVWjRg2NGDHijsZwc3OTJF28eFHp6ekqUuTmJcJz584Zzz09/5pbZnl6esrDw0Pnzp0ztuW9Mackpaam3nKMG4/nN2fBuSkZAAAAAAAAAAAAgLvOx8dHkmS1WnX69Olbtj116pTxvHLlyn9Zpty2xc3OKUknT568Zf8bj1eqVClfc7OCFAAAAAAAAAAAAPgbq1GjhvH8yJEjtyx8JiYmSpLc3d1Vvnx5u+c4ePCgoqOjdfbsWTVv3ty4r2hurl+/bqxULVu2rPF+9erVZbFYlJmZaeS4mSNHjhjPa9WqZXdOiQIpAAAAAAAAAAAA8sFqdgDkW8OGDY3nu3fvVpMmTXJtd/78eSUkJEiSHnnkkXzNcfjwYU2dOlVS1v1Bb1Ug3bNnj9LS0iRJAQEBxvvOzs566KGHFB8fr3379slqtcrBIfcNcXfv3i1JcnBwUIMGDfKVlS12AQAAAAAAAAAAgL8xX19fVa9eXZK0fv16Xbp0Kdd2H374oTIyMiRJrVu3ztccjRo1MoqZGzdu1MWLF3Ntl5mZqUWLFhmv27VrZ3O8ZcuWkqSzZ8/q888/z3WMX3/9Vdu2bZMkNW7cWO7u7vnKSoEUAAAAAAAAAAAA+Jvr1auXJOmPP/7QG2+8oevXr9sc37t3r959911JWfcezS5U2qt8+fJq0aKFJCklJUUjR47MMYfVatWkSZO0Z88eSVmrVJ944gmbNp06dVLJkiUlSW+99ZZ++uknm+MXL17UkCFDjBWo2eeVH2yxCwAAAAAAAAAAAPzNderUSWvWrNH333+vLVu2qFOnTurcubM8PDwUExOjNWvWKC0tTRaLReHh4SpWrFiOMdatW6eRI0dKktq3b29sqZvtjTfe0P79+3X27Flt2bJF7dq1U6dOnVSpUiWdOnVKn3zyiQ4ePCgp696jU6ZMkcVisRnD09NTr732mt566y398ccf6ty5s7p166YHHnhAJ0+e1Mcff6xff/1VkvTcc8/lKLDagwIpAAAAAAAAAAAA8Dfn4OCgRYsWqXfv3jpw4IAOHTqkiRMn2rQpWrSoxo0bp6eeeuq25qhUqZKWLFmiV155RUlJSTp69KimTZuWo13NmjU1Z84cVa1aNddxevTooTNnzmjRokW6dOmSFi9enKNNkyZNNHny5NvKSYEUAAAAAAAAAAAAKAQ8PT21evVqrVq1Shs2bNBPP/2ky5cvq2zZsmrUqJF69eolPz+/O5rDz89Pn332mSIiIrRp0yYdPnxYly5dkoeHh3x9fdW6dWu1b98+1xWqN/rnP/+pJk2a6MMPP9S+ffv0+++/y8nJSQ888IA6duyooKCgHKtP7UWBFAAAAAAAAAAAAHazZmaaHQF3oEiRIurevbu6d++e774dOnRQhw4d8mxXokSJ257jRg8//LAefvjhOxojNw53fUQAAAAAAAAAAAAAKKAokAIAAAAAAAAAAAAoNCiQAgVccnKy1qxZY3aMHKKiom57b++wsDCFhYXd9LiPj4+WLl16e8H+37Fjx2SxWHTs2LE7Gie3TE2bNlV4eLgk6erVqwoODpaTk5OaNm2qI0eOKDAwUCVKlNCbb76Z57jr16+XxWKxeXTq1OmuZAYAAAAAAAAAADlxD1KggBsxYoQyMzPVuXNns6Pg/61bt864efSmTZu0adMm7dq1S5UqVdLbb78tSTpw4IA8PT3zHOvHH39U27Zt9e9//9t4r0SJEn9NcAAAAAAAAAAAQIEUKOgyudl1gXNj4TM1NVXly5dX/fr1jdcBAQGqUaOGXWMlJCTooYceUoUKFf6SrAAAAAAAAAAAwBZb7AL58MsvvygoKEjOzs7y8fHR+PHjlZGRocqVK+v999832mVmZqpKlSpasWKFJGnnzp1q0KCBnJycVKdOHUVERBhtw8LCNGTIEIWEhMjZ2VlVq1bV8uXLJUnh4eFatmyZli1bJh8fH0mSxWLR2LFjVaZMGQUFBUmSoqOj9cQTT8jFxUXVqlXTwoULbcYfPHiw2rZtKycnJ9WrV0/ffPONJGnSpEmqW7euzTnOnDlTTz75ZL6vzZAhQ+Tl5aXjx4/b1f78+fMKDg5WiRIlVKdOHW3bti3XdlarVdOnT1f16tXl5OSkp59+WvHx8cbx5ORkhYSEyM3NTRUqVNCoUaNyLSrPmzdPHh4eiouLsyvfokWL5OXlJTc3N02cONHmWPYWu0uXLlVYWJiOHz8ui8VibMP7wQcf2L29748//qhatWrZlQkAAAAAAAAACoJMHvl+oGChQArYKTMzUx06dFC5cuUUGxurpUuX6qOPPtLkyZPVuXNnrVu3zmi7e/du/f7772rXrp1OnTql559/XmFhYYqPj9eIESMUFhamnTt3Gu3nz5+v+vXr64cfflDHjh318ssvKzU1VcOGDVOXLl3UpUsX7d2712gfGRmpXbt2aerUqUpISFCzZs301FNPKSYmRuHh4Ro6dKjWr19vtF+4cKH8/f0VGxurJk2aqE2bNjp79qxCQ0MVHx+vw4cPG21Xr16t0NDQfF2bWbNmafny5dqyZYu8vLzs6rN+/XrVqVNHcXFxatmypdq3b6/U1NQc7SZMmKAZM2Zo9uzZiomJkbe3t1q1aqVLly5JkoKDg3Xy5Elt375dq1ev1vvvv68FCxbYjLF27VqNHDlSkZGRCgwMzDPb5s2b9eqrr2rSpEmKjo7W3r17lZSUlKNdSEiIZs+erSpVqujkyZP67rvvjM/r5MmTqlq16i3nyczM1KFDh7R582bVqlVLNWrU0BtvvKHr16/nmREAAAAAAAAAANwettgF7LR161YlJSXp22+/lYODg/z8/DRjxgyFhYVp48aNatq0qS5cuKCSJUtq7dq1atOmjUqWLKlp06apefPmGjRokCTJ19dXsbGxmj17trFSMyAgQMOHD5eUVRCcM2eODhw4oMaNG8vJyUmSVLZsWSPLyy+/LD8/P0lZKzfr1aunyZMnS5L8/PyUkJCgadOmqX379pIkf39/TZ06VVJWMfOzzz7TypUrNWjQIDVs2FBr1qzR6NGjlZSUpJiYGEVGRtp9XVatWqXx48frq6++Uu3ate3u16BBA7311luSpOnTp+uTTz7Rxx9/rH79+hltMjMzNW/ePE2ZMsVYLbt48WLVqFFDK1as0GOPPabo6GgdPXpU1apVk5RVDL548aIxxs6dOzVgwACtWrXK7pWx7733nrp3766ePXtKkpYsWaIqVarkaOfk5CR3d3c5OjoaW+Rmf172bJl7/PhxXb58WcWLF9fq1av1888/a/Dgwbpy5YrmzJljV1YAAAAAAAAAAJA/FEgBOyUkJOj333+Xm5ub8Z7VatWVK1dUs2ZNVaxYURs3blRoaKjWrVunadOmGf0iIyPl6upq9EtLS7PZVrVmzZrG8+zx09LSbpole7vd7PEbNWpkc7xx48Y22+w+/vjjxnMHBwfVq1dPCQkJkqSuXbtq6dKlGj16tFavXq2mTZuqXLlydl0TKWsL3+LFi+daQLyVhg0b2mQKDAw0MmVLTk5WSkqKzfkVLVpUDRo0UEJCgjw9PeXp6WkURyWpXbt2kmRsb9u3b1+lp6fbvbJVytr29sZCbenSpVW9evV8nZ89vL299fvvv6tUqVKyWCwKDAyU1WpVjx49NGvWLDk6Ouboc+3aNV27ds3mvfTMDBWx5GwLAAAAAAAAAAByYotdwE7p6emqXbu24uLijMf333+vxMREubu7KyQkRBEREdq/f7/OnDmj5557zujXo0cPm34HDhzQhg0bjLGLFSuWY77c7qOZrUSJErk+z5aRkaGMjAzjddGiRXMcd3DI+usfEhKi+Ph4HTlyRGvXrs339rorVqyQn5+fhg0blq9+fy7+Wa3WHNcht3OT/nd+fz6v3EyePFnBwcEaOHBgvvL9+frn9hndDZ6enrJYLMbrBx54QFevXlVKSkqu7adMmSJ3d3ebx/bUA39JNgAAAAAAAAAA/o4okAJ28vPz0/Hjx1W2bFn5+vrK19dXP//8s8aNGyeLxaLQ0FBt2bJFa9euVVBQkJydnY1+iYmJRh9fX199+umn+vDDD+2a98bi2c1y7d692+a96OhoYwteSYqLizOeZ2RkKC4uTnXr1pUkVaxYUU2bNtWSJUv03XffqUOHDnblytaxY0fNnTtXH3/8sXbs2GF3v/j4eON5enq6YmJicmzR6+7urvLly9ucX1pamvbv3y8/Pz/VrFlTKSkp+uWXX4zjc+fOVXBwsPG6ffv2mjFjhvbt26cPPvjArmwPPfSQzT1fL1y4oCNHjth9bvbavHmzSpcurcuXLxvvxcXFqXTp0jZbKt9o5MiRSk1NtXk0cfe/69kAAAAAAAAAAPi7okAK2Klly5by9vZWjx49FB8fr507d6pv375ydnaWo6OjAgMDValSJc2fP18hISFGvwEDBmjfvn0aM2aMEhMT9dFHH2nUqFHy9va2a14XFxcdO3ZMJ06cyPX4gAEDFBcXp1GjRunw4cNatmyZFixYYLNiMioqSjNnztShQ4f06quv6vLly+rcubNxvGvXrnrnnXfUokULlSpVKt/XplGjRurZs6cGDhyo9PR0u/rs2LFDkyZN0sGDBzV48GBdv35dXbt2zdFuyJAhGjt2rCIjI5WQkKA+ffro6tWrCgkJkb+/v5o1a6aXXnpJ8fHxioqK0tSpU9WiRQubMby9vTV8+HANHz5cqampeWYbNGiQVq9ercWLF+vgwYPq27evTRHzbsm+x2zv3r116NAhff7553r99deN+9Hmpnjx4nJzc7N5sL0uAAAAAAAAgHvJqkwe+XygYKFACtjJ0dFRn332maxWqxo1aqSOHTuqTZs2mjt3rtEmJCREjo6OatWqlfGet7e3IiMj9fnnn+uhhx7SmDFjNHPmTHXv3t2ueXv27KlDhw4pICAg1213vby8tGHDBm3atEl16tTRxIkTNWvWLPXq1ctoExQUpK1btyowMFCxsbH64osv5OHhYRzv2LGj0tPT87297o2mTp2qpKQkm+txKy+88IJ27typgIAA7dmzRxs3bjRW3d5o6NCh6tOnj/r06aP69evr119/VVRUlLHCcsWKFXJxcdGjjz6qbt26qW/fvhowYECOcUaMGKHixYvrzTffzDPbk08+qffff19TpkxRgwYNVK5cOQUGBtp1XvlRsmRJbd68WWfOnFGDBg300ksvqW/fvnr99dfv+lwAAAAAAAAAACCLJfNWNzoEcN8LCwuTJC1duvSmbRITExUYGKjTp0/L1dX13gTDXTPJ275i+1/tZ8s1syNIkuaN8TI7giHz3HmzI0iSJs+/+yugb1fLq2lmR5Ak1e9z6+3L7yk77qd8L+xakJF3o3vExWLfbgR/tcC+RcyOUOAkfXjB7AiSpIh0D7MjGC5arGZHkCRN2NTP7AiGjKh1ZkeQJKXv/dHsCIaiT9QzO0IWzzJmJ8hysWB8LZEk6/HjZkeQJPVZWDC+b5SkjAKyumHZ2p5mRzBYnD3MjiBJuv7uTLMjGEqEzzc7giQp8/xZsyMUONfnTzQ7giQpdG3B+f/Fqp45fyHfDKHLr5gdocBZPa523o3uEaeXZpgd4b7Tzbu92RHuOx8lrTc7Am7AT32AQuzChQvavHmzFi1apK5du1IcBQAAAAAAAAAAf3tssQsUcr1791ZKSoomTZpkvJecnCxXV9dbPm5m1qxZt+zXr5+5qxsiIiJuma9169Z3ba4yZcrccq7jBeS31QEAAAAAAAAAKExYQQr8zd1qa92SJUvq3LlzOd4vXbq04uLibmu+F198UUFBQTc97ubmdlvj3i3PPvvsLc/Nycnprs21Z88eWa0333avUqVKd20uAAAAAAAAAABgHwqkAHJwdHSUr6/vbfX18PCQh4fH3Q10F7m6ut72ueVX9erV78k8AAAAAAAAAHAvZRaQ+5YDt4stdgEAAAAAAAAAAAAUGhRIAQAAAAAAAAAAABQaFEgBAAAAAAAAAAAAFBoUSAEAAAAAAAAAAAAUGhRIAQAAAAAAAAAAABQaRcwOAAAAAAAAAAAAgPuH1ewAwB1iBSkAAAAAAAAAAACAQoMCKQAAAAAAAAAAAIBCgwIpAAAAAAAAAAAAgEKDAikAAAAAAAAAAACAQoMCKQAAAAAAAAAAAIBCgwIpAAAAAAAAAAAAgEKjiNkBAAB35ool0+wIkqQMFYwcshSc3/3JvHbd7AiSpKsF5bOR5Fq0YFyTzEsF55o4VCtjdgRJUgnLGbMjGDJkMTuCJMniUdLsCFkcCs7XNemC2QEkSRctVrMjGNwyC8jn41jU7AQGS5myZkeQJFlcipsd4X88PM1OkOXMKbMTZKla3ewE/3MsyewEkqQSFkezIxgKyvf1DqWrmh3hf0q4mJ1AkmQp6WR2BEPm+bNmR5AkWdwKxvfSykgzO4HB4upsdgRJkkUXzY7wP44F52ss8HdiLSDfMwC3q4D8bx4AAAAAAAAAAAAA/noUSAEAAAAAAAAAAAAUGhRIAQAAAAAAAAAAABQaFEgBAAAAAAAAAAAAFBoUSAEAAAAAAAAAAAAUGkXMDgAAAAAAAAAAAID7R6YyzY4A3BFWkAIAAAAAAAAAAAAoNCiQAgAAAAAAAAAAACg0KJACAAAAAAAAAAAAKDQokAIAAAAAAAAAAAAoNCiQAgAAAAAAAAAAACg0ipgdAAAAAAAAAAAAAPcPq9kBgDvEClIAAAAAAAAAAAAAhQYFUgAAAAAAAAAAAACFBgVSwETJyclas2aN2TFyiIqKksViua2+YWFhCgsLu+lxHx8fLV269PaC/b9jx47JYrHo2LFjdzSOveLi4vTNN99IurNrcysffvihmjZtetfHBQAAAAAAAAAAtiiQAiYaMWKENm7caHYM5KF9+/Y6fPiwJKlx48Y6efLkXR1/27Zt6tu3710dEwAAAAAAAAAA5I4CKWCizMxMsyPADjd+TsWKFVOFChXu2tjjx49X69atVb169bs2JgAAAAAAAAAAuDkKpMD/++WXXxQUFCRnZ2f5+Pho/PjxysjIUOXKlfX+++8b7TIzM1WlShWtWLFCkrRz5041aNBATk5OqlOnjiIiIoy2YWFhGjJkiEJCQuTs7KyqVatq+fLlkqTw8HAtW7ZMy5Ytk4+PjyTJYrFo7NixKlOmjIKCgiRJ0dHReuKJJ+Ti4qJq1app4cKFNuMPHjxYbdu2lZOTk+rVq2dsBTtp0iTVrVvX5hxnzpypJ598Mt/XZsiQIfLy8tLx48ftan/+/HkFBwerRIkSqlOnjrZt25ZrO6vVqunTp6t69epycnLS008/rfj4eON4cnKyQkJC5ObmpgoVKmjUqFG5FpXnzZsnDw8PxcXF5ZktPDxcwcHBeuqpp+Tp6ant27frxIkT6tSpk0qVKqXixYvr4Ycf1q5duyRJTZs2VVJSknr16qWwsLAcW+z++uuv6tKlizw9PVWmTBkNHjxY165ds+s6SdIXX3yhzZs3q2PHjnb3AQAAAAAAAAAzZWZm8sjnAwULBVJAWV/MO3TooHLlyik2NlZLly7VRx99pMmTJ6tz585at26d0Xb37t36/fff1a5dO506dUrPP/+8wsLCFB8frxEjRigsLEw7d+402s+fP1/169fXDz/8oI4dO+rll19Wamqqhg0bpi5duqhLly7au3ev0T4yMlK7du3S1KlTlZCQoGbNmumpp55STEyMwsPDNXToUK1fv95ov3DhQvn7+ys2NlZNmjRRmzZtdPbsWYWGhio+Pt7YGlaSVq9erdDQ0Hxdm1mzZmn58uXasmWLvLy87Oqzfv161alTR3FxcWrZsqXat2+v1NTUHO0mTJigGTNmaPbs2YqJiZG3t7datWqlS5cuSZKCg4N18uRJbd++XatXr9b777+vBQsW2Iyxdu1ajRw5UpGRkQoMDLQr36effqpu3bpp69atatiwoXr06KGMjAxFR0crNjZWVapUUf/+/SVJ69atU5UqVTR79mzNmTPHZpzr16+rWbNmunTpkpFx48aNGj58uF05JOnrr79WkyZN7G4PAAAAAAAAAADuTBGzAwAFwdatW5WUlKRvv/1WDg4O8vPz04wZMxQWFqaNGzeqadOmunDhgkqWLKm1a9eqTZs2KlmypKZNm6bmzZtr0KBBkiRfX1/FxsZq9uzZxkrNgIAAo2A2YcIEzZkzRwcOHFDjxo3l5OQkSSpbtqyR5eWXX5afn5+krJWb9erV0+TJkyVJfn5+SkhI0LRp09S+fXtJkr+/v6ZOnSopq5j52WefaeXKlRo0aJAaNmyoNWvWaPTo0UpKSlJMTIwiIyPtvi6rVq3S+PHj9dVXX6l27dp292vQoIHeeustSdL06dP1ySef6OOPP1a/fv2MNpmZmZo3b56mTJlirJZdvHixatSooRUrVuixxx5TdHS0jh49qmrVqknKKgZfvHjRGGPnzp0aMGCAVq1ala+VseXLlzeyZGZmKjg4WB07dlSVKlUkSQMHDlSbNm0kSZ6ennJ0dJS7u7vc3d1txtm0aZNOnDihb7/9VqVKlZIkLViwQG3bttWkSZPk6upqdyYAAAAAAAAAAHBvUCAFJCUkJOj333+Xm5ub8Z7VatWVK1dUs2ZNVaxYURs3blRoaKjWrVunadOmGf0iIyNtCmFpaWmqVauW8bpmzZrG8+zx09LSbpole7vd7PEbNWpkc7xx48Y22+w+/vjjxnMHBwfVq1dPCQkJkqSuXbtq6dKlGj16tFavXq2mTZuqXLlydl0TKWsL3+LFixuFQ3s1bNjQJlNgYKCRKVtycrJSUlJszq9o0aJq0KCBEhIS5OnpKU9PT6M4Kknt2rWTJB07dkyS1LdvX6Wnp9u9sjXbjdfYYrGof//+Wrlypb755hsdPHhQ+/fvl9VqzXOchIQE1apVyyiOSlmfT3p6uo4cOWL3itb8uHbtWo4tfNMzM1TE4njX5wIAAAAAAAAA4O+ILXYBSenp6apdu7bi4uKMx/fff6/ExES5u7srJCREERER2r9/v86cOaPnnnvO6NejRw+bfgcOHNCGDRuMsYsVK5ZjvlvtN16iRIlcn2fLyMhQRkaG8bpo0aI5jjs4ZP3VDgkJUXx8vI4cOaK1a9fme3vdFStWyM/PT8OGDctXP0dH22Kd1WrNcR1yOzfpf+f35/PKzeTJkxUcHKyBAwfmK9+Nc1utVrVo0UIzZ86Ul5eXXn/9dX3wwQf5Hidb9mdz42d0N02ZMsVYzZr9+Cb1x79kLgAAAAAAAAAA/o4okALK2rr2+PHjKlu2rHx9feXr66uff/5Z48aNk8ViUWhoqLZs2aK1a9cqKChIzs7ORr/ExESjj6+vrz799FN9+OGHds1rsVjyzLV7926b96Kjo40teCUpLi7OeJ6RkaG4uDjVrVtXklSxYkU1bdpUS5Ys0XfffacOHTrYlStbx44dNXfuXH388cfasWOH3f3i4+ON5+np6YqJicmxRa+7u7vKly9vc35paWnav3+//Pz8VLNmTaWkpOiXX34xjs+dO1fBwcHG6/bt22vGjBnat2+f3UXNP/vxxx+1Y8cOffnllxo1apSee+45nTx5UtL/Ctk3+5z8/Px0+PBhpaSkGO9FR0erSJEiqlGjxm3lycvIkSOVmppq82js/uBfMhcAAAAAAAAAAH9HFEgBSS1btpS3t7d69Oih+Ph47dy5U3379pWzs7McHR0VGBioSpUqaf78+QoJCTH6DRgwQPv27dOYMWOUmJiojz76SKNGjZK3t7dd87q4uOjYsWM6ceJErscHDBiguLg4jRo1SocPH9ayZcu0YMECmxWTUVFRmjlzpg4dOqRXX31Vly9fVufOnY3jXbt21TvvvKMWLVrYbAVrr0aNGqlnz54aOHCg0tPT7eqzY8cOTZo0SQcPHtTgwYN1/fp1de3aNUe7IUOGaOzYsYqMjFRCQoL69Omjq1evKiQkRP7+/mrWrJleeuklxcfHKyoqSlOnTlWLFi1sxvD29tbw4cM1fPhwpaam5vv8PDw85ODgoJUrVyopKUlr167VuHHjJMnYytbFxUUHDx60KYRKUosWLVS9enX17NlT8fHx2rZtm1555RV169ZNHh4e+c5ij+LFi8vNzc3mwfa6AAAAAAAAAO4lqzJ55POBgoUCKaCsLWE/++wzWa1WNWrUSB07dlSbNm00d+5co01ISIgcHR3VqlUr4z1vb29FRkbq888/10MPPaQxY8Zo5syZ6t69u13z9uzZU4cOHVJAQECu2+56eXlpw4YN2rRpk+rUqaOJEydq1qxZ6tWrl9EmKChIW7duVWBgoGJjY/XFF1/YFOc6duyo9PT0fG+ve6OpU6cqKSnJ5nrcygsvvKCdO3cqICBAe/bs0caNG41VtzcaOnSo+vTpoz59+qh+/fr69ddfFRUVpbJly0rK2uLXxcVFjz76qLp166a+fftqwIABOcYZMWKEihcvrjfffDPf51alShW9++67evvtt+Xv768pU6Zo7ty5KlKkiGJjYyVlFarnz5+v3r172/TN/nMjZRWSQ0ND1a5dOy1atCjfOQAAAAAAAAAAwL1hybzVzRABFGhhYWGSpKVLl960TWJiogIDA3X69Gm5urrem2C4p8b4dDM7giTphK6ZHUGS9K83q5kdwWA9lWx2BEnSuMVpZkcwdMu4bHYESVKtzgXn2x+HalXMjiBJ2jfpjNkRCpwGwz3MjpDFoeD8TuOxeb+aHUGStCzDzewIBrfMgvH5DPsyf/dk/ytZv9tqdgRJUvqO3Xk3ukeKPP2E2RGy/F4wvjdR1epmJzBY9+0xO4Ik6ZXFBeN7JEnKKCCrGxZvHWF2hP8p4WJ2AknS9XljzY5gKNanYHw+FrcyZkfIklFw/s91fcE4syNIkkKXXjQ7gmFlWMH4eVhBuiYFxepxtfNudI84vTTD7Aj3nXZez5sd4b7z6fENZkfADYqYHQDAX+PChQvavHmzFi1apK5du1IcBQAAAAAAAAAAEFvsAn9rvXv3VkpKiiZNmmS8l5ycLFdX11s+bmbWrFm37NevX797cVo3FRERcct8rVu3vmdZCvq1AgAAAAAAAACgsGIFKXAfu9XWuiVLltS5c+dyvF+6dGnFxcXd1nwvvviigoKCbnrczc3c7e6effbZW56bk5PTPctS0K8VAAAAAAAAAACFFQVSoJBxdHSUr6/vbfX18PCQh4fH3Q10F7m6ut72ud1tBf1aAQAAAAAAAMDtspodALhDbLELAAAAAAAAAAAAoNCgQAoAAAAAAAAAAACg0KBACgAAAAAAAAAAAKDQoEAKAAAAAAAAAAAAoNCgQAoAAAAAAAAAAACg0ChidgAAAAAAAAAAAADcPzKVaXYE4I6wghQAAAAAAAAAAABAoUGBFAAAAAAAAAAAAEChQYEUAAAAAAAAAAAAQKFBgRQAAAAAAAAAAABAoUGBFAAAAAAAAAAAAEChUcTsAAAAAAAAAAAAALh/WJVpdgTgjlAgBYD7nIMsZkeQJBUpKJsSZFrNTmCwFHE0O4IkqajSzY5gsBSMP65S0QL0LZC1YPyZLeaQYXYEg6Pl/9i77/iczv+P4+87U4aExKYkhBi1qdbeo0atCt8a0aKo0qJVqsSmRs2WUlJ0aqzQqqpSlFqJGiHUamt9VW0hkvP7w8/5iiAJkXPr/Xp+H+fxve/7XOe63ufccSfNJ9d1+I8se+Xmbh+fJx5X7OR7jiRXO/k+rIR4qxP8j518rtlc7OfrRAn28W9Hznby/S/+htUJTDY3+7gmdvTVaje/6jRu2tHXSbx9fJ0o0V7eHTtiL9//nF2tTvA/dvLfxC728jOSJNnJf5vb1TWxE0aC/fx3KADHY08/gwMAAAAAAAAAAADAY0WBFAAAAAAAAAAAAIDDoEAKAAAAAAAAAAAAwGFQIAUAAAAAAAAAAADgMOzkLvMAAAAAAAAAAAB4EhiGYXUE4JEwgxQAAAAAAAAAAACAw6BACgAAAAAAAAAAAMBhUCAFAAAAAAAAAAAA4DAokAIAAAAAAAAAAABwGBRIAQAAAAAAAAAAADgMF6sDAAAAAAAAAAAA4MmRaHUA4BExgxQAAAAAAAAAAACAw6BACgAAAAAAAAAAAMBhUCAFAAAAAAAAAAAA4DAokAJ27syZM1q0aJHVMZJZt26dbDbbQx0bGhqq0NDQ++4PCAhQeHj4wwX7f0ePHpXNZtPRo0cfqZ97ZapZs6bCwsIkSXFxcWrevLk8PDxUs2ZNHTp0SGXKlFGmTJn03nvvpdjvoUOH1KBBA3l7eyt//vwaP358uuQFAAAAAAAAAAD35mJ1AAAPNmDAABmGoRdffNHqKPh/ixcvlpubmyRp1apVWrVqlTZt2qQ8efJo3LhxkqS9e/fKz8/vgf0kJiaqcePGqlixoqKionTw4EG1a9dOefPm1X/+85/Hfh4AAAAAAAAAADgiCqSAnTMMw+oIuMudhc8LFy4oZ86cKl++vPm8dOnSKlSoUIr9nD59WmXKlNFHH32kzJkzq3DhwqpTp442btxIgRQAAAAAAACA3TLE763xZGOJXSAN/vjjDzVr1kyenp4KCAjQsGHDlJCQoLx582revHlmO8MwlC9fPi1cuFCStGHDBlWoUEEeHh4qWbKkIiIizLahoaHq27evQkJC5OnpqaeeekoLFiyQJIWFhenTTz/Vp59+qoCAAEmSzWbTkCFDlC1bNjVr1kyStHnzZlWtWlVeXl4KDAzUzJkzk/Tfu3dvNW3aVB4eHipbtqx++eUXSdKoUaNUqlSpJOc4ceJEVatWLc3Xpm/fvsqfP7+OHz+eqvYXL15U8+bNlSlTJpUsWVI//fTTPdslJiZq/PjxKliwoDw8PFSrVi3t3r3b3H/mzBmFhITIx8dHuXLl0qBBg+5ZVJ42bZqyZMmi6OjoVOWbNWuW8ufPLx8fH40cOTLJvttL7IaHhys0NFTHjx+XzWYzl+GdP39+qpb3zZ07t7766itlzpxZhmFo06ZN+vnnn1WzZs1UZQQAAAAAAAAAAGlHgRRIJcMw1LJlS+XIkUNRUVEKDw/X559/rtGjR+vFF1/U4sWLzbZbtmzR33//rRdeeEGnTp1SkyZNFBoaqt27d2vAgAEKDQ3Vhg0bzPbTp09X+fLltWfPHrVq1UqvvvqqLly4oP79+6tNmzZq06aNtm3bZraPjIzUpk2bNHbsWMXExKh27dqqXr26du7cqbCwMPXr109Lliwx28+cOVMlSpRQVFSUatSooeeff15nz55V27ZttXv3bsXGxpptv/76a7Vt2zZN12bSpElasGCBVq9erfz586fqmCVLlqhkyZKKjo5W/fr11aJFC124cCFZu+HDh2vChAmaPHmydu7cqQIFCqhhw4a6cuWKJKl58+Y6efKk1q9fr6+//lrz5s3TjBkzkvTxzTffaODAgYqMjFSZMmVSzPb999+rT58+GjVqlDZv3qxt27bp2LFjydqFhIRo8uTJypcvn06ePKldu3aZ79fJkyf11FNPpepaSLfucVq1alU999xzatWqVaqPAwAAAAAAAAAAacMSu0AqrV27VseOHdOvv/4qJycnBQcHa8KECQoNDdXKlStVs2ZNXbp0SZkzZ9Y333yj559/XpkzZ9b777+vunXrqlevXpKkoKAgRUVFafLkyeZMzdKlS+vtt9+WdKsgOGXKFO3du1eVK1eWh4eHJCl79uxmlldffVXBwcGSbs3cLFu2rEaPHi1JCg4OVkxMjN5//321aNFCklSiRAmNHTtW0q1i5vLly/Xll1+qV69eeuaZZ7Ro0SK9++67OnbsmHbu3KnIyMhUX5evvvpKw4YN048//qiiRYum+rgKFSpoxIgRkqTx48dr6dKl+uKLL9S9e3ezjWEYmjZtmsaMGWPOlp09e7YKFSqkhQsX6rnnntPmzZt1+PBhBQYGSrpVDL58+bLZx4YNG9SzZ0999dVXqZ4ZO2fOHL300kvq0KGDJGnu3LnKly9fsnYeHh7y9fWVs7OzcuXKZb4myXyeWhERETp16pR69OihN998U1OnTr1nu+vXr+v69etJXrtpJMjF5pym8QAAAAAAAAAAcFTMIAVSKSYmRn///bd8fHzk7e0tb29vhYSE6Ny5cypcuLBy586tlStXSpIWL15szsKMiYlRZGSkeYy3t7emT5+eZNZm4cKFzcc+Pj6SpPj4+Ptmub3c7u3+K1WqlGR/5cqVFRMTYz6vUqWK+djJyUlly5Y197dr106LFi2SdGv2aM2aNZUjR45UX5fQ0FDZbLZ7FhAf5JlnnkmSqUyZMkkyS7eWzz137lyS83N1dVWFChUUExOjAwcOyM/PzyyOStILL7ygl156yXzerVs3xcXFpXpmqyTt27cvyUxTf39/FSxYMC2nl2YVKlRQkyZN9MEHH2jWrFm6cePGPduNGTNGvr6+SbZNF/Y+1mwAAAAAAAAAAPybUCAFUunmzZsqWrSooqOjze23337TwYMH5evrq5CQEEVERGjHjh3673//q8aNG5vHtW/fPslxe/fu1YoVK8y+3dzcko13r/to3pYpU6Z7Pr4tISFBCQkJ5nNXV9dk+52cbv3zDwkJ0e7du3Xo0CF98803aV5ed+HChQoODlb//v3TdJyzc9IZj4mJicmuw73OTfrf+d19XvcyevRoNW/eXK+99lqa8t19/e/1Hj2q06dPa+nSpUleK168uG7cuKGLFy/e85iBAwfqwoULSbYqviXSPRsAAAAAAAAAAP9WFEiBVAoODtbx48eVPXt2BQUFKSgoSEeOHNHQoUNls9nUtm1brV69Wt98842aNWsmT09P87iDBw+axwQFBWnZsmX67LPPUjWuzWZLMdeWLVuSvLZ582ZzCV5Jio6ONh8nJCQoOjpapUqVkiTlzp1bNWvW1Ny5c7Vr1y61bNkyVblua9WqlaZOnaovvvhCP//8c6qP2717t/n45s2b2rlzZ7Ilen19fZUzZ84k5xcfH68dO3YoODhYhQsX1rlz5/THH3+Y+6dOnarmzZubz1u0aKEJEyZo+/btmj9/fqqyPf3000nu+Xrp0iUdOnQo1eeWWkeOHFHLli31119/ma/t2LFD2bNnV7Zs2e55jLu7u3x8fJJsLK8LAAAAAAAAICMlymBL4wb7QoEUSKX69eurQIECat++vXbv3q0NGzaoW7du8vT0lLOzs8qUKaM8efJo+vTpCgkJMY/r2bOntm/frsGDB+vgwYP6/PPPNWjQIBUoUCBV43p5eeno0aNJimh36tmzp6KjozVo0CDFxsbq008/1YwZM5LMmFy3bp0mTpyoAwcOqE+fPrp69apefPFFc3+7du30wQcfqF69esqaNWuar02lSpXUoUMHvfbaa7p582aqjvn55581atQo7d+/X71799aNGzfUrl27ZO369u2rIUOGKDIyUjExMeratavi4uIUEhKiEiVKqHbt2nrllVe0e/durVu3TmPHjlW9evWS9FGgQAG9/fbbevvtt3XhwoUUs/Xq1Utff/21Zs+erf3796tbt266evVq6i5GGlSsWFHly5fXyy+/rH379unbb7/VW2+9pXfffTfdxwIAAAAAAAAAALdQIAVSydnZWcuXL1diYqIqVaqkVq1a6fnnn9fUqVPNNiEhIXJ2dlbDhg3N1woUKKDIyEh99913evrppzV48GBNnDgxyX0yH6RDhw46cOCASpcufc9ld/Pnz68VK1Zo1apVKlmypEaOHKlJkyapc+fOZptmzZpp7dq1KlOmjKKiovTDDz8oS5Ys5v5WrVrp5s2baV5e905jx47VsWPHklyPB+nUqZM2bNig0qVLa+vWrVq5cqU56/ZO/fr1U9euXdW1a1eVL19ef/75p9atW6fs2bNLurXEr5eXl5599ln95z//Ubdu3dSzZ89k/QwYMEDu7u567733UsxWrVo1zZs3T2PGjFGFChWUI0eOJPckTS/Ozs5atmyZvLy89Nxzz6lLly7q3bu3evfune5jAQAAAAAAAACAW2zGg250COCJFxoaKkkKDw+/b5uDBw+qTJkyOn36tLy9vTMmGNLNkIDUFdsft5O6YXUESdLUwU9ZHcFk/P2P1REkSSM+um51BFObxCtWR5AkFW5nP0tTO+XJYXUESdJv485YHcHkbLOPH09L9Lv3cucZzsl+/qbxxMdHrY4gSVp4xU7eG0meevDtEDJKn++7Wh3BlPjbeqsjSJIStmy3OoLJufIzVke45dK973Of4bLnsjqByYjZY3UESVLvGXby3khKsJPl32auftPqCCabe/I/5rXCjQ9HWh3B5PbqO1ZHkCTZvHytjnCLs6vVCUw3ptjHe9P+02tWRzAt7OJjdQRJUvs59vNZby8+GxxkdQSTZ7cPrI7wxKn7VAOrIzxx1vzxvdURcAcXqwMAsM6lS5f0/fffa9asWWrXrh3FUQAAAAAAAAAA8K9nP3+ODsASXbp00blz5zRq1CjztTNnzsjb2/uB2/1MmjTpgcd17949I07rviIiIh6Yr1GjRuk2VrZs2R441vHjx9NtLAAAAAAAAAAAkDrMIAX+5R60tG7mzJl1/vz5ZK/7+/srOjr6ocZ7+eWX1axZs/vu9/GxdlmTBg0aPPDcPDw80m2srVu3KjEx8b778+TJk25jAQAAAAAAAEBG4e6NeNJRIAWQjLOzs4KCHu4eAFmyZFGWLFnSN1A68vb2fuhzS6uCBQtmyDgAAAAAAAAAACD1WGIXAAAAAAAAAAAAgMOgQAoAAAAAAAAAAADAYVAgBQAAAAAAAAAAAOAwKJACAAAAAAAAAAAAcBguVgcAAAAAAAAAAADAkyNRhtURgEfCDFIAAAAAAAAAAAAADoMCKQAAAAAAAAAAAACHQYEUAAAAAAAAAAAAgMOgQAoAAAAAAAAAAADAYVAgBQAAAAAAAAAAAOAwXKwOAAAAAAAAAAAAgCeHIcPqCMAjYQYpAAAAAAAAAAAAAIfBDFIAeMIVjLdZHUGStE7nrI5wi09JqxP8T6J9/CXdBf1ldQRTwTpXrI4gSXLye8rqCKbzXx2wOoIkaZVrHqsjmFo5XbQ6giTpwuJDVkewOx6+9vE9p9Q5+/h8laQ1meKtjiBJuvnNbKsj/I/NPv4O1/W1QVZHMN2YMtLqCJKkv3++bnUESVL2F3NbHcHk0rKz1REkSbGT7eNrRJIuJ9rH18nNhdOtjmAyLl+1OoIkyf2diVZHMF0f28/qCJIkm7en1RFuMRKtTmBy6zPW6giSpK3Tm1odweTy0idWR5AkbZn0stUR7I5z5d5WRwDgwOzjv1wBAAAAAAAAAAAAIANQIAUAAAAAAAAAAADgMCiQAgAAAAAAAAAAAHAY3IMUAAAAAAAAAAAAqZZoGFZHAB4JM0gBAAAAAAAAAAAAOAwKpAAAAAAAAAAAAAAcBgVSAAAAAAAAAAAAAA6DAikAAAAAAAAAAAAAh0GBFAAAAAAAAAAAAIDDcLE6AAAAAAAAAAAAAJ4chtUBgEfEDFIAAAAAAAAAAAAADoMCKQAAAAAAAAAAAACHQYEUAAAAAAAAAAAAgMOgQAo4iOjoaP3yyy9Wx0giLCxMNWvWtDrGI1u3bp1sNpsk6ejRo7LZbDp69Ki1oQAAAAAAAAAAwD1RIAUcRIsWLRQbG2t1jH+9p556SidPntRTTz1ldRQAAAAAAAAAAHAPLlYHAJAxDMOwOoJDcHZ2Vq5cuayOAQAAAAAAAACPTaL4fTOebMwgBRxAzZo1dezYMXXu3FkBAQEKCAhQjx495Ovrq3HjxunGjRvq27ev8ubNK1dXVwUEBOjjjz82j79y5YpeffVV+fv7y9/fX926dVNcXJwk6fz58+rQoYN8fHyUJ08evf7667p27dpD5dywYYMqVKggDw8PlSxZUhEREea+0NBQ9e3bVyEhIfL09NRTTz2lBQsWpKrf28verly5UgEBAfL29lafPn20Z88eVahQQV5eXmrSpIkuXbpkHjNr1iwFBgbK29tbNWvW1O7du819Fy9eVLt27ZQ5c2YVKVJE27ZtSzbW7SV29+3bpwYNGihz5szKlCmTqlWrppiYGEm3luYNCAjQRx99pLx588rLy0sdOnTQ9evXH+r6AQAAAAAAAACAlFEgBRzA4sWLlS9fPk2ePFlTpkzRsWPHFBcXpx07dqhdu3YaM2aMVq5cqYiICB04cECdOnVSr169dPr0aUlSly5dtHHjRi1fvlw//PCDNm7cqMGDB0uSXnnlFV24cEGbNm3S0qVLtW3bNvXq1SvNGU+dOqUmTZooNDRUu3fv1oABAxQaGqoNGzaYbaZPn67y5ctrz549atWqlV599VVduHAh1WOMHTtWy5cv1+zZszV16lS1aNFCY8aM0erVq7V582bNmTNHkhQZGamwsDBNmzZNUVFRqlatmmrVqqV//vlHktS9e3ft379f69ev17Rp0zRx4sR7jpeYmKimTZsqMDDQvAfszZs3NWDAALPNiRMn9M0332jVqlVavHixIiIiNH/+/DRfPwAAAAAAAAAAkDoUSAEH4OfnJ2dnZ/n6+srX11eSNGDAAAUFBSl//vwqXbq0PvnkEz377LMqWLCgBg0apPj4eMXGxuqff/7RokWLNGPGDFWpUkXlypXTrFmzVKBAAf3+++9aunSpFixYoJIlS+qZZ57R7NmzFR4enqbCpSTNmDFDdevWVa9evRQUFKT27durW7dumjx5stmmdOnSevvtt1WwYEENHz5c165d0969e1M9xnvvvadSpUqpXbt2ypEjh9q1a6d69eqpSpUqqlu3rvbv3y9Jev/99zVo0CA1adJEhQsX1ogRI1SgQAEtXLhQFy5c0Ndff62pU6eqXLlyatCggYYMGXLP8a5du6bu3btr4sSJKlSokMqVK6fQ0NAkmePj4zV16lSVLFlSDRo0UMOGDZPMSAUAAAAAAAAAAOmLe5ACDiogIMB83Lx5c/3www/q16+f9u/fr507d0qSEhISdOjQISUkJKh8+fJm+2rVqqlatWpasWKFEhMTlTdv3iR9JyYm6tChQ0mOSUlMTIwiIyPl7e1tvhYfH68iRYqYzwsXLmw+9vHxMdukVsGCBc3HHh4eSa6Bh4eHubRtTEyM3n77bQ0cONDcHxcXp9jYWMXGxiohIUFlypQx91WsWPGe43l5ealHjx6aP3++tm/fbl7bnDlzJml393k96JyuX7+ebAneeCNBrjbn+584AAAAAAAAAAAwUSAFHFSmTJnMx4MHD9bs2bPVuXNndezYUR9++KFZPHR1db1vHzdv3pSvr6+2b9+ebN/dRdOU3Lx5U+3bt9egQYOSvH7n+G5ubsmOM4zU3wzcxSXpR56T070n0d+8eVOTJ09WnTp1krzu4+OjY8eOJRv3Xrkk6fLly6pYsaKyZcumZs2aqV27dtq/f78mTJiQpN3dxz/onMaMGaNhw4Ylee0F75Jq7lPqvscAAAAAAAAAAID/YYldwEHYbLb77ps5c6amT5+usWPHKiQkRFeuXJF0q1BXsGBBOTs7a9euXWb7ZcuWqVy5cgoODtaFCxdks9kUFBSkoKAgXbt2TW+99VayWY4pCQ4O1sGDB81+goKCtGzZMn322WcPd8KPIDg4WH/++WeSLKNGjdKWLVsUHBwsV1fXJMvgRkVF3bOfdevW6cSJE/rpp5/01ltvqW7dujp+/Hiairp3GzhwoC5cuJBka5y5xEP3BwAAAAAAAABplSiDLY0b7AsFUsBBeHl5af/+/Tp37lyyff7+/oqMjNThw4e1ceNGdejQQdKt5Vx9fHzUqVMn9e7dW1u3btX27ds1aNAg1alTR8WKFVPDhg310ksvadu2bdq5c6dCQ0N1+fJlZcmSJU35evbsqe3bt2vw4ME6ePCgPv/8cw0aNEgFChRIj9NPk759+2ry5MlasGCBfv/9dw0YMEBff/21ihUrJh8fH3Xs2FGvv/66fv31V61bt05hYWH37Mff31+XL1/W0qVLdfToUc2ZM0fTp09Pc/H4Tu7u7vLx8UmysbwuAAAAAAAAAACpxxK7gIPo2bOn3n777XsuBzt37lz16NFDJUqUUN68edW1a1e5uLgoKipKDRs21OTJk9W7d2/Vq1dPbm5uCgkJ0ciRIyVJCxYs0Ouvv646derIxcVFDRs21LRp09Kcr0CBAoqMjNSAAQM0fvx45c2bVxMnTtRLL730yOeeViEhITp9+rTee+89nT59WiVKlFBkZKR5r9Bp06bp9ddfV7169ZQ1a1b17t1b/fv3T9bPc889pyFDhqhnz56Ki4tTqVKlNGPGDL3yyiv666+/Mvq0AAAAAAAAAACAJJvxKGs9AgAsF563vdURJElzddLqCJKk7z+oYXUEk3H+H6sjSJL6j7afgvyYWslnsVvBtehTVkcwnV921OoIkqSP/8pjdQRTK6eLVkeQJGXLe9nqCHYnMeH+S/ZnpF+P5LI6gmlNpptWR5Akje9y73uiW8JmHwsVubTtaXUE040pI62OIEn6++eHX8kkPWV/MbfVEUwuLTtbHUGSVK+ufXyNSNLlRPv4OtnQNZ/VEUzG5atWR5Akub8z0eoIputj+1kdQZJk8/a0OsItRqLVCUxufcZaHUGSFFC4qdURTIe3f2J1BElSQPmXrY5gd45unGJ1BJP70/WsjvDEeS5vLasjPHE2//WT1RFwB/v4L1cAAAAAAAAAAAAAyAAUSAE8FhEREfL29r7v1qhRo3QbK1u2bA8c6/jx4+k2FgAAAAAAAAAAeLJxD1IAj0WDBg0UHR193/0eHh7pNtbWrVuVmHj/5Wzy5LGfZSMBAAAAAAAA4EnH3RvxpKNACuCx8Pb2VlBQUIaMVbBgwQwZBwAAAAAAAAAAPPlYYhcAAAAAAAAAAACAw6BACgAAAAAAAAAAAMBhUCAFAAAAAAAAAAAA4DAokAIAAAAAAAAAAABwGC5WBwAAAAAAAAAAAMCTI1GG1RGAR8IMUgAAAAAAAAAAAAAOgwIpAAAAAAAAAAAAAIdBgRQAAAAAAAAAAACAw6BACgAAAAAAAAAAAMBhUCAFAAAAAAAAAAAA4DBcrA4AAAAAAAAAAACAJ4chw+oIwCNhBikAAAAAAAAAAAAAh0GBFAAAAAAAAAAAAIDDsBmGwTxoAHiCXer1vNURJEkurVtbHUGSFNRiotURTFndMlsdQZK0dUgFqyOYpr9/3uoIkqQVN09aHcHURbmtjiBJatH0rNURTPsjPayOIEnaIy+rI9gdv4REqyNIkmo2OmN1BJNblVJWR5Ak1R0abXUEU3nX7FZHkCT9cPWI1RFM9TwDrY4gScpjuFodQZL0u+261RFM66/Yx9fJb2uGWx3BZPPMYnUESVKPepOsjmCyl9kFqy8esDqCqZR3fqsjSJJsslkdQZLkYic5JGnrpcNWR5AkHT0YaXUEU3DRVlZHkCQd2Pe11RHsjme+mlZHMMXf+MvqCE+cinmqWx3hibPtxM9WR8Ad7OVnPAAAAAAAAAAAAAB47CiQAgAAAAAAAAAAAHAYLlYHAAAAAAAAAAAAwJODuzfiSccMUgAAAAAAAAAAAAAOgwIpAAAAAAAAAAAAAIdBgRQAAAAAAAAAAACAw6BACgAAAAAAAAAAAMBhUCAFAAAAAAAAAAAA4DBcrA4AAAAAAAAAAACAJ0eiDKsj4BHEx8fr66+/VmRkpA4ePKj4+HjlypVLVapUUYcOHVSwYMGH6vfXX39Vx44d03xc3rx5tXbt2mQZy5Ytq/j4+BSPd3Nz0+7du9M0JgVSAAAAAAAAAAAAwAH8888/6tq1a7KC4rFjx3Ts2DEtXrxYw4YNU/PmzTMsk81mS/ba4cOHU1UcfVgUSAEAAAAAAAAAAIB/uYSEBPXq1cssjpYuXVrNmzeXt7e3duzYoYiICMXFxendd99V7ty5ValSpTT1X7hwYc2YMSPFdoZhaNSoUTp58qQk6fXXX0/W5sCBA+bjd999V3ny5Llvf05Oab+jKAVSAAAAAAAAAAAA4F8uIiJC27dvlyQ1a9ZM48aNM4uLzZo1U5MmTfTKK6/o+vXrGjZsmFasWJGm4qOfn5/q1q2bYruZM2eaxdF27drdc7bq7QKpk5OT2rRpo0yZMqU6R2qkvaQKAAAAAAAAAAAA4Ikyd+5cSZKvr6+GDh2arPhZsWJFvfbaa5Kk33//XWvWrEn3DPv379f06dMlSQEBARowYMA9290ukObPnz/di6MSBVLgiXXp0iXNnz/ffB4QEKDw8PB06Xvt2rWKiYlJl75Ssn//ftWvX18+Pj4KDAzU6NGjlZiYaO6PiopSpUqV5OnpqYoVK2rHjh0ZkutuoaGhCg0NTZe+Dh8+rO+++y5d+gIAAAAAAAAAICUxMTE6cuSIJKlp06by9va+Z7t27drJ2dlZkrRq1ap0zWAYht577z3z3qLDhw+Xh4fHPdveLpAWKVIkXTPcRoEUeEJNmjTJ/GsPSdq2bZtCQkLSpe86dero9OnT6dLXg1y9elXPP/+88ubNq23btmnGjBmaPHmyPvroI0nSlStX9Pzzz6tatWrasWOHKleurMaNG+vKlSuPPdvdpkyZoilTpqRLX6+88op+/fXXdOkLAAAAAAAAADKaYRhsadystnXrVvPxc889d992Pj4+Kl68uCRp48aN6ZohIiJCv/32m6RbRdr73eP0n3/+0ZkzZyRRIAVwl7s/ULNnz37fv7SwVz///LPOnTunmTNnKjg4WM8//7zefPNNff7555Kkr776Sh4eHho/fryKFSumyZMnK3PmzFq0aFGGZ/X19ZWvr2+69GUP3wwBAAAAAAAAAI7j4MGD5uPChQs/sG1QUJAk6cKFCzpx4kS6jH/9+nVNnTpVkuTu7q6+ffvet21sbKz5+HbWc+fOacuWLdqwYYMOHjz4yL9np0AK2ImjR4/KZrNpxIgRypo1q1577TWNHj1agYGBcnNzU548eTRs2DBJUnh4uIYNG6b169fLZrNJSrrEbmJiosaPH6+CBQvKw8NDtWrV0u7du1OVIyAgQJJUq1YthYWFSZI2b96sqlWrysvLS4GBgZo5c6bZPjQ0VL1791bTpk3l4eGhsmXL6pdffknVWGXKlNHSpUvl7u6e5PULFy5IkrZs2aKqVaua52iz2VSlShVt3rw5xb7feecd1ahRI8lrgwYNMm8QvW/fPjVo0ECZM2dWpkyZVK1aNXNZ4XXr1ikgIEA9evSQr6+vxo0bl2SJXcMw7vveSFLNmjU1atQoNWjQQB4eHipSpIi+//5783qtX79ew4YNU82aNSVJU6dOVYECBZQpUyZVqFAh3f8qBwAAAAAAAADg2P766y9JkpOTk3Lnzv3Atrly5TIfp1eB9MsvvzRXrmzbtq3y5Mlz37a3l9eVpMuXLys0NFSVK1dWp06d1KVLFzVp0kQ1atTQ/PnzlZCQ8FB5KJACdmbTpk3avn27cuTIocmTJ2vOnDmKjY3VkCFDFBYWpp07dyokJET9+vXTc889p5MnTybrY/jw4ZowYYImT56snTt3qkCBAmrYsGGqlqbdtm2bpFtT3fv376+YmBjVrl1b1atX186dOxUWFqZ+/fppyZIl5jEzZ85UiRIlFBUVpRo1auj555/X2bNnUxwrV65cZpFQkq5du6bZs2erTp06kqSTJ08m+5DMmTOn/vzzzxT7btu2rTZu3GhOw799Tm3btlViYqKaNm2qwMBARUdH65dfftHNmzeT3Az62LFjiouL044dO9SuXbskfc+fP/++781to0aNUrt27bRnzx6VKVNGXbt2VWJioqZMmaLnnntO/fr10+LFixUVFaW33npLH374ofbv369q1arpxRdfTHIfVgAAAAAAAAAAHsW5c+ckSV5eXnJzc3tg2yxZspiPz58//8hjJyYmav78+ZIkFxcXczLS/dxZIH333Xe1efPmZDNGT58+rVGjRqlnz56Ki4tLcyYKpICdeeONN1SoUCFVr15d8+bNU506dRQQEKDu3bsrV65c2rt3rzw8POTt7S03N7ckf8kh3ZrdOG3aNI0YMULNmjVTsWLFNHv2bDk7O2vhwoUpjp89e3ZJkp+fn7y9vTV79myVLVtWo0ePVnBwsDp16qTXX39d77//vnlMiRIlNHbsWBUtWlSTJk2Sn5+fvvzyyzSdd2JiokJDQ3Xp0iUNHDhQ0q17lN49u9Td3V3Xr19Psb8yZcqoSJEiWrp0qSRp9+7dOnLkiFq2bKlr166pe/fumjhxogoVKqRy5copNDRUe/fuTdLHgAEDFBQUpPz58yd5PX/+/Pd9b25r3LixQkNDVahQIQ0ePFh//PGHTp06JV9fX7m5ucnb21t+fn7mzOECBQooICBAI0eO1MKFCymQAgAAAAAAAADSze0i4t2/c7+XOwuo165de+Sx165da058atiw4QNnj0pJC6ReXl7q16+f1qxZo927d2vt2rV65513lDlzZkm3VoS8vRpmWrik+QgAj9WdS9z++uuvGjhwoGJiYhQVFaVTp06lOF38zJkzOnfuXJKbG7u6uqpChQrmErJpERMTk+xGyZUrV06yzG6VKlXMx05OTipbtmyaxrp586Y6deqkFStW6IcffjCLvpkyZUpWDL1+/bo8PT1T1W9ISIgWL16sbt26KSIiQvXq1ZOfn58kqUePHpo/f762b9+u/fv3a+fOncqZM2eS42+/F3dLzXtz5xruPj4+kqT4+PhkfTVo0EAlS5ZUyZIlVbZsWb3wwgvq2rWrXFzu/fF8/fr1ZNfkRkKC3J2dU74gAAAAAAAAAABL3F458X5+/PHH++776aef1L1794ca98cff1S+fPl08+ZNSUpx9ujdbR52Cds7LViwwHz8yiuvpNj+9sqQWbJk0RdffKGCBQua+/LmzavOnTurSpUqatu2ra5cuaIlS5YoJCREZcuWTXUmZpACdiZTpkySpDlz5qhu3bqKi4tTq1atzA+x1B5/t4SEhIf6ILtXf3f35erqmmy/k1PqPl7i4+PVpk0bLVu2TN9++60qV65s7subN69OnTqVpP2pU6dSXB/9trZt22rt2rU6f/68IiIiFBISIunWmuUVK1bU559/rqJFi2rYsGEaP358suPvdy1T897c65vMvW4a7enpqV9//VVr165VzZo1NW/ePJUrV85cD/5uY8aMka+vb5Jt4o7DKV4LAAAAAAAAAEgviTLY0rhZ7fbvu+81keduN27cMB/f/fv/tDp27Ji2bNkiSSpfvryKFy+e4jE///yzfv31V0VGRiYpjt6pSJEi6t27t/n866+/TlMuZpACdmrmzJkaMmSI3nrrLUm31vk+ffq0WWSz2Wz3PM7X11c5c+bUli1bVLp0aUm3PvB27NihevXqpTlHcHCw1q9fn+S1zZs3Kzg42HweHR1tPk5ISFB0dLQaN26cqv67deumH374QatWrVLVqlWT7Hv22Wc1duxYGYYhm80mwzC0adMmvfvuu6nqu2jRoipevLhmzpypgwcPqnnz5pJuTbk/ceKEdu/ebc7UXL169T0LmPeS0nuTkjvfu82bN2vt2rV69913VatWLY0ZM0Y5c+bUxo0bzYLunQYOHKi+ffsmee3GgBdTNS4AAAAAAAAAwBoPmiGakvz58+vll19+qGNvL0V7e2XG1NzC7s4CaWqW5H2QNWvWmI8bNmyY6uPuvA/q/TRr1kxjxoyRJO3YsSNNuSiQAnbK399fa9as0QsvvKBLly5p0KBBio+PNz+8vLy8dOLECR09ejTZUrB9+/bVkCFDlCdPHgUFBWncuHGKi4u7Z8HtXry8vLRnzx6VLVtWPXv21JQpUzRo0CCFhoZq8+bNmjFjhqZPn262X7dunSZOnKgmTZpo2rRpunr1ql58MeWi3Q8//KDw8LQY8pkAAQAASURBVHDNmjVLQUFB5mxRZ2dnZc+eXa1bt9Y777yjN954Q6+++qpmzZqlK1euqE2bNqm8irdmkY4aNUqNGjUyl7r19/fX5cuXtXTpUlWoUEFr1qzR9OnTzf0pSem9SYmXl5cOHjyoM2fOyMPDQ8OGDVPOnDlVt25drV+/XpcvX1apUqXueay7u3uyb0iXWF4XAAAAAAAAAP61ChUqpAEDBjxSH7d//3358mXdvHnzvrd5k25NCrrt9m3rHtbatWsl3Zo41KBBg0fq625+fn7KkiWLzp8/by7Lm1ossQvYqSlTpujixYsqXbq0WrZsqdKlS6tFixaKioqSJLVo0UKJiYkqXrx4sn/4/fr1U9euXdW1a1eVL19ef/75p9atW6fs2bOnauzevXvrrbfeUlhYmPLnz68VK1Zo1apVKlmypEaOHKlJkyapc+fOZvtmzZpp7dq1KlOmjKKiovTDDz+k6q87IiIiJEmvvvqqcufObW4VK1aUdOsDe8WKFdqwYYPKly+vLVu26Ntvv5WXl1eqzkO6VSC9fPmy2rZta7723HPPaciQIerZs6dKlSql8PBwzZgxQ2fOnLnv0rZ3Sum9SUmXLl303XffqWHDhipTpozmzp2r8ePHq2jRoho9erQWLlyoYsWKpfocAQAAAAAAAAB4kNsTrRITE3X69OkHtr3z1nd58+Z96DH/+ecf8/fmZcqUUc6cOR+6r/t52CWAmUEK2ImAgIAkS7QWLVpUmzdvvm/7QoUK6dChQ+bzo0ePmo+dnZ01cuRIjRw58qGyjB49WqNHjzaf16lTRzt37rxv+6xZsyo8PDzN48ycOVMzZ858YJtnnnnmgWOn5O7retvQoUM1dOjQJK/dLvrmzZs32TF3nl9K7826desemKF58+bmcr+S1L59e7Vv3z6lUwEAAAAAAAAA4KEUKlTIfHzo0KEHFj4PHjwo6X+39HtYmzdvVkJCgqRbdYbU2L9/vzZv3qyzZ8+qbt26Klu27H3b3rhxw5ztmtoJYrdRIAUAAAAAAAAAAAD+xZ555hnz8ZYtW1SjRo17trt48aJiYmIkyVzt8WHdOfmpdOnSqTomNjZWY8eOlXTrfqkPKpBu3bpV8fHxaer/NpbYBRzImTNn5O3t/cDtSRmrfPnyD+x7w4YN6XQmAAAAAAAAAIA7Gfwvzf+zWlBQkAoWLChJWrJkia5cuXLPdp999pk567NRo0aPNOaePXsk3br/aPHixVN1TKVKleTkdKt8uXLlSl2+fPme7QzD0KxZs8znL7zwQpqyMYMUcCD+/v6Kjo5O1z7vt7Tu4xjrTkuWLNGNGzfuu/9R1kUHAAAAAAAAAODfpnPnznrvvff0zz//6J133tHEiRPl5uZm7t+2bZs++ugjSbd+x16/fv1HGu/2bQKfeuqpVE+aypkzp+rVq6fvv/9e586d08CBA5PlTExM1OjRo7V161ZJt2a6Vq1aNU3ZKJACDsTZ2VlBQUH/irHy58//2PoGAAAAAAAAAODfpnXr1lq0aJF+++03rV69Wq1bt9aLL76oLFmyaOfOnVq0aJHi4+Nls9kUFhaWpCh52+LFizVw4EBJUosWLczlcO/2zz//6NKlS5JuTahKi3feeUc7duzQ2bNntXr1ar3wwgtq3bq18uTJo1OnTmnp0qXav3+/pFv3Hh0zZoxsNluaxqBACgAAAAAAAAAAAPzLOTk5adasWerSpYv27t2rAwcOaOTIkUnauLq6aujQoapevfojjXX69GnzcVpvuZcnTx7NnTtXr7/+uo4dO6bDhw/r/fffT9aucOHCmjJlip566qk056NACgAAAAAAAAAAADgAPz8/ff311/rqq6+0YsUK/f7777p69aqyZ8+uSpUqqXPnzgoODn7kce68x6mPj0+ajw8ODtby5csVERGhVatWKTY2VleuXFGWLFkUFBSkRo0aqUWLFvec5ZoaFEgBAAAAAAAAAAAAB+Hi4qKXXnpJL730UpqPbdmypVq2bJliu/Lly+vAgQMPE8+UKVOmh86ZEgqkAAAAAAAAAAAASLVEw7A6AvBInKwOAAAAAAAAAAAAAAAZhQIpAAAAAAAAAAAAAIdBgRQAAAAAAAAAAACAw6BACgAAAAAAAAAAAMBhUCAFAAAAAAAAAAAA4DBcrA4AAAAAAAAAAACAJ4chw+oIwCNhBikAAAAAAAAAAAAAh0GBFAAAAAAAAAAAAIDDsBmGwTxoAHiChedtb3UESdJCp/9aHUGSFPn+s1ZHMBkXzlsdQZI0eOxpqyOYhre8anUESZJT7mxWRzCd/PQvqyNIkpZczG51BFN9pwtWR5AkeWe+bnUEu+PinmB1BEnSzj9zWh3BtCaTfVyTsS/esDqCKfH8FasjSJI8Rk6zOoLpSt8eVkeQJF08YLM6giQpawVXqyOYMg23j6+T+uV6Wh3BdC0x3uoIkqQfWntbHcHuuL81yuoIpviZI62OcIuzs9UJbnGxkxySXF563eoIkqRilezje58kHdgfYXUESVKR4BZWR7A7MauHWR3BlKl8c6sjPHFK5KxkdYQnzt7Tv1odAXdgBikAAAAAAAAAAAAAh0GBFAAAAAAAAAAAAIDDcLE6AAAAAAAAAAAAAJ4cidy9EU84ZpACAAAAAAAAAAAAcBgUSAEAAAAAAAAAAAA4DAqkAAAAAAAAAAAAABwGBVIAAAAAAAAAAAAADoMCKQAAAAAAAAAAAACH4WJ1AAAAAAAAAAAAADw5DBlWRwAeCTNIAQAAAAAAAAAAADgMCqQAAAAAAAAAAAAAHAYFUgAAAAAAAAAAAAAOgwIpAAAAAAAAAAAAAIdBgRQAAAAAAAAAAACAw6BACuCxio6O1i+//GJ1jCTCwsJUs2ZNq2MkcejQIXl4eFgdAwAAAAAAAABSlGgYbGncYF8okAJ4rFq0aKHY2FirY9i1P/74Q02aNFFcXJzVUQAAAAAAAAAA+NejQArgsTL4y5gHWrp0qcqXLy93d3erowAAAAAAAAAA4BAokAJ4bGrWrKljx46pc+fOCggIUEBAgHr06CFfX1+NGzdON27cUN++fZU3b165uroqICBAH3/8sXn8lStX9Oqrr8rf31/+/v7q1q2bOcvy/Pnz6tChg3x8fJQnTx69/vrrunbt2kPl3LBhgypUqCAPDw+VLFlSERER5r7Q0FD17dtXISEh8vT01FNPPaUFCxakuu99+/apWrVq8vT0VI0aNTRq1Kgky/uuXLlSI0aM0JQpUx4qOwAAAAAAAAAASBsKpAAem8WLFytfvnyaPHmypkyZomPHjikuLk47duxQu3btNGbMGK1cuVIRERE6cOCAOnXqpF69eun06dOSpC5dumjjxo1avny5fvjhB23cuFGDBw+WJL3yyiu6cOGCNm3apKVLl2rbtm3q1atXmjOeOnVKTZo0UWhoqHbv3q0BAwYoNDRUGzZsMNtMnz5d5cuX1549e9SqVSu9+uqrunDhQop9x8XFqVGjRgoICNCOHTvUsmVLjRo1Kkmb2bNn69VXX01zbgAAAAAAAAAA8HBcrA4A4N/Lz89Pzs7O8vX1la+vryRpwIABCgoKkiSVLl1aderU0bPPPitJGjRokIYPH67Y2Fi5ublp0aJFWrNmjapUqSJJmjVrlqKjo/X7779r6dKlOnfunNnv7NmzVaZMGU2aNMl8LTVmzJihunXrmsXVoKAgRUVFafLkyapWrZqZ8+2335YkDR8+XFOmTNHevXtVuXLlB/a9evVq/fPPP5o5c6a8vLxUrFgxbdiwQWfPnk11PgAAAAAAAAAAkL4okALIUAEBAebj5s2b64cfflC/fv20f/9+7dy5U5KUkJCgQ4cOKSEhQeXLlzfbV6tWTdWqVdOKFSuUmJiovHnzJuk7MTFRhw4dSnJMSmJiYhQZGSlvb2/ztfj4eBUpUsR8XrhwYfOxj4+P2SYl+/fvV+HCheXl5WW+VrlyZS1fvjzV+e52/fp1Xb9+Pclr8UaCXG3OD90nAAAAAAAAAKSFIcPqCMAjoUAKIENlypTJfDx48GDNnj1bnTt3VseOHfXhhx+aBVRXV9f79nHz5k35+vpq+/btyfbdXTRNyc2bN9W+fXsNGjQoyet3ju/m5pbsOMNI+QcAT0/PZO3c3d3TlO9uY8aM0bBhw5K89oJ3STX3KfVI/QIAAAAAAAAA4Ci4BymAx8pms91338yZMzV9+nSNHTtWISEhunLliqRbxceCBQvK2dlZu3btMtsvW7ZM5cqVU3BwsC5cuCCbzaagoCAFBQXp2rVreuutt5LNrkxJcHCwDh48aPYTFBSkZcuW6bPPPnu4E75D8eLFFRsbm+R+pVFRUY/U58CBA3XhwoUkW+PMJR41KgAAAAAAAAAADoMCKYDHysvLS/v379e5c+eS7fP391dkZKQOHz6sjRs3qkOHDpJuLSPr4+OjTp06qXfv3tq6dau2b9+uQYMGqU6dOipWrJgaNmyol156Sdu2bdPOnTsVGhqqy5cvK0uWLGnK17NnT23fvl2DBw/WwYMH9fnnn2vQoEEqUKDAI597rVq1VLRoUb388svat2+f5s+frwULFjxSn+7u7vLx8UmysbwuAAAAAAAAAACpR4EUwGPVs2dPTZ8+XV26dEm2b+7cuYqOjlaJEiUUGhqqNm3a6JlnnjFnWU6ePFmlS5dWvXr11KhRI9WqVUsjR46UJC1YsECBgYGqU6eO6tatq+DgYH355ZdpzlegQAFFRkbqu+++09NPP63Bgwdr4sSJeumllx7txHVr9uzixYt16dIllStXTrNmzVLHjh0fuV8AAAAAAAAAAPDwuAcpgMeqZ8+e6tmz5z33ValSRb/99luS1wYMGGA+zpw5s+bNm6d58+YlOzZbtmz64osvHipTWFhYkud169bVjh077tk2PDw82Wupuf/obfnz59fq1auTjH3w4MFk7WrWrJmmfgEAAAAAAAAAwMOhQAoAAAAAAAAAAIBUS2SyB55wLLEL4F8lIiJC3t7e990aNWqUbmNly5btgWMdP3483cYCAAAAAAAAAADpgxmkAP5VGjRooOjo6Pvu9/DwSLextm7dqsTExPvuz5MnT7LX7l7eFwAAAAAAAAAAZCwKpAD+Vby9vRUUFJQhYxUsWDBDxgEAAAAAAAAAAOmHJXYBAAAAAAAAAAAAOAwKpAAAAAAAAAAAAAAcBkvsAgAAAAAAAAAAINUMGVZHAB4JM0gBAAAAAAAAAAAAOAwKpAAAAAAAAAAAAAAcBgVSAAAAAAAAAAAAAA6DAikAAAAAAAAAAAAAh0GBFAAAAAAAAAAAAIDDcLE6AAAAAAAAAAAAAJ4chpFodQTgkTCDFAAAAAAAAAAAAIDDoEAKAAAAAAAAAAAAwGFQIAUAAAAAAAAAAADgMGyGYRhWhwAAPLxLbzS1OoIkybVte6sjSJICGoZZHcGU1S2z1REkSTuGP2d1BNP0MX9bHUGSFHnzpNURTCFOua2OIEnq2PCM1RFMuyJ9rI4gSdrplsnqCJIkJzv6ad0vweoEtzRtdNrqCCaXYgWsjiBJqvfBYasjmIq5+lkdQZL085WjVkcw1fAKtDqCJKmw4W51BEnSbl21OoJpy9VjVkeQJO1e/IbVEf4nc1arE0iSur4w1+oIJhebzeoIkqQfLh6wOoKprHeA1RHsiovs42tEkrZc/N3qCJKk47HLrI5gKlKstdURJEmxB5ZYHcHueOSpZnUE080bf1kd4YkT6F/a6ghPnCN/77I6Au7ADFIAAAAAAAAAAAAADsPF6gAAAAAAAAAAAAB4ciTKjpY7Ah4CM0gBAAAAAAAAAAAAOAwKpAAAAAAAAAAAAAAcBgVSAAAAAAAAAAAAAA6DAikAAAAAAAAAAAAAh0GBFAAAAAAAAAAAAIDDcLE6AAAAAAAAAAAAAJ4chmFYHQF4JMwgBQAAAAAAAAAAAOAwKJACAAAAAAAAAAAAcBgUSAEAAAAAAAAAAAA4DAqkAAAAAAAAAAAAABwGBVIAAAAAAAAAAAAADsPF6gAAAAAAAAAAAAB4ciTKsDoC8EiYQQo8oS5duqT58+ebzwMCAhQeHp4ufa9du1YxMTHp0ldKPvjgA9lstiRb//79zf1r1qzR008/LU9PT9WuXVuHDx/OkFx3q1mzpsLCwtKlr+joaP3yyy/p0hcAAAAAAAAAAEgbCqTAE2rSpEmaO3eu+Xzbtm0KCQlJl77r1Kmj06dPp0tfKdm3b5969uypkydPmtvQoUMlScePH1fz5s3VuXNnbdu2TdmzZ1fz5s1lGBn/10mLFy9OUrh9FC1atFBsbGy69AUAAAAAAAAAANKGJXaBJ9TdRcLs2bNblOTRxMTEqGPHjsqVK1eyfXPmzFGFChXUr18/SdK8efOUK1curV+/XjVr1szQnH5+funWlxUFXgAAAAAAAAAAcAszSAE7cfToUdlsNo0YMUJZs2bVa6+9ptGjRyswMFBubm7KkyePhg0bJkkKDw/XsGHDtH79etlsNklJl9hNTEzU+PHjVbBgQXl4eKhWrVravXt3qnIEBARIkmrVqmUuKbt582ZVrVpVXl5eCgwM1MyZM832oaGh6t27t5o2bSoPDw+VLVs2TcvHxsTEqEiRIvfct2XLFlWvXt187unpqXLlymnz5s0p9tu2bVt16tQpyWv/+c9/1KVLF0nSpk2bVLVqVXl6esrLy0vPP/+8Tp48KenW9a1SpYpatGghX19fffbZZ0mW2L1x44b69u2rvHnzytXVVQEBAfr444/NcQICAvThhx/q2WefVaZMmVSmTBnt2LFD0q2leo8dO6bOnTsrNDRUkjRo0CDlzp1bHh4eqlmzpvbu3Zu6iwcAAAAAAAAAANKMAilgZzZt2qTt27crR44cmjx5subMmaPY2FgNGTJEYWFh2rlzp0JCQtSvXz8999xzZlHvTsOHD9eECRM0efJk7dy5UwUKFFDDhg115cqVFMfftm2bJCkiIkL9+/dXTEyMateurerVq2vnzp0KCwtTv379tGTJEvOYmTNnqkSJEoqKilKNGjX0/PPP6+zZsymOdfr0aZ07d07h4eEKCAhQsWLFNGHCBHOG5cmTJ5UnT54kx+TMmVN//vlnin23bdtWkZGRio+PlyRdv35dK1asUNu2bXXhwgU1btxY9evX1969e7V69WodOnRIY8aMMY//5ZdfVKJECW3ZskUNGjRI0veYMWO0cuVKRURE6MCBA+rUqZN69eqVZFnioUOH6p133tFvv/0mX19f9e7dW9KtpXrz5cunyZMna8qUKVqyZIk+/vhjLVq0SHv27FGuXLnUuXPnFM8PAAAAAAAAAAA8HJbYBezMG2+8oUKFCql69eqqUKGC6tSpI0nq3r27hg0bpr1796pcuXLy9vaWm5tbsqVpDcPQtGnTNGbMGDVr1kySNHv2bBUqVEgLFy7Uq6+++sDxby/V6+fnJ29vb82ePVtly5bV6NGjJUnBwcGKiYnR+++/rxYtWkiSSpQoobFjx0q6dW/U5cuX68svv1SvXr0eONb+/fsl3Sp6RkZGKioqSr1795azs7PefPNNXb16Ve7u7kmOcXd31/Xr11O8jo0aNVJiYqJ++ukn1a9fX6tXrzZn0/73v//Ve++9p759+8pmsykwMFCtWrXS1q1bzeNtNpveffddeXh4JOu7dOnSqlOnjp599llJt2aADh8+XLGxscqZM6ekWzNrmzdvLknq16+fWrdubV5XZ2dn+fr6ytfXV0ePHpWbm5vy58+v/Pnza9q0aTpw4MB9z+v69evJzv/GzQS5uzineE0AAAAAAAAAID1wGzE86ZhBCtiZO5e4zZYtmwYOHKjmzZurQIECOnXqlBISEh54/JkzZ3Tu3DlVqlTJfM3V1VUVKlRQTExMmvPExMQk6UuSKleunKSvKlWqmI+dnJxUtmzZVI1Vo0YNnT17VuPGjVPJkiXVsWNHvffee/roo48kSZkyZUpWDLx+/bo8PT1T7Nvd3V3NmzfX4sWLJd2aEdu6dWs5OzsrV65c6tSpkz744AN17NhRFSpU0IQJE5Jc2xw5ctyzOCpJzZs317Vr19SvXz81btzYfM/uPL5w4cLmYx8fH3Mm693atWsnDw8PBQYGqmrVqvr0009VokSJ+57XmDFjzOLq7W3i9kMpXg8AAAAAAAAAAHALBVLAzmTKlEmSNGfOHNWtW1dxcXFq1aqVfvzxR+XLly/Vx98tISEhxeJqavu7uy9XV9dk+52cUvfx4u/vn+R5sWLF9Ndff0mS8ubNq1OnTiXZf+rUKeXOnTtVfbdt21ZLly7V9evXtXz5coWEhEiS/vrrL5UsWVJr165V+fLl9cEHH6hfv35Jjr3fdZSkwYMHq3379nJ1dVXHjh21ZcuWZG3c3NxSlTFXrlzav3+/li9frpIlS2r8+PF69tlndfXq1Xu2HzhwoC5cuJBk61chKFVjAQAAAAAAAAAACqSA3Zo5c6aGDBmiDz74QB06dFC2bNl0+vRpc+kCm812z+N8fX2VM2fOJEW7+Ph47dixQ8HBwWnOERwcnKwAuHnz5iR9RUdHm48TEhIUHR2tUqVKpdj3nDlzFBwcnGQ5hujoaBUtWlSS9Oyzz2rjxo3mvqtXryoqKspc2jYldevWVUJCgiZNmiRPT09Vq1ZNkrRkyRL5+flpxYoV6tOnj6pVq6bDhw+nelmImTNnavr06Ro7dqxCQkLMe7um9vg737uVK1dqzpw5aty4sT766CPt2rVLsbGx2r179z2PdXd3l4+PT5KN5XUBAAAAAAAAAEg9CqSAnfL399eaNWsUGxurHTt2KCQkRPHx8eaSs15eXjpx4oSOHj2a7Ni+fftqyJAhioyMVExMjLp27aq4uDhzBmVKvLy8tGfPHl24cEE9e/ZUdHS0Bg0apNjYWH366aeaMWOGXnvtNbP9unXrNHHiRB04cEB9+vTR1atX9eKLL6Y4Tr169XTy5En1799fhw4d0pdffqlx48ZpwIABkqSXX35ZmzZt0tixY7V371517txZgYGBqlmzZqrOw8XFRa1atdLo0aP14osvmoVJf39/HT9+XD/++KMOHz6scePGKSIiIlX3Nr19fGRkpA4fPqyNGzeqQ4cOkpTq4728vLR//36dO3dOiYmJ6t+/v5YsWaKjR49q3rx58vT0VJEiRVLVFwAAAAAAAAAASBsKpICdmjJlii5evKjSpUurZcuWKl26tFq0aKGoqChJUosWLZSYmKjixYvrzJkzSY7t16+funbtqq5du6p8+fL6888/tW7dOmXPnj1VY/fu3VtvvfWWwsLClD9/fq1YsUKrVq1SyZIlNXLkSE2aNEmdO3c22zdr1kxr165VmTJlFBUVpR9++EFZsmRJcZwCBQro22+/1S+//KJSpUpp4MCBGjdunNq0aSPp1v1YFy9erHnz5qlixYr6+++/tXTp0vvOnr2Xtm3b6vLly2rbtq35Wps2bdS+fXu1bt1aFSpU0Nq1azVx4kTFxMSkqsg5d+5cRUdHq0SJEgoNDVWbNm30zDPPmO9NSnr27Knp06erS5cuatq0qYYPH64333xTRYsW1VdffaVly5Ypa9asqT5HAAAAAAAAAACQejYjtWtCAsA9hIaGSpLCw8MtzeHILr3R1OoIkiTXtu2tjiBJCmgYZnUEU1a3zFZHkCTtGP6c1RFM08f8bXUESVLkzZNWRzCFOKXuvsqPW8eGZ1JulEF2RfpYHUGStNPt/vejzkhOdvTTul/ab2f+WDRtdNrqCCaXYgWsjiBJqvfBYasjmIq5+lkdQZL085WjVkcw1fAKtDqCJKmw4W51BEnSbl21OoJpy9VjVkeQJO1e/IbVEf4ns338sWbXF+ZaHcHkkoY/0n2cfrh4wOoIprLeAVZHsCsuso+vEUnacvF3qyNIko7HLrM6gqlIsdZWR5AkxR5YYnUEu+ORp5rVEUw3b/xldYQnTu4sxa2O8MQ5eX6f1RFwB2aQAgAAAAAAAAAAAHAYLlYHAJBxzpw5o4IFCz6wzeXLl5+IsbJly6a4uLj77t+3b5/y58//0P0DAAAAAAAAAIB/JwqkgAPx9/dXdHR0uvZ5v6V1H8dYd9q6dasSExPvuz9PnjyPbWwAAAAAAAAAAPDkokAKOBBnZ2cFBQX9K8ZKaXYqAAAAAAAAAADAvXAPUgAAAAAAAAAAAAAOgxmkAAAAAAAAAAAASDVDhtURgEfCDFIAAAAAAAAAAAAADoMCKQAAAAAAAAAAAACHQYEUAAAAAAAAAAAAgMOgQAoAAAAAAAAAAADAYVAgBQAAAAAAAAAAAOAwXKwOAAAAAAAAAAAAgCeHYRhWRwAeCTNIAQAAAAAAAAAAADgMCqQAAAAAAAAAAAAAHAYFUgAAAAAAAAAAAAAOgwIpAAAAAAAAAAAAAIfhYnUAAACAjJYow+oIAAAAAAAAACxCgRQAAAAAAAAAAACpxh+f40nHErsAAAAAAAAAAAAAHAYFUgAAAAAAAAAAAAAOgwIpAAAAAAAAAAAAAIdBgRQAAAAAAAAAAACAw6BACgAAAAAAAAAAAMBhuFgdAAAAAAAAAAAAAE8OwzCsjgA8EmaQAgAAAAAAAAAAAHAYFEgBAAAAAAAAAAAAOAwKpAAAAAAAAAAAAAAcBgVSAAAAAAAAAAAAAA6DAikAAAAAAAAAAAAAh+FidQAAAAAAAAAAAAA8ORINw+oIwCNhBinwhLp06ZLmz59vPg8ICFB4eHi69L127VrFxMSkS18PEhYWJpvNlmwrWLCg2aZ06dLJ9u/Zs+exZ7vbk3h9AQAAAAAAAABAchRIgSfUpEmTNHfuXPP5tm3bFBISki5916lTR6dPn06Xvh6kf//+OnnypLnFxMTIz89Pffr0kSQlJCQoNjZW69evT9KuaNGijz3b3Z7E6wsAAAAAAAAAAJJjiV3gCWXctYRB9uzZLUry8Ly9veXt7W0+Hzp0qEqUKKHevXtLko4cOaIbN27omWeeUaZMmayKKenJvL4AAAAAAAAAACA5ZpACduLo0aOy2WwaMWKEsmbNqtdee02jR49WYGCg3NzclCdPHg0bNkySFB4ermHDhmn9+vWy2WySki4Bm5iYqPHjx6tgwYLy8PBQrVq1tHv37lTlCAgIkCTVqlVLYWFhkqTNmzeratWq8vLyUmBgoGbOnGm2Dw0NVe/evdW0aVN5eHiobNmy+uWXX9J8/rGxsZo3b54mTpxontO+ffv01FNPPVRx9Nlnn9XQoUOTvFa5cmWNHDlSkrR8+XKVLVtWmTJlUpYsWdSuXTtdvnxZ0q2lf5s3b67q1avLz89P69evT3J9L168qJdfflk5cuSQm5ubihYtqqVLl5rj2Gw2LVy4UE8//bTc3d1VrVo1HTlyRFLy6xsfH6+uXbsqW7Zs8vb2VrNmzfTXX3+l+XwBAAAAAAAAAEDqUCAF7MymTZu0fft25ciRQ5MnT9acOXMUGxurIUOGKCwsTDt37lRISIj69eun5557TidPnkzWx/DhwzVhwgRNnjxZO3fuVIECBdSwYUNduXIlxfG3bdsmSYqIiFD//v0VExOj2rVrq3r16tq5c6fCwsLUr18/LVmyxDxm5syZKlGihKKiolSjRg09//zzOnv2bJrOe/z48apTp44qVqxovhYTEyM3Nzc1adJEuXLlUo0aNbR169ZU9de2bVstXrzYfH7ixAlt2bJFbdu21e+//67WrVurZ8+e2r9/v77++mutWbNGH3/8sdl+2bJl+s9//qO1a9fqmWeeSdJ3nz59dODAAa1evVp79+5VtWrV1KVLF924ccNsM3ToUE2dOlU7duzQ2bNnNXjwYEnJr+/06dO1fv16rV69Wtu3b9elS5f05ptvpunaAQAAAAAAAACA1KNACtiZN954Q4UKFVL16tU1b9481alTRwEBAerevbty5cqlvXv3ysPDQ97e3nJzc1OuXLmSHG8YhqZNm6YRI0aoWbNmKlasmGbPni1nZ2ctXLgwxfFvLyXr5+cnb29vzZ49W2XLltXo0aMVHBysTp066fXXX9f7779vHlOiRAmNHTtWRYsW1aRJk+Tn56cvv/wy1ed86dIlffHFF+bSurft379f//zzj7p06aJvv/1WxYsXV506dfTHH3+k2GebNm20b98+HTx4UNKtgmTZsmUVFBSkxMRETZs2TV27dlVAQIDq16+vunXrau/evebxOXPmVPfu3VWmTBl5eHgk6btGjRqaNWuWypQpo8KFC6t///76+++/k9xXtG/fvqpdu7aefvpp9ejRwyyM3n19jx49Kg8PDwUEBKho0aIKDw/XO++8k+prBwAAAAAAAAAZzTAMtjRusC8USAE7c+cSrNmyZdPAgQPVvHlzFShQQKdOnVJCQsIDjz9z5ozOnTunSpUqma+5urqqQoUKiomJSXOemJiYJH1Jt5aqvbOvKlWqmI+dnJxUtmzZNI21atUqeXp6qkGDBklenz17tn7//Xc1b95c5cqV04cffqjAwEAtWLAgxT7z5MmjatWqKSIiQtKtAmnbtm0lSYULF1ajRo00atQotWvXTqVKldLXX3+d5Nrefh/upWPHjoqNjVXv3r1Vv359Va5cWZKSHF+4cGHzsY+Pj+Lj4+/ZV7du3XTy5EnlypVL9evX17fffqtixYrdd+zr16/r4sWLSbbrNx/8NQEAAAAAAAAAAP6HAilgZ27fb3POnDmqW7eu4uLi1KpVK/3444/Kly9fqo+/W0JCQorF1dT2d3dfrq6uyfY7OaX+42XVqlVq2rRpsmNcXFzk4+NjPrfZbCpatGiq79HZtm1bRURE6MyZM9q0aZPatGkjSdq1a5dKlCihffv2qXr16vrkk0/M4ultD7rvaceOHdW/f39lzZpVPXr00MqVK5O1cXNzS/L8fn8hVKJECR09elSfffaZcufOrYEDB6p+/fr3bT9mzBj5+vom2SZuP/TA6wAAAAAAAAAAAP6HAilgp2bOnKkhQ4bogw8+UIcOHZQtWzadPn3aLJzZbLZ7Hufr66ucOXNqy5Yt5mvx8fHasWOHgoOD05wjODg4SV+StHnz5iR9RUdHm48TEhIUHR2tUqVKpXqMX3/9Ncks1Ntq1aqlYcOGmc8TExP122+/qWjRoqnqt3Xr1tq1a5fmzJmjihUrqkCBApKkBQsWqHr16vrss8/Uo0cPVaxYUQcPHkzVMgcXL17U559/rq+++krDhg1TixYtdO7cOUn3L4I+yPz58xUZGakXX3xRn376qVatWqWNGzfqzJkz92w/cOBAXbhwIcnWr0JQmscFAAAAAAAAAMBRUSAF7JS/v7/WrFmj2NhY7dixQyEhIYqPj9f169clSV5eXjpx4oSOHj2a7Ni+fftqyJAhioyMVExMjLp27aq4uDiFhISkamwvLy/t2bNHFy5cUM+ePRUdHa1BgwYpNjZWn376qWbMmKHXXnvNbL9u3TpNnDhRBw4cUJ8+fXT16lW9+OKLqRrr5s2bOnDggIoXL55sX9OmTfXBBx9o+fLlOnDggHr16qXz588rNDQ0VX1ny5ZNtWvX1pgxY5Kcu7+/v3777Tdt3bpVsbGx6tevn7Zt22Ze2wfJlCmTvLy8FBERoaNHj+r7779Xr169JClVx0tJr++FCxfUp08f/fjjjzpy5Ig+++wz5cuXT9myZbvnse7u7vLx8Umyubs4p2pcAAAAAAAAAABAgRSwW1OmTNHFixdVunRptWzZUqVLl1aLFi0UFRUlSWrRooUSExNVvHjxZLMN+/Xrp65du6pr164qX768/vzzT61bt07Zs2dP1di9e/fWW2+9pbCwMOXPn18rVqzQqlWrVLJkSY0cOVKTJk1S586dzfbNmjXT2rVrVaZMGUVFRemHH35QlixZUjXW33//rZs3bypr1qzJ9r355pt6++239frrr6t06dLau3ev1qxZo8yZM6eqb+nWMrtXr141l9e9fX7PPfec6tatq6pVq+rYsWMaMmSIeW0fxM3NTQsXLtQ333yj4sWLq2/fvho8eLBy586dquNvj3/7+r722mvq1KmTOnTooGLFiikqKkrLly+XszNFTwAAAAAAAAAAHgeb8TBrQgLA/7s9mzM8PNzSHI7s0htNrY4gSXJt297qCJKkgIZhVkcwZXVLfTH/cdox/DmrI5imj/nb6giSpGU3T1gdwdTOKY/VESRJHRvee2lvK+yK9Em5UQbY6Xb/+1FnJCc7+mndL+23M38smjY6bXUEk0uxAlZHkCTV++Cw1RFMxVz9rI4gSfr5ylGrI5hqeAVaHUGSVNhwtzqCJGm3rlodwbTl6jGrI0iSdi9+w+oI/5M5+R+vWqHrC3OtjmByuc8tbjLaDxcPWB3BVNY7wOoIdsVF9vE1IklbLv5udQRJ0vHYZVZHMBUp1trqCJKk2ANLrI5gdzzyVLM6gunmjb+sjvDE8fUuZHWEJ86Fy/bxGY1bmEEKAAAAAAAAAAAAwGG4WB0AQMY5c+aMChYs+MA2ly9ftvuxMvI8AAAAAAAAAADAvwsFUsCB+Pv7Kzo6Ol37vN/Suo9jrIzoGwAAAAAAAAAA/LtRIAUciLOzs4KCgp74sTLyPAAAAAAAAAAAwL8L9yAFAAAAAAAAAAAA4DCYQQoAAAAAAAAAAIBUMwzD6gjAI2EGKQAAAAAAAAAAAACHQYEUAAAAAAAAAAAAgMOgQAoAAAAAAAAAAADAYVAgBQAAAAAAAAAAAOAwKJACAAAAAAAAAAAAcBguVgcAAAAAAAAAAADAkyPRMKyOADwSZpACAAAAAAAAAAAAcBgUSAEAAAAAAAAAAAA4DAqkAAAAAAAAAAAAABwGBVIAAAAAAAAAAAAADoMCKQAAAAAAAAAAAACHYTMMw7A6BADg4Q0IaGd1BEnS4iuxVkeQJO1Z977VEUzGuRNWR5Ak/af9IqsjmOZWvWx1BEmSe5uGVkcwXZu70uoIkqTp0fmsjmBq4XTR6giSpHzlLlkdwe7EnbZZHUGSNOePPFZHMMXqmtURJEkfT33W6gimxD17rI4gSXKu3cjqCKaEH+3jsz4+xj5+NnErW9DqCCanqvWsjiBJKv/CJKsjmC7FX7U6giRp/6BKVkf4n4QEqxNIkpwavmh1BJOxfa3VEeyKYSdfI5LkXPl5qyNIkrzLhVodwXRp8wyrI0iSvJ97zeoIdufaiQ1WRzC5ZrOfn0+eFF6eAVZHeOJcuXrU6gi4AzNIAQAAAAAAAAAAADgMCqQAAAAAAAAAAAAAHAYFUgAAAAAAAAAAAAAOgwIpAAAAAAAAAAAAAIdBgRQAAAAAAAAAAACAw3CxOgAAAAAAAAAAAACeHImGYXUE4JEwgxQAAAAAAAAAAACAw6BACgAAAAAAAAAAAMBhUCAFAAAAAAAAAAAA4DAokAIAAAAAAAAAAABwGBRIAQAAAAAAAAAAADgMF6sDAAAAAAAAAAAA4MlhGIbVEYBHwgxSAAAAAAAAAAAAAA6DAin+1S5duqT58+ebzwMCAhQeHm5doP9Xs2ZNhYWFWR1DN27c0OzZs62OYfcWLVqkM2fOWB0DAAAAAAAAAACkAwqk+FebNGmS5s6daz7ftm2bQkJCLEx0y+LFi9W/f3+rY+iLL77QqFGjrI5h144dO6Y2bdro6tWrVkcBAAAAAAAAAADpgHuQ4l/t7nXQs2fPblGSpPz8/KyOIIl14lODawQAAAAAAAAAwL8LM0jxRDl69KhsNptGjBihrFmz6rXXXtPo0aMVGBgoNzc35cmTR8OGDZMkhYeHa9iwYVq/fr1sNpukpEvsJiYmavz48SpYsKA8PDxUq1Yt7d69O1U51q1bZ/Z5W2hoqEJDQyVJYWFheumll9SjRw/5+PgoR44cev/99822dy6xaxiGRowYoZw5cyp79uyaNm2aAgICtG7dumSZ7zX2H3/8oWbNmsnT01MBAQEaNmyYEhISUnUOnTt31rFjx2Sz2XT06FHVrFlTr7/+ugoWLKj8+fPr0qVL2rRpk6pWrSpPT095eXnp+eef18mTJ81+Vq1apXLlysnT01OlS5fWjz/+aO5bsmSJihcvLk9PTz3zzDNav369uW/Xrl2qXLmyPD09lTdvXg0fPjzFzNL/vgY+//xz5c2bV1myZFGfPn108+bNVI17r3N8kMDAQPP/w8PDFRYWpubNm6t69ery8/PT+vXr9ddff6l169bKmjWr3N3dVa5cOW3atMns49ChQ2rYsKG8vb2VP39+TZ061dy3Z88e1apVSx4eHgoODtaHH36YqusAAAAAAAAAAAAeDgVSPJE2bdqk7du3K0eOHJo8ebLmzJmj2NhYDRkyRGFhYdq5c6dCQkLUr18/Pffcc0kKercNHz5cEyZM0OTJk7Vz504VKFBADRs21JUrV9Il46JFi5QpUybt3LlTb731lgYMGKDY2Nhk7T766CN98MEHmjNnjlavXq0FCxboxIkTqRrDMAy1bNlSOXLkUFRUlMLDw/X5559r9OjRKR5buXJlTZ48Wfny5dPJkyf11FNPSZLmzZunhQsXasmSJUpMTFTjxo1Vv3597d27V6tXr9ahQ4c0ZswYSdLevXvVtGlTtWzZUrt27VK7du30wgsv6NSpU9q1a5c6deqkwYMH67ffflP79u3VqFEjHTp0SJLUsWNHlS1bVnv37tUnn3yicePG6dtvv03t5dWwYcP01VdfacmSJYqIiNDQoUMlKcVx7z7HzJkzP3CcrVu3mv9/e3nmZcuW6T//+Y/Wrl2rZ555Ru3bt1dCQoI2b96sqKgo5cuXTz169JAkxcXFqX79+vL29tavv/6qGTNmaNCgQVqxYoWuXbumRo0aqWrVqvrtt980YcIEDR8+XAsWLEj1dQAAAAAAAACAjGbwvzT/D/aFAimeSG+88YYKFSqk6tWra968eapTp44CAgLUvXt35cqVS3v37pWHh4e8vb3l5uamXLlyJTneMAxNmzZNI0aMULNmzVSsWDHNnj1bzs7OWrhwYbpk9Pf314QJExQUFKS33npLfn5+2r59e7J2c+bM0ZtvvqmmTZuqbNmymjt3ruLj41M1xtq1a3Xs2DF9/PHHCg4OVs2aNc2ib0rc3Nzk6+srZ2dn5cqVS87OzpKkJk2aqHLlyipfvryuXbum9957T++9954CAwNVpUoVtWrVSnv37pUkffLJJ6pSpYoGDx6swoUL65133tGbb76p8+fPa8KECeratav+85//KCgoSL1791ajRo300UcfSbo1E9Tf398sTK9Zs0blypVL5dWV3n//fVWtWlW1atXSiBEjNHv2bBmGkeK4d59jSm4vy5w9e3Z5eHhIknLmzKnu3burTJkyypQpk5o3b65p06apaNGiKl68uF577TXzGq1evVr//e9/NW/ePJUoUUJNmzbVtGnT5OzsrM8//1w5cuTQiBEjVLhwYTVt2lTvvvtuqt4/AAAAAAAAAADwcLgHKZ5IAQEBkqRatWrp119/1cCBAxUTE6OoqCidOnUqxSVmz5w5o3PnzqlSpUrma66urqpQoYJiYmLSJWNgYKBZdJSkzJkz37PwuX//fpUpU8Z8/vTTT6c4q/G2mJgY/f333/Lx8TFfS0xM1LVr1/T333/L398/zblvX1tJypUrlzp16qQPPvhA0dHR2rdvn3bt2qUqVapIkg4cOJCsyDhixAgz29dff61Zs2aZ+27cuKEGDRpIkgYNGqSBAwdq1qxZatKkiTp06JCskP0gtzNIUoUKFfTf//5XZ8+eTXHcu8/xYdx5vM1mU48ePfTll1/ql19+0f79+7Vjxw4lJiZKunWNihQpkuQ97dy5sySpf//+2rVrl7y9vc19CQkJcnG5/0fz9evXdf369SSv3TQS5GJzvs8RAAAAAAAAAADgThRI8UTKlCmTpP/NvuzSpYtatWqlCRMmqFatWqk+/m4JCQmpun/n3fcflaSbN28mKWy5ubkla2MYyafRe3p6Jnvd3d39vmPdea/NmzdvqmjRolq2bFmyfn19fR9wBvd357X566+/VKFCBZUvX1716tVT165dtXLlSm3ZskXSraLy/dy8eVMDBgxQx44dk7x+exbmgAED1KZNGy1ZskSRkZGqXbu2Pv74Y3Xp0iVVOe8c+/Z75uTklOK4d5/jw7jz+MTERNWrV0/nz59XSEiImjZtqhs3bqhly5bJct7t5s2bqlOnjmbMmJHqsceMGWPeZ/e2yr4lVDVLyTSeBQAAAAAAAAAAjokldvFEmzlzpoYMGaIPPvhAHTp0ULZs2XT69Gmz4HivQqZ0q3iYM2dOs9AnSfHx8dqxY4eCg4NTHPd28fPSpUvma4cPH36ocyhevLi2bdtmPv/jjz909uzZJGPdb5zg4GAdP35c2bNnV1BQkIKCgnTkyBENHTr0vud+p5TaLFmyRH5+flqxYoX69OmjatWq6fDhw+b1LVy4sHbt2pXkmMqVK+vLL79UcHCwjhw5YuYKCgrSxx9/rO+++05xcXHq06eP3Nzc1LdvX/3000/q1q2bIiIiUsx8W3R0tPl4+/btypMnj/z9/R847sNI6Rrt27dPP//8s9asWaNBgwapcePG5j1vDcNQ4cKFdejQIV29etU8pn///urdu7eCg4MVGxurwMBAM+uWLVs0bdq0+443cOBAXbhwIcn2rG/xhzo3AAAAAAAAAAAcEQVSPNH8/f21Zs0axcbGaseOHQoJCVF8fLy5BKmXl5dOnDiho0ePJju2b9++GjJkiCIjIxUTE6OuXbsqLi5OISEhKY5bokQJeXh4aNSoUTpy5IjGjx+vqKiohzqHt956S1OmTNGiRYu0Z88evfzyy0n2V6xYUZ988on27NmjdevWaeLEiea++vXrq0CBAmrfvr12796tDRs2qFu3bvL09EyyvO/9eHl56Z9//tHBgweTzEy9zd/fX8ePH9ePP/6ow4cPa9y4cYqIiDCvb/fu3bVhwwZNmjRJhw4d0pgxY7R3715Vr15db775pr788ktNnTpVv//+uyZPnqxJkyapSJEiypQpkzZu3KjXX39dBw4c0Pbt2/Xzzz+rbNmyqb5uffr00fbt27VmzRoNGTJEr732miQ9cNyH4eXlJUnatWuXLl++nGx/lixZ5OTkpC+//FLHjh3TN998o6FDh0q6tRxugwYNlCtXLr366qvav3+/li9frpkzZ6pBgwZq3769rl69au779ttv1bt3b+XIkeO+edzd3eXj45NkY3ldAAAAAAAAAABSjwIpnmhTpkzRxYsXVbp0abVs2VKlS5dWixYtzGJlixYtlJiYqOLFi+vMmTNJju3Xr5+6du2qrl27qnz58vrzzz+1bt06Zc+ePcVxfXx8NHv2bH3xxRcqUaKEdu3apV69ej3UOTRt2lSjRo1S7969Va1aNTVp0iTJ/pEjRypLliwqX768+vTpY97jU5KcnZ21fPlyJSYmqlKlSmrVqpWef/55TZ06NVVj165dW0FBQSpZsmSSGZm3tWnTRu3bt1fr1q1VoUIFrV27VhMnTlRMTIyuX7+uQoUKKSIiQnPnztXTTz+tb775RpGRkcqTJ4+effZZLViwQB9++KGKFy+ujz/+WF988YWqV68uSfrqq6905coVVaxYUfXr11f16tX13nvvpfq6hYSEqHHjxmrXrp26dOmid955R5JSHDetsmXLpvbt26tNmzaaM2dOsv358uXTRx99pHHjxqlEiRIaM2aMpk6dKhcXF0VFRcnFxUXLli3TiRMnVLZsWfXp00cTJkxQ48aNlTlzZn333XeKjY1VmTJl1LVrV/Xq1UsDBw58qKwAAAAAAAAAkBEMw2BL4wb7YjN4VwC7Y7PZ9NNPP6lmzZpWR7E7R48eVWBgoI4cOaKAgACr49iFAQHtrI4gSVp8JdbqCJKkPevetzqCyTh3wuoIkqT/tF9kdQTT3KrJZ2Jbwb1NQ6sjmK7NXWl1BEnS9Oh8VkcwtXC6aHUESVK+cpdSbuRg4k6nvIR/RpjzRx6rI5hidc3qCJKkj6c+a3UEU+KePVZHkCQ5125kdQRTwo/28VkfH2MfP5u4lS1odQSTU9V6VkeQJJV/YZLVEUyX4q+m3CgD7B9UyeoI/5OQYHUCSZJTwxetjmAytq+1OoJdMezka0SSnCs/b3UESZJ3uVCrI5gubZ5hdQRJkvdzr1kdwe5cO7HB6ggm12z28/PJk8LN3X5+j/CkuHH9T6sj4A7MIAUAAAAAAAAAAADgMCiQAnc5c+aMvL29H7g9CSZNmvTAc+jevbvVEe8pW7ZsD8x9/PjxdBtr27ZtDxyrRIkS6TYWAAAAAAAAAACwDy5WBwDsjb+//z3vx5mR0mPl65dfflnNmjW7734fH59HHuNx2Lp1qxITE++7PyAgIN3Way9VqtQD32tXV9d0GQcAAAAAAAAAANgPCqTAXZydnRUUFGR1jEeWJUsWZcmSxeoYaVawYMat9+/u7v6veK8BAAAAAAAAAEDqUSAFAAAAAAAAAABAqqXXKn+AVSiQAgAAAAAAAAAAAA7s1Vdf1bp16zRmzBi1bNkyXfqMjY3VvHnz9Ouvv+rMmTPKnDmzChUqpObNm6tFixZydnbOkD7uhQIpAAAAAAAAAAAA4KAWL16sdevWpWufixYt0rBhwxQfH2++du7cOZ07d07btm3TkiVLNGPGjAfeKjA9+rgfCqQAAAAAAAAAAACAA1q/fr2GDBmSrn1u2LBB7733ngzDkIeHh9q2baunn35af//9t7755hvFxsZq+/bt6tu3r+bMmSMnJ6fH0seDUCAFAAAAAAAAAAAAHMzixYs1dOjQJDM0H9WNGzcUFhYmwzDk6emphQsXqkSJEub+du3aqW/fvvrhhx+0adMmffvtt2rSpEm695GStJVTAQAAAAAAAAAAADyxLl26pCFDhmjgwIG6ceNGuva9evVq/fnnn5KkLl26JClsSpKbm5vGjRtnLos7a9asx9JHSiiQAgAAAAAAAAAAINUMtjRv9mLFihVq0KCBvvrqK0mSn5+f2rZtm279f/vtt5Ikm82mdu3a3bONl5eXWrZsKUmKjY3VkSNH0r2PlFAgBQAAAAAAAAAAABzAV199pb///luSVLVqVS1ZskSlS5dOt/63bdsmSQoODpafn9992z377LPm459//jnd+0gJ9yAFAAAAAAAAAAAAHETevHnVr18/NW7cOF37PX36tC5evChJKly48APbFipUyHy8f//+dO0jNSiQAgAAAAAAAAAAAA6gb9++KlmypFxc0r9EePu+odKtIuyD5MyZU05OTkpMTNSJEyfStY/UYIldAAAAAAAAAAAAwAGULVv2sRRHJemff/4xH2fNmvWBbV1dXeXp6SlJOn/+fLr2kRrMIAUAAAAAAAAAAAAeozp16jxw/48//phBSR6fa9eumY/d3d1TbO/u7q7Lly8rLi4uXftIFQMA4NDi4uKMoUOHGnFxceSwsyz2ksOespDDfrPYSw57ymIvOewpi73ksKcs5LDfLPaSw56y2EsOe8piLznsKQs57DeLveSwpyz2ksOesthLDnvKQg77zWIvOYDUql279gO3B1m7dq1RpEiRh9r++OOPFLNFRESY7SMiIh76HJcsWWL2880336TYvkaNGkaRIkWSnH969JEaNsMwjLSVVAEA/yYXL16Ur6+vLly4IB8fH4fPYU9Z7CWHPWUhh/1msZcc9pTFXnLYUxZ7yWFPWchhv1nsJYc9ZbGXHPaUxV5y2FMWcthvFnvJYU9Z7CWHPWWxlxz2lIUc9pvFXnIAGeGnn35S9+7dH+rYH3/8Ufny5Xtgm8WLF2vgwIGSpDFjxqhly5YPNdZ3332nN954Q5I0bNgwtW3b9oHtK1eurL///luBgYFatWpVuvWRGiyxCwAAAAAAAAAAANip/Pnz6+WXX36oYzNnzpzOae7v9v1AJen69esptr/dJlOmTOnaR2pQIAUAAAAAAAAAAADsVKFChTRgwACrY6ToztncFy5ceGDb+Ph4Xb16VZLk5+eXrn2khlOaWgMAAAAAAAAAAADAXQICAszHJ0+efGDb06dPKzExUZKUJ0+edO0jNSiQAoCDc3d319ChQ+Xu7k4OO8tiLznsKQs57DeLveSwpyz2ksOesthLDnvKQg77zWIvOewpi73ksKcs9pLDnrKQw36z2EsOe8piLznsKYu95LCnLOSw3yz2kgPA/2TNmlX+/v6SpIMHDz6w7aFDh8zHRYoUSdc+UsNmGIaRpiMAAAAAAAAAAAAA/CssXrxYAwcOlCSNGTNGLVu2fOi++vTpo1WrVsnFxUVbtmy57z1Qx44dq3nz5kmSli1bpqJFi6ZrHylhBikAAAAAAAAAAACAR9agQQNJ0s2bN/XFF1/cs83ly5e1ZMkSSVJgYGCywmZ69JESCqQAAAAAAAAAAAAAHlndunWVL18+SdKMGTO0ffv2JPtv3Liht99+W+fPn5ckde7c+bH0kRKXNB8BAAAAAAAAAAAAwOH8+uuv6tixoyTpmWee0YIFC5Lsd3Nz07vvvquePXsqLi5OoaGhevHFF1WuXDmdP39eX3/9tWJjYyVJ5cqVU+vWrZONkR59pIQCKQAAAAAAAAAAAIB0Ubt2bQ0dOlSjRo1SfHy8Pv/8c33++edJ2pQsWVIffvihnJ2dH1sfD0KBFAAAAABgt65cuSIvLy+rYwAAAAAA0qBdu3aqUKGCPv30U/3yyy/673//K1dXVxUpUkRNmzZVmzZt5Orq+tj7uB+bYRjGQx0JAMAjOn78uJ566inZbLYkryckJGjXrl0qV65chmWpUaOG2rVrp9atWytbtmwZNq694pfRT46bN2/q4sWL8vPzszqK3fjnn3/k6+srm82W7PPFERmGoXPnzsnf39/qKLw3d9i/f79y584tX19fff/991q+fLnKlSunV155JcMy/PXXX8qbN2+Gjfcgw4YN09ChQ5O9/tVXX6l///76448/LEhlH/h3c0tkZKSaNm2a7PUbN25o+PDhGjlyZIZnspf35vz588qUKZMyZcqk3377Td9//73KlSunOnXqZHiWxMREOTk56eTJk9q4caNKlSql4ODgDBn77Nmz5s/xx44d06effqqzZ8+qWLFi6tSpkzw9PR97hn379qlo0aJycnIyX/vrr7+0YMEC/fXXXypatKhCQ0Md/udse/rZxF7wM31yVn6e2LO4uDjt3r1bRYoUka+vr9Vx9N///lfZsmVz6J9RADy5nFJuAgD4N9i8ebMmTJigbdu2SZImT56sggULysfHR5UqVdKKFSsyPFNgYKDOnj2b7PUjR46oatWqGZqlWbNmCg8PV968edWgQQPNmzdPFy5cyNAMkuTk5CRnZ+d7bh4eHipYsKDeeecdxcfHP9YcOXLkUEhIiJYuXaobN2481rHu5erVq5o9e7ZefvllNWvWTA0bNlSbNm309ttv67vvvsvwPNKtr9eCBQsm2woVKqRixYqpdu3amjlz5mPN8OWXX6pXr16KiIiQYRjq06ePMmfOrOzZsytXrlyaPn36Yx3/tqtXr2r79u26evWqJGnr1q3mezVgwACdPHkyQ3LcyTAMjRo1StmyZVP27Nl19OhRdejQQd27d9f169cf69guLi7q37//Y/93mZI2bdro4sWL5vP4+Hi9+eab8vb2Vo4cOZQjRw5NnDgxw3NZ+d7c6dixY+rQoYOKFi2qQoUKJfu3nJE+/vhjlSxZUtHR0YqKilKzZs10+PBhDR48WEOGDMmwHPnz51f16tU1Y8YMnTlzJsPGvZePPvpIb7zxhvn8wIEDqlevnjp27Kh27dplWI74+Hh98skn6t69u1555RW9/PLLSbaMYi//buxJmzZt1KFDB507d858bd26dXr66acVHh6eYTns7b1ZtmyZ8ubNq40bN+rQoUOqVq2awsPD9cILL2TYzwWStGnTJuXNm1fr16/XyZMnVb58eXXr1k0lS5bUokWLHuvYhw4dUrFixZQzZ06VLl1aGzZsUJkyZfTNN9/o9OnTmjx5sooVK6YDBw481hzSrSXe7vzvm23btqlYsWL64osvdObMGU2fPl2FCxdWTEzMY89ypx9//FFjx47ViBEjNHz48CTb42SvP5tYzV5+pr/NXr733Wbl54k92rdvn5599ln98ssvOn/+vMqWLatKlSopX758+umnnzI0y4kTJ9S2bVtFR0crLi5ONWrUUK5cuRQQEKBdu3ZlaJbPPvtMFSpUUJYsWXT48GG98cYbGjt2bIZmAPAvYAAA/vXmz59vuLm5GeXKlTO8vb2Nnj17GlmzZjUmTJhgfPvtt8bw4cMNHx8fY968eY89y+zZs43AwEAjMDDQsNlsRv78+c3nt7csWbIY5cuXf+xZ7uXo0aPG+++/b1SqVMnw8PAwXnjhBeOLL74wrly5kiHjz5w508idO7cxa9Ys47fffjN27dplfPLJJ0a+fPmMIUOGGIsWLTKefvpp4+23336sObZv324MGDDAKFiwoOHr62t07NjR+Pbbb42bN28+1nENwzAOHDhg5M2b1yhevLgREhJiVK5c2XB1dTW6dOlitGnTxsiePbtRoUIF49SpU489y50mTJhgZM6c2Rg4cKCxfPlyY9myZcZ7771n+Pr6Gm+++aYxfvx4I2/evMa4ceMey/jjx483fH19jZYtWxrZsmUzmjVrZjz11FPGN998Y+zbt8+YP3++kStXLmPs2LGPZfzbtm7davj7+xs2m83IlSuX8eWXXxru7u5GkyZNjLffftuoU6eO4ePjY2zZsuWx5rjbsGHDjKJFixqRkZGGp6en8fvvvxurV682AgMDjddff/2xjm2z2YzChQsbhQsXNhYvXvxYx3oQJycn4/Tp0+bzd955x3jqqaeMiIgIY9++fcZnn31m5M2b1xgxYkSG5rLyvblTtWrVjGLFihlTp041wsPDk20ZqVChQsbnn39uGIZh9OrVy3jmmWcMwzCM9evXG7lz586wHLGxscaYMWOM8uXLG66urkadOnWM2bNnG+fOncuwDLcdOnTICAoKMtq3b2+88847hpubm/H8888bsbGxGZqjQ4cOhqenp9GyZUsjNDQ02ZZRrP53s379+lRvGSUmJsaoVq2akStXLmPhwoXGyy+/bLi5uRn9+vUzLl26lGE5rH5v7laiRAljwoQJhmEYxoABA4wSJUoYhmEYkZGRRkBAQIblqFixovHmm28aV65cMYYNG2YEBgYa169fN8LDw42iRYs+1rEbNmxovPTSS8Zvv/1mdOvWzfDw8DB69+5t7k9ISDC6du1q1KlT57HmMIxbPxPc+b24Ro0aRo8ePczniYmJRo8ePYyaNWs+9iy39e3b13B2djbKlStn1KxZM8lWq1atxzq2Pf1scvt8U7M9TvbyM/2d7OV7321Wfp7Yo5o1axrt2rUzzp49a0yYMMHIlSuXcerUKWP06NFG2bJlMzRLs2bNjNq1axvHjx83PvroIyNr1qzGli1bjF69ehnVqlXLsBwffvihkTt3bmPatGmGh4eH8fvvvxsLFiww/Pz8jLCwsAzLAeDJR4EUABxA0aJFjc8++8wwDMNYvny54eTkZHzxxRdJ2nz22WdGwYIFH3uWGzduGJ9++qkxb948w2azGVOmTEnyC+pPP/3U+Oabbyz55eydDh06ZAwaNMjw8PAwXF1dDW9vb6Nbt27GmTNnHuu4hQoVMr777rtkr69evdooXLiwYRiG8csvv2ToL9C3bt1qDBgwwHj66aeNbNmyGd26dTPWrVv32MarV69esgJweHi4Ua9ePcMwDOPq1atG8+bNjVatWj22DPdSqlSpZP9uDMMwFi1aZJQpU8YwDMP44YcfHtsvIwsUKGB+bWzcuNFwcnIyVq5cmaTNypUrjbx58z6W8W+rUqWK0b9/f+PixYtGWFiY4ezsbIwaNSpJmyFDhpgFn4wSGBho/qLe29vb+P333w3DMIyff/7ZyJkz52Md28nJyfjjjz+M0aNHG1myZDFKlChhzJo1yzh//vxjHfdud/9StlChQsbSpUuTtPn2228f+9fI3ax8b+7k7u5u7N27N8PGe5BMmTIZx48fNwzj1r/t0aNHG4ZhGL///rvh7e1tSaYjR44YEydONKpVq2Z4enoajRs3zvAM//3vf41nnnnGcHZ2Nr755psMH98wDMPLy8tYvXq1JWPfyep/N08//bTh5ORkODk5GTab7b6bk5PTY89yt5deesmw2WyGq6ur8f3332f4+Fa/N3e78/OkaNGixnvvvWcYxq1/056enhma49ixY4ZhGEa5cuWMfv36GYZx648PPTw8HuvYnp6exqFDhwzDMIzz588bNpvNiI6OTtLmwIEDGXI97i4I5sqVy4iKikqW5XFfkztlyZLFWLhwYYaNdyd7+tlk4cKFhpeXl1GqVCkjLCzsgdvjZC8/09/JXr733WbV54mHh4f5vS+lLSP9H3tnHpfT9vb/z92sgShSpMFQJCWFiih0MmRuMIQiUhSKIkRmESnSMUc4VObimJIhFBXSKOQYMoVU0rB+f/h1P93uJOdrr3s79vv1ul/PsfZ+uj7fde299t7rWuu6GjVqRPLz8wkhhPTq1Yu4u7sTQuiMr18jLy9PsrOzCSGEWFtb8wPo+fn5VLXo6uqSkydP8jXVPItPnTpFWrduTU0HBwfHr4+EqHewcnBwcHAwT0FBAczMzAAAQ4YMgYSEBHR1dQXOMTExwatXrxjXIikpiQkTJgD4krLU3NwcEhLseBzl5eXh8OHDOHz4MO7evYu+ffsiNDQUo0aNwqtXr+Dh4YHBgwfj5s2bjGkoLCxE69athdpbtmyJp0+fAgBUVVUFUlUxTbt27aCjo4Ps7Gw8ePAAt27dQnx8PGRlZbFz507+tfWzSEpKwubNmwXaxo8fjylTpvBrS61duxYmJiY/1e73yMvLg6GhoVB7586dkZWVBQDo0KEDCgsLGbH/5s0btG/fHgBgbm4OdXV1tGzZUuAcLS0tlJSUMGK/htu3b2Pfvn1QUFCAr68vli1bhiFDhgic4+TkhHXr1jGq42sKCwuhpqYm1N60aVN8/PiRUduEEEhJSWH+/Plwc3PDli1bsHr1asycORMWFhYwNzdHp06d0LRpUwwYMIAxHV/XwBMXF4eWlpbAOW3btkVxcTFjGupClL6pTfv27ak85xqCrq4uoqKi0KJFCxQUFGD48OGoqKjA+vXrYWBgIBJNMjIyaNSoERQUFCAmJsZPoc0kdaV27NOnD9LT0xEcHIyMjAx+O63Uw4qKiqyoyyrq+yYlJQVjxozBw4cPkZSUBBkZGcZtfo/8/HzMnj0b586dw5IlS5CWloZRo0Zh0aJFmDNnDrX3SVH75ms0NDSQkJCAVq1aITs7G0OHDgXwJfVghw4dqOlQUVHB/fv38fHjR6SmpiI4OBgAcO7cObRp04ZR28rKysjLy0Pbtm3RpEkT7NixQ6i25a1bt+p8x/7ZEEKQm5sLRUVFSElJwdjYGE+ePBF4h8zOzkaLFi0Y11KDhIQEunfvTs1ebdj0bjJu3Dioqalh0KBB6NevH/WSLjWw5Z2+Nmx59tUgqvHkzp07GDJkCBo1aoSNGzcyZudHUVRUxIsXLyAhIYGkpCQsWLAAAJCamgoVFRWqWmRkZFBWVoaioiIkJCRg//79AL6USaJZP/fx48fo2LGjUHvbtm3x5s0bajo4ODj+A4g6QsvBwcHBwTxmZmbE19eX/+/Pnz+Tz58/8//96dMnMnHiRP4OPZqcO3eOrFq1igQGBpKlS5cK/GjSpUsXIiYmRnr06EE2btxInj9/LnTO4cOHiaKiIqM6RowYQSwsLMijR4/4bY8ePSKWlpbE1taWVFZWkkWLFpGePXsyquP169dk27ZtxNramkhJSZFOnTqR5cuX81fnV1dXk5kzZzKystnAwEBo5fbJkyeJtLQ0/7qNjY0lWlpaP912ffTr14/Y29uTjx8/8ts+fvxIHB0diYWFBSGEkPDwcNKlSxdG7P/xxx9kwoQJAvZr8+zZM2JjY8P4ztoOHTrwU4MSQsj58+eFdlZv2rSJsX74Fra2tmTq1KmEkC+riPPz88mHDx+Ira0tGTJkCKO2v94tUsPNmzfJsmXLyJAhQ4impibjO1d4PB4ZNmwY8ff3J3v27CFjxowhLi4u/ONlZWVk3LhxxNramlEdXyNK39Rm3759pF27diQ8PJycPXtWZGlCCfly39Skqvbw8CCEEOLh4UFUVVVJSkoKNR2PHj0iwcHBxNzcnEhISBBTU1OyceNG8uzZMyr2v071+K0f0+kOaxMeHk769+9PMjMzSUVFBTW7X8OG++bTp0/E0NCQv3NH1EhLSxNLS0uBtMtHjx4l6urqVFMussE3tTl48CCRkpIiYmJixNbWlhBCiI+PD/UdYSEhIURaWpo0atSIn0VixYoVREpKip/JhinWr19PmjZtSrZt2yZ0LDs7m0ybNo3IyMhQKSfSpUsX0qhRIyIhIUG0tLRIhw4dSIsWLfhpoJcuXUqaNm1KVq1axbiWGgICAsiYMWO++Q7JJGx8N1myZAnVVKBfw5Z3+tqw5dlXgyjHk4KCAtKiRYs6xxNRMX/+fKKsrExatWpF2rVrRyorK0l4eDiRk5MjwcHBVLVMmTKF6OjoEENDQ6KiokLKysrIX3/9RVq2bEn8/Pyo6bC0tCQBAQGEkP97FldXV5MpU6aQPn36UNPBwcHx68MFSDk4ODh+A5KTk0nz5s3JxIkThY6dOXOGKCoqEk1NTX6qFFqIsh7O16xYsYKfluVbFBcXM17j6s2bN6R///6Ex+MRZWVloqSkRMTExMjAgQPJ8+fPyfHjx4mysjK5evUqozokJCSIpqYm8fX1FUpRVsOpU6cY8dOZM2eIpKQk6du3L/H19SXjx48n0tLS/BSUs2bNIo0aNaJeMzA/P5906tSJNG7cmBgbG5Nu3bqRxo0bEz09PZKdnU3OnDlDpKWlyfHjxxmxn5eXR3R0dIijo6PQsaNHjxIxMTHSvXv3OoP7P5N9+/YRGRkZvj9qc/v2bfLHH38QKSkpoVRhTPPkyRNiYmJCVFRUiLi4OOncuTNRUFAgnTt3Jg8fPmTU9tfp40TFkSNHyIoVK8j48eOJkZERkZOTI2JiYqSoqIgQQoiSkhJRV1cn9+/fp6pLlL6pDdvShFZVVQmkk3/x4gX5/PkzefXqFTUNPB6PGBoaktWrVwsszBElZWVl/P+uSa9HE01NTX6wSZQp9dhy39y/f5+Eh4dTs1cfO3bsqLP9w4cPVGt/1uWbxo0bE319faq+qc3Lly8F0rhmZWVRr9VOCCGpqankyJEjpLS0lBBCSFJS0jffI382+/btI1u2bBFqv3jxIrGxsWHs/awuqqqqSF5eHjl+/DhZs2YNcXZ2JlVVVYSQL5P6tAMaffv2JVJSUkRCQoK0atWKaGlpCfyYhK3vJqKELe/0tWHLs682ohxPjhw5QlxdXanYaiixsbFkw4YN/LH91KlT5MSJE9R1VFRUkODgYOLl5cUvXREZGUlCQ0Op6rh79y5RV1cnxsbGREJCgtjY2BAtLS2ioqIilNacg4ODoz54hBAi6l2sHBwcHBzM8+HDBzx58gR6enoC7Y8ePcKNGzcwZMgQyMnJUdXUtGlThIWFYdy4cVTtfou3b9/i4MGDyMzMhJiYGLp06QI7Ozs0btyYupacnBzcvXsXEhIS6NSpEz8NU1lZGWRkZARSVTHBtWvXfnrq3B8hIyMDW7duRX5+PlRUVODg4IA//vgDAHDw4EF06NABRkZG1HVVVVXh/PnzfN/o6emhX79+4PF4/NSdzZs3Z8w+IQSFhYVCabhevnyJhw8fwsTEBGJiYvz2f/75B2pqagJtP4MrV67gxYsXGD16tEB7SkoKduzYgalTp6Jr164/1WZDuXDhAjIzM1FZWQkdHR1YW1v/9P/9X7Nnzx44OjpCWlq6wf8/TPnmawoKCvipyP7++2+YmZlBXl6eug5ANL5hK+Li4njx4oXQePH48WPo6elRS9OZnZ0NHR0dKra+x+PHj2FnZwdLS0usWbMGANCiRQu0bdsW0dHR1FL/Xbp0qd7jffr0oaKjhl/pvqE5nrCB8+fPIysrS+S+0dbWRkpKilBqw2fPnsHQ0BAvX76kosPKygqxsbFQVFQUaH/16hUGDhyIlJQUKjoairu7OwIDA6GsrCxqKYxr2bNnT73HJ06cyIjdb8Gmd5PvwZRv2PJOXwPbnn2/2njCNC4uLggJCYGCgoJAe1FREVxdXREdHU1NS2BgIHx8fCArKyvQ/uHDByxduhTr16+npuXTp0/Yv3+/wHvS+PHjBcYTDg4Oju/BBUg5ODg4OERG8+bNce3aNX7wT5QkJSVh0KBBaNasGbp27YqqqiqkpaWhrKwM586dQ+fOnanqefHiBSoqKvD1Y5rpGk61OXfuHP7880+BgLGHhwd69uxJTUNkZCTs7e2Fap+VlJRgx44d8PT0pKblV6Rx48ZIS0uDtrY2I38/MjISDg4OQoFBUflny5YtaNq0KcaMGQMAGDFiBP744w+4ublR1dEQmPYN23SwxTeVlZUoLCxEVVUVgC8TlOXl5UhNTYWDgwOjtvfu3Ytdu3YBABISEmBmZgYpKSmBc549e4aqqirk5uYypqP2xFZdNUBrQ6vuJwDY2NigcePGCAsL49fme/PmDdzc3FBeXo7jx49T0/Itnj9/DlVVVWr22HLfNBQmxhNxcXE8f/4cLVq0gJiYWL0LxGru69+B6OhoxMXFAQB2794NBwcHNGrUSOCcR48eISsrC8+ePWNMx+nTp3Hz5k0AwNKlS+Ht7S00MZ2bm4v4+Hi8fv2aMR3/BrY8h0WtpaKiApKSktTt1gfnG3bpoPXs+5XHEyZISkrivw86OzsjJCREaOF2VlYWwsLC8OHDB0a1ZGdno7CwEABgaWmJ2NhYNG3aVOCce/fuYe7cuVRr58bFxUFcXJy/kHrWrFmwsbGBjY0NNQ0cHBy/PhKiFsDBwcHBQRctLa0G7z7Mz89nVIuHhwcCAgKwbds26rtXv2bGjBmYNGkSgoOD+f1TXV0NT09PTJ8+HZcvX6ai4++//8bUqVPx5MkTgXZCCHg8HrXJvx07dsDd3R1jxozBtGnTUFVVhZSUFFhaWiIqKgojR45kzPbr169RWloK4MvHYOfOnYVWbaelpcHX15dqAC41NRWenp5ITk5GRUWF0HE2TswysQ6Orf7x9/fHrl27EBERwW+ztLTEsmXL8OrVKyxatIialobAljWKNHSwxTfHjh2Dq6sr3rx5I3RMVVWV8QDpiBEj8PDhQxBCkJCQAFNTU4GJPx6PBzk5OYwYMYJRHRcvXoSnpydkZWVx8eLFb57H4/GoBkivXr2KtLQ0fnAUAJSUlLBixQoYGxtT05GdnQ1fX19kZGQIBdJfvnyJyspKKjrYct/8CEyMJ2FhYfxJ2PquV6b5XnC2NjTeB/r06YO4uDh+n5Mv5ZP4x3k8HvT09LB69WpGdejo6GDt2rV8+1evXhVY+FEzru3YsYNRHf8GtjyHAea1FBYWYtWqVXWOa5mZmSgqKmLU/o/yO/mmoTCtgw3PPraNJ5aWlg0e9y9cuPDT7cvKymLJkiX8/li7di3ExcX5x2v6oybrBpM8e/YM/fr14/+7rndVOTk5zJo1i3EtNYSGhsLf3x+hoaH8NgkJCdjb22P9+vVwdXWlpoWDg+MXh0IaXw4ODg4OFrF582bStGlT4uPjQ2JjY8mpU6fIsmXLSLNmzci8efPI7t27+T+mEWU9nK9p1KhRnTVYs7OziaysLDUdHTp0IPb29uTOnTvk0aNHQj9aaGhokJ07dwq1//nnn6RDhw6M2j58+DC/JmBdv5qagU5OTozq+BpDQ0PSp08fcvz4cZKQkCD0YyPy8vLfra37o7DVP6qqquTy5ctC7RcvXiStWrWiqqUhMOEbtupgi290dXXJ1KlTSVZWFlFSUiLXr18np06dItra2mTXrl3UdBBCyO7duwVqbbKNqqoq6vU/NTU1yeHDh4Xajx07RvU66d27NzEzMyMRERGkUaNGJCwsjMydO5fIyspSrX3NlvvmR2BiPFFQUCBPnjwhhHyp3VhTt5A2tZ/3QUFBpGXLlmTLli0kOTmZpKenk127dhFNTU3qtSUJIWTJkiXk48eP1O1+zaRJk8j79+9FLaPBsOU5TAjzWgYNGkR0dHTI/PnziaSkJPHz8yN2dnZEXFychISEMGb33/I7+YYtOtjy7KuBDePJihUriKysLBk9ejQJDg4mmzdvJpMnTybS0tJk6tSpZMmSJfwf0/Tt21egbr0o0dTUJK9evRK1DKKhoVFnDdZjx44RbW1tESji4OD4VeF2kHJwcHD8ZuzYsQObN2/mp2sDgEGDBsHAwAD+/v5UViDWMGnSJEyaNImavfro378/9uzZgxUrVgi0nzp1ClZWVtR0PHnyBKdPn4aWlhY1m3Xx9u1b9OjRQ6jdwsICc+bMYdT26NGj8ejRI1RXV0NbWxs3b94UqNNXs1pWSUmJUR1fk5WVhbt376Jdu3ZU7bINtvqnpKSkznrBysrKeP/+PVUtHIKwxTf5+fk4efIk2rZti27duuHFixcYNmwYxMXF4ePjQ/V5NHHiROTl5SElJaXOdOoTJkygoqNt27bw8fHB9OnTBdpfvXoFLS0tqjvjZ86cCVdXV2RmZvJrTKenp2PDhg3w8fGhpiM5ORlJSUkwNDREZGQkOnbsCA8PD3To0AE7duygVquPLfeNqJGRkcHOnTvRp08fJCQk4NKlS0Jp/WqwsLBgTEft+nvTpk1DZGQkBgwYwG/r0qULNDU14ezsjNmzZzOmoy4CAgJQXFyM69ev1zmeMNkvtalJIc6GMhEcgly6dAlnz56Fqakpzp49iyFDhsDc3Bxr1qxBfHw8V7KCgzXPvhrYMJ6cPXsWq1atEro/LCwssG3bNoEMD0wjygwKX/Pw4UNRSwDwpQxDXd/lOjo6ePHihQgUcXBw/KpwAVIODg6O34zs7GwYGhoKtWtoaDCeUvdr6vvQqiuFKZNoaWlh3bp1OH36NMzNzSEpKYm0tDQkJCRg6NChcHFx4Z+7c+dOxnRYWFjgypUrIg+Qenh4wMfHB3v37uUHukpLS7FixQq4u7szbr/mo7e6ulqg/dOnT7h79y46dOjAuIavMTQ0RGZm5m8fIAXY6R8bGxt4enoiMjKSr+/p06fw9vaGtbU1dT0c/wdbfKOoqMhPD62rq4u0tDQMGzYMurq61Cd7goKC4Ovri2bNmkFBQUHgGI/HoxYgffjwIRYuXIjLly8Lpbv/ejKSaebMmQM5OTn8+eefWLNmDSQlJdG+fXts2LAB48ePp6ZDUlISioqKAL5cJ6mpqbCyssKAAQOoBmrZct+ImuXLl8PX1xdLliwBj8f7ZgpqmmUInj17JpAKugZZWVmRpCqNiorCtGnT+ONbbWj2y9mzZ+Hq6sovE0H+f3kIQrlMBIcwhBC0atUKANCpUyfcvn0b5ubmsLe3R1BQkIjVcbABtjz7amDDeHLz5k1s3bpVqN3ExIR6LXA2lXp5/PgxFi5cyNfy9fsirTmlXr16ISAgALt27YKsrCyAL9+iK1asgJmZGRUNHBwc/w24ACkHBwfHb4aFhQVmzZqFnTt38j+U8/PzMWPGDAwZMoSqFjbVw/nw4QPGjh0LACguLgbwJQhUM0lNa6LYwsIC06dPx8mTJ9G+fXuBuisAqNWDu3LlCm7evAl1dXW0a9cOkpKSyMvLQ3FxMdq0aYPDhw/zz2XyIygzMxPOzs4IDg5Gp06dYGpqiuzsbMjJyeH48eOwtLRkzPbXTJgwAVOmTIGzszPatWsn5BtaAQ02wSb/hIWFYdiwYdDS0kKzZs0AfNkJbWVlhS1btlDTwSEMW3wzePBguLu7IyIiAn379sXcuXNha2uL6OhoqKmpUdMBAOvWrcPatWtFMulYGx6Ph/Pnz2PmzJkwNjZGdHQ09PT0+MdoM23aNEybNo263dqYmZkhKCgI69atg7GxMQ4cOIA5c+YgJSUFMjIy1HTUd99s3ryZmg5RM3XqVEydOhXAlzqgz58/h4qKikg1DR48GC4uLggNDYWBgQEIIUhOTsbMmTNhb29PXc/8+fPh6uqKwMBAoQUXNJkxYwZ69OiBEydO1Ln7mUN0GBkZYe/evfD394ehoSHOnj2LmTNn8utic3Cw5dlXAxvGk27dumHVqlXYunUrvw+Ki4uxaNEi9O7dm6oWFxcXNGnSBIcPHxb5+Ork5ITXr1/Dw8NDpFrCwsJgbW0NVVVV/uLcvLw8tGzZEseOHROZLg4Ojl8PLkDKwcHB8ZuxY8cODB8+HG3atEGzZs1ACEFRURFGjhxJNU0M8OVF/8GDBxg5ciTWrVsHb29vPHjwALGxsQgODqaqpSaNj6g5e/YsTExM8PLlS7x8+VLgGI/HoxYgnTJlCqZMmULFVn24u7tDW1ubn97p3bt3eP78OXbu3Alvb2/cvn2bmpa1a9dCVlYWf/31l9Axmju+fgSmAxxs8k/z5s1x7do13LlzBzk5OfzdZ506daKm4UcQRfCpLmjoYItvQkJC4OXlhZSUFDg5OSEmJgYmJiaQl5fHvn37qGr59OkTRo4cSdVmXRBCoKamhoSEBMydOxc9evRAWFgYbG1tRaLn2LFjWLt2LTIzM1FVVQUdHR3MmDGD6vgaHByMoUOHQltbG25ubggJCUGzZs3w8eNHas9ggD33zY/A9HhSk7WguLgYeXl56NSpE8rLy6lP0P7555+YNm0a+vTpw9ckISGBCRMmYNOmTVS1AF/SDHp5eYk0OAqwp0wEhzCrV6/GkCFDICsriwkTJiAoKAj6+vooKCigukO/obDlHYlNMN0nbHn21cCG8SQiIgIDBw5Ey5Yt0b59exBCkJOTA11dXcTGxlLVwqZSLzdv3sTt27dF/j7Stm1b3L9/H2fOnBF4T/rjjz8gLi4uUm0cHBy/FjzCLRfj4ODg+C25e/cusrKyICsri44dO0JbW1vg+NWrV2FsbAxpaWnGNMjLy/Pr4ZiYmGDjxo38ejgJCQmIj49nzHZdsGFilm2UlpYiLy8PVVVVaNu2LfVJSFlZWWRkZEBLSwu9e/dGly5dsHnzZjx+/BgdO3asM50cx//RvHlzJCcnQ1NTk5G/z0b//Cq1z5j2DRt1sNE3xcXFkJGRgaSkJFW77u7ukJWVRVBQkEgngsXFxfH8+XN+utDDhw9j8uTJGD58OKKioqimbIuIiIC3tzdmzpwJMzMzVFVV4dq1awgPD8eGDRuoLtohhKCsrAyysrIoKSlBQkIClJSU0LNnT2oaAKCyshKFhYVCWTZSU1Ph4ODAqO2AgADMmTMHTZo0QUFBAdTV1b97rTI9npSXl8PDwwO7d+8GAOTk5MDHxwelpaU4cODAN2uTMsWHDx+Qk5MD4EvNM1EFKB0dHWFiYgJvb2+R2K/BxsYG48aNg5OTk0h11PC9d9gNGzZg8uTJVN5t2aDlw4cPKCsrg4qKCp49e4YjR45ASUkJ9vb2EBMTY8wuG8eS2ojCN2ztE7Y8+wD2jCfl5eU4c+YMsrOzISsri06dOgllyPnnn3+gpqbG6H1kamqKBQsWiGwBW2309fURFhYmUJubTXz+/Bmpqano0aOHqKVwcHD8InABUg4ODg6OOmncuDHS0tKEAqc/Ezk5OWRmZqJNmzaYOHEijI2N+emeTExM8Pr1a8Zsf40oJ2YjIyPh4OAAaWlpREZGfvM8Ho9H7SOxoqIC8+bNw5YtW1BZWQlCCCQlJTFu3Dhs3bpVKL0sU6ipqSEmJgatW7eGlpYWTpw4gYEDB+Lo0aOYPXs243UDExMTYWZmBgkJCSQmJn7zPB6PRz3VUnFxMTIyMuoMOFlYWFDRIGr/1Obvv//G1KlT+bWKahBF7TM2+IZNOtjkm/z8fISHhyM3Nxfh4eGIj4+Hjo4OzM3NqWkAgPHjx+Pw4cNQVlaGlpaW0Jh64cIFKjrExMTw4sULgXqKmZmZGDVqFLKzs6n6pm3btggICBBalLRnzx6sXLkS2dnZ1LRUVVXh9OnTyMnJgbOzM7Kzs6Grq4smTZpQ03Ds2DG4urrizZs3QsdUVVXxzz//MGpfVlYW9+/fh6amJsTFxfHixQs0b96cUZvfw9PTEykpKYiIiICZmRnS09NRUlICZ2dndOzYEXv37qWm5fnz5wgLC+MvqtPV1cWUKVPQvn17ahpq8Pb2xubNm2FgYFBneYadO3dS0bFy5UqsXLkSgwcPFmmZiNrvsDW1+kTxDss2LQCQkZGBnJwcWFtbo7CwEFpaWowv0mHjWAKI1jds6ZPawdmCgoJ6z6W9mI0t40lDoDFvEh4ejiVLlrCi1EtUVBSWLFkCb2/vOrXQ+sa4du0a3N3dkZGRwc/mUIOEhATKy8up6ODg4Pj14QKkHBwcHBx1oqCggPT0dEZf9Hv37g0bGxv4+/tjw4YNuHjxIo4fP44LFy7Azs6uzklBphDlxKyWlhZSUlKgpKRUbxohHo/HaL3P2nh5eeHUqVPYvHmzQMDY09MTI0aMQFBQEBUdCxYswLZt2yAtLY1GjRohKysL27Ztg4+PD5YtW4bZs2czar928KC+VcG0gzz79u2Dm5tbnTs0aWoRtX9qo6OjA0NDQyxcuLDOVf4aGhpUdLDFN2zRAbDHN4mJiRg0aBBsbGxw8uRJ3L9/H1u3bsXGjRtx8OBBqilvly5dWu/xgIAASkrqpqSkBCkpKfzdAe7u7ggMDISysjJjNuXl5ZGamioUYMrNzUWXLl1QVlbGmO3aPHnyBNbW1nj79i3evn2L7OxszJ07F9euXcPff/8NfX19Kjo6duwICwsLzJkzB+bm5jh16hTevHmDmTNnYtGiRZg0aRKj9g0NDSEmJgYDAwPs2bMHDg4OaNSoUZ3n0grAtW7dGkePHoWxsbHAe+rt27dhbW1NbWHd5cuXMWjQIOjr68PU1BRVVVW4fv067ty5g7Nnz1JfcOHs7FzvcVplJOqrO87j8agt/GDLOyybtBQVFcHOzg4JCQkAvuy+njVrFh48eIC4uDhGn8NsHEsA0fqGLX3y9XdOXcFyUSxmA9gznjQEGvMmbJkjAMCab+Ju3bpBXV0d06dPh52dHSIjI/Hs2TMsWbIEoaGhjGfa4ODg+O/ABUg5ODg4OOqExov+1atXMWTIECxevBgTJkyAvr4+lJSU+PVwNm/ezJjtr2HLxGx9vHr1itrq4ubNm+Pw4cPo27evQPvFixcxduxYPH/+nIoOADhy5AgeP36MMWPGQEVFBXFxcaiursaQIUOoaWAbbdq0wahRoxAYGCjymmNs8U/tdL+ihC2+YYsOgD2+6dmzJ8aPH48ZM2YIPOM2btyI7du34969eyLVx2Zo7I7o3bs3+vbti2XLlgm0+/v74/Tp07h16xZjtmszbNgwqKioIDw8HIqKikhPT4e6ujomT56MJ0+e4OLFi1R0SEtL4/79+2jbti3++OMPuLu7Y9iwYThz5gx8fHxw9+5dRu0/ePAAYWFheP/+PXbv3g17e/tvTuDTCsA1adIESUlJ6NSpk8A9nJKSgv79++Pdu3dUdHTv3h39+vXDqlWrBNr9/PyQmJiIa9euUdHBUTdseodlixYnJyd8+PABe/bsgbq6OtLT0yEvL48JEyZAWloax44dY8w2G8cSQLS+YUufPH78GOrq6hATE8Pjx4/rPZfWYrZfERrzJhzCyMjIIC0tDbq6urC0tMS8efMwcOBAREdHY82aNUhOTha1RA4Ojl8ECVEL4ODg4OD4fTE3N8fjx49RVlYGJSUlJCcn4+jRo/x6ODTp2rUrIiMjhSZmd+/ejU6dOlHT8a00S48fP4aenh4+fvxIRUd1dbVAysUamjdvjuLiYioaahgxYoTAvwcNGkTVfg01k7DNmjUTaH/27BkMDQ3x8uVLalrevHkDLy8vkQe+APb4x8LCAleuXBF5EI4tvmGLDoA9vrl7926d1+fQoUMxf/58qlpKS0vx559/IiMjo876kpmZmVT1fA8aa2rXrl2Lfv364eLFi/y6UdevX0daWhpOnjzJuP0aEhMTcePGDYiLi/PbJCUlsWjRIhgZGVHToaioyN8Brquri7S0NAwbNgy6urpU0pe7urriwIEDUFFRwcWLF7Ft2zaRjydDhw6Fv78/vxwBj8fDw4cPMXPmTAwePJiajnv37iEqKkqoffLkydi0aRM1HTUQQnDs2LFvjifx8fHUtKSlpX1TR3h4OBUNbHqHZYuW06dPIyEhAYqKivy2Fi1aIDg4GGZmZozaZuNYAojWN2zpk9pBTzYGQNkwnrCJV69eIScnp87+8PX1papFlDXSa5CVleW/q+nq6iI9PR0DBw5E9+7dqZZl4ODg+PXhAqQcHBwcHCKlcePG/JSLrVq1goeHh0h0iHJidu/evfzVwYQQjBgxQqiWx7Nnz6Cqqsqojtr069cPvr6+iIqK4vvn3bt3mD9/fr0pj34G2traSE5O5qccrq82EtPphKKjoxEXFwcAePToETw8PIRWeD969AgSEnRfqWxtbRETEwNvb2+qdgF2+ac2FhYWmD59Ok6ePCnSWkWi9A0bdQDs8Y2mpiaSk5OFVvifOnUKmpqaVDTUMGXKFJw7dw79+/fH4cOH4eDggNzcXCQnJ4s8va6oMDU1xa1bt7Bt2zZkZmZCRkYGFhYWOHjwINTV1anpkJWVRWFhITp06CDQnp2dXWeKaKYYPHgw3N3dERERgb59+2Lu3LmwtbVFdHQ01NTUGLd//fp1PH/+HCoqKigoKMCnT59EHtQICwuDi4sLmjZtiurqanTr1g3v37/HH3/8gdDQUGo6NDU1cfPmTaGsIzdu3EDLli2p6ahh5syZ2LFjB7p27YqbN2/CzMwMDx48wIsXLzB9+nRqOgIDA7FkyRK0bNkShYWFaNWqFQoLC1FZWSm0mIpJRPkOy2Ytnz59Emp79eoVJCUlGbXLxrEEEK1v2NIn30qrWxe0U+yyZTxhC9u2bcOMGTNQUVEBHo/HX7jG4/HQvXt3qgHS79VIpxUgtbKygp+fH0JDQ2FmZobg4GBMnToVx48fF1gMwsHBwfE9uAApBwcHBwdVxMXF8fz583prndRA80PM1NQUt2/fFsnE7IgRI/Dw4UMQQpCQkABTU1PIy8vzj/N4PMjJyVH9GNywYQMsLS3RqlUr/iRxTk4OtLW1cfz4cUZtBwQE8P/3L1myhFFb36NPnz6Ii4vjf4QSQgR2UvF4POjp6WH16tVUdbVq1Qr+/v44dOhQnQEnJusVsck/tTl79ixMTEzw8uVLod28PB6PWhBOlL5how6APb5Zvnw5Jk2ahJSUFFRWViIyMhIPHz7EwYMHsXfvXioaaoiPj8fhw4fRv39/ZGRkYPbs2ejWrRu8vb2RkZFBVQub6NixI4KDg0Wqwc3NDdOmTUNQUBAIIcjJycGlS5ewYMECuLq6UtMREhICLy8vpKSkwMnJCTExMTAxMYG8vDz27dvHuH1ra2uYmZlBRUUFAGBsbCywq7Y2tBbDvH79GjExMcjPz0dmZiYqKyuho6MDXV1dKvZrmDdvHtzc3JCVlYXu3bsD+BLwCA0NxcqVK6lqAYC//voLUVFRGDlyJHR1dREeHg4dHR1MmjQJnz9/pqYjIiICW7duxdSpU6GpqYkLFy6gWbNmcHR0RLt27ajpEOU7LFu1jB07Fl5eXoiIiACPx0NJSQkuXrwINzc3xoMZbBxLANH6hi19UjtlfHJyMtavX4/FixfDxMQEUlJSuH37NpYuXQpPT0/GNHwLtownbGHlypVYsGAB/Pz8oKWlhRs3bqC4uBgTJkzAyJEjqWrx8/PDiBEjvlkjnRabNm3C+PHjERMTAzc3N2zfvh3KysoQFxf/LXcYc3Bw/Hu4GqQcHBwcHHXCVC2NS5cuwdzcHBISEkhISKg3QNqnT5+fars+hg8fjtWrV1OfZPuaPXv2wM7ODrKysgLtVVVVSE9Pp5ber6SkBFJSUoiPj0dWVhZkZGSgo6ODAQMGQExMjIoGtrF06VL4+PhATk5O6Njr16+hrKxMTYuzs3O9x2nWcOIQhC2+YYsOtpGeno7169cLBFdmz57NzxxAi0aNGiE7Oxtt2rTB2LFj0adPH0ybNg05OTmwsLDAixcvqOr5Hky9E1haWjZ498qFCxd+qu36CA0NRVBQEP755x8AX1JRzpkzBz4+PtSegQcOHIC1tTWUlJT4bcXFxZCRkWF8xxcAlJeX4/Tp03j37h2cnZ2xceNGNGnSpM5zJ06cyLgeAGjZsiVOnTqFbt26UbFXH7t370ZoaCh/UZ2Ojg7mzJkDOzs76lqkpaWRm5uLNm3awM7ODoMGDYKzszMyMjLwxx9/8K9jmjpGjBiB0aNHY9y4cbh16xZGjx5NJTV0DRUVFax5h2WDls+fP2P+/PnYvHkzP2guLi4OV1dXrF+//pv1L38GbBxLahCVb9jYJ7q6uggNDcWAAQME2hMSEuDs7Ez1/gXYNZ58Dxp12qWkpJCTkwNNTU0MGTIEEydOhJ2dHa5cuQIXFxfk5OQwZvtrRF0jvYbLly/DxMQEMjIyAL4sZL5//z4UFRXRqlUrKho4ODj+G3ABUg4ODg6OOjE2NsbRo0fRunVrxmx069YNu3fvhr6+PmM2Gkrz5s2RlJQk8hWp36pBmpeXhy5duvDrkTGNpqYmjhw5gq5du1Kx9y3ev3+PNWvWID09HZ8+fRKqg0dzwpwt9WHZBJv8A3xZZR8eHo7c3FyEh4cjPj4eOjo6MDc3p6qDQxjON4IYGRlhxowZcHFxwcqVK5GZmYm9e/ciOTkZAwYMwLt370QtUQCmAqRLly5t8LmiSD1cUlKCysrKb05cM0nTpk1x/fp16OjoULf9NXv27IGjoyOkpaVFqsPQ0BArV64UWa1rttKxY0esXr0aw4YNw5IlS1BYWIjw8HDcu3cPpqam1GpdamtrY+fOnejbty8WLFiA8vJyrF+/Hrm5uTA0NERJSQkVHRzfpqysDPn5+aisrETbtm0FMtbQgC1jCZtgS580btwYly9fhoGBgUD7zZs3YW1tTf295FcaT5o3b47k5GRGyzW0bt0aR44cgYmJCXx8fCAlJYWVK1fi4cOH6Ny5M9X+UFFRwblz56Cvrw8vLy80a9YMAQEB1L+JlZWVceHCBXTp0oWKPQ4Ojv8uXIpdDg4Ojt+MyspKbN++HYMGDUKbNm2wePFixMTEwMjICCEhIWjWrBkAICUlhXEtz58//2Y6Idq4u7vDwcEBbm5u0NDQ4K9ErMHCwoIx29u3b+enZCOE1JlmqaioCJ06dWJMw9eIi4tTTcv2LSZMmIBbt27B3t5eJBPUbKwPW8P58+eRnJyMiooKocAkrZSlovZPbRITEzFo0CDY2Njg9OnTKCsrQ1ZWFtzc3HDw4EGq6afY4Bs26WCLb54/f461a9ciKysL5eXlQsdpBvSXLFkCOzs7VFVVwcnJCXp6erC1tcWdO3dgY2NDTYeoYWu91WPHjn3zOqF171haWmL//v1YsGCBSCbOAwMD4ePjA1lZWTx+/Bhr1qz55rm0+qRr164YNmwYTExMoKmpKfSuRit1eElJCbZv3/7Na4RmCnMA8Pb2xrhx47Bjxw44ODigW7dukJCQwLVr19CrVy9qOqZMmQJHR0fs2rULw4cPR//+/aGmpoZz587B0NCQUdtsKuHBJi21SU9PF7hm09PT+ccmTJjAmF02jSVs8Q2b+qSGwYMHw8XFBaGhoTAwMAAhBMnJyZg5cybs7e2paKiNKMeT2hQXFyMjI6POd+ma+YFXr14xrsPe3h4TJkzAjh07YGNjAycnJ3Tr1g0nTpwQqofNNKKukV6Dnp4ebty4wQVIOTg4/me4HaQcHBwcvxmenp6IiYlBXFwcHj16BDs7OyxbtgxxcXFo3bo1oqKiqGnx8/PD/v37MX78+Donupj8WP+a+lIp8Xg8Rj+SKyoqcODAAVRXV8PFxUUozVJNDVIrKys0bdqUMR218fT0xO7duzFkyJA6fUPrY11OTg4JCQkwMTGhYu9rPn78iODgYBBCsHTpUnh7e3+zPiyTaZW+xtvbGyEhITAwMEDjxo0FjvF4PGqBHlH7pzY9e/bE+PHjMWPGDIHdbhs3bsT27dtx7949KjrY4hu26ADY4xsLCws8f/4co0aNqjOdIO1gXX5+Pqqrq9GuXTukp6dj3759UFJSgqenp1CadVGzYcMGTJ48Weha+tlERkZi69atyMzMhJSUFHR1dTFnzhwMGzaMUbu1mThxIv766y8YGhoKXSc0751evXrh2rVrEBMTQ4sWLYSew0zX6rO0tMSRI0egqKgIS0vLb55Hs0/Ykjrc1tYWSUlJ6N+/f51jiShSmCcmJkJeXh5GRkY4c+YMtm/fDiUlJSxZsgQtW7akpiMyMhIaGhro06cPtm/fjoiICCgpKSEkJITR3dC1S3hcunSp3nOZLuHBJi01+Pn5Ye3atWjRokWd4xqT4wmbxhK2+IZNfVJDcXExpk2bhsOHD6O6uhoAICEhgQkTJiA0NFToGUQDUY0nNezbtw9ubm51ZnBien7gayoqKrBq1SoYGhpi6NChWLhwIb8/du7cCTMzM2paiouL4eXlhb59+8LJyQlOTk44cOAAv0a6ra0tFR0jRozA8ePHoaKiUud8Be1MRhwcHL8uXICUg4OD4zdDRUUFx44dQ8+ePTF27Fh8/PgRx48fR0ZGBszMzPD+/XtqWrS0tL55jOmPdbZS+8NdlLDlY71du3Y4dOgQtdqr9bFnzx44ODiIZILga5o2bYqwsDCMGzdOpDrY5B85OTncvXsX2traAkG4/Px86OnpoaysjIoOtviGLToA9vhGTk4OSUlJv/1Kc7bW/Vy0aBE2b96MWbNmwcjICNXV1bhx4wZCQ0MRGBiIWbNmUdHRuHFjHDx4UORpXPfs2VPvcdq1+jj+D3l5eZw9exampqailsJRBy4uLggJCYGCgoJAe1FREVxdXREdHf3baWnatCmCg4O/u8jgd4ItvmEbHz584Nez1NHREeqf34k2bdpg1KhRCAwM/K37oSHQrJFew/fKNLA1SwkHBwf74FLscnBwcPxmlJaWQkVFBZWVlYiPj+en9KmurqYelHv48CFVe/Whra2NlJQUforhGp49ewZDQ0O8fPmSio4+ffrg6tWr2LhxI3Jzc3HixAlERUVBU1MTjo6OVDQAXyZmW7duLbSztqqqSiAlFxMUFBTw/3vGjBmYMmUKgoKCoK2tLZR6uE2bNoxqqc3EiRNZU0dRQkIC3bt3p2qzBrb6R1NTE8nJyUI7eU+dOsVoTaCvEaVv2KgDYI9vevbsya/nLAq0tbWRnJwMJSUlaGlp1RukZHKBUN++fRn72/8LERERiIyMxJAhQ/htQ4cOhaGhIby8vKgFSFu1aiVUa1oUPH78mJ+CsTYfPnz4odqt/5bIyMgGn0sz48eOHTsQERGBzMxMiImJoUuXLpgxYwYcHByoaejYsSO1hR3fwsrKCrGxsfwdaPWNJ0wudKgdZHJxcan3XCZTDyclJSE3NxfAl3dYIyMjoR3vWVlZ+PvvvxnTwEYtNTRp0kRk2T7YNJawxTds6pPavH//Hvv27UNOTg4WLVqES5cuoWPHjmjbti0V+2wZT2p48+YNvLy8RBYcrZ2KOTAwsN5zmc7uFBkZCQcHB0hLS3/3+qV1zWppafE11aakpAQ7duygooGDg+O/ARcg5eDg4PjNMDMzw9y5c9GkSROUlpZi+PDhuHPnDmbMmIF+/fpR1/Pq1Svk5OTwU9QQQlBeXo7U1FT4+voyajs6OhpxcXEAgEePHsHDw0Mo7dSjR4+oBo5jY2Ph7OwMV1dXnDx5EhUVFZCUlMSkSZNQVFSE6dOnU9GhpaWFFy9eCE0SP3z4EL169aoz1dDPQlNTkz/RV5PoYsCAAQKTf4QQ6qmN2FJHEQA8PDwQEBCAbdu2QU5OjppdgL3+Wb58OSZNmoSUlBRUVlYiMjISDx8+xMGDB7F3715qOkTpGzbqANjjmx07dsDc3BzHjx+Hpqam0AIQpieXAgIC+Cm6lyxZwqit7+lgI4SQOhdVdOjQgWow6s8//8T06dMxc+ZMaGhoCF0nTNYkz87ORmFhIYAvOyMMDAyEUuvfu3cPW7duxfr16xnTAQhfJwUFBZCWloa2tjakpKSQl5eHsrIyGBoaUpsMXblyJdauXYtZs2Zh8eLFqKqqQnJyMqZOnYq3b99Se0favXs3Ro4cibFjx9Z5jdDojz59+vBrooty0UPthGSiTE4mKyuLJUuWgBACQgjWrl0rsGirpiRCfbUe/4taali/fj08PDwQGBhY5zXL5II2No0lbPENm/qkhnv37sHKygpt2rTBnTt34OXlhdjYWBw+fBgnT56kkg6aLeNJDba2toiJiYG3t7dI7F+8eJFfduHixYvfPI/H41F5hx08eDCkpaXrfY/k8XiMXrOvX7/mz0M4Ozujc+fOUFZWFjgnPT0dvr6+8PT0ZEwHBwfHfwsuxS4HBwfHb8aTJ08wY8YMPH78GPPmzcPYsWOxcOFCZGVlYevWrUIvmEyybds2zJgxAxUVFeDxePwPIR6Ph+7duyMpKYlR+69evYKvry8IIdizZw/s7e0FAqQ1H8lOTk7UdmIZGBjA19cXY8eOFUhFuX//fixevBh5eXmM2d6+fTtWrlwJ4EtgWF1dXWhHYFFREdq2bYuUlBTGdDx+/LjB52poaAAA/vnnH6ipqdVbS/Z/hS11FIEvKTKvXbuG6upqqKio8CdJa2By9xlb/QMAd+7cwbp165CZmYnKykro6Ohg9uzZ6NGjB6N2ayNK37BRRw1s8M24ceMQHR2Nrl27irS2JAAMHz4cq1evhq6uLjWb3yIqKgobNmxAXl4ebt++jU2bNqFly5bw8/OjqiMsLAxRUVHYtWsXv1+ePHmCCRMmYPDgwfDx8aGiIygoCPPnz+fXYKsN0ws/Ll68+N3FanJycvD09MSKFSsY0/E1K1asQHJyMnbu3MnPtFFcXIypU6eiZcuW2LBhAxUdqqqqiIiIwNChQwXaY2JiMHv2bIEMB0wya9YsbNq0SST1HOvC09MTXl5e1HZ5fYugoCA4OjpCXV1dpDosLS0RGxsrtLjgd9ZSu5aiKBe0sWUsAdjjG7b0iZWVFXr37o2lS5cKfOf4+vri4sWLuHnzJhUdNbBhPPH29sbmzZthYGCA9u3bC71L09jFWsOBAwdgbW0NJSUlaja/RWJiIrp37y6SsjPR0dGwt7f/ZtaEmvmk8ePH/9BObQ4Ojt8bLkDKwcHBwSEytLS0MGnSJPj5+UFLSws3btxAcXExJkyYAAcHB8ydO5ealqVLl8LHx0fkO61kZWVx7949oVp9eXl50NfXZ3QXTUVFBQ4cOIDq6mq4uLhg48aNaNKkCf94TcDYyspK5JMJX9O4cWOkpaUJpfD8mbCljiLw69Wmo+EftkwQs8U3bNEBsMc3cnJyiIuLo7IL4ns0b94cSUlJaNeunUh1hIeHY9myZViwYAHmzZuHe/fu4dq1a/Dy8oKnpyfju03FxMTqnKyXk5ODmJgYiouLwePx0KxZM2qp7ps1a4aFCxfC3d1dpDWntbS0kJycTHXh2rdQVFREUlISOnbsKNCenZ0NExMTfPjwgYoOZWVlnD9/HgYGBgLtGRkZ6NWrF4qKiqjoUFBQwPbt26mm9a2PZs2a4fbt21RTlteFoqIiUlNToaWlJVId3+Lz589ITU2lujCHLVrU1NTg6OiIqVOnCgX1gf9b0MY0bBlL6oO2b9jSJwoKCkhLS0Pbtm2FvnP09fVRUlJCRUcNbBhPvlezd9euXZSUfKkjfOPGDXTo0IGazW+hrKyMixcvQl9fXyT2CwoKUF1dDW1tbdy8eVMg41XNOyQbAskcHBy/DlyKXQ4ODo7fEDbUuASAp0+fYuLEiZCWloaRkRGuX78OOzs7bNy4ES4uLlQDpAEBASguLsb169dRUVEhlNaHyZR6tdHT08OZM2f4aeJqJo737NkDPT09Rm1LSkryU+JoaWnB3Nycel3afwuN9V5sqaMIAP369UPr1q2F2qurq7Fp0yaqWhoCDf/s27cPs2fPZtzO92CLb9iiA2CPbzQ0NES+CKYGd3d3ODg4wM3NDRoaGkKBOFrPnE2bNmHbtm0YPHgw5s+fD+DLqvtmzZph2rRpjAdI60sZJyqkpaVha2sr0uAo0PA67TQWoDRp0gSpqalCE/iXL1+mWq81ICAArq6u2LlzJzp37gzgy0TpnDlzqKaOVlZWZvyd7EeYM2cO3N3dMXv27DrHE1r1wMeOHYvly5fDz88PGhoaQrutaJGUlITp06cjIyNDaCe4hIQEysvLfzstnz59wowZMxgdJxoCW8YSgD2+YUufNG/eHDk5OUKL2a5duwYVFRVqOmpgw3hCMwD6PSwtLREVFYUFCxYI1dykjZ6eHq5fvy6yAGnNM62uTB91oa+vj7i4OJFnN+Dg4GAxhIODg4PjtyImJoY0btyYeHt7ExkZGfLgwQOybt06Ii0tTbZs2UJVS6tWrcjNmzcJIYR4e3uT+fPnE0IIyc/PJ7KyslS17Nu3j8jJyREejyf0ExMTo6YjMTGRNGnShIwePZpISUmRyZMnEwsLCyIrK0vOnz9PTQchhJw7d46sWrWKBAYGkqVLlwr82Ia8vDx58OABozZiY2NJ48aNiY+PD5GRkSEBAQFkwoQJREpKivz111+M2v4aDQ0NkpOTI9B2+fJloq+vT5o0aUJVS0Og4Z9ly5aRgQMHkr///ptkZ2eTx48fC/xowRbfsEUHIezxzeHDh0mnTp3I9u3byfnz58mlS5cEfjSp61kjimdOo0aN+Pdm7fs0KyuLNGrUiJqOH0FBQYHR8WTnzp1k6NChJC8vj1RVVTFm52dBY3zdunUrkZGRIVOmTCFhYWEkNDSUTJgwgcjIyJADBw4wars2rVu3JpKSkkRMTIw0btyYNGvWjIiJifHvm9o/Jjl16hSxsLAg586dIw8ePBDZmFZDXWNI7X6hhaamZp2+oOGT2hgZGZFhw4aR06dPEwUFBXLkyBGyefNm0rx5c3Lw4EFqOtikZcWKFWTKlCmkrKyMms26YMtYQgh7fMOWPtm6dStRU1MjYWFhRFZWlmzbto0sXryYNG7cmISGhlLTUQNbxpMrV66Q0aNHEwMDA1JQUEBWrVpF/VolhBBzc3PC4/GIuLg4UVVVJVpaWgI/mgwfPpyIiYkRVVVVYmpqSiwtLQV+bIPGexIHB8evDZdil4ODg+M3Q5Q1Lr9mzpw5iI+Px44dO1BaWgonJyeEhYXhxIkTSEtLQ1paGjUtbdq0wahRoxAYGAgFBQVqduvixYsX2LJli0CtPnd3d2o7AIAvNVdCQkJgYGCAxo0bCxyjXauvIdS+lpkkPT0d69evF2kdReDLvRMVFYXTp0+jVatW8Pb2xoEDB+Dk5ITVq1eLZKV3fdDwz9f1TWt2XxPK9bXY4hu26ADY45v6auDS1MEmrKysYGFhgSVLlkBBQQF37tyBpqYmpk6ditzcXCQkJIhaohBMjydaWlp49uwZKisr6zzOtuuE1vPvzJkz2LFjB+7fvw8A6Ny5M2bMmIFevXoxarc2ly5davC5TKbSrj2WiLKeYw3fqw1OK33q9/xDK725jIwM0tLSoKurC0tLS8ybNw8DBw5EdHQ01qxZg+TkZCo62KTF0tISSUlJIIRARUVFKEMMzbq5bBhLAPb4BmBPn5w4cQJBQUEC3zlz5syBvb09VR0AO8aT2NhYODs7w9XVFZs3b0ZGRgaOHDkCf39/bNiwgZ/xiQZsKp2xdOnSeo/TzOjQEGi9J3FwcPy6cAFSDg4Ojt8MUda4/JqKigqsWrUKhoaGGDp0KBYuXIiIiAgoKSlh165dMDU1paZFTk4OGRkZIq/fxBaaNm2KsLAwjBs3TtRSGsTv+OETHByMwMBAiImJQUdHByEhIejevbuoZdUJDf/cu3ev3sUNtCaIAfb4hi062OSbhnD16lUYGxsznsKssrIShYWF/GAKIQTl5eVITU2lVtvw3r17GDRoEFRUVJCWlob+/fsjJycHpaWliI+Ph6GhIRUdPwLT4wkbJmV/BDY9/wYPHozt27dDVVVVpDqYTjvc0IDkP//8AzU1tXoXZzAJm2puPn/+nNp10axZM9y4cQPt27fH9OnToaGhAT8/PxQUFKBz585U61yyRQubgisNgcZYwhbfNBS2jK9sgNZ4wqaF5fVRUVEBSUlJUctgLWx6T+Lg4GAnv0ZhMQ4ODg6On4Yoa1x+zcuXL7F48WL+v5cvX47ly5dT1VCDra0tYmJi4O3tLRL7NWhpaQnsRqiBx+NBSkoKqqqqsLe3h5ubG6M6JCQkWBtsExWWlpYN8o2NjQ0VPXPmzEHr1q3h7OyMefPm/fb+GjJkCI4cOYKuXbuKWgprfMMWHWzyTUMYOHAg4zUdjx07BldXV7x580bomKqqKrUAaefOnZGTk4P9+/fzd4wMGzYM48ePh7y8PBUNbKOhAVAatT9/NRITE6kutPsWTK8Bb+iijk6dOlG5Rq5duwZ3d3eR11LMzs6Gr68vMjIyhBZ+vHz58pu7sn82VlZW8PPzQ2hoKMzMzBAcHIypU6fi+PHjUFRUpKKBbVoaGgBlS60+GmMJW3zTUJjuk5KSEmzfvh1ZWVl1jhk7d+5kzHZdsGE8yc3NRc+ePYXau3fvjqdPnzJuvzaFhYVYtWpVnf2RmZmJoqIialpKS0vx559/1qklNTUVmZmZ1LRwcHBw/AxEs5SRg4ODg0NkBAcHY/78+bCzs8Pnz5+xYsUK9OnTB8HBwVi7di1VLW3atIGFhQW2bNmCly9fUrX9Na1atYK/vz969OiB8ePHw8XFReBHixkzZuD169dwdHRESEgINm7ciPHjx+PNmzcYOHAgBg0ahOXLlzPuKw8PDwQEBKCkpIRROz+LugKXPxsLCwtcuXIFLVu2xIgRIzB8+HC0bt0aV65cgZqaGmRlZeHo6Ihdu3YxYl9MTAzi4uICvzFjxqCsrAyjR48WaGcbNPwjLi6Oz58/M26nLtjiG7bo+BpR+ubfQCPBjp+fH0aMGIH79++jadOmuHbtGk6cOAFNTU3qC4VkZGTQs2dP9OzZExYWFhgwYMBvGxz9EbhETBzfg9Y1MnPmTGhqauLkyZOQk5NDTEwMQkNDoaSkhMjISCoaAMDV1RWvXr3C3Llz8eLFC3h7e8POzg7v37/Hjh07qOnYtGkTioqKEBMTA0dHRzRu3BjKysqYPXu2wMLM301LQ3j06BEqKipELYMKv5pvmMbR0RHLli1DUVERCCFCP9qwYTypWVhegygXlru4uOD06dMwMTHBlStX0KNHDzRv3hw3b978bsrbn82UKVOwcuVKlJSUYO/evfj8+TPu37+PgwcPwtHRkaoWDg4Ojp8Bt4OUg4OD4zejd+/eyMrKwpYtWwAAb968gampKfbu3Uu1xiUAZGVlISYmBjt37sSsWbNgYWEBR0dHjBo1Ck2bNqWq5e3btxgzZgz/36Ka+IyMjMSff/4p8HExdOhQdOnSBStWrEBqaioMDQ3h6uqKefPmMabj0qVLuHbtGg4fPgwVFRVISUkJHKdZq6ghSEtLM57C7vz589iwYQM8PDwE2nv37o29e/ciMTERVlZWWLBgAZydnX+6/YsXL/70v0kLGv4ZPHgwBgwYgCFDhkBTUxMyMjICx5mc7GKLb9ii42tE6Ru2kp+fj5MnT6Jt27bo1q0bXrx4gWHDhkFcXBw+Pj6YNGkSFR2FhYUYNWoUkpKS0LRpU1RVVeHDhw+wtrbGwYMH0aRJEyo6OP49NBagcLCbjIwMREVFQVdXF926dYO0tDTc3d3RokULrFmzhtqO9OTkZCQlJcHQ0BCRkZHo2LEjPDw80KFDB+zYsYNaGtcHDx4gLi6O/6xJSEjA/fv3oaioiFatWlHRwEYtHIJwvhHk4sWLOHv2LNUSN/XBhvEkODgYtra2uHDhAn9heW5uLlJSUnDixAnG7dfm0qVLfP+cPXsWQ4YMgbm5OdasWYP4+Hh4enpS0xIfH4/Dhw+jf//+yMjIwOzZs9GtWzd4e3sjIyODmo6Gwr0ncXBwfA8uQMrBwcHxG9KyZUsEBgaKWgbat28PPz8/+Pn54dGjR4iNjUVkZCS8vLxgaWmJkydPUtPC1K6/HyUvL6/Omm+dO3dGVlYWAKBDhw4oLCxkVMekSZOoTdB/j+LiYmRkZKCiokIocG1hYQEAePXqFeM6bt++Xed10rdvX/5HqbGxMQoKChix/2/q3tFIAckW/9y9exfdunXD8+fP8fz5c4FjPB6P0SAcW3zDFh1fI0rfsBVFRUWUlpYCAHR1dZGWloZhw4ZBV1cXDx8+pKZj8uTJkJKSwoMHD/g1uPPy8jB58mRMnz4d+/fvp6aloXATXYJwO1k5ZGVl+ZkBdHV1kZ6ejoEDB6J79+7Izs6mpkNSUpKfmlRXVxepqamwsrLCgAED4OPjQ03HiBEjcOHCBXTp0gXAlzGD9m4vNmrhEITzjSAdO3ZkRYr0GtgwnrBpYTkhhB+479SpE27fvg1zc3PY29sjKCiIqpZPnz6hQ4cOAL7ssk1JSUG3bt0wbdo0/rcfDUpKSiAnJ/fd87j3JA4Oju/BBUg5ODg4fgOsrKwQGxsLRUXFb9ZRrOHChQsUlf0fMjIyaNSoERQUFCAmJsafOKbJ1atXsXHjRuTm5uLEiROIioqCpqYm1VQxpqamCAgIwM6dO/kv/CUlJVi6dCm/fmBcXBzat2/PqI7aq3KLiorQpEkT8Hg86hPT+/btg5ubW53XA4/H49c9oYGBgQFCQ0MREhIi0A9btmxBp06dAHxZ7dy6dWtqmr4H0x+EbPIPW3dPfgu2fKzT0PGr+YYGgwcPhru7OyIiItC3b1/MnTsXtra2iI6OhpqaGjUdCQkJuHHjBj84CgDt2rVDaGgoevXqRU3Hj8CWe4dp+vTpgzFjxmD06NFQVlb+5nn5+flQUlKiqIyDbbCllqKZmRmCgoKwbt06GBsb48CBA5gzZw5SUlKEMgcwiZ6eHm7cuMEPfIkSNmnhEITzjSC7d+/GyJEjMXbsWGhoaAhlfpkwYQJVPWwZT9iysNzIyAh79+6Fv78/DA0NcfbsWcycORMPHz6k/l7UsWNHnDt3Di4uLujcuTOuXLmCadOm4f379/j06RM1HXp6ejhy5Ai6du1a73kXL14UeV1lDg4OdsMFSDk4ODh+A/r06cNPkdq3b1/RiqnF48ePERsbi5iYGNy4cQMmJiZwcHDA9u3boaqqSlVLbGwsnJ2d4erqipMnT6KiogKSkpKYNGkSioqKMH36dCo6/vzzTwwZMgRqamro0KEDCCHIzc2Furo6YmNj8ffff2PWrFk4fPgwozoIIVi5ciU2bNiAd+/eIScnB4sXL4a8vDxCQkIgLS3NqP0aFixYAFdXVwQGBkJBQYGKzW8RFhaGgQMH4tSpUzAyMgIhBGlpafjw4QNOnDiBq1evYvz48di8ebNIddKETf75Xp012hM7HP8H5xthQkJC4OXlhZSUFDg5OSEmJgYmJiaQl5fHvn37qOlo27Yt7ty5I7Rr5vHjx1R2R/zIjvsaPb9LQHDo0KHYvXs3vLy80LdvXzg6OmLkyJFCaY+bN28uIoXs5XfbZRwSEsIfR9zc3LB9+3YoKytDXFwc4eHh1HQEBwdj6NCh0NbWhpubG0JCQtCsWTN8/PiRaqaAZs2awc3NDQEBAXWmdae5GJRNWjgE4XwjyLZt25Cbm4vw8HA0atRI4BiPx6P+riaq8eR7i8lrQ/MaWb16NYYMGQJZWVlMmDABQUFB0NfXR0FBAcaPH09NBwAsWbIEdnZ2qKqqgpOTE/T09GBra4s7d+7AxsaGmg5xcXF8/vz5u+cZGxtTUMPBwfErwyO/yxJcDg4ODg4AXyaqHRwchAJcJSUl2LFjB9X6FWJiYjA0NISDgwMcHR2hoaFBzfbXGBgYwNfXF2PHjoWCggLS09Ohra2N/fv3Y/HixcjLy6Oio6SkBDIyMjh//jzu3r0LCQkJ6OnpoV+/fuDxePxUpUxPiAYGBuLAgQMICgqCg4MD7t69iwcPHmDatGkYMmQINm3axKj9GuTk5JCRkSGwu0mUfPjwAQcPHhTwzZgxYyAnJ4dHjx7h/fv3MDAwELVMPrWvZSZgk3+0tLQE/l1ZWYmXL19CQkICPXr0YN1EF9O+YZMOzjfClJeXCz2Hi4uLISMjA0lJScbsfk1ISAiWLFmCyZMnw8zMDJKSkkhLS0NISAgmTZoksLOGiclRMTGx705EEkKo70hvCDTSUwNfgtWHDh1CTEwM7ty5A2trazg6OmLo0KGQlZVl1PaP8juNaw2B1jXyNYQQkdVSJISgrKwMsrKyKCkpQUJCApSUlNCzZ09qGpYuXVrv8YCAAEpK2KWlIYjqmv0aGvfwr+YbpvtEQUEB27dvp1azuCGIYjz53nVRG9rXyIcPH1BWVgYVFRU8e/YMR44cgZKSEuzt7YV2/DJNfn4+qqur0a5dO6Snp2Pfvn1QUlKCp6cntXcTT09P7N69G0OGDKlzkcPvWMKDg4Pj38EFSDk4ODh+A16/fs1PgamlpYXk5GShdG3p6emwt7enWnskOzsbOjo63z3P3d0dgYGB9aaY+1+RlZXFvXv3oK2tLfABmpeXB319fWr9oqmp2aBUMUyjra2N3bt3w8LCQqA/Ll++DDs7O7x48YKKDkdHR5iYmMDb25uKvfro1q0bdu/eDX19fVFLaTBMT6awyT918fHjR0ybNg36+vrw8/MTtRwB2DKBLyodbPaNsbExjh49ymi67CZNmmD48OFwcHCAtbU1JCREk9jn6+D1t+DxeMjPz//p9h8/ftzgc0W5iKouaN87Dx48wM6dO7FhwwZUVlZCWloaY8eOxfLlyxlfNHXnzp0601AWFxdj0aJF2LhxI4Av2ThsbGwYmxxtaNrhV69eQUlJifqE8dc0b94cycnJjC8i6tChA8aMGQMHBwd+yn9RYG1tjTFjxmDEiBFUU/v+WwYPHiySrDVs1sL0uMaWseRHYNo3bOkTLS0tnDhxAp07d2bk7/8ov9J4QuP+nTp1KsaMGYO+ffuKPEvCypUrMWbMmAa/QzKFpaXlN4/xeDzWLcDk4OBgMYSDg4OD4z/P4cOHCY/HI2JiYnX+eDwe4fF4xMnJSdRS60RBQYE8ePCAURvGxsZky5YthBBC5OXlSX5+PiGEkIULF5Ju3boxars22tra5Pr169TsfQtZWVmSm5tLCPnSHzX9f/fuXSInJ0dNx5w5c4i0tDTp3r07GTduHHF2dhb40URVVZVkZGRQtfm/Utt3TMAm/3yLnJwc0rx5c1HLEIJp3/wKOmj7pqKigoSHh5PHjx8TQghZtGgR6dSpExk/fjx58+YNNR2EEHLmzBkybdo0oqKiQpo1a0YmT55Mzp49S6qqqqjq+BUoLy+n+lz89OkTmTt3LgkLC+O3GRkZEV9fX/L582d+28uXLxn3V25uLlm5ciXp2rUrkZCQIP379yfbt28nRUVFJCcnhwwYMICYmJgwqoEQQpo2bUquXr0q0LZ3717SsmVLoqmpybj9GtatW0d69OhBpKSkiLW1Ndm5cyd59+4dNfu1+fDhA0lKSiKJiYnk0qVLAj/aREREkD/++INISUmRzp07k2XLlvHf4Wgyf/58oqOjQ6SlpcmQIUPI3r17SXFxMXUdDYUtz2FC6GjZvHkz2b9/P//fI0aMIOHh4QLnJCcnC4xzPxu2jCU/AtO+YUufnDp1ilhYWJBz586RBw8ekMePHwv8aPMrjSc07t8xY8aQxo0bk5YtW5IZM2aQy5cvM2qvPkxNTYm4uDgxNjYm69atIwUFBSLTwsHBwfEz4HaQcnBwcPwmFBQUoLq6Gtra2rh586bAbgMejwc5OTnW1vSisUvj8uXLsLW1xYABA3D8+HE4OTkhNzcXKSkpOHHiBKysrBizXRu2pIoZOnQoVFVVERERAQUFBdy5cwfKysoYN24cCCE4ceIEFR3Ozs71Ht+1axcVHQDg5+eH/fv3Y/z48XX6ho11FJlOlcYm/3yL6OhoTJs2DW/evBG1FAHYksZOlDpo+8bT0xMxMTGIi4vDo0ePYGdnh2XLliEuLg6tW7dGVFQUFR21qa6uRmJiImJjY3Hs2DGUl5dj9OjRCAsLo6YhPT0dWVlZKC8vF2jn8XhwcnKipuPatWtwd3dHRkYGqqurBY5JSEgI6WOKadOm4cqVK/jzzz9hbm4OADh27Bj8/f3Rr18/hISEUNFhYGCAe/fuwcTEhL87sGXLlgLnREdHw9XVFUVFRYxqCQ0Nhb+/Pw4dOgR1dXW4u7sjJSUF8+bNg6+vr9DzkGlEnXZ43759cHNz42dnqY0o00EXFRXh2LFjiI2Nxfnz56Grq4sxY8bAx8eHqo67d+8iNjYWMTExyMvLw6BBg+Do6IjRo0dT1fE92JLJgYYWf39/7N69G1u3boWtrS0AYNOmTVizZg3c3NywaNEiRux+DdvGkobAtG/Y0ie1d9zX3qFIRJzm/lcYT2iNJZ8/f8aZM2cQGxuL48ePQ05ODvb29nB0dKReZ/P58+eIjo5GbGwsrl69iu7du8PBwQH29vZQUVGhpiM/Px/h4eH8+rnx8fHQ0dHhv79xcHBwNAQuQMrBwcHBwXpofXQUFhZi8+bNyMzMRGVlJXR0dODu7o42bdowarc2bEkV888//2DkyJEoKCjA69ev0bFjRxQUFEBDQwPHjx9nRc1J2tSXRoip9JP/K2ya/GMaS0tLoZRTxcXFSE9Px5w5c7B69WoRKasbtviGhg62+EZFRQXHjh1Dz549MXbsWHz8+BHHjx9HRkYGzMzM8P79eyo6vqayshJnz57FyZMnsXfvXjRv3hwPHjygYtvPzw9r165FixYt0KhRI4FjtMe1bt26QV1dHdOnT4ednR0iIyPx7NkzLFmyBKGhodTqojVv3hxnz56FoaGhQHtKSgoGDx6MwsJCKjpWrlwJR0fHeu/Njx8/AgDk5eUZ1xMdHQ0XFxeUl5dj+PDhCAoKovp+VBeiSjvcpk0bjBo1CoGBgVBQUGDMzr/l/v37OHToEIKDg0EIQXFxsUh0vH//Hlu3bsWKFStQUlLCujrCbHkO09CipqaGQ4cOoVevXgLtCQkJGD9+PP755x9G7NYFG8eS+qBxnbChT76X8r4mzf0///wDNTU16inM2TyeiGIs+fz5M4KDg7Fy5UqR98erV6+wfft2rFq1CmVlZaioqKBiNzExEYMGDYKNjQ1OnjyJ+/fvY+vWrdi4cSMOHjyIkSNHUtHBwcHx6yOaYjccHBwcHFSxsrJCbGwsFBUVv7sT8neu1aCiooLAwMB6z9HX10dcXBzU1dUZ0XDx4kVG/u6P0rp1a9y8eRMXLlwQCBhbW1sLfBDT+Ei+evUqNm7ciNzcXJw4cQJRUVHQ1NSEo6MjYzbr4uHDh1Tt1UdD67Dl5+czvjOcLf7p27evwL95PB6kpKSwevVq9OvXj5oOtviGLToA9vimtLQUKioqqKysRHx8PNasWQPgyy5O2jVAP336hPj4eMTExODUqVOQl5eHnZ0dzp49ix49elDTERERgR07dnx3NzgNMjIyEBUVBV1dXXTr1g3S0tJwd3dHixYtsGbNGmoBUkIIPn36VGf758+fqWgAgAULFuDt27fYsmULMjMzISYmhi5dusDOzg6NGzcGwGxgtKCgQODf3bt3x5YtWzB16lSYmZkJnENzIj8vLw+HDx/G4cOHcffuXfTt2xehoaEYNWoUXr16BQ8PDwwePBg3b95kTMObN2/g5eXFquBoamoqYmJiEBsbi0ePHsHGxgbbtm3j7xakxevXr3H06FHExsbiwoUL6NSpE/z9/am/E3AIUlJSwh83aqOsrMz44iC2jiWihI190tA63506daKWeYQbTwSpqqrCxYsXERsbi6NHj6Kqqgrjxo0TWX88ePAAMTExiImJQVpaGqysrKhqmTdvHlavXo0ZM2bwn8dr166FmpoaFi9ezAVIOTg4GgwXIOXg4OD4DejTpw+kpKT4/83x73n06BHjqyJTU1Oxbt06ZGZmoqqqCjo6OvDw8BCJ76ysrOoNqjP9kRwbGwtnZ2e4urri5MmTqKiogKSkJCZNmoSioiJMnz6dEbvf4vnz5wgLC+P7RldXF1OmTEH79u2p6hg6dCh2794NLy8v9O3bF46Ojhg5ciSaNGkicB6TO2gAdvknICAAL1++xLt379ChQwcAwKFDh6Cnp0dNA8Ae37BFB8Ae35iZmWHu3Llo0qQJSktLMXz4cNy5cwczZsygGqgFACUlJcjLy2PkyJE4evQoLCwshHbZ0qBJkyYwMTGhbrcuZGVlIS4uDgDQ1dVFeno6Bg4ciO7duyM7O5uajlGjRsHV1RVbtmyBkZERgC9piD09PalOtiUlJWHQoEFo1qwZunbtiqqqKhw/fhz+/v44d+4cOnfuzKh9TU1NoWuyJvnU7NmzMXv2bAB0U8rWTjs8ceJEobTDioqKmDp1KlxdXRnVYWtri5iYGHh7ezNqp6FoaWnh2bNnsLKygq+vL0aMGFFnMIxp+vbti6tXr6J9+/ZwcHDAhg0boKOjQ10HhzA2Njbw9PREZGQkP+D29OlTeHt7w9ramlHbbBxLRM2v3Ce0khBy44kgkyZNwsmTJ1FdXY1hw4Zh165d6N+/P/+9iSZLly5FbGws7t+/j169esHFxQWjR4+mXq7p7t27GDRokFD70KFDMX/+fKpaODg4fnFEUvmUg4ODg0NkXL16VdQSfhh5eXny4MEDUcsghDCvJTY2lkhKShJHR0eyadMmsmHDBmJvb08kJSXJ0aNHGbP7b2G6P7p06UKioqKEbEVFRZG2bdsyZrcuEhMTiby8PDE1NSVz5swhXl5epEePHqRRo0bkypUrVLXU8OjRI7J27Vq+jmHDhpEDBw6QkpISKvbZ5J/z588TBQUFsnjxYn6bmZkZUVRUFIl/RO0bNulgi28KCgrI0KFDiYGBAf+69ff3J6NGjSKvXr2ipoMQQk6fPk0qKyu/e96qVatIUVERYzqio6OJhYUFSUhIIA8fPiSPHz8W+NFk1KhRZOTIkeTp06ckMjKSGBoakjdv3pDQ0FCirq5OTUdJSQlxdHQkEhISRExMjIiJiREJCQkyefJkUlxcTE2HkZERmTVrFqmurua3VVVVEQ8PD9KrVy/G7T969KjBP1qsWLHiu+8cxcXFjPtpzpw5RFpamnTv3p2MGzeOODs7C/xos3XrVvL69evvnrd//37y8eNHxnT4+fmRtLS075535coV8unTJ8Z0NJTf6fvi5cuXxNTUlIiJiRFlZWWirKxMxMTESP/+/cmLFy8Ys0sIO8eSH4EJ3/zKfULrvvmVxhMafeLo6EiOHj1KysvL6z3vyZMnpKqqilEtPXv2JBs3biTPnj1j1M736NSpEzl48CAhRNAHmzZtIrq6uqKUxsHB8YvBBUg5ODg4fjNkZGRImzZtiI+PD7l165ao5TSI32kCQ09PjwQHBwu1BwcHEwMDA8bs/luY7o9GjRrx/35tW7m5uURGRoYxu3VhYmJC/Pz8hNp9fX2JqakpVS1fk5eXRxYsWEAaNWpEJCUliby8PJk6dSp5+fIlo3bZ5B9DQ0OyevVqofaVK1cSY2NjqlpqIyrfsEkHW33zK6CgoMDoGLt3714iJydHeDwePxgoJibG/zdNnj59SiwtLcmmTZvI58+fiYWFBeHxeERCQoJs27aNqhZCCCkqKiLJyckkLS2NfPjwgbr9Ro0akezsbKH27OxsIisrS13P5s2byf79+/n/HjFiBAkPD6eu482bN2Tz5s1kxowZxNPTk2zfvp28f/+eqoZJkybV+2MrTI8nv5qO3+n7oob09HRy+PBhcvToUZKRkcG4vbpgy1jSUGj45lfqEzbdN4SwYzxhU5+woT9qYFpLbGwsady4MfHx8SHS0tIkICCATJgwgUhJSZG//vqLMbscHBz/PehW1ebg4ODgEDmvXr3C6tWr8fDhQ1hYWKB9+/ZYuHAh7t69K2pp3yQwMLDeGnr/JfLz8+usF2Vra0s1xSBb0NPTw5kzZ/j/rklHtWfPHurpOe/duwcXFxeh9smTJyMtLY2qFuBLHbZVq1bByMgIurq6uHnzJkJDQ/Hy5Uvcvn0bDx8+xODBgxnVwCb/5OTkYPTo0ULt9vb2yMjIoKqFDb5hkw42+ebq1auws7ODoaEhnjx5gtWrV+PgwYNUNfwIhOFUdvPmzcPUqVNx//595Ofn838PHz5Efn4+o7a/Rk1NDRcuXMDMmTMhKSmJhIQE3L17F48ePcKUKVMYtZ2YmIjKykr+fycmJuLOnTsoLS3F+/fvkZqaym+nRf/+/bFnzx6h9lOnTn23nvzPxt/fH8uXLxeoedq3b18sW7YMy5Yto6YjKSkJbdu2xfr16/H8+XMUFBRg+fLl6NChA+7du0dNx65du+r9sRWmx5OGwrSOO3fu1NleXFyMWbNm8f+9Z88egRTN/zUtBQUF/L4uKChAQUEBFBUV0b17d3Tt2hXy8vL8dlqwZSwB2HOdsKlPfkVojGvFxcVITU1FeXk5Pnz4IHScxljSUNgyzgPMaxkxYgQSExNRWFgIfX19HDt2DOXl5UhMTIS9vT2jtjk4OP5jiDA4y8HBwcEhYkpLS0lMTAxxcnIijRs3Jnp6elTtFxUVkYULF5I//viDWFlZEUtLS4EfG2F6haiRkRHZtGmTUHtISAgrU8Uw3R+JiYmkSZMmZPTo0URKSopMnjyZWFhYEFlZWXL+/HnG7NZFx44dyb59+4Ta9+7dS7S0tKhq6dKlCxETEyM9evQgGzduJM+fPxc65/Dhw0RRUZFRHWzyj5GREVm5cqVQ+4YNG0jnzp2p6WCLb9iigxD2+CYmJoY0btyYeHt7ExkZGfLgwQOybt06Ii0tTbZs2UJNx4/A9BjbtGlT1uw0IISQDx8+kIiICDJr1iwyb948smvXLlJWVsa4XR6PRwoLC/n//a0fzV21np6eREpKihgZGZGZM2eSOXPmECsrKyImJkaGDx9ONaWrqqoquXz5slD7xYsXSatWrRi3X4Oo0w7X5sqVK2T06NHEwMCAFBQUkFWrVpEDBw5Q1fCjsGWXE41x7euSInv37iUtW7YkmpqajNllm5avx7XaWQJElS2ALWMJIey5TtjUJw2BLeNIDUzqKSsrI1OmTCHi4uJEXFycPHjwgIwYMYL88ccf5O3bt4zY/F9hk39oann9+jVrfcLBwcF+JEQdoOXg4ODgEB13797FjRs3cOvWLYiJicHExISqfScnJyQnJ2PcuHFo3LgxVdv/lpodckyxdOlSjBo1Cjdu3ECPHj0AANevX0d0dDT27t3LqG020rt3b2RlZWHLli0AgDdv3sDU1BR79+5FmzZtqGqZN28e3NzckJWVhe7duwP44pvQ0FCsXLmSqhYHBwccOXIE2tra3zzHxsYGT548YVQHm/yzYsUKDB06FGfPnkW3bt0AAGlpabhy5QpiYmKo6WCLb9iiA2CPb5YuXYrw8HCMHTsWERERAABvb2+oqqpi8eLFmD59OjUtbMHHxwerVq1CaGgoZGRkRKolISEBI0aMgJKSEgwNDVFdXY2//voL/v7+iIuLg4GBAWO2q6ur6/xvUfLhwweMHTsWwJfdKwDQpk0bTJgwAQDdXSIlJSV1vqcpKyvj/fv31HRkZmbiwIEDAu9iYmJi8PT0RNeuXanpiI2NhbOzM1xdXXHy5ElUVFRAUlISkyZNQlFR0W85lrCJpUuXwsbGBocOHYK6ujrc3d2RkpKCefPmwdfX97fR8vDhQzRv3hzAl92SCgoKjNprCGwZSwD2XCds6pOGwPS3MJuYN28eMjIykJqaCjMzMwBfrhtnZ2d4enr+lt/mbKK6uhoBAQHYtm0bXr16BeBLNpIZM2ZQH+s5ODh+bXiE5pcVBwcHB4fIuXTpEmJjY3HkyBEUFRVhyJAhcHR0xMCBAyElJUVVS6NGjZCYmEg9MPu/oKCggPT09HqDDv8rFy5cwObNm5GZmQkZGRno6Ohg9uzZ/KAcm2jcuDHS0tIY7Q82sXv3boSGhgr4Zs6cObCzs6Ou5e3btzh48CAyMzMhJiaGLl26wM7O7pdZbMAEGRkZ2LlzJ7KzsyEpKYn27dvDzc2N+vXJFt+wRQfADt/Iysri3r170NbWFhjL8/LyoK+vj7KyMmpaGgrTzxxLS0skJSWBEAIVFRVISAiun6WZZtfAwAADBgxAUFAQfwK2qqoKM2fOREpKCm7evElNCwC8ePECFRUVQoFI2os/2ICDgwMKCwsRGRnJ/9//9OlTuLi4QF5entpCh6FDh0JfXx8rVqwQaN+wYQMuXLiAEydOUNFhYGAAX19fjB07VuAe3b9/PxYvXoy8vDwqOn4UGu+wbNERHR0NFxcXlJeXY/jw4QgKChLZvcsGLZqamjhy5AjVhQR1wZaxpAY2+IZtffI9mjdvjuTkZGhqaopaCgBmx5PWrVvj6NGjMDY2FrBz+/ZtWFtb4/Xr1z/d5v8KW8Z5GlpmzZqFmJgYLFu2DMbGxqiqqkJycjICAgIwdepUBAQEMGKXg4Pjvwe3g5SDg4PjN8PGxgY2NjYICgqCra0tZGVlRaalVatWEBNjVznsjIwM5OTkwNraGoWFhdDS0hJYKXvx4kWoq6v/VJvt2rVDYmIi1NTUEBgYCB8fH+r1xf4t0tLSP92HlpaWDV6dfOHChZ9q+2usrKxw4MABqKioIDIyEmPGjMGkSZMYtdkQkpKSMGjQIDRr1gxdu3ZFVVUVjh8/Dn9/f5w7dw6dO3dmzDab/PM11dXVcHBw4C8mWL9+PUpKSqhqEKVv2KijBjb4pqZmbs3uLlHWzGULkyZNYsWYBnypVXv48GGB8UVcXBxeXl4wNDSkpuPvv//G1KlT+burCSHg8Xj8/1tVVUVNy7Fjx7B27VpkZmaiqqoKOjo6mDFjBn8XKS3CwsIwbNgwaGlpoVmzZgC+LMCwsrLiZxCggZaWFtatW4fTp0/D3NwckpKSSEtLQ0JCAoYOHSpQJ3znzp2M6cjNzUXPnj2F2rt3746nT58yZpfj23xdR7N79+7YsmULpk6dyt/5VXMO0wEwNmmpQVxcHJ8/f6Ziqz5EPZaw0Tei7pPaFBcXIyMjo87FQRYWFgDA36n3O1BcXFznXEl1dTW/bjmH6IiMjMSRI0fQp08ffpuBgQE0NTUxbtw4LkDKwcHRYLgdpBwcHBy/GR8+fGDNDrMjR45g1apVCAwMRLt27YR2sNJcwVtUVAQ7OzskJCQA+DJRO2vWLDx48ABxcXHQ0NBgzLa8vDxiY2NhbW0NcXFxvHjxgp8SS5Q05COZCZYuXdrgc5n+8JGVlcW1a9dgaGjIKt9069YNFhYWCA4O5gcTqqur4enpifT0dFy+fJkx22zyT23++usvTJo0CatWrcKsWbMAAI6Ojjh+/DgOHDiAYcOGUdEhSt+wUQfAHt9cvnwZtra2GDBgAI4fPw4nJyfk5uYiJSUFJ06cYOXCFJo7AYqKitCkSRPweDyRpNAbMWIEDAwMsGTJEoH2VatW4fLly4iLi6OiQ0dHB4aGhli4cGGd70tMvg/UJiIiAt7e3pg5cybMzMxQVVWFa9euITw8HBs2bMCUKVOo6KjN3bt3BXaBd+rUiap9Z2fnBp+7a9cuxnSYmJjAxcUF06dPh4KCAu7cuQMtLS0sWrQI8fHxSElJYcz2/wJbdhYxoUNMTExo3KprqovGIgc2aanB09MTu3fvxpAhQ6CpqSmUUn3x4sVUdNQgqrGEjb6pQdTj6759++Dm5obS0lKhY6Loj4bC5Ljm5OSEjx8/IjIyEmpqarhz5w4AYOzYsdDW1kZUVNRPt/m/wqbsTkxrad26NQ4fPgxTU1OB9lu3bmHw4MF48eIFI3Y5ODj+e3ABUg4ODo7fABcXF4SEhEBBQUFgdX1dMLni/mvq2nkoql0aTk5O+PDhA/bs2QN1dXWkp6dDQUEBTk5OkJaWxrFjxxizPXXqVGzfvr1BE9K0+uRX+0gePHgwtm/fDlVV1Z/6d4cPH46///4bKioqePz4MdTV1SEuLl7nuTRTUcrKyiItLQ0dOnQQaM/JyUHXrl2p78z7Hkz5pza6urqYP38+Jk6cKNC+e/duBAUFISMjgzHbtWGLb9iiA2CPb4AvaVO3bNmCzMxMVFZWQkdHB+7u7qxNmzp79mwsXLgQSkpKjPx9QghWrlyJDRs24N27d8jJycHixYshLy+PkJAQSEtLM2K3htrvJO/fv8eRI0dgYmKC7t27Q1xcHHfv3kViYiImTpyI7du3M6qlBllZWWRkZEBLS4uKvW/Rtm1bBAQECO0W3bNnD1auXIns7GyqesrKyrBv3z7+blZdXV3Y29szdm2ymV9xsQUAjBw5EuHh4VBRURGpDmNjYxw9ehStW7f+aX/z8ePHDT6X6UUObNJSg6Wl5TeP8Xg8qhk/RDmWsNE3ADvG1zZt2mDUqFEIDAxkRb3ahsLEeFLD+/fv4eLigmPHjqG6uhqKiop49+4dbGxssG/fPv6OXzbBphTITC/KOXDgAAIDAxEUFAQzMzN+VgkvLy84ODhgzJgx/HPZ+p7PwcHBDrgAKQcHB8dvgLOzMzZt2gQFBYV6V9/zeDyqAdLvfaTS/DBt3rw5EhISoKenJ/Ayf//+fZiZmeHdu3eM2k9PT8e7d+9gaWmJmJiYb35w1U4hwyS/2kcyUx9g5eXlOH36NN69ewdnZ2ds3LgRTZo0qfPcr4M/TMKWOmwNhcauFTk5OaSlpaF9+/YC7bTrS7LFN2zRAbDHNxzCBAYG4sCBAwgKCoKDgwPu3r2LBw8eYNq0aRgyZAg2bdrEqP2G7gik+X5iY2ODcePGwcnJiYq9byEvL4/U1FSh+yY3NxddunShet/cu3cPNjY2EBcX59f5unXrFsrLy5GQkEB1pxNb0g6LerHFvHnzEBAQADk5OX5bSEgIwsPD8fTpU+jq6sLPzw+jRo1iXEtZWRkOHz6MpKQk/PPPPygvL4esrCxUVVXRs2dP2Nvbo1GjRozrqM2WLVvQtGlT/gT5yJEjYW1tDTc3N6o62KKloKAArVu3FlqcWlVVhfT0dBgZGVHRwaaxBGCHb9jSJ3JycsjIyBB5YI2N40l+fr7AWK+rq0vVfmJi4jf7g9bcwP3796Grqyswhjx9+hR79+7lP3MmTZok8Ex69eoVlJSUGCupVPvv1iw0rx3iENXCew4Ojl8PLkDKwcHB8ZuRmJgIU1NTSEpKCrSXl5cjPj4ew4cPp67p7NmzAitm+/fvL6SPaZo3b47Tp0+jW7duAsGcS5cuYfTo0dTqrVy6dAnm5uaQkKi/TDjTO/LY8pHcUGgE4Pbs2QNHR8fv7qhyd3dHYGAglJWVGdPi5eWFrVu3onPnznXWYWvatCn/XJqLHr4FDf/07t0bRkZGCAkJEWj39fXFpUuXcP36dcZs14YtvmGLDkC0vrGyskJsbCwUFRW/Wz+X6R00X9c+qw9aQRZtbW3s3r0bFhYWAvfp5cuXYWdn91umJ1u5ciVWrlyJwYMHo3379kLp/2mlouzduzf69u2LZcuWCbT7+/vj9OnTuHXrFhUdANCvXz+0adMG27Zt47+fVFRUwNXVFc+ePcPff/9NRQcb0w6LCnFxcTx//hwtWrQA8KWu8/Lly7Fo0SJ07NgRqampCAoKwtq1a+Hq6sqYjtu3b2Pw4MFQUFCAubk5VFRUIC0tjfLycrx48QJXr15FaWkp4uPj0aVLF8Z01Mbf3x+7du1CREQEbG1tAQCbNm3CmjVr4ObmhkWLFlHRwSYt3yoTkZeXhy5dutSZMYYJ2DKWAOzxDVv6xNHRESYmJvD29qZiry7YNp6Ul5dj0aJF0NDQgIeHB4AvJSwGDBiAZcuWMT5f8fDhQwwfPhyPHj2CkZGRUH+kpqaibdu2OHLkCOMLy79+5iQnJ6Nfv37Q0tKCrq4u7ty5g/fv3+P8+fPo2LEjo1pqaOiO8IKCApibmzMWqOXg4Pj14QKkHBwcHL8Z3/pATk1NhZmZGdUdCf/88w+GDRuG7Oxs6OjooKqqCrm5udDQ0MDZs2fRqlUralq8vLxw69YtREREwNTUFFevXsXr16/h5uaGAQMGICwsjJqWhsB0wIkNH8k/AlvqagF0ar+wpQ5bQ6Hhn+TkZFhbW0NJSQldu3YFANy5cwdv3rzBqVOn0KNHD8Zs14YtvmGLDkC0vlm6dCnmzp0LWVnZ79bPZbpmbsuWLfmLbWpWtH8N7ZXucnJySE9PR7t27QTu03v37qFnz574+PEjFR01sGF3IFtSUSYlJaFfv34wMjLi3yPXr19HWloaTp48Wa/On42srCxSU1Oho6Mj0J6VlQVjY2Nq14ko0w5/b4FFbWhcI2JiYnjx4gV/srpTp05YsGABxo8fzz/n4MGD8Pf3x4MHDxjT0aNHD5iammLjxo3fPMfLyws3b95EUlISYzpqo6amhkOHDqFXr14C7QkJCRg/fjz++ecfKjpErWX79u1YuXIlAODRo0d1lokoKipC27ZtqdXNZctYArDnOmFLn3h7e2Pz5s0wMDCoc3EQjQWXbBtPpk2bhitXruDPP/+Eubk5gC/vKf7+/ujXr5/Qwr+fTf/+/aGsrIxdu3bVuWu2tLQUzs7OePfuHc6cOcOolq+fOX379kWnTp2wZcsWAF/eXz08PJCZmYmLFy8yquVHYVNdVg4ODnZS//YUDg4ODo7/BOHh4fDw8OCnGWnZsmWd5/Xv35+qLg8PD6ioqODcuXP83Uxv3rzB+PHj4eXlhejoaGpagoKCMH/+fHTr1g2fP3+GoaEhxMTE4OrqiqCgIGo62EKrVq3g7++PQ4cOiewj+VeFxtozNgQ92YaJiQlycnJw8OBBZGdnQ1JSEpaWlhg3btw30yIzAVt8wxYdgGh9UzvoqaWlBQcHB6Fd4CUlJdixYwejOoAv6clsbW1RWlqK6Ojo72YKoEG/fv0QFBSEiIgIAF8CgMXFxViwYAHVABwguDvQz8+PvzvQw8MDnz9/prY7kC0Te6amprh9+za2bduGzMxMyMjIwMLCAgcPHoS6ujpVLaqqqsjLyxOawM/Ly0Pjxo2p6SgsLISpqalQu5mZ2Q/t0P439O3bl9G//6PweDyBgG1ZWRl/AUoNJiYmKCwsZFTHvXv3EBkZWe85bm5u1GoIA1/G9LquS2VlZbx//56aDlFrmThxIqSkpFBdXQ0XFxd4e3sLPHN5PB7k5OSo1sxly1gCsOc6YUufvH37VqBmoyj20rBtPImNjcXZs2dhaGjIbxs2bBhatWqFwYMHMx4gTUpKQkpKyjdTCsvKyiIgIADdu3dnVAcAoQVC2dnZAoFsHo+HWbNmCfQVW+D2hXFwcHwP0X+Vc3BwcHAwzvTp06Gnp4fq6mpYWVkhOjpaoMZlzQeyvr4+VV3nz5/H9evXBVI9KikpYc2aNejduzdVLVJSUvz0ZPn5+aisrES7du0E6mj8TrDhI5mjftiw04ptNG/eHDY2NtDQ0OD3Cc3gaA1s8Q1bdACi883r16/5qQOdnZ3RuXNnofTX6enp8PX1haenJ6NamjVrhpMnT8LY2BiHDh3C/PnzGbXXELZs2YKRI0eiZcuWKCsrw9ChQ1FQUAANDQ0cP36cqpa1a9diy5YtAtfn8OHDoaenh5UrV1JNn5qamop169YJ3DseHh7Uan0BX/63r169GuvXr6dm81u4ublhypQpWL58OX8i9vr161i8eDGj6Vu/pmvXroiMjBRKO7x7927G6/T9mx3mTJZDIIQgMDAQBgYG6NChA/r27YuoqCj+jkEA2Lp1KwwMDH667dro6+tj586dWLNmzTfP+fPPP6nW7LOxsYGnpyciIyP56cqfPn0Kb29vWFtbU9Mhai2SkpL88VRLS6tBJTyYhi1jCcCe64QtfcKGhXVsG08IIfj06VOd7Z8/f2bcvra2Ns6cOVNvytqTJ0+idevWjGshhCA3NxeKioqQkpKCsbExnjx5IhAQzc7O5u8w5eDg4PiV4AKkHBwcHL8JFhYWAL7UspCSkkJxcTE6dOgAADh06BAsLCyEdgkyTbNmzfD27Vuh9qKiIupa3r59Czc3N3Tu3JlfX0xdXR3m5uaIiIgQSZBFlLDhI5nj27BlpxWbePfuHSZNmoQTJ05AUVERVVVVKC4uRp8+fXDkyBFq9zBbfMMWHYBofZOQkAB7e3v+yncTExOB4zWLP2qnpWSSpk2bIjIykvFUaA2ldevWuHnzJs6fP4+srCxUVlZCR0cH1tbW1Gs1iXJ3YG2OHDkCBwcHjBo1Cs7OzqiqqkJSUhIGDBiAw4cPY9iwYVR0XL16VeTBjBp8fHxQUlICX19f/nubiooK5syZQzUV/9q1a9GvXz9cvHixzrTDbCMxMZGx0hXBwcG4f/8+9uzZg8zMTLx9+xY8Hg9z585F06ZNoaurixcvXiAuLo4R+zWEh4dj8ODBiImJQa9evaCmpiZQI+/atWt49+4dVf+EhYVh2LBh0NLS4i8Iffv2LaysrPjpIH83LX369MHVq1exceNG5Obm4sSJE4iKioKmpiYcHR2p6WDLWAKwxzds6hNRXyNsG09GjRoFV1dXbNmyBUZGRgC+LKrz9PTEyJEjGbe/YcMGjBgxAsePH4eFhYVQf1y5cgVXr15FbGws41r09fUxYMAAVFRUQF1dHZKSkpgyZQoePHgAeXl5BAYGYuPGjZg3bx7jWjg4ODh+NlwNUg4ODo7fjAsXLmD48OGYPXs2vx6bubk57t+/j5MnT/Lra9DA19cXR48exZYtWwRWzM6YMYN63U97e3sUFhYiIiKCvyo1LS0Ns2bNgoaGBvbs2UNNS0OgUdNR1B/JPwKbapDS0CLKOmz/Bhp9MmHCBGRmZmLfvn38NGX379/HpEmToK+vTyWFKsAe37BFByB63xQUFKC6uhra2tq4efOmQA3umgwKSkpKjGrg+D69e/dG3759hXYH+vv74/Tp07h16xYVHZ07d8bkyZMxe/ZsgfYNGzZgz549SEtLo6IjICAAJ0+ehJubGzQ0NCAjIyNwvGbhG21evnwJGRkZ6ukwa8jKyhJIO6yjowN3d3fqaYcbAs13k5cvXyIrK4t/XezYsQMDBgzg74xjktLSUhw8eBA3btzA8+fPUVpaChkZGbRq1Qo9e/bE6NGjoaCgwLiOr7l79y4/rXv79u0Z32XMZi2xsbFwdnaGq6srNm/ejIyMDBw5cgT+/v7YsGEDpk+fTlUPIPqxpAZR+6Y2ouwTtlwjbBpPSktLMXnyZERHR6O6uhrAl1qcEydOxMaNGyEvL8+4hidPnmD79u24fv16nf3h4uICDQ0NxnUAQHV1NR4+fIj79+8jMzMTWVlZ2L59O8TExGBlZQVbW1uhdyc2wKZ5Ag4ODnbCBUg5ODg4fjO6du0KR0dH+Pr6CrSvWrUKsbGxSE5OpqalvLwc06ZNw759+/i7eMTFxeHq6op169Z9s94GEygqKuL69etCKXsyMjLQu3fvOne6ihKmX/TZ8pFcQ3FxMfLy8tCpUyeUl5cLTRzExsbCxsYGsrKyVHXVBY2PMHl5eaSmpqJ9+/YC7bm5uejSpQtjO1a+BRv8o6ioiHPnzsHY2Fig/ebNmxg4cCDevHnDmO3asMU3bNEBsMc3vyKNGzdGWlraTx1PxMTEhGpJfYuqqqqfZvd7JCUloV+/fjAyMqpzdyCtmqiysrK4c+cO2rVrJ9Cel5cHfX19avdOfTt4eTwe4775Xh242tBK212Tdphmutb/BbZNyjIxnrCVsrIy7Nu3j58mW1dXF/b29iJZDMMGLQYGBvD19cXYsWMFrsv9+/dj8eLFyMvLY8w2G8eSGkTlGzb2iSivEbbz7t075OXlQVJSEtra2iJZ8MHx72Hbs5iDg4N9sCNnDwcHBwcHNXJycjB69Gihdnt7e6FdG0wjLS2N3bt3Y+PGjcjJyYGMjAzatm0rkrqfsrKyePLkidCk26tXryApKUldj6hZunQpwsPDMXbsWERERAAAvL29oaqqisWLF1MLkH769AkzZ87kp/zNycmBj48PSktLceDAAX79WhppjtiEKOuw1YZN/pGRkakzoCAmJkY1yMMW37BFByBa31hZWSE2NhaKioqwsrKq99wLFy4wquXfwMRa1osXL/70v/kzMDU1xa1btwR2B1pYWODgwYNUdwd27NgR8fHxmDlzpkB7XFwcNDU1qemo2a0iKhpac5PH41GbwGdT2uFfkd9lbfy9e/dgY2MDcXFxGBsbo6qqCrGxsQgICEBCQgLVZyBbtOTm5qJnz55C7d27d8fTp08Ztc3GsQQQrW/Y2CeivEZqEx4ejv379+P9+/fo378/5s+fL5D54/Xr1+jevTvy8/Op6Hn16hVycnL476u3b99GeXk5UlNThRac/2zmzZuHgIAAgbmRkJAQhIeH4+nTp9DV1YWfnx9GjRrFqA4AaNeuHWbNmoUZM2Ywbutn09BFgRwcHL8v3NcFBwcHx2+Grq4uDh06hPnz5wu0nzhxAm3btqWuJz09HVlZWSgvLwcAgdR1ND+SJ02aBBcXF6xcuVKgxsiiRYuor2ZuCHv27EHLli0Z+/ts+UieN28eMjIykJqaCjMzMwBfgrfOzs7w9PTE3r17qWlp6M6VwMBAKCsrM6qFLXXY2OSfoUOHwt3dHVFRUfyxLDc3FzNnzsTgwYOp6WCLb9iiAxCtb/r06cOvad2nTx9Gbf0q/Jt+oLXzrGPHjggODmbUxvdYunQpRo0ahRs3bgjcO9HR0VTHNG1tbaSkpPBr49Xw7NkzGBoa4uXLl4zaf/jwIaN//9/g7u4OBwcH1qUd/p35kfrANNL9AoCXlxcGDBiAbdu28QPqFRUVcHV1xaxZs/D3339T0cEmLXp6ejhz5gx/gWNNwGDPnj3Q09Nj1DYbxxJAtL5hY5+I8hqpYdWqVdi4cSM/Teu2bdsQFRWF48eP85/HVVVVePz4MRU927Ztw4wZM1BRUQEej8dfZMLj8dC9e3fGA6Tr16+Hj48PP0C6fv16LF++HIsWLULHjh2RmpqKKVOm4O3bt3B1dWVUS35+PpYsWYLo6GgEBwfz50t+BaSlpevNysHBwcHBpdjl4ODg+M04ffo0hg4dil69eqFbt24AvgQlL1++jNjYWAwaNIiaFj8/P6xduxYtWrQQSqfL4/GorQwFvnxsLVy4ENu3b+ene1RWVoanpyf8/PwY3bGgpaXV4JWNtPrExMQELi4umD59OhQUFHDnzh1oaWlh0aJFiI+PR0pKChUdrVu3xtGjR2FsbCyQHuf27duwtrbG69evqegAgObNmyMpKUko7aKoYEMdNjb55927dxg+fDguX74MRUVFfpuNjQ327t0rFGRgEjb4hk062OKba9eu8QP5vwpsSQvGlA5LS8sGP/9o7vC9cOECNm/eLHDvzJ49m18vnSmio6MRFxcH4MtubwcHB6H3o0ePHiErKwvPnj1jVMvXFBcX48CBA8jMzISUlBQ6duwIR0dHoSAlk4g67fCPwpb7twYm9LRs2RKvXr0C8GWHal33c007Lf/IysoiNTWVX/O6hqysLBgbG+Pjx49UdLBJy+XLl2Fra4sBAwbg+PHjcHJyQm5uLlJSUnDixInvZlj4mbBhLAHY4xuAHX3Chmukbdu22Lx5M2xsbAB8yVQzceJExMXFIT4+Hr169UJhYSHU1NSojCdaWlqYNGkS/Pz8oKWlhRs3bqC4uBgTJkyAg4MD5s6dy6h9MTExvHjxAi1atAAAdOrUCQsWLMD48eP55xw8eBD+/v548OAB41oyMzMRHByM3bt3o3///vDy8oK1tTWjdr/H6dOnYWRkhBYtWmDnzp2IiYmBkZERFi5cCGlpaZFq4+Dg+HXgdpBycHBw/GbY2NggLS0NO3bs4H+EGRkZ4c8//0Tr1q2paomIiMCOHTvg7OxM1W5diIuLY9WqVVi1ahVev34NSUlJNGnShIrtJUuWULHzIwQHB8PW1hYXLlzA58+fsWLFCoGPZFoUFxfXWbeyuroalZWV1HQA7Nq5UrObdf369dRs1gWb/KOoqIiEhATcvXtXIKjx9cTX1atXYWxszNhHM1t8wxYdAHt8069fP7Ro0QL29vYYM2bML7X6/b9K3759RS2hTqysrKgGDGro06cP4uLi+LtUCCECaVF5PB709PSwevVqqroSEhIwYsQIKCkpwdDQENXV1fjrr7/g7++PuLg4GBgYUNEh6rTDHMLcv38ftra2KC0tRXR0NCtSIKuqqiIvL0/oGZOXlydUI/130dK7d29kZWVhy5YtAIA3b97A1NQUe/fupbazF2DPWAKwxzds6RM2XCOvX78WyGglIyODgwcPYvz48Rg0aBDOnDlDdcHJ06dPMXHiREhLS8PIyAjXr1+HnZ0dNm7cCBcXF8YDpDweT2DRSVlZGbp27SpwjomJCQoLCxnVUUPTpk0REREBb29vBAUFYdSoUZCTk4OtrS3Mzc3RqVMnNG3aFO3bt6eiZ9myZVi7di3OnTuHzMxMTJ06Fa6uroiNjcXbt2+xefNmKjo4ODh+fbgdpBwcHBy/GYWFhVi1ahUyMjJQVVXFn3grLy9HZmYmioqKqGnR1NTEyZMn0blzZ2o26yMvLw8pKSmoqKgQqtPEhjS7FRUVVOuhvnjxAlu2bEFmZiYqKyv5u89oTqQ4OTnh48ePiIyMhJqaGu7cuQMAGDt2LLS1tREVFUVNC5t2rrBlNyub/NNQmE4VyhbfsEXHj8C0bz5+/IgTJ04gJiYGp0+fhqqqKhwcHODg4AB9fX1GbP6vsGUHGlt00OD58+dYu3atQPr/2tDaybp06VKB1HqixMDAAAMGDEBQUBB/sraqqgozZ85ESkoKbt68SUWHqNMOf01xcTHy8vLQqVMnlJeXCwVVYmNjYWNjU+dCIlHA1H1cVFQEY2NjTJkyRaiEhygICgpCcHAwli9fzt/1ff36dSxevBiurq4IDAz8LbWwAbaMJQB7fMOmPhE1f/zxB9TV1bF161aBxRZVVVWws7PD+fPnsX79ekybNo3Kd1fr1q1x5MgRmJiYwMfHB1JSUli5ciUePnyIzp07o6SkhFH7YmJi8PDwgIGBATp06IBdu3ZBVVUVK1eu5J8zd+5cXLt2DVevXmVUi7i4OJ4/f87fzQp8ea+Oj4/HmTNncOPGDWRnZ6OqqoraN7G6ujp27NgBa2trTJkyBQ8fPsT58+eRkpICGxsbqpmMODg4fm24ACkHBwfHb8bgwYPx4MEDjBw5EuvXr8ecOXOQn5+PmJgYBAcHw9PTk5qWmJgYbNq0CYGBgdDQ0BAKQNEMxAUFBcHX1xfNmjWDgoKCwDGa6X6/DmADX3aQiCKAzQbev38PFxcXHDt2DNXV1VBUVOSn5ty3bx/VtKlsIiAgACdPnhT5btZf0T9MB3rY4hu26PgRaAbhysrKEB8fj6NHj+LYsWNQV1fHvXv3GLf7o9Cq/fk9aPjmW+l2eTwepKSkoKqqCnt7e37qPaawsLDA8+fPMWrUKKH0tsCXe4sWxcXFyMjIqHPhFs17uFGjRkhPT0eHDh0E2rOzs2FoaIiysjLGbLMx7fCnT58wc+ZM7Nq1CwCQk5MDHx8flJaW4sCBA2jatCkVHT8Kk+PJ1atXcebMGVYE/AghWLp0KcLCwvD27VsAgIqKCubMmQNvb2+qtejYoiUzMxMLFiz45sIPWt85ohxLvoYtvhFln7AtzX12djYGDRqEoqIiHD16VOA5V1lZCVdXV+zZs4fawtQ5c+YgPj4eO3bsQGlpKZycnBAWFoYTJ04gLS0NaWlpjNrfuHEj7t+/j8zMTGRmZuLt27fg8Xh4/fo1mjZtCl1dXbx48QJxcXGMl5D4Ot1vXVRVVeHNmzf1nvMzkZOTQ2ZmJtTV1aGqqgo/Pz/MmjULOTk56N69O969e0dFBwcHx68PFyDl4ODg+M2Ql5fH2bNnYWpqChMTE2zcuBHm5uZYs2YNEhISEB8fT03Lvn374ObmhtLSUoGPM9q1ioAvH8Rz586Fj48PNZt1UTuAvW7dOnh7e+PBgweIjY1lPIDNto/k2uTn5wvsZNXV1aVqv4bKykoUFhYKBa9TU1Ph4OBATQebdrMC7PFPQ2A60MMW37BFx49AM0B68+ZNxMTE4OTJk3j27BmGDx/OD3awCbbs3KShIyAgAKtWrcLo0aNhamoKQghSUlLw119/Yfz48WjUqBH27duHDRs2MJqaX05ODklJSejSpQtjNhpCVFQUpk2bhtLSUqFjtO/hESNGwMDAQKgkwKpVq3D58mV+AJMJXr16BV9fXxBCsGfPHtjb2wsESHk8HuTk5ODk5MR4jdgaPD09kZKSgoiICJiZmSE9PR0lJSVwdnZGx44dsXfvXio6fhS2jCc0efnyJWRkZKin1mWblq5du0JWVhZOTk51LvyYOHEiFR2iHEvqQ5S+EWWfLF26tMHn0locVFZWhsTERHTt2rXOQNvZs2cRGxuL8PBwxrVUVFRg1apVMDQ0xNChQ7Fw4UJERERASUkJu3btgqmpKeMaavPy5UtkZWXxA8c7duzAgAEDqCwqX7p0KebOncuajAgAYG5uDiMjIygpKWHZsmXIz8+HpKQkZs6cidLSUqrzWhwcHL82XICUg4OD4zejZqVdmzZtMHHiRBgbG2PmzJl4+PAhTExMqKYiUVNTg6OjI6ZOnVrnx7qGhgY1LU2aNEFqaqrIJ41EGcBm40dyeXk5Fi1aBA0NDXh4eAAAunXrhgEDBmDZsmVUUw4fO3YMrq6uePPmjdAxVVVV/PPPP9S0sAU2+aeh/I4TxL8KTPvm0qVLiI2NxZEjR1BUVIQhQ4bA0dERAwcOhJSUFCM26+Pt27c4ePAgMjMzISYmhi5dusDOzk5ggvbVq1dQUlKiuuOpLmjsZO3VqxfGjBnDH0tq2LZtG/bu3YvExETExsbyd0ExRb9+/eDh4YGRI0cyZqMhtGnTBqNGjUJgYKBQZgsauLi48P/7/fv3/DSD3bt3h7i4OO7evYvExERMnDgR27dvp6KJLWmHW7dujaNHj8LY2Fhg3Lp9+zasra1Fktbvdx9PIiMjG3wu02Uz2KSlBjk5OaSkpKBjx45U7NWGTWMJW3zDpj75UQYPHozt27dDVVVV1FIAMPt+EhQUhDFjxqB169Y//W8zBVsyj9DQcufOHUyYMAGPHj3CggULMG/ePMyaNQtXrlzBoUOHWNEHHBwcvwZcgJSDg4PjN6N3796wsbGBv78/NmzYgIsXL+L48eO4cOEC7Ozs6gz+MEWzZs2QkpLCipdXd3d3yMrKCtR/EQVsCmA3BKY/kqdNm4YrV67gzz//hLm5OYAvgUp/f3/069cPISEhjNiti44dO8LCwgJz5syBubk5Tp06hTdv3mDmzJlYtGgRJk2aRE0LW+qwsck/DYXpIBxbfMMWHT8C075p1KgRbGxs4OjoCFtbW5Gugk9KSsKgQYPQrFkzdO3aFVVVVUhLS0NZWRnOnTvHmtrcNdBYWCArK4v09HS0b99eoD03NxddunRBWVkZCgoKoKurW+euyp/Fo0ePYG5ujgEDBkBTU1MomLR48WLGbNdGTk4OGRkZ0NTUpGLvaxq6S5fH42Hnzp0Mq/k/2JB2uEmTJkhKSkKnTp0E7o2UlBT079+felo/bjwBtLS0GnQejbIZbNJSw+jRo/HHH3/A1dWVir3asGksYYtv2NQnPwrbFhoyqUdRURGpqakNvm7YAJv8Iwot5eXlkJaWpmaPg4PjvwEXIOXg4OD4zbh69SqGDBmCxYsXY8KECdDX14eSkhIKCgowfvx4bN68mZqWlStX4uHDhwgNDRWqj0eb8ePH4/Dhw1BWVoaWlpbQbiJaKWXZFMBuCEx/+DRv3hxnz56FoaGhQHtKSgoGDx6MwsJCRuzWhbS0NO7fv4+2bdvijz/+gLu7O4YNG4YzZ87Ax8cHd+/eZdQ+G+uwsck/DYWJa5YtvmGLjn8L0+PJhw8fWJFmEfiy09rCwgLBwcH8RTnV1dXw9PREeno6Ll++TEVHnz59MGbMGIwePRrKysrfPI/GzrOazAkhISECC5Vmz56NxMRE3Lp1CzExMZg/fz5ycnIY0zFu3DhER0eja9euQvcPj8ej9j7g6OgIExMTeHt7U7H3M3B3d0dgYGC919L/AlvSDjs5OeHjx4+IjIyEmpoa7ty5AwAYO3YstLW1ERUVRUVHDWwZTxoKmybwfxcKCgrQtWtX6Ovr17nwg21BOKbHkl8RtvQJ2+5fJvW4u7ujvLwcfn5+0NDQEEm2kR+FTf6hoSU/Px/h4eHIzc1FeHg44uPjoaOjw1+4y8HBwdEQJEQtgIODg4ODLubm5nj8+DHKysqgpKSElJQUHDlyBEpKSrC3t6eq5ezZs0hKSkJkZCRUVFQgISH4WKK1qhoA2rdvjwULFlCz9y1Wr16NIUOGQFZWFhMmTEBQUBD09fX5AezfDUIIPn36VGf758+fqWpRVFTkT8rq6uoiLS0Nw4YNg66uLh4+fMi4/T59+iAuLo6/Y4YQIrB7hsfjQU9PD6tXr2ZcSw1s8o8oYYtv2KKDTbi4uCAkJAQKCgqYNWtWvefSnCDOzMzEgQMHBAKBYmJi8PT0RNeuXanpGDp0KHbv3g0vLy/07dsXjo6OGDlyJJo0aSJwXvPmzRnXEhYWhoEDB+LUqVMwMjICIQRpaWn48OEDTpw4gatXr1JZyHX06FH8/fff6NOnD6N2vkerVq3g7++PQ4cOoX379kITs2wLaABfasv7+PgwNoE/f/58uLq6iiztcA1hYWFwcXFB06ZNUV1djW7duuHdu3ewsbFBaGgodT1sGU/YRHFxMQ4cOIDMzExISUmhY8eOcHR0FMmCTDZomTp1KsTFxdGyZUvweDyh3ddsg+mxpAY2+Kah0OoTjv8jPj4ejx8/xu7du4WO8Xg8VFZW0hfFwScxMRGDBg2CjY0NTp8+jbKyMmRlZcHNzQ0HDx4UeakEDg6OXwcuQMrBwcHxG9K4cWP+Lho1NTWhel+0mDRpEtW0pPVBq6bm9/g6gJ2cnIyjR4+KJIDNBkaNGgVXV1ds2bIFRkZGAID09HR4enpS/+gZPHgw3N3dERERgb59+2Lu3LmwtbVFdHQ01NTUGLffvHlz/oS4pqYmK+qwsck/BQUFUFdXF0qRXVVVhfT0dL4+HR2dn74CnC2+YYuOrxGlb2pPAtc3IUw7tXr//v2xZ88erFixQqD91KlTsLKyoqbD29sb3t7eePz4MQ4dOoSIiAh4eHjA2toajo6OGDp0KLVUxN26dUNeXh4OHjyIu3fvQkJCAjY2NhgzZgzk5OTw6NEjXL9+HQYGBozq0NDQYMV98/btW4wZM4b/b7YHNADmNb558wZeXl4iDY4CX1LsxsTEID8/H5mZmaisrISOjg50dXVFooct4wlbSEhIwIgRI6CkpARDQ0NUV1fjr7/+gr+/P+Li4hgfQ9ioJTExEVevXv1lAuY0xju2+Kah/ArPgP8ix44dE8o+8ubNG0ydOlVEijhqmDdvHlavXo0ZM2bw3wvWrl0LNTU1LF68mAuQcnBwNBguxS4HBwcHB8f/JyoqChs2bEBeXh5u376NTZs2oWXLlvDz8xO1NNbCdOqc0tJSTJ48GdHR0aiurgbwZVfExIkTsXHjRsjLyzNity6Ki4v5u6ycnJzg5OSEAwcOQF5eHvv27YOtrS01LTV6RF2HjU3+ERcXx4sXL4R2uuXl5aFLly6M1iz8Gjb4hk062OKbxMREmJqaQlJSUqC9vLwc8fHxGD58OBUdAODl5YWtW7eic+fOMDc3h6SkJNLS0pCQkIChQ4eiadOm/HNp7hR88OABdu7ciQ0bNqCyshLS0tIYO3Ysli9fTmUXaUNo3Lgx0tLSGHvuREdHIyAgAHPmzIGWlpZQdgua986vBtPvBGxJO1xeXo5FixZBQ0ODv8iwW7duGDBgAJYtWyY0xjANW8eTb8H0dWJgYIABAwYgKCiIv/ilqqoKM2fOREpKCm7evMmIXTZr6d69O9asWQNLS0sq9v5XaKTmZItvGgpbUqeyRUcNP1tPUlIScnNzAXypFRsSEiIUIM3KykJYWBg+fPjwU2z+TNjkH6a1yMnJ4e7du9DW1hawlZ+fDz09PZSVlTFil4OD478Ht4OUg4ODg0NkZGZmYsGCBcjKykJ5efn/Y+++o6K4+v+BvxcEkWJDYwGBxYKKihVjF41KUIkaFbCCPahoLNFogp0kYu/EBvZHBaNYEuODqFGMooBCQKpoQkTsioiU+f3hz33cgIbkm525hPfrHM4JM3u878yFy+7cufdT5LycW+xu3LgRixYtwpw5c/DZZ58BAFq3bo0pU6YgNzdXpytM9fX18fvvv+O9996Dnp7eO1cyyVVfSxTGxsbYu3cvNm7ciOTkZBgYGGg+BMnNzMxM68birl27sHHjRhgZGcl+M1SUOmxK98+WLVvg5+cH4NWT9a1bt4a+vr7Wax4+fIjGjRvLkgcQp2+UziFi3zg5ORU7UfvLL7/Aw8ND1hspT548wZAhQwC8msgGACsrK4wYMQKAvCtFkpOTceDAARw4cADXr19H165dsXbtWnz88cfIysrCxIkT0bt3b2FuFuv62rzerWHs2LFFzsn5Owy8qhu/atUqJCUlITQ0FLt374aNjQ3c3d1lyyASUbYd9vHxwU8//YRvv/1Wc8zX1xdz585FTk4OVq9eLUuO10QaT0pC1yv2ExMTceDAAa129PX1MWXKlCI103VNlCyffPIJhg8fDi8vr2If/Hj9s1KWiNI39H/zT48nxsbGmD9/vqZMxdKlS7Xev6pUKpiYmOCbb775R9v9p8i9I8q76DqLjY0NLl++XGQC9tixY7CxsdFp20T078IJUiIiUsyQIUNgbGyMKVOmoEKFCopmWbNmDTZv3ozevXvj888/BwAMGzYMVatWxfjx43U6QRoWFoaqVasCAE6fPq2zdkqrrKwsJCYmam5KX716Fbm5uYiKisKsWbNkzZKamoqNGzciKSkJGzduxIkTJ2BnZ4cOHTrImkOUOmyAsv0zcuRIGBoaorCwEKNGjcL06dO1aie+vokh5xaDovSN0jlE6ZuNGzdi4sSJmpprNWvWLPZ1H3zwgU5z/NH27dtlbe9tHBwcEBsbizZt2mDkyJFwc3PTukaVK1fGuHHjip0s/LdKTExEvXr1lI6BkJAQeHl5YezYsTh69Cjy8vJgYGAAT09PPHz4EJ988onSEWUnyrbDISEh+PHHH7UmUT766CNYWFigd+/esk+QijKelJSu+83Z2Rl79uzB/PnztY6HhITIvoJSlCwLFy6EgYEBdu3aVeScSqUqkxOkovQN/d/80+OJg4OD5iFtJycnhISEaK3CF51ID8ToOsvixYvh6emJyMhI5OfnY8eOHUhLS8PevXuLHeuIiN6GE6RERKSYxMREREZGolGjRkpHQXp6erE56tati/v37+u07S5dumj+OygoCKtXry4yofHw4UOMHTtW67VlwebNmzFp0iTk5eVpJjiAVzdzHB0dZZ0gPXv2LFxcXODs7Izvv/8eOTk5SEhIwIQJE7Bv3z5Z65yIUodN6f4xMDDQ3NRTq9Xo0KFDkVURchOlb5TOIUrffPLJJ7C3t0dhYSG6deuGgwcPah5IAf43Udu0aVPZsx0+fBhLly5FfHw8CgoKYGdnh0mTJsl6o9rNzQ2HDh165/Znzs7OuH37tmyZlNaxY0ccO3YMrVq1UjTHggULsHHjRgwZMgQBAQEAXtWMrVWrFnx9fcvkBKkoE4GSJOHFixfFHn/58qUCicQYT4BXk9j79u1DfHw89PT00KxZMwwaNEhri8rU1FSYm5v/o+2OGjVK8996enpYuHAhTpw4AUdHR+jr6+P69es4e/YsRo4c+Y+2K3qW19LS0mRrS2Qi9o1onj59iuTkZDRu3Bi5ublFtpcNCgp668Nm/zSlxpPXRHtwWenrIVqW/v37w9bWFsuXL0eTJk1w+PBh2NnZ4dy5c2jbtq3O2iWifx/WICUiIsUMHDgQvXr1EmJlSrdu3dC5c2fMnz8fZmZmuHbtGmxsbDBu3DgkJSUhPDxcZ22LXOvkzz4kh4SEwNnZGcbGxjppX61Ww9PTE7Nnz4ZarcbPP/+Mp0+fYsSIEXBzc8PMmTN10m5x3n//fQwbNgyTJk3SqnOyatUqbNmyBbGxsbJlEaUOm0j9AwD//e9/cfny5WJrbvr6+sqSQZS+ESXHayL0TXp6OgwNDfH06VM0aNAAALB//3507txZtpt9rwUEBGD69OmYPHky2rdvj4KCAly4cAEbN27EypUrMWbMGNmylOQml0h0XdOqefPm8PPzg4uLi07+/ZIyNjZGbGxskdpaycnJaNq0qZC1teSofSbCtsPjx4/HhQsXsGHDBrRs2RIAEBMTAx8fHzg4OGDr1q2yZQHEGU8iIiLg4uKCqlWrokWLFigoKEB0dDRycnJw6tQpNGnSRGdte3l5leh1KpVK51sxi5TlTb///jvWrVunmURv2LAhxowZg/r168uWoaR0NZaI2jcloevx9cWLF5g8ebLmQZTExETMmDEDz58/x969e2VfRankeCIika6HSFnu3r2LR48eKf6+nohKOYmIiEgh6enpUtWqVaUuXbpII0eOlLy8vLS+5HT9+nWpTp06UuvWraVy5cpJzs7Okq2trVSzZk0pKipKp21HR0dLarVasrGxkVQqlVSnTh3JxsZG86VWq6UmTZpIGzZs0GmON+Xk5EhjxoyR9PX1JX19fSklJUXq37+/1KtXL+nBgwey5TAwMJDS0tIkSZKk3r17S/v375ckSZLOnTsn1a9fX7YckiRJxsbGUkpKiiRJkmRqaqr575SUFMnIyEjWLNOmTZPKly8vOTo6SkOHDlXsd0ek/pk2bZqkr68vtWzZUuratavWl5OTk6w5ROgbUXK8ziJC3/z3v/+VzMzMJF9fX82x9u3bS5UrV5Z++ukn2XJIkiTZ2tpKQUFBRY4HBgZKDRo0kC3HhQsXpMqVK0u2trbSxx9/LPXr10+ysbGRatSoIV2/fl22HH/Fm+OvLnh6ekrlypWT2rVrJ3l4eCj2u9O6dWvN331TU1MpNTVVkiRJ+uKLL6RWrVrJlkOSJOn27dvFHi8oKJBWrlyp+X7FihXS48ePdZYjODhYqlixojR9+nTJyMhISklJkZYtWyaVL19e1vdI2dnZkru7u1SuXDlJT09P0tPTk8qVKyeNHj1aevr0qWw5XhNlPGnZsqU0depUqbCwUHOsoKBAmjhxotSxY0fZcpTUJ598ImVlZSkdQ5Ik3Wc5e/asZGpqKrVr106aNm2aNGXKFKlt27ZShQoVZP37J8pY8lfoum9EuSaTJ0+W2rVrJ127dk3zd/batWtSq1atpGHDhums3bcpbeOJrol0PUTJItL7eiIq3biClIiIFOPs7IyrV6+iW7duxdYglXsrtRcvXmD37t1ISEhAfn4+7OzsMGzYMJiamsqWQZRaJz4+PoiMjERAQADat2+PmJgYZGdnw8vLC40aNcLOnTtlyWFpaYlDhw6hTZs2mDFjBgwNDeHn54e0tDQ0adIE2dnZsuQAAHt7e/j6+sLNzU3rKe61a9diw4YNiI+Ply3Lnz0BL9fvjkj9U6VKFaxbtw5Dhw6Vrc3iiNI3ouQAxOmbFi1awN3dvcjWz1999RVCQkJw+fJl2bKYmpoiKiqqyMqdpKQkNGvWTLbVga1atULnzp2xYsUKqFQqAEBhYSF8fHwQExODc+fOyZLjr6hYsSKio6N1topGlN+dc+fOoW/fvujRoweOHDmC4cOHIykpCZGRkQgNDZW1trKNjQ1+/PFHrZ/Xn376Cd7e3rh16xYePXokSw4HBwfMmjULQ4YM0fo7vGfPHvj6+iI5OVmWHK89evQIycnJMDAw0Kz0VYIo44mxsTGio6M1K3leS0xMRIsWLWR9T1ASuh5LRMri6OiI7t2746uvvtI6Pnv2bJw9exYXLlzQSbt/JMpY8lfoum9EuSaWlpb47rvv0Lp1a63x9erVq+jZsyfu3bsnS47XStt4omsiXQ9Rsoj0vp6ISjfWICUiIsWcPXsW58+fR4sWLZSOAgAwMjLC6NGjFc0gSq2TkJAQfPfdd1p1+Zo2bYpvv/0WPXv2lC3H4MGDMWLECGzduhXOzs4YPnw4WrVqhdDQUNm3BFu8eDE8PT0RGRmJ/Px87NixA2lpadi3b59sE8aviVKHTaT+KVeuHBwdHWVtszii9I0oOQBx+iYxMREDBw4scnzw4MFYtGiRrFlatGiBHTt2FGk3MDAQjRs3li1HfHw89u7dq5kcBV7VZfPx8RHmb/Mf6fr5XlF+dzp16oSEhARs2LABwKu6wu3atcPOnTthZWUla5YBAwagY8eO+P7772FhYYHp06dj7969GD58OH788UfZciQlJeH9998vctzR0RG//fabbDkAICsrC4mJiSgoKAAAXL16Fbm5uYiKipK1PjogznjywQcfICgoCEuWLNE6fuzYMVkn9EtKpLUCus4SGxuL3bt3Fzk+evRorFmzRqdtv0mUseSv0HXfiHJNnj59WmzJlMLCQuTn58uW47XSNp7omkjXQ5QsIr2vJ6LSjROkRESkmCZNmgjzpLBarda6QfxHqampsuSIioqCj4+PplbfH72+EadronxI/uabb1C5cmXcu3cPrq6uGD16NCZMmABzc3PZb2L3798ftra2WL58OZo0aYLDhw/Dzs4OZ8+eRdu2bWXNAohRh02k/pk4cSLmzZuHzZs3w8TERNa2/0iEvhEphyh907BhQ+zfvx+ff/651vHQ0FDUrVtX1ixLly5F9+7dcfr0ac34cfHiRURHR+Po0aOy5RDlJhcAdOnSBR4eHhg4cCCqVav21telpqbC3NxcZzkkScLhw4cRFxen+ZsrSZJm8uvEiRM6a/tNe/bsQb9+/bBw4UJZ2nuXFStWwNLSEk5OTtDT04OdnR0uXLgg+4MP9vb2+OGHH/DJJ58AgOZ9W1BQEOzt7WXLsXnzZkyaNAl5eXlQqVSaCRSVSgVHR0fZJ0hFGU/UajWWLVuG77//Hh06dICBgQGio6MRHh4OV1dXjBo1SvNa0eo7/tvZ2Njg0qVLRR5e+/nnn2Wt1SfKWCISUa6Jq6sr5s6dix07dgB4NZ6lpaVh8uTJ6N27t6xZAI4nfyTS9RAli0jv64modOMWu0REpJjt27fjyy+/hJeXF9RqNcqV035uZ8SIEbJlCQoK0vo+Pz8fKSkpCAwMxKJFi2RbWdqiRQtUqlQJ06dPR8WKFYuc79Kliyw5hg8fjmfPnmHHjh2oXbs2rl27BgAYMmQIbG1ti30KXRf8/f3h4eEBS0tLWdorLUJCQuDl5YWxY8di/fr1iIuLw6FDhzB37lysXLlSc/NY10TqHycnJ1y4cAGFhYWoUaMGDA0Ntc7L9ZCDKH0jSg5AnL75/vvv4erqio4dO6JVq1YAgOjoaJw7dw4hISFwcXGRJcdr8fHx2LJlC+Lj42FkZAQ7Ozt4e3ujTp06smWYMmUKNm3ahCZNmhR7k+vN7d51fcNt+fLlOHDgAKKiotC1a1e4u7tjwIABqFSpkk7b/aNJkyZh69ataNGiBS5duoT27dsjJSUFd+7cwSeffIJ169bJkqNOnTp48OABXFxc4OHhARcXFxgZGcnS9tvs378fXl5e2LVrF/r37y97+6JsO6xWq+Hp6YnZs2dDrVbj559/xtOnTzFixAi4ublh5syZsuR4kwjjyZ9tT/0mEVZqv7mNqNJ0nSUwMBCTJ0/G1KlTNRNvFy9exNq1a+Hn54dJkybppN23UXos+Svk+jlR+po8fvwYo0aNwuHDh1FYWIjKlSvj0aNHcHZ2xq5du1C1alVZ85S28UTXRLoeomQp7n396/IQwcHBsr+vJ6LSixOkRESkGLVa/dZzKpVKtpvm73LkyBEsW7YMZ8+elaW9ChUq4Pr166hXr54s7b2NKB+SK1eujKioqHf+rMglLy8PO3bs0Kzu/eNbKDmfXhalDptI/fPHhxz+aOTIkbLkEKVvRMkBiNM3APDLL79g69atuHHjBgwNDVG/fn1MmDABlpaWMDAwkC3HwoULMWPGjCIr9Z88eYIFCxZg+fLlsuQQ5SbXm9LT07F//34EBwfj2rVr6NmzJ9zd3eHq6lrszgb/tOrVqyMgIAADBgxAw4YNERwcDDs7O3h6esLY2BjffvutzjO8FhERgeDgYISEhGhW6ru5ucHZ2VnnP696enrF7qwhSVKR43LtbgEAd+7c0dT9fl0v3tvbW9Zthw0NDZGYmAgbGxv06dMHI0eOxKBBg/DTTz9h1KhRSExMlC0LIM54UtqUpQlS4NUk6dq1a7Um0adNm4ZBgwbprE1A3LGkpHTRNyJfk9TUVK3xtWHDhrK2T/RXxMXFYdu2bbhx4wYMDAw07+tFGNeJqPTgBCkREdE7JCcno2nTpsjJyZGlvXbt2mHOnDno27evLO39GaU/JHt7eyM3NxezZ8+GtbV1kZVnchoxYgSCg4Ph7Oxc7OpeOZ9eNjY2RmxsLGxtbbVu3Mj98ypS/7xLXl6ebJNfovSNKDn+jJx9k5mZia+++kqzderrj0G5ubmIj4/Hw4cPddr+jRs3kJmZCeDVqtqQkBCtFZrAqzpxM2fORHZ2tk6zlAYpKSnYtm0bVq5cifz8fJQvXx5DhgzB4sWLUb16dZ21W758eSQlJcHKygqDBg2Ci4sLvLy8EBcXh169euHXX3/VWdvvcvXqVRw8eBDr169HuXLlcP/+fZ22d+bMmRK/Vq7dLV5vOyzHRPm7WFpa4tChQ2jTpg1mzJgBQ0ND+Pn5IS0tDU2aNJHl91fU8eTw4cNYunQp4uPjUVBQADs7O0yaNEnWXWFKqqxNkCpFxLHkr9BF34h4TXJzc/Hll1/C2toaEydOBAC0atUKPXr0wKJFi2R9iOy10jSeyEGk6yFSluLI+fmCiEo/1iAlIiJF/f7771i3bp3mzXXDhg0xZsyYIjVydK24FaJPnz7F2rVr0aRJE9lyjBgxAmPGjIGXlxfq1atXZMJJrg8donxIPnHiBNLT0xEYGFjknEqlkrUeakhICL777jv06NFDtjbfRpQ6bCL1zx8nv4D/1Q2UY/LrNVH6RpQcgDh9M2rUKKSkpGDAgAFYvnw5pk2bhtTUVAQHB2PFihU6bz8jIwPdu3fXfF/cFnomJiaYOnWqzrO8SaSbXMnJyThw4AAOHDiA69evo2vXrli7di0+/vhjZGVlYeLEiejduzcuXbqkswy2traIioqClZUV7O3tcenSJXh5eUGSJDx+/Fhn7b5NdnY2jh07huDgYPzwww+wsLCAm5ubztv9OzflK1asiOjoaJ1N8syaNQtjx45VfNvhwYMHY8SIEdi6dSucnZ0xfPhwtGrVCqGhobK9fxVxPAkICMD06dMxefJkzJ49GwUFBbhw4QImTpyIly9fYsyYMbJloaKUqksu4liiNBGviY+PD3766SetXRJ8fX0xd+5c5OTkYPXq1Tpp9204nmgT6XqIkkWUzxdE9C8gERERKeTs2bOSqamp1K5dO2natGnSlClTpLZt20oVKlSQfvrpJ1mzqFSqIl/ly5eXOnbsKEVFRcmWw8bG5q1farVathzjxo2TGjdurNUP3333nWRvby/5+PjIlsPGxkY6cuSIFB4ervUVHBwsmZuby5ZDkiTJwsJCiouLk7XNtzl79qxUqVIlaeDAgZKhoaE0evRoqXPnzpKxsbH03//+V7YcIvWPi4uLZGdnJ33++eeSgYGBNHv2bGnQoEGSvr6+tHr1atlyiNI3ouSQJHH6xsTERLpw4YIkSZLUunVrzfj29ddfS87OzrLlkKRXvztZWVmytlmcTZs2SSYmJtLs2bOlI0eOSIcOHZJmzpwpmZqaSps3b5Y1S7NmzSQ9PT2pbdu20qpVq6Tff/+9yGsOHDggVa5cWac5Nm/eLJmYmEj79u2TfvnlF6lChQrSpEmTpJYtW8r6cxIYGCi5urpKRkZGklqtlmbPni1FR0fL1v7fYWpqKqWkpOi0jQsXLkjTp0+X1Gq1ZGZmJg0dOlQ6cuSI9PLlS522+6aXL19KCxYskA4fPixJkiTNnTtXqlatmmRnZ6cZY+Qkynhia2srBQUFFTkeGBgoNWjQQLYct2/fLvZ4QUGBtHLlSs33K1askB4/flwmsgQHB0sVK1aUpk+fLhkZGUkpKSnSsmXLpPLly0sbNmzQWbt/lxxjiSh9U1K6vibVqlUr9jPv5cuXpffee09n7b6NKOOJKES6HqJkEeXzBRGVftxil4iIFOPo6Iju3bvjq6++0jo+e/ZsnD17FhcuXFAoGVWvXh0//vgjmjdvrnU8MjISvXv31mzrpgsRERFISkoC8Ko+3urVq4tsaZuQkIB169bhyZMnOsvxR5s2bUJwcDDWrl2LevXqoVw5ZTfiUKoOm6j9Y2pqih9//BHt2rVDmzZtsGrVKnTo0AHffPMNwsPDceLECdmyiFAjT6QcovSNiYkJ4uPjYWVlhZEjR6J169aYPHky0tLS0KZNG9y7d0+WHH+FrleM1K1bF/PmzSuyWjQoKAh+fn64ceOGTtotjp+fH9zd3d/5//rs2TMAr36mdOns2bMwNTVFy5Yt8cMPP2DLli0wNzfH/PnzUbNmTZ22/ZqlpSUGDx4Md3d31K9fHxUrVnxr3TpRyL1NqNzbDr/m7+8PDw8PWFpaytLeP0XX44mpqSmioqKKrKJNSkpCs2bNZNva3cbGBj/++KNWjp9++gne3t64desWHj16JEsOkbKIVJe8JOQYS0Tpm5LS9TWpVq0ajh49ivfff1/r+OXLl9GzZ0/ZV+OJMp6IQqTrIUoWUT5fEFHpxy12iYhIMbGxsdi9e3eR46NHj8aaNWtkzXLr1q0Sv1bXkwuPHz/Grl27kJSUhC+++AIXL15E48aNZd1mSpIkvHjxotjjL1++1GnbxsbGmD9/PiRJgiRJWLp0KfT19TXnVSoVTExM8M033+g0xx998803yMjIeOv2pK+39pHD6zpsCxculK3N10TtH0mSYGFhAQBo3Lgxrl69ig4dOmDw4MHw9/eXLYeSfSNiDkCcvmnZsiV27tyJuXPnonnz5vjxxx81E6SiPjOq61yZmZlo165dkePt27f/S38X/wlz5szBgwcPNJP6enp6aNasGQYNGqR5CEPXE6Ovde7cWfPfvXr1Qq9evWRp9023bt2Cn58fXFxc8OjRIyQmJsLX1xempqZYvXo1ypcvL3smUSi17fBrS5YswcCBA2Vr75+i6/GkRYsW2LFjBxYtWqR1PDAwEI0bN9Zp228aMGAAOnbsiO+//x4WFhaYPn069u7di+HDh+PHH3+ULYdIWZKSkopMfAGvHlb97bffZMshElH6RhQff/wxxo4diw0bNqBly5YAgJiYGPj4+GDAgAGy5xFlPBGFSNdDlCyifL4gotKPE6RERKQYGxsbXLp0qcjThz///LNsKzTezPJ6VcbrG0h/XKUhSRJUKpVOJ8JiY2PRrVs3WFlZ4dq1a/Dx8UFISAg8PDxw9OjRv1Wz5u9Q8kOyg4MDUlNTAQBOTk4ICQlBlSpVdNpmSRRXZ1MpStZhE7V/RJn8EqVGnig5AHH65uuvv0afPn1gbGyMESNGwN/fH02bNsWtW7cwbNgw2XKIRJSbXMCr1ekuLi6oWrUqWrRogYKCAhw5cgRz587FqVOnZKsH/vjxY3zzzTeIiYnBixcvivyMhoWFyZJjyZIl2LNnDwIDAzWTfyNHjsT48eMxc+ZM2R8kE0FQUBBCQkJw8uRJ1KpVC25ubjhz5gwcHBxkzTFkyBAsXrwYs2fPhrW1dZF68WXV0qVL0b17d5w+fRpt27YFAFy8eBHR0dE4evSobDlWrFgBS0tLODk5QU9PD3Z2drhw4QIcHR1lyyBaFpHqkotClL4RxcqVKzF69Gh069YNhYWFAAA9PT2MHDkSq1atkj2PKOOJKES6HqJkEeXzBRGVftxil4iIFBMYGIjJkydj6tSpmg+jFy9exNq1a+Hn54dJkybJluXgwYOYN28eli5divbt26N8+fK4evUqfHx8MGTIEAwaNEjzWmtra53l6NatGzp16oQFCxZobaU0a9YsnD59GpcuXdJZ2296/vw5Ro8ejYMHDxb7IVmuVTz0dhEREQgODkZISAju3bsHV1dXuLm5wdnZGQYGBkrHk9358+fRp08f+Pr6YsSIEWjatCnMzc01k1/r16+XLYsofSNKDpH65smTJ8jJyUGNGjWQkZGBQ4cOwdzcHIMHD4aenp5sOUpK11vqRUREoHv37mjZsmWxN7mcnJx00m5xWrVqhc6dO2PFihWam/eFhYXw8fFBTEwMzp07J0uOjz76CFeuXMHgwYNRqVKlIufnzZsnSw5bW1sEBgaic+fOWj8H586dw6BBg3Dnzh1ZcvwVuv55FWXbYbVajfT09GLbValUyM/PlzVPScmxbWl8fDy2bNmC+Ph4GBkZabZ2r1Onjs7afJv9+/fDy8sLu3btQv/+/WVvX6Qs586dQ9++fdGjRw8cOXIEw4cPR1JSEiIjIxEaGopu3brJnuld5NyuW+m+KSm5rsmjR4+QnJwMAwMD2NrawszMTKftvYtI44kIRLoeImQR6fMFEZVunCAlIiJFBQYGYu3atVpvrqdNm6Y1ISkHa2tr7N27F+3bt9c6fuXKFfTt2xcZGRmy5DAzM0N0dDTq1q2r9UE4NTUVTZs2RXZ2tiw5XhPpQ7ISbG1tcfnyZZibm0OtVr/zJuzrVZVKUKoOm2jenPz67bff8N133yk++SVK3yidQ8S+KQ3kuCGakJCAzZs3K37DzdjYGNHR0WjQoIHW8cTERLRo0UK2v38mJiYIDw9HmzZtZGnvXTliYmJQr149rZ+D2NhYvP/++5p6rCLRdY3LwsJC+Pn5YdWqVYpuO6xWq7FmzZoi9bfv37+PcePGCVnPGND9eLJw4ULMmDEDxsbGWsefPHmCBQsWYPny5TppF8BbJ8pf7/7yJl2XRBApy5tEqUteEroaS0Ttm5LQ9fgKAFlZWUhMTNT8v0uShNzcXERFRWHWrFk6a7c4So4nIhLpeoiSJTs7GwUFBaXqwUciEhO32CUiIkUNGzYMH374IWrUqAHg1WqW11u6yuldm2JHAAB+OUlEQVTJkyfFbsXy8OFDndfcfFP16tWRmJiIunXrah2/cOGC5hrJ5Y8fkq9evarYh2SlzJs3T7Nadt68ebKvUvkzStdhE03FihU1N6wtLCwwceJExbKI0jei5BCpb+h/+vXrh6+//lqIG40ffPABgoKCsGTJEq3jx44dk3V1U61atbTqKiule/fu8Pf3R0BAAIBXKxOfPn2KOXPmyLqy96/Q9bPXSm47HBERgaSkJACv6sOmp6cXmSBNSEiQ9T2jCG7cuIHMzEwAwIIFC+Dg4FBk2/3Y2Fhs2rRJp+PM6dOndfZv/1UiZXlTzZo1hahLXhK6GktE7ZuS0PX4unnzZkyaNAl5eXlQqVRaJWccHR1l+ewnyngiCpGuh0hZXrO3t8ehQ4fQokULAEDt2rX5+YKI/h6JiIhIIVFRUZKlpaU0c+ZMzTG1Wi3Z2NhIsbGxsmaZPHmypFarpd27d0uxsbHS9evXpW3btkkWFhbSl19+KVuOTZs2SbVr15bWrVsnGRsbS5s3b5Z8fX2lihUrSmvXrpUtx7fffisZGhpKKpVK0tPTk1Qqlea/33//fdlyUPECAwMlV1dXycjISFKr1dLs2bOl6OhopWPJTk9PT8rMzJQkSdL8fL7tSy6i9I3SOUTsm9LIzMxMSklJ0dm/X61aNSkpKUln//5f4ePjIxkaGkotW7aUJk+eLE2bNk3q1q2bpKenJ/Xr10/y8vLSfP3T0tPTNV8rV66UWrRoIZ06dUpKTU3VOpeenv6Pt/02t2/fltq0aSPVqFFD0tfXl5o0aSJVrFhRatq0qZSWliZbDkmSpM6dO0sbN26UsrKy3vm6u3fvSgUFBTrLoVarpTNnzkiSJEmmpqaa342zZ89KNWrU0Fm7kiRJ0dHRmveoKpVKqlOnjmRjY6P5UqvVUpMmTaQNGzboNMf/hS7Gk7CwMM17xLd9mZqaSnPmzPlH2/0n6Hp8/St0neX1z+gfv2xtbaWGDRtKTk5O0saNG3XW/muijCV/ha77RpRrYmNjI82fP1968eKFVKtWLenWrVtSXFyc1KpVK2np0qU6a/dNpXk80QWRrodIWV6ztbWVLl68KFt7RPTvxS12iYhIMR07dkSrVq2wbNkyTT28wsJCTJ06FdeuXUN4eLhsWfLy8jB37lxs375ds/VknTp1MHPmTEycOFHWlYOhoaHw9/fX2gJr2rRpGDx4sGwZ1Go1PD09MXv2bKjVavz88894+vQpRowYATc3N8ycOVO2LEpycnIqcd+HhYXpOM3/iFKHTWlnzpxBhw4dUK5cOYSHh7/z/79Lly6yZBKlb5TOIWLflEa63hJz3rx5OHr0KCZMmABra2sYGRlpne/cubNO2i2Ol5dXiV+7ffv2f7TtN3833vx4/ObPrfT/t2CUe9vFsLAwrfcDPXv2lH3buOXLl+PAgQOIiopC165d4e7ujgEDBhRbo1WXRNl22MnJCSEhIUVWz4hO1+OJWq3G5cuXUa1aNZ38+/80OetcKp1l+fLlWLBgASZNmoR27dpBkiRERkZizZo1GDVqFGrXro1Vq1bBx8cHn332mU4yvM4hwljyV8jRNyJcE0NDQyQmJsLGxgZ9+vTByJEjMWjQIPz0008YNWoUEhMTZc1T2sYTXRPpeoiSxcfHB4GBgejTpw9sbGyKvIf19fVVKBkRlTacICUiIsWYmJjg+vXrRT5wpqSkwMHBQZH6WpIk4d69ezA2NoaJiYns7YtCtA/JSlmwYEGJXztv3jwdJtEmSh02kbRq1QqBgYFo2rSpojlE6RtRcgDi9I1ocnJysGvXLsTHx6OgoAB2dnZwc3ODubm55jVZWVkwNzfX2YTYu/5dJSYDlZKenl7i11pbWwMAfv31V9SuXbtM1bhKT0/H/v37ERwcjGvXrqFnz55wd3eHq6trkVpkuuDq6opatWohICAAZmZmuHbtGqpVq4ahQ4dCkiSEhobqPIOoRBhPSkqOWoolUZYmSB0cHPD555/D3d1d6/jBgwexZMkSREVF4dSpUxg7dizS0tJ0kuFNSo8lf4VcPydKXxNLS0scOnQIbdq0wYwZM2BoaAg/Pz+kpaWhSZMmstUB/6tEGU9EIdL10HWWd5UbUKlUsj68TESlnGJrV4mIqMxr2LCh9O233xY5HhQUJNWtW1f2PCkpKdKMGTOkjz76SMrIyJC2bt0q/fTTT7LnOHXqlPTVV19JCxculBYsWKD1JRcLCwvp0qVLkiRJ0vTp06XPP/9ckiRJSk1NlYyNjWXLURq5uLhIGRkZOm1j4cKFUsOGDaXQ0FDJ2NhYSklJkU6ePCmp1Wpp8uTJOm1bVLVq1ZLi4uKUjiFM34iSQ5LE6RuRXL9+XbKwsJCsrKykAQMGSB999JFkaWkpVa9evUxfq++++05q3769VKVKFalixYpSmzZtpKCgIKVjFUuk7TnllpycLM2ZM0eqUKGCZGBgIJmamkrjxo2T7t69q9N2Rdp2WCSlbTx5c3tk5nhF11mMjY2l+Pj4Isfj4+MlIyMjSZJebTVeoUIFnWUojlJjyV8h98+JUtfk008/lRo2bCidP39e+vHHH6WaNWtKBw8elEaOHCk5ODjotO3/C5F+j0Ug0vXQdZb09PRit53Oz8+Xrly5orN2iejfp5zSE7RERFR2zZ07F6NHj0ZERARatWoFAIiJicGuXbuwYcMGWbOcPXsWLi4ucHZ2xvfff4+cnBwkJCRgwoQJ2LdvHwYMGCBLjunTp2P16tVwcHBAxYoVtc6pVCrZtooZPHgwRowYga1bt8LZ2RnDhw9Hq1atEBoaivr168uSobQ6e/YscnJydNrG9u3bERgYiM6dO2tWgvTo0QNBQUEYNGgQ1qxZo9P2RTRixAg4Oztj2LBhxW6zNGLECFlyiNI3ouQAxOkbkUyZMgU9evTA5s2bUa7cq49k+fn5GDNmDKZOnYqTJ0/KksPW1haRkZGoWrWq1vGMjAw0b94cd+/elSUHAAQEBGD69OmYPHkyZs+ejYKCAly4cAETJ07Ey5cvMWbMGNmylIRUxjZiSk5OxoEDB3DgwAFcv34dXbt2xdq1a/Hxxx8jKysLEydORO/evXHp0iWdZbC0tMSlS5eE2HZYJKKMJySudu3aYd68edi2bZtmh5zs7GwsWLAAjo6OAIDjx4/L8h5fhLFENCJck2+++QaVK1fGvXv34OrqitGjR2PChAkwNzf/x7e1J/onqNVq3LlzB9WrV9c6npaWho4dO+L58+cKJSOi0oYTpEREpJhhw4ahevXq+Pbbb7Fx40YYGBigfv36+OGHH9CpUydZs3z22Wf4+uuvMWnSJJiZmQEAli5ditq1a8PX11e2CdJt27YhKCgIQ4cOlaW9t+GHZLFlZmaidu3aRY5XqVJFka2pRfCf//wH+vr62Lt3b5FzKpVKtkk4UfpGlByAOH0jkoiICGzYsEEzmQEA5cqVw+zZs9G6dWudtn3w4EEcP34cAHDz5k1MnDgRFSpU0HrNzZs3tbLJYenSpdiwYYPWz0O/fv1gb28PPz8/4SZIyxIHBwfExsaiTZs2GDlyJNzc3FCzZk3N+cqVK2PcuHEYO3asLHm6deuGbt26ydJWaaDkeEKlw+bNm9GnTx/Url0bDRo0gCRJSEpKQp06dRASEoKTJ09i6tSpOHDggE5ziDaWiECUa7Jq1SqMGjUKlpaWAIDFixdj8eLFOm2T6K/asmUL/Pz8ALx6UK1169bQ19fXes3Dhw/RuHFjJeIRUSnFCVIiIlJUr1690KtXr3e+pnfv3tiyZQtq1aqlsxzXr1+Hi4tLkeOurq74/PPPddbuH5UrV07zJLeS+CFZbN27d4e/vz8CAgIAvJpkevr0KebMmfPOeiz/ZnLUzCoJUfpGlByAOH0jklq1aiE5ORl2dnZax5OTk4vsHvBP69KlC44fP65ZASlJktZqSJVKBXt7e3z99dc6zfFHmZmZaNeuXZHj7du3x61bt2TNQtrc3Nxw6NChd9YRc3Z2xu3bt2VMRa8pOZ6UZiqVSukIGrrOolarce3aNfz3v//F9evXUa5cOdjb26N79+5QqVSoUqUKbt++jdzcXBQWFupsRXZpHEt03TeiXJMlS5Zg4MCBOm2D6P9q5MiRMDQ0RGFhIUaNGoXp06ejUqVKmvMqlQomJiZ8iIqI/hJOkBIRkfDk2LLUxsYGly9fLvLh9NixY7CxsdFp22+aOHEi5s2bh82bN2u2wFICPySLbcOGDRgwYABq1qyJnJwcuLq64tatW7C2tsaRI0eUjqeYrKwsJCYmoqCgAMCriZ/c3FxERUVh1qxZsmQQpW9EyfGaCH0jkgkTJmDMmDFYvHix5qGYixcvwtfXV+erRKpXr45t27YBePW3b8aMGYr+vXmtRYsW2LFjBxYtWqR1PDAwkCsBFDZnzhw8ePAAGzZsQHx8PPT09NCsWTMMGjRIMwFnamqqcMqyS8nxpDQTaZtsObLo6+ujZ8+e6NmzZ5Fzr7eorFixIqKjo985Wfd/URrHEl33jSjXZMiQIVi8eDFmz54Na2trGBoa6rxNor/KwMBAs9OIWq1Ghw4d/nTHE29vbyxcuBDVqlWTIyIRlUIqSaR3hURERMUwMzNDTEyMzj6sA8ChQ4fg6emJcePGYd26dZg1axbS0tKwb98+7Ny5E4MHD9ZZ229ycnLChQsXUFhYiBo1ahT5cJqamipLDm9vb+Tm5vJD8t8gx8/ra6zD9j+bN2/GpEmTkJeXB5VKpbmhpVKp4OjoiIiICFnziNI3IuQQrW9EIEkSFixYgHXr1uHBgwcAgBo1amDatGmYPn26rH309OlTxMXFIS8vr8iN4M6dO8uWIyIiAt27d0fLli3Rtm1bAK8meaKjo3H06FHhVsfLOdYrLSIiAi4uLqhatSpatGiBgoICREdHIycnB6dOnUKTJk2UjlimiTSelISuJ+G6dOkCDw8PDBw48J03xLOysmBubq7T6yNSlpLQ9bgm0lgiSt+Ick3UajXS09OLXTGrUqmQn58vS46/StfjSWkj0vUQJYsoOYhIXJwgJSIi4cl1EzImJgbLly/Xmkz49NNPNTdq5RAUFPTO8yNHjpQlR2n9kCyCsnTTXCRqtRqenp6YPXs21Go1fv75Zzx9+hQjRoyAm5sbZs6cqXTEMot98253796FkZGRIlth7t69G+PHj8fz58+LnFOpVJoVv3JJSEjA5s2bER8fDyMjI9jZ2cHb2xt16tSRNUdJlKUbbq1atULnzp2xYsUKzfuCwsJC+Pj4ICYmBufOnVM4Ib2m5HhSUrp+n7R8+XIcOHAAUVFR6Nq1K9zd3TFgwACtbRjlIlKWktB134g0lojSN6JcE7VajTVr1hQZO+7fv49x48bh3r17suT4q/i5S5tI10OULKLkICJxcYKUiIiEp9Sb2qysLFSrVk2RGkXPnz9HcnIyCgoKULduXdlvdJXWD8ki4IcwZRgaGiIxMRE2Njbo06cPRo4ciUGDBuGnn37CqFGjkJiYqHTEMot988qOHTvg5uaG8uXLY8eOHe987evtw3TNysoKH3/8MRYuXAgzMzNZ2nybfv364euvv0bDhg0VzVFS1atXx+XLl2Xdhl8pxsbGiI6ORoMGDbSOJyYmokWLFsjOzlYoWdkl4ngCADk5Odi1axfi4+NRUFAAOzs7uLm5wdzcXPMauVZLpqenY//+/QgODsa1a9fQs2dPuLu7w9XVFcbGxjptW+Qs76Lr97AijiVK942S1yQiIgJJSUkAAC8vL6xevbrIZ7+EhASsW7cOT5480VmOtxFpPBGBSNdDpCx/hp/NiejPcIKUiIiEJ8eb2oyMDEybNg2zZ89Gw4YN0atXL/z000+wtLTEkSNH4ODgoLO235SXl4fPPvsMGzZsQH5+PiRJgoGBAYYOHYpNmzbpdKtb0T8kK23evHnw8PD405v3ISEhcHZ2FuqGV1lgaWmJQ4cOoU2bNpgxYwYMDQ3h5+eHtLQ0NGnShDfwFcS+eUWtViMyMhLm5uZQq9VvfZ1KpZJtO3UTExPExcUJMclXvXp1REREoF69ekpHEWbbYVG4urqiadOmWLJkidbxlStXIiwsDKGhoQolK7tEHE9iY2Ph7OwMfX19tG7dGgUFBbhy5Qpyc3MRHh6uWC3hlJQUbNu2DStXrkR+fj7Kly+vqbf4uvZmWcxSHF1/5hJ5LFGqb5S8JjExMejfvz8kSUJ6ejosLS2hr6+vOa9SqWBiYgJvb2988sknOstRHFHHE6WIdD1EylISnCAloj/DCVIiIhKeHG9qP/roIzx79gyBgYE4duwY5syZgxMnTmDXrl2IiYnB2bNnddb2m6ZMmYJjx45h/fr1aN++PQoKCnDhwgX4+Pigf//+8Pf311nbIn9IFkHfvn3x448/ws7ODu7u7nB3d3/nTUmS17Rp03DixAls3boVz58/x/Dhw7Fu3TqEhoYiOjoa0dHRSkcss9g3f01WVpZsN8rd3d3Rpk0bTJ8+XZb23mXevHk4evQoJkyYAGtraxgZGWmdl2ticteuXZgwYYIw2w6LYMqUKdi0aROaNGmCDh06wMDAANHR0QgPD4erqyuqVKmiee22bdsUTEp/JOd40r17d1hZWWHz5s0oV64cACA/Px9jxoxBRkYGTp48KUsOAEhOTsaBAwdw4MABXL9+XbOF6scff4ysrCxMnDgRjx49wqVLl8pUlj+j689coo0lIvSNKNfEyckJISEhWu0pSaTxRAQiXQ+RspQEJ0iJ6M9wgpSIiIQnx5taMzMzXLlyBQ0aNECvXr1Qu3ZtbN++HWlpabC3ty/2RqkuVK9eHQcOHEDXrl21jp8+fRpDhgzB77//LksO0T4ki+LJkyc4dOgQDhw4gFOnTsHBwQEeHh4YPHgwateurXS8Mi0vLw9fffUVmjdvDldXV3zxxRcICAiAubk5tm/fjnbt2ikdscxi3xSlr6+PO3fuFJm4SE9Ph729PZ49eyZLjunTp2P9+vVwcHBA/fr1i+xSIOdk17u2YJNzYlKkbYdF4eXlVeLXbt++XYdJqDiijCfGxsaIioqCnZ2d1vGEhAS0bt1athwODg6IjY1FmzZt4OHhATc3N9SsWVPrNQcPHsTYsWPx8OHDMpOlJHRdW1mksUSUvhHpmohElPFEFCJdD5GylAQnSInoz5RTOgAREZVdo0aNwurVq4vcgHz48CHGjh2LgwcPAgCCgoKKfGD9pxkZGSEnJwcPHz5EeHg49uzZAwBIS0tD1apVddr2mwoLC/Hee+8VOV69enU8ffpUthynT5+Wra3SpGLFihg5ciRGjhyJx48fY9myZZgzZw5mzJiBTp06Ydy4cfDw8FA6Zpl09+5d+Pr6ar5fvHgxFi9erGAieo1988rOnTs1NzclSUL//v2LTEhmZGSgVq1asmV68OCB1pil5LOzhYWFirX9pvv372PKlCmcHH1DWbopX1qIOJ7UqlULycnJRW6aJycnFynZoEtubm44dOjQO2+GOzs74/bt22UqS0mUL19ep/UCRRpLROkbka6JSEQZT0Qh0vUQKQsR0T+BE6RERCSrN+tcBgUFoWXLlsXWuXxza5YBAwboPFe/fv3g5uaGChUqoEqVKujduzf279+PKVOmwNPTU+ftv9a9e3fMmjULu3fv1lyXR48e4fPPP4eTk5NsOejtIiIicODAAQQHB+Phw4f4+OOP4ebmht9//x2ff/45Tpw4gR07digds8yxsrJChw4d4O7ujoEDBxb7oAEpg33zSv/+/ZGWlgZJkhAeHo527drB1NRUc/71Nub9+/eXLZNIN2ZtbW0RGRlZ5KGkjIwMNG/eHHfv3pUlR9++fREcHCzEtsMiOXz4MJYuXYr4+HgUFBTAzs4OkyZNwogRI5SOViaJOJ5MmDABY8aMweLFi+Ho6AgAuHjxInx9fTF27FjZcsyZMwcPHjzAhg0bEB8fDz09PTRr1gyDBg3SvLd+81qVlSwlqa2clZWl8xyijCUi9Y0o10QkoownohDpeoiU5bWHDx+iUqVKUKlUUKlUWucWLlyIatWqKZKLiEoHbrFLRESyErXOZX5+PtauXYv09HSMGzcOjRs3xs6dO/H48WNMnDixyBttXfntt9/g5OSE33//HQ0aNAAAJCYmwtbWFkeOHIG1tbUsOaioqVOnIiQkBHfv3sWHH34IDw8PuLq6atXJ27dvH8aMGSPc1kJlQVJSEoKDg3Hw4EFcu3YNnTt31tSR4lbRymLfFBUUFAR3d3eUL19e6Sg4f/48Vq1ahaSkJISGhmL37t2wsbGBu7u7zts+ePAgjh8/DgAIDAzUPKj0pps3byIhIQEZGRk6zwOIte2wKAICAjB9+nRMnjxZqz76xo0bsXLlSowZM0bpiGWaKOOJJElYsGAB1q1bhwcPHgAAatSogWnTpmH69Ok6XZn4poiICLi4uKBq1apo0aIFCgoKEB0djZycHJw6dQpNmjSRJYdIWUSprSzSWCJK34h0TUQiyngiCpGuhyhZJEmCn58fVq5ciUePHiExMRG+vr4wNTXF6tWrFf+bSESlBydIiYhIMaWxzmXTpk1x/Phx1KlTR2dt5OXl4fvvv0d8fDyMjIxgZ2eHHj16lLkPgqLp2bMnPDw8MGDAAFSqVKnY16SkpCAtLQ0ffPCBzOnoTTdv3kRISAi+++47XLlyBU5OTjh69KjSsQjsmzdFR0cjLi5Oc2NakiTk5uYiKioKGzdulCVDSEgIvLy8MHbsWKxfvx5xcXE4dOgQ5s6di5UrV+r8QaWsrCzMmjULkiQhKCgIgwcP1pogff3Q1PDhwzWrFHTtz+rBibTqVi5169bFvHnziqxmCgoKgp+fH27cuKFQMnpNhPHkTXfv3oWRkZEi2y22atUKnTt3xooVKzQPOBYWFsLHxwcxMTE4d+5cmcsiSm1lkcYSUfpGpGsiKiXHExGJdD2UzLJw4ULs3bsX/v7+cHNzw/Xr15GSkoLx48ejT58+WLNmjeyZiKh04ha7RESkmNOnT+PRo0d48eIFjIyMcO3aNfzwww9o2bIlunfvrnS8Yt28eRN5eXk6b0dfXx/6+vooKChAuXL8cy2C19s+//LLLzh16pRmK666detqXlO3bl2t70kZRkZGqFChAszMzKCnp1fsiglSBvvmlYULF2L+/PmoWbMmMjMzYWFhgczMTOTn58u6JeaCBQuwceNGDBkyBAEBAQBeraCsVasWfH19dT5BWr16dc2KTBsbG8yYMQMmJiY6bfPPlMUJ0D+TmZmJdu3aFTnevn173Lp1S4FE9CYlx5MdO3bAzc0N5cuX/9PyAnJtFxofH4+9e/dq7f6ip6cHHx8ftGjRQpYMomURpbaySGOJKH0j0jVRmojjiZJEuh4iZXktMDAQgYGB6Ny5s+ZB8h49eiAoKAiDBg3iBCkRlRhXkBIRkWIOHz6MIUOG4PDhw7CxsUGrVq1gaWmJ9PR0fP3115g0aZLSEYswMzNDTEwMbG1tdfLv37hxAy4uLsjKykKDBg1QUFCA5ORk2NjY4MSJE7C0tNRJu/Tn7t69i48//hjnz59H1apVUVBQgCdPnqBnz57Yt2/fW1eVkjzS09MREhKC4OBg/Pzzz2jTpg3c3NwwePBg1KpVS+l4ZRr7pigLCwvMmzcP48aNg42NDcLCwlC1alW4u7ujefPm+Prrr2XJYWxsjNjYWNja2mr9fUtOTkbTpk2Rk5MjS47XSlIjTw5Kbjssok6dOqFr165YtGiR1vG5c+fi+++/x5UrVxRKRoCy44larUZkZCTMzc2hVqvf+jqVSoXU1FSd5XiTq6srmjZtiiVLlmgdX7lyJcLCwhAaGipLDpGyuLu7o02bNorXVhZpLBGlb0S6JkoTcTxRkkjXQ6Qsr5mYmCAmJgb16tXTeg8bGxuL999/nyVviKjEOEFKRESKsbe3x6hRozB9+nTMnj0bR48eRWxsLI4ePYrJkycjLS1N6YhF6HqCtEuXLqhduzY2b94MU1NTAMDjx48xevRo5OTk4NixYzppl/5cnz598Pz5c2zbtg02NjYAgOTkZIwePRoWFhbYs2ePsgHLOD09PTRv3hxubm5wd3dnvV6BsG+KKl++PJKSkmBlZYX+/ftj4MCBGDp0KK5cuYKBAwfK9vevTZs2GDVqFD755BOYmZnh2rVrUKvV+PLLL3HixAlERkbKkgMAdu/ejfHjxyteI0/pbYdFFBERge7du6Nly5Zo27YtAODixYuIjo7G0aNH4eTkpHDCsk2U8eRdsrKyUL16dVnamjJlCjZt2oQmTZqgQ4cOMDAwQHR0NMLDw+Hq6qpV2kPXNYVFySJKbWWRxhJR+kaka1JayDmelAYiXQ85s7i6uqJWrVoICAjQvIetVq0ahg4dCkmSZH0YhohKN06QEhGRYipUqIDExETUqVMHjRo1wqBBg7Bw4ULcvHkT9vb2yM7OVjpiEbqeIDUxMcHVq1dhZ2endTw+Ph5t2rThk5AKMjU1xc8//wx7e3ut49euXUPHjh3x5MkThZIR8Gr19R9/b4rj7e2NhQsXolq1ajKkIoB9UxxbW1ts27YNXbt2xZw5c5Cbm4vly5cjKSkJzZs3l+3v37lz59C3b1/06NEDR44cwfDhw5GUlITIyEiEhoaiW7dusuQAxKmR5+DggFmzZmHIkCFaf/P37NkDX19fJCcnK5ZNSQkJCdi8ebNWfXRvb2+d1mSnkhFlPNHX18edO3eK3BxPT0+Hvb29bO9h/6yO8Jt0vaW2KFlEqq0sylgiSt8A4lwTkYgynohCpOshSpZff/0VAwYMwK1bt3Dv3j00atQIt27dgrW1NY4cOaJ5oJmI6M+wqBkRESnG2toa4eHhsLCwwI0bN+Dq6grg1SqSBg0aKJxOGS1btsTJkyeLTCZERkaiefPmyoQiAK/qi167dq3IBGl6ejqsrKwUSkWvlWQCDgB27dqFGTNmlIlJOFGwb4oaO3Ys3N3dsX37dvTr1w8ffPABateujVOnTsk61nfq1AkJCQnYsGEDgFd16tq1a4edO3fKPq6JUiMvKSkJ77//fpHjjo6O+O233xRIpLx+/frh66+/xvLly5WOQsVQcjzZuXOnZvJIkiT079+/yOrEjIwMWbdTF6mOsChZRMkh0ljCayIeEccTJYl0PUTK8pqlpSUuXbqE//73v0hISEB+fj7s7OzQs2dPTU1SIqKS4AQpEREpZsGCBRgxYgTy8/PRp08ftG7dGjNnzsTGjRtx6NAhpeMVS6VS6fTf79GjB2bNmoXw8HCt7Z727NmDoUOHYuHChZrX+vr66jQLaRs1ahS8vb1x5coVtG/fXtM3q1evhqenJ3bs2KF57YgRIxRMSu/CzVPEVZb6JiMjA97e3jA2NoajoyNWrFiBgIAAmJuby7bVIQDs2bMH/fr10/rbopS+ffsiODhY8Rp59vb2+OGHHzRb6b7+ux8UFFTkAZmy4vz58yhXjrcORKXkeNK/f3+kpaVBkiSEh4ejXbt2mhIRwKvfHxMTE/Tv31+nOf7o8OHDWLp0KeLj41FQUAA7OztMmjRJkfdnomQRobayaGOJCH0j2jVRkqjjiVJEuh4iZfmj7t27o3v37rK3S0T/Htxil4iIFJWVlYXffvtN84T7jRs3ULlyZdSoUUPZYG+h6y12S1pnRqVSISwsTCcZqHhqtbpEr1OpVEhNTdVxGvq7dP07TH9fWeqbqlWr4sqVKyUeV3SlTp06ePDgAVxcXODh4QEXFxcYGRkpkkWUGnkibTssinnz5uHo0aOYMGECrK2ti/yMdO7cWaFkBIgzngQFBcHd3R3ly5dXNEdAQACmT5+OyZMno3379igoKMCFCxewceNGrFy5EmPGjClzWUSprSzSWCJK34h0TUQiyngiCpGuhyhZ9PT03vnwuly164mo9OMEKRERKSonJwe7du3SenLXzc0N5ubmSkcrVmRkJBwcHGBgYCB727m5uYp/ECEq7crSJFxpU5b6ZvHixbhw4QI+/fTTYm+Iyrm9bUREBIKDgxESEoJ79+7B1dUVbm5ucHZ2lvVvnUg18u7cuYMNGzYgPj5es2Wbt7d3md1O/V1b1alUKt6EVJhI40l0dDTi4uI0PxOSJCE3NxdRUVHYuHGjLBnq1q2LefPmFVkFGBQUBD8/P9y4cUOWHCJlEaW2skhjiSh9I9I1EY0I44lIRLoeImQ5c+aM1vf5+flISUnBihUrsHjxYgwcOFCWHERU+nGClIiIFBMbGwtnZ2fo6+ujdevWKCgowJUrV5Cbm4vw8HA0btxYp+3/2VOHb5Lrw+nHH3+MTZs2oXr16lrHw8LCMGHCBCQmJsqSg4r3+++/Y926dZoJ/YYNG2LMmDGoX7++0tGohMrSJFxpU5b65o83RF//LZIkSdEbolevXsXBgwexfv16lCtXDvfv31ckBxGVnCjjycKFCzF//nzUrFkTmZmZsLCwQGZmJvLz89G/f38cPHhQlhympqaIiooq8t4sKSkJzZo1Q05Ojiw5RMpibGyM2NhY2Nraav2tTU5ORtOmTWW9JqIQpW+oeKKMJ6IQ6XqIlKU44eHh+PTTTxEVFaVoDiIqPVi1mIiIFDNlyhT06NEDKSkpCA4OxnfffYfU1FS4uLhg6tSpOm//9OnTCAsLQ1hYGL755hu89957WLduHX7++WdERUVh69atsLKywrJly3Se5bX79++jUaNG2LNnDwDg4cOH8PT0RK9evdCrVy/ZclBR586dQ4MGDXD69Gmo1Wqo1WqcOXMGDg4OOH/+vNLxiKgUSUtL0/pKTU1Famqq5r/llp2djf379+Obb77Bhg0bYGFhAR8fH9lznD9/HoMGDULz5s1x+/ZtfP3119i3b5/O23VyckK3bt1K9FUW2dra4sGDB0WOZ2Rk4L333lMgEb1JlPEkICAAmzZtQkZGBurUqYPw8HBkZmaiR48eqFevnmw5WrRooVUX/rXAwECdP3wpapbXtZVfU6q2skhjiSh9I9I1EYko44koRLoeImUpTvXq1ZGQkKB0DCIqRbiClIiIFGNsbIyoqCjY2dlpHU9ISEDr1q3x7Nkz2bI0bNgQa9euRY8ePbSOh4eHw8vLC2lpabJl2bJlC2bNmoWWLVvi2rVraNCgAdatWwcHBwfZMlBRjo6O6N69O7766iut47Nnz8bZs2dx4cIFhZLRX1GWVimWNuwb+QUFBSEkJAQnT55ErVq14ObmBnd3d0X+3ihZI2/BggUlfu28efN0lkMkBw8exPHjxwG8mjBwc3NDhQoVtF5z8+ZNJCQkICMjQ4mIJJjy5csjKSkJVlZW6N+/PwYOHIihQ4fiypUrGDhwoGzvpSMiItC9e3e0bNkSbdu2BQBcvHgR0dHROHr0KJycnGTJIVIWJWsrizqWKNk3ol4TkYgynohCpOshSpbiHnB4+vQptm7disqVKyMsLEyWHERU+pVTOgAREZVdtWrVQnJycpEJ0uTkZFSsWFHWLG97StfY2BgPHz6UNcuHH36I7777DidPnoQkSRgwYACaNm0qawYqKjY2Frt37y5yfPTo0VizZo0CiehdXrx4gevXr6NBgwaoVKmS5vjChQtRrVo1BZMR+0Ycc+fOxeDBg3HmzBnUr18fFStWfGc9NF1asGABNm7ciCFDhiAgIAAAMH36dNSqVQu+vr46nSD9O5OevXv3xpYtW1CrVi0dJFJely5dcPz4cbx+nlqSJLz5bLVKpYK9vT2+/vprpSKSYCwsLJCamgorKys0atQIV69exdChQ1GxYkXcvXtXthzt2rXD1atXsXnzZsTHx8PIyAidO3fGvn37UKdOHdlyiJSlU6dOSEhIwIYNGwC82rGmXbt22Llzp85r1Io6lijZN6JeE5GIMp6IQqTrIUqWP753U6lUMDQ0RJs2bbB48WLZchDRv4BERESkkKVLl0o1a9aUtmzZIl27dk26du2a9O2330o1a9aUvvzyS1mzuLu7Sy1btpTOnz8vPXv2THr69KkUFhYm2dvbS2PHjpUtx6JFiyRTU1Ppgw8+kJKTk6XDhw9LVlZWUtOmTaWzZ8/KloOKatSokbRr164ix3fu3Cmp1WoFEtGb4uLipLZt20rnz5+XHj58KDVs2FBSqVSSqampFBYWpnS8Mo19I66CggJp0aJFkrm5uaSvry+lpKRIQ4cOlcaPHy+9ePFC1iwVKlSQUlJSJEmSJFNTU81/JyUlSUZGRrJmKYk3M/7bzZ8/X3r27JnSMUhwfn5+Uo0aNaTjx49LP//8s2RmZiYtW7ZMcnZ2ltq3by9bjo8++kiKj4+Xrb13ESmLCEQaS0TpG5GuiUhEGU9EIdL1ECkLEdE/gStIiYhIMTNmzEB2djZmzZqlqb1So0YNTJs2DdOnT5c1y7fffovx48ejS5cuKCwsBACUK1cOI0aMkHV14KpVq7B27Vp4enoCAOrWrYvu3bvj888/R/fu3fHy5UvZspC2zz77DBMmTEBCQgIcHR0BvNqKa+3atfDz81M4HU2cOBG2traws7PD1q1b8ejRI/z+++/Ytm0bpk+fjqtXryodscxi34hryZIl2LNnj2aLPwAYOXIkxo8fj5kzZ8r69+91jbzXK0WVqpFHRc2bNw9Pnz7FxYsXkZeXp7XSCQA6d+6sUDISSUZGBry9vWFsbAxHR0esWLECAQEBMDc3x7Zt22TLcf78eZQrJ8atLiWzODk5acbRPyPXVpQijSWi/JyIdE1EIsp4IgqRrocoWc6ePVvi15bV3yMiKhnWICUiIiHcvXsXRkZGsm+t+0dPnjxBYmIiAMDOzg5mZmaytn/v3r23bjEZGRmJ1q1by5qHtAUGBmLt2rWarbjs7Owwbdo0DBo0SOloZZ6xsTHi4uKgVqvRqVMnNGvWDOvXr0d6ejoaNWqE58+fKx2xzGLfiMvW1haBgYHo3LmzVg3Yc+fOYdCgQbhz545sWZSskfd3lKWaubt378b48eOL/V1VqVQoKChQIBWJpmrVqrhy5QrUarWiOebNm4ejR49iwoQJsLa2hpGRkdZ5OW+UK5lFxNrKIo0lovyciHRNRCLKeCIKka6HKFnUajV+//13vHz5EmZmZihfvjzu3buneTDk9XRHWf49IqKS4QQpEREp6vDhw0hISEBubm6Rc76+vrJmefz4MXbt2oXExER8+eWXuHjxIho1aoS6devKmiM1NRUbN25EUlISNm7ciBMnTsDOzg4dOnSQNQdp8/f3h4eHBywtLZWOQsWoXbs2goODYWlpCbVajdDQUE09308//RRpaWlKRyyz2DfiMjExQUxMDOrVq6c14RcbG4v3338fz549kzXPnTt3sGHDBsTHxyM/Px92dnbw9vbWeY28v6MsTZBaWVnh448/xsKFC2V/cIxKj8WLF+PChQv49NNPi51wkuv3+F11lOW+US5SlpLQdW1lkcYSUfpGpGsiElHGE1GIdD1EybJu3Trs3LkT27Zt0+w0cvv2bYwePRp9+/bF5MmTZclBRKUfJ0iJiEgxI0eOxH/+8x80b94cFSpU0DqnUqlk2+4JAGJjY9GtWzdYWVnh2rVrSEhIwOLFi3HgwAEcPXoUXbp0kSXH2bNn4eLiAmdnZxw9ehS//PILNm3ahFWrVmHfvn0YMGCALDmoqMqVK+Pq1atl4mZ4aTRnzhxs3rwZ5cuXR4UKFZCQkIDNmzdjxowZWLRoET799FOlI5ZZ7Btxubq6olatWggICICZmRmuXbuGatWqYejQoZAkCaGhobJl2bNnD/r16wdjY2PZ2vy/KEsTpCYmJoiLi4ONjY3SUUhgf5xwenMVj4iTgVSUrsc1jiVF8ZoUj+OJNpGuhyhZatSogZMnT8LBwUHreGxsLLp06YL79+/LkoOISj9OkBIRkWIqVqyIffv2wcXFReko6NatGzp16oQFCxZo3RyYNWsWTp8+jUuXLsmS4/3338ewYcMwadIkrRyrVq3Cli1bEBsbK0sOKsrb2xu5ubmYPXs2rK2tYWhoqHQk+oNDhw4hPT0dHh4eqFGjBo4fP47CwkL06dNH6WhlHvtGTL/++isGDBiAW7du4d69e2jUqBFu3boFa2trHDlyRNYbtnXq1MGDBw/g4uICDw8PuLi4FFmVIJKyNEHq7u6ONm3ayF4fnkqX9PT0d563traWJYetrS0iIyNRtWpVreMZGRlo3rw57t69K0sO0bKUhK7HNZHGElH6RqRrIhJRxhNRiHQ9RMlSs2ZNbNu2rci9pIMHD8LHxwcZGRmy5CCi0k/5iuRERFRmWVhYoHr16krHAABcvnwZmzdvLnJ8/PjxWLdunWw5rl+/XuyEsaurKz7//HPZclBRJ06cQHp6OgIDA4s9X9aeZBZR//79tb4X4eELeqV///4oLCyEnp4efv/9d2RnZ6NZs2ZKxyrzLC0tcenSJYSFhWlta9uzZ893bj+oC7dv30ZERASCg4MxY8YMeHp6wtXVFW5ubnB2doaBgYGseeh/LCwsMHfuXOzfvx/169cv8oDQtm3bFEpGIlFywuLgwYM4fvw4AODmzZuYOHFikd1pbt68iXLldH8LTKQsolF6LBGxb5S+JqIqaxOgf0ak6yFKlokTJ2LEiBGYNm0aHBwcIEkSLl++jNWrV2PJkiVKxyOiUqTsvSMjIiJhfPvtt/jkk08wefJkWFtbF7kZ27lzZ9myVK9eHYmJiUXqjV64cAE1atSQLYeNjQ0uX75c5MntY8eOceslhb1tYpSUY2tri8uXL8Pc3BxqtVqzxVNxUlNTZUxGbzp//jwGDx6MXbt2oWHDhmjVqhVycnKQnZ2N3bt3Y9CgQUpHLPO6deuGbt26KR0D7dq1Q7t27bBs2TJcvXoVBw8exLBhw1CuXDnZt0p7+vQpkpOT0bhxY+Tm5qJixYpa54OCglCzZk1ZMynlwYMH8PDw0HzPTahINF26dMHx48c1P5uSJGn9nKpUKtjb2+Prr78uU1lEo/RYImLfKH1NiEqrL7/8Eubm5ti6dSuWLFkCY2NjNG7cGLt27eIONUT0l3CClIiIFHPx4kVER0fDy8uryDm5a2nMmjULY8aMwZw5c1BYWIiwsDAEBQVh5cqV8PPzky3H4sWL4enpicjISOTn52PHjh1IS0vDvn37sHPnTtlyUFFBQUFYvXo1zMzMtI4/fPgQY8eOla1OLf3PvHnzYGpqCgCYP3++smHorT799FO4ubmhbdu2WLZsGYyMjHDz5k3s3bsXvr6+nCAlLdnZ2Th27BiCg4Pxww8/wMLCAm5ubrK1/+LFC0yePBnbt28HACQmJmLGjBl4/vw59u7diypVqgBAmaoJ/vpaEImqevXqmpV2NjY2mDFjBkxMTMp8FtEoPZaI2DdKXxOi0szb2xve3t5KxyCiUo41SImISDFVq1bFF198AW9vbyHqjIWGhsLf319rm8Fp06Zh8ODBsuaIiYnB8uXLtXJ8+umnaNu2raw5CIiIiEBSUhIAwMvLC6tXry6yiighIQHr1q3DkydPlIhIb/HixQtcv34dDRo0QKVKlZSOU6ZVqFABN27cgJWVFVq1agUnJycsW7YM6enpaNSoEZ4/f650RBJAUFAQQkJCcPLkSdSqVQtubm5wd3eHg4ODrDl8fHwQGRmJgIAAtG/fHjExMcjOzoaXlxcaNWpUZh9WOn/+PFatWoWkpCSEhoZi9+7dsLGxgbu7u9LRiIp4+vQp4uLikJeXV2RFnpw71IiW5c/IUVtZpLFElL4R6ZoQiWzhwoWYMWMGjI2NsXDhwne+1tfXV6ZURFTacQUpEREppnz58ujbt68Qk6MA0LdvX/Tt21frWF5eHs6ePSvrh2QHBwfs2LHjna/p3bs3tmzZglq1asmUqmwyNjbG/PnzNVtwLV26FPr6+przKpUKJiYm+OabbxRMSQDwyy+/YNSoUVixYgUaN26Mdu3a4caNGzAxMcGRI0fg5OSkdMQyq0aNGvjll1/w7NkzREVFYcWKFQCAU6dOwcrKSuF0JIq5c+di8ODBOHPmDOrXr4+KFSvKXgcVAEJCQvDdd9+hadOmmmNNmzbFt99+i549e8qeRwQhISHw8vLC2LFjcfToUeTl5cHAwACenp54+PAhPvnkE6UjEmns3r0b48ePL/bhG7l3qBEpiwhEGktE6RuRrgmR6E6fPg0fHx8YGxvj9OnTb32dSqXiBCkRlZxERESkkG3btkmurq5ScnKyVFBQoGgWPT096bPPPiuS486dO5Kenp5Cqd7O1NRUSklJUTpGmdK1a1fpwYMHSsegt+jatavk4eEhZWVlScuWLZNq1qwp3blzR/Lz85NatGihdLwybfXq1VL58uWlChUqSI6OjpIkSdKSJUskQ0NDaffu3QqnI1EUFBRIixYtkszNzSV9fX0pJSVFGjp0qDR+/HjpxYsXsuWoWLGiFBcXJ0mS9t/ay5cvS5UqVZIth0iaNWum+V1985rs3r1bqlu3rpLRiIqoU6eONHXqVOnJkydKRxEqiyRJ0pMnT6SrV69KL168kB4/flzkfHBwsJSdna2z9kUaS0TpG5GuCRERUVnELXaJiEgxarUaGRkZyM/PL/a8nE9V6+npwdraGpaWlti/f79mZWZmZiZq1aqFwsJC2bKUhBxbYBGVJsbGxoiLi4NarUanTp3QrFkzrF+/ntu4CiIqKgrp6eno1asXKlSogIsXL6JChQqyb59K4lq0aBH27NkDf39/uLm54fr160hJScH48ePRp08frFmzRpYcw4cPx7Nnz7Bjxw7Url0b165dAwAMGTIEtra22L17tyw5RGJsbIzY2FjY2tpqvf9ITk5G06ZNkZOTo3REIg0TExPExcXBxsZG6SjCZClpbWVdE2ksEaVvRLomRKVNcnIyIiMji2yTrVKpMHz4cAWTEVFpIv+eRURERP9fYGAgTp48ibCwsGK/5KRSqfDf//4XlpaWaN68OU6dOqV1jigqKgqdOnWCkZER9PX1i3yRsipXrow7d+7g9u3biIiIQJ8+fQC86rcaNWoonI5atGiB+vXr4/vvv0d2djbee+89NGvWTOlYJJDt27cjICAAffr00Wyt26NHDwQFBWH//v2y5Vi3bh309PRQpUoVZGdno1WrVqhbty6qVKmCtWvXypZDJPb29vjhhx80379+XxQUFAR7e3ulYhEVq2/fvggODlY6BgBxsnz22WeIi4tDVFQUKlSoAABYsGAB7t27Bx8fH9lyiDSWiNI3Il0TotLE398fDRo0wKRJk+Dr64t58+ZpfRERlRRrkBIRkWK6dOlSotdVrFgR0dHROl0tKUkSTE1NsXfvXqxZswZ9+/bFrFmzMHHiRJ21SaXLqFGjUKlSJRw4cAAVK1ZUOg79gaenJ1xdXVG+fHmo1Wr07NkTmzZtwowZM7Bo0SKl45VpDx8+xKBBgxAeHg5JkpCUlISpU6ciJSUFx48fh7W1tdIRSQCZmZmoXbt2keNVqlTBs2fPZMtRqVIlBAcHIzU1FfHx8cjPz4ednR0aNmwoWwbRrFixAn379kVYWBhevnyJJUuWICkpCZGRkQgNDVU6HpEWCwsLzJ07F/v370f9+vVhaGiodX7btm1lLosotZVFGktE6RuRrglRabJs2TIsXboUM2bMUDoKEZVynCAlIiLhyb0bvI+PD1q3bo3Bgwfj7NmzsrZN4kpISMD169dRr149paNQMfz8/NCmTRukp6fDw8MD+vr6sLKywr59+zSrSUkZPj4+MDExwb1791CnTh0AwNatWzF8+HD4+Pjg8OHDCickEXTv3h3+/v4ICAgA8GoVzdOnTzFnzhw4OTnJliM3NxdffvklrK2tNQ9JtWrVCj169MCiRYtgYGAgWxZRdOrUCQkJCdiwYQMA4P79+2jXrh127twJKysrhdMRaXvw4AE8PDw03ytZVUqULE+fPoWxsXGR44WFhW8tdaILIo0lovSNSNeEqDR58eIFBgwYoHQMIvoXYA1SIiISnhz1NtVqNSIjI2Fubq45lpmZCXd3d5w5c4Y1SAnt2rXDnDlz0LdvX6Wj0DskJSUhPj4eBQUFsLOzQ+PGjZWOVOZVr14d4eHhsLe31xq7fvnlF7Rv3x6PHj1SOiIJ4Ndff8WAAQNw69Yt3Lt3D40aNcKtW7dgbW2NI0eOyFYnbvz48fjpp5/w7bffokOHDgCAw4cPY+7cuejevTtWr14tSw6R7NmzB/369St2goWIxCdKbWWOJUXxmhD9Pd7e3jA2Noa/vz9LIhHR/wknSImISHhKTgYWFhbi9u3bwm0ByQlS+W3cuBHz58+Hl5cX6tWrV2QrrhEjRiiUjADg0aNH8PLywpEjR1C5cmUUFBTg6dOn6NKlCw4dOoRKlSopHbHMql69Or7//nu0atVKa+w6c+YMBg4ciKysLKUjkkDCwsK0trbt2bOnpiapHKpXr44ff/wRzZs31zoeGRmJ3r17IzMzU7YsoqhTpw4ePHgAFxcXeHh4wMXFBUZGRkrHInqr8+fPY9WqVUhKSkJoaCh2794NGxsbuLu7l8ksjx8/xqhRo3D48GEUFhaicuXKePToEZydnbFr1y5UrVpVlhyijSUi9I1o14SotBg2bBgOHDiAatWqQa1WF/lsHhYWplAyIiptuMUuERGVWaNGjcLq1athZmaGUaNGvfO1ctWhmTdvHjw8PP601llQUBBq1qwpSyZ6ZenSpTA2NsZ//vOfIudUKhUnSBXm4+ODX3/9Fb/88gvs7OwAAL/88gs8PT0xbdo0bN26VeGEZdeQIUMwZcoUBAQEQKVSITs7G6dPn8aECRPg5uamdDwSTLdu3dCtWzfF2pckCS9evCj2+MuXLxVIpLzbt28jIiICwcHBmDFjhqbms5ubG5ydncvktsMkrpCQEHh5eWHs2LE4evQo8vLyYGBgAE9PTzx8+BCffPJJmcsiSm1lkcYSUfpGpGtCVJrUr18fc+bMUToGEf0LcAUpEREJT1erJb28vLBmzRqYmZnBy8vrna/dvn37P9r22/Tt2xc//vgj7Ozs4O7uDnd3d6jValnaJirNKleujFOnTqF169Zaxy9duoQPP/wQ9+/fVygZvXz5Ep9//jnWr1+vmWDS19fH2LFjsXz5clSoUEHhhET/M378eFy4cAEbNmxAy5YtAQAxMTHw8fGBg4MDH7YAcPXqVRw8eBDr169HuXLlOL6SUBwcHDBr1iwMGTJE6zPEnj174Ovri+Tk5DKXRdTaykqOJaL0zR9xfCUiIpIXV5ASEZHwdFVT4s1JT7kmQP9MaGgonjx5gkOHDuHAgQNYsGABHBwc4OHhgcGDB6N27dpKRyzTHj9+jF27diEpKQlffPEFLl68iMaNG3OrYwEYGRkVuw2nnp4eCgoKFEhErxkaGmL58uVYvHgxUlNTkZ+fj7p168LU1FTpaERFrFy5EqNHj0a3bt009cf19PQwcuRIrFq1StlwCsvOzsaxY8cQHByMH374ARYWFlwFTsJJSkrC+++/X+S4o6MjfvvttzKZxcfHR1Nb+TVfX1/MnTsXOTk5stdWFmEsEaVvXhPhmhCVJqLsAEZEpR8nSImISHi62uxg4cKFJX6tr6+vTjIUp2LFihg5ciRGjhyJx48fY9myZZgzZw5mzJiBTp06Ydy4cfDw8JAtD70SGxuLbt26wcrKCteuXYOPjw9CQkLg4eGBo0ePokuXLkpHLNNcXV3h7e2N3bt3o27dugBe3fyaPHkyevfurXA6evr0KeLi4pCXlwdJknD16lXNuc6dOyuYjEibsbEx9u7di40bNyI5ORkGBgawtbWFmZmZ0tEUExQUhJCQEJw8eRK1atWCm5sbzpw5AwcHB6WjERVhb2+PH374QbNF6usHLYOCgmBvb18ms4SEhBSprfzRRx/BwsICvXv3lm2CVKSxRJS+EemaEJUmf7xHlJ+fj9TUVERFRWHy5MkKpSKi0ohb7BIRkaJycnKwa9cuxMfHo6CgAHZ2dnBzc4O5ubnmNVlZWTA3Ny92ddj/hZOTU4lep1KpEBYW9o+2/WciIiJw4MABBAcH4+HDh/joo4/g5uaG33//HUuWLEHnzp2xY8cOWTOVdd26dUOnTp2wYMECra24Zs2ahdOnT+PSpUtKRyzTHj16hH79+uHcuXOoXLmy5pizszN27NihNaaQvHbt2oUJEybg+fPnRc6pVCqu8CXhZGVlITExUfOzKUkScnNzERUVhVmzZimcTn6WlpYYPHgw3N3dUb9+fVSsWBF6eno62+GD6P/i3Llz6Nu3L3r06IEjR45g+PDhSEpKQmRkJEJDQ2WtcSxKlmrVquHo0aNFVkxevnwZPXv2xMOHD2XJIdJYIkrfiHRNiP4N/P39cf36dd4rIaIS4wQpEREpJjY2Fs7OztDX10fr1q1RUFCAK1euIDc3F+Hh4WjcuLHSEWU3depUhISE4O7du/jwww/h4eEBV1dXGBkZaV6zb98+jBkzBs+ePVMwadljZmaG6Oho1K1bV2uCNDU1FU2bNkV2drbSEQnAtWvXkJCQACMjI9jZ2cHOzk7pSGWelZUVPv74YyxcuLBMr8Kj0mHz5s2YNGkS8vLyoFKpNCsUVCoVHB0dERERoXBC+RUWFsLPzw+rVq3Co0ePkJiYCF9fX5iammL16tUoX7680hGJtNy5cwcbNmxAfHw88vPzYWdnB29vb1hZWZXJLKLUVhZtLBGhb0S7JkSl3c2bN9GkSRPeKyGiEuMEKRERKaZ79+6wsrLC5s2bUa7cq13f8/PzMWbMGGRkZODkyZOy5omOjkZcXFyxK0Y2btwoS4aePXvCw8MDAwYMQKVKlYp9TUpKCtLS0vDBBx/IkolesbW1xfr16/Hhhx9qTZDu2rULvr6+SE1NVTpimWZra4vIyEhUrVpV63hGRgaaN2+Ou3fvKpSMTExMEBcXBxsbG6WjEP0ptVoNT09PzJ49G2q1Gj///DOePn2KESNGwM3NDTNnzlQ6ouwWLVqEPXv2wN/fH25ubrh+/TpSUlIwfvx49OnTB2vWrFE6IpHGnj170K9fPxgbGysdRZgsz58/x+jRo3Hw4MFiayvLVRNcpLFElL4R6ZoQlXbZ2dlYsmQJ9u7di7S0NKXjEFEpwQlSIiJSjLGxMaKiooqs8EpISEDr1q1lfepv4cKFmD9/PmrWrInMzExYWFggMzMT+fn56N+/Pw4ePChbFgD45ZdfEB8fDz09PTRr1kxTU5GUExAQgIULF2LOnDn47LPPsHr1aty+fRurVq3CkiVLMGnSJKUjljkHDx7E8ePHAQCBgYFwc3NDhQoVtF5z8+ZNJCQkICMjQ4mIBMDd3R1t2rTB9OnTlY5C9KcMDQ2RmJgIGxsb9OnTByNHjsSgQYPw008/YdSoUUhMTFQ6ouxsbW0RGBiIzp07az0gdO7cOQwaNAh37txROiKRRp06dfDgwQO4uLjAw8MDLi4uWjuxlNUswKvSA0rWVhZpLBGlb0S6JkSlydu2ojYyMsKWLVvg4eGhQCoiKo3+2WJuREREf0GtWrWQnJxc5HhycjIqVqwoa5aAgABs2rQJGRkZqFOnDsLDw5GZmYkePXqgXr16suW4e/cuOnXqhCZNmmD8+PEYNWoUGjRogA8//BCPHz+WLQcVNX78eGzatAn/+c9/YGxsjJkzZ+KHH37QbMdI8uvSpQsAaLbAlCRJ6wsA7O3t8d133ykVkQBYWFhg7ty5aNu2LYYNG4ZRo0ZpfRGJ5L333kNWVhYAoGHDhoiKigLw6uf4t99+UzKaYjIzM1G7du0ix6tUqcIt7Eg4t2/fxqlTp2BtbY0ZM2bgvffew7BhwxAaGoq8vLwymyUrKwtxcXF4/vw5Hj9+jKtXr+LkyZP45ptvZMsg0lgiSt+IdE2ISpPTp08jLCxM83X69GmcP38ed+7c4eQoEf0lXEFKRESK8ff3x4oVK7B48WI4OjoCAC5evAhfX1+MHTsWCxculC1L+fLlkZSUBCsrK/Tv3x8DBw7E0KFDceXKFQwcOFC2LVr69OmD58+fY9u2bZrtKJOTkzF69GhYWFhgz549suSgon777TdYWFgoHYPeolu3bggNDYWJiYnSUegPvLy83nl++/btMiUh+nPTpk3DiRMnsHXrVjx//hzDhw/HunXrEBoaiujoaERHRysdUXaurq6oVasWAgICYGZmhmvXrqFatWoYOnQoJElCaGio0hGJ3urq1as4ePAg1q9fj3LlyuH+/ftlLosotZVFHkuU6huRrwnRv0HFihURHR0NW1tbpaMQkaDKKR2AiIjKrhkzZiA7OxuzZs3CgwcPAAA1atTAtGnTZN+K0cLCAqmpqbCyskKjRo1w9epVDB06FBUrVpS1dmF4eDh+/vlnrVp99erVw9q1a9GxY0fZclBRVlZW6NChA9zd3TFo0CBUr15d6Uj0hpiYGKSkpKBZs2ZKR6E/GD58ODp16gQDAwOloxD9qW+++QaVK1fGvXv34OrqitGjR2PChAkwNzcvs5P5GzZswIABA1CzZk3k5OTA1dUVt27dgrW1NY4cOaJ0PKJiZWdn49ixYwgODsYPP/wACwsLuLm5lcksfn5+mDNnTrG1lQcMGCBbDhHHEqX7RsRrQvRvwnVhRPRnuIKUiIiEcPfuXRgZGcm+te5rfn5+WLNmDbZv3w5zc3N88MEHmDdvHk6dOoUnT57g/PnzsuRwcHDA7Nmzi2wLExoais8//xyxsbGy5KCikpKSEBwcjIMHD+LatWvo3Lkz3N3d8fHHH6NKlSpKxyvzunTpgmHDhmHs2LFKR6E/sLS0xJMnT9C1a1c4Ozvjww8/hFqtVjoWUbH8/f3h4eEBS0tLpaMIJywsDPHx8cjPz4ednR169uwJPT1W7SGxBAUFISQkBCdPnkStWrXg5uYGd3d3ODg4lNksotVWFmEsEaVvXhPhmhD9G71Z25eIqDicICUiIlnt2LEDbm5uKF++PHbs2PHO144YMUKmVK/s2LED1tbW6NKlC7Zs2YKAgACYm5tj9erVsLOzkyXD6tWrMX/+fIwePRrt27eHgYEBoqOjsXr1anh6emqtjpP7+tD/3Lx5EyEhIfjuu+9w5coVODk54ejRo0rHKtP69++PI0eOoEaNGrCxsYGRkZHW+bCwMIWSEQDExcXhv//9L06dOoUzZ86gRo0amsnSDz/8UOl4RBqVK1dGVFQUJ/GJSilLS0sMHjwY7u7uqF+/PipWrAg9PT2oVKoym8XS0hKHDh1CmzZtMGPGDBgaGsLPzw9paWlo0qQJsrOzZc0jAlH6hoh0ixOkRPRnOEFKRESyUqvViIyMhLm5+TtvPqpUKqSmpsqYTAwlvSFbVq+PKO7cuYNDhw7h6NGjOHv2LNq0acMJOIUtWLDgnefnzZsnUxL6M1evXsWyZcvwn//8BwBQUFCgcCKi//H29kZubi5mz54Na2trGBoaKh2JiP6CwsJC+Pn5YdWqVXj06BESExPh6+sLU1NTrF69GuXLly9zWVhbuShR+oaIdIsTpET0ZzhBSkREQsrKypK1xuPvv/+OpUuXIiEhAbm5uUXOc/KL0tPTERISguDgYPz8889o06YN3NzcMHjwYNSqVUvpeETCOnPmDM6fP4/z588jIiICKpUK7du3R6dOndCpUye0a9dO6YhEGmq1Gunp6cWuIlKpVMjPz1cgFRGV1KJFi7Bnzx74+/vDzc0N169fR0pKCsaPH48+ffpgzZo1ZS5LXl4evvrqKzRv3hyurq744osvNDvlbN++vUz+HRalb4hItzhBSkR/hhOkRESkGH19fdy5c6fIRGh6ejrs7e3x7Nkz2bJ07twZv//+Oz7++GNUqFChyHk5V5/9/vvvWLduHeLj41FQUICGDRtizJgxqF+/vmwZqCg9PT00b95cU6PI2tpa6Uj0hlGjRr3z/LZt22RKQn+kp6cHPT09fPjhh5g+fTq6dOnCLexIWGq1GmvWrClSE/3+/fsYN24c7t27p1AyIioJW1tbBAYGonPnzlo3xs+dO4dBgwbhzp07ZS4LaysXJUrfEJFuVaxYEdHR0ZwgJaK3Kqd0ACIiKlt27tyJ7du3AwAkSUL//v2LbF+XkZEh+4q8K1euICIiQqvGpxLOnTsHFxcXNG3aFO3atUNBQQHOnDmDtWvX4scff0SHDh0UzVeWxcfHy1aLlv66Pz7zl5+fj9TUVERFRWHy5MkKpSLg1bh29uxZnD17Fv369YOFhQU6deqEjh07omPHjrCxsVE6IpVxERERSEpKAgDcunUL6enpRSZIExIS8PLlSyXiEdFfkJmZidq1axc5XqVKFVkfvhQpy5IlSzBw4EDZ2isNROkbItItrgsjoj/DFaRERCSrZ8+eYcWKFZAkCQsWLMD06dNhamqqOa9SqWBiYoL+/fvL+pRf9+7dMXHiRAwYMEC2Novj6OiI7t2746uvvtI6Pnv2bJw9exYXLlxQKBkBwPnz57Fq1SokJSUhNDQUu3fvho2NDdzd3ZWORm/h7++P69evY8eOHUpHIbyq+XX16lVs3rwZQUFByMvLYw1SUlxMTAz69+8PSZKQnp4OS0tL6Ovra86/fm/i7e2NTz75RMGkRPRnXF1dUatWLQQEBMDMzAzXrl1DtWrVMHToUEiShNDQ0DKXhbWVixKlb4jo78vJycGuXbs0O2/Z2dnBzc0N5ubmmtdkZWXB3Nwcenp6CiYlIpFxgpSIiBQTFBQEd3d3lC9fXukouHnzJjp06IAePXrAxsamyBtoX19fWXIYGxsjJiamyHa6SUlJcHBwwPPnz2XJQUWFhITAy8sLY8eOxfr16xEXF4dDhw5h7ty5WLlyJW+aC+rmzZto0qQJVwMo7JdffkF4eDjCw8Nx5swZFBQUoHv37ujVq9efbo9MJCcnJyeEhISgSpUqSkchor/h119/xYABA3Dr1i3cu3cPjRo1wq1bt2BtbY0jR47IumuBKFlYW7koUfqGiP6e2NhYODs7Q19fH61bt0ZBQQGuXLmC3NxchIeHo3HjxkpHJKJSghOkRESkqOjoaMTFxWlWEEmShNzcXERFRWHjxo2y5Rg6dCgOHjyIFi1aFKlBqlKpEBYWJkuOxo0bY+7cuRg6dKjW8V27dsHX1xepqamy5KCiHBwcMGvWLAwZMkSrVtGePXvg6+uL5ORkpSPSH2RnZ2PJkiXYs2cPbt68qXScMqtGjRp49OgRHB0d0atXL/Ts2RNt2rRhHVIiItKZsLAwxMfHIz8/H3Z2dujZs6diK4iUzsLaym+ndN8Q0d/TvXt3WFlZYfPmzShX7lUFwfz8fIwZMwYZGRk4efKkwgmJqLRgDVIiIlLMwoULMX/+fNSsWROZmZmwsLBAZmYm8vPz0b9/f1mzfPfddzh58iS6dOkia7t/9Nlnn2HChAlISEiAo6MjAODixYtYu3Yt/Pz8FM1W1iUlJeH9998vctzR0RG//fabAonoTXp6esVOuBkZGWHLli0KJKLXAgIC0L17d5iZmSkdhYiIyohu3bqhW7duSscAoEwW1lYuGZF+Toio5CIiIrBhwwbN5CgAlCtXDrNnz0br1q0VTEZEpQ0nSImISDEBAQHYtGkTxo0bBxsbG4SFhaFq1apwd3dHvXr1ZM1ibW0NExMTWdssjqenJwBg7dq1WL58OYyMjGBnZ4etW7di0KBByoYr4+zt7fHDDz9ottJ9PRkXFBQEe3t7JaMRgJUrV6J58+aa71UqFQwNDdG4cWP4+vrCw8NDuXBlXL9+/Vi/l4iISEbGxsaYP38+JEmCJElYunRpsbWVv/nmGwVTEhH9PbVq1UJycjLs7Oy0jicnJxd5GISI6F04QUpERIq5d+8enJ2dAQAtWrRAREQEhg4diiVLlmDgwIH4+uuvZcuycOFCjBw5EtOmTYNardZ6EhEAOnfuLEsOf39/eHh4aCZKSRwrVqxA3759ERYWhpcvX2LJkiVISkpCZGQkQkNDlY5X5i1YsABHjx5F+/btNcd27dqFAQMGoHz58li1apVy4cq4N+v3Hj16FHl5eTAwMICnpycePnzI+r1ERET/MAcHB01pDtZWJqJ/mwkTJmDMmDFYvHix1s5bvr6+GDt2rMLpiKg0YQ1SIiJSjK2tLbZt24auXbtizpw5yM3NxfLly5GUlITmzZsjOztbtizvqjWjUqk0NVJ1rXLlyrh69SpsbW1laY/+mszMTKxfv16rVpG3tzesrKyUjlbmrV27FnPnzsX+/ftRp04deHt7IzIyEp999hlmzZoFIyMjpSOWWazfS0RERERE/xRJkrBgwQKsW7cODx48AADUqFED06ZNw/Tp01lLmIhKjBOkRESkmK+++gqrV6/G9u3bYW5ujg8++ADz5s3DqVOn8OTJE5w/f162LMnJybJv61scb29v5ObmYvbs2bC2toahoaHSkegvatq0KY4fP446deooHaXMOXjwIEaNGoXc3Fz069cP/v7+nLwWgLGxMWJjY2Fra6s1QZqcnIymTZsiJydH6YhERERERFQK3b17F0ZGRtxal4j+Fm6xS0REisnIyIC3tzeMjY3h6OiIFStWICAgAObm5ti2bZusWTp27Ihjx46hVatWsrb7RydOnEB6ejoCAwOLPS/XSlb6+27evIm8vDylY5QJt27d0vre0dERGzZswLhx4zRb7b5+DSdKlcP6vURERERE9H+xY8cOuLm5oXz58tixY8c7XztixAiZUhFRaccVpEREpJiqVaviypUrUKvVSkdB8+bN4efnBxcXF0VznDlz5p3nu3TpIlMS+rveXCFHuqWnp6eZbHvT67e3KpUKkiTJuk02FXXu3Dn07dsXPXr0wJEjRzB8+HCt+r3dunVTOiIREREREQlMrVYjMjIS5ubm77yHpFKpNDWYiYj+DFeQEhGRYqZNm4aJEyfi008/hbW1dZEagXKu+GrRogU++ugjtGnTBjY2NkWyyLWiNSgoCKtXr4aZmZnW8YcPH2Ls2LGcICV6Q1pamtIRqAQ6deqEGzduYP369QCA+/fvo127dti5cydX9hIRERER0Z9687Pfuz4HZmVlyRGHiP4luIKUiIgUo6enp/X965VgSqz48vLyeuf57du366ztiIgIJCUlaXKsXr26SP2MhIQErFu3Dk+ePNFZDvpncAUpkbZff/0VlpaWRY4XFhZizZo1mDp1qvyhiIiIiIioVNLX18edO3dQvXp1rePp6emwt7fHs2fPFEpGRKUNJ0iJiEgx6enp7zxvbW0tUxJlxcTEoH///pAkCenp6bC0tIS+vr7mvEqlgomJCby9vTU1/EhcnCAl0mZjY4Mff/wR9evX1xz76aef4O3tjVu3buHRo0fKhSMiIiIiIuHt3LlT8+B6eHg42rdvD0NDQ63XZGRkoKCgQPMAOhHRn+EWu0REpBjRJkAPHz6MpUuXIj4+HgUFBbCzs8OkSZMwYsQInbbr4OCgqZHh5OSEkJAQVKlSRadtku4UVxOTqCwbMGAAOnbsiO+//x4WFhaYPn069u7di+HDh+PHH39UOh4REREREQmuf//+SEtLgyRJCA8PR7t27WBqaqo5//rB8v79+yuYkohKG06QEhERAQgICMD06dMxefJkzJ49GwUFBbhw4QImTpyIly9fYsyYMbLkOH36tCztkO5wcw4ibStWrIClpSWcnJygp6cHOzs7XLhwAY6OjkpHIyIiIiKiUsDU1BS+vr4AXu1Q4+7ujvLlyyuciohKO26xS0REBKBu3bqYN29ekdWiQUFB8PPzw40bN2TJERUVBR8fH1y+fBl5eXlFzstZl5WKFxcXh8TERPTs2ROZmZlQq9Vaq0YjIyPh4OAAAwMDBVMSiWf//v3w8vLCrl27+GQ3ERERERH9bdHR0YiLi9PcI5EkCbm5uYiKisLGjRsVTkdEpQVXkBIREQHIzMxEu3btihxv3749bt26JVuOUaNGoVKlSjhw4AAqVqwoW7v05x4+fIhBgwYhPDwcAJCYmIipU6ciJSUFx48f12wZ3bp1awVTEolBT0+v2O2mJUnCwIEDtY7xwQ8iIiIiIiqphQsXYv78+ahZsyYyMzNhYWGBzMxM5Ofn80FMIvpLOEFKREQEoEWLFtixYwcWLVqkdTwwMBCNGzeWLUdCQgKuX7+OevXqydYmlYyPjw9MTExw79491KlTBwCwdetWDB8+HD4+Pjh8+LDCCYnE8cftwgsLC1FYWIhy5crht99+Q7ly5fDgwQM0atRIoYRERERERFQaBQQEYNOmTRg3bhxsbGwQFhaGqlWrwt3dnfdSiOgv4Ra7REREACIiItC9e3e0bNkSbdu21RyLjo7GsWPH4OTkJEuOdu3aYc6cOejbt68s7VHJVa9eHeHh4bC3t4eZmRliYmJga2uLX375Be3bt8ejR4+UjkgkpPPnz2Pw4MHYtWsXGjZsiFatWiEnJwfZ2dnYvXs3Bg0apHREIiIiIiIqJcqXL4+kpCRYWVmhf//+GDhwIIYOHYorV65g4MCBSEtLUzoiEZUSXEFKRESEVxOTV69exebNm5GQkAAjIyN07doV+/fvh6WlpWw5RowYgTFjxsDLywv16tWDoaFhkfOknBcvXhQ5lpWVxXqjRO/w6aefwt3dHW3btsWyZctgZGSEmzdvYu/evfD19eUEKRERERERlZiFhQVSU1NhZWWFRo0a4erVqxg6dCgqVqyIu3fvKh2PiEoRriAlIiIC8OjRIyxfvhyXL1/Gy5cvIUmSVv28sLAwWXKo1eq3nlOpVEhNTZUlBxU1ZcoUXLlyBQEBAWjXrh3Onz+Pe/fuYcKECejRowfWrVundEQiIVWoUAE3btyAlZUVWrVqBScnJyxbtgzp6elo1KgRnj9/rnREIiIiIiIqJb766iusXr0a27dvh7m5OT744APMmzcPp06dwpMnT3D+/HmlIxJRKcEVpERERACGDx+Oy5cva546VAq3ghGXv78/Pv/8c7Rq1QovX75E8+bNoaenh7Fjx8Lf31/peETCqlGjBn755Rc8e/YMUVFRWLFiBQDg1KlTsLKyUjgdERERERGVJhkZGfD29oaxsTEcHR2xYsUKBAQEwNzcHNu2bVM6HhGVIlxBSkREhFcrnM6ePYs2bdooHQWPHz/Grl27kJSUhC+++AIXL15E48aNYWtrq3Q0ApCTk4PU1FTk5+ejXr16MDExUToSkdDWrFmDzz77DHp6emjatCl+/vln+Pn5YcGCBdi+fTuGDBmidEQiIiIiIiolqlatiitXrrxzBy4iopLgBCkRERGAevXq4T//+Q9atWqlaI7Y2Fh069YNVlZWuHbtGhISErB48WIcOHAAR48eRZcuXRTNV5Y9ePAAEyZMQJMmTeDr6wsAqFOnDjp06ICAgABUqlRJ4YRE4oqOjsbNmzfRq1cvVKhQARcvXkSFChXg4OCgdDQiIiIiIipFFi9ejAsXLuDTTz+FtbU1jIyMtM5zlxoiKilOkBIREQE4dOgQvvrqKyxcuBD16tWDoaGh1nm53mB369YNnTp1woIFC2BmZoaYmBjY2tpi1qxZOH36NC5duiRLDipq8ODByMzMREBAABo2bAjg1aTP1KlTYW1tjaCgIIUTEhEREREREf276enpaX2vUqkAAJIkQaVSoaCgQIlYRFQKcYKUiIgI2m+wX7+5BuR/g21mZobo6GjUrVtXa4I0NTUVTZs2RXZ2tiw5qKjKlSvj4sWLmsnR1+Li4tCpUyc8ePBAoWREREREREREZUN6evo7z1tbW8uUhIhKu3JKByAiIhJBWlqa0hEAANWrV0diYiLq1q2rdfzChQuoUaOGQqkIAIyNjXH79u0iE6RZWVkwMDBQKBURERERERFR2cEJUCL6p3CClIiICOK8wZ41axbGjBmDOXPmoLCwEGFhYQgKCsKqVauwZMkSpeOVaZ6enhg1ahT8/PzQsmVLAEBMTAy+/PJLjBgxQuF0REREREREREREVFLcYpeIiEgwoaGh8Pf3R3x8PPLz82FnZ4dp06Zh8ODBSkcr0woKCvDFF19gy5YtuH//PgCgWrVq8PHxwezZs1GuHJ87IyIiIiIiIiIiKg04QUpERCSQ3377DRYWFkrHoD9x7949GBgYoFKlSkpHISIiIiIiIiIior+IE6REREQC0dfXR4cOHeDu7o5BgwahevXqSkeiNyQnJyMyMhJ5eXn441sobrNLRERERERERERUOnCClIiISCBJSUkIDg7GwYMHce3aNXTu3Bnu7u74+OOPUaVKFaXjlWn+/v6YNWsWqlatCjMzM61zKpUKqampCiUjIiIiIiIiIiKiv4ITpERERIK6efMmQkJC8N133+HKlStwcnLC0aNHlY5VZtWoUQMzZ87EjBkzlI5CRERERERERERE/wd6SgcgIiKi4hkZGaFChQowMzODnp4enj9/rnSkMu3FixcYMGCA0jGIiIiIiIiIiIjo/4gTpERERAJJT0/HypUr0bFjR9SpUwc7d+5Ez549kZiYiLCwMKXjlWlDhw7Fhg0bitQeJSIiIiIiIiIiotKFW+wSEREJRE9PD82bN4ebmxvc3d1hbW2tdCT6/4YNG4YDBw6gWrVqUKvVMDQ01DrPCWwiIiIiIiIiIqLSoZzSAYiIiOh/4uPjYWdnp3QMKkb9+vUxZ84cpWMQERERERERERHR/xFXkBIREQnm/PnzWLVqFZKSkhAaGordu3fDxsYG7u7uSkcjIiIiIiIiIiIiKvVYg5SIiEggISEhcHFxgbW1NW7cuIG8vDwYGBjA09MTGzduVDpembd79260bt0alStXRmpqKqZOnYqvv/5a6VhERERERERERET0F3CClIiISCALFizAxo0bsWzZMpQr92on/OnTp2Pbtm1Yvny5wunKto0bN2LmzJnw9PTEy5cvAQCtW7eGv78/FixYoHA6IiIiIiIiIiIiKilOkBIREQkkKSkJ77//fpHjjo6O+O233xRIRK+tWbMGmzdvxqRJk6Cvrw8AGDZsGHbu3IktW7YonI6IiIiIiIiIiIhKihOkREREArG3t8cPP/yg+V6lUgEAgoKCYG9vr1QsApCeno5GjRoVOV63bl3cv39fgURERERERERERET0d5RTOgARERH9z4oVK9C3b1+EhYXh5cuXWLJkCZKSkhAZGYnQ0FCl45Vp77//Pnbs2IH58+cDeDV5LUkSli1bBkdHR2XDERERERERERERUYmpJEmSlA5BRERE/5OZmYn169cjPj4e+fn5sLOzg7e3N6ysrJSOVqbFxsbCxcUFNWrUQHR0ND744AMkJibi+fPnOHHiBJo3b650RCIiIiIiIiIiIioBTpASERGVQk2bNsXx48dRp04dpaOUKS9evMDu3buRkJCgmbweNmwYTE1NlY5GREREREREREREJcQJUiIiolLIzMwMMTExsLW1VToKERERERERERERUanCGqREREREJaBWq6FSqd56PjU1VcY0RERERERERERE9HdxgpSIiIioBObPn6/1fX5+PlJSUhAYGIhFixYpE4qIiIiIiIiIiIj+Mm6xS0REVApxi11xHDlyBMuWLcPZs2eVjkJEREREREREREQloKd0ACIiIqLSrHHjxrh8+bLSMYiIiIiIiIiIiKiEuMUuERFRKfSuWpikG8WtEH369CnWrl2LJk2aKJCIiIiIiIiIiIiI/g5OkBIREZVC3CFffl27di1yzNDQEG3atMHmzZvlD0RERERERERERER/CydIiYiIBBQXF4fExET07NkTmZmZUKvVWqtGT58+jTp16iiYsOwpLCxUOgIRERERERERERH9A1QSl6AQEREJ4+HDhxg0aBDCw8MBAImJiZg6dSpSUlJw/PhxWFtbKxuwDLt161aJX2tlZaXDJERERERERERERPR/wQlSIiIigQwfPhxPnjxBUFAQ6tSpg5iYGJiZmWH48OEoX748Dh8+rHTEMktPT0+zivf126c/1oKVJAkqlQoFBQWy5yMiIiIiIiIiIqKS0VM6ABEREf3P999/Dz8/P1SuXFlzrHr16lixYgXOnDmjXDDC/v370bBhQxw5cgT379/Hs2fPcObMGTg4OOCbb75Bamoq0tLSkJqaqnRUIiIiIiIiIiIiegfWICUiIhLMixcvihzLysqCgYGBAmnotenTp2Pv3r1o37695ljHjh2xefNm9O3bFzNmzFAwHREREREREREREZUUV5ASEREJZMiQIZgyZQri4uKgUqmQnZ2N06dPY9y4cXBzc1M6Xpn25MkTFFeZ4OHDh3j58qUCiYiIiIiIiIiIiOjv4AQpERGRQPz9/dG2bVu0atUKz549Q/PmzdGzZ090794d/v7+Sscr04YPH47hw4djz549iIuLQ2xsLLZv3w5PT094e3srHY+IiIiIiIiIiIhKSCUVtxSCiIiIFJWTk4PU1FTk5+ejXr16MDExUTpSmZeXl4e5c+di+/btuH//PgCgTp06mDlzJiZOnAiVSqVwQiIiIiIiIiIiIioJTpASEREJ5MGDB5gwYQKaNGkCX19fAK8m4Tp06ICAgABUqlRJ4YQkSRLu3bsHY2NjTlwTERERERERERGVQtxil4iISCATJkxAZmYmBg8erDkWGhqKO3fuwMfHR8FkBACpqan47LPPMHbsWDx58gTbtm3D+fPnlY5FREREREREREREfwEnSImIiARy8uRJBAQEoGHDhppjzZs3x/r16xEaGqpgMjp79iyaNWuGtLQ0fP/998jJyUFCQgKcnJwQEhKidDwiIiIiIiIiIiIqIU6QEhERCcTY2Bi3b98ucjwrKwsGBgYKJKLXPvvsM3z99dc4ePCgpi+WLl2KpUuXarZDJiIiIiIiIiIiIvFxgpSIiEggnp6eGDVqFHbu3Im4uDjExcVhz549GD16NEaMGKF0vDLt+vXrcHFxKXLc1dUVKSkpCiQiIiIiIiIiIiKiv6Oc0gGIiIjofxYtWgRJkjBt2jTcv38fAFCtWjX4+Phg9uzZCqcr22xsbHD58mXY2tpqHT927BhsbGyUCUVERERERERERER/mUqSJEnpEERERFTUvXv3YGBggEqVKikdhQAcOnQInp6eGDduHNatW4dZs2YhLS0N+/btw86dOzF48GClIxIREREREREREVEJcIKUiIhIMMnJyYiMjEReXh7++Gea2+wqKyYmBsuXL0d8fDzy8/NhZ2eHTz/9FG3btlU6GhEREREREREREZUQJ0iJiIgE4u/vj1mzZqFq1aowMzPTOqdSqZCamqpQMipOVlYWqlWrBpVKpXQUIiIiIiIiIiIiKiE9pQMQERHR/yxbtgxLly7FvXv3kJaWpvXFyVFlZWRkwN3dHdHR0Xjx4gW6dOmCmjVrwsbGBjExMUrHIyIiIiIiIiIiohLiBCkREZFAXrx4gQEDBigdg4rxySefICsrC+bm5ggMDMT169dx4cIFuLq6YvLkyUrHIyIiIiIiIiIiohLiFrtEREQC8fb2hrGxMfz9/bltq2DMzMxw5coVNGjQAL169ULt2rWxfft2pKWlwd7eHs+fP1c6IhEREREREREREZVAOaUDEBER0f88efIEW7duxd69e6FWq2FoaKh1PiwsTKFkZGRkhJycHDx8+BDh4eHYs2cPACAtLQ1Vq1ZVOB0RERERERERERGVFCdIiYiIBFK/fn3MmTNH6RhUjH79+sHNzQ0VKlRAlSpV0Lt3b+zfvx9TpkyBp6en0vGIiIiIiIiIiIiohLjFLhEREVEJ5OfnY+3atUhPT8e4cePQuHFj7Ny5E48fP8bEiRO5JTIREREREREREVEpwQlSIiIiwezevRsrV65EcnIyrl69ijVr1qBmzZqYPXu20tGoBJo2bYrjx4+jTp06SkchIiIiIiIiIiKiYugpHYCIiIj+Z+PGjZg5cyY8PT3x8uVLAEDr1q3h7++PBQsWKJyOSuLmzZvIy8tTOgYRERERERERERG9BSdIiYiIBLJmzRps3rwZkyZNgr6+PgBg2LBh2LlzJ7Zs2aJwOiIiIiIiIiIiIqLSjxOkREREAklPT0ejRo2KHK9bty7u37+vQCIiIiIiIiIiIiKifxdOkBIREQnk/fffx44dOzTfq1QqSJKEZcuWwdHRUcFkRERERERERERERP8O5ZQOQERERP+zZs0auLi44NixY3jx4gW8vb2RmJiI58+f48SJE0rHIyL6f+3dbWzV5d3A8d8phBWw6HQqQqEIbAWmQheKCg5FJJoZfJgJuCBMGRkRJiYkCwYjIFPMdOhMXyCTFYpPE4hGnW4vtMVmsWa1CBNirUqdJpDjE4rLHNr23G9uQG7Uu8jkOu35fJImp9f//+L7rk1/va4LAAAAoMvL5HK5XOoIAOCg//znP/HQQw9Fc3NztLW1RXl5eVxzzTVx3HHHpU6jE/r16xdbt26NoUOHpk4BAAAAAL6EASkAwH9RSUlJbNu2zYAUAAAAAPKUI3YBII+cfvrpkclkvvL5zp07j2EN30RdXV0MGjQodQYAAAAA8BUMSAEgjyxbtuyQ79va2uLNN9+MdevWxW9+85s0UQWsqKjoawfWX9Te3h4REWPHjv02kwAAAACAo2RACgB55Oc///mXrp9zzjnxu9/9Ln7xi18c46LCVldXd+BzY2NjrFy5MpYsWRKVlZXRq1ev2LJlS9x6662xYMGChJUAAAAAwJFwBykAdAFvvPFGnHnmmfHpp5+mTilYI0aMiKqqqpgyZcoh65s3b47rrrsuWltbE5UBAAAAAEfCDlIAyCP19fWHrX3yySdRVVUVZ5xxRoIi9tu1a1eccsoph6336dMn9uzZk6AIAAAAAPgmDEgBII9ccMEFh6316tUrKisr4/777z/2QRxw6aWXxuzZs6OqqipGjx4duVwuGhsb44Ybbohp06alzgMAAAAAOskRuwAAnfDJJ5/E3LlzY+PGjdHR0RERET179oxZs2ZFVVVVFBcXJy4EAAAAADrDgBQA8sjbb7/d6XcHDx78LZbwVfbu3RstLS0REVFeXh4lJSWJiwAAAACAI2FACgB5pKioKDKZTERE7P8Rvf/7/XK5XGQymWhvbz/mfYXu448/jgcffDBaWlrilltuiRdffDFGjhwZw4YNS50GAAAAAHRSUeoAAOCgDRs2xIgRI+LJJ5+MDz74IP71r3/F888/H6NHj47f/va3sXPnzmhtbY2dO3emTi0427dvj+9///uxdu3aWLVqVezduzcee+yxGDNmTDz//POp8wAAAACATrKDFADySFlZWTzyyCMxfvz4Q9abmppi6tSpsWvXrkRlXHjhhfHjH/84br311igpKYlt27bF0KFDY9GiRVFXVxd///vfUycCAAAAAJ1gBykA5JG9e/fGl/3v0p49e+Kzzz5LUMR+jY2NMWvWrMPW586dGzt27EhQBAAAAAB8EwakAJBHZs6cGTNnzoyHH344duzYEdu3b4+1a9fGtddeG/PmzUudV9BOPvnkaGlpOWz9hRdeiFNPPTVBEQAAAADwTfRMHQAAHLRy5cooLi6OG2+8MT744IOIiBg0aFDcdNNNMX/+/MR1hW3RokUxZ86cWLx4cXR0dERtbW3U1NTEPffcEytWrEidBwAAAAB0kjtIASAP5XK5eP/996NPnz7Rt2/f1Dn8r6eeeiruuuuuePXVV6OtrS3Ky8tj4cKFMW3atNRpAAAAAEAnGZACQJ7ZuXNnrFq1Kl5//fVYtWpV/OUvf4ny8vKYMGFC6jS+xOeffx4NDQ0xceLE1CkAAAAAQCe4gxQA8kh9fX2cddZZ0draGn/961/j008/jebm5pg0aVI89thjqfMKWo8ePWLRokXR0dFxyPqHH34YkyZNSlQFAAAAABwpO0gBII+cc845cc0118SvfvWrKCkpiW3btsXQoUPj97//faxZsya2b9+eOrFgFRUVRVlZWZSWlsaGDRvitNNOi4iIbDYbp5122mGDUwAAAAAgP9lBCgB55JVXXomf/OQnh61fdtll8eabbyYoYr9MJhPPPfdclJaWxpgxY+LZZ5895BkAAAAA0DUYkAJAHhkyZEg0NjYetv7000/HkCFDjn0QB+RyuTjuuOPikUceiZtvvjmmTp0ay5Yti6Iiv04BAAAAQFfSM3UAAHDQbbfdFtdee2289NJL0dbWFuvXr4/W1tb405/+FA888EDqPP7XggULYuzYsTFt2rSor69PnQMAAAAAHAFbHgAgj1x55ZVRX18f2Ww2zjjjjHjiiSdi3759UV9fH9OmTUudV9DKysqiR48eB74fP358NDU1RS6XC1e6AwAAAEDXkcn5ix4A5LX33nsvvve977nnMk91dHTEO++8E2VlZalTAAAAAIBOcMQuAOSRXbt2xcKFC+Omm26KESNGxMUXXxx/+9vforS0NJ588skYPXp06sSCMnv27Lj33nujpKQkZs+e/bXvVldXH6MqAAAAAOBoOGIXAPLI9ddfH++9916cdNJJsW7dunjllVfihRdeiMsuuyxuuOGG1HkF54sHbew/SvervgAAAACArsERuwCQR0pKSqKpqSl+8IMfxMUXXxwDBgyItWvXRmtra/zwhz+Mf//736kTAQAAAAC6NEfsAkAeKS4ujk8//TT27NkTmzdvjocffjgiIlpbW+PEE09MXFd4li9f3ul3lyxZ8i2WAAAAAAD/LQakAJBHrrjiipg+fXr07t07vvvd78all14aGzZsiBtvvDGuvfba1HkFp66urlPvZTIZA1IAAAAA6CIcsQsAeaStrS2qqqrin//8Z/zyl7+MUaNGxQMPPBAff/xxzJ8/PzKZTOpEAAAAAIAuzYAUALqgM888M5555pkYNGhQ6pSCsnXr1tixY0e0t7dHREQul4t9+/bFyy+/HKtWrUpcBwAAAAB0hiN2AaALeuutt+Lzzz9PnVFQli9fHsuWLYv+/ftHNpuNgQMHRjabjba2trjyyitT5wEAAAAAnVSUOgAAoCtYvXp13HfffbFr164YNGhQbN68ObLZbEyZMiWGDx+eOg8AAAAA6CQDUgCATnj//ffjkksuiYiIioqKaGhoiBNOOCFuv/32ePTRRxPXAQAAAACdZUAKANAJAwcOjJ07d0ZExMiRI2PLli0REdGvX7949913U6YBAAAAAEfAHaQAAJ0wZ86cuPrqq2Pt2rVxxRVXxEUXXRQDBgyIZ599NsaMGZM6DwAAAADoJANSAOiCMplM6oSCs3jx4igtLY0+ffrEuHHj4u67747Vq1fHSSedFNXV1anzAAAAAIBOyuRyuVzqCADgyJSUlMS2bdti6NChqVMAAAAAALoUO0gBoAuqq6uLQYMGpc4oKLt3744777wzmpubY9++fYc9r62tTVAFAAAAABwpA1IASKyoqKjTR+a2t7dHRMTYsWO/zSS+xPTp02P37t1x1VVXRe/evVPnAAAAAADfkAEpACRWV1d34HNjY2OsXLkylixZEpWVldGrV6/YsmVL3HrrrbFgwYKElTQ1NUVDQ0OcddZZqVMAAAAAgKPgDlIAyCMjRoyIqqqqmDJlyiHrmzdvjuuuuy5aW1sTlTF58uSYP39+/PSnP02dAgAAAAAcBTtIASCP7Nq1K0455ZTD1vv06RN79uxJUMR+f/zjH2PChAnx5JNPxpAhQ6KoqOiQ50uWLElUBgAAAAAcCTtIASCP/OxnP4uWlpaoqqqK0aNHRy6Xi8bGxrjhhhti/Pjx8Yc//CF1YsGaMWNGbNq0KSoqKg67gzSTyURtbW2iMgAAAADgSBiQAkAe+eSTT2Lu3LmxcePG6OjoiIiInj17xqxZs6KqqiqKi4sTFxauvn37xjPPPBPnn39+6hQAAAAA4CgYkAJAHtq7d2+0tLRERER5eXmUlJQkLmLUqFGxfv36GDt2bOoUAAAAAOAoGJACQJ75+OOP48EHH4yWlpa45ZZb4sUXX4yRI0fGsGHDUqcVtE2bNsXSpUtj4cKFcfrpp0fPnode5T5x4sREZQAAAADAkTAgBYA8sn379rjwwgtj8ODB8Y9//COam5vjtttui40bN8af//xnx7smVFRU9JXPMplMtLe3H8MaAAAAAOCb+uq/9AEAx9yCBQvi+uuvj5deeim+853vREREdXV1zJs3L379618nritsLS0t0dHR8aVfhqMAAAAA0HUYkAJAHmlsbIxZs2Ydtj537tzYsWNHgiL2O++886KpqSl1BgAAAABwlAxIASCPnHzyydHS0nLY+gsvvBCnnnpqgiL269+/f2Sz2dQZAAAAAMBR6pk6AAA4aNGiRTFnzpxYvHhxdHR0RG1tbdTU1MQ999wTK1asSJ1X0CoqKuLyyy+PysrKGDJkSBQXFx/yvLq6OlEZAAAAAHAkMrlcLpc6AgA46Kmnnoq77rorXn311Whra4vy8vJYuHBhTJs2LXVaQbvuuuu+9vnatWuPUQkAAAAAcDQMSAGgC/j888+joaEhJk6cmDoFAAAAAKBLcwcpAOSRHj16xKJFi6Kjo+OQ9Q8//DAmTZqUqIr9nnjiiZgwYUKceOKJcfzxx8e4ceNi/fr1qbMAAAAAgCNgQAoAeSSXy8WGDRvi/PPPj927dx/2jHRWr14dM2bMiIkTJ0ZNTU3U1NTEBRdcEPPnz481a9akzgMAAAAAOskRuwCQR3r06BGvv/563HzzzVFbWxsPPfRQXHTRRZHNZmPAgAHR3t6eOrFgDRs2LJYuXRqzZs06ZL2mpiZWrFgRr732WqIyAAAAAOBI2EEKAHkkl8vFcccdF4888kjcfPPNMXXq1Fi2bFkUFfmRnVo2m41zzz33sPXx48fH22+/naAIAAAAAPgm/LUVAPLUggUL4rnnnos1a9bE9OnTU+cUvIqKii+9b3TdunUxatSoBEUAAAAAwDfRM3UAAHBQWVlZ9OjR48D348ePj6amprj66qvdQZrYnXfeGZMnT466uro4++yzIyKioaEhtm7dGk8//XTiOgAAAACgs9xBCgBdQEdHR7zzzjtRVlaWOqWgNTc3x/333x/Nzc1RXFwc5eXlMW/evCgtLU2dBgAAAAB0kgEpACQ2e/bsuPfee6OkpCRmz579te9WV1cfoyr+r48++ihWrlwZjY2N8dlnn0Uul4tMJnPgeW1tbcI6AAAAAKCzHLELAIl98X+V/N9S/po5c2Y0NjbGjBkzol+/fqlzAAAAAIBvyA5SAIBO6N27d9TX10dlZWXqFAAAAADgKNhBCgCJLV++vNPvLlmy5Fss4esMHDgwioqKUmcAAAAAAEfJDlIASGzSpEmdei+TybjnMqHHH3887rjjjli+fHkMHz48evXqdcjzwYMHJyoDAAAAAI6EASkAQCd8cfdoJpM58DmXy0Umk4n29vYUWQAAAADAEXLELgDkma1bt8aOHTsODNxyuVzs27cvXn755Vi1alXiusLV2tqaOgEAAAAA+C8wIAWAPLJ8+fJYtmxZ9O/fP7LZbAwcODCy2Wy0tbXFlVdemTqvoJWVlaVOAAAAAAD+C4r+/1cAgGNl9erVcd9998WuXbti0KBBsXnz5shmszFlypQYPnx46jwAAAAAgC7PgBQA8sj7778fl1xySUREVFRURENDQ5xwwglx++23x6OPPpq4DgAAAACg6zMgBYA8MnDgwNi5c2dERIwcOTK2bNkSERH9+vWLd999N2UaAAAAAEC34A5SAMgjc+bMiauvvjrWrl0bV1xxRVx00UUxYMCAePbZZ2PMmDGp8wAAAAAAujwDUgDII4sXL47S0tLo06dPjBs3Lu6+++5YvXp1nHTSSVFdXZ06DwAAAACgy8vkcrlc6ggAAAAAAACAY8EOUgDII7t3744777wzmpubY9++fYc9r62tTVAFAAAAANB9GJACQB6ZPn167N69O6666qro3bt36hwAAAAAgG7HEbsAkEf69u0bDQ0NcdZZZ6VOAQAAAADolopSBwAAB51zzjnxxhtvpM4AAAAAAOi27CAFgDzy1ltvxYQJE2LKlCkxZMiQKCo69H+ZlixZkqgMAAAAAKB7MCAFgDwyY8aM2LRpU1RUVBx2B2kmk4na2tpEZQAAAAAA3YMBKQDkkb59+8YzzzwT559/fuoUAAAAAIBuyR2kAJBHysrKom/fvqkzAAAAAAC6LTtIASCPbNq0KZYuXRoLFy6M008/PXr27HnI84kTJyYqAwAAAADoHgxIASCPFBV99eEOmUwm2tvbj2ENAAAAAED344hdAMgjLS0t0dHR8aVfhqMAAAAAAEfPgBQA8sh5550XTU1NqTMAAAAAALotA1IAyCP9+/ePbDabOgMAAAAAoNvqmToAADiooqIiLr/88qisrIwhQ4ZEcXHxIc+rq6sTlQEAAAAAdA8GpACQZ6655poDn3O5XMISAAAAAIDuJ5Pzl1cAAAAAAACgQLiDFADyzBNPPBETJkyIE088MY4//vgYN25crF+/PnUWAAAAAEC3YEAKAHlk9erVMWPGjJg4cWLU1NRETU1NXHDBBTF//vxYs2ZN6jwAAAAAgC7PEbsAkEeGDRsWS5cujVmzZh2yXlNTEytWrIjXXnstURkAAAAAQPdgBykA5JFsNhvnnnvuYevjx4+Pt99+O0ERAAAAAED3YkAKAHmkoqLiS+8bXbduXYwaNSpBEQAAAABA9+KIXQDIIw0NDTF58uT40Y9+FGefffaBta1bt8bTTz8dkyZNSlwIAAAAANC1GZACQJ5pbm6O+++/P5qbm6O4uDjKy8tj3rx5UVpamjoNAAAAAKDLMyAFgDzy0UcfxcqVK6OxsTE+++yzyOVykclkDjyvra1NWAcAAAAA0PX1TB0AABw0c+bMaGxsjBkzZkS/fv1S5wAAAAAAdDt2kAJAHundu3fU19dHZWVl6hQAAAAAgG6pKHUAAHDQwIEDo6jIj2cAAAAAgG+LHaQAkEcef/zxuOOOO2L58uUxfPjw6NWr1yHPBw8enKgMAAAAAKB7MCAFgDzyxd2jmUzmwOdcLheZTCba29tTZAEAAAAAdBs9UwcAAAe1tramTgAAAAAA6NbsIAUAAAAAAAAKRtH//woAAAAAAABA92BACgAAAAAAABQMA1IAAAAAAACgYBiQAgAAAAAAAAXDgBQAAAAAAAAoGAakAAAAAAAAQMEwIAUAAAAAAAAKhgEpAAAAAAAAUDD+B26E4D3dzg3/AAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "text/html": [ - "
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
activities_q3ratio_most_common_variantnormalized_sequence_entropynormalized_sequence_eventropy_exponential_forgettingtrace_len_entropytrace_len_hist9normalized_sequence_eventropy_linear_forgettingeventropy_knn_3trace_len_hist3kurtosis_variant_occurrence...trace_len_geometric_meaneventropy_k_block_diff_5eventropy_k_block_ratio_1eventropy_k_block_diff_3trace_len_medianratio_top_20_variantstrace_len_q1ratio_top_50_variantsratio_top_75_variantsratio_unique_traces_per_trace
activities_q31.0000000.299914-0.535848-0.5000030.651857-0.298666-0.446838-0.062271-0.1637650.192853...-0.178143-0.331395-0.372845-0.360271-0.2049370.379360-0.2075470.3925010.393849-0.394220
ratio_most_common_variant0.2999141.000000-0.872166-0.8201460.455871-0.239070-0.744763-0.3997300.387022-0.248842...-0.680095-0.484408-0.505069-0.484158-0.6770830.772018-0.6407620.8092340.808176-0.808280
normalized_sequence_entropy-0.535848-0.8721661.0000000.949180-0.5132110.2208060.8674500.391840-0.2352710.196209...0.6640620.5916520.5953750.5871820.659965-0.8660840.647014-0.876646-0.8777510.878053
normalized_sequence_eventropy_exponential_forgetting-0.500003-0.8201460.9491801.000000-0.4534650.1840550.9795520.393510-0.2732720.295912...0.5927210.5196570.4916000.5044420.578747-0.7709700.577783-0.784374-0.7856510.786009
trace_len_entropy0.6518570.455871-0.513211-0.4534651.000000-0.401086-0.3921140.115983-0.1772110.518292...-0.421136-0.374418-0.411303-0.389937-0.4597270.556509-0.4149800.5731520.573851-0.573412
trace_len_hist9-0.298666-0.2390700.2208060.184055-0.4010861.0000000.152934-0.357692-0.104087-0.248786...0.327961-0.0478150.0098780.0168130.331725-0.3067750.406222-0.308349-0.3090560.309232
normalized_sequence_eventropy_linear_forgetting-0.446838-0.7447630.8674500.979552-0.3921140.1529341.0000000.367694-0.2768910.341992...0.5226010.4455270.4009410.4269840.500775-0.6729050.511506-0.686745-0.6880420.688380
eventropy_knn_3-0.062271-0.3997300.3918400.3935100.115983-0.3576920.3676941.000000-0.1147320.670754...0.1943430.4701020.5480880.5447450.176249-0.2009540.103769-0.260643-0.2628900.264034
trace_len_hist3-0.1637650.387022-0.235271-0.273272-0.177211-0.104087-0.276891-0.1147321.000000-0.258008...-0.352139-0.089258-0.051290-0.017674-0.3523420.365283-0.3005850.3509990.349343-0.349657
kurtosis_variant_occurrence0.192853-0.2488420.1962090.2959120.518292-0.2487860.3419920.670754-0.2580081.000000...0.103149-0.033833-0.054358-0.0018320.042782-0.0036380.037692-0.042264-0.0430310.044279
eventropy_knn_7-0.055360-0.4166600.4136300.4145530.142646-0.3481020.3873900.997943-0.1424790.704145...0.2076810.4555470.5296630.5278730.187323-0.2159190.116926-0.274286-0.2764440.277664
eventropy_knn_5-0.062258-0.4110450.4080610.4090520.128484-0.3498660.3821630.999150-0.1283600.690184...0.2037160.4604520.5365690.5341440.184209-0.2111730.113142-0.270523-0.2727530.273977
skewness_variant_occurrence0.088042-0.3737310.3295330.4045500.399360-0.1939310.4267850.741303-0.3152360.966532...0.2169990.0563930.0593180.0988550.164644-0.1326440.141057-0.184708-0.1857890.187322
activities_mean0.9171560.199631-0.423045-0.3466230.699155-0.319872-0.2768120.093266-0.2146550.471373...-0.097058-0.342978-0.390862-0.352554-0.1419240.333256-0.1365670.3410590.342069-0.341861
ratio_top_1_variants0.2069810.256647-0.359378-0.2587610.470289-0.159045-0.1922200.2994160.0406550.437257...-0.429185-0.392627-0.331039-0.305745-0.4531290.588358-0.4515320.5228350.520572-0.519027
eventropy_lempel_ziv-0.369278-0.5855070.7185980.647689-0.398436-0.1234020.5664720.618973-0.1386550.092295...0.4516880.8974580.9111130.8922990.482644-0.6903180.414984-0.694109-0.6942580.694278
eventropy_global_block-0.143753-0.5191000.4753440.446875-0.077549-0.2808700.3992850.893677-0.2638140.503937...0.4806250.5777830.6693300.6594520.488968-0.4443480.350320-0.486711-0.4880840.488692
trace_len_harmonic_mean-0.116906-0.6452600.6299480.570846-0.3343370.3466790.5128610.171198-0.3223610.155284...0.9589030.3427880.3866480.4031070.917264-0.7853920.976809-0.797166-0.7970820.797317
eventropy_trace-0.089274-0.5584030.5493760.506727-0.063832-0.3014610.4500110.931933-0.2337970.532930...0.4029920.6060420.6833550.6685130.387461-0.4418560.308826-0.480534-0.4817890.482509
eventropy_k_block_diff_1-0.218326-0.2363740.3763920.337745-0.2386100.0630240.2856600.3033590.0722370.016650...0.1097470.6931350.5894550.6087300.131434-0.3193230.147371-0.308105-0.3072440.307021
eventropy_prefix-0.154083-0.5437510.5350020.488804-0.135577-0.2672970.4300690.901190-0.2367170.453405...0.4845170.6335320.7295120.7103910.486056-0.4798360.364837-0.519542-0.5208450.521518
trace_len_mode-0.202287-0.6164030.6265160.553293-0.4002580.3871570.4843380.114816-0.2907940.025402...0.9147110.4953840.4889290.5103580.890032-0.8009770.987385-0.806671-0.8062960.806604
ratio_top_5_variants0.2192090.494400-0.691534-0.5915110.393169-0.223787-0.5017460.0687930.3722630.153116...-0.659600-0.539024-0.496584-0.485880-0.6791810.854760-0.6568470.7844940.782390-0.780722
ratio_top_10_variants0.2660500.525677-0.792878-0.6941870.394550-0.242386-0.598864-0.0075790.3987180.091337...-0.718275-0.547724-0.512481-0.500971-0.7368460.907611-0.7086940.8481900.846992-0.845994
eventropy_k_block_ratio_3-0.284616-0.4580700.5302600.413134-0.277666-0.1581660.3164850.7273630.0125340.131184...0.4319020.8257710.9225900.9035150.455753-0.4990330.387944-0.522102-0.5231240.522969
eventropy_k_block_ratio_5-0.326463-0.4180300.5022400.376855-0.324748-0.1010610.2777390.6319130.059331-0.004747...0.3796510.8771900.9611570.9398380.404277-0.4878330.388326-0.504889-0.5057090.505480
trace_len_geometric_mean-0.178143-0.6800950.6640620.592721-0.4211360.3279610.5226010.194343-0.3521390.103149...1.0000000.3778510.4313590.4294190.990961-0.8469930.946175-0.858941-0.8588950.859037
eventropy_k_block_diff_5-0.331395-0.4844080.5916520.519657-0.374418-0.0478150.4455270.470102-0.089258-0.033833...0.3778511.0000000.9252660.9241300.403825-0.6075640.441321-0.599378-0.5988150.598346
eventropy_k_block_ratio_1-0.372845-0.5050690.5953750.491600-0.4113030.0098780.4009410.548088-0.051290-0.054358...0.4313590.9252661.0000000.9836180.454950-0.5964770.455977-0.595245-0.5953840.594868
eventropy_k_block_diff_3-0.360271-0.4841580.5871820.504442-0.3899370.0168130.4269840.544745-0.017674-0.001832...0.4294190.9241300.9836181.0000000.445314-0.5823880.474504-0.581416-0.5814870.581037
trace_len_median-0.204937-0.6770830.6599650.578747-0.4597270.3317250.5007750.176249-0.3523420.042782...0.9909610.4038250.4549500.4453141.000000-0.8622810.919761-0.872477-0.8723870.872451
ratio_top_20_variants0.3793600.772018-0.866084-0.7709700.556509-0.306775-0.672905-0.2009540.365283-0.003638...-0.846993-0.607564-0.596477-0.582388-0.8622811.000000-0.8249210.9917450.991361-0.991075
trace_len_q1-0.207547-0.6407620.6470140.577783-0.4149800.4062220.5115060.103769-0.3005850.037692...0.9461750.4413210.4559770.4745040.919761-0.8249211.000000-0.832498-0.8322720.832481
ratio_top_50_variants0.3925010.809234-0.876646-0.7843740.573152-0.308349-0.686745-0.2606430.350999-0.042264...-0.858941-0.599378-0.595245-0.581416-0.8724770.991745-0.8324981.0000000.999979-0.999957
ratio_top_75_variants0.3938490.808176-0.877751-0.7856510.573851-0.309056-0.688042-0.2628900.349343-0.043031...-0.858895-0.598815-0.595384-0.581487-0.8723870.991361-0.8322720.9999791.000000-0.999989
ratio_unique_traces_per_trace-0.394220-0.8082800.8780530.786009-0.5734120.3092320.6883800.264034-0.3496570.044279...0.8590370.5983460.5948680.5810370.872451-0.9910750.832481-0.999957-0.9999891.000000
\n", - "

36 rows × 36 columns

\n", - "
" - ], - "text/plain": [ - " activities_q3 \n", - "activities_q3 1.000000 \\\n", - "ratio_most_common_variant 0.299914 \n", - "normalized_sequence_entropy -0.535848 \n", - "normalized_sequence_eventropy_exponential_forge... -0.500003 \n", - "trace_len_entropy 0.651857 \n", - "trace_len_hist9 -0.298666 \n", - "normalized_sequence_eventropy_linear_forgetting -0.446838 \n", - "eventropy_knn_3 -0.062271 \n", - "trace_len_hist3 -0.163765 \n", - "kurtosis_variant_occurrence 0.192853 \n", - "eventropy_knn_7 -0.055360 \n", - "eventropy_knn_5 -0.062258 \n", - "skewness_variant_occurrence 0.088042 \n", - "activities_mean 0.917156 \n", - "ratio_top_1_variants 0.206981 \n", - "eventropy_lempel_ziv -0.369278 \n", - "eventropy_global_block -0.143753 \n", - "trace_len_harmonic_mean -0.116906 \n", - "eventropy_trace -0.089274 \n", - "eventropy_k_block_diff_1 -0.218326 \n", - "eventropy_prefix -0.154083 \n", - "trace_len_mode -0.202287 \n", - "ratio_top_5_variants 0.219209 \n", - "ratio_top_10_variants 0.266050 \n", - "eventropy_k_block_ratio_3 -0.284616 \n", - "eventropy_k_block_ratio_5 -0.326463 \n", - "trace_len_geometric_mean -0.178143 \n", - "eventropy_k_block_diff_5 -0.331395 \n", - "eventropy_k_block_ratio_1 -0.372845 \n", - "eventropy_k_block_diff_3 -0.360271 \n", - "trace_len_median -0.204937 \n", - "ratio_top_20_variants 0.379360 \n", - "trace_len_q1 -0.207547 \n", - "ratio_top_50_variants 0.392501 \n", - "ratio_top_75_variants 0.393849 \n", - "ratio_unique_traces_per_trace -0.394220 \n", - "\n", - " ratio_most_common_variant \n", - "activities_q3 0.299914 \\\n", - "ratio_most_common_variant 1.000000 \n", - "normalized_sequence_entropy -0.872166 \n", - "normalized_sequence_eventropy_exponential_forge... -0.820146 \n", - "trace_len_entropy 0.455871 \n", - "trace_len_hist9 -0.239070 \n", - "normalized_sequence_eventropy_linear_forgetting -0.744763 \n", - "eventropy_knn_3 -0.399730 \n", - "trace_len_hist3 0.387022 \n", - "kurtosis_variant_occurrence -0.248842 \n", - "eventropy_knn_7 -0.416660 \n", - "eventropy_knn_5 -0.411045 \n", - "skewness_variant_occurrence -0.373731 \n", - "activities_mean 0.199631 \n", - "ratio_top_1_variants 0.256647 \n", - "eventropy_lempel_ziv -0.585507 \n", - "eventropy_global_block -0.519100 \n", - "trace_len_harmonic_mean -0.645260 \n", - "eventropy_trace -0.558403 \n", - "eventropy_k_block_diff_1 -0.236374 \n", - "eventropy_prefix -0.543751 \n", - "trace_len_mode -0.616403 \n", - "ratio_top_5_variants 0.494400 \n", - "ratio_top_10_variants 0.525677 \n", - "eventropy_k_block_ratio_3 -0.458070 \n", - "eventropy_k_block_ratio_5 -0.418030 \n", - "trace_len_geometric_mean -0.680095 \n", - "eventropy_k_block_diff_5 -0.484408 \n", - "eventropy_k_block_ratio_1 -0.505069 \n", - "eventropy_k_block_diff_3 -0.484158 \n", - "trace_len_median -0.677083 \n", - "ratio_top_20_variants 0.772018 \n", - "trace_len_q1 -0.640762 \n", - "ratio_top_50_variants 0.809234 \n", - "ratio_top_75_variants 0.808176 \n", - "ratio_unique_traces_per_trace -0.808280 \n", - "\n", - " normalized_sequence_entropy \n", - "activities_q3 -0.535848 \\\n", - "ratio_most_common_variant -0.872166 \n", - "normalized_sequence_entropy 1.000000 \n", - "normalized_sequence_eventropy_exponential_forge... 0.949180 \n", - "trace_len_entropy -0.513211 \n", - "trace_len_hist9 0.220806 \n", - "normalized_sequence_eventropy_linear_forgetting 0.867450 \n", - "eventropy_knn_3 0.391840 \n", - "trace_len_hist3 -0.235271 \n", - "kurtosis_variant_occurrence 0.196209 \n", - "eventropy_knn_7 0.413630 \n", - "eventropy_knn_5 0.408061 \n", - "skewness_variant_occurrence 0.329533 \n", - "activities_mean -0.423045 \n", - "ratio_top_1_variants -0.359378 \n", - "eventropy_lempel_ziv 0.718598 \n", - "eventropy_global_block 0.475344 \n", - "trace_len_harmonic_mean 0.629948 \n", - "eventropy_trace 0.549376 \n", - "eventropy_k_block_diff_1 0.376392 \n", - "eventropy_prefix 0.535002 \n", - "trace_len_mode 0.626516 \n", - "ratio_top_5_variants -0.691534 \n", - "ratio_top_10_variants -0.792878 \n", - "eventropy_k_block_ratio_3 0.530260 \n", - "eventropy_k_block_ratio_5 0.502240 \n", - "trace_len_geometric_mean 0.664062 \n", - "eventropy_k_block_diff_5 0.591652 \n", - "eventropy_k_block_ratio_1 0.595375 \n", - "eventropy_k_block_diff_3 0.587182 \n", - "trace_len_median 0.659965 \n", - "ratio_top_20_variants -0.866084 \n", - "trace_len_q1 0.647014 \n", - "ratio_top_50_variants -0.876646 \n", - "ratio_top_75_variants -0.877751 \n", - "ratio_unique_traces_per_trace 0.878053 \n", - "\n", - " normalized_sequence_eventropy_exponential_forgetting \n", - "activities_q3 -0.500003 \\\n", - "ratio_most_common_variant -0.820146 \n", - "normalized_sequence_entropy 0.949180 \n", - "normalized_sequence_eventropy_exponential_forge... 1.000000 \n", - "trace_len_entropy -0.453465 \n", - "trace_len_hist9 0.184055 \n", - "normalized_sequence_eventropy_linear_forgetting 0.979552 \n", - "eventropy_knn_3 0.393510 \n", - "trace_len_hist3 -0.273272 \n", - "kurtosis_variant_occurrence 0.295912 \n", - "eventropy_knn_7 0.414553 \n", - "eventropy_knn_5 0.409052 \n", - "skewness_variant_occurrence 0.404550 \n", - "activities_mean -0.346623 \n", - "ratio_top_1_variants -0.258761 \n", - "eventropy_lempel_ziv 0.647689 \n", - "eventropy_global_block 0.446875 \n", - "trace_len_harmonic_mean 0.570846 \n", - "eventropy_trace 0.506727 \n", - "eventropy_k_block_diff_1 0.337745 \n", - "eventropy_prefix 0.488804 \n", - "trace_len_mode 0.553293 \n", - "ratio_top_5_variants -0.591511 \n", - "ratio_top_10_variants -0.694187 \n", - "eventropy_k_block_ratio_3 0.413134 \n", - "eventropy_k_block_ratio_5 0.376855 \n", - "trace_len_geometric_mean 0.592721 \n", - "eventropy_k_block_diff_5 0.519657 \n", - "eventropy_k_block_ratio_1 0.491600 \n", - "eventropy_k_block_diff_3 0.504442 \n", - "trace_len_median 0.578747 \n", - "ratio_top_20_variants -0.770970 \n", - "trace_len_q1 0.577783 \n", - "ratio_top_50_variants -0.784374 \n", - "ratio_top_75_variants -0.785651 \n", - "ratio_unique_traces_per_trace 0.786009 \n", - "\n", - " trace_len_entropy \n", - "activities_q3 0.651857 \\\n", - "ratio_most_common_variant 0.455871 \n", - "normalized_sequence_entropy -0.513211 \n", - "normalized_sequence_eventropy_exponential_forge... -0.453465 \n", - "trace_len_entropy 1.000000 \n", - "trace_len_hist9 -0.401086 \n", - "normalized_sequence_eventropy_linear_forgetting -0.392114 \n", - "eventropy_knn_3 0.115983 \n", - "trace_len_hist3 -0.177211 \n", - "kurtosis_variant_occurrence 0.518292 \n", - "eventropy_knn_7 0.142646 \n", - "eventropy_knn_5 0.128484 \n", - "skewness_variant_occurrence 0.399360 \n", - "activities_mean 0.699155 \n", - "ratio_top_1_variants 0.470289 \n", - "eventropy_lempel_ziv -0.398436 \n", - "eventropy_global_block -0.077549 \n", - "trace_len_harmonic_mean -0.334337 \n", - "eventropy_trace -0.063832 \n", - "eventropy_k_block_diff_1 -0.238610 \n", - "eventropy_prefix -0.135577 \n", - "trace_len_mode -0.400258 \n", - "ratio_top_5_variants 0.393169 \n", - "ratio_top_10_variants 0.394550 \n", - "eventropy_k_block_ratio_3 -0.277666 \n", - "eventropy_k_block_ratio_5 -0.324748 \n", - "trace_len_geometric_mean -0.421136 \n", - "eventropy_k_block_diff_5 -0.374418 \n", - "eventropy_k_block_ratio_1 -0.411303 \n", - "eventropy_k_block_diff_3 -0.389937 \n", - "trace_len_median -0.459727 \n", - "ratio_top_20_variants 0.556509 \n", - "trace_len_q1 -0.414980 \n", - "ratio_top_50_variants 0.573152 \n", - "ratio_top_75_variants 0.573851 \n", - "ratio_unique_traces_per_trace -0.573412 \n", - "\n", - " trace_len_hist9 \n", - "activities_q3 -0.298666 \\\n", - "ratio_most_common_variant -0.239070 \n", - "normalized_sequence_entropy 0.220806 \n", - "normalized_sequence_eventropy_exponential_forge... 0.184055 \n", - "trace_len_entropy -0.401086 \n", - "trace_len_hist9 1.000000 \n", - "normalized_sequence_eventropy_linear_forgetting 0.152934 \n", - "eventropy_knn_3 -0.357692 \n", - "trace_len_hist3 -0.104087 \n", - "kurtosis_variant_occurrence -0.248786 \n", - "eventropy_knn_7 -0.348102 \n", - "eventropy_knn_5 -0.349866 \n", - "skewness_variant_occurrence -0.193931 \n", - "activities_mean -0.319872 \n", - "ratio_top_1_variants -0.159045 \n", - "eventropy_lempel_ziv -0.123402 \n", - "eventropy_global_block -0.280870 \n", - "trace_len_harmonic_mean 0.346679 \n", - "eventropy_trace -0.301461 \n", - "eventropy_k_block_diff_1 0.063024 \n", - "eventropy_prefix -0.267297 \n", - "trace_len_mode 0.387157 \n", - "ratio_top_5_variants -0.223787 \n", - "ratio_top_10_variants -0.242386 \n", - "eventropy_k_block_ratio_3 -0.158166 \n", - "eventropy_k_block_ratio_5 -0.101061 \n", - "trace_len_geometric_mean 0.327961 \n", - "eventropy_k_block_diff_5 -0.047815 \n", - "eventropy_k_block_ratio_1 0.009878 \n", - "eventropy_k_block_diff_3 0.016813 \n", - "trace_len_median 0.331725 \n", - "ratio_top_20_variants -0.306775 \n", - "trace_len_q1 0.406222 \n", - "ratio_top_50_variants -0.308349 \n", - "ratio_top_75_variants -0.309056 \n", - "ratio_unique_traces_per_trace 0.309232 \n", - "\n", - " normalized_sequence_eventropy_linear_forgetting \n", - "activities_q3 -0.446838 \\\n", - "ratio_most_common_variant -0.744763 \n", - "normalized_sequence_entropy 0.867450 \n", - "normalized_sequence_eventropy_exponential_forge... 0.979552 \n", - "trace_len_entropy -0.392114 \n", - "trace_len_hist9 0.152934 \n", - "normalized_sequence_eventropy_linear_forgetting 1.000000 \n", - "eventropy_knn_3 0.367694 \n", - "trace_len_hist3 -0.276891 \n", - "kurtosis_variant_occurrence 0.341992 \n", - "eventropy_knn_7 0.387390 \n", - "eventropy_knn_5 0.382163 \n", - "skewness_variant_occurrence 0.426785 \n", - "activities_mean -0.276812 \n", - "ratio_top_1_variants -0.192220 \n", - "eventropy_lempel_ziv 0.566472 \n", - "eventropy_global_block 0.399285 \n", - "trace_len_harmonic_mean 0.512861 \n", - "eventropy_trace 0.450011 \n", - "eventropy_k_block_diff_1 0.285660 \n", - "eventropy_prefix 0.430069 \n", - "trace_len_mode 0.484338 \n", - "ratio_top_5_variants -0.501746 \n", - "ratio_top_10_variants -0.598864 \n", - "eventropy_k_block_ratio_3 0.316485 \n", - "eventropy_k_block_ratio_5 0.277739 \n", - "trace_len_geometric_mean 0.522601 \n", - "eventropy_k_block_diff_5 0.445527 \n", - "eventropy_k_block_ratio_1 0.400941 \n", - "eventropy_k_block_diff_3 0.426984 \n", - "trace_len_median 0.500775 \n", - "ratio_top_20_variants -0.672905 \n", - "trace_len_q1 0.511506 \n", - "ratio_top_50_variants -0.686745 \n", - "ratio_top_75_variants -0.688042 \n", - "ratio_unique_traces_per_trace 0.688380 \n", - "\n", - " eventropy_knn_3 \n", - "activities_q3 -0.062271 \\\n", - "ratio_most_common_variant -0.399730 \n", - "normalized_sequence_entropy 0.391840 \n", - "normalized_sequence_eventropy_exponential_forge... 0.393510 \n", - "trace_len_entropy 0.115983 \n", - "trace_len_hist9 -0.357692 \n", - "normalized_sequence_eventropy_linear_forgetting 0.367694 \n", - "eventropy_knn_3 1.000000 \n", - "trace_len_hist3 -0.114732 \n", - "kurtosis_variant_occurrence 0.670754 \n", - "eventropy_knn_7 0.997943 \n", - "eventropy_knn_5 0.999150 \n", - "skewness_variant_occurrence 0.741303 \n", - "activities_mean 0.093266 \n", - "ratio_top_1_variants 0.299416 \n", - "eventropy_lempel_ziv 0.618973 \n", - "eventropy_global_block 0.893677 \n", - "trace_len_harmonic_mean 0.171198 \n", - "eventropy_trace 0.931933 \n", - "eventropy_k_block_diff_1 0.303359 \n", - "eventropy_prefix 0.901190 \n", - "trace_len_mode 0.114816 \n", - "ratio_top_5_variants 0.068793 \n", - "ratio_top_10_variants -0.007579 \n", - "eventropy_k_block_ratio_3 0.727363 \n", - "eventropy_k_block_ratio_5 0.631913 \n", - "trace_len_geometric_mean 0.194343 \n", - "eventropy_k_block_diff_5 0.470102 \n", - "eventropy_k_block_ratio_1 0.548088 \n", - "eventropy_k_block_diff_3 0.544745 \n", - "trace_len_median 0.176249 \n", - "ratio_top_20_variants -0.200954 \n", - "trace_len_q1 0.103769 \n", - "ratio_top_50_variants -0.260643 \n", - "ratio_top_75_variants -0.262890 \n", - "ratio_unique_traces_per_trace 0.264034 \n", - "\n", - " trace_len_hist3 \n", - "activities_q3 -0.163765 \\\n", - "ratio_most_common_variant 0.387022 \n", - "normalized_sequence_entropy -0.235271 \n", - "normalized_sequence_eventropy_exponential_forge... -0.273272 \n", - "trace_len_entropy -0.177211 \n", - "trace_len_hist9 -0.104087 \n", - "normalized_sequence_eventropy_linear_forgetting -0.276891 \n", - "eventropy_knn_3 -0.114732 \n", - "trace_len_hist3 1.000000 \n", - "kurtosis_variant_occurrence -0.258008 \n", - "eventropy_knn_7 -0.142479 \n", - "eventropy_knn_5 -0.128360 \n", - "skewness_variant_occurrence -0.315236 \n", - "activities_mean -0.214655 \n", - "ratio_top_1_variants 0.040655 \n", - "eventropy_lempel_ziv -0.138655 \n", - "eventropy_global_block -0.263814 \n", - "trace_len_harmonic_mean -0.322361 \n", - "eventropy_trace -0.233797 \n", - "eventropy_k_block_diff_1 0.072237 \n", - "eventropy_prefix -0.236717 \n", - "trace_len_mode -0.290794 \n", - "ratio_top_5_variants 0.372263 \n", - "ratio_top_10_variants 0.398718 \n", - "eventropy_k_block_ratio_3 0.012534 \n", - "eventropy_k_block_ratio_5 0.059331 \n", - "trace_len_geometric_mean -0.352139 \n", - "eventropy_k_block_diff_5 -0.089258 \n", - "eventropy_k_block_ratio_1 -0.051290 \n", - "eventropy_k_block_diff_3 -0.017674 \n", - "trace_len_median -0.352342 \n", - "ratio_top_20_variants 0.365283 \n", - "trace_len_q1 -0.300585 \n", - "ratio_top_50_variants 0.350999 \n", - "ratio_top_75_variants 0.349343 \n", - "ratio_unique_traces_per_trace -0.349657 \n", - "\n", - " kurtosis_variant_occurrence \n", - "activities_q3 0.192853 \\\n", - "ratio_most_common_variant -0.248842 \n", - "normalized_sequence_entropy 0.196209 \n", - "normalized_sequence_eventropy_exponential_forge... 0.295912 \n", - "trace_len_entropy 0.518292 \n", - "trace_len_hist9 -0.248786 \n", - "normalized_sequence_eventropy_linear_forgetting 0.341992 \n", - "eventropy_knn_3 0.670754 \n", - "trace_len_hist3 -0.258008 \n", - "kurtosis_variant_occurrence 1.000000 \n", - "eventropy_knn_7 0.704145 \n", - "eventropy_knn_5 0.690184 \n", - "skewness_variant_occurrence 0.966532 \n", - "activities_mean 0.471373 \n", - "ratio_top_1_variants 0.437257 \n", - "eventropy_lempel_ziv 0.092295 \n", - "eventropy_global_block 0.503937 \n", - "trace_len_harmonic_mean 0.155284 \n", - "eventropy_trace 0.532930 \n", - "eventropy_k_block_diff_1 0.016650 \n", - "eventropy_prefix 0.453405 \n", - "trace_len_mode 0.025402 \n", - "ratio_top_5_variants 0.153116 \n", - "ratio_top_10_variants 0.091337 \n", - "eventropy_k_block_ratio_3 0.131184 \n", - "eventropy_k_block_ratio_5 -0.004747 \n", - "trace_len_geometric_mean 0.103149 \n", - "eventropy_k_block_diff_5 -0.033833 \n", - "eventropy_k_block_ratio_1 -0.054358 \n", - "eventropy_k_block_diff_3 -0.001832 \n", - "trace_len_median 0.042782 \n", - "ratio_top_20_variants -0.003638 \n", - "trace_len_q1 0.037692 \n", - "ratio_top_50_variants -0.042264 \n", - "ratio_top_75_variants -0.043031 \n", - "ratio_unique_traces_per_trace 0.044279 \n", - "\n", - " ... \n", - "activities_q3 ... \\\n", - "ratio_most_common_variant ... \n", - "normalized_sequence_entropy ... \n", - "normalized_sequence_eventropy_exponential_forge... ... \n", - "trace_len_entropy ... \n", - "trace_len_hist9 ... \n", - "normalized_sequence_eventropy_linear_forgetting ... \n", - "eventropy_knn_3 ... \n", - "trace_len_hist3 ... \n", - "kurtosis_variant_occurrence ... \n", - "eventropy_knn_7 ... \n", - "eventropy_knn_5 ... \n", - "skewness_variant_occurrence ... \n", - "activities_mean ... \n", - "ratio_top_1_variants ... \n", - "eventropy_lempel_ziv ... \n", - "eventropy_global_block ... \n", - "trace_len_harmonic_mean ... \n", - "eventropy_trace ... \n", - "eventropy_k_block_diff_1 ... \n", - "eventropy_prefix ... \n", - "trace_len_mode ... \n", - "ratio_top_5_variants ... \n", - "ratio_top_10_variants ... \n", - "eventropy_k_block_ratio_3 ... \n", - "eventropy_k_block_ratio_5 ... \n", - "trace_len_geometric_mean ... \n", - "eventropy_k_block_diff_5 ... \n", - "eventropy_k_block_ratio_1 ... \n", - "eventropy_k_block_diff_3 ... \n", - "trace_len_median ... \n", - "ratio_top_20_variants ... \n", - "trace_len_q1 ... \n", - "ratio_top_50_variants ... \n", - "ratio_top_75_variants ... \n", - "ratio_unique_traces_per_trace ... \n", - "\n", - " trace_len_geometric_mean \n", - "activities_q3 -0.178143 \\\n", - "ratio_most_common_variant -0.680095 \n", - "normalized_sequence_entropy 0.664062 \n", - "normalized_sequence_eventropy_exponential_forge... 0.592721 \n", - "trace_len_entropy -0.421136 \n", - "trace_len_hist9 0.327961 \n", - "normalized_sequence_eventropy_linear_forgetting 0.522601 \n", - "eventropy_knn_3 0.194343 \n", - "trace_len_hist3 -0.352139 \n", - "kurtosis_variant_occurrence 0.103149 \n", - "eventropy_knn_7 0.207681 \n", - "eventropy_knn_5 0.203716 \n", - "skewness_variant_occurrence 0.216999 \n", - "activities_mean -0.097058 \n", - "ratio_top_1_variants -0.429185 \n", - "eventropy_lempel_ziv 0.451688 \n", - "eventropy_global_block 0.480625 \n", - "trace_len_harmonic_mean 0.958903 \n", - "eventropy_trace 0.402992 \n", - "eventropy_k_block_diff_1 0.109747 \n", - "eventropy_prefix 0.484517 \n", - "trace_len_mode 0.914711 \n", - "ratio_top_5_variants -0.659600 \n", - "ratio_top_10_variants -0.718275 \n", - "eventropy_k_block_ratio_3 0.431902 \n", - "eventropy_k_block_ratio_5 0.379651 \n", - "trace_len_geometric_mean 1.000000 \n", - "eventropy_k_block_diff_5 0.377851 \n", - "eventropy_k_block_ratio_1 0.431359 \n", - "eventropy_k_block_diff_3 0.429419 \n", - "trace_len_median 0.990961 \n", - "ratio_top_20_variants -0.846993 \n", - "trace_len_q1 0.946175 \n", - "ratio_top_50_variants -0.858941 \n", - "ratio_top_75_variants -0.858895 \n", - "ratio_unique_traces_per_trace 0.859037 \n", - "\n", - " eventropy_k_block_diff_5 \n", - "activities_q3 -0.331395 \\\n", - "ratio_most_common_variant -0.484408 \n", - "normalized_sequence_entropy 0.591652 \n", - "normalized_sequence_eventropy_exponential_forge... 0.519657 \n", - "trace_len_entropy -0.374418 \n", - "trace_len_hist9 -0.047815 \n", - "normalized_sequence_eventropy_linear_forgetting 0.445527 \n", - "eventropy_knn_3 0.470102 \n", - "trace_len_hist3 -0.089258 \n", - "kurtosis_variant_occurrence -0.033833 \n", - "eventropy_knn_7 0.455547 \n", - "eventropy_knn_5 0.460452 \n", - "skewness_variant_occurrence 0.056393 \n", - "activities_mean -0.342978 \n", - "ratio_top_1_variants -0.392627 \n", - "eventropy_lempel_ziv 0.897458 \n", - "eventropy_global_block 0.577783 \n", - "trace_len_harmonic_mean 0.342788 \n", - "eventropy_trace 0.606042 \n", - "eventropy_k_block_diff_1 0.693135 \n", - "eventropy_prefix 0.633532 \n", - "trace_len_mode 0.495384 \n", - "ratio_top_5_variants -0.539024 \n", - "ratio_top_10_variants -0.547724 \n", - "eventropy_k_block_ratio_3 0.825771 \n", - "eventropy_k_block_ratio_5 0.877190 \n", - "trace_len_geometric_mean 0.377851 \n", - "eventropy_k_block_diff_5 1.000000 \n", - "eventropy_k_block_ratio_1 0.925266 \n", - "eventropy_k_block_diff_3 0.924130 \n", - "trace_len_median 0.403825 \n", - "ratio_top_20_variants -0.607564 \n", - "trace_len_q1 0.441321 \n", - "ratio_top_50_variants -0.599378 \n", - "ratio_top_75_variants -0.598815 \n", - "ratio_unique_traces_per_trace 0.598346 \n", - "\n", - " eventropy_k_block_ratio_1 \n", - "activities_q3 -0.372845 \\\n", - "ratio_most_common_variant -0.505069 \n", - "normalized_sequence_entropy 0.595375 \n", - "normalized_sequence_eventropy_exponential_forge... 0.491600 \n", - "trace_len_entropy -0.411303 \n", - "trace_len_hist9 0.009878 \n", - "normalized_sequence_eventropy_linear_forgetting 0.400941 \n", - "eventropy_knn_3 0.548088 \n", - "trace_len_hist3 -0.051290 \n", - "kurtosis_variant_occurrence -0.054358 \n", - "eventropy_knn_7 0.529663 \n", - "eventropy_knn_5 0.536569 \n", - "skewness_variant_occurrence 0.059318 \n", - "activities_mean -0.390862 \n", - "ratio_top_1_variants -0.331039 \n", - "eventropy_lempel_ziv 0.911113 \n", - "eventropy_global_block 0.669330 \n", - "trace_len_harmonic_mean 0.386648 \n", - "eventropy_trace 0.683355 \n", - "eventropy_k_block_diff_1 0.589455 \n", - "eventropy_prefix 0.729512 \n", - "trace_len_mode 0.488929 \n", - "ratio_top_5_variants -0.496584 \n", - "ratio_top_10_variants -0.512481 \n", - "eventropy_k_block_ratio_3 0.922590 \n", - "eventropy_k_block_ratio_5 0.961157 \n", - "trace_len_geometric_mean 0.431359 \n", - "eventropy_k_block_diff_5 0.925266 \n", - "eventropy_k_block_ratio_1 1.000000 \n", - "eventropy_k_block_diff_3 0.983618 \n", - "trace_len_median 0.454950 \n", - "ratio_top_20_variants -0.596477 \n", - "trace_len_q1 0.455977 \n", - "ratio_top_50_variants -0.595245 \n", - "ratio_top_75_variants -0.595384 \n", - "ratio_unique_traces_per_trace 0.594868 \n", - "\n", - " eventropy_k_block_diff_3 \n", - "activities_q3 -0.360271 \\\n", - "ratio_most_common_variant -0.484158 \n", - "normalized_sequence_entropy 0.587182 \n", - "normalized_sequence_eventropy_exponential_forge... 0.504442 \n", - "trace_len_entropy -0.389937 \n", - "trace_len_hist9 0.016813 \n", - "normalized_sequence_eventropy_linear_forgetting 0.426984 \n", - "eventropy_knn_3 0.544745 \n", - "trace_len_hist3 -0.017674 \n", - "kurtosis_variant_occurrence -0.001832 \n", - "eventropy_knn_7 0.527873 \n", - "eventropy_knn_5 0.534144 \n", - "skewness_variant_occurrence 0.098855 \n", - "activities_mean -0.352554 \n", - "ratio_top_1_variants -0.305745 \n", - "eventropy_lempel_ziv 0.892299 \n", - "eventropy_global_block 0.659452 \n", - "trace_len_harmonic_mean 0.403107 \n", - "eventropy_trace 0.668513 \n", - "eventropy_k_block_diff_1 0.608730 \n", - "eventropy_prefix 0.710391 \n", - "trace_len_mode 0.510358 \n", - "ratio_top_5_variants -0.485880 \n", - "ratio_top_10_variants -0.500971 \n", - "eventropy_k_block_ratio_3 0.903515 \n", - "eventropy_k_block_ratio_5 0.939838 \n", - "trace_len_geometric_mean 0.429419 \n", - "eventropy_k_block_diff_5 0.924130 \n", - "eventropy_k_block_ratio_1 0.983618 \n", - "eventropy_k_block_diff_3 1.000000 \n", - "trace_len_median 0.445314 \n", - "ratio_top_20_variants -0.582388 \n", - "trace_len_q1 0.474504 \n", - "ratio_top_50_variants -0.581416 \n", - "ratio_top_75_variants -0.581487 \n", - "ratio_unique_traces_per_trace 0.581037 \n", - "\n", - " trace_len_median \n", - "activities_q3 -0.204937 \\\n", - "ratio_most_common_variant -0.677083 \n", - "normalized_sequence_entropy 0.659965 \n", - "normalized_sequence_eventropy_exponential_forge... 0.578747 \n", - "trace_len_entropy -0.459727 \n", - "trace_len_hist9 0.331725 \n", - "normalized_sequence_eventropy_linear_forgetting 0.500775 \n", - "eventropy_knn_3 0.176249 \n", - "trace_len_hist3 -0.352342 \n", - "kurtosis_variant_occurrence 0.042782 \n", - "eventropy_knn_7 0.187323 \n", - "eventropy_knn_5 0.184209 \n", - "skewness_variant_occurrence 0.164644 \n", - "activities_mean -0.141924 \n", - "ratio_top_1_variants -0.453129 \n", - "eventropy_lempel_ziv 0.482644 \n", - "eventropy_global_block 0.488968 \n", - "trace_len_harmonic_mean 0.917264 \n", - "eventropy_trace 0.387461 \n", - "eventropy_k_block_diff_1 0.131434 \n", - "eventropy_prefix 0.486056 \n", - "trace_len_mode 0.890032 \n", - "ratio_top_5_variants -0.679181 \n", - "ratio_top_10_variants -0.736846 \n", - "eventropy_k_block_ratio_3 0.455753 \n", - "eventropy_k_block_ratio_5 0.404277 \n", - "trace_len_geometric_mean 0.990961 \n", - "eventropy_k_block_diff_5 0.403825 \n", - "eventropy_k_block_ratio_1 0.454950 \n", - "eventropy_k_block_diff_3 0.445314 \n", - "trace_len_median 1.000000 \n", - "ratio_top_20_variants -0.862281 \n", - "trace_len_q1 0.919761 \n", - "ratio_top_50_variants -0.872477 \n", - "ratio_top_75_variants -0.872387 \n", - "ratio_unique_traces_per_trace 0.872451 \n", - "\n", - " ratio_top_20_variants \n", - "activities_q3 0.379360 \\\n", - "ratio_most_common_variant 0.772018 \n", - "normalized_sequence_entropy -0.866084 \n", - "normalized_sequence_eventropy_exponential_forge... -0.770970 \n", - "trace_len_entropy 0.556509 \n", - "trace_len_hist9 -0.306775 \n", - "normalized_sequence_eventropy_linear_forgetting -0.672905 \n", - "eventropy_knn_3 -0.200954 \n", - "trace_len_hist3 0.365283 \n", - "kurtosis_variant_occurrence -0.003638 \n", - "eventropy_knn_7 -0.215919 \n", - "eventropy_knn_5 -0.211173 \n", - "skewness_variant_occurrence -0.132644 \n", - "activities_mean 0.333256 \n", - "ratio_top_1_variants 0.588358 \n", - "eventropy_lempel_ziv -0.690318 \n", - "eventropy_global_block -0.444348 \n", - "trace_len_harmonic_mean -0.785392 \n", - "eventropy_trace -0.441856 \n", - "eventropy_k_block_diff_1 -0.319323 \n", - "eventropy_prefix -0.479836 \n", - "trace_len_mode -0.800977 \n", - "ratio_top_5_variants 0.854760 \n", - "ratio_top_10_variants 0.907611 \n", - "eventropy_k_block_ratio_3 -0.499033 \n", - "eventropy_k_block_ratio_5 -0.487833 \n", - "trace_len_geometric_mean -0.846993 \n", - "eventropy_k_block_diff_5 -0.607564 \n", - "eventropy_k_block_ratio_1 -0.596477 \n", - "eventropy_k_block_diff_3 -0.582388 \n", - "trace_len_median -0.862281 \n", - "ratio_top_20_variants 1.000000 \n", - "trace_len_q1 -0.824921 \n", - "ratio_top_50_variants 0.991745 \n", - "ratio_top_75_variants 0.991361 \n", - "ratio_unique_traces_per_trace -0.991075 \n", - "\n", - " trace_len_q1 \n", - "activities_q3 -0.207547 \\\n", - "ratio_most_common_variant -0.640762 \n", - "normalized_sequence_entropy 0.647014 \n", - "normalized_sequence_eventropy_exponential_forge... 0.577783 \n", - "trace_len_entropy -0.414980 \n", - "trace_len_hist9 0.406222 \n", - "normalized_sequence_eventropy_linear_forgetting 0.511506 \n", - "eventropy_knn_3 0.103769 \n", - "trace_len_hist3 -0.300585 \n", - "kurtosis_variant_occurrence 0.037692 \n", - "eventropy_knn_7 0.116926 \n", - "eventropy_knn_5 0.113142 \n", - "skewness_variant_occurrence 0.141057 \n", - "activities_mean -0.136567 \n", - "ratio_top_1_variants -0.451532 \n", - "eventropy_lempel_ziv 0.414984 \n", - "eventropy_global_block 0.350320 \n", - "trace_len_harmonic_mean 0.976809 \n", - "eventropy_trace 0.308826 \n", - "eventropy_k_block_diff_1 0.147371 \n", - "eventropy_prefix 0.364837 \n", - "trace_len_mode 0.987385 \n", - "ratio_top_5_variants -0.656847 \n", - "ratio_top_10_variants -0.708694 \n", - "eventropy_k_block_ratio_3 0.387944 \n", - "eventropy_k_block_ratio_5 0.388326 \n", - "trace_len_geometric_mean 0.946175 \n", - "eventropy_k_block_diff_5 0.441321 \n", - "eventropy_k_block_ratio_1 0.455977 \n", - "eventropy_k_block_diff_3 0.474504 \n", - "trace_len_median 0.919761 \n", - "ratio_top_20_variants -0.824921 \n", - "trace_len_q1 1.000000 \n", - "ratio_top_50_variants -0.832498 \n", - "ratio_top_75_variants -0.832272 \n", - "ratio_unique_traces_per_trace 0.832481 \n", - "\n", - " ratio_top_50_variants \n", - "activities_q3 0.392501 \\\n", - "ratio_most_common_variant 0.809234 \n", - "normalized_sequence_entropy -0.876646 \n", - "normalized_sequence_eventropy_exponential_forge... -0.784374 \n", - "trace_len_entropy 0.573152 \n", - "trace_len_hist9 -0.308349 \n", - "normalized_sequence_eventropy_linear_forgetting -0.686745 \n", - "eventropy_knn_3 -0.260643 \n", - "trace_len_hist3 0.350999 \n", - "kurtosis_variant_occurrence -0.042264 \n", - "eventropy_knn_7 -0.274286 \n", - "eventropy_knn_5 -0.270523 \n", - "skewness_variant_occurrence -0.184708 \n", - "activities_mean 0.341059 \n", - "ratio_top_1_variants 0.522835 \n", - "eventropy_lempel_ziv -0.694109 \n", - "eventropy_global_block -0.486711 \n", - "trace_len_harmonic_mean -0.797166 \n", - "eventropy_trace -0.480534 \n", - "eventropy_k_block_diff_1 -0.308105 \n", - "eventropy_prefix -0.519542 \n", - "trace_len_mode -0.806671 \n", - "ratio_top_5_variants 0.784494 \n", - "ratio_top_10_variants 0.848190 \n", - "eventropy_k_block_ratio_3 -0.522102 \n", - "eventropy_k_block_ratio_5 -0.504889 \n", - "trace_len_geometric_mean -0.858941 \n", - "eventropy_k_block_diff_5 -0.599378 \n", - "eventropy_k_block_ratio_1 -0.595245 \n", - "eventropy_k_block_diff_3 -0.581416 \n", - "trace_len_median -0.872477 \n", - "ratio_top_20_variants 0.991745 \n", - "trace_len_q1 -0.832498 \n", - "ratio_top_50_variants 1.000000 \n", - "ratio_top_75_variants 0.999979 \n", - "ratio_unique_traces_per_trace -0.999957 \n", - "\n", - " ratio_top_75_variants \n", - "activities_q3 0.393849 \\\n", - "ratio_most_common_variant 0.808176 \n", - "normalized_sequence_entropy -0.877751 \n", - "normalized_sequence_eventropy_exponential_forge... -0.785651 \n", - "trace_len_entropy 0.573851 \n", - "trace_len_hist9 -0.309056 \n", - "normalized_sequence_eventropy_linear_forgetting -0.688042 \n", - "eventropy_knn_3 -0.262890 \n", - "trace_len_hist3 0.349343 \n", - "kurtosis_variant_occurrence -0.043031 \n", - "eventropy_knn_7 -0.276444 \n", - "eventropy_knn_5 -0.272753 \n", - "skewness_variant_occurrence -0.185789 \n", - "activities_mean 0.342069 \n", - "ratio_top_1_variants 0.520572 \n", - "eventropy_lempel_ziv -0.694258 \n", - "eventropy_global_block -0.488084 \n", - "trace_len_harmonic_mean -0.797082 \n", - "eventropy_trace -0.481789 \n", - "eventropy_k_block_diff_1 -0.307244 \n", - "eventropy_prefix -0.520845 \n", - "trace_len_mode -0.806296 \n", - "ratio_top_5_variants 0.782390 \n", - "ratio_top_10_variants 0.846992 \n", - "eventropy_k_block_ratio_3 -0.523124 \n", - "eventropy_k_block_ratio_5 -0.505709 \n", - "trace_len_geometric_mean -0.858895 \n", - "eventropy_k_block_diff_5 -0.598815 \n", - "eventropy_k_block_ratio_1 -0.595384 \n", - "eventropy_k_block_diff_3 -0.581487 \n", - "trace_len_median -0.872387 \n", - "ratio_top_20_variants 0.991361 \n", - "trace_len_q1 -0.832272 \n", - "ratio_top_50_variants 0.999979 \n", - "ratio_top_75_variants 1.000000 \n", - "ratio_unique_traces_per_trace -0.999989 \n", - "\n", - " ratio_unique_traces_per_trace \n", - "activities_q3 -0.394220 \n", - "ratio_most_common_variant -0.808280 \n", - "normalized_sequence_entropy 0.878053 \n", - "normalized_sequence_eventropy_exponential_forge... 0.786009 \n", - "trace_len_entropy -0.573412 \n", - "trace_len_hist9 0.309232 \n", - "normalized_sequence_eventropy_linear_forgetting 0.688380 \n", - "eventropy_knn_3 0.264034 \n", - "trace_len_hist3 -0.349657 \n", - "kurtosis_variant_occurrence 0.044279 \n", - "eventropy_knn_7 0.277664 \n", - "eventropy_knn_5 0.273977 \n", - "skewness_variant_occurrence 0.187322 \n", - "activities_mean -0.341861 \n", - "ratio_top_1_variants -0.519027 \n", - "eventropy_lempel_ziv 0.694278 \n", - "eventropy_global_block 0.488692 \n", - "trace_len_harmonic_mean 0.797317 \n", - "eventropy_trace 0.482509 \n", - "eventropy_k_block_diff_1 0.307021 \n", - "eventropy_prefix 0.521518 \n", - "trace_len_mode 0.806604 \n", - "ratio_top_5_variants -0.780722 \n", - "ratio_top_10_variants -0.845994 \n", - "eventropy_k_block_ratio_3 0.522969 \n", - "eventropy_k_block_ratio_5 0.505480 \n", - "trace_len_geometric_mean 0.859037 \n", - "eventropy_k_block_diff_5 0.598346 \n", - "eventropy_k_block_ratio_1 0.594868 \n", - "eventropy_k_block_diff_3 0.581037 \n", - "trace_len_median 0.872451 \n", - "ratio_top_20_variants -0.991075 \n", - "trace_len_q1 0.832481 \n", - "ratio_top_50_variants -0.999957 \n", - "ratio_top_75_variants -0.999989 \n", - "ratio_unique_traces_per_trace 1.000000 \n", - "\n", - "[36 rows x 36 columns]" - ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "import matplotlib.pyplot as plt\n", - "import seaborn as sns\n", - "\n", - "\n", - "\n", - "selected_per_category_highest_variance = ['ratio_unique_traces_per_trace', # simple_statistics\n", - " 'trace_len_hist8',# trace_length\n", - " 'skewness_variant_occurrence',# trace_variant\n", - " 'activities_mean',# activities\n", - " 'start_activities_kurtosis',# start_activities\n", - " 'end_activities_median',# end_activities\n", - " 'entropy_k_block_diff_1',# entropies\n", - " 'n_traces', 'n_unique_traces'\n", - " ]\n", - "def plot_miner_correlation(input_df):\n", - " #df = input_df.loc[:, input_df.columns.isin(selected_per_category_highest_variance)]\n", - " df = input_df.loc[:,:]\n", - " #df = input_df.loc[:, sorted_features]\n", - " #df = input_df.loc[:, input_df.columns[3:]]\n", - "\n", - " corr = df.corr()\n", - " fig, ax = plt.subplots(figsize=(20,20)) \n", - " sns.set(font_scale = 2)\n", - " b= sns.heatmap(corr,\n", - " ax=ax,\n", - " vmin=-1,\n", - " vmax=1,\n", - " xticklabels=corr.columns.values,\n", - " yticklabels=corr.columns.values)\n", - " #b.set_yticklabels(b.get_yticks(), size = 15)\n", - " plt.show()\n", - " return corr\n", - "\n", - "#scaled_dmf = scaled_dmf.drop(['log', 'Log Nature'], axis=1)\n", - "scaled_dmf = scaled_dmf[filtered_feat]\n", - "corr_df = plot_miner_correlation(scaled_dmf)\n", - "stats = stats.loc[filtered_feat]\n", - "corr_df" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "id": "16ea5dad", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAngAAAHUCAYAAACpoVUyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAABhDElEQVR4nO3deVyU5f4//tcMjMgiwigiLkcQxRVzQ+2ofRI9lksHNBFNI+1bmkkudDJbrDypLSfbTmaaZaa5ZO7KUTM0UZM0TQUX1DAVBZQBZJVl7t8f85u7GZgNZoaZuXk9H48e3d7XNddczMUNb65VJgiCACIiIiKSDLmjK0BEREREtsUAj4iIiEhiGOARERERSQwDPCIiIiKJYYBHREREJDEM8IiIiIgkhgEeERERkcQwwCMiIiKSGAZ4RERERBLj7ugKkP0IggC12j4HlcjlMruVTfbH9nN9bEPXxzZ0ffZoQ7lcBplMZnU5DPAkTK0WoFIV27xcd3c5/P29ce9eCSor1TYvn+yL7ef62Iauj23o+uzVhkqlN9zcrA/wOERLREREJDEM8IiIiIgkhgEeERERkcQwwCMiIiKSGAZ4RERERBLDAI+IiIhIYhjgEREREUkMAzwiIiIiiWGAR0RERCQxDPCIiIiIJIZHlVGt3c4txtWsIng3kqO5b2NHV4eIiIiqYYBHFisqrcDKnWlIzVCJ97qHKDE9qhu8GyscWDMiIiLSxSFastjn287pBXcAkJqhwufbzjmoRkRERGQIAzyySJaqBBev5xtMu/BnPrJVJfVbISIiIjKKAR5Z5NL1PKvSiYiIqP4wwCOLFBSXm0y/ZyadiIiI6g8DPLJIU28Pk+lNzKQTERFR/WGARxbp9Dc/k+mdzaQTERFR/WGARxZpqfRCFyNBXJe/+SFQ6VW/FSIiIiKjGOCRxZ4fG47uIUq9e91DlHh+bLiDakRERESGcKNjsph3YwUSYnvi7r0yFJereZIFERGRk2KAR7XWUukFf39v5OUVo7JS7ejqEBERUTUcoiUiIiKSGAZ4RERERBLDAI+IiIhIYhjgEREREUkMAzwiIiIiiWGAR0RERCQxDPCIiIiIJIYBHhEREZHEMMAjIiIikhgGeEREREQSwwCPiIiISGIY4BERERFJDAM8IiIiIolxd3QFbEkQBOzevRtbtmzBhQsXUFJSgoCAAERERGDSpEno0aOHXd534cKFWL9+PQDg0qVLZvOnp6dj9erVSElJQU5ODpo0aYLQ0FBER0djzJgxcHNzs0s9iYiIqGGQTIBXVlaG2bNn49ChQ3r3MzMzkZmZiV27dmHOnDmYNm2aTd/3+PHj2LBhg8X5N2/ejIULF6KiokK8p1KpoFKpcOLECWzbtg3Lli2Dn5+fTetJREREDYdkArzXXntNDO5CQ0Mxfvx4NG/eHGlpadi4cSNKSkqwdOlSBAYGIioqyibvWVxcjNdeew2CIFiUPzk5GQsWLIAgCPD09MSECRPQvXt35Obm4ocffkB6ejpOnjyJhIQErFq1CnI5R9DJOWWpSpCTV4pAf08EKr0cXR0iIqpGJlganTixo0eP4umnnwYADBgwACtXroSHh4eYfvXqVTzxxBPIz8+Hn58ffvrpJ/j4+Fj9vrpDs1rGhmjLy8sxYsQI3Lx5E15eXli3bh26deuml56QkIAff/wRALB06VKMHj3aqvpVVamhUhVbVYYh7u5y+Pt7Iy+vGJWVapuXT/ZlTfsVlVZg5c40pGaoxHvdQ5SYHtUN3o0Vtq4qGcFn0PWxDV2fvdpQqfSGm5v1HTyS6CL6+uuvAQDu7u5YtGiRXnAHaHr0FixYAADIz8/H5s2brX5P3aHZJk2amM2/f/9+3Lx5EwDwzDPP6AV3ANCoUSO899574tDsihUrrK4jka2t3JmG89dUevfOX1NhxY40B9WIiIgMcfkALz8/H8eOHQMADB48GG3btjWYb+TIkWjWrBkAYO/evVa9p+7QbFRUFLp06WL2NYmJiQAAmUyGiRMnGszj7e2NsWPHAtAsxMjIyLCqnkS2lKUqQWqGCupqff5qAUjNUCFbVeKYihERUQ0uH+CdPHkSarWma3TAgAFG88nlckRERAAAzpw5g4KCgjq/5wcffICbN28iICAAr776qkWvOXHiBACgU6dOUCqVRvPpfg2HDx+ucx2JbC0nr9RkeraZdCIiqj8uH+BdvnxZvA4LCzOZt0OHDgA026mkp6fX6f10h2bffPNNi1a7Zmdn4969ewCAjh07mswbGhoqXl+8eLFOdSSyhxb+nibTA82kExFR/XH5AC8zM1O8bt26tcm8LVu2NPg6S+kOzY4YMQL/+Mc/LHqddu6dJXUMDAwUV8/eunWr1nUkspeWSi90D1FCLtO/L5dpFlpwNS0RkfNw+QBPpfprwre/v7/JvLq9bfn5+bV+L+3QrL+/P9544w2LX5eXlydem6ujQqGAl5dXnetIZE/To7qha7D+FIOuwZpVtERE5Dxcfh+8srIy8br66tnqGjVqZPB1ltAdml2wYIHJeXTVlZb+NTfJXB21eYqKimpdR0Pc3W0fw2uXb9tiGTfVP2var6mPB+ZN6o0sVQmyVSUIVHqhJXvu6h2fQdfHNnR9zt6GLh/gVVZWite6AZwhuum6rzNHd2h26NChGDVqVK3qWFVVZXEddfPUpo6GyOUy+Pt7W1WGKb6+nHPlyqxpP39/b3QJNZ+P7IvPoOtjG7o+Z21Dlw/wGjduLF5XVFSYDKDKy8vFa0sCLS3t0GzTpk3x1ltv1bqOur12ukeUGaOtp0Jh3caxarWAe/dsv3WFm5scvr6euHevFFVV3KDT1bD9XB/b0PWxDV2fvdrQ19fTJr2CLh/gaeerAcD9+/ctDvAsGSoF9Idm58+fjxYtWlhdR3O0eXSD17qy5w7pVVVq7sDuwth+ro9t6PrYhq7PWdvQOQeOa8HX11e8NrcoQTfdkjl0ukOzgwcPFjchtqaO5vbfq6ioQElJicV1JCIiIqrO5XvwgoODxevbt28bPckCALKyssTrVq1amS07NTVV3OIkOTkZnTp1MvsabZ7WrVsjKSnJYB1Nyc7OFjdutqSORERERNW5fA+e7sbAupseG6JNl8lkZjcctiV/f3/xmDRzdbxy5Yp4bW7jZiIiIiJDXL4Hr1evXlAoFKioqEBKSgomTZpkMF9VVZV4XFjnzp31hk2N6dixI5YtW2Y238cffywGbtr81efPRUREYO/evbhw4QIKCwvRpEkTg2UdP35cvO7Xr5/Z9yYiIiKqzuUDPF9fXwwYMADJyclISkrCrVu3DA5t7tmzR9wUecSIERaVrVQqMWzYMLP51qxZI14by//II49g7969qKysxIYNGzBt2rQaeYqKirBt2zYAQEhICDp37mxRPYmIiIh0ufwQLQBMmTIFgGaBQkJCAoqKivTSr1y5gsWLFwMAvL29ERMTU99VxLBhw9CmTRsAml6+kydP6qWXl5dj3rx54kKQqVOn1ncViYiISCJcvgcPAAYNGoRHHnkE+/btw+nTpxEVFYWJEyciKCgI58+fx4YNG1BcXAwAmDdvXo3VqSkpKYiLiwOgGRZdu3atzevYqFEjvPbaa3j++edRVlaGKVOmICYmBr1790Z+fj6+//57pKenAwB69+6NcePG2bwORERE1DBIIsADgPfeew/FxcU4cuQIbt68if/85z966TKZDPHx8ZgwYYKDaghERkbizTffxOLFi1FRUYH169dj/fr1ennCw8Px+eefw83NzUG1JCIiIlcnmQDP09MTq1atwq5du7B9+3ZxMYOfnx/69OmDuLg49OnTx9HVxMSJE9G3b1+sWbMGx44dw507d6BQKBAWFobHHnsM48ePt/oECyIiImrYZIIgCI6uBNlHVZUaKlWxzct1d5fD398beXnFTrl7N5nG9nN9bEPXxzZ0ffZqQ6XS2yZHlUlikQURERER/YUBHhEREZHESGYOHjm3LFUJcvJKEejviUCll6OrQ0REJGkM8MiuikorsHJnGlIzVOK97iFKTI/qBu/GXExCRERkDxyiJbtauTMN56+p9O6dv6bCih1pDqoRERGR9DHAI7vJUpUgNUMFdbV12moBSM1QIVtV4piKERERSRwDPLKbnLxSk+nZZtKJiIiobhjgkd208Pc0mR5oJp2IiIjqhgEe2U1LpRe6hyghl+nfl8s0Cy24mpaIiMg+GOCRXU2P6oauwUq9e12DNatoiYiIyD64TQrZlXdjBRJieyJbVYJs7oNHRERULxjgUb0IVHoxsCMiIqonHKIlIiIikhgGeEREREQSwwCPiIiISGIY4BERERFJDAM8IiIiIolhgEdEREQkMQzwiIiIiCSGAR4RERGRxDDAIyIiIpIYBnhEREREEsMAj4iIiEhiGOARERERSQwDPCIiIiKJYYBHREREJDEM8IiIiIgkhgEeERERkcS4O7oCRGS9LFUJcvJKEejviUCll6OrQ0REDsYAj8iFFZVWYOXONKRmqMR73UOUmB7VDd6NFQ6sGRERORKHaIlc2MqdaTh/TaV37/w1FVbsSHNQjYiIyBkwwCNyUVmqEqRmqKAW9O+rBSA1Q4VsVYljKkZERA7HIVoiF6Odb5dfWGYyX3ZeKefjERE1UAzwiFyEofl2pgT6e9q5RkRE5KwY4BG5CEPz7QyRy4CuwUr23hERNWAM8IhcgHa+nSW6BmtW0RIRUcPFAI/IBeTklZpMf+rRzvBv4sF98IiICAADPCKnYmzD4hZm5tN1/puf2cBOW3arAG/4+3vbpL5EROScGOAROQFzGxa3VHqhe4gS56/pb4tiyXw7Q2X36hSAaaO7wkPhZpevh4iIHIv74BE5AUs2LJ4e1Q1dg5V6eSyZb2eo7DOX7+LzbeesrDURETkr9uAROZixBRS6GxYHKr3g3ViBhNieyFaVaPa4s2C+ndGy1QLO/fFX2UREJC3swSNyMHMLKLKrpQcqvdAjtJlFgVltyyYiImlggEfkYOYWUFizYbE9yyYiIufFAI/IwbQLKOQy/ftymWahhTVDqEbLlssQ3p6bIRMRSRUDPCInUNcFFHUt+4GOzfH8mHCryyYiIufERRZETqAuCyjqWnarAG90CQ1AXl4xKivVNnkPIiJyLgzwiJxIoNLLbsOm2rLd3dlxT0QkdfxJT0RERCQxDPCIiIiIJIYBHhEREZHEMMAjIiIikhgGeEREREQSwwCPiIiISGIY4BERERFJDAM8IiIiIolhgEdEREQkMQzwiIiIiCSGAR4RERGRxDDAIyIiIpIYBnhEREREEsMAj4iIiEhiGOARERERSQwDPCIiIiKJYYBHREREJDEM8IiIiIgkhgEeERERkcQwwCMiIiKSGAZ4RERERBLDAI+IiIhIYhjgEREREUkMAzwiIiIiiWGAR0RERCQxDPCIiIiIJIYBHhEREZHEMMAjIiIikhgGeEREREQSwwCPiIiISGIY4BERERFJDAM8IiIiIolxd3QFiMi2slQlyMkrRaC/JwKVXo6uDhEROYCkAjxBELB7925s2bIFFy5cQElJCQICAhAREYFJkyahR48eVpWvVquxe/du7NixA2lpaSgqKkKzZs3QpUsXREdH45FHHoFMJjNZRmRkJDIzMy16vyNHjiAgIMCqOlPDUVRagZU705CaoRLvdQ9RYnpUN3g3VjiwZkREVN8kE+CVlZVh9uzZOHTokN79zMxMZGZmYteuXZgzZw6mTZtWp/ILCgowc+ZMnDhxQu9+VlYWsrKycPDgQfTv3x8fffQRmjVrZrCMoqIi3Lp1q07vT2TOyp1pOH9NpXfv/DUVVuxIQ0JsT8dUioiIHEIyAd5rr70mBnehoaEYP348mjdvjrS0NGzcuBElJSVYunQpAgMDERUVVauy1Wo1ZsyYgd9++w0A0Lp1a4wbNw5t27bF7du3sX37dly9ehUpKSmYOXMmvv32WzRq1KhGOZcuXYIgCACA5557DuHh4Sbft2nTprWqJzVcWaoSvZ47LbUApGaokK0q4XAtEVEDIokA7+jRo9i9ezcAYMCAAVi5ciU8PDwAAKNHj8a4cePwxBNPID8/H0uWLMHQoUPh4+Njcflbt24Vg7v+/ftj5cqVaNy4sZg+depUzJ49Gz/99BNOnz6N3bt3Y+zYsTXKuXTpkngdHR2NkJCQOn29RNXl5JWaTM/OK2WAR0TUgEhiFe3XX38NAHB3d8eiRYvE4E4rNDQUCxYsAADk5+dj8+bNtSp/48aNAAA3Nze8//77esEdACgUCrz55pvivxMTEw2Wow3wPDw80K5du1rVgciUFv6eJtMDzaQTEZG0uHyAl5+fj2PHjgEABg8ejLZt2xrMN3LkSHFu3N69ey0uv6qqCq1atUJISAj69OmDli1bGswXGBgIpVIJAEbn2WkDvA4dOkAud/mPnpxIS6UXuocoIa+2xkcu0yy0YO8dEVHD4vJDtCdPnoRarQagGZ41Ri6XIyIiAnv37sWZM2dQUFBg0Rw3Nzc3fPrpp2bzFRcXo7CwEADQvHnzGumCIODy5csAgLCwMLPlEdXW9KhuWLFDfxVt12DNKloiImpYXD7A0wZNgPnAqUOHDgA0wVZ6ejoiIiJsVo/PPvsMFRUVAIBHH320RnpmZiaKiooAAB07dgSgWVV78eJFFBcXo0WLFggLC4Obm5vN6kQNi3djBRJieyJbVaKZc8d98IiIGiyXD/B095Rr3bq1yby6w6uZmZlWBXhVVVW4e/cuzp07h2+//RYpKSkAgH79+mHcuHE18ususJDL5YiPj0dSUhKqqqrE+35+fpg8eTKeffbZGvP8iCwVqPRiYEdE1MC5fICnUv01HOXv728yr5+fn3idn59v1ftGR0cjPT1d/LdMJsOkSZOQkJBgdIsUrXfffddgmfn5+fjss89w+PBhrFixQpzTR0RERFQbLh/glZWVidfVV89Wpxt46b6uLm7fvq33b0EQcPz4cRw6dAijRo2qkV83wFMoFJg6dSqio6PRtm1b5Ofn4+eff8Ynn3yCO3fu4OzZs5g7dy5Wr15t9WIMd3fbL+Zwc5Pr/Z9cC9vP9bENXR/b0PU5exu6fIBXWVkpXhvqOdOlm677urq851NPPYX27dujrKwMx44dQ2JiIq5cuYKEhARcvnwZc+bM0XtNdnY2AE0Q+vXXX6Nv375iWosWLRATE4OHHnoI48ePR1ZWFo4fP47ExESMHj26zvWUy2Xw9/eu8+vN8fXl1huujO3n+tiGro9t6PqctQ1dPsDTnatWUVFhMsgrLy8Xr80Fg6a4u7vjhRdeEP/9+OOPY9y4cZg+fTru37+P5cuXY9CgQXpB3MaNG1FUVITCwkIEBQUZLDcwMBCvv/464uPjAQDff/+9VQGeWi3g3r2SOr/eGDc3OXx9PXHvXimqqtQ2L5/si+3n+tiGro9t6Prs1Ya+vp426RV0+QDPy+uvyeT379+3OMAzN5xbWw8++CBmzZqF//znPwCAdevW6QV4AODj42P2BI3IyEj4+PigqKgIp0+fhlqttmqYtrLSfj84qqrUdi2f7Ivt5/rYhq6Pbej6nLUNnXPguBZ8fX3Fa3MLJ3TT7bGAISYmRgzGTp06Vacy3NzcxFMuysvLrV4MQkRERA2Pywd4wcHB4nX1hQ/VZWVlidetWrWyeV2aNm0qnpahu7q3thQKha2qRFQvslQlOHs1F9kq208JICKi2nP5IdrQ0FDx+vLly+jXr5/RvNpNkWUymbjZsDlXr17FqlWrcOPGDYwZMwaPP/64yfz3798HAHh7/7W44caNG0hKSkJubi569+6Nhx9+2GQZ2gUZCoXCotM2iIzJUpUgx46bHheVVmDlTv3TM7qHaE7P8G7MP1SIiBzF5QO8Xr16QaFQoKKiAikpKZg0aZLBfFVVVThx4gQAoHPnznpDu6ZUVVVh69atADRz6EwFeBkZGbh37x4AICQkRLyfk5ODJUuWANDMsTMV4GVkZIg9keHh4TzZgurEVODV1Md2809X7kzD+Wv6vdXnr6mwYkcaEmJ72ux9iIiodlx+iNbX11c8gzYpKQm3bt0ymG/Pnj3isOmIESMsLr9jx47iqtfk5GTcuHHDaN4vv/xSvB42bJh43b17d3FxRXJystE6AsDy5cvF66ioKIvrSaTLVOBlK1mqEqRmqKAW9O+rBSA1Q8XhWiIiB3L5AA8ApkyZAkCzTUpCQoJ45qvWlStXsHjxYgCaodOYmBiLy5bJZHjqqacAaPa/e+mll2qUDwBr1qzBli1bAAABAQGYOHGimObh4YHx48eLdXzxxRcNlvHVV19hx44dADRzC8eMGWNxPYm0zAVeWTYKvHLySk2mZ5tJJyIi+3H5IVoAGDRoEB555BHs27cPp0+fRlRUFCZOnIigoCCcP38eGzZsQHFxMQBg3rx5NVbQpqSkIC4uDoDmLNm1a9fqpU+ePBkHDhzAyZMncfr0aYwePRqxsbEIDg6GSqXC3r178euvvwLQzJv76KOP9ObgAcDzzz+PgwcPIiMjA6dOncKoUaPEMvLy8pCYmIiTJ08C0AShH3zwgc23cqGGwWzgpSpBl1CTWSzSwt/05p6BZtKJiMh+JBHgAcB7772H4uJiHDlyBDdv3hT3o9OSyWSIj4/HhAkTal22QqHA8uXLMXfuXBw5cgS3b9/Gxx9/XCNfs2bN8PHHHyMiIqJGWpMmTbB69WrEx8cjNTUVWVlZ+OSTT2rkCwoKwtKlSxEeHl7rehIBFgReNlps0VLphe4hSpy/pt9bKJcBXYOVdlnUQURElpFMgOfp6YlVq1Zh165d2L59Oy5cuIDCwkL4+fmhT58+iIuLQ58+fepcvq+vL1atWoUDBw5gy5YtOHfuHAoKCuDt7Y327dtj6NChmDhxYo2eO11BQUHYtGkTdu/ejT179iAtLQ337t2Dj48PgoODMXz4cMTGxposg8gcc4FXSxsGXtOjumHFDv3FHF2DNYs5iIjIcWSCIAjms5ErqqpSQ6Uqtnm57u5y+Pt7Iy+v2Cl37yaguKyiRuClu4rW1u2XrSpBth23YyF9fAZdH9vQ9dmrDZVKbx5VRkSGeTdWICG2Z70FXoFKLwZ2REROhAEekYQx8CIiapgY4BFRndj7lAwiIqo7iwO8Ll262K0SMpkM58+ft1v5RGQ7PJ6MiMj5WTyLTxAEu/5HRK6hPk7JICIi61jcg9eqVSuT6Xl5eSgrKxODNaVSiY4dO8Lf3x8KhQKFhYX4448/cP36dQCaXrs2bdogLCzMiuoTUX3SnpJRne7xZByuJSJyPIsDvKSkJKNpBw8exJw5cyAIAh588EHMmjULvXr1Mpj32rVr+O9//4s9e/YgKysLzz//PI/kInIRlhxPVt8BHucCEhHVZPUii1u3buFf//oXysvLERMTg7fffttk/uDgYCxduhRt2rTBihUr8MYbb6BLly7o3LmztVUhIjtzpuPJOBeQiMg4q3fSW716NYqLixEUFIQFCxZY/LrZs2cjODgYlZWV+Prrr62tBhHVA+0pGXKZ/n25TBNc1WcPGucCEhEZZ3WA9/PPP0Mmk2Ho0KFo1KiR5W8sl2Po0KEQBAG//vqrtdUgonoyPaobugYr9e7V9/Fk2rmA6mrrs3TnAhIRNWRWD9FmZWUBAJo3b17r1/r4+AAAcnNzra0GEdWT+j4lwxBnnAtIRORMrA7wGjdujIqKCly7dq3Wr7148SIAoEmTJtZWg4jqmSNPyXCmuYBERM7I6iHaTp06QRAE/Pjjj7h7967Fr7t8+TJ++uknyGQy9OjRw9pqEFED4kxzAYmInJHVAd7IkSMBAMXFxZgxYwZUqpp7ZFV39epVTJ8+HZWVlQCAsWPHWlsNImpgnGEuIBGRs5IJVh4jUVFRgTFjxuDq1asAAF9fX4wbNw6DBw9GaGgofH19AQD5+fm4dOkSDhw4gB07dqC8vBwAMHDgQKxatcrKL4MMqapSQ6Uqtnm57u5y+Pt7Iy+vGJWVapuXT/YltfZz5FxAR5FaGzZEbEPXZ682VCq94eZmdf+b9QEeANy+fRuxsbHIycmBTCYzm1/7ll27dsW6devg5dUwfijXNwZ4ZAjbz/WxDV0f29D1OXuAZ30JAIKCgrB582aMGjXKonNn3d3d8fTTT2P9+vUM7oiIiIhszOpVtFqBgYFYunQpnnvuOSQlJeHo0aO4deuWuAVKQEAAWrdujf/7v//Do48+ipYtW9rqrYmIiIhIh80CPK2OHTuiY8eOmD59uq2LJiIiIiILWB3gnThxAgDwt7/9DYGBgbV67dWrV3HkyBEUFxfj+eeft7YqRERERAQbzMF78sknERcXh8TExFq/dt++fXjnnXewZs0aa6tBRERERP8/myyyqKuKigoAmj30iIiIiMg2LBqiraysxOnTp03muX79ujhca05VVRUyMzOxfv16AEDTpk0teh0RERERmWdRgOfu7o5vvvkGSUlJBtMFQcDGjRuxcePGWldAJpOhT58+tX4dERERERlm8RDtggUL0Lhx4xp72mlZsv+dof98fX0xZ84ce3xtRFQPslQlOHs1F9mqEkdXhYiI/n8Wr6Jt2bIlFi9ejOTkZL3727Ztg0wmQ7du3dCxY0eLynJzc4OPjw/atGmDRx99FM2bN69drYnI4YpKK7ByZxpSM/46f7p7iOYsWO/GCgfWjIiIarVNysiRIzFy5Ei9e9u2bQMAjBo1ClOnTrVdzYiohixVCXKc5NzVlTvTcP6aSu/e+WsqrNiRhoTYno6pFBERAbDBPngREREAwJMpiOzI2XrLslQlenXRUgtAaoYK2aoShwegREQNmdUB3tq1ay3KJwgCfvvtN2RnZyMwMBAPPPAAFAoO4xBZwtl6y3LySk2mZ+eVMsAjInIgmx1VVllZiT179uDcuXN4/fXX9dLOnz+P2bNn4+bNm+K9Fi1aYP78+RgxYoStqkAkSc7YW9bC39NkeqCZdCIisi+bbHR848YNjBw5EvPnz8f69etRXl4upuXl5WHq1Km4ceOG3urZ7OxsvPjii9i6dastqkAkWZb0ltW3lkovdA9RQi7Tvy+XaYaO2XtHRORYVgd4arUa06ZNw/Xr18Xg7caNG2L6119/jYKCAshkMri7u+Ohhx5C9+7dxdcuWbIEd+/etbYaRJLlrL1l06O6oWuwUu9e12DNvEAiInIsq4do9+zZg4yMDMhkMjRv3hwJCQlo06aNmL5z507x+sMPP8Tw4cMBAN988w3effddFBcXY+vWrZg2bZq1VSGSJG1v2flrKqj/2noScpkmoHJUb5l3YwUSYnsiW1WimXPnBCt7iYhIw+oevIMHDwIAFAoF1q9fjzFjxsDDwwMAcPbsWWRnZ0MmkyEkJEQM7gBgypQp6NGjBwRBwM8//2xtNYgkzZl7ywKVXugR2ozBHRGRE7G6B+/s2bOQyWT4xz/+gbZt2+qlHT58WLweMmRIjddGRETg7NmzuH79urXVIJI09pYRUW04056Z5BhWB3gqlWZ1X0hISI20I0eOiNd///vfa6Q3bdoUgGYhBhGZF6j04g9rIjLK2fbMJMexeoi2srISAGrsaVdYWIhz584BANzd3dGnT58ar71z5w4AiEO6REREVHem9sykhsXqAE97jqzuylkAOHr0KKqqqiCTydC7d280bty4xmu1AWBgYKC11SAiImrQtHtm6i7GAvT3zKSGw+oALzw8HIIgICkpCYWFheL9zZs3i9eRkZE1Xnf48GH8/vvvkMlkCA8Pt7YaREREDZoz7plJjmP1HLwRI0Zg3759yMvLw8SJEzF+/Hj8/vvvOHr0KADAzc0NI0eOFPPn5ORg9+7d+OSTT8R7o0aNsrYaREREDZqz7plJjmF1gPfII4+gZ8+e+P3333H16lW88847AACZTLPFfVxcHAICAsT8o0ePRmFhIQRB04c8aNAgPPTQQ9ZWg4iIqEFz1j0zyTGsHqKVyWRYvnw5BgwYoHcUmSAI+Oc//4m5c+fq5W/fvr0Y3A0ePBgff/yxtVUgIiIiOPeemVS/rO7BAwB/f3988803OH36NM6cOQM3NzdERESgc+fONfL27NkTzZo1w+OPP25wbh4RERHVDffMJC2ZoO1OI8mpqlJDpSq2ebnu7nL4+3sjL68YlZVqm5dP9sX2c31sQ9fHNnR99mpDpdIbbm5WD7BaP0RLRERERM6FAR4RERGRxDDAIyIiIpIYBnhEREREEsMAj4iIiEhiGOARERERSQwDPCIiIiKJYYBHREREJDEM8IiIiIgkhgEeERERkcQwwCMiIiKSGAZ4RERERBLDAI+IiIhIYhjgEREREUkMAzwiIiIiiWGAR0RERCQxDPCIiIiIJMbd0RUgIsfLUpUgJ68Ugf6eCFR6Obo6RERkJQZ4RA1YUWkFVu5MQ2qGSrzXPUSJ6VHd4N1Y4cCaERGRNThES9SArdyZhvPXVHr3zl9TYcWONAfViIiIbIEBHlEDdTu3GKkZKqgF/ftqAUjNUCFbVeKYihERkdUY4BE1UDl5pSbTs82kExGR82KAR9RAtfD3NJkeaCadiIicFwM8ogYqqJk3uocoIZfp35fLNAstuJqWiMh1McAjasCmR3VD12Cl3r2uwZpVtERE5Lq4TQpRA+bdWIGE2J7IVpUg2wH74HH/PSIi+2CAR0QIVHrVa4DF/feIiOyLQ7REVO+4/x4RkX0xwCOiepWlKuH+e0REdsYAj4jqFfffIyKyPwZ4RFSvuP8eEZH9McAjonrVUunF/feIiOyMAR4R1Tvuv0dEZF/cJoWI6p2j998jIpI6BnhEVEN9bUBc3/vvERE1FJIK8ARBwO7du7FlyxZcuHABJSUlCAgIQEREBCZNmoQePXpYVb5arcbu3buxY8cOpKWloaioCM2aNUOXLl0QHR2NRx55BDKZzGw56enpWL16NVJSUpCTk4MmTZogNDQU0dHRGDNmDNzc3KyqJ1FdcQNiIiJpkAmCIJjP5vzKysowe/ZsHDp0yGC6m5sb5syZg2nTptWp/IKCAsycORMnTpwwmqd///746KOP0KxZM6N5Nm/ejIULF6KiosJget++fbFs2TL4+fnVqZ66qqrUUKmKrS6nOnd3Ofz9vZGXV4zKSrXNyyf7MtV+H276Heev6e9RJ5dp5sclxPas34qSUXwGXR/b0PXZqw2VSm+4uVm/REIyPXivvfaaGNyFhoZi/PjxaN68OdLS0rBx40aUlJRg6dKlCAwMRFRUVK3KVqvVmDFjBn777TcAQOvWrTFu3Di0bdsWt2/fxvbt23H16lWkpKRg5syZ+Pbbb9GoUaMa5SQnJ2PBggUQBAGenp6YMGECunfvjtzcXPzwww9IT0/HyZMnkZCQgFWrVkEu5xoYqj/aDYir092AmMOpRESuQRIB3tGjR7F7924AwIABA7By5Up4eHgAAEaPHo1x48bhiSeeQH5+PpYsWYKhQ4fCx8fH4vK3bt0qBnf9+/fHypUr0bhxYzF96tSpmD17Nn766SecPn0au3fvxtixY/XKKC8vx1tvvQVBEODl5YV169ahW7e/VgxOnDgRCQkJ+PHHH3H06FEkJiZi9OjRdf5MiGrLkg2IGeAREbkGSXQRff311wAAd3d3LFq0SAzutEJDQ7FgwQIAQH5+PjZv3lyr8jdu3AhAM8z7/vvv6wV3AKBQKPDmm2+K/05MTKxRxv79+3Hz5k0AwDPPPKMX3AFAo0aN8N5774lDsytWrKhVHYmsxQ2IiYikw+UDvPz8fBw7dgwAMHjwYLRt29ZgvpEjR4pz4/bu3Wtx+VVVVWjVqhVCQkLQp08ftGzZ0mC+wMBAKJWafb1u3bpVI10b9MlkMkycONFgGd7e3mLPX3p6OjIyMiyuJ5G1uAExEZF0uHyAd/LkSajVmsmNAwYMMJpPLpcjIiICAHDmzBkUFBRYVL6bmxs+/fRT7N27F2vXrjWar7i4GIWFhQCA5s2b10jXLs7o1KmTGAgaovs1HD582KI6EtkKNyAmIpIGl5+Dd/nyZfE6LCzMZN4OHToA0Gynkp6eLgZ8tvDZZ5+JK2MfffRRvbTs7Gzcu3cPANCxY0eT5YSGhorXFy9etFn9iCzBDYiJiKTB5QO8zMxM8bp169Ym8+oOr2ZmZloV4FVVVeHu3bs4d+4cvv32W6SkpAAA+vXrh3Hjxunl1c69s6SOgYGBkMvlUKvVBod6ieoDNyAmInJtLh/gqVR/bevg7+9vMq/u3nL5+flWvW90dDTS09PFf8tkMkyaNAkJCQk1tkjJy8uzuI4KhQJeXl4oKiqyuo5ERETUMLn8HLyysjLxuvrq2ep0Ay/d19XF7du39f4tCAKOHz9ucKPl0tK/tp8wV0fdPNbWkYiIiBoml+/Bq6ysFK8NbS6sSzdd93V1ec+nnnoK7du3R1lZGY4dO4bExERcuXIFCQkJuHz5MubMmSPmr6qqsriOunmsqaOWu7vtY3jtDtu22Gmb6h/bz/WxDV0f29D1OXsbunyAp7snXUVFhckAqry8XLy2JNAyxt3dHS+88IL478cffxzjxo3D9OnTcf/+fSxfvhyDBg1C3759Aej32hk7osxQPRUK687+lMtl8Pf3tqoMU3x9uS+aK2P7uT62oetjG7o+Z21Dlw/wvLz+mgh+//59iwM8S4ZKa+PBBx/ErFmz8J///AcAsG7dOjHAq15Hc7R5qm+oXFtqtYB790qsKsMQNzc5fH09ce9eKaqqeIaiq2H7uT62oetjG7o+e7Whr68nz6IFAF9fX/E6Pz8fTZo0MZpXd9GCqb3o6iomJgZLly6FWq3GqVOnDNbR3P57FRUVKCkpsVkd7XmIdVWVmodkuzC2n+tjG7o+tqHrc9Y2dM6B41oIDg4Wr6svfKguKytLvG7VqpXN69K0aVPxtAzd1b21qWN2dra4cbM96khERETS5/IBnu7GwLqbHhuiTZfJZGY3HNa6evUqXnnlFUyePBlbtmwxm187vOrt/dfcN39/fzHwM1fHK1euiNfmNm4mIiIiMsTlA7xevXqJixG0mw0bUlVVJR4X1rlzZ71hU1OqqqqwdetWnDhxAj/++KPJvBkZGeKJFSEhIXpp2k2VL1y4IB5pZsjx48fF6379+llURyIiIiJdLh/g+fr6iue3JiUlGT39Yc+ePeKw6YgRIywuv2PHjggKCgIAJCcn48aNG0bzfvnll+L1sGHD9NIeeeQRAJqtTzZs2GDw9UVFRdi2bRsATYDYuXNni+tJREREpOXyAR4ATJkyBYBmgUJCQgKKior00q9cuYLFixcD0AydxsTEWFy2TCbDU089BUATnL300ks1ygeANWvWiEO4AQEBmDhxol76sGHD0KZNGwDAsmXLcPLkSb308vJyzJs3T1wIMnXqVIvrSERERKRLJgiC4OhK2MKsWbOwb98+AECbNm0wceJEBAUF4fz589iwYQOKi4sBAAsXLsSECRP0XpuSkoK4uDgAmmHRtWvX6qVXVFRgypQpYlAWFBSE2NhYBAcHQ6VSYe/evfj1118BaPauW716tcFzbpOSkvD8889DEAQoFArExMSgd+/eyM/Px/fffy8efda7d2+sW7cObm5uVn0mVVVqqFTFVpVhiLu7HP7+3sjLK3boyqEsVQly8koR6O/Jc1NrwVnaj+qObej62Iauz15tqFR622SbFMkEeKWlpYiPj8eRI0cMpstkMsTHxyM+Pr5GmrkADwDu3buHuXPnGi0fAJo1a4aPP/7Y5Ny5DRs2YPHixUY3PA4PD8eXX35p9sxaS0g1wCsqrcDKnWlIzfhrpXL3ECWmR3WDd2PrNoduCBzdfmQ9tqHrYxu6PmcP8Fx+HzwtT09PrFq1Crt27cL27dvFxQx+fn7o06cP4uLi0KdPnzqX7+vri1WrVuHAgQPYsmULzp07h4KCAnh7e6N9+/YYOnQoJk6cqLd61pCJEyeib9++WLNmDY4dO4Y7d+5AoVAgLCwMjz32GMaPH2/1CRZSt3JnGs5fU+ndO39NhRU70pAQ29MxlSIiInIikunBo5qk2IOXpSrBqyuPG01/Z9oADteawZ4D18c2dH1sQ9fn7D14klhkQQ1HTl6pyfRsM+lEREQNAQM8cikt/E0f6hxoJp2IiKghYIBHLqWl0gvdQ5SQy/Tvy2WahRYcniUiImKARy5oelQ3dA1W6t3rGqxZRUtEREQSWkVLDYd3YwUSYnsiW1WCbO6DR0RW4H6aJFUM8MhlBSq9+AOZiOqE+2naBwNm58EAj4iIGhzup2lbDJidD+fgERFRg5KlKkFqhgrqarvAqgUgNUOFbFWJYyrmwkwFzOQYDPCIiKhB4X6atsWA2TkxwCMiogaF+2naFgNm58QAj4iIGhTup2lbDJidEwM8IiJqcLifpu0wYHZOXEVLREQNDvfTtK3pUd2wYof+KloGzI7FAI+IiBos7qdpGwyYnQ8DPCIiIrIJBszOg3PwiIiIiCSGAR4RERGRxHCIloiIyEnwLFeyFQZ4REREDsazXMnWOERLRETkYDzLlWyNAR4REZED8SxXsgcO0RIROQHduVcCwHlYDYglZ7ny+4BqiwEeEZEDGZp7pYvzsKSPZ7lazpkWodzOLcbVrCJ4N5KjuW9jh9bFEAZ4REQOZGjulS7tPKyE2J71VymqV9qzXM9f0x+mlcs0x305OpBxBs60CMWZ6mIK5+ARETmIsblXurTzsH7+/RbnYknY9Khu6Bqs1LvHs1z/4kyLUJypLqawB4+IyEHMzb3StWbvRQCanoKZY8Ph72+vWpEj8CxX47R/CFWnuwilvj4rZ6qLOezBI6J6l6UqwdmruQ2+R8rc3CtDzl9T4fNt5+xQG3IGgUov9Aht5jRBgjOwZBFKfXGmupjDHjwiqjeuMnelvhibe2WKWgDO/aHCrTtF8HSX2beCRE7AmRahOFNdzGEPHhHVG1eZu1KfDM29ssStu8V2qA2R89H+ISSv9veMXKb5A7E+ezudqS7msAePiOqFK81dqU+G5l4BwMXreViz95LR17Vq7l1fVSRyuOlR3bBih37vv6MWoThTXUxhgEdE9YKbuZoWqPTS+/oDlV747dIdg1tndAtRolWAD/Ly2ItHDYMzLULR1uXuvTIUl6uddh88DtESUb1wpbkrzsLY1hnPjwl3UI2IHMuZFqG0VHqhb5dAtHSCuhjCHjwiqhfczLX2jPVauLvzb3MiSzjTyRf1jQEeEdUbV5m74myqD98SkWlcsc8Aj4jqkTPNoyEi6TK1Yr+hHPvHAI+I6h17pIjIXrhiX4MTOYiIiEgyXOm0CXtigEdERESSwRX7GgzwiIiISDJc6bQJe2KAR0RERJJibA/JhrRin4ssiIiISFK4Yp8BHhEREUlUQ16xzyFaIiIiIolhgEdEREQkMQzwiIiIiCSGc/CIiKhOGvJB7kTOjgEeERHVCg9yJ3J+HKIlIqJaMXWQOxE5BwZ4RERkMe1B7mpB/77uQe5E5HgM8IiIyGI8yJ3INTDAIyIii/EgdyLXwACPiIgsxoPciVwDAzwiIqoVHuRO5Py4TQoREdUKD3Incn4M8IiIqE4a8kHuRM6OQ7REREREEsMAj4iIiEhiGOARERERSQwDPCIiIiKJYYBHREREJDEM8IiIiIgkhgEeERERkcRwHzwiG8tSlSCHm78SEZEDMcAjspGi0gqs3JmG1AyVeK97iOb4Ju/GCgfWjIiIGhoO0RLZyMqdaTh/TaV37/w1FVbsSHNQjYiIqKFigEdkA1mqEqRmqKAW9O+rBSA1Q4VsVYljKkZERA0SAzwiG8jJKzWZnm0mnYiIyJY4B4/qhdQXHrTw9zSZHmgmnYiIyJYY4JFdNZSFBy2VXugeosT5a/rDtHIZ0DVYKcmgloiInBeHaMmuGtLCg+lR3dA1WKl3r2uwJpglIiKqT+zBI7vRLjyoTnfhgZR6trwbK5AQ2xPZqhJkS3g4moiInB8DPLIbSxYeSDEAClR6SfLrIiIi18EhWrIbLjwgIiJyDAZ4ZDfahQdymf59uUyz0IK9XERERPbBAI/sigsPiIiI6h/n4JFdceEBERFR/WOAR/WCCw+IiIjqD4doiYiIiCSGAR4RERGRxDDAIyIiIpIYSc3BEwQBu3fvxpYtW3DhwgWUlJQgICAAERERmDRpEnr06GF1+T/99BN27NiBs2fPQqVSQaFQoHXr1hg4cCDi4uLQqlUrk2VERkYiMzPTovc7cuQIAgICrKozObcsVQlyuPiEiByAP3+kTTIBXllZGWbPno1Dhw7p3c/MzERmZiZ27dqFOXPmYNq0aXUqv6CgAHPnzsXRo0f17peXlyM9PR3p6en47rvv8PbbbyM6OtpgGUVFRbh161ad3p+kpai0Ait3pukd5dY9RLN9jHdjhQNrRkRSx58/DYNkArzXXntNDO5CQ0Mxfvx4NG/eHGlpadi4cSNKSkqwdOlSBAYGIioqqlZlq9VqzJw5EydOnAAAtGrVCo8//jjat2+P4uJiHDlyBPv370d5eTnmz58PX19fREZG1ijn0qVLEAQBAPDcc88hPDzc5Ps2bdq0VvUk17FyZxrOX9M/p/f8NRVW7EhDQmxPx1SKiBoE/vxpGCQR4B09ehS7d+8GAAwYMAArV66Eh4cHAGD06NEYN24cnnjiCeTn52PJkiUYOnQofHx8LC5/27ZtYnA3YMAALF++HF5ef3Vnx8TEICkpCS+88AIqKyvx1ltvYeDAgWIdtC5duiReR0dHIyQkpM5fM7muLFWJ3l/OWmoBSM1QIVtVwuESIrIL/vxpOCSxyOLrr78GALi7u2PRokU1AqvQ0FAsWLAAAJCfn4/NmzfXqvxNmzYBADw8PPDBBx/oBXdakZGRmDx5MgAgOzsbhw8frpFHG+B5eHigXbt2taoDSUdOXqnJ9Gwz6UREdcWfPw2Hywd4+fn5OHbsGABg8ODBaNu2rcF8I0eORLNmzQAAe/futbj8oqIinD17FgDw97//3eSih0cffVS8PnPmTI10bYDXoUMHyOUu/9FTHbXw9zSZHmgmnYiorvjzp+Fw+Sjj5MmTUKvVADTDp8bI5XJEREQA0ARfBQUFFpWfl5eH8PBwBAQEoH379ibz6s6Zu3fvnl6aIAi4fPkyACAsLMyi9yZpaqn0QvcQJeQy/ftymWaiM4dHiMhe+POn4XD5OXjaoAkwHzh16NABgCbYSk9PFwM+U9q2bWvxkO7Vq1fFaz8/P720zMxMFBUVAQA6duwIQNM7ePHiRRQXF6NFixYICwuDm5ubRe9Frm16VDes2KG/iq1rsGYVGxGRPfHnT8Pg8gGe7p5yrVu3Npm3ZcuWeq+zJMCrjS1btojXDzzwgF6a7gILuVyO+Ph4JCUloaqqSrzv5+eHyZMn49lnn0Xjxo1tWjdyLt6NFUiI7YlsVQmyuQ8VEdUj/vxpGFw+wFOp/voLxN/f32Re3V61/Px8m9YjOTkZBw8eBAA0a9YMAwcO1EvXDfDeffddg2Xk5+fjs88+w+HDh7FixQoolUqb1pGcT6DSiz9Yicgh+PNH2lw+wCsrKxOvq6+era5Ro0YGX2et27dv4+WXXxb/PWPGjBo9cLoBnkKhwNSpUxEdHY22bdsiPz8fP//8Mz755BPcuXMHZ8+exdy5c7F69WqrF2O4u9t+mqWbm1zv/+Ra2H6uj23o+tiGrs/Z29DlA7zKykrxWjeAM0Q3Xfd11lCpVHj66aeRm5sLABg4cKC4XYqu7OxsAJog9Ouvv0bfvn3FtBYtWiAmJgYPPfQQxo8fj6ysLBw/fhyJiYkYPXp0nesml8vg7+9d59eb4+vL1VaujO3n+tiGro9t6PqctQ1dPsDT7SmrqKgwGeSVl5eL1+aCQUvcuXMHU6dOxR9//AEAaNeuHT744APIZLIaeTdu3IiioiIUFhYiKCjIYHmBgYF4/fXXER8fDwD4/vvvrQrw1GoB9+6V1Pn1xri5yeHr64l790pRVaW2eflkX2w/18c2dH1sQ9dnrzb09fW0Sa+gywd4upsO379/3+IAz9xwrjnXr1/HM888gz///BMAEBQUhNWrV5ucN+fj42P2BI3IyEj4+PigqKgIp0+fhlqttmqYtrLSfj84qqrUdi2f7Ivt5/rYhq6Pbej6nLUNnXPguBZ8fX3Fa3MLJ3TTrVnAcPbsWUyYMEEM7lq3bo21a9eaXcVrCTc3N/GUi/LycpsvBiEiIiLpc/kALzg4WLy+ffu2ybxZWVnidatWrer0fsnJyXjqqafEOXcdOnTAhg0bjJ6gURcKhcJmZREREVHD4/JDtKGhoeL15cuX0a9fP6N5tZsiy2QycbPh2khKSsKsWbNQUVEBQLPX3YoVK8xuz3Ljxg0kJSUhNzcXvXv3xsMPP2wyv3ZBhkKh0Dsdg4iIiMgSLt+D16tXL7HHKyUlxWi+qqoqnDhxAgDQuXNnvaFdS/z666+YPXu2GNwNHDgQ33zzjdngDgBycnKwZMkSrFixAps2bTKZNyMjQ+yJDA8P58kWREREVGsuH+D5+vqKZ9AmJSXh1q1bBvPt2bNH3BR5xIgRtXqP3NxczJ49W1ykMWTIEHzxxRd6CzxM6d69u7i4Ijk52WgdAWD58uXidVRUVK3qSURERARIIMADgClTpgDQbJOSkJAgnvmqdeXKFSxevBgA4O3tjZiYmFqV//bbb4vBYY8ePfDJJ5/UapsVDw8PjB8/Xqzjiy++WKOOAPDVV19hx44dADRzC8eMGVOrehIREREBgEwQBMHRlbCFWbNmYd++fQCANm3aYOLEiQgKCsL58+exYcMGFBcXAwAWLlyICRMm6L02JSUFcXFxAIB+/fph7dq1YtrVq1cxatQoaD+mefPmiatcTfHz89PbzLiwsBAxMTHIyMgAoDkXNzY2FsHBwcjLy0NiYiJOnjwJQBOErlmzBuHh4XX9OAAAgiBArbZP87q5ybl3kwtj+7k+tqHrYxu6Pnu0oVwuM7ifbm1JJsArLS1FfHw8jhw5YjBdJpMhPj5e3ERYl6kAb+nSpVi5cmWt61O9HECzyjc+Ph6pqalGXxcUFISlS5eiT58+tX5PIiIiIkACq2i1PD09sWrVKuzatQvbt2/HhQsXUFhYCD8/P/Tp0wdxcXF1CprS09NtVsegoCBs2rQJu3fvxp49e5CWloZ79+7Bx8cHwcHBGD58OGJjY+Htbb/jxYiIiEj6JNODR0REREQaklhkQURERER/YYBHREREJDEM8IiIiIgkhgEeERERkcQwwCMiIiKSGAZ4RERERBLDAI+IiIhIYhjgEREREUkMAzwiIiIiiWGAR0RERCQxDPCIiIiIJMbd0RUg2xIEAbt378aWLVtw4cIFlJSUICAgABEREZg0aRJ69Ohh9Xukp6dj9erVSElJQU5ODpo0aYLQ0FBER0djzJgxcHNzq5cypMrebSgIAn766Sfs2LEDZ8+ehUqlgkKhQOvWrTFw4EDExcWhVatWJsuIjIxEZmamRe935MgRBAQEWFVnV2PvNrTV58/n0DB7tN/NmzcxdOjQOtXn0qVLNe7xGay9hQsXYv369YiPj8cLL7xgdXmZmZlYvXo1kpOTcevWLXh6eqJdu3YYNWoUJkyYgMaNG9dLGcbIBEEQ6vxqciplZWWYPXs2Dh06ZDDdzc0Nc+bMwbRp0+r8Hps3b8bChQtRUVFhML1v375YtmwZ/Pz87FqGVNm7DQsKCjB37lwcPXrUaJ5GjRrh7bffRnR0tMH0oqIi9O3bF5b+6Ghov1zs3Ya2+vz5HBpmr/ara4Ank8lw8eJFvXt8Bmvvl19+wdNPPw21Wm2TAO/nn3/G3LlzUVxcbDA9LCwMy5cvR5s2bexahikM8CTkxRdfxO7duwEAoaGhGD9+PJo3b460tDRs3LgRJSUlAID3338fUVFRtS4/OTkZzz77LARBgKenJyZMmIDu3bsjNzcXP/zwA9LT0wEAAwcOxKpVqyCX15wBYIsypMyebahWqxEXF4cTJ04AAFq1aoXHH38c7du3R3FxMY4cOYL9+/dDrVZDJpPh888/R2RkZI1yfvvtNzzxxBMAgOeeew7h4eEm3/ehhx5Co0aNalVXV2bv59AWnz+fQ+Ps1X6lpaUm/7DS9fnnnyMtLQ0AMGvWLMycOVMvnc9g7aSmpuKpp55CUVERAFgd4F26dAkxMTG4f/8+3NzcMG7cOPTt2xfFxcXYsWMHTp8+DQDo1KkTNm3aBE9PT7uUYZZAknDkyBEhLCxMCAsLE+Li4oSysjK99CtXrgj9+vUTwsLChH79+gmFhYW1Kv/+/ftCZGSkEBYWJvTs2VNITU2tkT5z5kyxDrt27bJLGVJm7zb84Ycf9MovLi6ukeenn34SunbtKoSFhQmDBw+uUQdBEITvvvtOLOePP/6o3RcpcfZuQ0Gw/vPnc2hcfbSfOTt37hTr8OyzzwpqtbpGHj6Dljt06JDQt29f8fMKCwsTPv30U6vKnDBhghAWFiZ06dJFOHTokF6aWq0W/v3vf4vv9cUXX9itDHMazp9lEvf1118DANzd3bFo0SJ4eHjopYeGhmLBggUAgPz8fGzevLlW5e/fvx83b94EADzzzDPo1q2bXnqjRo3w3nvvicM5K1assEsZUmbvNty0aRMAwMPDAx988AG8vLxq5ImMjMTkyZMBANnZ2Th8+HCNPNr5QB4eHmjXrl2t6iB19m5DwPrPn8+hcfXRfqZkZ2fj3//+NwDA398fS5YsgUwmq5GPz6B55eXl+PTTT/Hcc8/h3r17Niv39OnTOHXqFAAgOjoa//d//6eXLpPJ8NprryE0NBSA5nuq+jQIW5RhCQZ4EpCfn49jx44BAAYPHoy2bdsazDdy5Eg0a9YMALB3795avUdiYiIAzTfexIkTDebx9vbG2LFjAWgmb2dkZNi8DKmydxsWFRXh7NmzAIC///3vJufjPProo+L1mTNnaqRrf7l06NChQQ3dmVMfzyFg/efP59Cw+mo/UxYvXiwGIy+//DKaN29uMB+fQdOOHTuGESNGYNmyZVCr1fDy8sLUqVNtUrb2+QEgDpNXJ5fLxbT8/HwcP37c5mVYgt8ZEnDy5Emo1WoAwIABA4zmk8vliIiIAKD5xV1QUGDxe2jnbXXq1AlKpdJoPt33r977Y4sypMrebZiXl4fw8HAEBASgffv2JvM2bdpUvK7+l68gCLh8+TIAzQRg+kt9PIe2+Pz5HBpWH+1nyi+//IJ9+/YBAPr06YMxY8YYzMdn0LydO3eKvdTdu3fH5s2bMWTIEJuUrX1+mjZtiq5duxrNp/s9lJycbPMyLMFtUiRA+7AD5h/4Dh06AND8kEhPTxd/UJmSnZ0t/qLv2LGjybzaLmUAeiu/bFGGlNm7Ddu2bWvxcNLVq1fF6+orKDMzM8WJytp2LCoqwsWLF1FcXIwWLVogLCysQW6vYe82BKz//PkcGlcf7WfKBx98IF7Pnz/faD4+g5ZRKpWIj4/HhAkT4ObmhtzcXKvLrKqqEn8+hoaGmuw9DQkJgZubG6qqqvSeH1uUYSkGeBKguxdS69atTeZt2bKl3uss+cGk/UvIkvIDAwMhl8uhVqtx69Ytm5YhZfZuw9rYsmWLeP3AAw/openuxyWXyxEfH4+kpCRUVVWJ9/38/DB58mQ8++yzVu3h5Grqow2t/fz5HBrnyGfwwIEDSE1NBQAMGzbM5D57fAbNmzRpEt566y2bf+13795FeXk5APPfI25ubggICEBWVpbe82OLMizFIVoJUKlU4rW/v7/JvLo9Mvn5+RaVn5eXZ3H5CoVCnLyvW74typAye7ehpZKTk3Hw4EEAQLNmzTBw4EC9dN1fLu+++y5+/PFHvV8s2jp99tlnePLJJ/W+Lqmrjza09vPnc2icI5/Bb775Rrx+5plnTOblM2heeHi4XQLb2nyPAH9Nd9H9HrFFGZZigCcBZWVl4nX1VV/V6e6FpPs6U0pLSy0uXzePbvm2KEPK7N2Glrh9+zZefvll8d8zZsyo8UNS95eLQqHAtGnTkJiYiHPnziE5ORmLFi0SF3CcPXsWc+fOFec1SV19tKG1nz+fQ+Mc9QxevHhRnJPVq1cv9OrVy2R+PoOO42q/CxngSUBlZaV4bW4zS9103deZovvXoSWbZWrz6JZvizKkzN5taI5KpcLTTz8tzlMZOHCguF2KruzsbACaHzrffPMNXnzxRYSGhqJRo0Zo0aIFYmJisGXLFnEI6/jx43orxqSsPtrQ2s+fz6FxjnoGv/32W/HaXO8dwGfQkVztdyEDPAnQ7WUxt1eOduwfsOybC9D/K8OSvXi076FQKGxahpTZuw1NuXPnDuLi4vDHH38AANq1a4cPPvjA4P5bGzduxG+//YZ9+/ahb9++BssLDAzE66+/Lv77+++/t7qOrqA+2tDaz5/PoXGOeAaLi4vFUzNatWpl8OSY6vgMOo6r/S5kgCcBuhvW3r9/32Re3R9MlnQP17Z83Ty6PzBtUYaU2bsNjbl+/TomTZokriAMCgrC6tWrTW6f4ePjg6CgIJPlRkZGwsfHB4BmU8+GMERUX21ozefP59A4RzyDycnJ4nsNHz7c4j3t+Aw6hre3t3hd1+fHFmVYigGeBPj6+orX5iZi6qab+iVurHxzez5VVFSIZzXqlm+LMqTM3m1oyNmzZzFhwgT8+eefADQrutauXWt2ZZcl3NzcxB32y8vLG8QkfUe0oTHGPn8+h8Y5ov2SkpLE60ceeaTO5RjSEJ9Be2vSpIl4bcn+h9o8ut8jtijDUgzwJCA4OFi8vn37tsm8WVlZ4nWrVq1sXn52drb4l6Ju+bYoQ8rs3YbVJScn46mnnhLn3HXo0AEbNmwwunt/XTSEYT1d9d2G5hj6/PkcGlff7VdVVYWff/4ZgGZI1dziirpoaM+gvbVo0ULsgTO3bUlVVRXu3LkDQP97xBZlWIoBngTobkiqu1mnIdp0mUxmdqNTLX9/f/FoHnPlX7lyRbzW3SzUFmVImb3bUFdSUhJmzJgh9s488MADWLduHQIDA02+7saNG1izZg0+/PBDHDp0yOz7aCeDKxQKvdMxpMrebWiLz5/PoXH1+QwCQGpqqtirFhkZaXDOa3V8Bh1P+32iuyG8IX/88Ye4oKL682OLMizBAE8CevXqJf6llpKSYjRfVVWVuBy/c+fOekMS5mg38rxw4QIKCwuN5tM9L69fv342L0Oq6qMNAeDXX3/F7Nmzxcm9AwcOxDfffGPRfkw5OTlYsmQJVqxYgU2bNpnMm5GRIfaChIeHN4hd9e3dhrb6/PkcGlZfz6DW6dOnxevqG4obw2fQ8bTPT25ursk/BHSfn+obYduiDEswwJMAX19f8cy6pKQko92+e/bsETdZHDFiRK3eQzs/pLKyEhs2bDCYp6ioCNu2bQOgOWKlc+fONi9DquqjDXNzczF79mxxgviQIUPwxRdf6E0uN6V79+7ipO3k5GSTwwvLly8Xr6OiompVT1dl7za01efP59Cw+ngGdZ07d0687tatm0Wv4TPoeLpzJdeuXWswT1VVFdavXw9AM+du0KBBNi/DEgzwJGLKlCkANBOjExISxLMKta5cuYLFixcD0KziiYmJqVX5w4YNQ5s2bQAAy5Ytw8mTJ/XSy8vLMW/ePHHIYerUqXYpQ8rs3YZvv/22+IupR48e+OSTT2q1xYOHhwfGjx8v1vHFF1+sUUcA+Oqrr7Bjxw4AmnlNxg5NlyJ7tqGtPn8+h8bZ+xmsXhagGT7VHR42hc+g4z3wwAPifMnNmzfjf//7n166IAhYtGiRuO3UE088UWMFrC3KsIRMEASh1q8ipzRr1izs27cPANCmTRtMnDgRQUFBOH/+PDZs2IDi4mIAwMKFCzFhwgS916akpCAuLg6AZjjG0F8VSUlJeP755yEIAhQKBWJiYtC7d2/k5+fj+++/R3p6OgCgd+/eWLduncEhAVuUIWX2asOrV69i1KhR0D7u8+bNE1fYmeLn56e311ZhYSFiYmKQkZEBQHMmZ2xsLIKDg5GXl4fExEQxYPD29saaNWsQHh5e14/DJdnzObTV58/n0Dh7/xzV6tWrF0pKShAQEIAjR45YXD8+g3Wj2zbx8fF44YUXDOa7efMmhg4dCkCzs4DuSmettLQ0xMbGoqKiAjKZDI899hgGDRqEsrIybN++HadOnQKgCa63bt2qtzWKLcswhwGehJSWliI+Pt7oDwuZTIb4+HjEx8fXSLP0B9OGDRuwePFioxs0hoeH48svvzQ5p8sWZUiVvdpw6dKlWLlyZa3rY+h74fbt24iPjxcPRzckKCgIS5cuRZ8+fWr9nq7O3s+hrT5/PoeG1cfP0aKiIrFt2rdvX6MHxxw+g7VnywAPAA4cOICXXnpJXKxWXbt27fDVV1+Z3JnAFmWY4l6nV5FT8vT0xKpVq7Br1y5s375dnETt5+eHPn36IC4uzuqHfeLEiejbty/WrFmDY8eO4c6dO1AoFAgLC8Njjz2G8ePHm12ab4sypMpebajtkbGFoKAgbNq0Cbt378aePXuQlpaGe/fuwcfHB8HBwRg+fDhiY2Pr9BenFNj7ObTV58/n0LD6+Dmq7QUEUKdFGnwGHW/YsGHYs2cPVq9ejcOHDyMrKwsymQwhISF45JFH8OSTT5r9/G1RhinswSMiIiKSGC6yICIiIpIYBnhEREREEsMAj4iIiEhiGOARERERSQwDPCIiIiKJYYBHREREJDEM8IiIiIgkhgEeERERkcQwwCMiIiKSGAZ4RETkcMbOxCWiumGAR0Q29+STT6JTp07o1KkTbt68Kd5PSUkR78+fP9+BNSRnUVlZia+++grvvPOOwfT//ve/4vfM1q1b67l2RK6LAR4RETlEVlYWHn/8cbz//vsoKSlxdHWIJIUBHhEROcSff/6JixcvOroaRJLk7ugKEFHD0b9/f1y6dMnR1SAX8sILL+CFF15wdDWIXA578IiIiIgkhgEeERERkcRwiJaIakWtViMxMRHbtm1DWloaioqKEBAQgAcffBBTpkxBWFiY0dempKQgLi4OADBmzBi8++67NfKUl5dj165d+PHHH5Gamor8/Hx4eHigefPm6NWrF4YPH47IyEiz9SwrK8OOHTuwf/9+XLhwAQUFBfD09ES7du0wePBgPPHEE2jRooXJMm7duoWNGzfi2LFjuH79OkpKSuDn54cOHTrg4YcfRkxMDLy9vY2+vlOnTgCA2NhY/Pvf/8adO3ewfv16JCUl4datW6ioqEDLli0xaNAgPPnkk2jXrp3Bcv773//is88+AwAcOXIEAQEB+Omnn7Bt2zakpqbi7t278PX1RZcuXTB69GhERUVBLjf/9/uZM2ewdetWpKSkICcnB1VVVWjevDn69OmDf/7znxg0aJDZMgDg3r172LJlC5KSkpCeno6ioiJ4e3sjNDQUkZGRiI2Nha+vr5h/69ateOWVV/TK2LZtG7Zt2wZA/3tD92t/5513MHbsWIN1UKvV2L9/PxITE3Hu3Dnk5ubC3d0dLVq0QL9+/TBmzBj06tXL6Ndgr8+YyFEY4BGRxQoKCjBz5kycOHFC7/6tW7ewZcsW7Ny5EwsWLKhz+Tdu3MC0adPwxx9/6N2vqKhAUVERrl27hm3btqFnz55Yvnw5lEqlwXJ++eUXzJ8/H1lZWXr3CwsLkZqaitTUVKxduxbvvPMOhg8fXuP1arUay5cvx+eff47Kykq9tDt37uDOnTv45ZdfsHLlSixZsgQPP/yw2a8tOTkZ//rXv5Cfn693PyMjAxkZGdi4cSMWLVqE6Ohok+Xcv38fs2bNwr59+/Tu5+bm4siRIzhy5Ag2bNiAr776Ck2aNDFaxoIFC7Bjx44aaTdv3sTNmzexY8cODB48GEuXLkXTpk2N1mfPnj1YuHAhCgoK9O4XFBTg1KlTOHXqFNasWYOPP/4Yffv2Nfm11dWVK1fw4osv1liwcf/+ffHz3bRpE0aMGIHFixebDMq1r7P2MyZyNAZ4RGSRkpISTJo0CZcvXwYANGrUCEOHDkVYWBgKCwtx8OBBZGRk4K233qrTL73y8nI899xzYnAXFBSEhx9+GEFBQSgpKUF6ejoOHToEtVqN33//HfHx8Vi/fn2Nco4dO4Zp06aJG+c2bdoUQ4cORdu2bZGbm4tDhw7h5s2bKCoqwpw5c/DVV1/hwQcf1CvjrbfewqZNm8R/d+zYEYMGDYKfnx8yMzORlJSEu3fvIjc3FzNmzMD777+Pxx57zOjXdvHiRezcuROlpaVo06YNhgwZgubNm+PWrVvYu3cvCgoKUFFRgVdffRXdu3dHhw4djJb16quvIiUlBe7u7njooYfQrVs3VFRU4OTJkzh58iQATc/cm2++iQ8//NDg5zx16lT89ttvAACFQoHBgweja9eukMlkuHr1Kg4dOoSSkhIkJydj0qRJ2LhxI3x8fGqUtW3bNrzyyisQBAEAEBAQgMjISLRs2RJZWVk4cOAAcnNzcefOHTzzzDP44Ycf0KFDB4SHh2PevHm4fv06Nm7cCADo3r07Ro4cKX7elrpy5QqeeOIJMcD09PTEww8/jI4dO6K8vBynT59GSkoKAOB///sfrl+/ju+++w6enp52+4yJnIJARGSBpUuXCmFhYUJYWJgwZMgQ4cqVK3rplZWVwscffyzm0f5348YNMc/x48fF+y+//LLe63fu3CmmTZ48WSgrK6tRhzNnzgg9e/YU8/3666966UVFRcLAgQPF9BkzZgj5+fl6ee7fvy/MmzdPzDNs2DChqqpKTN+yZYuY1rVrV2HDhg2CWq3WK6O4uFiYP3++mO+BBx4Qrl69WqO+1T+Lzz77TKisrNTLk5ubK0RHR4t5Xn/99RrlfPrpp3rlPProozU+f0EQhO+//17M06lTJyErK6tGniVLloh5oqOjhT///LNGnuzsbGHy5Mlivnnz5tXIc+vWLaFHjx5injfeeEMoLS3Vy1NYWChMnTpVr111mfp+MPS1b9myRS+tvLxcGD58uJgeGxsr3L59u0YZKSkpQv/+/cV8r7zyisn3sfYzJnIGnEBARGbl5+dj9erVADQ9PsuXL0doaKheHjc3N8yePdvoHClzzpw5I14/9dRT8PDwqJGnR48eePrppwEAcrkcZ8+e1Uvfvn077ty5AwDo2rUrPvnkkxrDi40aNcLbb7+N9u3bAwCuX7+OY8eOAdAMBWvnYQHA/PnzMWHCBMhkMr0yvLy88M4772DIkCEAgNLSUixbtszk1xcVFYWZM2fCzc1N775SqcSrr74q/vuXX34xWY6bm5vBzx8AYmJi0L9/fwCAIAg1ysrOzsZ3330nvu9XX32Fv/3tbzXKadGiBZYvX46AgAAAwM6dO3Ht2jW9PN9++y3KysoAAEOGDMHChQvRuHFjvTw+Pj74+OOP4efnBwD49ddfkZGRYfLrq42tW7eK9WrdujVWrVqFli1b1sjXr18/rFixAu7umkGrbdu21ZgGoMuaz5jIWTDAIyKzkpOTUV5eDgCIjIwUFw8YMnv27DpNPtcNfE6fPm00X1xcHPbu3YszZ87g//2//6eXduDAAfF6xowZUCgUBsto1KgRJk+ejPDwcDz22GPiL/5Tp04hMzMTANCmTRtMnjzZZJ1feeUVMfjbu3cviouLjeZ94oknjKb17NlTrOvdu3dNvueDDz6I4OBgo+n9+vUTr6uXtW3bNnHoevz48UbnMAKa4Ey7IEatVmP37t166UlJSeK1qX3qfH19ERsbi169emHs2LG4f/++0by1pVun+Ph4g8PIWg888IA4BKxWq8UFHYZY8xkTOQvOwSMis7Q9XAAwePBgk3lbtmyJrl27IjU1tVbvERERgW+++QYAsGrVKmRmZiIqKgr9+/eHl5eXmK9p06YGJ/2Xl5eLiz/c3Nzw0EMPmXy/SZMmYdKkSXr3jh8/Ll7/4x//qNFzV127du3QtWtXpKWlobKyEr///jsGDhxYI5+7uzu6du1qtByFQoEmTZpApVKZDYAeeOABk+n+/v7idfWydBfHmKqPVs+ePcVr7Zw9QLMQQ9tzFhAQgG7dupksJyEhwex71db9+/fFPwRkMpnBxTLVjRgxAjt37gSAGguFdFnzGRM5CwZ4RGSWtlcLgMFhq+rCwsJqHeBFRkaiX79++PXXXwFoJsT/73//g0KhQO/evTFo0CA8/PDDRrdhyc3NFXun2rRpU2O40BI3b94Urzt37mzRazp37oy0tDQAmlXAhvj6+qJRo0Ymy9FO+ler1SbzNWvWzKJyAIiLH7SuXLkiXs+aNctkOdXdunVLvNZdnVybBRG2lJ2drdfepnrvtLp06SJe67Z1ddZ8xkTOgkO0RGRWbm6ueK27n5kxuj0clpLL5fj8888RHR2t13NWUVGBlJQULF26FI899hiGDx+OL774osbh9LWtoyG6W5ho542Zo5uv+lYhWqZWbNZWbcqqHnwYq58ldF9ri8/aWrptZWobF126bVV9uxpd1nzGRM6CPXhEZJa5ocrqjM19M6dJkyZ47733MHPmTOzZswcHDx7EuXPn9Hq1/vzzT3z00Uf4/vvv8e2336JNmzYAUGO/urqoyy9r3brV9nOqb7qf0bRp0ywOYgHoLXqxxWdtrbq0VVVVlXjt7G1FZC0GeERkVvPmzcX970z1fGgVFRVZ9X5/+9vfMGPGDMyYMQP37t3Dr7/+imPHjuHgwYPiUGFmZibmz5+PdevWAYDe3nuFhYV1el/dniBLvk4AyMvLE6+dfdPbpk2biosCRowYYdE8PENs8VlbS7fnsC5t5aieR6L6wiFaIjKrdevW4vWlS5fM5r969arN3tvX1xfDhg3DG2+8gaSkJL2TMk6cOCEGfK1atRJXw968eVNc9WtMTk4O5s6di48++khcfat7VFj1UxGMuXDhgnjdtm1by74oB9GtnzZgN6W8vNxgsK5bjqntRrQuXLiAl156CZ9++qnNthVp1aqV2FOcmZlpUaCp26bO3lZE1mKAR0Rm6R7FpbsViSGFhYX4/fffa1V+VVUVXn75ZYwdOxYDBw40GpzJZDJMnjxZb6GHdsK/p6enuDCisrLSbCCRkpKCxMREfPHFF/jxxx8BQO8orf3795td8JCRkSEGvHK5HD169DDzlTqW7tdnrh0BYO3atejTpw/69++PN954Q7wfEhIizrO8ffu23uINQ37++Wfs3LkTy5Yt01u9as0wqYeHB8LDwwFohmv3799v9jV79+4Vr3VXCBNJEQM8IjJr8ODB4rDcL7/8ordtSnWrVq1CaWlprcp3c3PDxYsXkZaWhrt37+Knn34ymletVusNyQUGBorXuseFrVixwuQ8Ld1jzoYOHQpAs7+ZtrcyMzNT3BTYmPfff1+8Hjx4sNMP++kuYDlw4IB47JYheXl5+OqrrwBohkCr732o+1kvX77caDnl5eXYvHmz+G/tZw1Ab79E3flxlhozZox4vWzZMpNTA86ePasX4Gn3xCOSKgZ4RGRW48aNMXfuXACa3pI5c+aI25no+u6777By5co6vcfjjz8uXr/11ls1TqnQvvd7770nruLs1q2b3vDxuHHjxIDvt99+w6uvviqetqBVVVWFJUuW4NSpUwCA9u3bIzIyEoBmv7rnn39ezPvuu+9i48aNNQLF0tJSvP766+Jmv40bN8a//vWvOn3d9alDhw4YNWoUAE2gPHPmTBw9erRGvuzsbMyYMUP8nFu1aoVx48bp5ZkyZYq4P+Hu3bvx0Ucf1Vh8UVZWhnnz5olbkvz973/X2zNPd2sT3a14LBUdHS1uSJyZmYlnnnlGbwsXrZMnT+K5554T6xcVFeX0va1E1uIiCyKyyMSJE3Hw4EEkJyejoKAAcXFxGDx4MB544AFUVFQgOTlZ3A8uODi4xtFW5kyYMAE//PADLl26hPz8fMTExGDgwIEICwuDUqlEbm4ujhw5Ig4HKhQKvSO+AE3AsHTpUjz99NMoLy/H1q1bkZycjGHDhiEoKAh5eXlISkrCn3/+CUAzrPvee++Jc/cATZD422+/YevWraisrMSbb76JdevWYfDgwWjatClu3bqFpKQk8Ug0mUyGBQsWGN2fz9ksXLgQFy9exJUrV5Cfn4+nn34affr0QUREBBQKBf744w8cOHBA3MDXw8MDH3zwQY2j41q3bo1FixbhX//6F9RqNb744gskJiZiyJAhaNasGXJycrB//37k5OQA0ByN9u9//7tGGTKZDIIg4LfffsNLL72Ejh07okWLFoiOjjb7tTRq1AiffPIJJk2ahKKiIpw+fRqPPvoohgwZgg4dOqCyshKnT5/G8ePHxSC9Y8eOePPNN23wSRI5NwZ4RGQRuVyO5cuX4/XXX8f27dshCAIOHz6Mw4cPi3lkMhleeOEF5Ofn1zrAa9SoEVatWoUZM2aImyQfPXrUYA9T8+bNsWjRIr05ZVoRERFYvXo1EhISkJ2djTt37mDDhg018rVo0QIffvihwZ6cJUuWoGXLlvjyyy9RUVGBy5cvG1yU0KxZM7z//vsYNGhQrb5WR/Lx8cGGDRswb948HDx4EICmt1P3pAqtli1b4j//+Q/69OljsKxRo0ZBoVDg9ddfR0FBAa5fv441a9bUyBcSEoJPP/20xsKGJk2aYNSoUeKRY9pTJjp16mRRgAdoNpretGkTZs+ejStXrqC0tBSJiYkG8/7zn//EW2+9BW9vb4vKJnJlDPCIyGIKhQLvvfce/vnPf2LTpk04deoU8vPz4efnhx49eiAuLg4DBgzA4sWL61R+ixYt8P3332Pv3r3Yt28fzp8/j7t376KyshJKpRIhISEYMmQIHn/8cZNbkvTt2xf79+/H5s2bkZSUhPT0dBQUFMDT0xOhoaH4xz/+gdjYWKOnH8hkMsyePRtjx47Fpk2bcOzYMXGlZpMmTdC5c2cMHToUY8eOtegEBWfj6+uLL774AidPnsTOnTtx4sQJ5OTk4P79+/D19UWnTp0wdOhQjBkzxmwwNHz4cPTv3x8bN27EoUOHkJGRgcLCQvj4+KBz584YMWIExowZU6MHUOudd95BmzZt8L///Q9ZWVlij54gCBYvwujQoQN27tyJxMRE/Pjjjzh37pze8HJERATGjh2LXr161e6DInJhMoHbcBMRERFJChdZEBEREUkMAzwiIiIiiWGAR0RERCQxDPCIiIiIJIYBHhEREZHEMMAjIiIikhgGeEREREQSwwCPiIiISGIY4BERERFJDAM8IiIiIolhgEdEREQkMQzwiIiIiCSGAR4RERGRxDDAIyIiIpIYBnhEREREEsMAj4iIiEhi/j/BquHcJZ+DZQAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "#feature_metrics= corr_df.loc[:,:]\n", - "feature_metrics = pd.DataFrame()\n", - "feature_metrics['disconnection'] = pd.Series(min_max_scaler.fit_transform((corr_df.abs()).sum(axis=1).to_numpy().reshape(-1, 1)).reshape(len(corr_df))).apply(lambda x: 1-x) \n", - "#TODO: MinMaxScaler ONLY before std computation\n", - "#feature_metrics['std'] = pd.Series(min_max_scaler.fit_transform(stats['std'].to_numpy().reshape(-1, 1)).reshape(len(corr_df)))\n", - "feature_metrics['std'] = pd.Series(stats['std'].to_numpy().reshape(-1, 1).reshape(len(corr_df)))\n", - "#feature_metrics['score'] = feature_metrics.apply(lambda x: x['disconnection'], axis=1) #TODO mean or prod?\n", - "feature_metrics['score'] = feature_metrics.apply(lambda x: x.prod(), axis=1) #TODO mean or prod?\n", - "feature_metrics.index = corr_df.index\n", - "#pd.concat([feature_metrics, stats['std']], axis=1)\n", - "#feature_metrics = scaleColumns(feature_metrics, feature_metrics.columns)\n", - "\n", - "\n", - "feature_metrics.plot.scatter(x=\"disconnection\", y=\"std\")\n", - "\n", - "#top_k_score = feature_metrics.sort_values([\"score\"], ascending=False).head(TOP_K).index[:5].tolist()\n", - "#other = ['variant_entropy', 'normalized_variant_entropy', 'sequence_entropy', 'normalized_sequence_entropy','sequence_entropy_linear_forgetting','normalized_sequence_entropy_linear_forgetting','sequence_entropy_exponential_forgetting','normalized_sequence_entropy_exponential_forgetting'] \n", - "#selected_highest_score = top_k_score+other" - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "id": "f8643aee", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " disconnection std \n", - "trace_len_hist3 1.000000 0.281492 \\\n", - "trace_len_hist9 0.950974 0.276533 \n", - "eventropy_k_block_diff_1 0.803846 0.325423 \n", - "kurtosis_variant_occurrence 0.923120 0.281577 \n", - "activities_mean 0.869433 0.289788 \n", - "skewness_variant_occurrence 0.764267 0.283716 \n", - "activities_q3 0.824492 0.253252 \n", - "ratio_top_1_variants 0.683999 0.290271 \n", - "trace_len_entropy 0.576229 0.270546 \n", - "eventropy_knn_3 0.491725 0.280572 \n", - "eventropy_knn_5 0.481065 0.281888 \n", - "eventropy_knn_7 0.475904 0.281818 \n", - "ratio_top_5_variants 0.363393 0.339036 \n", - "trace_len_q1 0.286775 0.402506 \n", - "eventropy_k_block_ratio_5 0.294932 0.346309 \n", - "trace_len_harmonic_mean 0.326012 0.308559 \n", - "ratio_top_10_variants 0.290012 0.340644 \n", - "trace_len_mode 0.294336 0.330072 \n", - "eventropy_k_block_diff_5 0.244431 0.374350 \n", - "normalized_sequence_eventropy_linear_forgetting 0.321928 0.279733 \n", - "trace_len_median 0.224263 0.378282 \n", - "eventropy_k_block_ratio_3 0.237459 0.345849 \n", - "eventropy_global_block 0.269850 0.304198 \n", - "trace_len_geometric_mean 0.230946 0.353671 \n", - "eventropy_trace 0.260809 0.312554 \n", - "eventropy_k_block_diff_3 0.212719 0.376743 \n", - "eventropy_k_block_ratio_1 0.193213 0.374408 \n", - "eventropy_prefix 0.211474 0.329233 \n", - "ratio_most_common_variant 0.183727 0.253617 \n", - "normalized_sequence_eventropy_exponential_forge... 0.160069 0.262115 \n", - "eventropy_lempel_ziv 0.075249 0.293915 \n", - "ratio_top_20_variants 0.030526 0.390934 \n", - "normalized_sequence_entropy 0.030098 0.259735 \n", - "ratio_top_50_variants 0.001179 0.414572 \n", - "ratio_top_75_variants 0.000317 0.415087 \n", - "ratio_unique_traces_per_trace 0.000000 0.415471 \n", - "\n", - " score \n", - "trace_len_hist3 0.281492 \n", - "trace_len_hist9 0.262976 \n", - "eventropy_k_block_diff_1 0.261590 \n", - "kurtosis_variant_occurrence 0.259929 \n", - "activities_mean 0.251952 \n", - "skewness_variant_occurrence 0.216835 \n", - "activities_q3 0.208804 \n", - "ratio_top_1_variants 0.198545 \n", - "trace_len_entropy 0.155896 \n", - "eventropy_knn_3 0.137964 \n", - "eventropy_knn_5 0.135606 \n", - "eventropy_knn_7 0.134118 \n", - "ratio_top_5_variants 0.123203 \n", - "trace_len_q1 0.115429 \n", - "eventropy_k_block_ratio_5 0.102138 \n", - "trace_len_harmonic_mean 0.100594 \n", - "ratio_top_10_variants 0.098791 \n", - "trace_len_mode 0.097152 \n", - "eventropy_k_block_diff_5 0.091503 \n", - "normalized_sequence_eventropy_linear_forgetting 0.090054 \n", - "trace_len_median 0.084835 \n", - "eventropy_k_block_ratio_3 0.082125 \n", - "eventropy_global_block 0.082088 \n", - "trace_len_geometric_mean 0.081679 \n", - "eventropy_trace 0.081517 \n", - "eventropy_k_block_diff_3 0.080140 \n", - "eventropy_k_block_ratio_1 0.072340 \n", - "eventropy_prefix 0.069624 \n", - "ratio_most_common_variant 0.046596 \n", - "normalized_sequence_eventropy_exponential_forge... 0.041956 \n", - "eventropy_lempel_ziv 0.022117 \n", - "ratio_top_20_variants 0.011934 \n", - "normalized_sequence_entropy 0.007817 \n", - "ratio_top_50_variants 0.000489 \n", - "ratio_top_75_variants 0.000131 \n", - "ratio_unique_traces_per_trace 0.000000 \n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAB4gAAAfLCAYAAABZ6vCdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeZjd4/0//md2iZAIEYJaYl9rF9QaexDR2ILaPpaSFm0prdqDolVLKaVI7SQIia22oEEqFYIEEbIgISaRfczM74/8cr4zMjNZZpKRnsfjunJd7znv+9zv1/ucM5rmeV733aiioqIiAAAAAAAAAPzPa9zQBQAAAAAAAACwZAiIAQAAAAAAAIqEgBgAAAAAAACgSAiIAQAAAAAAAIqEgBgAAAAAAACgSAiIAQAAAAAAAIqEgBgAAAAAAACgSAiIAQAAAAAAAIqEgBgAAAAAAACgSDRt6AIAAAAAAAAAFsXFF1+ce++9N2eccUZ69epV5/nGjRuXf/zjHxk0aFDGjx+fli1bZs0118wBBxyQI444Issss8wSmWNxalRRUVHRoBUAAAAAAAAALKR///vfOeGEE1JeXl4vAfFLL72Us846K9OmTav2/Prrr5+bb745q6+++mKdY3ETEAMAAAAAAABLlXfffTc/+9nPMnXq1CSpc0A8YsSI9OjRI7NmzUqTJk3y05/+NNtss02mTZuWxx57LEOHDk2SbLDBBnnggQfSsmXLxTLHkmAPYgAAAAAAAGCp8dJLL+X4448vhMP14aKLLioEuzfffHMuueSSHHTQQTnyyCNz33335eijj04yJwS+++67F9scS4KAGAAAAAAAAPjBmz17dq6//vqceuqpmTJlSr3NO3To0Lz11ltJkm7dumXXXXetcr5Ro0b53e9+l06dOiVJ7rjjjpSWltb7HEuKgBgAAAAAAAD4QXvttdey33775aabbkp5eXlatWqV448/vl7mHjBgQOH4qKOOqnZM48aNC+dKSkoyePDgep9jSREQAwAAAAAAAD9ojz/+eMaOHZsk2XTTTfPQQw9l9913r5e533zzzSRJmzZtsvHGG9c4bocddigcDxo0qN7nWFKaNshVAQAAAAAAABZCu3btcsYZZ+SII45IkyZN8vXXX9d5zrKysnz88cdJkk6dOqVx45r7a9dee+00adIkZWVl+eCDD+p1jiVJBzEAAAAAAADwg9azZ8+88MIL6dmzZ5o0aVJv83711VeZPXt2kmS11VardWyTJk3Svn37JMn48ePrdY4lSUAMAAAAAAAA/KBtttlmWWaZZep93kmTJhWOV1hhhfmOb9OmTZI5ewjX5xxLkiWmAQAAAAAAgMVmzz33rPX8v/71ryVUybxmzJhROG7RosV8x88dM3PmzHqdY0kSEAOwVCv9alRDl8AS9Owm5zd0CSxB67SZ0tAlsAQ9N6NdQ5fAErRseUNXwJL0pX95KCqdZlc0dAksQRsu4+9rxeTdWcs3dAksQcuX+QtbMTngy/sauoSljn+T/N9SVlZWOG7evPl8x88d891339XrHEuS/5sGAAAAAAAALDYN2SE8P5U7fktLS+c7fu5ew82aNavXOZYkexADAAAAAAAARWnZZZctHM+aNWu+4+eOqbwfcn3MsSQJiAEAAAAAAICitNxyyxWOJ0+ePN/xc8e0a/f/tsuqjzmWJAExAAAAAAAAUJRWXnnlQgfw+PHjax1bVlaWiRMnJkk6duxYr3MsSQJiAAAAAAAAoGh16tQpSfLxxx/XOm7UqFEpKytLkqy//vr1PseSIiAGAAAAAACABVVe5s/C/vmB23bbbZMkX3/9dT788MMaxw0ePHie59TnHEuKgBgAAAAAAAAoWvvss0/huE+fPtWOKSsry7333ptkzp7DO++8c73PsaQIiAEAAAAAAICitcUWW2TLLbdMkjz00EMZOHBglfMVFRW57LLLMmrUqCTJUUcdlWWWWabe51hSmjbIVQEAAAAAAACWgLFjx2bPPfdMkqy22mp5/vnn5xlzwQUX5PDDD09paWnOOuusPP/889l5550zc+bMPProo3nrrbeSJGuttVZOOeWUaq9TH3MsCQJiAAAAAAAAoKhtsskmue666/Kb3/wm06dPz+OPP57HH3+8ypg111wzf//737PssssutjmWBAExAAAAAAAAUPS6dOmSJ598Mv/4xz/y8ssv54svvkijRo2y9tprZ5999skxxxwz32C3PuZY3BpVVFRUNGgFAFAHpV+NaugSWIKe3eT8hi6BJWidNlMaugSWoOdmtGvoEliCli1v6ApYkr701fSi0mm2f2YqJhsu4+9rxeTdWcs3dAksQcuX+QtbMTngy/sauoSlTumXIxq6hKVOsw4bNHQJVNK4oQsAAAAAAAAAYMkQEAMAAAAAAAAUCQExAAAAAAAAQJEQEAMAAAAAAAAUCQExAAAAAAAAQJFo2tAFAAAAAAAAwFKjvLyhK4A60UEMAAAAAAAAUCQExAAAAAAAAABFQkAMAAAAAAAAUCQExAAAAAAAAABFQkAMAAAAAAAAUCSaNnQBAAAAAAAAsLSoqChv6BKgTnQQAwAAAAAAABQJATEAAAAAAABAkRAQAwAAAAAAABQJATEAAAAAAABAkRAQAwAAAAAAABSJpg1dAAAAAAAAACw1yssbugKoEx3EAAAAAAAAAEVCQAwAAAAAAABQJATEAAAAAAAAAEVCQAwAAAAAAABQJATEAAAAAAAAAEWiaUMXAAAAAAAAAEuNivKGrgDqRAcxAAAAAAAAQJEQEAMAAAAAAAAUCQExAAAAAAAAQJEQEAMAAAAAAAAUCQExAAAAAAAAQJFo2tAFAAAAAAAAwFKjvKyhK4A60UEMAAAAAAAAUCQExAAAAAAAAABFQkAMAAAAAAAAUCQExAAAAAAAAABFQkAMAAAAAAAAUCSaNnQBAAAAAAAAsNSoKG/oCqBOdBADAAAAAAAAFAkBMQAAAAAAAECREBADAAAAAAAAFAkBMQAAAAAAAECREBADAAAAAAAAFImmDV0AAAAAAAAALDXKyxu6AqgTHcQAAAAAAAAARUJADAAAAAAAAFAkBMQAAAAAAAAARUJADAAAAAAAAFAkBMQAAAAAAAAARaJpQxcAAAAAAAAAS4uKivKGLgHqRAcxAAAAAAAAQJEQEAMAAAAAAAAUCQExLGYVFRW59957M3HixIYuZak2duzYbLDBBtlggw3y29/+tqHLWWz69u1buM++ffs22By1mTRpUvr06VPrmKlTp+bWW2/NYYcdlq233jqbb7559t577/zud7/L22+/Xe81AQAAAAAAC0ZADIvRp59+mqOPPjoXX3xxZs2a1dDlQJ09/vjj2W+//fLMM8/UOOa9997LgQcemGuvvTZvv/12pk6dmlmzZuXTTz/Nww8/nMMPPzyXXnppysrKlmDlAAAAAABAkjRt6ALgf9njjz+eIUOGNHQZUG+uu+66lJSU1Hj+yy+/zPHHH18Ys/XWW2evvfZKu3btMmrUqNx///0pKSnJP//5zzRv3jznnnvukikcAAAAAABIIiAG+J/TvXv3dO/evUGufe211xbC4ZNPPjm/+tWvqpw/9thj06NHj4wbNy533nlnjjrqqKyxxhoNUCkAAAAAwCIqL2/oCqBOLDENQL349ttvM2DAgCTJuuuumzPPPHOeMSuuuGLOPvvsJEl5eXkGDhy4JEsEAAAAAICiJyAGoF5MmDAh22+/fVZZZZXstddeadKkSbXjNtxww8Lx+PHjl1R5AAAAAABALDENi8UNN9yQG2+8scpje+65Z5JktdVWy/PPP18Y06RJk7z33nvp169f/va3v2Xs2LFZYYUVstlmm+Waa65Jq1atCnMMHTo0/fv3z5tvvpkJEyZk6tSpWXbZZbPKKqtk++23T8+ePbPWWmvVWltJSUn69euXp59+Op999lmmTJmSlVZaKVtttVWOOuqobLPNNjU+t6ysLP369cvAgQPzwQcfZPLkyWnTpk022mijdO3aNQcddFAaN27Y751MmTIl//znP/PCCy/k008/zYwZM7LSSitl6623zmGHHZbtttuu2ue9/vrrOfbYY5Mk99xzT7beeuv069cv/fr1y4cffpjp06dnlVVWyS677JITTzwxq6666hK5n9LS0tx///154okn8vHHH6esrCyrr7569tprrxxzzDFZYYUV5nlO3759c9555yVJrrjiimqXm3766afz6KOP5p133klJSUlatWqVVVZZJTvuuGOOOOKIeT5He+yxR8aNG1f4+Y033sgGG2yQJDnjjDPSq1evdOrUKbfffvt87+mLL74oHK+00koL9DoAAAAAAAD1Q0AMPwD33XdfLrroosLPEyZMyIQJEwrh8KxZs3LuuedWuxzv5MmTM3ny5IwYMSL33ntvLr/88nTr1q3a67z22ms566yzCnvEzvX555/nySefzJNPPpkTTjgh55577jzPHTt2bE477bSMHDmyyuNfffVVBg0alEGDBqVPnz65+eabs/LKKy/cC1BPXn311Zx99tnz3N/48eMzfvz49O/fP927d88ll1ySZs2a1TjPrFmzcuKJJ+bVV1+t8vinn36aPn365OGHH87NN9+czp07L47bKPjqq6/So0ePvP/++1UeHzlyZEaOHJl+/frl9ttvzzrrrLPAc86ePTu//OUv8/zzz1d5vPLnqE+fPjnvvPNy9NFH18t9VDZz5sz89a9/TZI0atQo++yzT71fAwAAAAAAqJmAGBaD/fffPxtttFGefPLJwp6sl1xySVZcccUss8wyVcaWl5end+/eWX755XPcccdl9dVXz3/+859sttlmhTG/+93vCuFwx44d061bt6yxxhpp3LhxxowZk379+mXcuHH57rvvcuGFF6Zz587p0KFDlesMHjw4J510UsrKypIku+66a/bYY4+0atUq7733Xu67777MnDkzd9xxR1ZeeeUcf/zxhed+/fXXOeqoo/Lll18mSX784x9nv/32y8orr5yvvvoqAwYMyNChQ/Puu+/mmGOOySOPPJLWrVvX/wtbi8GDB+eUU05JaWlpGjdunL322is777xzWrdunU8++SR9+/bN2LFj07dv38yaNSt/+tOfapzr0ksvzSeffJLVVlstPXr0yJprrpkvvvgiDzzwQEaPHp0ZM2bkN7/5TZ599tm0bNlysd3Tddddl7Kysqy55po59NBD07Fjx3z66ae55557MmnSpIwfPz7nn39+7r///gWe86abbiqEwxtvvHEOPPDAdOzYMd9++22GDBmS/v3757vvvsull16azTffPJtvvnmSOZ/fmTNn5oILLsikSZOy3nrrFfYYXnvttWu95uzZs/PFF1/k1VdfzZ133pnRo0cnSU4++eSst956C//CAAAAAAAAi0xADItBp06d0qlTpyqdnzvttFNWX331ecZWVFSktLQ0ffr0yY9//OMkycEHH1w4/8EHH6R///5Jks033zx9+vSZJ2Q+5ZRTcsopp+S1117LzJkz8+yzz1bp/pw9e3YuuuiilJWVpXHjxvnjH/+YAw88sHD+oIMOyiGHHJIjjjgi06dPzw033JAePXoUQt4LL7ywEA6fffbZOeWUU6pc/9hjj82tt96aa6+9NqNHj87VV1+diy++eFFeukUyY8aMnHPOOSktLU3Lli2r7e496aSTctZZZ+Vf//pXnnzyyXTp0iX7779/tfN98skn2WWXXXL99ddXCYAPO+ywHHnkkRk5cmQmTpyYl156Kfvuu+9iu6+ysrLsu+++ufrqq9O8efPC44cffngOOeSQTJw4MUOHDs2IESMKyz3Xpry8PPfdd1+SZKONNsoDDzxQZd4ePXpk1113zVlnnZVkzlLbcwPinXfeOUnSu3fvJMkKK6yQLl26zPea33zzTXbYYYcqj7Vu3Tpnn312evbsOd/nAwAAAAD84FSUN3QFUCcNu1kokCTZYYcdCuHw9z3zzDOF47PPPnuecDhJmjdvnhNPPLHw89wOzblefPHFfPLJJ0mSo446qko4PNcGG2xQCH6nTZuWF154IUkyatSoPPfcc0mSvffee55weK6TTz65sL9vv379MmnSpGrHLQ6PP/54IcD+1a9+Ve3Szy1atMgVV1yRNm3aJEn+/ve/1zhfs2bNcuWVV87THdy6descd9xxhZ/feeedeqi+Zu3atcvll19eJcRNkvbt2+fwww8v/Pzee+8t0HyTJk3K5MmTkySdO3eeZ95kTvf7j3/842y22WZp165dHaqfo/J+w3NNnz49zz333GJ//QAAAAAAgHnpIIYfgG222abGc6eeemoOOOCAjBkzJttvv32N4yp3J8+YMaPKuRdffLFwXNu+soccckjKysqy9tprZ6uttkqSPP3006moqEiSHHroobXex6GHHpo33ngjs2bNymuvvZauXbvWOr6+PPXUU0mSJk2a5JBDDqlxXJs2bdKlS5c88sgjGT58eCZMmFDtfsnbbLNNVlxxxWrnqNyp++2339ax8trtuuuuNS7VvdFGGxWOJ06cuEDzLb/88mnSpEnKysry1FNPpWfPntV2tT/wwAOLVnA1mjVrlt/+9rfp0KFDJk2alIEDB2bIkCF57bXX8uabb+amm27KrrvuWm/XAwAAAAAAaicghh+AddZZp8ZzzZs3LyxZ/X0VFRUZO3Zs3nnnnULHbzJnKeHK5nZqrrDCCrXuF9uhQ4ecfvrpVR57++23C8djxowpdBNX55tvvikcDx8+fIkFxMOGDUuStGzZMoMHD6517NywO5lTY3UBcXWv9VzLLbdc4bi0tHRhS10o6667bo3nKgfHs2fPXqD5mjdvnt133z3PPfdcxo8fn/333z+77rprdtttt+y8887z7FtdH9Zdd90q93H00Ufn5ptvznXXXZfS0tKce+65efbZZ6u8rgAAAAAAwOIjIIYfgAUJx8rLyzN48OC8/vrrGTVqVEaPHp0xY8bM0y2cVA1Bk+Trr79OknTs2HGha5swYULh+LLLLlvg58295uI2derUTJ06tXD8/YC7NjXVWFPXbjKnS3mu77/O9W355Zev8VyjRo0WqY4//OEPef/99zNu3LjMmjUrzzzzTGEZ8w033DB77LFHDjjggFrD6bo67bTTMnTo0Lz00kv55ptv0r9//xx11FGL7XoAAAAAAMD/Yw9i+AGobi/Yyt5+++107do1xx9/fG655ZY888wzGTlyZCEcXmuttWpd/nnuvrPV7V88P3PD14U1bdq0RXrekrxOTc9t2vSH8d2ZxVFHhw4d8vjjj+eUU06Zp3v6gw8+yF//+tcccMABOf300xfrPtKV91B+6623Ftt1AAAAAACAqn4YKQhQow8++CA/+9nPCmHwaqutlu233z4bbLBB1l133Wy88cZp165dPvvsszzyyCPVzrHMMstk6tSpmTlz5kJfv3KoPGzYsLRo0WLRbmQxqVzfFltskQcffLABq1k6tG7dOmeffXbOOuusDBs2LC+//HJeffXVDBs2LGVlZUmS5557Ll999VXuv//+Kt3K9aXyUueLM4gGAAAAAKh35WUNXQHUiYAYfuD++Mc/FsLhX/7ylznttNOqDeymTJlS4xwrrrhipk6dmi+++GK+1xs8eHDat2+fNdZYI82bN8+KK65YODdhwoSsscYai3AXi89yyy2X5s2bZ/bs2Zk4cWJDl7NUadSoUbbYYotsscUW6dWrV0pKSvLkk0/mmmuuyfTp0/Pf//43r732WnbaaacFmu+FF17IE088kU8//TRXXHFF1ltvvRrHVt43edlll63zvQAAAAAAAAvGEtPwAzZr1qy89tprSZLVV189P//5z2vs5nz//fcLx9/fk3aTTTZJMmfP3TFjxtR4valTp+aEE07I/vvvn1//+tdJks0337xw/o033qi13sGDB+fMM8/MNddckyFDhtQ6tr40bty4cH/jx4+v9f6S5K677sq5556bG2+8MePGjVsSJf5gjBo1Kvfcc08uu+yyfPbZZ/Ocb9u2bXr27Fl475NkxIgRCzz/uHHj8sQTT+Sdd97JoEGDah379ttvF47XWWedBb4GAAAAAABQNwJiWIwqh7nfD20XxOTJkwvPa9WqVY3jSktLc8899xR+/u6776qc33XXXQvHDzzwQI3zPPXUU4UlhnfcccckyZ577lk4f/fdd6e0tLTG5994440ZOHBgbrvttpSUlNQ4rr5VrvGOO+6ocdyUKVNy/fXX59FHH83NN9+cli1bLonyfjCGDRuWSy65JH369Mmzzz5b47i2bdsWjr//uZv7mS4vL5/neT/5yU8Kxw888MA8n8O5Zs+enbvuuqvwc+X3DwAAAAAAWLwExLAYVQ4gJ0+evNDPb9euXSGg++ijj/Kf//xnnjEzZszIOeecU6WDeNasWVXG7L///ll55ZWTJHfeeWdefPHFeeYZNWpU/vznPydJ2rRpk65duyaZ00G83XbbJZmzH/IFF1xQbUh8/fXX580330ySrLXWWtl9990X9nYX2WGHHZY2bdokSe67777cf//984yZPXt2zjzzzEydOjVJcvDBB6ddu3ZLrMYfgt12262wZ/PNN9+cUaNGzTNm9uzZufvuu5PMCYO32WabKufnfqarW9J8zTXXLLzvo0ePzhVXXDHPFyNmz56dc889Nx9//HGhpspd6gAAAAAAwOJlD2JYjFZZZZXC8RVXXJGePXsmmRPYLoimTZuma9euefDBB1NeXp4TTzwxPXr0yCabbJKysrJ8+OGH6d+/f7766qsqz/v222+r/Ny8efNceeWVOemkk1JaWppTTz01++67b37yk5+kcePGGT58eB588MFCsHz++eendevWVWo/9NBDU1JSkn79+mXo0KHp3r171lhjjUyYMCFPP/103nrrrULNl19+eZo0abLwL9giatOmTXr37p1evXqlvLw8F154YQYMGJB99tknbdu2zaeffpqHH364sKR0hw4dqiyjXCzatm2bE088MTfddFO+/fbbdOvWLYccckg23njjtGzZMmPHjs0jjzySsWPHJkkOOOCArLvuulXm6NChQz788MOMHDkyf/7zn7PRRhulY8eOhZD3ggsuyDvvvJOvvvoq//znP/POO+/koIMOSrt27TJmzJg88sgj+fTTT5MkHTt2TO/evZfsiwAAAAAAAEVOQAyL0Y477pi2bdumpKQkQ4YMyZAhQ9KoUaPstttuCzzHb37zm7zzzjt5//33M2PGjEJ3Z2UtWrTI+eefnwcffDDDhw/PyJEj5xmz00475YYbbsg555yTadOmZeDAgRk4cGCVMU2bNs0555yTbt26VXl89dVXzz333JPTTz89o0ePzujRo/OnP/1pnmsst9xyueqqq+bpOl0SunTpkuuuuy7nn39+pk6dmtdffz2vv/76POPWXnvt3HLLLUXXPTzX6aefnnHjxuXRRx/NrFmzqu22TpLdd989l19++TyPH3DAAXnllVeSJLfcckuSZL/99st1112XJFlttdXyj3/8I6effno+++yzvP3221X2G55r0003zY033pgVV1yxnu4MAAAAAGAJqZh3Cz5YmgiIYTFaYYUVctddd+Xqq6/OsGHDMn369LRr1y6ff/75As+x/PLL5/7770+fPn3y1FNPZdSoUZk9e3Zat26dNddcM507d84RRxyRVVddNZ999lmGDx+eSZMmZfDgwdlhhx2qzNWlS5c8++yzufvuu/PSSy9lzJgxmTVrVjp06JDOnTvnZz/7WdZbb71q61h33XXTv3//9OvXL88880xGjBiRkpKSNG/ePGuttVZ22WWX9OzZM+3bt6/Ta1YX++yzT7bddtvce++9efnll/Ppp59m6tSpad26dTbYYIPsu+++OfTQQ9OiRYsGq7GhNWnSJFdddVUOPPDA9O3bN8OGDcvEiRNTXl6e9u3bZ4sttshBBx1U4xLh3bt3z8yZM3PPPfdkzJgxadSoUWbOnFllzPrrr5/+/fvnwQcfzNNPP52RI0dmxowZadu2bTbddNMccMABOeCAA9K4sV0OAAAAAABgSWtU8f0NIgFgKVL61bx7KfO/69lNzm/oEliC1mkz737n/O96bkZxru5RrJb1Zfui8qWvpheVTrP9M1Mx2XAZf18rJu/OWr6hS2AJWr7MX9iKyQFf3tfQJSx1Zr3/QkOXsNRpsVH1TUk0DO1bAAAAAAAAAEVCQAwAAAAAAABQJCz0BCw2H3/8cT755JM6z7PVVlulXbsf7rKTQ4YMSUlJSZ3n6dKlS92LAQAAAAAAqIWAGFhsBgwYkBtvvLHO89x9993Zfvvt66GixeMvf/lL3njjjTrPM2LEiHqoBgAAAACAxarcPt0s3SwxDQAAAAAAAFAkdBADi02vXr3Sq1evhi5jsevTp09DlwAAAAAAALBAdBADAAAAAAAAFAkBMQAAAAAAAECREBADAAAAAAAAFAl7EAMAAAAAAMCCqihv6AqgTnQQAwAAAAAAABQJATEAAAAAAABAkRAQAwAAAAAAABQJATEAAAAAAABAkRAQAwAAAAAAABSJpg1dAAAAAAAAACw1yssbugKoEx3EAAAAAAAAAEVCQAwAAAAAAABQJATEAAAAAAAAAEVCQAwAAAAAAABQJATEAAAAAAAAAEWiaUMXAAAAAAAAAEuLioqyhi4B6kQHMQAAAAAAAECREBADAAAAAAAAFAkBMQAAAAAAAECREBADAAAAAAAAFAkBMQAAAAAAAECRaNrQBQAAAAAAAMBSo6K8oSuAOtFBDAAAAAAAAFAkBMQAAAAAAAAARUJADAAAAAAAAFAkBMQAAAAAAAAARUJADAAAAAAAAFAkmjZ0AQAAAAAAALDUKC9v6AqgTnQQAwAAAAAAABQJATEAAAAAAABAkRAQAwAAAAAAABQJATEAAAAAAABAkRAQAwAAAAAAABQJATEAAAAAAABAkWja0AUAAAAAAADAUqOivKErgDrRQQwAAAAAAABQJATEAAAAAAAAAEVCQAwAAAAAAABQJATEAAAAAAAAAEVCQAwAAAAAAABQJJo2dAEAAAAAAACw1Cgva+gKoE50EAMAAAAAAAAUCQExAAAAAAAAQJEQEAMAAAAAAAAUCQExAAAAAAAAQJEQEAMAAAAAAAAUiaYNXQAAAAAAAAAsNSrKG7oCqBMdxAAAAAAAAABFQkAMAAAAAAAAUCQExAAAAAAAAABFQkAMAAAAAAAAUCQExAAAAAAAAABFomlDFwAAAAAAAABLjfLyhq4A6kQHMQAAAAAAAECREBADAAAAAAAAFAkBMQAAAAAAAECREBADAAAAAAAAFAkBMQAAAAAAAECRaNrQBQAAAAAAAMBSo6K8oSuAOtFBDAAAAAAAAFAkBMQAAAAAAAAARcIS0wAs1Z7d5PyGLoElaK/hvRu6BJagjzqf0dAlsAT5PybF5UtveFFZvbShK2BJ+rRZo4YugSVp5vINXQFL0NAWllMtJq0q9JYVkwMaugBgifNfeQAAAAAAAIAiISAGAAAAAAAAKBIW9gIAAAAAAIAFVW7ZfZZuOogBAAAAAAAAioSAGAAAAAAAAKBICIgBAAAAAAAAioSAGAAAAAAAAKBICIgBAAAAAAAAikTThi4AAAAAAAAAlhrl5Q1dAdSJDmIAAAAAAACAIiEgBgAAAAAAACgSAmIAAAAAAACAIiEgBgAAAAAAACgSAmIAAAAAAACAItG0oQsAAAAAAACApUVFRVlDlwB1ooMYAAAAAAAAoEgIiAEAAAAAAACKhIAYAAAAAAAAoEgIiAEAAAAAAACKhIAYAAAAAAAAoEg0begCAAAAAAAAYKlRXt7QFUCd6CAGAAAAAAAAKBICYgAAAAAAAIAiISAGAAAAAAAAKBICYgAAAAAAAIAiISAGAAAAAAAAKBJNG7oAAAAAAAAAWGpUlDd0BVAnAmIAAAAAAADgB6+ioiJPPPFEHnnkkbz//vuZPn162rdvn2233TY9e/bM5ptvvtBzjh07Nnvuueci1TNixIh5Httjjz0ybty4BXr+K6+8kvbt2y/StetCQAwAAAAAAAD8oM2cOTO//OUv8+KLL1Z5fNy4cRk3blz69++fM888MyeffPISqadRo0bzPDZ16tSMHz9+iVy/LgTEAAAAAAAAwA/a7373u0I43KlTpxx22GFZaaWVMnz48Nx///2ZPn16rr322nTo0CEHH3zwAs+74oor5qabblqgsX/9618zfPjwJEmvXr3mOT9ixIhUVFQkSU499dRsttlmtc7Xpk2bBa6zPgmIAQAAAAAAgB+sV199NU888USSZIcddsitt96aFi1aJEm6du2an/70pznqqKNSUlKS3r17Z88990zr1q0XaO6WLVumS5cu8x3Xv3//Qji866675uc///k8YyovOd2tW7esvfbaC1TDkta4oQsAAAAAAAAAqMkdd9yRJGnatGkuu+yyQjg8V6dOnXLBBRckSUpKSvLQQw/V6/W//PLLXHLJJUmSFVZYIb179652iem5AXGLFi2y5ppr1msN9UlADAAAAAAAAAuqvNyfhf1TByUlJXnttdeSJD/5yU+yxhprVDtu//33z4orrpgkeeqpp+p0ze+7/PLLM2XKlCTJueeem5VWWqnacXMD4nXXXTeNG/9wY9gfbmUAAAAAAABAURsyZEjK//+QeYcddqhxXOPGjbPtttsmSd5+++1Mnjy5Xq7/73//O08//XSSZOutt84hhxxS7biKiop8+OGHSZL111+/Xq69uAiIAQAAAAAAgB+kuaFrMv/gdd11100yJ6wdOXJkvVz/mmuuKRz/9re/rXHcuHHjMnXq1CTJeuutlySZOnVqhgwZkpdeeinvv/9+ysrK6qWmumra0AUAAAAAAAAAVGfcuHGF49VWW63WsausskqV583tKF5Uzz33XN59990kSZcuXbL55pvXOHbu8tLJnG7mM844I88//3yVULht27Y5+uij83//939ZZpll6lRbXeggBgAAAAAAAH6QJk2aVDheYYUVah3btm3bwnFJSUmdr33nnXcWjk866aRax1YOiK+88so8++yz83QMl5SU5MYbb8wxxxxT5b6WNB3EAAAAAAAAwGKz55571nr+X//6V43nZs6cWThu0aJFrfM0b9682uctig8++CBvvvlmkmTLLbfMlltuWev4ygFxs2bNcvzxx6dbt25ZY401UlJSkpdeeil/+ctfMnHixAwbNixnnXVW/vGPf6Rx4yXfzysgBgAAAAAAgAVVUd7QFRSV7777rnBcOQCuTuXzlZ+3KO6+++7C8fy6h5Pkyy+/TDInxL7jjjuyzTbbFM6tvPLK6dGjR3bZZZccdthh+eKLLzJ48OAMGDAgXbt2rVOdi0JADAAAAAAAACw2tXUIz0/lvXpLS0trDYlnz55dOJ5fmFybadOm5YknnkiSdOzYMXvsscd8n3P//fdn6tSp+fbbb7PqqqtWO6ZDhw75/e9/nzPOOCNJ8uCDDzZIQGwPYgAAAAAAAOAHqVWrVoXjWbNm1Tq2ckA8v+WoazNo0KDCtfbee+8FXga6devWNYbDc+2xxx5p3bp1kmTo0KEpL1/yHekCYgAAAAAAAOAHafnlly8cl5SU1Dq28vl27dot8jWff/75wvE+++yzyPNUp0mTJllzzTWTzAm053dPi4OAGAAAAAAAAPhBWmuttQrHn3/+ea1jv/jii8Jxx44dF+l6ZWVleemll5LMWRJ6yy23XKR5atOsWbN6n3Nh2IMYAAAAAAAA+EHq1KlT4fjDDz/MdtttV+PYDz/8MEnSqFGjrLfeeot0vXfffbfQ1bvHHnukUaNG833OmDFj8vzzz+frr7/OVlttld12263W8V9++WWSOUFxmzZtFqnOuhAQAwAAAAAAwIJqgD1ji9mWW26ZZs2apbS0NK+//np69uxZ7biysrK8+eabSZINN9ywytLUC2Po0KGF4y222GKBnjNhwoT07t07yZxQubaA+JNPPil0Qm+22WZp0qTJItVZF5aYBgAAAAAAAH6Qll9++eywww5J5uwNPH78+GrHPfnkk5k0aVKSZL/99lvk673zzjuF40022WSBnrPpppumdevWSZJBgwbVWGOS3HzzzYXjgw8+eBGrrBsBMQAAAAAAAPCDddxxxyVJSktLc/bZZ2fq1KlVzn/00Ue5/PLLkyTLLrtsevToscjX+uijj5LMWf658vLWtWnRokUOO+ywQo2/+tWv5qkxSW6//fY89thjSebsrXzIIYcscp11YYlpAAAAAAAA4Adr5513zj777JOnn346Q4cOzcEHH5wjjzwyq666at57773cd999mTZtWpLknHPOSbt27ao8//XXX8+xxx6bJNluu+3Sp0+fGq/12WefJUnatm27UMs///znP88LL7yQTz75JG+99VYOOOCAHH744VlrrbXyzTffZMCAARkyZEiSOSH2NddckxYtWizU61BfBMQAAAAAAADAD9pVV12VadOm5ZVXXsnYsWNz9dVXVznfqFGjnHHGGTniiCMW+RpTp07N9OnTkyTLLbfcQj13ueWWyz/+8Y+cccYZeffdd/PFF1/kL3/5yzzjVl111Vx77bXZbLPNFrnOuhIQAwAAAAAAAD9oLVu2zN///vf0798/jz76aN5///18++23adu2bbbeeusce+yx2Xrrret0jbldyMmcvY8X1qqrrpoHHnggTzzxRJ588skMHz48U6ZMSevWrbPWWmtl7733zuGHH55ll122TnXWlYAYAAAAAAAAFlRFeUNXULQaNWqUgw46KAcddNBCPW/77bfPiBEj5juuQ4cOCzSuNk2bNk23bt3SrVu3Os2zODVu6AIAAAAAAAAAWDIExAAAAAAAAABFQkAMAAAAAAAAUCQExAAAAAAAAABFQkAMAAAAAAAAUCSaNnQBAAAAAAAAsNQoL2/oCqBOdBADAAAAAAAAFAkBMQAAAAAAAECREBADAAAAAAAAFAkBMQAAAAAAAECREBADAAAAAAAAFAkBMSxmFRUVuffeezNx4sSGLmWpNnbs2GywwQbZYIMN8tvf/rahy1ls+vbtW7jPvn37NtgctZk0aVL69OlT65jZs2fnn//8Z4466qhst9122XTTTbPHHnvk/PPPz/vvv1/vNQEAAAAALDHl5f4s7B9+UATEsBh9+umnOfroo3PxxRdn1qxZDV0O1Nnjjz+e/fbbL88880yNYz777LMcfPDBufTSS/Of//wnkydPTmlpacaNG5dHHnkk3bt3z9VXX51yfykAAAAAAIAlrmlDFwD/yx5//PEMGTKkocuAenPdddelpKSkxvOTJk3K0UcfnS+//DJJ0qFDhxx22GFZZ511Mn78+Dz00EMZPXp0/v73v2fGjBn5wx/+sIQqBwAAAAAAEgExwP+c7t27p3v37g1y7csvv7wQDm+zzTa55ZZbstxyyxXOH3PMMenVq1deeuml3HPPPdltt92yyy67NEitAAAAAABQjCwxDUC9+PzzzzNw4MAkyQorrJAbbrihSjicJC1atMg111yTFVZYIUly0003LfE6AQAAAACgmAmIAagXr776asrKypIkRxxxRNq1a1ftuOWXXz7dunVLkvz3v//NmDFjllSJAAAAAABQ9CwxDYvBDTfckBtvvLHKY3vuuWeSZLXVVsvzzz9fGNOkSZO899576devX/72t79l7NixWWGFFbLZZpvlmmuuSatWrQpzDB06NP3798+bb76ZCRMmZOrUqVl22WWzyiqrZPvtt0/Pnj2z1lpr1VpbSUlJ+vXrl6effjqfffZZpkyZkpVWWilbbbVVjjrqqGyzzTY1PresrCz9+vXLwIED88EHH2Ty5Mlp06ZNNtpoo3Tt2jUHHXRQGjdu2O+dTJkyJf/85z/zwgsv5NNPP82MGTOy0korZeutt85hhx2W7bbbrtrnvf766zn22GOTJPfcc0+23nrr9OvXL/369cuHH36Y6dOnZ5VVVskuu+ySE088MauuuuoSuZ/S0tLcf//9eeKJJ/Lxxx+nrKwsq6++evbaa68cc8wxhU7cyvr27ZvzzjsvSXLFFVdUu9z0008/nUcffTTvvPNOSkpK0qpVq6yyyirZcccdc8QRR8zzOdpjjz0ybty4ws9vvPFGNthggyTJGWeckV69euXjjz8unN9xxx1rva/NN9+8cDxkyJCsscYa838xAAAAAAB+CCrKG7oCqBMBMfwA3HfffbnooosKP0+YMCETJkwohMOzZs3KueeeW1i+t7LJkydn8uTJGTFiRO69995cfvnlhe7M73vttddy1llnpaSkpMrjn3/+eZ588sk8+eSTOeGEE3LuuefO89yxY8fmtNNOy8iRI6s8/tVXX2XQoEEZNGhQ+vTpk5tvvjkrr7zywr0A9eTVV1/N2WefPc/9jR8/PuPHj0///v3TvXv3XHLJJWnWrFmN88yaNSsnnnhiXn311SqPf/rpp+nTp08efvjh3HzzzencufPiuI2Cr776Kj169Mj7779f5fGRI0dm5MiR6devX26//fass846Czzn7Nmz88tf/jLPP/98lccrf4769OmT8847L0cfffRC1fvtt98Wjuf3GWjbtm3h+MMPP1yo6wAAAAAAAItOQAyLwf7775+NNtooTz75ZAYMGJAkueSSS7LiiitmmWWWqTK2vLw8vXv3zvLLL5/jjjsuq6++ev7zn/9ks802K4z53e9+VwiHO3bsmG7dumWNNdZI48aNM2bMmPTr1y/jxo3Ld999lwsvvDCdO3dOhw4dqlxn8ODBOemkkwpLAO+6667ZY4890qpVq7z33nu57777MnPmzNxxxx1ZeeWVc/zxxxee+/XXX+eoo47Kl19+mST58Y9/nP322y8rr7xyvvrqqwwYMCBDhw7Nu+++m2OOOSaPPPJIWrduXf8vbC0GDx6cU045JaWlpWncuHH22muv7LzzzmndunU++eST9O3bN2PHjk3fvn0za9as/OlPf6pxrksvvTSffPJJVltttfTo0SNrrrlmvvjiizzwwAMZPXp0ZsyYkd/85jd59tln07Jly8V2T9ddd13Kysqy5ppr5tBDD03Hjh3z6aef5p577smkSZMyfvz4nH/++bn//vsXeM6bbrqpEA5vvPHGOfDAA9OxY8d8++23GTJkSPr375/vvvsul156aTbffPNCp+8ll1ySmTNn5oILLsikSZOy3nrr5cwzz0ySrL322klSpdt95syZtdYxderUwvHczxUAAAAAALD4CYhhMejUqVM6depUpfNzp512yuqrrz7P2IqKipSWlqZPnz758Y9/nCQ5+OCDC+c/+OCD9O/fP8mcZXn79OkzT8h8yimn5JRTTslrr72WmTNn5tlnn63S/Tl79uxcdNFFKSsrS+PGjfPHP/4xBx54YOH8QQcdlEMOOSRHHHFEpk+fnhtuuCE9evQohLwXXnhhIcQ7++yzc8opp1S5/rHHHptbb7011157bUaPHp2rr746F1988aK8dItkxowZOeecc1JaWpqWLVtW29170kkn5ayzzsq//vWvPPnkk+nSpUv233//auf75JNPsssuu+T666+vEgAfdthhOfLIIzNy5MhMnDgxL730Uvbdd9/Fdl9lZWXZd999c/XVV6d58+aFxw8//PAccsghmThxYoYOHZoRI0YUlnuuTXl5ee67774kyUYbbZQHHnigyrw9evTIrrvumrPOOivJnKW25wbEO++8c5Kkd+/eSZIVVlghXbp0qTJ/5c/38OHDs+GGG9ZYy/DhwwvHlTuPAQAAAACAxathNwsFkiQ77LBDIRz+vmeeeaZwfPbZZ88TDidJ8+bNc+KJJxZ+Hj16dJXzL774Yj755JMkyVFHHVUlHJ5rgw02KAS/06ZNywsvvJAkGTVqVJ577rkkyd577z1PODzXySefXNjft1+/fpk0aVK14xaHxx9/vBBg/+pXv6p26ecWLVrkiiuuSJs2bZIkf//732ucr1mzZrnyyivn6Q5u3bp1jjvuuMLP77zzTj1UX7N27drl8ssvrxLiJkn79u1z+OGHF35+7733Fmi+SZMmZfLkyUmSzp07zzNvMqf7/cc//nE222yztGvXbqHq3WGHHQrH9957b8rLq9+HY+bMmXnssccKP8+ePXuhrgMAAAAAACw6ATH8AGyzzTY1njv11FMzYMCA/O1vf8v2229f47jK3ZszZsyocu7FF18sHNe2r+whhxySX/ziF/nzn/+cbbfdNkny9NNPp6KiIkly6KGH1nofc8/PmjUrr732Wq1j69NTTz2VJGnSpEkOOeSQGse1adOm0PU6fPjwTJgwodpx22yzTVZcccVqz1Xu1F3cna+77rprjUt1b7TRRoXjiRMnLtB8yy+/fJo0aZJkzms2duzYasc98MADefjhh6vdi7o266+/fuFLAu+++24uu+yyeULisrKy/P73v8/nn39eeKxRo0YLdR0AAAAAAGDRWWIafgDWWWedGs81b968sGT191VUVGTs2LF55513Ch2/SeYJ5eZ2uq6wwgqF/WKr06FDh5x++ulVHnv77bcLx2PGjCl0E1fnm2++KRwPHz48Xbt2rXFsfRo2bFiSpGXLlhk8eHCtY+eG3cmcGldeeeV5xlT3Ws+13HLLFY5LS0sXttSFsu6669Z4rnJwvKAduM2bN8/uu++e5557LuPHj8/++++fXXfdNbvttlt23nnnefatXhQXXXRRfvrTn2b69Om555578tZbb6Vbt27p0KFDvvjii/Tt2zcjR47M9ttvn7fffjszZ85MixYt6nxdAAAAAIAlpobVE2FpISCGH4DKoWNNysvLM3jw4Lz++usZNWpURo8enTFjxszTLZxUDUGT5Ouvv06SdOzYcaFrq9xle9llly3w8+Zec3GbOnVqpk6dWjj+fsBdm5pqrKlrN0mhAzeZ93Wub8svv3yN5yp33S5MHX/4wx/y/vvvZ9y4cZk1a1aeeeaZwjLmG264YfbYY48ccMABtYbTtenUqVNuu+22nH766SkpKcn7779fZS/uZM5S1H/+85+z4447Jlmwzz8AAAAAAFA/BMTwA1DdXrCVvf322znvvPPy8ccfV3t+rbXWytZbb51HHnmk2vNz952tbv/i+Zkbvi6sadOmLdLzluR1anpu06Y/jP80Lo46OnTokMcffzy33npr+vXrV+ULAB988EE++OCD/PWvf02XLl1y6aWXLvQ+xMmcJboHDhyYO+64I//6178ybty4tGzZMhtssEEOPfTQHHjggfnmm28KwfZKK61Ub/cHAAAAAADU7oeRggA1+uCDD/Kzn/2s0Cm82mqrZfvtt88GG2yQddddNxtvvHHatWuXzz77rMaAeJlllsnUqVMzc+bMhb5+5VB52LBhP7jlgCvXt8UWW+TBBx9swGqWDq1bt87ZZ5+ds846K8OGDcvLL7+cV199NcOGDUtZWVmS5LnnnstXX32V+++/f5H2CG7Xrl1+/etf59e//nW150eMGFE4rm2JdQAAAAAAoH4JiOEH7o9//GMhHP7lL3+Z0047rdrAbsqUKTXOseKKK2bq1Kn54osv5nu9wYMHp3379lljjTXSvHnzrLjiioVzEyZMyBprrLEId7H4LLfccmnevHlmz56diRMnNnQ5S5VGjRpliy22yBZbbJFevXqlpKQkTz75ZK655ppMnz49//3vf/Paa69lp512qvdrv/HGG4XjTTbZpN7nBwAAAAAAqte4oQsAajZr1qy89tprSZLVV189P//5z2vs5qy8z+v396SdG8B9/fXXGTNmTI3Xmzp1ak444YTsv//+hc7PzTffvHC+cqhXncGDB+fMM8/MNddckyFDhtQ6tr40bty4cH/jx4+v9f6S5K677sq5556bG2+8MePGjVsSJf5gjBo1Kvfcc08uu+yyfPbZZ/Ocb9u2bXr27Fml67dyp+/8TJgwIWeeeWZ69uyZvn371jiuoqIizz77bJI5y0tvtNFGC3EXAAAAAABAXQiIYTGqHOZ+P7RdEJMnTy48r1WrVjWOKy0tzT333FP4+bvvvqtyftdddy0cP/DAAzXO89RTTxWWGN5xxx2TJHvuuWfh/N13353S0tIan3/jjTdm4MCBue2221JSUlLjuPpWucY77rijxnFTpkzJ9ddfn0cffTQ333xzWrZsuSTK+8EYNmxYLrnkkvTp06cQ0Fanbdu2hePvf+7mfqbLy8urfd6//vWvDBkyJI8++miN8z/zzDP56KOPkiTdu3dfpCWsAQAAAAAaTEW5Pwv7hx8UATEsRpUDyMmTJy/089u1a1cI6D766KP85z//mWfMjBkzcs4551TpIJ41a1aVMfvvv39WXnnlJMmdd96ZF198cZ55Ro0alT//+c9JkjZt2qRr165J5nQQb7fddknm7Id8wQUXVBsSX3/99XnzzTeTJGuttVZ23333hb3dRXbYYYelTZs2SZL77rsv999//zxjZs+enTPPPDNTp05Nkhx88MFp167dEqvxh2C33XYr7Nl88803Z9SoUfOMmT17du6+++4kc8LgbbbZpsr5uZ/p6pY0b968efbYY48kyeuvv55nnnlmnjHvvPNO/vCHPyRJll9++Rx//PF1uCMAAAAAAGBh2YMYFqNVVlmlcHzFFVekZ8+eSeYEtguiadOm6dq1ax588MGUl5fnxBNPTI8ePbLJJpukrKwsH374Yfr375+vvvqqyvO+/fbbKj83b948V155ZU466aSUlpbm1FNPzb777puf/OQnady4cYYPH54HH3ywECyff/75ad26dZXaDz300JSUlKRfv34ZOnRounfvnjXWWCMTJkzI008/nbfeeqtQ8+WXX54mTZos/Au2iNq0aZPevXunV69eKS8vz4UXXpgBAwZkn332Sdu2bfPpp5/m4YcfLiwp3aFDhyrLKBeLtm3b5sQTT8xNN92Ub7/9Nt26dcshhxySjTfeOC1btszYsWPzyCOPZOzYsUmSAw44IOuuu26VOTp06JAPP/wwI0eOzJ///OdstNFG6dixY2Ep8l/84hd5/vnnM3v27PziF7/IgQcemO233z6NGzfOf/7znzz++OOZPXt2GjVqlEsvvbToQnoAAAAAAGhoAmJYjHbccce0bds2JSUlGTJkSIYMGZJGjRplt912W+A5fvOb3+Sdd97J+++/nxkzZhS6Oytr0aJFzj///Dz44IMZPnx4Ro4cOc+YnXbaKTfccEPOOeecTJs2LQMHDszAgQOrjGnatGnOOeecdOvWrcrjq6++eu65556cfvrpGT16dEaPHp0//elP81xjueWWy1VXXTVP1+mS0KVLl1x33XU5//zzM3Xq1Lz++ut5/fXX5xm39tpr55ZbbinaYPL000/PuHHj8uijj2bWrFnVdlsnye67757LL798nscPOOCAvPLKK0mSW265JUmy33775brrrkuSdOrUKdddd11+/etfZ/r06Xn88cfz+OOPV5mjVatWueSSS7LvvvvW450BAAAAAAALQkAMi9EKK6yQu+66K1dffXWGDRuW6dOnp127dvn8888XeI7ll18+999/f/r06ZOnnnoqo0aNyuzZs9O6deusueaa6dy5c4444oisuuqq+eyzzzJ8+PBMmjQpgwcPzg477FBlri5duuTZZ5/N3XffnZdeeiljxozJrFmz0qFDh3Tu3Dk/+9nPst5661Vbx7rrrpv+/funX79+eeaZZzJixIiUlJSkefPmWWuttbLLLrukZ8+ead++fZ1es7rYZ599su222+bee+/Nyy+/nE8//TRTp05N69ats8EGG2TffffNoYcemhYtWjRYjQ2tSZMmueqqq3LggQemb9++GTZsWCZOnJjy8vK0b98+W2yxRQ466KAalwjv3r17Zs6cmXvuuSdjxoxJo0aNMnPmzCpj9txzzzz++OO5884788orr2T8+PFp3LhxfvSjH2WXXXbJMcccU6W7HgAAAAAAWHIaVVRUVDR0EQCwqAZ0OKKhS2AJ2mt474YugSXoo85nNHQJLEEvzSzO1T2KVUnjhq6AJWn10oaugCXpC60IRWXNUv+sWEzebFHe0CWwBLWq8Be2YnLRp/c0dAlLnRmP/bGhS1jqtDz4nIYugUr8tR0AAAAAAAAWVLkvzbB08zUgAAAAAAAAgCKhgxhYbD7++ON88skndZ5nq622Srt2P9xlJ4cMGZKSkpI6z9OlS5e6FwMAAAAAAFALATGw2AwYMCA33nhjnee5++67s/3229dDRYvHX/7yl7zxxht1nmfEiBH1UA0AAAAAAEDNLDENAAAAAAAAUCR0EAOLTa9evdKrV6+GLmOx69OnT0OXAAAAAAAAsEAExAAAAAAAALCgKsobugKoE0tMAwAAAAAAABQJATEAAAAAAABAkRAQAwAAAAAAABQJATEAAAAAAABAkRAQAwAAAAAAABSJpg1dAAAAAAAAACw1yssbugKoEx3EAAAAAAAAAEVCQAwAAAAAAABQJATEAAAAAAAAAEVCQAwAAAAAAABQJATEAAAAAAAAAEWiaUMXAAAAAAAAAEuN8vKGrgDqRAcxAAAAAAAAQJEQEAMAAAAAAAAUCQExAAAAAAAAQJEQEAMAAAAAAAAUCQExAAAAAAAAQJFo2tAFAAAAAAAAwFKjoqKhK4A60UEMAAAAAAAAUCQExAAAAAAAAABFQkAMAAAAAAAAUCQExAAAAAAAAABFQkAMAAAAAAAAUCSaNnQBAAAAAAAAsNQoL2/oCqBOdBADAAAAAAAAFAkBMQAAAAAAAECREBADAAAAAAAAFAkBMQAAAAAAAECREBADAAAAAAAAFImmDV0AAAAAAAAALDXKyxu6AqgTHcQAAAAAAAAARUJADAAAAAAAAFAkBMQAAAAAAAAARUJADAAAAAAAAFAkBMQAAAAAAAAARaJpQxcAAAAAAAAAS42K8oauAOpEBzEAAAAAAABAkRAQAwAAAAAAABQJATEAAAAAAABAkRAQAwAAAAAAABQJATEAAAAAAABAkWja0AUAAAAAAADAUqO8vKErgDrRQQwAAAAAAABQJATEAAAAAAAAAEVCQAwAAAAAAABQJATEAAAAAAAAAEVCQAwAAAAAAABQJJo2dAEAAAAAAACw1KioaOgKoE50EAMAAAAAAAAUCQExAAAAAAAAQJEQEAMAAAAAAAAUCQExAAAAAAAAQJEQEAMAAAAAAAAUiaYNXQAAAAAAAAAsNcrLG7oCqBMdxAAAAAAAAABFQkAMAAAAAAAAUCQExAAAAAAAAABFQkAMAAAAAAAAUCQExAAAAAAAAABFomlDFwAAAAAAAABLjfLyhq4A6kRADMBSbZ02Uxq6BJagjzqf0dAlsASt++8bG7oElqCZW53V0CWwBL1RtlxDl8AS9ONlShq6BJagN2e1begSWIKmNGnU0CWwBHX6rklDl8ASdPhPxjV0CQAsRpaYBgAAAAAAACgSAmIAAAAAAACAIiEgBgAAAAAAACgSAmIAAAAAAACAItG0oQsAAAAAAACApUZFeUNXAHWigxgAAAAAAACgSAiIAQAAAAAAAIqEgBgAAAAAAACgSAiIAQAAAAAAAIqEgBgAAAAAAACgSDRt6AIAAAAAAABgaVFRXtHQJUCd6CAGAAAAAAAAKBICYgAAAAAAAIAiISAGAAAAAAAAKBICYgAAAAAAAIAiISAGAAAAAAAAKBJNG7oAAAAAAAAAWGqUlzd0BVAnOogBAAAAAAAAioSAGAAAAAAAAKBICIgBAAAAAAAAioSAGAAAAAAAAKBICIgBAAAAAAAAikTThi4AAAAAAAAAlhoV5Q1dAdSJDmIAAAAAAACAIiEgBgAAAAAAACgSAmIAAAAAAACAIiEgBgAAAAAAACgSAmIAAAAAAACAItG0oQsAAAAAAACApUZ5RUNXAHWigxgAAAAAAACgSAiIAQAAAAAAAIqEgBgAAAAAAACgSAiIAQAAAAAAAIqEgBgAAAAAAACgSDRt6AIAAAAAAABgqVFe3tAVQJ3oIAYAAAAAAAAoEgJiAAAAAAAAgCIhIAYAAAAAAAAoEgJiAAAAAAAAgCIhIAYAAAAAAAAoEk0bugAAAAAAAABYapSXN3QFUCc6iAEAAAAAAACKhIAYAAAAAAAAoEgIiAEAAAAAAACKhIAYAAAAAAAAoEgIiAEAAAAAAACKRNOGLgAAAAAAAACWGhUVDV0B1IkOYgAAAAAAAIAiISAGAAAAAAAAKBICYgAAAAAAAIAiISAGAAAAAAAAKBICYgAAAAAAAIAi0bShCwAAAAAAAIClRnl5Q1cAdaKDGAAAAAAAAKBICIgBAAAAAAAAioSAGAAAAAAAAKBICIgBAAAAAAAAioSAGAAAAAAAAKBING3oAgAAAAAAAGCpUV7R0BVAneggBgAAAAAAACgSAmIAAAAAAACAIiEgBgAAAAAAACgSAmLqZPDgwfn3v//d0GX8T9hjjz2ywQYbZI899miQ6x9zzDHZYIMNssEGGzToHIvLb3/720JtY8eObehyatS3b99Cna+//nqVczfccEON5+YaPHhwTjrppOy4447ZZJNNst122+Wss85a4POLy3fffZeDDz641toBAAAAAIDFr2lDF8DSaerUqbnyyivz8MMPp3fv3g1dDpDkpZdeymmnnZaysrLCY5MnT07jxo0X6PzidPPNN+eDDz5Y7NcBAAAAAABqJyBmkQwfPjwPPfRQQ5cBVHLTTTcVwt+DDz44O+20UyoqKvKjH/1ogc4vLg888EBuvPHGxXoNAAAAAIAlpqK8oSuAOhEQAywlevXqlV69etV4/sMPP0ySbLTRRvnjH/+40OcXh7/97W+57rrrlsi1AAAAAAD431ZRUZEnnngijzzySN5///1Mnz497du3z7bbbpuePXtm8803r9P8e+yxR8aNG7dAY1955ZW0b9++2nMjR47MP/7xj7z++uuZMGFClltuuXTq1CndunXLIYcckiZNmtSpzroSEAP8j5gxY0aSpFOnTot0vj5NnDgxF198cZ599tnFfi0AAAAAAP73zZw5M7/85S/z4osvVnl83LhxGTduXPr3758zzzwzJ5988iLNP3Xq1IwfP77OdT700EO5+OKLU1paWnhs0qRJmTRpUt58883069cvN910U9q2bVvnay0qATHA/4iKiookSbNmzRbpfH258847c/3112fatGlJkh/96EfZfPPN88QTTyzW6wIAAAAA8L/rd7/7XSEc7tSpUw477LCstNJKGT58eO6///5Mnz491157bTp06JCDDz54oecfMWJE4d/RTz311Gy22Wa1jm/Tps08jw0aNCgXXHBBKioq0rJlyxxxxBHZdNNN8/XXX+fhhx/OyJEjM2TIkJx99tn5+9//nsaNGy90nfVBQFwHZWVl6devXwYOHJgPPvggkydPTps2bbLRRhula9euOeigg6q8sXfddVd69+6dJLn88svz05/+tMa5p06dms6dO2f27NnZZZddctttt80z5rXXXssjjzySt956K1999VVatmyZtdZaK3vuuWd69uyZ1q1bVzv3MccckzfeeCOdO3fOnXfemc8++yx33nlnBg0alC+//DItW7bMxhtvnO7du6dr165p1KhR4bmvv/56jj322CrznXfeeTnvvPOSJP/617+y+uqrVxl3zz33pFmzZrniiivy3nvvpWXLlllvvfXyu9/9LhtttFFhnunTp+ehhx7Kc889l5EjR2batGlp27ZtNtxww+y3337p1q1bjS33G2ywQZI5v7BnnXVWnnnmmdx9990ZOXJkZsyYkR/96Efp0qVLjj/++Hm+kfHss8/mjDPOSJKccMIJOffcc2t8XyoqKrLnnntm3Lhx2WSTTdK3b98ax9a3f//73/m///u/lJaWZplllsltt92W7bbbbrFdb+TIkfnb3/6W119/PVOmTMnKK6+cnXfeOcccc0ydOlBnz56d/v37Z+DAgXnvvfcyZcqULLfccll33XXTpUuXHH744VlmmWVqnaO8vDwvv/xyHnrooYwYMaLwuV1//fWz3377pUePHmnevPlC1fXFF1/kyCOPLHw76De/+U1OOumkRb7PmpSVleXRRx/No48+mvfeey/fffdd1lhjjRxwwAE5/vjja33uDTfcUNjL9+67787222+fvn37Fn7/5urXr1/69euXJFlttdXmWQ6j8vntttsuffr0qa/bK9Q2Nxzu2rVr/vCHP+Tuu++u12sAAAAAAFA8Xn311UIT0g477JBbb701LVq0SDLn36F/+tOf5qijjkpJSUl69+6dPffcs8acrCYjRowoHHfr1i1rr732Qj1/9uzZueiii1JRUZFWrVrln//8ZzbZZJPC+SOPPDJnn312nn322bz66qsZMGBAunbtulDXqC8NE0v/Dxg7dmy6deuW3/3ud3nllVfy1VdfpbS0NF999VUGDRqUc889Nz169MiECRMKzznggAMKAedTTz1V6/zPPfdcZs+enSTzfDhmzpyZM888M8cff3yeeOKJjB8/PrNnz87kyZPz9ttv509/+lP23nvv/Oc//5nvfTz33HM5+OCDc8899+Szzz7LrFmzUlJSktdeey2//vWvc9ppp1VpgV8U77//fo499tgMHTq0MP/bb7+djh07FsYMGTIk++23X3r37p033ngjJSUlKS0tzcSJEzNo0KCcf/756datW8aMGTPf61199dXp1atX3nzzzUyePDmzZ8/ORx99lFtuuSUHHnhgPvrooyrjd91110JoPGDAgMK3Q6rzn//8pxC2HXTQQYvwaiyaYcOG5ec//3lKS0vTrFmz3HjjjYs1HH7qqady6KGH5oknnsjEiRMza9asjBkzJvfdd18OPvjg3HvvvYs074cffphDDjkk559/fgYNGpSvv/46paWlmTRpUt5444307t07++67b959990a5/jmm29y3HHH5ZRTTslzzz2XMWPGFD7/b775Zi655JIceuih+fLLLxe4rpKSkpx44omFcPiMM85YLOHw1KlTc/zxx+f888/PG2+8kalTp2bmzJn58MMPc9111+WnP/1pvv7663q/bkNYf/31c/vtt+faa6+t9ltUAAAAAACwoO64444kSdOmTXPZZZcVwuG5OnXqlAsuuCDJnH/zf+ihhxb6GnMD4hYtWmTNNddc6Oc/88wzGTt2bJLkpJNOqhIOJ0nz5s1z1VVXFTKpv/3tbwt9jfqig3gRfP311znqqKMKAdSPf/zj7Lfffll55ZXz1VdfZcCAARk6dGjefffdHHPMMXnkkUfSunXrrLTSStlhhx3y6quvZvDgwSkpKalxffEBAwYkSVq2bJkuXboUHi8vL8/pp5+eV155JUnSsWPHHHrooVlnnXUybdq0vPbaa3nqqafy9ddf5/jjj88DDzxQpUu3sk8//TS/+tWvMnv27Oy///7Zeeed07Rp07z++uvp169fysvL88ILL+See+7JcccdlyRZb731ctNNN2XkyJH5y1/+kmROR/IOO+yQJFlxxRXnuc7VV1+d0tLSHHHEEdl6663zySefpKSkpBAavfPOO/m///u/TJ8+PUmy5ZZbZr/99kv79u0zbty4PPbYY/nwww8zcuTIHHHEEenbt286dOhQ7T09/fTT+eSTT9K4ceN069YtnTt3zrRp0/LYY49l6NChmTBhQnr27Jn+/ftn5ZVXTjLnF3K//fbLfffdly+++CJDhgzJtttuW+38/fv3T5I0adJkiX2rY9SoUTn55JMzffr0NG3aNNddd11+8pOfLNZr/vrXv05paWl22WWX7L333mnWrFkGDRqUJ598MqWlpbnkkkuy8sorV/lszs/YsWNz3HHH5auvvkoyJ0A86KCDstpqq2XixIkZMGBA/vvf/+bzzz/PMccck/vuuy8bbrhhlTlmz56do48+uhDyr7HGGunevXvWXHPNfPnll3nooYcyatSojBw5MqeddloefPDBNG1a+3/mZsyYkVNOOaUw5wknnJBevXotzMu1QCoqKnLyyScXvrjxox/9KD169Mjqq6+eMWPG5IEHHsiHH36Y66+/fqHm3WGHHXLTTTclSU4//fQkyfbbb1/o4G/Tpk0mT55c4/nFscfBH//4x2y99dZVVh8AAAAAAPifUV5zoxn1b25jY5L85Cc/yRprrFHtuP333z+9e/fO119/naeeemq+q3Z+39yAeN11112kpZ/nZnuNGjXKkUceWe2YZZddNt27d88dd9yRkSNH5pNPPlnoTuX6ICBeBBdeeGEhHD777LNzyimnVDl/7LHH5tZbb821116b0aNH5+qrr87FF1+cJDnwwAPz6quvprS0NM8991y1y0xPnjy58EHffffds+yyyxbO/fOf/yyEw126dMm1115bZTneHj165LDDDstpp52WGTNm5Ne//nWeeOKJaoOa8ePHp1mzZrntttuy8847Fx4/+OCDs+222+a3v/1tkuThhx8uBMTt2rVLly5dstxyyxXGb7zxxrUGhbNmzcqvf/3r/N///d8858rKyvKb3/ymEA7/6le/mmfz8OOPPz6XXHJJHnjggXz11Vc5//zzc/vtt1d7rU8++SQtWrTIX//61yr3dMQRR+Tyyy9Pnz59UlJSkj//+c+54oorCue7deuW++67L8mcELi6gLi0tLTQ+b3jjjtmpZVWqvGe68sXX3yRE088Md98800aN26cK6+8cqFC2UVVWlqa3//+9znmmGMKj3Xr1i177713zjrrrJSVleWSSy7JLrvsssBLOV9wwQWFcPioo47K73//+ypLhv/sZz/LzTffnOuuuy7Tp0/P2WefnSeeeKLKf4T/9re/FYLcLl265M9//nOV6x9zzDE5+eST89prr2X48OF5/PHH071791rvs1evXvnvf/+bZM7yDrUtMV4Xjz32WCEc7ty5c2655ZYqv7tHH310Tj311LzxxhsLNW/Hjh2rdOPPfay2z8n8ztfVNttss9jmBgAAAACguAwZMiTl5eVJUmhYrE7jxo2z7bbb5qmnnsrbb79d2Bp2QVRUVOTDDz9MMqfBbVG8+eabSeZsi9quXbsax+2www6FjuiXX365QQJiS0wvpFGjRuW5555Lkuy9997zhMNznXzyyYUlgPv165dJkyYlSfbaa69C23tNy0w/88wzhWWdK3epfvfdd4UPzCqrrDJPODxX586dC8vjfvTRR3nhhRdqvJ+jjjqqSpA61yGHHJLVVlstyZxlgWfOnFnjHPPTqlWrefYtnuuZZ57JJ598kmTONzu+Hw4nc5YLuPDCC7P55psnSV555ZW88847NV7vF7/4xTz31KhRo5x33nmFvYofffTRwnuSzOkCX2uttZLM6UKublntQYMGpaSkJMmSWV668rLHjRo1yiWXXJIDDzxwsV83mbMceuVweK599tmn8K2XL7/8svC7MD/Dhg0rfOlhyy23zAUXXFDtftKnnXZa9tlnnyTJxx9/nGeeeaZwrqysrLBXbvv27XPVVVfNE07P3et6bqg8dz+C6lRUVOS3v/1tBg0alGROAH7hhRcu0P0sirm/u61atco111wzz+/usssumz/96U9VvhACAAAAAADFbm5wm8w/vF133XWTzMkARo4cucDXGDduXKZOnZpkzmq6yZxtI4cMGZKXXnop77//fsrKymp8/pdffpkpU6ZUeX5NOnXqVDj+4IMPFrjG+iQgXkhPP/10YY/aQw89tNaxc8/PmjWrEI61bt06u+++e5IUlpn+voEDByaZs/Rr5aWE33777Xz++edJ5oSp1YXD3792krz44os1jtt7771rPFf5l2zuh3pRbLrppvOsBT/XSy+9VDiubc/XJk2aVDlfUzDZqlWrHHXUUTXOMfdceXl5IRic6+CDD05SdamCyuaGja1atcpee+1VY6314fvLHp933nnp0aPHYr1mZbUtu9CzZ8/CcW1fPqis8vt8wgkn1Lo0Q+UvCVR+n4cOHVpYKrl79+41bi6/yiqr5Lzzzstll12WX/7ylzVe5/LLLy+8p/vss0969+692JZE/uKLLwpLU+y11141dp+3b98++++//2KpAQAAAAAAlkbjxo0rHM9tbqzJKqusUu3z5mfuv+EnczqRzzjjjGy33Xbp2bNnTj755HTr1i077rhjbrjhhmqbKufuPbwgNXbo0KGQk4wfP36Ba6xPlpheSG+//XbheMyYMbV2UH7zzTeF4+HDhxe6gQ888MA89dRT1S4zPWnSpAwePDjJnPC2cofksGHDCsfTpk2bb/fmMsssk5kzZ+bdd9+tcUzlbyl8X+UA7rvvvqv1WrVZZ511ajw3d2nf5Zdffp7Nur+v8rIBNXUQb7nllmnVqlWNc2y99daF47fffrsQCidzAuLrr78+FRUVeeKJJ7LrrrsWzk2bNi3PP/98kjkBX8uWLWuttS6+++67Ksser7POOjV2YC8Oyy67bDbddNMaz6+zzjpp27ZtSkpKqnwmazP3XpI5+9/WZpNNNsnyyy+fKVOmVHmfKx9vtdVWtc4xv9fr5ptvzsMPP5xkzn/ozz///Go7mutL5f9u/PjHP6517LbbbpuHHnposdUCAAAAAABLk8orwq6wwgq1jm3btm3huLomzZpUDoivvPLKaseUlJTkxhtvzMsvv5y//e1vVZaRrpwJzq/GZs2apVWrVpk6depC1VifBMQLacKECYXjyy67bIGf9/XXXxeOd9lll7Rp0yaTJ0/OU089VSUgfvrppwst6pWXl05S2Pc4SR544IE88MADC3Ttyr8431d5L+Hva9r0/3085q7tviiWX375Gs/NrW311Vef7zxt2rQpvG5z97L9vrnLRNdk1VVXLRx/f47VVlst2267bd54440899xzmTlzZqFL+9lnn82MGTOSpEqovDh8+eWXVd7rUaNG5aGHHsphhx22WK87V8eOHefbSbvaaqulpKQkEydOXKA5577Pc9/D2jRq1Cirr7563nvvvSrvUeXj7++5u7DmhsPJnM/21VdfnWuvvbZOc9amcu2VP4PV+dGPfrTY6gAAAAAAgIaw55571nr+X//6V43nKnfs1rRi7VyVGy8XZvvUygFxs2bNcvzxx6dbt25ZY401UlJSkpdeeil/+ctfMnHixAwbNixnnXVW/vGPfxQ6gedmSAtS49wxU6dOrdMWr3VhiemFNHf98YU1bdq0wnHz5s0L+6x+f5npAQMGJJnTAr/tttvW+7W/r3IIvLh8f5/YyubWtqAduXMD28q/aJXNb//Wytep7nWZG/5Onz690DGcJP37908yZwngzp07L1CtdXXAAQekWbNmSZJrrrmmypcMFqfali7//pjZs2cv0Jz18T7PXV56QWucny222KKw8fsTTzxR7bLi9eXbb78tHM+vdnsQAwAAAAD8sFWUl/uzkH/qovIqt7VlTt8/vzCr485t3GvRokXuvPPO/OpXv0qnTp3SvHnzrLzyyunRo0ceeeSRwhLWgwcPLmR6SarsTzy/GiuPqcsKvnWhg3ghVQ53hg0btkDfAqhO165d8+CDD1ZZZnrixIkZMmRIkjl7DH9/n9bK177tttuyyy67LNK1f0hatmyZb7/9tsbA9/umT5+epOaQbX6B5dznJ1WXGZhr3333zaWXXpqZM2dmwIAB2X///TNp0qT8+9//TjJnefDa9s+tLz169Mill16a6667LrfccksmT56cK6+8MldfffViv/asWbPmO2bu61jTPsDfNzcYrsv7XPm4rt+o2WSTTXL77bdn2LBhOeGEE5IkF110Ufr377/Iv9O1qdxFP7/XYEFDdwAAAAAAWFrU1iE8P5XzgdLS0loD2Mr/xr4gQe1c999/f6ZOnZpvv/22xpVAO3TokN///vc544wzkiQPPvhgYTXgytlCaWnpfK83t865jYJLmg7ihbTiiisWjisvN72wtt1228K3DJ599tkkyTPPPFNYyvnAAw+s9doLurTvD91KK62UpOrm3TWZNGlSoROzQ4cO1Y754osvap2j8nVWXnnlec63bt06Xbp0SZK8+uqrmT17dl566aXCNz8OOuig+dZZV+3bt88ll1ySRo0a5dRTTy1sZv74448XgurFaX6f64qKisLrWHmz99rMfZ8nT55cpRO4pvnHjBmTpOr7XPnz//nnn9c6x8cff5xhw4bVuHb/1VdfneWWWy477bRToZv/008/zc033zzfe1kUlT9rc++tJnX57woAAAAAAPyvadWqVeF4fk1ulQPihW0Ia9269Xy3idxjjz0KzXNDhw4t5HoLU2PlMfWxYuqiEBAvpM0337xw/MYbb9Q6dvDgwTnzzDNzzTXXFDqD52rcuHEOOOCAwriZM2fmqaeeSpKss8462Xjjjet07W+++Sann356Lr/88jz++OO131QD2myzzZIkU6ZMyfDhw2sdO3jw4MLxBhtsUO2Y//73v6moqKhxjsrvw3bbbVftmMrLTP/73//OCy+8kCRZf/31s9FGG9VaY31o3rx5oUu5ZcuWOe+88wrnLrroosXeYVpSUlJriPn+++8XgvrKn8nazH2fk+T111+vdeywYcMKS1JXfp832WSTwvF///vfWue44YYb0qNHj3Tu3Lnapdkr/4/C+eefX/gP99///vd8/PHHtc69KLbccsvCezq/39233nqr3q8PAAAAAABLq8qrdNbUGFbd+Xbt2tV7LU2aNMmaa66ZZE4YPfd6lWucX6NcaWlpYSXVxVHjghAQL6TKm2jffffdtbaJ33jjjRk4cGBuu+22aj+wc7uE54bD//nPf5Kk0I7+fVtvvXVhWeSnnnoq48aNq/Had999d5577rncfffdeeedd+Z3Wwut8jLL5XVYO77y6/n3v/+9xnFlZWW54447Cj/vvvvu1Y774osvCoHu95WWlua+++5LMuebHDvuuGO143baaae0b98+yZyu7ldeeSXJkukers5ee+1VWE589OjRi63LtbJ77723xnOV34e53bfzU/l9vuOOO2r9zFT+HOy2226F42222abwrZzHHnusxm/gTJkyJS+//HKSOQH2/JbBXmWVVfLzn/88yZzPyEUXXVTr+EWx4oorZsstt0ySvPTSS/nkk0+qHTdt2rQ8+uij9X59AAAAAABYWq211lqF4/mtMFp5pdmOHTsulnqqWxZ6YWr88ssvCznJ4qpxfgTEC2nzzTcvdJ5+8MEHueCCC6oNia+//vq8+eabSeZ8KKoLNDfaaKOsu+66SZI//elPhWWMq1teOpnTZn7MMcckmRMqn3766fnqq6/mGTdo0KDcdtttSZKmTZvm2GOPXdjbnK/KLe9TpkxZ5Hn22muvwjctBgwYkFtvvXWeMWVlZbnkkksKQff222+fbbbZpsY5L7zwwowePXqeOS6++OJCd+iJJ55Y49ICTZo0KbwHjz76aKZNm5bGjRvX+L4sCRdccEFhrfzbbrsto0aNWqzXu+uuu/Lcc8/N8/h9992X/v37J5nz+a0pZP++zTbbLNtvv32SOUsuXHbZZVU2bJ/rlltuyTPPPJNkTif9/vvvXzjXqlWrHHbYYUmScePG5Q9/+MM8m7fPnj07f/jDHwodyEceeeQC1XfcccelU6dOSeZ0+D7yyCML9LyFceqppyaZE0L/8pe/zKRJk6qcLy0tzfnnn/8/s3w8AAAAAADUh7n/fp8kH374Ya1j555v1KhR1ltvvQWaf8yYMbnrrrvypz/9KS+++OJ8x3/55ZdJ5gTFbdq0SZKssMIKha0y51fjRx99VDhef/31F6jG+ta0Qa66lLviiity6KGHpqSkJP369cvQoUPTvXv3rLHGGpkwYUKefvrpwjKxTZs2zeWXX54mTZpUO1fXrl1z3XXXFT5Mm2++eX70ox/VeO1TTjklL7/8ct5+++28//772X///XPooYdmk002ybRp0/LGG29kwIABhW8e/PKXv8waa6xRz69A1b1n77zzzqywwgpp2rRpdtlll8Ivw4Jo0qRJrrnmmvTs2TOzZ8/Otddem+effz77779/VlpppXz++ed59NFHM3LkyCRJ27Ztc9VVV9U4X6NGjTJhwoR07949RxxxRDbddNNMmjQpffv2LSxhve666+b//u//aq3r4IMPzh133FEIILfbbrsF3m93cfjRj36Uk046KX/9619TWlqaCy+8MH369Fks11p++eUzffr09OrVK127ds1OO+2UsrKyPPvss4Xu7JYtW+aqq65Ko0aNFnje3r17F35v7rnnnrz55ps5+OCD07Fjx3z99dd58sknM3To0CRzloC+9tpr59lAvlevXnnxxRczatSoPProoxk+fHgOOeSQrLrqqhkzZkz69u1b+HJA586dC8uFz0+zZs1ywQUX5LjjjkuS/PGPf8zuu+9er0s77LLLLjn44IPz2GOPZcSIETnggANy1FFHpVOnTpkwYUIeeuihfPTRR1lxxRXz9ddf19t1AQAAAACoZ+U1b3VJ/dtyyy3TrFmzlJaW5vXXX0/Pnj2rHVdWVlZo3txwww2rLPtcmwkTJqR3795J5uwxXHl10+/75JNPCh3Cm222WZX8b9ttt81TTz1V2KpzueWWq3aOyluq1rQd6uImIF4Eq6++eu65556cfvrpGT16dEaPHp0//elP84xbbrnlctVVV9Xa7To3IK78c22aNWuWO+64I2eddVZefvnlTJ48ucqSv3M1btw4p512Wk4++eQFv7GF0L59+2y33XZ544038uWXX+a3v/1tkuTWW2/NrrvuulBzbb755vnHP/6RM888MxMnTszQoUMLQWFlG220UW644YZaNwjfaqut0qFDhwwYMCC33377POe33HLL3HzzzfPdmHzDDTfMhhtumA8++CBJwy0vXdkpp5ySxx57LOPGjcsbb7yRvn37pnv37vV+nY4dO6Znz5656KKL8vjjj8+zh/UKK6yQG2+8scZ9oGuy+uqr5957783Pf/7zjB49OiNHjszVV189z7jVVlstN9xwQ7X7cLdq1Sp33313TjvttLzzzjv58MMP88c//nGecTvuuGNuuOGGhQqwO3funP333z8DBgxISUlJ/vjHP+bKK69cqHucn969e6dJkybp27dvJk2alBtvvLHK+Y4dO+a8885Lr1696vW6AAAAAACwtFp++eWzww47ZNCgQXn++eczfvz4apdmfvLJJwurd+63334LPP+mm26a1q1bZ+rUqRk0aFCN8yepsg3o95vU9tlnnzz11FP57rvvct9991Wb0U2dOjX9+vVLkqy99trZcMMNF7jO+mSJ6UW07rrrpn///rnkkkuy8847p3379mnWrFmWXXbZbLLJJjnttNMycODAKnuvVmeNNdYo7E3apEmTKkvq1qR169a57bbbcuutt6Zr165ZbbXV0qJFiyyzzDJZa621cvjhh6dv3775xS9+US/3WpPrr78+3bt3T/v27dO0adO0bds233zzzSLNtc022+Tpp5/Oueeem2222SZt27ZNs2bNstpqq2W33XbLddddl4ceemi+3dBNmjTJn//851x11VXZYost0qpVq7Rq1Spbb711Lr300vzzn//MCiussEA1bb755knmLKe9oHvtLk7LLLNMfv/73xd+vuqqq+ZZpri+HHbYYbn77ruz++67p23btmnRokU6deqUU045JQMHDqz1Sw+16dSpU5XfmxVXXDHNmjXLKquskh122CGXX355nnzyyWyyySY1ztG+ffs8+OCDueqqq/KTn/wkK620Upo1a5a2bdtm5513zrXXXpvbb799vnsPV+e3v/1tll122SRJv3798vrrry/SfdakadOmueKKK3LLLbdk1113LXzOf/SjH+WEE05Iv379av0CBAAAAAAAFKO5K4CWlpbm7LPPztSpU6uc/+ijj3L55ZcnSZZddtn06NFjgedu0aJFYYvL0tLS/OpXv5pn/iS5/fbb89hjjyWZs73sIYccUuV8ly5dsvrqqydJbrrppgwZMqTK+dmzZ+ecc85JSUlJkuT4449f4BrrW6OKigp98Cz15nazbrfddvWy9HJZWVl23XXXTJw4MV27ds21115b5zmBxeOD9ef/xRr+d/hbS3FZ9983zn8Q/zPe3eqshi6BJeiN8uqX2eJ/007NSxq6BJagN2e1begSWILKF3zhLv4HfNfQBbBEHf6TcQ1dAktQ2/teaOgSljrTLj+2oUtY6iz7u7vrPMcvfvGLPP3000nmrFp65JFHZtVVV817772X++67L9OmTUuSXHzxxTniiCOqPPf111/PscfOed+qy5K+/fbb9OjRI5988kmSOVutHn744VlrrbXyzTffZMCAAYXAd9lll81dd92VzTbbbJ4an3/++fz85z9PRUVFmjVrlh49emSrrbZKSUlJHnzwwcKWqltttVX++c9/1rhF7eJmiWmoxssvv5yJEycmSQ499NAGrgYAAAAAAKC4XXXVVZk2bVpeeeWVjB07dp5tLBs1apQzzjhjnnB4QSy33HL5xz/+kTPOOCPvvvtuvvjii/zlL3+ZZ9yqq66aa6+9ttpwOJmzh/GFF16Yyy+/PKWlpbn33ntz7733Vhmz2Wab5a9//WuDhcOJgBjmMWHChMK+tmuttVY6d+7cwBUBAAAAAAAUt5YtW+bvf/97+vfvn0cffTTvv/9+vv3227Rt2zZbb711jj322Gy99daLPP+qq66aBx54IE888USefPLJDB8+PFOmTEnr1q2z1lprZe+9987hhx9e2KqyJkceeWS22Wab3HXXXXnttdcyceLENGvWLOuvv34OPPDAHHbYYWnWrNki11kfBMSQZODAgbnlllvSvHnzjBgxIrNmzUqSnH766WnUqPr1kiZNmpS33nqrztdee+2106lTp4V+3owZM/Lqq6/W+fqrrrpqrXv+FrNXXnklM2fOrNMcyyyzTHbeeed6qqj+DR8+PJ9//nmd59lpp53SsmXLeqgIAAAAAOAHrqK8oSsoWo0aNcpBBx2Ugw46aKGet/3222fEiBHzHde0adN069Yt3bp1W8QK51hvvfVy2WWX1WmOxUlADEnat2+fDz74oMpje++9d63/gfnwww9z+umn1/naZ5xxRnr16rXQz/v666/r5fqHHHJIrrzyyjrP87/oD3/4Q8aNq9t+K6uttlqef/75eqqo/vXp0yf9+vWr8zz/+te/svrqq9dDRQAAAAAAwOIkIIYkP/rRj7L++utn9OjRad++fQ4++OD8/Oc/b+iyAAAAAAAAoF41qqioqGjoIgBgUX2w/v4NXQJLkL+1FJd1/31jQ5fAEvTuVmc1dAksQW+UL9fQJbAE7dS8pKFLYAl6c1bbhi6BJai8+l25+B/1XUMXwBJ1+E/qtqoeS5e2973Q0CUsdaZddnRDl7DUWfb3/2zoEqikcUMXAAAAAAAAAMCSISAGAAAAAAAAKBL2IAYAAAAAAIAFVW4fNJZuOogBAAAAAAAAioSAGAAAAAAAAKBICIgBAAAAAAAAioSAGAAAAAAAAKBICIgBAAAAAAAAikTThi4AAAAAAAAAlhrl5Q1dAdSJDmIAAAAAAACAIiEgBgAAAAAAACgSAmIAAAAAAACAIiEgBgAAAAAAACgSAmIAAAAAAACAItG0oQsAAAAAAACApUZ5RUNXAHWigxgAAAAAAACgSAiIAQAAAAAAAIqEgBgAAAAAAACgSAiIAQAAAAAAAIqEgBgAAAAAAACgSDRt6AIAAAAAAABgqVFR3tAVQJ3oIAYAAAAAAAAoEgJiAAAAAAAAgCIhIAYAAAAAAAAoEgJiAAAAAAAAgCIhIAYAAAAAAAAoEk0bugAAAAAAAABYapRXNHQFUCc6iAEAAAAAAACKhIAYAAAAAAAAoEgIiAEAAAAAAACKhIAYAAAAAAAAoEgIiAEAAAAAAACKRNOGLuD/Y+++42u8//+PPxOJGLH3KrVVUXuPoqWITe3q0qKq9emgdLdK0WpRtNbHLLFp7D0qqNkYsUIGETJIyJLz+yO/c31y5CSyj3zP4367ud2unOt9vc/rOufk9Pv9PPN6vwEAAAAAAAAAAIDswhQXZ+sSgHShgxgAAAAAAAAAAAAA7AQBMQAAAAAAAAAAAADYCQJiAAAAAAAAAAAAALATBMQAAAAAAAAAAAAAYCcIiAEAAAAAAAAAAADATjjZugAAAAAAAAAAAAAg24gz2boCIF3oIAYAAAAAAAAAAAAAO0FADAAAAAAAAAAAAAB2goAYAAAAAAAAAAAAAOwEATEAAAAAAAAAAAAA2AkCYgAAAAAAAAAAAACwE062LgAAAAAAAAAAAADINuJMtq4ASBc6iAEAAAAAAAAAAADAThAQAwAAAAAAAAAAAICdICAGAAAAAAAAAAAAADtBQAwAAAAAAAAAAAAAdoKAGAAAAAAAAAAAAADshJOtCwAAAAAAAAAAAACyDVOcrSsA0oUOYgAAAAAAAAAAAACwEwTEAAAAAAAAAAAAAGAnCIgBAAAAAAAAAAAAwE4QEAMAAAAAAAAAAACAnSAgBgAAAAAAAAAAAAA74WTrAgAAAAAAAAAAAIBsI85k6wqAdKGDGAAAAAAAAAAAAADsBAExAAAAAAAAAAAAANgJAmIAAAAAAAAAAAAAsBMExAAAAAAAAAAAAABgJ5xsXQAAAOmx82FhW5eALMT/4WJfIut9aOsSkIWeP/GzrUtAFqr62+e2LgFZyPmtybYuAVmoaL+Rti4BWci1eRFbl4As5FikkK1LQBZyqNDO1iUAADIR/zsrAAAAAAAAAAAAkEKmOJOtSwDShSWmAQAAAAAAAAAAAMBOEBADAAAAAAAAAAAAgJ0gIAYAAAAAAAAAAAAAO0FADAAAAAAAAAAAAAB2goAYAAAAAAAAAAAAAOyEk60LAAAAAAAAAAAAALKNOJOtKwDShQ5iAAAAAAAAAAAAALATBMQAAAAAAAAAAAAAYCcIiAEAAAAAAAAAAADAThAQAwAAAAAAAAAAAICdICAGAAAAAAAAAAAAADvhZOsCAAAAAAAAAAAAgGwjLs7WFQDpQgcxAAAAAAAAAAAAANgJAmIAAAAAAAAAAAAAsBMExAAAAAAAAAAAAABgJwiIAQAAAAAAAAAAAMBOEBADAAAAAAAAAAAAgJ1wsnUBAAAAAAAAAAAAQLYRZ7J1BUC60EEMAAAAAAAAAAAAAHaCgBgAAAAAAAAAAAAA7AQBMQAAAAAAAAAAAADYCQJiAAAAAAAAAAAAALATBMQAAAAAAAAAAAAAYCecbF0AAAAAAAAAAAAAkG3EmWxdAZAudBADAAAAAAAAAAAAgJ0gIAYAAAAAAAAAAAAAO0FADAAAAAAAAAAAAAB2goAYAAAAAAAAAAAAAOwEATEAAAAAAAAAAAAA2AknWxcAAAAAAAAAAAAAZBcmk8nWJQDpQgcxAAAAAAAAAAAAANgJAmIAAAAAAAAAAAAAsBMExAAAAAAAAAAAAABgJwiIAQAAAAAAAAAAAMBOEBADAAAAAAAAAAAAgJ1wsnUBAAAAAAAAAAAAQLYRZ7J1BUC60EEMAAAAAAAAAAAAAHaCgBgAAAAAAAAAAAAA7AQBMQAAAAAAAAAAAADYCQJiAAAAAAAAAAAAALATBMQAAAAAAAAAAAAAYCecbF0AAAAAAAAAAAAAkG3EmWxdAZAudBADAAAAAAAAAAAAgJ0gIAYAAAAAAAAAAAAAO0FADAAAAAAAAAAAAAB2goAYAAAAAAAAAAAAAOwEATEAAAAAAAAAAAAA2AkCYgAAAAAAAAAAAACwE062LgAAAAAAAAAAAADILkxxJluXAKQLHcQAAAAAAAAAAAAAYCcIiAEAAAAAAAAAAADAThAQAwAAAAAAAAAAAICdICAGAAAAAAAAAAAAADtBQAwAAAAAAAAAAAAAdsLJ1gUAAAAAAAAAAAAA2UacydYVAOlCBzEAAAAAAAAAAAAA2AkCYgAAAAAAAAAAAACwEwTEAAAAAAAAAAAAAGAnCIgBAAAAAAAAAAAAwE4QEAMAAAAAAAAAAACAnXCydQEAAAAAAAAAAABAthFn6wKA9HnqO4irVaumatWqafDgwbYuJUWCg4O1ZMkSW5dh1eDBg43XE2mzdu1a4zVcu3atrctJlq+vr9asWWPrMgAAAAAAAAAAAPAUeeoD4uxk48aNeuWVV7R9+3ZblwI7t3DhQrm5uenYsWO2LgUAAAAAAAAAAABPEZaYzkDTp09XaGiorcsANGnSJFuXAAAAAAAAAAAAgKcQAbEdeVqXvs5OevbsqZ49e9q6DAAAAAAAAAAAACBNWGIaAAAAAAAAAAAAAOwEHcQAAAAAAAAAAABACpniTLYuAUiXbB8Qr1+/XmPHjpXJZFKhQoW0dOlSVa5cWZI0ePBgHT16VJJ08eLFJOcYO3as1q1bJ0natWuXypYtm+jcM888ox07dmj+/PlaunSp7ty5o6JFi6px48Y6evSo/P39jWuOHj2qatWqSZLee+89jRo1yuL5oqOjtWnTJm3ZskXnzp3TvXv3lC9fPlWuXFnt27fXq6++qly5ciVZb2hoqJYvX669e/fqypUrioqKUsGCBVW1alW1bdtWvXv3tnr9k16PtM6bHjt37tTIkSMlSSNGjNDo0aOTHBsXF6fWrVvr9u3bqlSpkjw8PCzOR0dHa+PGjdq3b5+8vLwUEhKi2NhYFShQQFWqVNGLL76ovn37Wr2HlLzPkyZN0tq1azVu3DhJ0g8//GB1uem4uDht27ZNu3bt0unTpxUcHKyoqCjlz59fFSpUUKtWrTRgwADlz58/0bUzZszQzJkzlSNHDp07d07h4eFavHixtm3bJl9fX5lMJj377LPq2LGjBg8erNy5c1tcb/7cma1bt874bCdVb3qFhIRoxYoV2rdvn65du6YHDx6ocOHCql27ttzc3NShQ4cnzvHgwQNt3rxZmzZtko+Pj0JCQlSwYEHVrl1bffr00YsvvpjktXFxcdq/f7/c3d118eJFBQYGKnfu3KpatapeeeUV9enTRzlz5rS4Jrnf+YTM74ckLV68WI0bN050zvxerVu3TnPnzpWfn58KFSqkWrVqaerUqTp79qyGDBkiSVq2bJmcnZ31ww8/6Ny5c8qdO7eqVKmi8ePHq0aNGsbcjx490rp167RlyxZduHBBYWFhKlCggGrUqKEuXbqoa9eucnS0vgCE+TMwevRojRgxQp6enlq2bJlOnTql4OBgFSpUSA0bNtTgwYNVt27dZN+X6Oho7dixQ2vXrtXVq1cVFBQkV1dX1axZU926dVOXLl2SrEOSDh8+rDVr1ujEiRO6c+eOcufOrQoVKqhdu3YaOHCgXF1dk31+AAAAAAAAAACQ8bJ1QLxnzx6NHz9eJpNJ+fPn14IFC4xwODNMnTpVf/zxh/FzQECAHj58mKo5Ll26pA8++ECXL1+2eDw4OFhHjx7V0aNHtXDhQs2cOVPPP/98ousvXLigN998U3fu3LF4PCgoSEFBQTp06JDmz5+vBQsW6Nlnn01xXZk175O0atVKBQoUUFhYmLZu3ZpsQPzPP//o9u3bkqQuXbpYnDt//rxGjBihgICARNeZ7+Hw4cNaunSpFi1apNKlSyf5POl5n/39/fXuu+/K29s70bm7d+/q7t27+ueff7R48WItWLBA1atXT3Kua9eu6a233pKfn5/F415eXvLy8pK7u7uWLl2qEiVKpKi2zLBjxw599tlnunfvnsXjgYGB2rFjh3bs2KGGDRvq119/VeHCha3Oce7cOY0cOTLRexcUFKRdu3Zp165d6ty5syZPnixnZ2eLMSEhIRo9erQ8PT0tHo+OjtaxY8d07Ngx/fnnn5o3b16mvk4rVqzQV199Zfx8+/Zt3b59W3ny5LEYd/78eU2dOlWRkZGSpKioKJ0+fdri8+jn56fhw4cn+gzduXNHBw4c0IEDB7RkyRLNnj1bxYsXT7aun3/+WXPnzpXJ9L+/Zrt9+7b++usveXh4aMyYMRo2bJjVa/38/DRixIhEf0wSEhKigwcP6uDBg1q9erV+++23REFvZGSkxo4dqy1btlg8Hh0drdOnT+v06dP673//qxkzZqh+/frJ3gMAAAAAAAAAAMhY2TYgPn78uD744APFxsYqT548+uOPP/Tcc89l2vPdunVL8+bNU/HixfXGG2+oYMGCOnDggLp3764+ffooMjJSn3/+uYKDg1WlShV98MEHkmQRpvr5+Wno0KFGCFu1alV17dpVZcqUUVBQkDw8PHTq1CndvHlTgwcP1ooVKywCxOjoaL333nu6c+eOHB0d5ebmpkaNGilv3rwKDAzU+vXrdf78eQUEBOj999/Xxo0b5eDg8MR7y6x5UyJnzpzq0KGDVq1apatXr+rixYuJumDNEnYMu7m5GcfBwcF67bXXFBYWJklq1qyZWrdurWLFiik0NFTnz5/X+vXrFRMTo+vXr+vbb7/V7NmzrT5Hcu/zk0RHR2vo0KG6ceOGJKl27drq2LGjSpQoofDwcF25ckWrV6/WgwcPdPfuXX3yySfauHGj1blMJpPeffdd+fn5qV69eurUqZMKFy6sixcvasWKFbp3755u3Lihr776yuJeZs2aJUlGV3bjxo2N7tWM/v3Ys2ePRo8erUePHkmSWrRooXbt2qlgwYK6evWq1q5dK39/fx07dkyDBg2Su7u78ubNazHH1atXNWDAACOAr1+/vl555RUVKlRIly9f1vLlyxUWFqa//vpLhQsX1oQJE4xro6OjNWjQIOOPLcqVK6eePXuqfPnyCgwMlLu7u65evSpvb28NHz5cq1atkpNTxn/lxcXFaeLEicqfP7+GDh2qsmXL6p9//lGtWrUSjZ0yZYpiYmLUr18/1a9fX9euXVNoaKgKFCggKf6PCAYMGKDAwEBJ0gsvvKBXXnlFxYsX1507d+Th4aGTJ0/q33//1eDBg7VmzZoku3A3btyoa9euKW/evOrdu7dq165tdGp7enrKZDLpp59+UvPmzVWzZk2La4ODg/Xqq68a31XVq1dX165dVbJkSfn6+mrFihW6deuWPD099fHHH1t8BuPi4jRy5EgdPHhQklS6dGn16tVLFStWVEREhA4fPqytW7fq7t27ev3117Vy5UqL7mkAAAAAAAAAAJC5smVAfPHiRQ0fPlyRkZHKlSuX5syZoxdeeCFTnzM6Olp58uTR8uXLVa5cOUlSjx49LMZMnDhRklSoUCG1b98+0Ryff/65EbgMGDBAEyZMUI4cOYzzr732mmbPnq3p06frwYMHGjNmjDZv3mws4bp//375+vpKkj788MNEnX9DhgzR8OHDtXfvXnl7e8vT01NNmjR54r1l1rwp5ebmplWrVkmStm7dajUgfvTokbZt2yZJqlOnjvEeSNLvv/9uhMNjx47V66+/nuj61157Tb1791ZkZKT279+v+/fvK1++fInGpeR9TsrKlSuNcHjw4MEWYabZ22+/rR49eujOnTu6ePGivL29VbVq1UTj4uLi5OPjk2iJ8s6dO6tbt27q2bOnIiMjtWfPHgUHBxvduY9/7kqXLm31s5he4eHhGjt2rB49eqQcOXLohx9+ULdu3SzGvPnmm/rwww+1Z88eXblyRZMnT9Y333xjMebLL780wuH//Oc/iT57/fv3V69evRQUFKRly5bptddeM96XuXPnGuFw+/bt9fPPP1ssJT148GANGzZMhw8flpeXlzZu3JgpS2ybTCbFxMRoyZIlxvfQ46+FWVRUlD766CO9/fbbVs9/+eWXRjg8ZswYvfPOOxbnhwwZot9//13Tpk2Tj4+PpkyZoq+//trqXNeuXVOZMmW0ePFiiyW0+/btq3Hjxmnt2rUymUxas2ZNooD4xx9/NL6rBg4cqAkTJlgsJT1o0CD1799f3t7e2r17tzw9PY3lt5cuXWqEw+3bt9e0adMslnXv06eP+vbtq+HDh+vhw4f66KOPtHnz5gz7oxMAAAAAAAAAAJC8pDePfEr5+vrqzTff1L179+Ts7Kxff/3VYl/QzNSpUyeLYDI1zpw5o8OHD0uS6tatq88//9wiHDYbPny4sWfrlStXtH37duPc1atXjeM2bdokutbR0VEjRoxQmTJl1LRpU0VFRaWotsyaN6UaNmyokiVLSooPiK05evSo7t69Kynx8tLm4LhMmTJ67bXXrF5fpUoVIyiNjY01glxr0vo+m+vIkyeP0UH+uOLFi6tXr17Gzz4+PknOV6NGjUT7V0tSpUqV1LFjR0nx4eTZs2dTXWt6/fnnnwoNDZUkvfHGG1YD0dy5c+unn35SmTJlJElr1641wk8pfqls857YL774otWljkuUKKFPP/1UUnxo/tdff0mK/4OBJUuWSJKKFSumyZMnJ9pn2LzXrznY3Lx5c3puOVlNmjRJ0R+p5MmTx+joftzVq1e1c+dOSdLLL7+cKBw2GzZsmBo1aiQpfo/p4ODgJJ/vs88+s7q/8ogRI4zjxz8/wcHB2rBhg6T4z+D48eMT7TPs6upqEUybX9vY2FgtWLBAklSyZMlE4bBZ06ZN9dZbb0mSLl++rD179iR5DwAAAAAAAAAAIGNlqw7iu3fv6s0331RQUJBy5Mihn376Sa1bt86y52/QoEGar923b59x/MYbbyQKXBIaNmyYETbu3LnTCAMLFSpkjFm0aJG+/vrrRHuy1qlTR7t3705VbZk1b0o5ODioc+fOmj9/fpLLTJuXl86RI4c6depkcW7t2rVGB3Ryr2vCoCy5PYXT+j7PmTNHN27cUERERJLL/qamjpdffjnJcwlfn/v376ey0vQzf56dnJysdmyb5cmTR4MGDdLkyZMVExOj/fv3q0+fPpKkvXv3GuMGDRqU5BwvvfSSRo4cqQoVKqhOnTqSpJMnTxpd4z179kzy9S5ZsqTGjRun3LlzW+3Uzigp/cw8//zzcnFxsXpu27Ztxl7BCf+IwJpevXrp6NGjioqK0uHDhxP90YQUv3y7tT/4kOKX486bN68iIiIS7R+9f/9+xcXFSYrv4Lb2hyySVK9ePY0ePVqlSpUyli8/ffq0bt68KSn+Dy2shcMJ72HGjBmS4j8Lbdu2TfaeAQAAAAAAAOCpEWeydQVAumSbgDgiIkJvvfWWrl+/Lim+Ay25AC0zVKxYMc3Xnjp1yjh+UsdzzZo1lT9/ft27d8+iu+/FF19Uzpw5FR0drTVr1ujvv/9W+/bt1bp1azVs2DDJ4OlJMmve1Ojatavmz58vKfEy07GxsUYndZMmTVS0aFGLawsVKmQRcicUFRUlb29vnTp1yiLgNgdg1qT1fXZ1dU1yn9+YmBhduXJFZ86c0fr161NUR6VKlZI8l3B57NjY2NQXm06nT5+WJFWuXFlFihRJdmzTpk2N4zNnzhgBsfmz7eDgoLp16yZ5fa5cufT+++9bPJbw96JevXrJPn9SHbsZKaWfmeTGmV9TKX6lBHM3sTUhISHGsZeXl9WAuEKFCsnuuezq6qqIiIhEn59///3XOH7Sa5uwE1mKf3/NIiIikr0HKf69jYyMtHhOAAAAAAAAAACQubJNQOzl5WXx88GDB3Xo0CE1b948y2qwtmdtSpmXgS1QoIAKFCiQ7FgHBweVLVtW586dM/YBlaSiRYvq22+/1WeffaZHjx4pICBAixcv1uLFi5UrVy41adJE7du3V8eOHVNVa2bNmxrVq1dX5cqVdfnyZW3dulWjR482zh0+fNhYzthaEGYWFhamnTt36t9//5WPj4+uX7+umzdvWg1hzZ2a1qT3Hh88eKA9e/bo1KlTRh3+/v5Wg9y01pGwqzO5kDkzhIeHG8uMp2Qp7oRjEn6ezUuGFyhQQHnz5k1VDQnnKV26dKquzQwp/czkz58/yXO3b982jr/77rsUP7f5dXxccl3skozw+PHPYHpe24RLiK9cuVIrV65M0XXJLZMNAAAAAAAAAAAyVrbbg7h79+7G8ddff53h++Em5/E9TlMjIiJCUvy+rClhXpr18SWIu3fvrlWrVumll16yqCcyMlJ79+7VhAkT1KpVKy1atChV9WXWvKnh5uYmScYy02ZbtmyRJLm4uCTZNf7777+rdevW+uyzz7R8+XIdPnxY/v7+iouLk7Ozsxo3bmzs2/ok6Xmf165dqxdffFFjxozR4sWLtX//fl2/fl2xsbHKkSOHXnjhBb344ospmiuppX1tzfxZllL2eU64zHDCz7N5iejkliFOivnatF6f0VL6mUluXHh4eJqeO+H7kVBy3cPJSc9rm9H3AAAAAAAAAAAAMl626SCWpPfff18jR45UbGysNm/erOvXr2v27Nn64IMP0jVvVoTM5iAtuT1nE3rw4IEk6wHN888/r5kzZyo8PFyHDh0yuqn9/f2Na3/44Qe5uLiof//+Ka4xs+ZNqc6dO+vnn3+W9L9lpqOjo41latu0aWO1K/Lnn3/WnDlzJMXvQfzCCy+oTp06qlq1qipXrqzq1asrZ86cmj59uo4ePZrhdZu5u7trwoQJxs81a9ZU3bp1Va1aNVWqVEk1atRQnjx55O7urj179mRaHZktYSicks+z+bMsWX6ezceRkZGpriHhPGm5PqWy8g9QEt7TmTNnsmRp9yfVERkZmaru7oTX/vHHH2rVqlWG1gYAAAAAAAAAANIv2wTEderU0ciRIyVJn376qfbu3avw8HDNmzdPbm5uVvdrdXBwMI5jY2OT7Ki7f/9+5hSdgHnf3LCwMIWFhSW7zLTJZJKvr68kqUSJEkmOc3V1VYcOHdShQwdJ0oULFzR//nxt3LhRkvTbb7+lKcjNrHmfpFy5cqpbt65OnjypHTt2aPTo0Tp8+LDu3bsn6X8dxgndvHlTf/zxhySpYMGCWrhwYZL7AGfm+/zw4UNNnjxZUnyX6OzZs9WiRYssryMr5MuXTy4uLoqKijI+p8nx8fExjhN+ns17F4eFhenBgwfKkydPknOcOHFCrq6uKleunHLnzm2x7/HNmzdVtWrVJK+9cuWKIiIi9Mwzz6hgwYKSLL8bHj16lOS1WfleJbyn27dvp2j57syu49atW8nuhe3l5SVHR0eVK1dOrq6uFtcGBQVlap0AAAAAAAAAACBtss0S0wm76YoXL65Ro0ZJkmJiYvTll19avSbhcq7JLX16+fLlDKoyabVq1TKOPT09kx175swZY8nVatWqGY/v27dPc+fO1fTp061eV716dU2ZMsV4rtu3byskJOSJtWXWvGlhDoEvXbokPz8/bdu2TVL83q2tW7dONH7//v1GwDd48OAkw2FJOn/+vHGc3N6/afHPP/8YYWKXLl2SDIczu46s4ODgoOeff15S/O9OUnvgmh05csQ4Tvh5rlmzpqT41+D06dNJXm8ymTRq1Ci5ublp0KBBFtdK0qlTp5J9/hkzZqhPnz5q2rSp8T2Q0u+GS5cuJTt3Rqpdu7Zx/KRO9yNHjuiDDz7Q1KlTdfz48QytI+Fre/LkyWTHfvXVV+revbteeuklSam7h5CQEI0cOVLff/+98ccnAAAAAAAAAJAtxPEv1f/wVMk2AfHjBg0aZHQNHjt2TKtXr040JmE3W8JQLqFTp07p5s2bGVKTuSsxLi7xJ71du3bG8YIFC6yOMZs3b55x3KZNG4vrfvrpJ82dO1d37txJ8npzd7KDg0OK9ojNrHnT4pVXXjE6vXfv3m0sxfz43shmoaGhxnFyHahnzpyxCLtiY2MzqOLU1eHn52csmZ0ZdZgl91nMCObPc2xsrBYuXJjkuIiICK1YsUJS/PLfCUP+hJ/tVatWJTnHkSNHjM9ls2bNJEkNGjQwlhvfsGFDkktB37t3T/v375cUH16ar0n43XDu3Dmr1/r7++vMmTNJ1pXREn5HLF68WDExMUmOnTlzprZs2aI//vjD4rOXEVq2bClHx/j/NLi7uyf5RwzXr1/X2bNnJUlNmzaVJNWvX9/o0t66dauxPL01ixcv1s6dO7V48WJjHgAAAAAAAAAAkPmybUDs5ORk0Tk8ZcoUBQcHW4xJ2LU7e/bsRGHcrVu39Nlnn2VYTebQ1Lwk8uO1NG7cWFJ8V953331ndWnbOXPmaPv27ZKkihUrqlOnTsa5jh07SooP/SZMmGA1QDpz5ozRuVerVi2rexg/LrPmTYvChQurefPmkuKDcnOnsrXlpSWpTJkyxvGGDRsUHR2daMy5c+c0evRoi7A0o/eWTVjH9u3brXZY+/r6asSIERZ78mbWHrfJfRYzQp8+fYw/GFiwYIHVDtDIyEh99NFHCggIkCR1797d4nVq0KCB0a3q4eGhlStXJpojKChI33zzjSTJ2dlZffr0kRQfwvft21dSfJD7xRdfJPr9jo6O1hdffGF04ydcFj3hd8OiRYsSdRHfu3dPH3/8cbIhbUarXbu2GjVqJCl+WffPP//c6vP/+uuvOnbsmCSpQoUKevHFFzO0jrJlyxodwadOnbK6skB4eLjGjx9vhMcDBgyQFL8H8eDBgyXFv/8jR460+kcnBw4cMJaGd3Jy0pAhQzL0HgAAAAAAAAAAQNKyzR7E1jRo0EDdunXThg0bFBoaqsmTJxv7wErx3ajTpk3TgwcP5Onpqb59+6pXr17Kly+fzp07p9WrV+v+/fuqVatWhnSwlShRQpcuXZK3t7d+/vln1ahRQ6VLlzaWXZ04caJ69eql0NBQLVu2TMeOHVO3bt1UunRp3b17V3/99ZfR5eri4qJp06ZZdM327NlTixYtko+Pj/bs2aNOnTqpR48eKleunB4+fKh///1X69atU3R0tBwdHfX++++nqO7MmjetunTpon379ikwMFCSVKxYMSNcf1ybNm1UsGBBhYaG6sKFC+ratav69OmjUqVKKTg4WEeOHNGePXsShYcZvbdsnTp1VLFiRV29elW3b99Wt27d1K9fP5UvX1737t3TqVOntHXrVkVGRmZqHWYlSpTQtWvXdODAAc2fP1+lS5dWlSpVVLly5QyZP3/+/Jo4caJGjRqlR48e6eOPP9bGjRvVrl07FShQQD4+Plq9erXRQVq+fHmNHz8+0TyTJk1Snz59FBkZqS+++EI7duzQSy+9pNy5c8vb21srV640Qu7hw4frmWeeMa4dNWqU9u7dq6tXr2r9+vXy8vJSjx49VKpUKfn6+mrt2rXG/sdNmzZVt27djGubN2+ukiVL6tatW7p8+bJ69eqlfv36qVixYrp8+bJWr16toKCgDPtuSKkffvjB+I5Yt26dTp48qZ49e6pcuXK6ffu2tm3bphMnTkiKD1a///575ciRI8PrmDBhgo4fP667d+9qzpw58vT0VOfOnVWoUCH5+Pho5cqVun37tiSpV69eatCggXHtO++8o/379+v06dM6f/68OnXqpF69eqlmzZqKiIjQ0aNH5eHhYfzBxujRo2223zIAAAAAAAAAAPYoWwfEkvTJJ59o9+7dun//vtavX6+ePXsaYWKRIkU0adIkffTRR4qOjpaXl5e8vLwsrh8yZIheeOEFjRkzJt21dO7cWQcPHpQU3wksxYfU5g68smXLavny5RoxYoR8fHzk7e2tKVOmJJqnTJkymjFjRqL9dF1cXDRnzhy99dZb8vPz040bN/TLL78kuj5XrlwaP368WrZsmaK6M2vetGrfvr3y5MljdNp26tTJWPL2ca6urvrxxx/1/vvvKzIyUteuXdOPP/6YaFzVqlU1fPhwffjhh5KkixcvZmjNjo6Omjp1qt544w2FhoYqMDDQ6mtYqlQpff311xo2bFim1GHWuXNnzZw5U7Gxscbr8dZbb+njjz/OsOdo3769fvnlF40bN07h4eE6cOCADhw4kGhc06ZN9dNPPxnLOydUtWpVLVy4UKNGjdKdO3eSnOPNN9/UyJEjLR7LkyePFi9erOHDh+vs2bO6dOmS1fe+WbNmmjFjhrHsthS/B/FPP/2kYcOGKTw8XD4+Ppo0aZLFdR07dtTgwYM1cODAFL8m6VW2bFktW7ZMI0eOlI+Pj3x8fPTTTz8lGpcvXz5NnjzZIpjNSMWLF9fSpUv17rvv6vr16zp58qTV/Yjd3Nz09ddfWzzm7OysBQsW6MMPP9T+/fsVFhamBQsWJLrW0dFRw4cPN34XAAAAAAAAAABA1sj2AXHRokU1evRofffdd5KkL7/8Uhs3bjQ6bzt06KBq1appwYIFOnTokG7fvq38+fOrVq1aGjRokFq0aKG//vorQ2rp2bOnIiMjtWzZMvn6+srBwSFRx2ilSpW0adMmrVu3Ttu3b9f58+d17949FSlSRBUqVJCbm5s6d+6c5B6/zz77rDZt2qRVq1Zp165dunz5su7du6fcuXOrVKlSatmypfr375/qjrzMmjct8uTJo7Zt22rz5s2S4juKk9O6dWutXbtWCxYs0JEjRxQYGChHR0cVLlxY1apV0yuvvKJOnTopR44cKlasmIKCgrR9+3Z9/PHHSQbPaVGzZk1t2LBB8+bN08GDBxUQEKC4uDgVLFhQVapUUbt27dSjRw/lzZvX6Ew9ePCgwsPDrYan6TFixAjlyJFD69at082bN+Xs7GwstZyRXn75ZTVo0EDLly/X3r17dePGDUVGRqpkyZKqXr26evfurZYtW1qEs4+rV6+etm3bpuXLl2vnzp26du2aHj58qCJFiqhBgwYaNGiQ6tata/XaYsWKadWqVdq4caM2b96s8+fPKywsTHnz5tXzzz+vHj16JPkHBvXr19eWLVu0cOFC7d69Wzdv3lSePHlUvXp19e3bV506ddKpU6cy6qVKscqVK1t8R1y8eFGhoaHKmTOnKlSooFatWmngwIEqVqxYptZRsWJFbd68We7u7tq6dau8vb0VERGhAgUKqE6dOnr11Vct9pROyNXVVX/88Yf27dunjRs36uTJk7pz544cHBxUsmRJNW7cWP3791eNGjUy9R4AAAAAAAAAAEBiDibzJpIAAGRDM8sNsnUJyELZ/i/bkCqNHTJnKwY8nZ4/8bOtS0AWiv7tc1uXgCzk/NZnti4BWSi438gnD8L/Ga7Ni9i6BGQhxyKFbF0CspBDhQq2LgFZKHfvCbYuIdsJ6dPG1iVkO4Xc99q6BCSQce2TAAAAAAAAAAAAAICnGgExAAAAAAAAAAAAANgJVmpEmgQHB+vEiRPpnufZZ59VpUqVMqAiPMmVK1d07dq1dM9Tr149FS5cOAMqAgAAAAAAAAAAQFYjIEaaXLp0SSNHpn9foffee0+jRo3KgIrwJB4eHpo5c2a651m8eLEaN26cARUBAAAAAAAAAAAgq7HENAAAAAAAAAAAAADYCTqIkSaNGzfWxYsXbV0GUmHUqFF0awMAAAAAAAAAkF5xti4ASB86iAEAAAAAAAAAAADAThAQAwAAAAAAAAAAAICdICAGAAAAAAAAAAAAADtBQAwAAAAAAAAAAAAAdoKAGAAAAAAAAAAAAADshJOtCwAAAAAAAAAAAACyC1OcydYlAOlCBzEAAAAAAAAAAAAA2AkCYgAAAAAAAAAAAACwEwTEAAAAAAAAAAAAAGAnCIgBAAAAAAAAAAAAwE4QEAMAAAAAAAAAAACAnXCydQEAAAAAAAAAAABAthFn6wKA9CEgBgAAAAAAAAAAAPDUM5lM2rx5s9asWaPz58/rwYMHKlasmBo2bKiBAweqdu3a6Z5/165d2rBhg86cOaPg4GA5OzurTJkyat68uYYMGaLSpUsnO0fbtm3l7++fouc7ePCgihUrlq6a04KAGAAAAAAAAAAAAMBTLTIyUqNHj9bevXstHvf395e/v782bdqkDz74QMOGDUvT/GFhYfrwww916NAhi8ejo6Pl7e0tb29vLVu2TN9++626d+9udY7w8HAFBASk6fmzEgExAAAAAAAAAAAAgKfa+PHjjXC4UqVK6tu3r4oWLSovLy/9+eefevDggaZNm6YSJUqoW7duqZo7Li5OI0eO1LFjxyRJpUuXVq9evVSxYkVFRETo4MGD2r59u6KjozV27Fjlz59fbdu2TTTPxYsXZTKZJEnvvvuuatWqlezzFihQIFV1ZhQCYgAAAAAAAAAAAABPrUOHDmnz5s2SpCZNmuj333+Xi4uLJKlLly7q3bu3BgwYoNDQUE2cOFHt2rWTq6triudft26dEQ43adJEs2fPVp48eYzzffr00e7duzVq1CjFxsbqq6++UvPmzY0azC5evGgcd+/eXc8++2ya7zkzOdq6AAAAAAAAAAAAAABIyoIFCyRJTk5O+u677xIFs5UqVdLnn38uSQoNDZW7u3uq5l+5cqUkycXFRVOnTrUIh83atm2rQYMGSZICAwO1f//+RGPMAbGLi4vKly+fqhqyEgExAAAAAAAAAAAAkEKmOP6l9l96hIaG6vDhw5Kkli1bqly5clbHderUSUWKFJEkbd26NcXzh4eH68yZM5KkZs2aqVixYkmO7dixo3F8+vTpROfNAXHlypXl6Pj0xrBPb2UAAAAAAAAAAAAA7Nrx48cVFxefMjdp0iTJcY6OjmrYsKGk+PA2LCwsRfOHhISoVq1aKlasmCpWrJjs2IR7Bt+7d8/inMlk0qVLlyRJVatWTdFz2wp7EAMAAAAAAAAAAAB4KplDV+nJwWvlypUlxYe13t7eRmCcnHLlyqV4SeorV64YxwULFrQ45+/vr/DwcElSlSpVJMV3J1+4cEEREREqXry4qlatqhw5cqTouTITATEAAAAAAAAAAACAp5K/v79xXKZMmWTHlixZ0uK6lATEqbFmzRrjuE6dOhbnzMtLS/HdzO+99552796tR48eGY8XLFhQgwYN0ttvv61cuXJlaG2pwRLTAAAAAAAAAAAAAJ5KwcHBxnGhQoWSHZuwqzc0NDRD6zhw4ID27NkjSSpSpIiaN29ucT5hQDxp0iTt2LHDIhw21zRz5kwNHjzY4r6yGh3EAAAAAAAAAAAAADJNu3btkj2/a9euJM9FRkYaxy4uLsnOkzNnTqvXpdfNmzf16aefGj8PHz48UQdwwoDY2dlZr7/+urp3765y5copNDRU+/bt0y+//KKgoCCdOXNGH374oRYuXChHx6zv5yUgBgAAAAAAAAAAAFIqztYF2JfY2FjjOGEAbE3C8wmvS4/g4GC98cYbunv3riSpefPmGjRoUKJxgYGBkuJD7AULFqhBgwbGueLFi6tPnz5q1aqV+vbtq1u3bunIkSPy8PBQly5dMqTO1CAgBgAAAAAAAAAAAJBpkusQfpKEnboxMTHJhsTR0dHG8ZPC5JQICgrS66+/rqtXr0qSypcvr6lTp8rBwSHR2D///FPh4eG6f/++SpUqZXW+EiVKaMKECXrvvfckSatWrbJJQMwexAAAAAAAAAAAAACeSnny5DGOo6Kikh2bMCB+0nLUT3Ljxg0NHDhQly5dkiSVKlVKCxcuVOHChZO8xtXVNclw2Kxt27ZydXWVJJ08eVJxcVnfkk5ADAAAAAAAAAAAAOCplD9/fuM4NDQ02bEJzycX5D7JmTNn1K9fP12/fl2SVKZMGS1ZskRlypRJ85xmOXLkUPny5SXFB9pPuqfMQEAMAAAAAAAAAAAA4KlUoUIF4/jmzZvJjr1165ZxXLp06TQ934EDB/Taa68Zew5XrlxZK1asULly5dI0nzXOzs4ZNldasAcxAAAAAAAAAAAAgKdSpUqVjONLly6pUaNGSY41Lwft4OCgKlWqpPq5du/erffff18xMTGSpDp16mju3LkqVKhQstf5+vpq9+7dunv3rurVq6c2bdokOz4wMFBSfFBcoECBVNeZXgTEAAAAAAAAAAAAQAqZsn7LWLtWt25dOTs7KyYmRp6enho4cKDVcY8ePdKxY8ckSdWrV7dYmjoljh49qtGjRxvhcPPmzTVz5kyLPZCTcvv2bU2cOFFS/B7DyQXE165dMzqha9WqpRw5cqSqzozAEtMAAAAAAAAAAAAAnkr58+dXkyZNJMV3+AYEBFgd99dffyk4OFiS9Morr6TqOe7evavRo0crOjpakvTiiy9qzpw5KQqHJen555+Xq6urpPglqpOqUZJmz55tHHfr1i1VdWYUAmIAAAAAAAAAAAAAT62hQ4dKkmJiYjRmzBiFh4dbnL98+bK+//57SVLevHnVp0+fVM3/7bffGuFy7dq19csvvyhnzpwpvt7FxUV9+/Y1avzPf/6TqEZJmj9/vjZs2CApfm/lHj16pKrOjMIS0wAAAAAAAAAAAACeWi1atFCHDh20bds2nTx5Ut26dVP//v1VqlQpnTt3TitWrFBERIQk6ZNPPlHhwoUtrvf09NSQIUMkSY0aNdKSJUuMc1euXNHWrVuNnzt27KgDBw48saaCBQuqQYMGxs8jRozQnj17dO3aNZ04cUKdO3fWq6++qgoVKigkJEQeHh46fvy4pPgQe+rUqXJxcUn7i5IOBMQAAAAAAAAAAAAAnmqTJ09WRESEDh48KD8/P02ZMsXivIODg9577z3169cvVfOuX79eJpPJ+PnHH39M0XWPB8358uXTwoUL9d577+nff//VrVu39MsvvyS6rlSpUpo2bZpq1aqVqjozEgExAAAAAAAAAAAAgKda7ty5NW/ePG3atEnr16/X+fPndf/+fRUsWFD169fXkCFDVL9+/VTP6+3tnWE1lipVSitXrtTmzZv1119/ycvLS/fu3ZOrq6sqVKigl19+Wa+++qry5s2bYc+ZFgTEAAAAAAAAAAAAQErF2boA++Xg4KCuXbuqa9euqbqucePGunjxotVzc+fOzYjSDE5OTurevbu6d++eofNmJEdbFwAAAAAAAAAAAAAAyBoExAAAAAAAAAAAAABgJwiIAQAAAAAAAAAAAMBOEBADAAAAAAAAAAAAgJ0gIAYAAAAAAAAAAAAAO+Fk6wIAAAAAAAAAAACA7MIUZ+sKgPShgxgAAAAAAAAAAAAA7AQBMQAAAAAAAAAAAADYCQJiAAAAAAAAAAAAALATBMQAAAAAAAAAAAAAYCcIiAEAAAAAAAAAAADATjjZugAAAAAAAAAAAAAguzDF2boCIH3oIAYAAAAAAAAAAAAAO0FADAAAAAAAAAAAAAB2goAYAAAAAAAAAAAAAOwEATEAAAAAAAAAAAAA2AkCYgAAAAAAAAAAAACwE062LgAAAAAAAAAAAADILkxxtq4ASB86iAEAAAAAAAAAAADAThAQAwAAAAAAAAAAAICdICAGAAAAAAAAAAAAADtBQAwAAAAAAAAAAAAAdoKAGAAAAAAAAAAAAADshJOtCwAAAAAAAAAAAACyDZODrSsA0oUOYgAAAAAAAAAAAACwE3QQAwCytbxxtq4AWSmQ/8vFrhx9lM/WJSALVf3tc1uXgCyUc8S3ti4BWejhuHdtXQKyUKGFk2xdArJQxJhPbV0CslDuN5vaugRkId9Pd9q6BGShqr1tXQGArEYHMQAAAAAAAAAAAADYCQJiAAAAAAAAAAAAALATBMQAAAAAAAAAAAAAYCfYyQ8AAAAAAAAAAABIIVOcrSsA0ocOYgAAAAAAAAAAAACwEwTEAAAAAAAAAAAAAGAnCIgBAAAAAAAAAAAAwE4QEAMAAAAAAAAAAACAnSAgBgAAAAAAAAAAAAA74WTrAgAAAAAAAAAAAIDswhTnYOsSgHShgxgAAAAAAAAAAAAA7AQBMQAAAAAAAAAAAADYCQJiAAAAAAAAAAAAALATBMQAAAAAAAAAAAAAYCcIiAEAAAAAAAAAAADATjjZugAAAAAAAAAAAAAguzDF2boCIH3oIAYAAAAAAAAAAAAAO0FADAAAAAAAAAAAAAB2goAYAAAAAAAAAAAAAOwEATEAAAAAAAAAAAAA2AkCYgAAAAAAAAAAAACwE062LgAAAAAAAAAAAADILkwmB1uXAKQLHcQAAAAAAAAAAAAAYCcIiAEAAAAAAAAAAADAThAQAwAAAAAAAAAAAICdICAGAAAAAAAAAAAAADtBQAwAAAAAAAAAAAAAdsLJ1gUAAAAAAAAAAAAA2YUpztYVAOlDBzEAAAAAAAAAAAAA2AkCYgAAAAAAAAAAAACwEwTEAAAAAAAAAAAAAGAnCIgBAAAAAAAAAAAAwE4QEAMAAAAAAAAAAACAnXCydQEAAAAAAAAAAABAdmGKc7B1CUC60EEMAAAAAAAAAAAAAHaCgBgAAAAAAAAAAAAA7AQBMQAAAAAAAAAAAADYCQJiAAAAAAAAAAAAALATBMQAAAAAAAAAAAAAYCecbF0AAAAAAAAAAAAAkF2YTLauAEgfOogBAAAAAAAAAAAAwE4QEAMAAAAAAAAAAACAnSAgBgAAAAAAAAAAAAA7QUAMAAAAAAAAAAAAAHaCgBgAAAAAAAAAAAAA7ISTrQsAAAAAAAAAAAAAsgtTnIOtSwDShQ5iAAAAAAAAAAAAALATBMQAAAAAAAAAAAAAYCcIiAEAAAAAAAAAAADAThAQAwAAAAAAAAAAAICdICAGAAAAAAAAAAAAADvhZOsCAAAAAAAAAAAAgOzCFOdg6xKAdKGDGAAAAAAAAAAAAADsBAExAAAAAAAAAAAAANgJAmIAAAAAAAAAAAAAsBMExAAAAAAAAAAAAABgJwiIAQAAAAAAAAAAAMBOONm6AAAAAAAAAAAAACC7MJlsXQGQPnQQAwAAAAAAAAAAAICdICAGAAAAAAAAAAAAADtBQAwAAAAAAAAAAAAAdoKAGAAAAAAAAAAAAADsBAEx8H/MkSNH9Pfffyd63NPTU9WqVVO1atU0Y8aMDHs+Pz8/Y96xY8daHRMREaHff//d6rnBgwcb1wMAAAAAAAAAACBzERAD/0eEh4drwoQJGjp0qG7evGnrcgwHDx5Uly5d9Oeff9q6FAAAAAAAAAAA0s0U58C/VP7D04WAGPg/wsvLS+7u7jKZTLYuxcLcuXMVEBBg6zIAAAAAAAAAAAAgycnWBQDIGo0bN9bFixczfN6yZcuma94lS5ZkYDUAAAAAAAAAAABIDh3EAAAAAAAAAAAAAGAnCIgBAAAAAAAAAAAAwE6wxDSQCfz9/eXu7q4jR47Iz89PoaGhypkzp4oUKaK6deuqR48eatq0aZLXR0dHa8eOHVq7dq2uXr2qoKAgubq6qmbNmurWrZu6dOkiR8f4v+/w9PTUkCFDLK4fN26cxo0bJ0natWuXypYtazHuvffe06hRoyRJ3bt31/nz55UrVy79/fffypMnT5J1/fnnn/ryyy8lST///LM6deokPz8/tWvXTpLUo0cPTZo0SZI0ePBgHT161OI1qVatWrLjkluqetu2bdq4caPOnDmjkJAQubq6qkqVKurQoYP69u2rnDlzJnltaGioli9frr179+rKlSuKiopSwYIFVbVqVbVt21a9e/dWrly5krw+Pdq2bSt/f3+9+uqr+uabb3T69GktXLhQJ06cUGhoqIoVK6ZWrVrpnXfeUcmSJY16Fy5cqK1bt+rmzZvKnTu3XnjhBb399ttq0KBBss937do1LVu2TIcOHdKtW7ckSaVKlVLz5s01ZMgQlStXLtnr4+LitG3bNu3atUunT59WcHCwoqKilD9/flWoUEGtWrXSgAEDlD9//kTXzpgxQzNnzlSOHDl07tw5hYeHa/Hixdq2bZt8fX1lMpn07LPPqmPHjho8eLBy586dxlcVAAAAAAAAAACkFQExkMF+//13/frrr4qJibF4PCYmRhEREbpx44Y2bNhgBIaP8/Pz04gRIxKFpSEhITp48KAOHjyo1atX67fffpOrq2u663Vzc9P58+cVGRmpvXv3qlOnTkmO9fDwkCTlzZtXbdu2Tfdzp0RoaKhGjRplETZL8a/H0aNHdfToUS1evFizZ89WpUqVEl1/4cIFvfnmm7pz547F40FBQQoKCtKhQ4c0f/58LViwQM8++2ym3sv8+fM1bdo0PXr0yHjMz89Py5cv186dO7V8+XJFRUVp2LBh8vf3N8ZERUVp7969OnDggKZPn66XX37Z6vxJffauXLmiK1euaMWKFRo3bpwGDhxo9Xp/f3+9++678vb2TnTu7t27unv3rv755x8tXrxYCxYsUPXq1ZO812vXrumtt96Sn5+fxeNeXl7y8vKSu7u7li5dqhIlSiQ5BwAAAAAAAAA8jUwmB1uXAKQLATGQgdzd3TVt2jRJ8SFq9+7dVa1aNeXNm1cBAQHau3ev/vnnH0nSypUr1bJlS7300kvG9cHBwXr11VeNMLN69erq2rWrSpYsKV9fX61YsUK3bt2Sp6enPv74Y82ePVtVqlTRrFmz5O3trV9++UVSfFdukyZNJElFihRJtubOnTtr6tSpiouL05YtW5IMiIOCgnTs2DFJUvv27Z/YcTt69GiFhoZq+vTpunTpkgoXLqxvv/1WUnxHa0pERkZqyJAhRlhepUoVde3aVWXLllVYWJh2796t/fv36/r16xo4cKDWr19vdOFK8Z3Y7733nu7cuSNHR0e5ubmpUaNGyps3rwIDA7V+/XqdP39eAQEBev/997Vx40Y5OGTOf9gPHz6slStXKnfu3Ordu7dq1aqloKAgLVu2TAEBAbp9+7a+/vpr+fj4yN/fXy+//LLatGmjHDlyyMPDQ/v27dOjR4/01VdfqU2bNok6pmfPnq3p06dLkvLkyaOePXuqdu3acnBw0NmzZ7VmzRpFRETom2++kaOjo/r3729xfXR0tIYOHaobN25IkmrXrq2OHTuqRIkSCg8P15UrV7R69Wo9ePBAd+/e1SeffKKNGzdavVeTyaR3331Xfn5+qlevnjp16qTChQvr4sWLWrFihe7du6cbN27oq6++0uzZszP+xQYAAAAAAAAAAEkiIAYySGxsrH7++WdJUv78+bV27dpEy/kOGzZMv/76q2bNmiVJ2rRpk0VA/OOPPxrh8MCBAzVhwgRjKWlJGjRokPr37y9vb2/t3r1bnp6eaty4sdq3b698+fIZ45577jm1b98+RXWXLFlSDRo00NGjR7V//349ePDA6jLT27ZtU1xcnCSpS5cuT5zXvBTyf//7X0lS7ty5U1yT2c8//2yEwwMGDNCECROUI0cO43z//v21ceNGffrppwoJCdGECRM0b9484/z+/fvl6+srSfrwww81bNgwi/mHDBmi4cOHa+/evfL29panp6cRrGc0X19fFShQQIsXL7bovO3SpYvat2+vmJgYHThwQJL03XffqU+fPsaY7t27a/To0dq6davRxZtwiXIvLy/NmDFDklShQgXNnz9fZcuWNc537dpVr7/+ul5//XX5+Pjohx9+UKtWrVSmTBljzMqVK41wePDgwZowYUKie3j77bfVo0cP3blzRxcvXpS3t7eqVq2aaFxcXJx8fHwsljKX4v8YoVu3burZs6ciIyO1Z88eBQcHq3Dhwql+PQEAAAAAAAAAQNo4PnkIgJQ4fvy47t69Kyk+yE1qr9d33nnHCH2vXbtmPB4cHKwNGzZIkmrUqKHx48dbhMOS5Orqqq+//tr4efPmzRlSu5ubmyQZy0xbY15eukiRImrWrFmGPG9ywsLCtHLlSknS888/ry+++MIiHDbr2rWrunfvLkk6cOCAxdLcV69eNY7btGmT6FpHR0eNGDFCZcqUUdOmTRUVFZWxN/GYYcOGJVqWuWTJkmrVqpXxc9OmTS3CYbOePXsax5cuXbI4t2DBAj169EgODg765ZdfLMJhs9KlSxsd3FFRUVqyZInF+W3btkmK7z7+4IMPrNZfvHhx9erVy/jZx8fH6jgp/jOcMBw2q1Spkjp27CgpvtP47NmzSc4BAAAAAAAAAAAyHgExkEEaNmyoXbt2adGiRRowYECS41xcXFS0aFFJ8YGs2f79+40O3f79+1sNQyWpXr16Gj16tCZNmqRBgwZlSO0dOnSQs7OzJGnLli2Jzt+6dUsnTpyQJHXs2FFOTpm/+MC+ffv08OFDSfHhaHJLPycMLRMG3IUKFTKOFy1alGhvXkmqU6eOdu/erUWLFql169YZUHnSOnfubPXxhIFuu3btrI4pXbq0cXz//n3jODY2Vrt27ZIk1axZM9l9gRs1amT84cKePXsszs2ZM0fr1q3T77//nuze1glrNb8/1iS1T7IkVatWzThOeC8AAAAAAAAAACDzscQ0kEFy5MihsmXLWu3elKS7d+/Ky8tLx44d07179yRJjx49Ms7/+++/xnG9evWSfa4RI0ZkQMX/U6BAAbVu3Vo7d+60usz01q1bZTKZJKVseemMcObMGeM4KChIO3fuTHJsRESEcezl5WUcv/jii8qZM6eio6O1Zs0a/f3332rfvr1at26thg0bysXFJXOKtyJ37txJ7r2ccHnwZ555xuqYhHs+m/+QQJIuXrxoBLXOzs7Jvk6SVLBgQfn6+srHx0fh4eFGGOzq6qrnnnvO6jUxMTG6cuWKzpw5o/Xr11ut43GVKlVK8lzC+42NjU22XgAAAAAAAAAAkLEIiIFMcOHCBe3fv1/e3t66fv26bty4odDQ0GSvMe89LFl2i2aVLl26aOfOncYy0506dTLOmZeXLlOmzBPD64wSGBhoHM+ePTvF15mX+ZakokWL6ttvv9Vnn32mR48eKSAgQIsXL9bixYuVK1cuNWnSRO3bt1fHjh0tQsvMkD9//hSNSxgEJ5RUB3XC1+nkyZMaOXJkimsKCQlJ1C384MED7dmzR6dOnZKPj4+uX78uf39/q0Gu+Y8GrEnu9UzYHZ9cyAwAAAAAAAAATyMT/7MmsjkCYiAD3blzR+PGjdP+/futni9SpIhatWqlPXv2JAqMw8LCjOOkQsLM1LZtW7m6uio8PFxbtmwxAmJ/f3+dPn1a0v/2Ks4K4eHhabouYTexJHXv3l2VK1fWnDlztG/fPkVHR0v6337Le/fu1cSJEzV69GgNHTo0vWUnKbOW5U7r6yQlfq3Wrl2ryZMnW/1jhhw5cqhWrVoqVKhQouWprUlqiXQAAAAAAAAAAGBbBMRABnnw4IEGDRqka9euSYrvoGzWrJlq1KihypUrq3r16sb+r9b2uk0YCkdGRipv3rxZU/j/5+Liopdeeknr1q2zWGY64Z7EWbW8tGT5enh4eCS7ZPGTPP/885o5c6bCw8N16NAhHTx4UIcOHZK/v7+k+Pfuhx9+kIuLi/r375/u2rNS7ty5jeO3335bH330UZrmcXd314QJE4yfa9asqbp166patWqqVKmSatSooTx58sjd3T1FATEAAAAAAAAAAHg6ERADGWTx4sVGONy2bVtNnTo1yZDXvAdxQkWKFDGOb926lWwg6uXlJUdHR5UrVy7REsHp4ebmpnXr1ikyMlL79+9Xx44djYC4WrVqqlKlSoY915MkfD2CgoLSFRCbubq6qkOHDurQoYOk+KXA58+fr40bN0qSfvvtt2wXEBcuXNg4DgoKStMcDx8+1OTJkyVJOXPm1OzZs9WiRQurY+/fv5+m5wAAAAAAAAAAAE8HR1sXAPxfsXfvXuN4woQJSYbDN27c0IMHDyRZ7uFas2ZN4/jkyZPJPtdXX32l7t2766WXXkpHxYk1adJExYoVkxR/P35+fvr3338lZW33sCTVrl3bOD569GiyYy9fvqxRo0Zp8uTJFu/Dvn37NHfuXE2fPt3qddWrV9eUKVNUq1YtSdLt27cVEhKS7tqz0nPPPWcsX33s2LFk9wWWpM8//1xffPGFfv/9d2Nf4X/++ccIfrt06ZJkOCxJ58+fN46f9FwAAAAAAAAAAODpQ0AMZJCEwWKePHmSHLdo0SLjOCYmxjhu2bKlHB3jfyXd3d2TDN+uX7+us2fPSpKaNm1qPG6+VpLi4uJSV/z/lyNHDr3yyiuSpP3792vnzp2SJAcHhzQHxA4ODmmqqXXr1kbwuWrVqmQ7V3///Xdt375dCxYskI+Pj/H4ggUL9NNPP2nu3Lm6c+dOktcXKFDAqDXhks3ZQe7cudWsWTNJ8ftFb926Ncmxf//9t1atWqWVK1fqr7/+Ml7fhHsOJ/fZ9fPzMz4TkoyAGQAAAAAAAAAAZB8ExEAGKVu2rHHs7u5udcyCBQu0fPly4+fo6GiL680dwadOnbLa9RoeHq7x48cb4fGAAQOMcwn37LW2hHVKubm5SZLu3r2rBQsWSJLq1aun0qVLp2k+c+B6//79VHWclihRQl27dpUUv3TyBx98oIiIiETjVq9erQ0bNkiKD3p79eplnOvYsaOk+HB6woQJFoG82ZkzZ4wO5Vq1alm8jtnFW2+9ZRx/+eWXOn36dKIxAQEB+vTTT42fX3/9deO4TJkyxvH27dutdlH7+vpqxIgRRve7JEVFRaW7dgAAAAAAAADIbuJMDvxL5T88XdiDGMgg3bt318GDByVJP/30k7y8vNSsWTPlyZNHvr6+8vDw0KVLlyyuiYiIUFxcnNH9O2HCBB0/flx3797VnDlz5Onpqc6dO6tQoULy8fHRypUrdfv2bUlSr1691KBBA2OukiVLGseLFi1SoUKF5OTkpFatWhkdsilRu3ZtVahQQT4+PgoMDJSUvuWlS5QoISk+3P7iiy/UvHlzFSxYUE2aNHnitePGjdOxY8fk6+urgwcP6pVXXlHv3r1VuXJlhYSEaN++fdq3b58x/osvvlC+fPmMn3v27KlFixbJx8dHe/bsUadOndSjRw+VK1dODx8+1L///qt169YpOjpajo6Oev/999N8n7bUuHFjDR06VIsWLVJYWJgGDBigzp07q0mTJnJ0dNT58+e1atUqI9xt2bKlunXrZlxfp04dVaxYUVevXtXt27fVrVs39evXT+XLl9e9e/d06tQpbd26VZGRkRbPy37EAAAAAAAAAABkPwTEQAbp0qWLDh8+rLVr18pkMmnr1q1Wl/vt37+/HB0dtWzZMsXGxurKlSuqUqWKJKl48eJaunSp3n33XV2/fl0nT560uh+xm5ubvv76a4vHihUrpkaNGuno0aMKDAzU2LFjJcUvv9y6detU38vMmTMlSU5OTkYnblp06tRJK1eulBS/VPSqVatUu3btJLusE8qfP7+WLVumkSNH6uzZswoMDNSsWbMSjXNxcdH48eMTBdkuLi6aM2eO3nrrLfn5+enGjRv65ZdfEl2fK1cujR8/Xi1btkzjXdre2LFj5eLioj/++EOxsbHasGGD0Vmd0IsvvqiffvrJWPpbil+efOrUqXrjjTcUGhqqwMBAq69TqVKl9PXXX2vYsGGSpIsXL2beDQEAAAAAAAAAgExBQAxkEAcHB/3www9q2bKl3N3dde7cOYWHhytXrlwqXbq06tSpo1dffVW1atXSvn37tGzZMknSli1bjIBYkipWrKjNmzfL3d1dW7dulbe3tyIiIlSgQAFjjqQC319//VU//vijDhw4oJCQELm6ulpdLvhJ3NzcjIC4efPmKly4cBpekXhNmjTR9OnT9ccff+jatWuKjY1N1dLEJUqUkLu7uzw8POTh4aGzZ88qODhYzs7OKlu2rJo1a6aBAwfqmWeesXr9s88+q02bNmnVqlXatWuXLl++rHv37il37twqVaqUWrZsqf79+6tcuXJpvsengYODg8aMGSM3Nzf9+eef+vvvv3Xr1i1FR0ercOHCqlOnjnr06KG2bdtavb5mzZrasGGD5s2bp4MHDyogIEBxcXEqWLCgqlSponbt2qlHjx7KmzevatWqpbNnz+rgwYMKDw+Xq6trFt8tAAAAAAAAAABIKwdTajYFBQDgKbOwzCBbl4AsFMifttmVQo9sXQGy0qBh/L8l9iTniG9tXQKy0MNx79q6BGQhl7Hf2LoEZKGIMZ/augRkodxvutm6BGQh30932roEZKGq5xOvhInkeddI+6qb9orP2dPF0dYFAAAAAAAAAAAAAACyBn04AAAAAAAAAAAAQAqZTA62LgFIFwJiAEggODhYJ06cSPc8zz77rCpVqpQBFQEAAAAAAAAAAGQcAmIASODSpUsaOXJkuud57733NGrUqAyoCAAAAAAAAAAAIOOwBzEAAAAAAAAAAAAA2Ak6iAEggcaNG+vixYu2LgMAAAAAAAAAACBT0EEMAAAAAAAAAAAAAHaCDmIAAAAAAAAAAAAghUxxDrYuAUgXOogBAAAAAAAAAAAAwE4QEAMAAAAAAAAAAACAnSAgBgAAAAAAAAAAAAA7QUAMAAAAAAAAAAAAAHaCgBgAAAAAAAAAAAAA7ISTrQsAAAAAAAAAAAAAsguTydYVAOlDBzEAAAAAAAAAAAAA2AkCYgAAAAAAAAAAAACwEwTEAAAAAAAAAAAAAGAnCIgBAAAAAAAAAAAAwE4QEAMAAAAAAAAAAACAnXCydQEAAAAAAAAAAABAdmGKc7B1CUC60EEMAAAAAAAAAAAAAHaCgBgAAAAAAAAAAAAA7AQBMQAAAAAAAAAAAADYCQJiAAAAAAAAAAAAALATBMQAAAAAAAAAAAAAYCecbF0AAAAAAAAAAAAAkF3EmRxsXQKQLnQQAwAAAAAAAAAAAICdICAGAAAAAAAAAAAAADtBQAwAAAAAAAAAAAAAdoKAGAAAAAAAAAAAAADsBAExAAAAAAAAAAAAANgJJ1sXAAAAAAAAAAAAAGQXJpODrUsA0oUOYgAAAAAAAAAAAACwEwTEAAAAAAAAAAAAAGAnCIgBAAAAAAAAAAAAwE4QEAMAAAAAAAAAAACAnSAgBgAAAAAAAAAAAAA74WTrAgAAAAAAAAAAAIDswmSydQVA+tBBDAAAAAAAAAAAAAB2goAYAAAAAAAAAAAAAOwEATEAAAAAAAAAAAAA2AkCYgAAAAAAAAAAAACwEwTEAAAAAAAAAAAAAGAnnGxdAAAAAAAAAAAAAJBdxJkcbF0CkC50EAMAAAAAAAAAAACAnSAgBgAAAAAAAAAAAAA7QUAMAAAAAAAAAAAAAHaCgBgAAAAAAAAAAAAA7AQBMQAAAAAAAAAAAADYCSdbFwAAAAAAAAAAAABkFyaTg61LANKFDmIAAAAAAAAAAAAAsBMExAAAAAAAAAAAAABgJwiIAQAAAAAAAAAAAMBOEBADAAAAAAAAAAAAgJ0gIAYAAAAAAAAAAAAAO+Fk6wIAAAAAAAAAAACA7MJksnUFQPoQEAMAAAAAAAAAAAB46plMJm3evFlr1qzR+fPn9eDBAxUrVkwNGzbUwIEDVbt27XQ/h7e3txYuXChPT0/dvn1b+fLlU6VKldS9e3f16NFDOXLkyJI5MhMBMQAAAAAAAAAAAICnWmRkpEaPHq29e/daPO7v7y9/f39t2rRJH3zwgYYNG5bm53B3d9fXX3+tmJgY47Hg4GAFBwfr2LFjWrdunWbNmqWCBQtm6hyZjYAYAAAAAAAAAAAAwFNt/PjxRjhcqVIl9e3bV0WLFpWXl5f+/PNPPXjwQNOmTVOJEiXUrVu3VM9/4MABff755zKZTMqdO7f69eun559/Xnfv3tXq1avl7e2t48ePa8yYMZo3b54cHR0zZY6sQEAMAAAAAAAAAAAA4Kl16NAhbd68WZLUpEkT/f7773JxcZEkdenSRb1799aAAQMUGhqqiRMnql27dnJ1dU3x/NHR0frqq69kMpmUJ08eLV26VDVr1jTO9+/fX2PGjNGOHTt06NAheXh4qEuXLhk+R1axTSwNAAAAAAAAAAAAACmwYMECSZKTk5O+++47Ixw2q1Spkj7//HNJUmhoqNzd3VM1//bt2+Xn5ydJeuuttyyCXUnKmTOnJk+ebCwLPXfu3EyZI6sQEAMAAAAAAAAAAAApFGdy4F8q/6VHaGioDh8+LElq2bKlypUrZ3Vcp06dVKRIEUnS1q1bU/UcHh4ekiQHBwf179/f6pi8efOqZ8+ekiRvb29du3Ytw+fIKgTEAAAAAAAAAAAAAJ5Kx48fV1xcnKT45aWT4ujoqIYNG0qSTp8+rbCwsBQ/x7FjxyRJ1apVU+HChZMcl/D59+/fn+FzZBUCYgAAAAAAAAAAAABPpUuXLhnHVatWTXZs5cqVJUkmk0ne3t4pmj8wMFD37t2TJFWpUiXZsZUqVTKOL1y4kKFzZCUCYgAAAAAAAAAAAABPJX9/f+O4TJkyyY4tWbKk1euSY943OCXzlyhRQo6O8fFqQEBAhs6RlQiIAQAAAAAAAAAAADyVgoODjeNChQolO7ZgwYLGcWhoaIrmDwkJSfH8zs7OypMnT6L5M2KOrORkk2cFAAAAAAAAAAAAYBfatWuX7Pldu3YleS4yMtI4dnFxSXaenDlzWr0uOQ8fPkzx/OYx4eHhFvNnxBxZiYAYAJCtBfJfMrtSNsbWFSArvZAr1NYlIAs5vzXZ1iUgCz0c966tS0AWyv3DHFuXgCx0reUIW5eALFSmZ3Fbl4As9GjvfluXgCxU7peuti4BeKqZTA62LsGuxMbGGscJA2BrEp5PeF1yHj16lOL5E45JOH9GzJGV+J/VAQAAAAAAAAAAAGSa5DqEnyRXrlzGcUxMTLIBbHR0tHGckqBWsuz4jYl5coeK+TmcnZ0zdI6sxB7EAAAAAAAAAAAAAJ5K5v16JSkqKirZsQkD4pQs9Zza+ROOSRhcZ8QcWYmAGAAAAAAAAAAAAMBTKX/+/MZxaGhosmMTni9cuHCq5w8LC0t2bExMjB48eJBo/oyYIysREAMAAAAAAAAAAAB4KlWoUME4vnnzZrJjb926ZRyXLl06w+cPDAxUXFxcovkzYo6sREAMAAAAAAAAAAAA4KlUqVIl4/jSpUvJjjWfd3BwUJUqVVI0f6FChVSkSJEUzX/58mXjuGrVqhk6R1YiIAYAAAAAAAAAAABSKM7kwL9U/kuPunXrytnZWZLk6emZ5LhHjx7p2LFjkqTq1atbLPv8JA0bNpQknT9/Xvfv309y3JEjR4zjRo0aZfgcWYWAGAAAAAAAAAAAAMBTKX/+/GrSpIkkaffu3QoICLA67q+//lJwcLAk6ZVXXknVc3To0EGSFBsbqxUrVlgdEx4ernXr1kmSnn32WVWvXj3D58gqBMQAAAAAAAAAAAAAnlpDhw6VJMXExGjMmDEKDw+3OH/58mV9//33kqS8efOqT58+qZq/ffv2Klu2rCRp1qxZOn78uMX56OhoffLJJwoNDZUkvf7665kyR1ZxstkzAwAAAAAAAAAAAMATtGjRQh06dNC2bdt08uRJdevWTf3791epUqV07tw5rVixQhEREZKkTz75RIULF7a43tPTU0OGDJEUv6zzkiVLLM7nzJlT48eP14gRIxQZGamhQ4eqT58+qlevnkJDQ7Vq1Sp5e3tLkurVq6fevXsnqjEj5sgqBMQAAAAAAAAAAAAAnmqTJ09WRESEDh48KD8/P02ZMsXivIODg9577z3169cvTfO3bdtWX375pb7//nvFxMRo+fLlWr58ucWYWrVq6bffflOOHDkybY6sQEAMAAAAAAAAAAAA4KmWO3duzZs3T5s2bdL69et1/vx53b9/XwULFlT9+vU1ZMgQ1a9fP13P0b9/fzVo0ED//e9/dfjwYQUFBcnZ2VlVq1aVm5ub+vbtK2dn50yfI7MREAMAAAAAAAAAAAApZLJ1AXbMwcFBXbt2VdeuXVN1XePGjXXx4sUUja1SpYq+++67tJSXoXNkJkdbFwAAAAAAAAAAAAAAyBoExAAAAAAAAAAAAABgJwiIAQAAAAAAAAAAAMBOEBADAAAAAAAAAAAAgJ0gIAYAAAAAAAAAAAAAO+Fk6wIAAAAAAAAAAACA7CLO5GDrEoB0oYMYAAAAAAAAAAAAAOwEATEAAAAAAAAAAAAA2AkCYgAAAAAAAAAAAACwEwTEAAAAAAAAAAAAAGAnCIgBAAAAAAAAAAAAwE442boAAAAAAAAAAAAAILswmRxsXQKQLnQQAwAAAAAAAAAAAICdICAGAAAAAAAAAAAAADtBQAwAAAAAAAAAAAAAdoKAGAAAAAAAAAAAAADsBAExAAAAAAAAAAAAANgJJ1sXAAAAAAAAAAAAAGQXcbYuAEgnOogBAAAAAAAAAAAAwE4QEAMAAAAAAAAAAACAnSAgBgAAAAAAAAAAAAA7QUAMAAAAAAAAAAAAAHaCgBgAAAAAAAAAAAAA7ISTrQsAAAAAAAAAAAAAsguTHGxdApAudBADAAAAAAAAAAAAgJ0gIAYAAAAAAAAAAAAAO0FADAAAAAAAAAAAAAB2goAYAAAAAAAAAAAAAOwEATEAAAAAAAAAAAAA2AknWxcAAAAAAAAAAAAAZBdxJltXAKQPHcQAAAAAAAAAAAAAYCcIiAEAAAAAAAAAAADAThAQAwAAAAAAAAAAAICdICAGAAAAAAAAAAAAADtBQAwAAAAAAAAAAAAAdsLJ1gUAAAAAAAAAAAAA2UWcHGxdApAudBADAAAAAAAAAAAAgJ0gIAYAAAAAAAAAAAAAO0FADAAAAAAAAAAAAAB2goAYAAAAAAAAAAAAAOwEATEAAAAAAAAAAAAA2AknWxcAAAAAAAAAAAAAZBcmOdi6BCBd6CAGAAAAAAAAAAAAADtBQAwAAAAAAAAAAAAAdoKAGAAAAAAAAAAAAADsBAExAAAAAAAAAAAAANgJAmIAAAAAAAAAAAAAsBNOti4AAAAAAAAAAAAAyC7ibF0AkE50EAMAAAAAAAAAAACAnSAgBgAAAAAAAAAAAAA7kaUBcdu2bVWtWjW1bds2K58WyFDVqlVTtWrVNHjwYFuXkqyYmBjNmjXL1mUAAAAAAAAAAADgKUIHMfB/0L///quePXvq119/tXUpAAAAAAAAAAAAeIoQEAP/By1dulTe3t62LgMAAAAAAAAAAABPGSdbFwBkNxcvXrR1CQAAAAAAAAAAwEZMcrB1CUC60EEMAAAAAAAAAAAAAHaCgBgAAAAAAAAAAAAA7ESal5i+deuWli5dqoMHD+r69euKjY1V4cKF9dxzz+nll19W165dlSNHjlTN+ffff+vtt99WTEyMcuXKpT/++EONGjVKNO7s2bNauXKlPD09dfv2bTk5Oals2bJq3bq1hgwZoqJFi1qMd3d314QJEyRJP/74o7p165ZozqCgILVo0UKSVKxYMR08eNBqjd9++62WLl0qFxcXeXp6Knfu3Bo7dqzWrVunZ555Rjt27NCdO3e0aNEi7d69WwEBAXJ2dlblypXl5uamvn37yskp+Zc9tfeXUGxsrNavX68tW7bIy8tL9+/fV758+VS2bFm1aNFCAwYMUPHixZO8ftu2bVq/fr3Onj2r0NBQ5cmTRyVLllSzZs3Ur18/VahQIdnaUys2NlYtW7ZUcHCwSpcurT179iQ7ftq0afr9998lxb+vtWvXtjh/8uRJbdq0SceOHdPt27cVHh6uvHnzqmTJkmrcuLEGDhxo9R48PT01ZMgQSdKyZcvk7OysH374QefOnVPu3LlVpUoVjR8/XjVq1FC1atUkSY0aNdKSJUus1nnp0iWtXbtWnp6eunnzpu7fv69cuXKpWLFiatCggfr166eaNWsmus7Pz0/t2rWT9L/P6s6dO7Vy5UqdP39eYWFhKlasmJo2barXX39dlStXtrje/FlMKCX1pkdcXJx27NihjRs36syZMwoJCVHevHlVvnx5tWnTRoMGDVL+/PmfOM+xY8e0cuVKnT17Vjdv3pSzs7MqVqyol156SQMGDJCrq2uS1/r4+GjlypU6dOiQ/P39FRsbq9KlS6t58+Z67bXXVK5cOYvxCd/v9957T6NGjbI6b8L3o0ePHpo0aZLVcz/++KPq1Kmjb7/9Vv/884+cnZ1VoUIFffDBB2revLnatm0rf39/9e7dW5999pkmTZqk7du3KyoqSqVLl1bfvn01dOhQi+dO6/dARn8fnTt3Tn/++af++ecfBQQESJKeeeYZtWnTRoMHD072+ygwMFBLly7V/v375efnp9jYWBUvXtz4XaxRo0ayzw0AAAAAAAAAADJemgLiw4cPa+TIkXrw4IHF47du3dKtW7e0e/duLVy4UAsXLlSRIkVSNOeZM2c0YsQIxcTEyNnZWTNnzkwUDsfFxemHH37QkiVLZDKZLM5duHBBFy5c0NKlSzV58mS99NJLxrmWLVsax0eOHLEaEHt6ehrHQUFBun79usqXL59onDk4btiwoXLnzp3o/MmTJzVixAgFBwcbjz18+FAnTpzQiRMntG7dOi1cuNBq2JXW+zO7d++e3n77bZ06dcri8ZCQEIWEhOjs2bNauHChpkyZopdfftliTHR0tEaPHq3du3dbPB4WFqawsDBdvHhRS5Ys0bhx4zRo0KBEz51WTk5OeuWVV7Rs2TIFBATo9OnTqlOnTpLjt2zZIkkqX768RTgcFRWlTz/91Dif1D0sX75c33//vbp3757kc5w/f15Tp05VZGSkMffp06dVunTpJ95PXFycJk6cqGXLlikuLs7iXExMjO7fv6+rV69q1apV+vDDD/Xuu+8mOZfJZNInn3yiDRs2WDzu7++v1atXa/369Zo4caLVz3NWuXXrlj788EOdOHHC4vHQ0FCFhobq9OnT+u9//6spU6aoVatWVud4+PChPvvsM3l4eFg8HhUVpTNnzujMmTNasWKF/vjjj0SBuCTNmzdP06ZNS/R6X716VVevXtXq1as1ceJEderUKZ13m7Rbt25p0qRJxu/9w4cPdebMGZUoUcJi3KNHj/T222/rn3/+MR67cuWKnJ2djZ/T+z2QUHq+jx49eqTJkyfrv//9b6Jz5jr+/PNPzZgxw+of8qxfv15ff/11ov9O3LhxQzdu3NCaNWs0bNgwffDBB3JwYL8OAAAAAAAAAACySqoD4uDgYH3wwQd68OCBcubMqV69eqlOnTpycXGRn5+f3N3ddePGDV28eFHjxo0zuj2Tc/XqVQ0bNkwPHjyQk5OTpk+fbhHqmn3xxRdyd3eXJBUqVEi9evVSjRo1FBMTo+PHj2vDhg2KiIjQ+++/rzlz5qh169aSpJIlS6pq1ary9va2CIITevzxY8eOJQqIfX195ePjI0lq06ZNojnu3btnhDGtWrVSu3btlDdvXp0+fVqrVq0yAq/p06cbHc0ZcX9m33zzjREON2rUSB06dFDRokUVEhKigwcPaufOnYqMjNR//vMf7dixQyVLljSunTVrlhEOP/fcc3Jzc1Pp0qV1//59HT9+XJs2bVJsbKy+/fZb1a5dO1Hnbnp06dJFy5YtkxQfACcVEJ85c0a+vr6SpM6dO1ucGz9+vBEOly5dWt27d1e5cuXk6OgoX19frVu3zugs/fLLL9W0adNE4Z3ZlClTFBMTo379+ql+/fq6du2aQkNDVaBAgSfeyy+//GJ06RYuXFg9evTQs88+KxcXF/n7+8vDw0Pe3t6SpOnTp6tFixZ6/vnnrc41Z84cXbt2TYULF1bfvn1VrVo1hYSEaM2aNfLy8lJsbKy++OILNWnSxLiXwYMHq3379lq8eLHxmZ41a5YkqWDBgk+sPzXCwsL0+uuv6+rVq5KkMmXKqGfPnqpYsaLCwsK0c+dOHTx4UKGhoRo+fLjmzJlj9fd6+PDh+vvvvyVJRYsWVe/evVWlShWFhIRo8+bNOnXqlAICAvTWW29p06ZNypcvn3HtrFmz9Ouvv0qScubMqe7du6t+/fqKjY3VoUOH5OHhoYcPH+rjjz9W2bJlM/Rzm9CsWbMUFRWlzp07q3Xr1goMDNS///6bKND28PBQVFSUatWqpX79+ik6Olpbtmyx+Dyn93vALL3fR59//rnWrFkjSXJ1dVXv3r1Vs2ZNRUREWLy37777rjZt2qQyZcoY127YsEFjx46VyWSSs7Oz3Nzc1LBhQ+XMmVPe3t5avXq17t69qzlz5ujRo0f66KOP0v0eAAAAAAAAAACAlEl1QLxx40aFhYVJkiZPnpyoK2/IkCEaMGCAvLy8tG/fPvn6+iZa3jWhW7du6c0331RISIgcHR01adIktW/fPtG4Xbt2GaFJ3bp1NXv2bBUqVMg436NHDw0ePFivv/66goODNXbsWO3cuVN58+aVJLVq1Ure3t7y9/e3WtPjAfE///yj3r17WzyWcNlpa6FMaGioJGnixInq1auX8bibm5vat2+voUOHymQyGeFJwqVd03t/wcHBRgdm69atNXfuXIuuvP79++uPP/7Q1KlTFR0drVWrVun999+XFN+xuGLFCklSjRo1tHLlSuXMmdO4tk+fPmrdurU+/PBDSfFLMGdk0FavXj2VLVtWfn5+2rZtm8aOHWt1XMLu4C5duhjHFy5c0KZNmyRJtWvX1pIlS5QrVy6La9955x298847Onz4sCIjI7Vjx44kO6GjoqL00Ucf6e23307VfQQHB2vBggWS4sPSNWvWWLyH5jrGjx+vtWvXymQy6a+//koyIL527Zpq1qyp+fPnW8zTt29fvfPOOzp06JAiIyO1efNmvfnmm5KkmjVrqmbNmtq5c6cx3trvU0aYMmWKEQ63b99e06ZNs3jd+/fvr3Xr1umzzz5TbGysPvnkE+3YscOiW3Xt2rVGOFy3bl39/vvvFstRDxo0SJ999pnWrl2rmzdvatGiRcZy0FevXtXs2bMlSUWKFNHChQuN5bQlqXfv3mrRooXx/FOmTMmUJbal+M9M//799dVXXz1x3HPPPafly5cbv2MDBgwwzqf3eyCh9HwfeXp6GuFwhQoVtGjRIpUqVco4379/f/3666+aNWuWIiIiNGPGDGP57cDAQH311VcymUwqUqSIFixYoOrVq1vU9uabb2rYsGE6deqU5s2bp/bt2+uFF15I9rUDAAAAAAAAgKdF3JOHAE81x9RecO3aNePYWkiaK1cuvf322ypfvrxatGihkJCQJOcKDQ3Vm2++qYCAADk4OOibb76Rm5ub1bF//PGHJClPnjyaMWNGouBNkqpXr65PPvlEUnxYt3btWuNcwuVtjxw5YnFdYGCgrl+/Lklq0qSJpPgO4seZA+IKFSromWeesVpn+/btLcIYsyZNmqhBgwaS4jv7zM+XUffn6+urR48eGfdqbcnW1157TeXLl1fdunUtlscODg42Qv+mTZtahMNmnTp10gsvvKBatWqpcOHCVu89PcyBr3mZ6ceZTCYjIH7uuedUqVIl49z27duN4zFjxiQKh6X47lJziCrJ6AS3Jk+ePMb+tKmxZ88eRUdHS5JGjBhh9T10dHTUsGHDjJ8T/j5ZM3HixETzODs7W8xx9uzZVNeaXoGBgVq/fr0kqWzZspo6darV171Hjx7G3rrBwcFauXKlxfmFCxdKiv/emD59eqK9ih0cHPTll18aXcObN282zi1fvlwxMTGSpC+//NIiHDbr1auXmjdvLkk6evSoAgMD03C3KZPccuEJDR061OrvmJT+74HHpfX7yPy+SPH7ficMh81GjRpl7Oe9bds2471YtmyZsaz0d999lygclqQCBQpo8uTJcnZ2lslk0vz585O8BwAAAAAAAAAAkLFSHRAnXKZ2/vz5ifbIlKRXXnlF27dv1/z585PsNH348KHeeecdXb58WZI0btw49enTx+rYwMBAnTx5UlL8fsLFihVLsr4uXboY4cvevXuNx+vVq2d02T3eLWwOjAsVKqQePXpIig9cE4ZJsbGxxjhry0ubPb63b0IJA6x79+5l6P0lfF/WrFljseeoWc6cObV9+3b9+eefFt2x+fPnV44cOSRJW7dulZ+fn9XnXrlypVavXq1PP/00yfrSKuEfBljbR/jkyZO6efOmJMvuYSk+mPPw8NDcuXPVuHHjJJ+jbNmyxvHDhw+THPf888/LxcUlxbWbde3aVdu3b9e8efPUsWPHFNVh3ufYmmeeecZquCZZfpbu37+f6lrT69ChQ0YgOGjQIKv7cZu9+eabRndqws7mmzdvGsttt2/f3mLJ84Ry5cqlCRMm6Msvv9TXX39tPG7+/JcoUSLZvXiHDx+uTz/9VHPmzLHaaZsRypQpk2T9jzMHs4/LiO+Bx6Xl+ygqKsr4rqtbt26SHe4ODg765JNPNH78eP3666/Gfwu2bt0qKb6r+8UXX0zy+StUqKD69etLiv/jm9jY2CTHAgAAAAAAAACAjJPqJaY7duyouXPnymQyadasWfLw8NDLL7+sVq1a6YUXXrBYpjQpsbGxGjVqlLFfbsWKFZPt2EzYUfro0SOLkMmaYsWKyd/fX//++6/xmLOzs5o1a6YdO3YkCojNPzdo0MBimdPjx48be4OeOnVK4eHhkqx3Tpsl7Gx9XMKldROGIRlxf+XLl1eNGjV0/vx5nTt3Ti+99JLatm2rNm3aqFmzZlY7Ec1y5sypF198UTt37lRAQIA6deqk1q1bq02bNmrRokWSe/VmpMqVKxv1W1tm2rx8tqOjY6L9h3PmzKlKlSpZfe1NJpP8/Px09uxZ7dmzx3g8Li7pBSAqVqyYpntwdnZW+fLlE+1dbXbr1i39+++/Fh3s5q5va5L7LCXch9cc1GYl8++u9L+u+6QULVpUlStX1oULF3T27FmZTCY5ODhYdD7Xq1cv2Tm6d+9u8XNoaKixH/ULL7wgR8ek/9alYcOGatiwYbLzp1dKPzMuLi4We/UmlBHfA49Ly/fR5cuXjT+gqFu3brI1tGvXzuLnkJAQoxvZ1dVVu3btSvZ6c9f5gwcPdPXqVVWtWjXZ8QAAAAAAAAAAIP1SHRDXqFFDo0eP1vTp0yXFL5E7d+5czZ07V/ny5VPz5s318ssvq127dlaXnJXiO+USdudevXpV7u7u6tu3b5LjzXbu3PnE4MQsLCxMjx49MrpjW7VqpR07duj27du6cuWKEZ4cPXpUUnyQVKFCBRUpUkR3797VsWPHjDDywIEDkuKXfk2qA1CyDO4elzA8TxhQZtT9TZ48WUOGDFFoaKjCw8O1ceNGbdy4UY6OjqpTp47atm2rTp06WXSwmn3xxRc6f/68/P39FRUVpe3btxtLN1evXl1t27ZV586dVbly5RTVlhZdunTR+fPnjWWm69SpIyn+tTJ3JTZo0CDJTs24uDgdOXJEnp6eunr1qnx8fOTr62u1W9ha57vZ48scp8WJEyd0+PBhXblyRdevX9f169eNPzBIqYQB3uMSfpaSu5fMkrBDPbk9xhOOuXDhgmJiYnTv3j0VKFBAd+7cMc6XLl06Vc9/9+5d4zipwDUrpfQzk9y4jPoeSCgt30cJ35fUvra3b982jq9fv66RI0em+NqE7ykAAAAAAAAAAMg8qV5iWopfsnXRokVq0aKFRShx//59bd26VWPGjFGbNm30119/JTtP586d5ezsLEmaOnVqkgFBaoM1M5PJZOyFKVnuQ2zuGg4ICDA6ERs1aiRJRrfh8ePHjfHm/YebNWuW5P6hkqyGNE+SUfdXrVo1bd68WQMHDrRYcjouLk4nT57UtGnT1L59e40fPz7R0sYlSpTQxo0b9c4776h48eIW5y5cuKDffvtNnTt31siRI60uX50RunTpYuydnHCZ6ePHjysoKEiSktyj+vTp0+rSpYtef/11zZkzR9u3b5e3t7cRDleoUMHqXqzWJPf+Psm1a9f06quvqn///poxY4Y8PDzk5eVlvMelS5fWgAEDUjRXSrrxbSUiIsI4Tm55abOEfyxifk/M+14/fj4lQkNDjeO0LAee0VL6mUluXEZ9DySUlu+jhO9Lal/btN6DZPmZAgAAAAAAAAAAmSfNCVTTpk3VtGlTBQcHa//+/Tp06JD+/vtvI8gLCQnRf/7zH7m6ulpdkrlPnz769ttvNX36dM2ZM0dhYWGaNGmSpkyZkmhswgDqq6++Uv/+/dNUc8mSJVW1alV5e3vryJEjGjBggBEU58+f39iTs1GjRtq6dasuX76skJAQmUwmnTt3TlLyy0unVUbdnxS/7OwXX3yhzz77TMePH9eBAwd0+PBhnT9/XiaTSSaTSatXr9aDBw/0888/W1zr6uqqMWPG6MMPP9SZM2eM9/XMmTPGUsg7d+7UnTt39OeffxphbkYpWbKkGjZsqKNHj1osM20Oi52dndWhQ4dE1124cEGvvfaaETyWKVNGjRs3VrVq1VS5cmU999xzKly4sG7cuKE1a9ZkaM0J3b59WwMGDDAC9CJFiqhp06aqXr26qlSpourVq6tkyZJ69OiRli9fnml1ZIWEn9mHDx8m2+0sySLANIfBCedIbi/mJz1/VFRUqq5Njcyc+3EZ+T2QUXWk9v4TXtupU6dE3zEAAAAAAAAA8H9B0ptYAtlDulsUCxcurO7du6t79+4ymUw6deqUfvvtN+3fv18mk0mzZ89OFKoWK1ZM33zzjRwcHPTuu+9q06ZN8vf318aNG9WzZ081bdo00XOYmQPotGrZsqW8vb119OhRmUwmHTt2TJJUv359Yx9TcwexyWTSP//8o8jISGMJ1swIiDPy/sycnJzUpEkTY3/YwMBArV27VjNnzlRsbKw8PDz0/vvv69lnn010rYODg+rUqaM6depo1KhRCg0N1V9//aWpU6fqwYMHOnXqlA4fPqzmzZtnSK0Jubm56ejRowoICNDZs2dVs2ZNY6nrli1bqkCBAomu+fHHH41wePTo0Ro+fLjV8PrevXsZXm9CM2bMMMLhV199VZ9//rnRIZ+VdWSFokWLGse+vr6qUaNGsuPN+9LmypXL6G5P+Lm/+f/Yu+8wqcqzf+BfYAFBRBQRETRWsESNFVs09gaIvaCJRo3dRNM0GhETW5qxt9hiEAUFK/aOij1KEAUVQTACSpMidX9/8Nt5d2V3BXZlgvP5XNde75k5zznnPrMza16+cz/Pf/9b6/FjxozJhAkTsuaaa6Z169Zp3br1Ih87ffr0vPPOO1lzzTXTrl27NGzYsMqaxZXX3/26unTELq5v4+9AXev4ptf2iy++yMiRI7PGGmtk1VVXrfJ7KeY9AAAAAAAANVusKabLy8vzyCOP5Oqrr85tt9220P4GDRpk8803z7XXXluYpvj9999faFyTJk0KAU2zZs1yzjnnFPZdcMEFmT17dpXxm266aWG7Yr3gmsyZMye/+MUvcuGFF6Z3794L7a+YZnrSpEl5//3388YbbyT5v1A4SdZff/2stNJKSZI33ngjL774YpIFa/G2bdu21usvifq4v6FDh+b2229Pz549qw212rZtm5NPPjk/+clPCs8NHz48yYI1oHv37p0//vGPGT169ELHtmrVKj169MivfvWrwnPV/V7rw1577VUIVZ999tm8/vrrhTVRq5teetasWXnppZeSJB06dMgpp5xSY2fzsGHDCtvfxrq9zzzzTJIFIejvfve7asPhZEHH87dZx9KwySabFLYHDx5c69hx48blo48+SpJ07Nix8PzGG29c2P73v/9d6zn69OmTww8/PNtvv31GjBiRtm3bpk2bNkkWTC9em9dffz3HHHNMdt111/Tp0ydJ1amea5vauOIzsjTU59+5uthwww0LU1N/0+/lscceS48ePbLTTjvlueeeS9u2bQt/+//zn//UOPV1hcsvvzznnnturrvuuipTWwMAAAAAAN+exQqIGzRokL/+9a+56qqrcu211y4U5FZo3Lhxll9++SQp/N/a7LHHHoXg9uOPP851111XZf9aa62VddddN0ny2muv5Z133qnxXPfff38eeeSR9O7duxDsVrblllsWaho4cGA+/vjjJFUD4gYNGhQev/baa4XzfBvdw0n93N+zzz6biy++OHfddVdhveTqVF6buHnz5kmSd955JxdeeGHuuOOOPPHEE4t1bH1bccUVC++FZ599Nk899VThervuuutC46dMmVIIWWurac6cOVWCtNq6RpdUxbq4ZWVlta7devvtt3+rdSSpEpJXdL/Xp5133rkQgPfu3bvQwV2dW2+9tVDDj370o8Lz66yzTtZcc80kC6Yur2lt67lz5+bRRx9Nkqy66qpZb731kvzflz0+/fTTPP/88zVev/Ja6BUd9ZW7ZCumj69OxXWXhvr8O1cXzZs3L/z9e+ONN/LBBx/UOLbitW3atGm23HLLJMluu+2WZMHU47VNpf7xxx/npptuyj333JPbb799kf5bAQAAAAAA1N1iBcRJsvfeeydZEMxdfPHF1XZAPvnkkxk5cmSSZKuttlqk8/7+978vdPXddNNNhY7DCieccEJh+xe/+EUh2K1s2LBhueSSSwqPjz322IXGNG7cuDCF9b/+9a8kCwKRyt2Myf8FxkOGDMm4ceOS/F8g9W2o6/1V/F6S5LLLLssXX3yx0PGTJ09O3759kyzocv3+97+fZEFoV7Eu7HXXXbfQa58ks2fPzj//+c8kC8LHRf29LomKTuGhQ4dm4MCBSZLdd9+9UGNlK6+8ciEY/uCDDwod4ZXNnDkzv/nNb6p0EH8ba8u2b98+yYJpiSvqrmzu3Lm55JJLCp3G31YdSdW1YL+NzsxVV1218Hv65JNP8utf/7radYTvu+++QiDeunXrKuvqNmjQoNDRPn369PzqV79aKGieP39+/vKXv2TMmDFJksMPP7wQfv/4xz8uzERw/vnnV9v9/vjjj+fBBx9MsiAcrghgO3ToUAiJ33jjjUIXemW33HJLrV+2+DbU19+5ujrmmGOSLOhw/+Uvf1lteH/bbbfl9ddfT5J06dIlK6ywQpLkJz/5SeHLA1dccUWefvrphY6dOnVqzjjjjMLa5kcffXTKyuq84gEAAAAAALAIFvtf5H/605+mX79+mTx5cvr06ZO33347++yzT9q3b58pU6bkjTfeKIRjTZs2zUknnbRI511zzTVz/PHH59prr82cOXPSs2fP3HHHHYX9BxxwQJ5++uk8/vjjGTt2bPbff/8ccMAB2XzzzTN37ty8/fbb6d+/f+bMmZNkwRqwlbuCK9tpp53y5JNPFqaW3WKLLQpTqlbYZpttqjxeccUVs/nmmy/ai7QE6np/6667brp375777rsvn376afbaa68ccsghWXfddVNWVpaRI0emX79+heD4mGOOKUyj3apVqxx33HG55ppr8uWXX6Z79+454IADstFGG6VZs2YZM2ZM7r333kJIt99++xW6OL8Nu+66a5ZffvlMnz4948ePT7IggKpOWVlZunTpkr59+2b+/Pk57rjjcsghh2TjjTfOvHnzMmLEiDz44IOFaaorfPnll/Ve9wEHHJDLL788SfKb3/wmL730UjbffPPC61+x1va3XUeSrLbaaoXt3//+9+nSpUuaNm2aXXbZpd6ucc455+S1117LJ598kieeeCL77rtvDjrooKy99tqZOnVqnnzyybzwwgtJkoYNG+aiiy6q0rmbJEceeWQee+yxvPrqq3nxxRez33775eCDD85aa62Vzz77LAMHDsyQIUOSJOutt16OP/74wrEbbLBBTjrppFx77bX573//m/333z8HH3xwNt1000ybNi0vv/xyHnvssSQLvgTy+9//vnBsgwYNcsABB+Tmm29Okpx88sk59NBDs+mmm2bKlCl55JFH8vrrr6ddu3aZO3fuUltPtz7/ztXFLrvskv333z/3339/3nvvvey333459NBD07Fjx3zxxRd55plnCqF6mzZt8stf/rJw7Nprr53f/OY3ueiiizJ79uycfPLJ2W233fKjH/0ozZo1ywcffJC+ffsWQucNNtigyu8VAAAAAAD4di12QLzyyivn+uuvz8knn5xJkybl3XffrXaK1pYtW+ayyy7LBhtssMjnPvHEE3P//fdn7NixefXVV9O/f/8ceOCBhf1//etf07Nnz/Tv3z9fffVV+vTpU1hTtLJDDjkk559/fo3X+Xon8NfD4CTp1KlTWrVqVZg2eMcdd1woRK5vdb2/nj175vPPP8+gQYPy5Zdf5pZbbqn2Ooceemh+/vOfV3nu1FNPzdixY3Pfffdl1qxZueuuu6o9dpdddslFF120BHe36Jo2bZo999wzAwYMSLLgPbfDDjvUOP7Xv/51hgwZkmHDhmXmzJmFTuevn/N3v/td+vbtm6FDh34ra8v+9Kc/zWuvvZZBgwZl7ty5ueeee3LPPfdUGdOoUaOccsopGTZsWJ588sl8+umnmTZtWlq0aFGvtey+++658sorM2fOnDzxxBN54okn0rp162o7ZZdUy5Yt07t375x22ml55513Mnbs2Fx55ZULjWvVqlX+9re/Vfs7bNiwYa677rqcddZZee655zJ27NhcccUVC43baKONct111y00dffPf/7zzJ8/PzfeeGNmzJhR7e9+5ZVXzhVXXLHQlxoq6n7ttdfy1VdfLXRsu3btcsMNN+TnP//5UguIk/r7O1dXF110UcrKynLvvfdm4sSJuf766xca06FDh1x33XVp3bp1lecrursvu+yyzJ49O0899VRhuvjKfvCDH+Taa6+tdUp2AAAAAID/NeVp8M2D4H/YEs3pufnmm2fgwIG566678vzzz2fkyJGFkKtDhw7ZZZddcvjhh2eVVVZZrPMut9xyOe+883LyyScnWTBV8o9+9KNC12GTJk1yySWX5NBDD02/fv3y2muvZcKECZk3b17atGmTLbbYYpE66tq1a5f1118/I0aMSFL9NNgNGjTIlltuWQg1vs3ppSvU9f6aN2+ef/zjH3n00Ufz0EMPZejQofniiy/SqFGjtGnTJltttVUOOuigau+3UaNGueyyy9K1a9f0798/77zzTiZMmJD58+enTZs22WyzzdKtW7d67UCtTdeuXQsB8d57713r9LMtW7bMXXfdlTvuuCOPPvpoPvroo8yePTstWrTI9773vWy33XY5/PDD065du4wePTpDhw7NxIkTM3jw4MKatPWhSZMmufHGG9OvX7888MADGT58eGbMmJHll18+HTp0yFZbbZXDDz886667bnr37p0nn3wy8+bNy2OPPZaDDjqo3upIFqzv+49//CNXXXVVhg0bltmzZ6dp06b1Hka3bds2ffv2zcCBA/Pwww9nyJAhmTRpUlq1apU11lgj++yzT7p3756WLVvWeI4WLVrkxhtvzFNPPZX77rsv//73vzNp0qQ0a9YsHTt2TJcuXXLQQQcVpqD/ujPPPDP77LNP7rzzzrz88ssZP358GjRokDXXXDO77rprfvzjHy/UuZws+Lzcfvvt6d+/f+6///68//77mTNnTtq3b58999wzxxxzTFZcccV6e60WVX39naurxo0b5+KLL86BBx6Yu+66K2+88UY+//zzlJWVZb311suee+6ZI444osb301FHHZVdd921sE7ymDFjMnPmzLRq1SobbbRRunbtmv322+9b/+INAAAAAABQVYPy6hYRBoBlxKXfO6rYJbAUdZhT7ApYmn6w3ORil8BS1HHQZcUugaXoq55nFrsElqJmlyw8Gw3fXSN/eEqxS2Apan/gCsUugaWofOasYpfAUtRo772LXQJLUbM9/fd7cT3c9ohil7DM2W/cwjNlUjwNi10AAAAAAAAAAEuHgBgAAAAAAACgRCzRGsSQJIMGDcpXX31Vp3Mst9xy2XHHHeupImozc+bMvPjii3U+T7t27bLxxhvXQ0UAAAAAAAAsbQJiltj555+fsWPH1ukc7du3z9NPP11PFVGbL774Iqeeemqdz3PAAQfk0ksvrYeKAAAAAABg2TO/QbErgLoxxTQAAAAAAABAidBBzBLT+bts6dChQ95///1ilwEAAAAAAEAR6SAGAAAAAAAAKBECYgAAAAAAAIASISAGAAAAAAAAKBHWIAYAAAAAAIBFND8Nil0C1IkOYgAAAAAAAIASISAGAAAAAAAAKBECYgAAAAAAAIASISAGAAAAAAAAKBECYgAAAAAAAIASUVbsAgAAAAAAAGBZUV7sAqCOdBADAAAAAAAAlAgBMQAAAAAAAECJEBADAAAAAAAAlAgBMQAAAAAAAECJEBADAAAAAAAAlIiyYhcAAAAAAAAAy4r5xS4A6kgHMQAAAAAAAECJEBADAAAAAAAAlAgBMQAAAAAAAECJEBADAAAAAAAAlAgBMQAAAAAAAECJKCt2AQAAAAAAALCsmN+gQbFLgDrRQQwAAAAAAABQIgTEAAAAAAAAACVCQAwAAAAAAABQIgTEAAAAAAAAACVCQAwAAAAAAABQIsqKXQAAAAAAAAAsK8qLXQDUkQ5iAAAAAAAAgBIhIAYAAAAAAAAoEQJiAAAAAAAAgBIhIAYAAAAAAAAoEQJiAAAAAAAAgBIhIAYAAAAAAAAoEWXFLgAAAAAAAACWFfOLXQDUkQ5iAAAAAAAAgBIhIAYAAAAAAAAoEQJiAAAAAAAAgBIhIAYAAAAAAAAoEQJiAAAAAAAAgBJRVuwCAAAAAAAAYFkxv0GxK4C60UEMAAAAAAAAUCIExAAAAAAAAAAlQkAMAAAAAAAAUCIExAAAAAAAAAAlQkAMAAAAAAAAUCLKil0AAAAAAAAALCvmp0GxS4A60UEMAAAAAAAAUCIExAAAAAAAAAAlQkAMAAAAAAAAUCIExAAAAAAAAAAlQkAMAAAAAAAAUCLKil0AAAAAAAAALCvKi10A1JEOYgAAAAAAAIASISAGAAAAAAAAKBECYgAAAAAAAIASISAGAAAAAAAAKBECYgAAAAAAAIASUVbsAgAAAAAAAGBZMb9BsSuAutFBDAAAAAAAAFAiBMQAAAAAAAAAJcIU0wAs09adXV7sEliKRjU2f08peW1Wq2KXwFK0yuGnFrsElqKVbr202CWwFI384SnFLoGlaO0Xri12CSxFEw85ttglsBS1PGnXYpfAUvTK0c8UuwSWoh+N87/XoNToIAYAAAAAAAAoEQJiAAAAAAAAgBJhimkAAAAAAABYRPOLXQDUkQ5iAAAAAAAAgBIhIAYAAAAAAAAoEQJiAAAAAAAAgBIhIAYAAAAAAAAoEQJiAAAAAAAAgBJRVuwCAAAAAAAAYFlRXuwCoI50EAMAAAAAAACUCAExAAAAAAAAQIkQEAMAAAAAAACUCAExAAAAAAAAQIkQEAMAAAAAAACUiLJiFwAAAAAAAADLivkNil0B1I0OYgAAAAAAAIASISAGAAAAAAAAKBECYgAAAAAAAIASISAGAAAAAAAAKBECYgAAAAAAAIASUVbsAgAAAAAAAGBZMb/YBUAd6SAGAAAAAAAAKBECYgAAAAAAAIASISAGAAAAAAAAKBECYgAAAAAAAIASISAGAAAAAAAAKBFlxS4AAAAAAAAAlhXzi10A1JGAGAAAAAAAACgJc+bMSd++ffPggw9mxIgRmTNnTlZbbbXssMMOOfroo7POOuvUyzUefvjhDBw4MO+++24mT56c5ZZbLmuuuWZ+9KMf5aijjsrKK69c6/Gbb7555syZ843XatKkSYYMGbJY9QmIAQAAAAAAgO+8SZMm5YQTTlgoUB01alRGjRqV/v37p1evXunevfsSX2Ps2LE5/fTTM3To0CrPz5kzJ0OHDs3QoUNzxx135PLLL8+OO+5Y7Tk++uijRQqHl5SAGAAAAAAAAPhOmzdvXk477bRCOLzZZpule/fuadGiRd54443ce++9+eqrr3LuueemXbt26dy582JfY/r06Tn++OPz0UcfJUnWW2+9dO/ePe3bt8+UKVPy1FNP5YUXXsjUqVNzyimnpHfv3tlkk00WOs/7779f2D733HOz+uqr13jNhg0bLnadAmIAAAAAAADgO+3ee+/N66+/niTp1q1bLrvsskK42q1bt3Tp0iXHHXdcZs2alV69euWhhx5a7PD15ptvLoTDXbt2zaWXXpqysv+LY4844ojceeed6dWrV2bNmpWePXumf//+C52nIiBu2LBhDj300Cy33HJLdM81WfxIGQAAAAAAAGAZcssttyRJVlxxxfTs2XOh8HfrrbfOqaeemiT58MMP8+STTy7W+cvLy9O3b98kSZs2bXLRRRdVCYcrHHnkkdljjz2SJEOHDs2777670JiKgHjNNdes93A4ERADAAAAAADAIitv4Gdxf4pt2LBhGTlyZJIFnb0tWrSodtwRRxyRRo0aJUkeffTRxbrGiBEjMmHChCTJ3nvvnaZNm9Y4du+99y5sv/322wvtrwiIO3bsuFg1LCoBMQAAAAAAAPCd9eqrrxa2t9tuuxrHtWzZMhtttFGSZNCgQYt1jenTp2fjjTfOyiuvnLXXXrvWsSuuuGJhe+rUqVX2TZo0KePHj0/y7QXE1iAGAAAAAAAAvrNGjBhR2F5//fVrHbveeutlyJAhmTJlSj799NOsvvrqi3SNzTffvNr1hKvz4YcfFrZbtWpVZd/w4cMXqnXixIkZPnx45syZk9VWWy3rrbdeGjRY8tZsATEAAAAAAADwnTV27NgkScOGDdOuXbtax6622mqF7cUJiBdVeXl57r333sLjzTbbrMr+iumlk2TatGk55phjMnjw4JSXlxeeb9u2bY4//vj06NGjMCX24jDFNAAAAAAAAPCdNXHixCTJ8ssvnyZNmtQ6tnJH7+TJk+u9lrvvvrvQJdyxY8dssMEGVfZXDojPPffcvPzyy1XC4SQZN25cLrroopxyyin56quvFrsGHcQAAAAAAADAt2a33Xardf9TTz31rV6/IkRt2rTpN46tHCDPnDmzXusYNmxYLrnkksLjM888c6ExlQPi5ZdfPieddFL22WeftG3bNhMmTMjjjz+ea665Jl9++WWeffbZXHDBBbn00ksXqw4BMQAAAAAAACyi+cUuoMQ888wzOemkk5bo2KeeeiodOnTI3Llzk+Qbu4e/PmbevHlLdN3qjBo1Kscff3whrD744IOz6667LjRu/PjxSRZ0Mvfp0yfrrLNOYV/79u1z7LHHZocddsjhhx+e6dOnZ8CAATnssMOy+eabL3ItAmIAAAAAAADgW/Ntdwh/k+WWWy5JMmfOnG8cO3v27MJ248aN6+X6H374YY455ph8/vnnSZIf/OAH+f3vf1/t2Oeffz6TJ0/O7Nmzs+qqq1Y7pmPHjjnjjDMK3ch9+/YVEAMAAAAAAADLvjXXXDM//elPl+jYFVZYIUnSvHnzJMmsWbO+8ZjKAfGiTEn9Td55552ceOKJhXWQN9hgg9x4442F0Lo6lddBrkm3bt0KAfEbb7yxWDUJiAEAAAAAAID/Seuuu25++9vf1ukcLVu2TJJMmzYtc+fOTVlZzRHp5MmTC9srr7xyna773HPP5Re/+EVmzJiRJNl4441z8803Z8UVV6zTeStqa9WqVSZPnlyYlnpRNazz1QEAAAAAAAD+R6211lpJkvnz52fcuHG1jv3ss88K2+3bt1/ia/bv3z+nnHJKIRzeaqutcvvtt2ellVZa4nN+3ZJOga2DGAAAAAAAAPjOWnfddQvbH3zwQa3B74gRI5IkK664Ytq2bbtE1+vTp0969eqV8vLyJMkuu+ySv//977VOK50k7733Xl5++eV8/vnn2X333WtdV3j27NmFbuc2bdosVn0CYgAAAAAAAFhE84tdAIttm222KWwPHjw4O++8c7Xjpk6dmmHDhiVJtt566yW61kMPPVQlHO7evXsuuuiiWqe1rjB8+PBceumlSRasl1xbQPzqq69mzpw5SZLNNttssWo0xTQAAAAAAADwnbXeeutlnXXWSZIMGDAg06dPr3Zc7969M2/evCTJPvvss9jX+fDDD/O73/2uEA4fdthhufTSSxcpHE6Szp07p2HDBfHtww8/nGnTplU7rry8PDfccEPh8f77779YdQqIAQAAAAAAgO+0Y489NkkyadKknH322Zk9e3aV/a+99lquu+66JAvWHt5zzz0X+xrnnHNOZs2alSTZfffd06tXrzRo0GCRj2/btm322GOPJMnEiRNzzjnnLFTn/Pnzc9FFF+XVV19NsqDTeccdd1ysOk0xDQAAAAAAAHynHXzwwenXr1/eeeedPP744zn44INzyCGHpFWrVnnzzTfTr1+/zJkzJw0aNMgFF1yQJk2aLHSO/v3755xzzkmSHHDAAYXpoJPkhRdeyNtvv50kadSoUXbZZZc89dRT31hXu3btsvHGGxcen3322XnjjTfy+eef5/HHH8/++++fgw8+OKuvvno+++yz3HfffXnvvfeSLFh7+JJLLlmsEDoREAMAAAAAAADfcQ0bNswNN9yQ448/PkOHDs3777+fP/7xj1XGNG7cOD179sxOO+202OcfMGBAYXvevHk599xzF+m4rwfNq6++em655ZacfvrpGTVqVD766KP86U9/Wui49ddfP1dccUXWWGONxa5VQAwAAAAAAAB856288srp27dv7r777jz00EP58MMPM2PGjLRp0yadO3fOsccem06dOi3RuYcPH15vdXbq1CkPPPBA7r333jz66KMZPnx4pk+fnlatWmW99dbLPvvskwMOOKDaLudFISAGAAAAAACARVRe7AKok7KysvTo0SM9evRY7GMPPPDAHHjggdXue+ihh+paWhXLLbfcEtf5TRrW+xkBAAAAAAAA+J8kIAYAAAAAAAAoEQJiAAAAAAAAgBIhIAYAAAAAAAAoEQJiAAAAAAAAgBJRVuwCAAAAAAAAYFkxv0GxK4C60UEMAAAAAAAAUCIExAAAAAAAAAAlQkAMAAAAAAAAUCIExAAAAAAAAAAlQkAMAAAAAAAAUCIExEDRDB48OC+//PJCz7/yyivp1KlTOnXqlKuuuqrerjdmzJjCec8+++xqx0yfPj033nhjtfuOPvrowvHUbvbs2bnzzjtz1FFHZZtttskmm2ySXXfdNWeddVZefPHFYpcHAAAAALDE5vtZ7B/+twiIgaVu2rRpOe+883LMMcfkv//9b7HLKRg0aFC6dOmSu+66q9ilLNPGjh2bgw46KL169cprr72WKVOmZPbs2Rk7dmwefvjh/PSnP83Pf/7zzJw5s9ilAgAAAABAySkrdgFA6Rk6dGj69etX7DIWcsMNN+TTTz9N+/bti13KMmvGjBk59thjM2rUqCRJx44d07Vr17Rr1y6jR49O375989lnn+XRRx9NeXl5rrzyyiJXDAAAAAAApUVADPzP6dy5c95///16P2+HDh3qdN477rijHqv5brrpppsK4XDXrl1z6aWXpqzs//5Tc+yxx+bHP/5xhgwZksceeyyvvPJKOnfuXKxyAQAAAACg5JhiGoB6UV5enr59+yZJWrVqlV69elUJh5OkefPmOffccwuPBw4cuFRrBAAAAACAUqeDGIB6MXny5GyyySYZMWJEttxyyyy//PLVjttggw0K259++unSKg8AAAAAAIiAGEre2LFj069fvwwePDhjxozJ5MmT06RJk7Ru3Tqbb755DjjggGy33XY1Hj979uw88cQT6d+/fz766KNMmDAhLVq0yMYbb5z9998/Xbp0ScOGCyYreOWVV/LjH/+4yvHnnHNOzjnnnCTJU089lQ4dOlQZd9ppp+X0009PknTv3j3Dhg3Lcsstl5dffjnNmzevsa677rorPXv2TJJcfvnl2XfffTNmzJjstttuSZIDDjggl156aZLk6KOPzquvvlrlNenUqVOt42qbqvqxxx7LAw88kHfeeSeTJk1KixYtsv7662evvfbKoYcemiZNmtR47OTJk3PnnXfm2WefzYcffphZs2alVatW6dixY3bdddccfPDBWW655Wo8vj5MnTo1d911Vx599NGMHj06jRo1yoYbbpif/OQn2WWXXXLttdfmiiuuSFL1dVhppZVy/fXXf+P5P/vss8L2KqusUv83AAAAAADwLZpf7AKgjgTEUMJuvPHGXHnllZkzZ06V5+fMmZPp06dn9OjRuf/++3PYYYflwgsvXOj4MWPG5JRTTlkoLJ00aVIGDRqUQYMG5Z577sm1116bFi1a1Lnerl27ZtiwYfnqq6/y7LPPZt997Y2yeAABAABJREFU961xbMXUxcsvv3x23XXXOl97UUyePDmnn356lbA5WfB6vPrqq3n11Vfzz3/+M9ddd13WXXfdhY5/7733ctxxx+Xzzz+v8vyECRMyYcKEvPjii7n55ptzyy23ZO211/5W7uG9997L8ccfnwkTJlR5/uWXX87LL7+cn/3sZ2nWrNkSn3/evHmFcDlJ9t577yU+FwAAAAAAsPgExFCi+vXrl7/+9a9JFoSo3bt3T6dOnbL88svn008/zbPPPps33ngjSXL33Xfnhz/8YfbYY4/C8RMnTsxhhx1WCDM32GCDdOvWLauttlo++eST9OnTJ5999lleeeWV/PrXv851112X9ddfP9dcc02GDx9eCAmPPvrobLvttkmS1q1b11rzfvvtl7/85S+ZP39+HnnkkRoD4gkTJuS1115Lkuy+++7f2HH785//PJMnT87f//73jBgxIiuvvHL+8Ic/JEnatWtX67EVvvrqq/z4xz8uhOXrr79+unXrlg4dOmTKlCl5+umn8/zzz2fUqFHp0aNH7rvvvqy22mqF42fPnp3TTjstn3/+eRo2bJiuXbtmm222yfLLL59x48blvvvuy7Bhw/Lpp5/mjDPOyAMPPJAGDRosUm2L6rPPPstRRx2VL7/8Mkmy9dZbp0uXLmnevHleffXV9O/fPzfeeGM6duy4WOedM2dOxo8fnzfeeCO33XZbhg4dmiTp0qVLdt5553q9BwAAAAAAoHYCYihBc+fOzeWXX54kadmyZfr375811lijypif/exnufLKK3PNNdckSR588MEqAfGf/vSnQjjco0ePnHfeeYWppJPkqKOOyhFHHJHhw4fn6aefziuvvJLOnTtn9913zworrFAYt9FGG2X33XdfpLpXW221bLXVVnn11Vfz/PPPZ8aMGdVOM/3YY49l/vwFk3x06dLlG8+71VZbJUluv/32JEmzZs0WuaYKl19+eSEcPvLII3PeeeelUaNGhf1HHHFEHnjggfz2t7/NpEmTct555+Uf//hHYf/zzz+fTz75JEly5pln5mc/+1mV8//4xz/OySefnGeffTbDhw/PK6+8UgjW68uf/vSnQjj8s5/9LL/85S8L+7p165auXbvmxBNPzPDhwxfrvNtss01mzJhReNy4ceOceOKJOemkk+qncAAAAAAAYJE1/OYhwHfN66+/ni+++CLJgiD36+FwhRNPPLEQ+o4cObLw/MSJE3P//fcnSTbccMOce+65VcLhJGnRokV69epVePzQQw/VS+1du3ZNksI009WpmF66devW2X777evlurWZMmVK7r777iTJ97///Zx//vlVwuEK3bp1S/fu3ZMkL7zwQpWpuT/66KPC9o9+9KOFjm3YsGFOOeWUtG/fPtttt11mzZpVr/cwYcKEwuv2/e9/P2edddZCYzp37lzt87WZOnVqlXA4WdBR/MILLyw0FTcAAAAAAPDtExBDCdp6663z1FNP5bbbbsuRRx5Z47imTZtmlVVWSbIgkK3w/PPPFzp0jzjiiGrD0CTZYost8vOf/zyXXnppjjrqqHqpfa+99krjxo2TJI888shC+z/77LO8+eabSRasb1tW9u1PlPDcc89l5syZSZIDDzyw1qmfDzrooMJ25YB7pZVWKmzfdtttC60LnSSbbbZZnn766dx22231PjXzs88+m/Ly8iTJ4YcfXuM9HHbYYVU6wL/J7Nmzc9ZZZ+Xyyy/PhRdeWAi/33777Rx33HHp27dvnWsHAAAAAAAWnSmmoQQ1atQoHTp0SIcOHard/8UXX2To0KF57bXXMnXq1CTJvHnzCvv/85//FLa32GKLWq91yimn1EPF/2fFFVfMzjvvnCeffLLaaaYfffTRQtC5KNNL14d33nmnsD1hwoQ8+eSTNY6dPn16YbtiLd4k2WWXXdKkSZPMnj079957b15++eXsvvvu2XnnnbP11lunadOm307x1dSy+eab1ziuadOm2WKLLfLcc88t0nlXWWWVnHjiiYXHhx12WO67776cffbZKS8vzx/+8Idst912NXaxAwAAAAD8rykvdgFQRwJiKHHvvfdenn/++QwfPjyjRo3K6NGjM3ny5FqPqVh7OElWX331b7nChXXp0iVPPvlkYZrpfffdt7CvYprk9u3bf2N4XV/GjRtX2L7uuusW+biKab6TBUHqH/7wh/zud7/LvHnz8umnn+af//xn/vnPf2a55ZbLtttum9133z177733YnXwLkkt7dq1q3Xs2muvvcgBcXW6d++et99+O3feeWdmz56du+66K7/+9a+X+HwAAAAAAMCiM8U0lKjPP/88J5xwQvbff//89a9/zYMPPph33nmnEA63bt06BxxwQFq1arXQsVOmTClsL7fcckup4v+z6667pkWLFkmqTjM9duzYvP3220n+b63ipWHatGlLdFzlbuJkQXDat2/f7LHHHmnSpEnh+Yog/LzzzstOO+2U2267rS7lVqvyPXzT77Tita+Lww47rLBdMSU4AAAAAADw7dNBDCVoxowZOeqoozJy5MgkyQorrJDtt98+G264YdZbb71ssMEGhSl/q1vrtnKA+NVXX2X55ZdfOoX/f02bNs0ee+yRAQMGVJlmunJYvLSml06qvh4DBw7Muuuuu8Tn+v73v5+rr74606ZNy4svvphBgwblxRdfzNixY5Ms+N1dcskladq0aY444og6116hcug7c+bMWkPg2bNn1/l666yzTmF74sSJdT4fAAAAAACwaHQQQwn65z//WQiHd9111zz33HO58sorc/LJJ2ePPfaosh5sxRrElbVu3bqw/dlnn9V6raFDh2bYsGFL3GVbk4oO4a+++irPP/98kv/rJu7UqVPWX3/9er1ebSq/HhMmTKiXc7Zo0SJ77bVX/vCHP+Tpp5/O/fffn27duhX2X3vttfVynQqrrbZaYXvMmDG1jh0/fny1z7/55pv5zW9+k8MPPzyDBg2q9RyzZs0qbC/tLxgAAAAAAEApExBDCXr22WcL2+edd16NAd3o0aMzY8aMJEl5eXnh+Y033riw/dZbb9V6rQsuuCDdu3fPHnvsUYeKF7btttumTZs2SRbcz5gxY/Kf//wnydLtHk6STTfdtLD96quv1jr2gw8+yOmnn57LLrusyu/hueeeyw033JC///3v1R63wQYb5M9//nM22WSTJAtC2kmTJtW59gqbb755Yfub7qGm3/mUKVNy//3356233sozzzxT6zkqpgJPFqxpDAAAAAAALB0CYihBlYPF5s2b1ziu8lq3c+bMKWz/8Ic/TMOGC/589OvXr0p4XNmoUaMyZMiQJMl2221XeL7i2CSZP3/+4hX//zVq1Cj77LNPkuT555/Pk08+mSRp0KDBEgfEDRo0WKKadt5555SVLZixv2/fvvnyyy9rHHvjjTfm8ccfzy233JKPP/648Pwtt9ySv/3tb7nhhhvy+eef13j8iiuuWKi1WbNmi1VnbXbaaafCe+HOO++scRrpQYMGZdSoUdXu23rrrQvTbT/44IM1vg7l5eX5xz/+UXi8++6716V0AAAAAIClan4DP4v7w/8WATGUoA4dOhS2+/XrV+2YW265JXfeeWfhceXAsEOHDoWO4H//+9/Vdr1OmzYt5557biE8PvLIIwv7Kq/ZW90U1ouqYprpL774IrfcckuSZIsttsjqq6++ROerCFy//PLLGkPv6rRt27Yw/fOECRPyi1/8ItOnT19o3D333JP7778/yYKg96CDDirs23vvvZMsCKfPO++8KoF8hXfeeafQ3bvJJptUeR3rqkWLFunRo0eSZOTIkfn973+fuXPnVhnzySef5Lzzzqv1HIccckiSBd3E55xzzkJBc3l5eS677LK8/PLLSRZMB77XXnvV230AAAAAAAC1Kyt2AcDS171798IasX/7298ydOjQbL/99mnevHk++eSTDBw4MCNGjKhyzPTp0zN//vxC9+95552X119/PV988UWuv/76vPLKK9lvv/2y0kor5eOPP87dd99dWKv2oIMOylZbbVU4V+X1bm+77bastNJKKSsry0477VTokF0Um266adZaa618/PHHGTduXJK6TS/dtm3bJAvC7fPPPz877LBDWrVqlW233fYbjz3nnHPy2muv5ZNPPsmgQYOyzz775OCDD856662XSZMm5bnnnstzzz1XGH/++ednhRVWKDw+8MADc9ttt+Xjjz/OM888k3333TcHHHBA1lhjjcycOTP/+c9/MmDAgMyePTsNGzbMGWecscT3WZMzzjgjL774Yt59993cd999GTZsWA466KC0adMmw4YNy5133plp06alYcOGNXZZV5zjo48+yhNPPJHu3bvn4IMPTrt27TJu3Ljcf//9effdd5MkK6ywQi6//PIqHeUAAAAAAMC3S0AMJahLly556aWX0r9//5SXl+fRRx/No48+utC4I444Ig0bNkzv3r0zd+7cfPjhh1l//fWTJKuuumr+9a9/5aSTTsqoUaPy1ltvVbs2bdeuXdOrV68qz7Vp0ybbbLNNXn311YwbNy5nn312kgXTL++8886LfS9XX311kqSsrKzQibsk9t1339x9991JFkwV3bdv32y66aY1dllX1rJly/Tu3TunnnpqhgwZknHjxuWaa65ZaFzTpk1z7rnnLhRkN23aNNdff32OP/74jBkzJqNHj84VV1yx0PHLLbdczj333Pzwhz9cwrusWZMmTXLrrbfm5JNPzptvvpn3338/F198cZUxXbp0yWeffZbXX3+92nO0bNkyt9xyS0477bT85z//yYcffpjLLrtsoXFrrrlmrrnmmqy77rr1fh8AAAAAAEDNBMRQgho0aJBLLrkkP/zhD9OvX7+8++67mTZtWpZbbrmsvvrq2WyzzXLYYYdlk002yXPPPZfevXsnSR555JFCQJwk66yzTh566KH069cvjz76aIYPH57p06dnxRVXLJyjpsD3yiuvzJ/+9Ke88MILmTRpUlq0aFFlbeRF1bVr10JAvMMOO2TllVdegldkgW233TZ///vfc9NNN2XkyJGZO3duZs2atcjHt23bNv369cvAgQMzcODADBkyJBMnTkzjxo3ToUOHbL/99unRo0fWXHPNao9fe+218+CDD6Zv37556qmn8sEHH2Tq1Klp1qxZ2rVrlx/+8Ic54ogjssYaayzxPX6TVq1apXfv3unfv38GDBiQ999/P/PmzUunTp3So0ePdO3aNUcffXSt52jXrl3uvvvuPPDAA3nooYcydOjQTJ8+PSussEI22GCD7LXXXjnwwAPTpEmTb+0+AAAAAACA6jUoX5yFNgEoeUcffXRhLeT333+/yNUk/dr1KHYJLEWjGjcodgksRa3nFbsClqZ91h1T7BJYila69dJil8BSNKrLBcUugaVo7ReuLXYJLEUTDzm22CWwFLU8addil8BS9MoZ/yl2CSxFPxr3zTMoUtWfvndUsUtY5vxm1L+KXQKV6CAGAAAAAACARTS/2AVAHTUsdgEAAAAAAAAALB06iAGWURMnTsybb75Z5/OsvfbaWXfddeuhIgAAAAAA4H+dgBhgGTVixIiceuqpdT7PaaedltNPP70eKgIAAAAAAP7XmWIaAAAAAAAAoEToIAZYRnXu3Dnvv//+Ur/uHXfcsdSvCQAAAAAA1A8BMQAAAAAAACyi8mIXAHVkimkAAAAAAACAEiEgBgAAAAAAACgRAmIAAAAAAACAEiEgBgAAAAAAACgRAmIAAAAAAACAElFW7AIAAAAAAABgWTE/5cUuAepEBzEAAAAAAABAiRAQAwAAAAAAAJQIATEAAAAAAABAiRAQAwAAAAAAAJQIATEAAAAAAABAiSgrdgEAAAAAAACwrJhf7AKgjnQQAwAAAAAAAJQIATEAAAAAAABAiRAQAwAAAAAAAJQIATEAAAAAAABAiRAQAwAAAAAAAJSIsmIXAAAAAAAAAMuK8mIXAHWkgxgAAAAAAACgRAiIAQAAAAAAAEqEgBgAAAAAAACgRAiIAQAAAAAAAEqEgBgAAAAAAACgRJQVuwAAAAAAAABYVswvdgFQRzqIAQAAAAAAAEqEgBgAAAAAAACgRAiIAQAAAAAAAEqEgBgAAAAAAACgRAiIAQAAAAAAAEpEWbELAAAAAAAAgGXF/AbFrgDqRgcxAAAAAAAAQIkQEAMAAAAAAACUCAExAAAAAAAAQIkQEAMAAAAAAACUCAExAAAAAAAAQIkoK3YBAAAAAAAAsKyYn/JilwB1ooMYAAAAAAAAoEQIiAEAAAAAAABKhIAYAAAAAAAAoEQIiAEAAAAAAABKhIAYAAAAAAAAoESUFbsAAAAAAAAAWFaUF7sAqCMdxAAAAAAAAAAlQkAMAAAAAAAAUCIExAAAAAAAAAAlQkAMAAAAAAAAUCIExAAAAAAAAAAloqzYBQAAAAAAAMCyYn6xC4A60kEMAAAAAAAAUCIExAAAAAAAAAAlQkAMAAAAAAAAUCIExAAAAAAAAAAlQkAMAAAAAAAAUCLKil0AAAAAAAAALCvmp7zYJUCd6CAGAAAAAAAAKBECYgAAAAAAAIASISAGAAAAAAAAKBECYgAAAAAAAIASISAGAAAAAAAAKBFlxS4AAAAAAAAAlhXlxS4A6khADMAybYPlpha7BJamr1oWuwKWoqmNGhS7BJaiFju0LnYJLEXTz/ptsUtgKWp/4KrFLoGlaOIhxxa7BJailfvdWuwSWIpmX/v7YpfAUvSDXT8vdgkAfItMMQ0AAAAAAABQIgTEAAAAAAAAACVCQAwAAAAAAABQIgTEAAAAAAAAACWirNgFAAAAAAAAwLJifrELgDrSQQwAAAAAAABQIgTEAAAAAAAAACVCQAwAAAAAAABQIgTEAAAAAAAAACVCQAwAAAAAAABQIsqKXQAAAAAAAAAsK+anvNglQJ3oIAYAAAAAAAAoEQJiAAAAAAAAgBIhIAYAAAAAAAAoEQJiAAAAAAAAgBIhIAYAAAAAAAAoEWXFLgAAAAAAAACWFeXFLgDqSAcxAAAAAAAAQIkQEAMAAAAAAACUCAExAAAAAAAAQIkQEAMAAAAAAACUCAExAAAAAAAAQIkoK3YBAAAAAAAAsKyYX+wCoI50EAMAAAAAAACUCAExAAAAAAAAQIkQEAMAAAAAAACUCAExAAAAAAAAQIkQEAMAAAAAAACUiLJiFwAAAAAAAADLivKUF7sEqBMdxAAAAAAAAAAlQkAMAAAAAAAAUCIExAAAAAAAAAAlQkAMAAAAAAAAUCIExAAAAAAAAAAloqzYBQAAAAAAAMCyYn6xC4A60kEMAAAAAAAAUCIExAAAAAAAAAAlQkAMAAAAAAAAUCIExAAAAAAAAAAlQkAMAAAAAAAAUCLKil0AAAAAAAAALCvmp7zYJUCd6CAGAAAAAAAAKBECYgAAAAAAAIASISAGAAAAAAAAKBECYgAAAAAAAIASISAGAAAAAAAAKBFlxS4AAAAAAAAAlhXlxS4A6kgHMQAAAAAAAECJEBADAAAAAAAAlAgBMQAAAAAAAECJEBADAAAAAAAAlAgBMQAAAAAAAECJKCt2AQAAAAAAALCsmJ/yYpcAdaKDGAAAAAAAAKBECIgBAAAAAAAASoSAGAAAAAAAAKBECIgBAAAAAAAASoSAGAAAAAAAAKBElBW7AAAAAAAAAFhWzC92AVBHOogBAAAAAAAASoSAGAAAAAAAAKBECIgBAAAAAAAASoSAmGXW4MGD8/LLLy/0/CuvvJJOnTqlU6dOueqqq4pQ2aL75JNPcu+99xa7jKI68cQT06lTp/Tv37/YpfzPOPvsswvv4TFjxhS7nFrV9DkEAAAAAAD+NwmIWeZMmzYt5513Xo455pj897//LXY5S+zWW29N165d89prrxW7lKLp379/nn322WKXwRL4rnwOAQAAAACg1JQVuwBYXEOHDk2/fv2KXUadXXrppcUuoaiee+65nH/++cUugyX0XfkcAgAAAAAsrvKUF7sEqBMBMd85nTt3zvvvv1/sMqhF//7907Nnz8yZM6fYpfxPuvTSS0v+CwQAAAAAAPBtmDNnTvr27ZsHH3wwI0aMyJw5c7Laaqtlhx12yNFHH5111lmnzufffPPNFykDadKkSYYMGVLj/jfffDP//Oc/88Ybb2TSpElp1apVNthggxxyyCHZa6+9lrhGATGw1Hz55Zf585//nLvvvrvYpQAAAAAAACVm0qRJOeGEExYKZUeNGpVRo0alf//+6dWrV7p3777E1/joo4/qpUHu6quvztVXX53y8v/rWJ8wYUImTJiQF154IXvuuWf++te/pkmTJot9bgExsFQ89NBDufjii/PFF18kSVZeeeXsueeeueuuu4pcGQAAAAAA8F03b968nHbaaYVweLPNNkv37t3TokWLvPHGG7n33nvz1Vdf5dxzz027du3SuXPnJbpO5Vluzz333Ky++uo1jm3YsGG1z/ft2zdXXXVVkqRVq1Y58sgjs95662Xs2LG56667Mnbs2Dz++OPp1atXLrroosWuUUBMvejUqVOS5Oc//3kOPfTQXHjhhRk0aFCSZI011sjxxx+frl27FsZPnz499957bwYNGpT3338/kydPTpKsuOKK2WijjbLnnnumW7duKSv7v7foK6+8kh//+MdVrnvOOefknHPOSZI89dRT6dChQ5Vxp512Wk4//fRqa/7www9z5513ZvDgwfn0009TXl6eVVddNdtss00OO+ywbLLJJvXz4nxNxWtVYcCAARkwYECS5JJLLsmBBx5YZf+MGTPSr1+/PPnkkxk+fHimT59emEJgn332Sffu3dOoUaNar3XSSSflzDPPzOOPP55//vOfGT58eGbOnJk111wzu+++e4499ti0atWq/m+2krvvvrsQDu+444656KKL8tJLLy2VgPjiiy/O7bffniS57bbbst1229U49qOPPso+++yTJDniiCNywQUXVNk/ceLE3HPPPXnxxRfz0UcfZfLkySkrK0urVq2yySabpGvXrtl9993ToEGDhc696667ZuzYsTn44IPzu9/9Lpdeemkef/zxzJo1K6uvvnoOPfTQHHPMMTn77LML74mK9/XXLclnqMLRRx+dV199Ndttt11uu+22jB49OrfddlteeOGFjBs3Ls2aNctGG22UAw88MF26dKlyL4v6OazwzjvvpE+fPnn99dfz2WefpaysLKusskq22mqrdOvWrdbfBQAAAAAA1Jd77703r7/+epKkW7duueyyywoBbbdu3dKlS5ccd9xxmTVrVnr16pWHHnqoxgC3NhUBccOGDXPooYdmueWWW6zjJ02alMsuuyxJ0qZNm9x9991p3759Yf+RRx6Z448/Pm+99VbuueeeHHzwwdl8880X6xoCYurVtGnT0qNHj3z88ceF59577720bNmy8HjQoEH55S9/WQi0Kvvqq68ybty4PPPMM7nrrrvyj3/8o8qx9aG8vDxXXXVVrrvuusyfP7/KvoopBO6555706NEjv/vd72oMX5eG119/Pb/85S/z2WefVXm+8hQCt912W6699tqsscYatZ7rz3/+c/7xj39Uee6DDz7IBx98kP79++fWW2/NeuutV+/3UFn79u3zy1/+Mvvtt9+3ep2v69q1ayEgfvTRR2sNJQcOHFjY7tKlS5V99913X3r16pUZM2ZUeX727NmZMWNGPv300zz22GPZZZddcuWVV9Y4rcO8efNywgkn5I033ig89+GHH6Zx48aLdD/1+Rl68skn8+tf/7rKPc2aNSsvvfRSXnrppTz88MO56qqrFrm2ym644YZcfvnlVaa/mD17dkaPHp3Ro0enf//+6dq1ay677LKifs4AAAAAAPjuu+WWW5IsaLTq2bPnQuHv1ltvnVNPPTV/+9vf8uGHH+bJJ5/MnnvuudjXqQiI11xzzcUOh5MF3cPTpk1LkvzqV7+qEg4nSYsWLfK3v/0te+65Z+bMmZMbbrgh119//WJdQ0BMvfrXv/6VWbNmZccdd0zXrl0zefLkPPfcc9lxxx2TLAgkTzrppMyZMyeNGjXKbrvtlm222SatW7fOhAkT8vbbb+eRRx7J/Pnz8/bbb+fKK6/MeeedlyRZf/31c80112T48OG54oorkizohNx2222TJK1bt16kGv/yl78UgtLGjRunW7du2XrrrdOoUaO88847uffeezNjxoz861//ypdffpk//elP9foaXXPNNUmSU089NUnSuXPnQkfmRhttVBg3ZMiQnHDCCYXgbvPNN88+++yTNm3aZOzYsbn//vszYsSIDB8+PIcffnj69++ftm3bVnvNxx57LCNHjkzDhg3TvXv3bLfddpk+fXruv//+vPXWWxk/fnx69OiRBx98MKuuumq93m+Fs846K5tsskm1Ha3ftk022SRrrbVWPv744zzxxBM5//zzawwkH3nkkSQLwuwtt9yy8PyLL76Ys88+O+Xl5WnSpEn222+/bLrppmnVqlU+++yzDB48OM8991yS5Jlnnsmdd96ZY445ptprDBw4MLNmzcomm2ySww8/PLNnz84jjzyySMF5XT5DXzdq1Kj88pe/zOzZs7Pvvvtmxx13TFlZWV555ZUMGDAg8+fPzzPPPJPevXsX7mVRP4cvvvhi/va3vyVZ8A2nQw45JOuuu27mzZuX4cOH5+67786XX36ZBx98MBtssEGOP/74b7x3AAAAAID/BfO/eQj/Y4YNG5aRI0cmWdBU1qJFi2rHHXHEEbniiisyb968PProo3UKiDt27LhEtVY0srVs2bLK7LyVrb766tl1113z2GOP5cUXX8y0adNqvKfqCIipV7NmzcqPfvSjXH/99YVpaSuHZFdccUVhYe7LL788e+2110LnOOSQQ3LsscemvLw8Dz30UCHcWnnllbP77rtnhRVWKIzdaKONsvvuuy9yfW+88UYhHG7dunVuvvnmbLjhhoX93bp1y09+8pMcd9xxGTVqVO6///7stNNOC3WS1sXX61199dUXem7evHlVujp/+ctf5mc/+1mVMccee2wuvPDC3H333fn888/zu9/9LjfffHO11xw5cmSaNm2aa6+9thDWJ8nhhx+eiy66KHfccUcmT56cyy+/PJdcckl93OZCFnd6g/rWtWvXXHXVVfniiy8K0yt/3fDhw/PBBx8kSfbdd98qUyv/9a9/TXl5eRo3bpw77rgjP/jBD6oc+9Of/jT33HNPzj333CTJAw88UGNAPGvWrGy00Ua58847C13GRx555CLdR10+Q1/36aefpnHjxrnpppuqvC/233//bL311jn77LOTJPfcc0/hXhb1c9i7d+8kSbNmzdKnT5+FOtwPPvjgHHLIIfnyyy/Tu3dvATEAAAAAAN+aV199tbBd2yyjLVu2zEYbbZQhQ4YUllJdHJMmTcr48eOTLFlAPGXKlELAXNHcWJPOnTvnsccey+zZszN48ODFyssWf+Js+AYnnHBCteuvzpw5s9BhudVWW1UbbCULPpgV4dukSZOqnUZ3Sd1www2F7UsvvbRKOFxhjTXWyJVXXln40C1uW359ePzxxwvfZNl3330XCoeTpKysLD179symm26aZMG0wxULq1fnjDPOqBICJkmDBg1yzjnnFNYqvu+++zJx4sT6uo3/KZVD/kcffbTaMTVNL/3JJ59k6NChSRb8Pr4eDlc4+OCD06ZNmySpMs16dY455pgap6CuybfxGTryyCMXel8kyQEHHFCYtmLEiBH56quvFqvWivfvOuusU+3052uvvXYOPPDAdOzYMRtttFGmT5++WOcHAAAAAIBFNWLEiML2+uuvX+vYiuU4p0yZkk8//XSxrjN8+PCFrjNx4sQMHjw4L7zwQkaMGFFlWcav++CDDwr7F7XOZMFyr4tDBzH1qnHjxoXA8uuaNWuWp59+OqNHj/7GNvf27dvnrbfeSpLFDqZqMmvWrLz88stJFnxrY6eddqpx7AYbbJCddtopzzzzTEaMGJFRo0ble9/7Xr3UsSgqQsAktXZWNmrUKMcff3zOOOOMJAvWk91kk00WGte8efMaO1QbNWqUI488Mj179sz8+fPzwgsvZP/996/jHfzvWWuttbLJJptkyJAhNU4zXTG99Prrr58NNtig8HyHDh3y/PPPZ/To0VlttdVqvU6HDh0yYcKEb3zfbrXVVot9D9/GZ6i26TE6duyYsWPHJkmmTp26WGsltGrVKsmC/ygNGjSo2hD6d7/73SKfDwAAAAAAllTFv3U3bNgw7dq1q3Vs5Rzg008/zeqrr77I16no/k2SadOm5ZhjjsngwYOrhMJt27bN8ccfnx49eiyUU1TUmSzIG2pT+T4WN8gWEFOv1lhjjVq7IldZZZWsssoq1e6bPn163n///bzxxhuFYCtZMN1yfRg2bFhmz56dJIX1Umuz7bbb5plnnkmSvPPOO0s1IP73v/+dZMFUBhtvvHGtYyvfS00dxJtvvnmaN29e4zkqr7X79ttvfycD4mTBNNNDhgypdprpd999t9D1+/UpxRs0aJC2bdvWuMbzlClTMmzYsLz++uuFc9T2vm3atOlCi8ovqvr+DK277ro17qscQs+dO3ex6tx7773z5ptvZt68eTnuuOOy9dZbZ5dddslOO+30jd96AgAAAACA+lQxe+ryyy//jbN7VjRAJVnsWW4rB8QVS1J+3bhx43LRRRflxRdfzBVXXFGlOavyLK8rrbRSrddaccUVl7hOATH1qmXLlos0bvz48XnyySczbNiwfPzxxxk1alTGjx9fbVt9ba32i+OLL74obFc35e3XVR5T+diloeIPwDd9OyRZ8AdgxRVXzJQpU/L5559XO2attdaq9RyVv2VS0zm+C/bdd99cdtllhcXlKwfElaeX3m+//Wo8x+jRo/P000/n/fffz8cff5zRo0cv9mu2qJ+T2tTXZ6jyWsJfV1b2f/+JmD9//mLV16NHjwwaNCjPP/98kuS1117La6+9lj/96U9p165dfvSjH2XvvfdO586dq52SHgAAAACA747ddtut1v1PPfXUt3r9ipk2mzZt+o1jKwfIM2fOXKzrVA6Il19++Zx00knZZ5990rZt20yYMCGPP/54rrnmmnz55Zd59tlnc8EFF+TSSy9dqM6v11GdyveyuLPxCoipV9/0Zp07d27+8pe/5I477qi2I7FZs2bp3LlzJkyYUFjztb5UXuO0WbNm3zi+8pgZM2bUay3fpKLWRakzSZZbbrlMmTKlxj9Uyy+/fK3HV77Od3kt2DZt2mTbbbfNiy++uNA00xXTS2+++ebVfoFg+vTp6dWrVx544IFqA9eWLVtm++23z7vvvpvRo0fXWsfirj1cWX1/hiqHwPWprKwsN9xwQ/r27Zs+ffpUWf/gv//9b/r06ZM+ffqkY8eOueyyy7LRRht9K3UAAAAAANS38tRPYxuL5plnnslJJ520RMc+9dRT6dChQ+Hf0xfl3+crj1ncWW7Hjx+fZEEXcp8+fbLOOusU9rVv3z7HHntsdthhhxx++OGZPn16BgwYkMMOOyybb755kqqzeX5TrZX3L+4soAJilqqzzz47Dz74YJIF6xVvtdVW2WSTTbL++uunY8eOWW+99VJWVpZf//rX9R4QV55ieVG+8VE5FF7UoLa+NGvWLF9++eUifzOlotaa1oitmFr7m45Pqk6d8F3UpUuXvPjii1WmmX7nnXcyZsyYJAumof66+fPn58QTT8xrr72WZMHvZ9ttt81GG22U9dZbL506dcraa6+dhg0b5sgjj/zGgLguivkZWlwNGzbM4YcfnsMPPzyjRo3Ks88+m5deeimvvvpq4T03fPjwHHvssXnggQdqnMIbAAAAAIBl27fdIfxNKvKTOXPmfOPYyplK48aNF+s6zz//fCZPnpzZs2dn1VVXrXZMx44dc8YZZ+SSSy5JkvTt27cQEFfOeb6p1rrUKSBmqXnzzTcLwdYaa6yRW2+9tcapnr/88st6v37ldVs/+eSTbxxfsZZskqUeXK2yyir58ssvC6FlbSZOnFh4vWqq87PPPqv1HJWvU9MfrO+KPffcMxdccEFmzZqVJ554Itttt12he7isrCz77LPPQsc8/PDDhXB4s802y/XXX5+VV1652vN/G+/dCsX+DNXF9773vfzkJz/JT37yk8yePTvPP/98/vznP+fjjz/O5MmTc+edd+bMM88sdpkAAAAAAPyPWXPNNfPTn/50iY6tWGaxoolw1qxZ33hM5eB1Uaak/rpFacTr1q1bISB+4403Cs9Xbnb8plor76+pgbAmAmKWmmeffbawfeqpp9a6DvCwYcMK2/W1BvGGG26Yxo0bZ86cORk8ePA3jq88plOnTvVSw6LaZJNNMnLkyEydOjVDhw7NxhtvXOPYRanz3//+d8rLy2tc6/X1118vbG+zzTZLWPWyoUWLFtlll13y6KOP5tlnn83555+fxx9/PEmy3XbbVRv8Vn7v/upXv6oxHJ45c2aVLxbU9poviWJ/hhbV5MmT8/TTT+ejjz7KVlttlR/96EdV9jdp0iS777571lprrcJ6z5XXZQAAAAAAgArrrrtufvvb39bpHC1btkySTJs2LXPnzq11+cXJkycXtmvKA+pq5ZVXTqtWrTJ58uTCtNSV60ySKVOm1HqOyvsXt86GizUa6qDyB6ryNyC+7tFHH63S8fr1edMbNvy/t+38+fMX+fpNmzbNDjvskGTBtLbPP/98jWOHDRuWF198McmCb6asu+66i3ydRVURHFZ3D5UXa//HP/5R4znmzZuXW265pfB4l112qXbcZ599lmeeeabafXPmzEmfPn2SLPi9bL/99t9c/DKuYhrpsWPH5sEHHyx0UHfp0qXa8Yv63r3zzjurfLNoUaaqWBz19RmqD7V9DmfOnJlzzjknN910U+G9VZ0VV1yxsF3b/QAAAAAAQF2stdZaSRb8e/a4ceNqHVv539fbt2//rdVU3bTQFXUmyX//+99aj6+8f/XVV1+sawuIWWoqf4j69etXbVfjSy+9lPPPP7/Kc19voa/cJj916tTFquG4444rbJ9zzjl57733FhozduzY/PznPy+EXqeeeupiXWNRVaxrXN097LHHHvne976XJBk4cGBuvPHGhcbMmzcvF154YYYMGZIk6dy5c7baaqsar9ezZ88q3a0V5+jVq1c+/PDDJAtenyWZLmFZs9NOOxXCyT//+c9JFryv9thjj2rHV37v9u3bt9oxDz74YP7+979Xee6b1n5eXPX1GaoPtX0O27Vrl8022yzJgq7nhx9+uNpz3HTTTYXt2t67AAAAAABQF5UbAT/44INax44YMSLJgianxVmC9L333sutt96aP//5z3nrrbdqHTt79uxCU1ibNm0Kz6+zzjqFBsOKOmpS+T46duy4yHUmpphmKdp3331z1VVXZc6cOXnhhRdyyCGHpGvXrmnTpk3Gjx+f5557Li+//PJCode0adOqPF5ttdUK27fddltWWmmllJWVVQn9arLNNtvk2GOPza233prPP/88Bx98cPbff/9svfXWadSoUd55553cc889mTFjRpJkn332Sffu3evnBfiatm3bZuTIkXnhhRdy8803Z/XVV8/666+f9dZbL40aNcpf/vKX9OjRI7Nnz85f//rXPP3009l3332zyiqr5L///W/uu+++DB8+PMmC+ewvu+yyGq/VoEGDjB8/PgceeGAOP/zwfP/738/EiRPTv3//DB06NEmy3nrr5YQTTvhW7vV/TZMmTbLnnnumX79+hW8K7bLLLll++eWrHb///vvn7rvvTpLcfffdGTt2bHbddde0atUqn376aZ588sn8+9//Xui4L7/8Mi1atKi3uuvrM1QfvulzeOaZZ+aYY45Jkpx11ll5+OGHs+2222aVVVbJ+PHj8/jjjxfWVfje976XAw88sN5rBAAAAAD4Niz63Kb8r6i8vObgwYOz8847Vztu6tSphSUct95668W6xvDhw3PppZcmWdC4tfnmm9c49tVXXy3MQlrRcJUsmG3z+9//foYMGZLXX3898+fPrzKjZ2UVS5A2bNhwsZuwBMQsNWussUZ69uyZnj17Zt68eRkyZEih+7WyrbbaKl26dMkFF1yQZMHapJXf2G3atMk222yTV199NePGjcvZZ5+dJLnxxhtr/EBX9tvf/jZNmzbNjTfemDlz5uSee+7JPffcs9C4Y445Jr/+9a+X8G6/2X777Zerr746c+fOzZ/+9KckyfHHH1+45qabbppbb701v/jFLzJhwoS89dZb1X7jZMMNN8xVV12Vdu3a1XitLbbYIm3bts3AgQNz8803L7R/8803z3XXXVcS3cMVunbtmn79+hUe1zS9dJJsueWWOe2003L11VcnSQYNGpRBgwYtNG7PPffMBhtskCuvvDLJgvdubb+XxVVfn6H68E2fw+222y49e/bMxRdfnDlz5uSpp57KU089tdB51llnnVx//fVVOpIBAAAAAKA+rbfeellnnXXy0UcfZcCAATnttNOqbRrr3bt35s2bl2RBE+Hi6Ny5cxo2bJj58+fn4Ycfzi9+8Ytqm8jKy8tzww03FB7vv//+VfbvueeeGTJkSD7//PM88sgj2W+//RY6x5gxYwpLi26//fbf2ED5daaYZqk65JBDctddd2W//fbLaqutlsaNG6dZs2bp0KFD9txzz1xzzTW54447su+++xbmXn/kkUcWOs+VV16ZAw88MG3atElZWVlatWqVSZMmLVINDRo0yJlnnpkHHnggPXr0yDrrrJPmzZtn+eWXT8eOHXPkkUfm/vvvzznnnFPrIuV1dcopp+TnP/951lxzzTRu3DjNmzfP9OnTq4zZaqut8thjj+W3v/1tttpqq7Rq1SqNGzdO+/bt86Mf/Sh///vf069fv6yxxhq1XqtRo0a5/PLLc9lll2WzzTZL8+bN07x582y55Zb5wx/+kH/9619ZaaWVvrV7/V+09dZbF7pgV1xxxey00061jj/99NNz8803Z9ddd80qq6ySsrKyNG/ePGuttVa6du2a2267LVdddVX22muvwjHVvXfrqr4+Q/Xhmz6HRx55ZO67774cddRR6dixY5o3b56ysrK0adMm22+/fS644ILcf//9henUAQAAAADg23LssccmSSZNmpSzzz57oWUiX3vttVx33XVJFiz5uOeeey7W+du2bVtYynLixIk555xzFrrG/Pnzc9FFF+XVV19NsiCr2HHHHauMOfjgg7PCCiskSf7whz8UlgmtMG3atJx11lmFDuSK+1ocDcqrW8QS+E7o1KlTkgVTJ9xxxx1Frga+HUPW7lrsEliK3vuqZbFLYCma2qhBsUtgKTrs6JnFLoGlaPa7nxe7BJaipt9ftdglsBRNe2l8sUtgKVq5363FLoGlaPa1vy92CSxFc4Z9WuwSWIpa9Xmm2CUsc36y1kHFLmGZc/vH9xa7hMyfPz+HHXZY3nnnnSQLMpRDDjkkrVq1yptvvpl+/fplzpw5adCgQW688cZqG8v69++fc845J0lywAEHFKaUrvDpp5/mkEMOyeefL/j/e9dZZ50cfPDBWX311fPZZ5/lvvvuy3vvvZdkwUydffr0qbYJ8F//+lf+8Ic/JEmWX375HHnkkdlwww3z3//+N3369MmYMWOSLJit9m9/+9tivxammAYAAAAAAAC+0xo2bJgbbrghxx9/fIYOHZr3338/f/zjH6uMady4cXr27PmNs47WZPXVV88tt9yS008/PaNGjcpHH31UWGa0svXXXz9XXHFFjTPEHnXUUZkwYUJuuOGGTJ8+PTfddNNCY3beeedcfPHFS1SngBgAAAAAAAD4zlt55ZXTt2/f3H333XnooYfy4YcfZsaMGWnTpk06d+6cY489tjA765Lq1KlTHnjggdx777159NFHM3z48EyfPj2tWrXKeuutl3322ScHHHBAmjRpUut5zjzzzOy8887p3bt3Xn/99XzxxRdp1qxZNtxwwxx00EHp1q1bGjRYshn4BMSwiAYNGpSvvvqqTudYbrnlFppL/n/Rhx9+mJEjR9b5PFtssUVWXnnlZb4OAAAAAACoMN/qrcu0srKy9OjRIz169FjsYw888MAceOCB3zhuueWWW+JrVLbFFltkiy22qNM5qiMghkV0/vnnZ+zYsXU6R/v27fP000/XU0XfnoEDB+bqq6+u83n++c9/pnPnzst8HQAAAAAAAN8VDYtdAAAAAAAAAABLhw5iWETLQufv173//vtLdNzpp5+e008/vZ6rWXbrAAAAAAAA+K7QQQwAAAAAAABQIgTEAAAAAAAAACXCFNMAAAAAAACwiMqLXQDUkQ5iAAAAAAAAgBIhIAYAAAAAAAAoEQJiAAAAAAAAgBIhIAYAAAAAAAAoEQJiAAAAAAAAgBJRVuwCAAAAAAAAYFkxP+XFLgHqRAcxAAAAAAAAQIkQEAMAAAAAAACUCAExAAAAAAAAQIkQEAMAAAAAAACUCAExAAAAAAAAQIkoK3YBAAAAAAAAsKwoT3mxS4A60UEMAAAAAAAAUCIExAAAAAAAAAAlQkAMAAAAAAAAUCIExAAAAAAAAAAlQkAMAAAAAAAAUCLKil0AAAAAAAAALCvmF7sAqCMdxAAAAAAAAAAlQkAMAAAAAAAAUCIExAAAAAAAAAAlQkAMAAAAAAAAUCIExAAAAAAAAAAloqzYBQAAAAAAAMCyYn7Ki10C1IkOYgAAAAAAAIASISAGAAAAAAAAKBECYgAAAAAAAIASISAGAAAAAAAAKBECYgAAAAAAAIASUVbsAgAAAAAAAGBZUZ7yYpcAdaKDGAAAAAAAAKBECIgBAAAAAAAASoSAGAAAAAAAAKBECIgBAAAAAAAASoSAGAAAAAAAAKBElBW7AAAAAAAAAFhWzC92AVBHOogBAAAAAAAASoSAGAAAAAAAAKBECIgBAAAAAAAASoSAGAAAAAAAAKBECIgBAAAAAAAASkRZsQsAAAAAAACAZUV5eXmxS4A60UEMAAAAAAAAUCIExAAAAAAAAAAlQkAMAAAAAAAAUCIExAAAAAAAAAAlQkAMAAAAAAAAUCLKil0AAAAAAAAALCvmp7zYJUCd6CAGAAAAAAAAKBECYgAAAAAAAIASISAGAAAAAAAAKBECYgAAAAAAAIASISAGAAAAAAAAKBFlxS4AAAAAAAAAlhXzi10A1JEOYgAAAAAAAIASISAGAAAAAAAAKBECYgAAAAAAAIASISAGAAAAAAAAKBFlxS4AAOriP7NaFrsElqK3ms4vdgksRevObVTsEliKGrZeqdglsBQ1O267YpfAUjTv2eeLXQJLUcuTdi12CSxFs6/9fbFLYClqcsofil0CS9G4XU4qdgksRa2KXQCw1AmIAQAAAAAAYBGVp7zYJUCdmGIaAAAAAAAAoEQIiAEAAAAAAABKhIAYAAAAAAAAoEQIiAEAAAAAAABKhIAYAAAAAAAAoESUFbsAAAAAAAAAWFbMT3mxS4A60UEMAAAAAAAAUCIExAAAAAAAAAAlQkAMAAAAAAAAUCIExAAAAAAAAAAlQkAMAAAAAAAAUCLKil0AAAAAAAAALCvKy8uLXQLUiQ5iAAAAAAAAgBIhIAYAAAAAAAAoEQJiAAAAAAAAgBIhIAYAAAAAAAAoEQJiAAAAAAAAgBJRVuwCAAAAAAAAYFkxv9gFQB3pIAYAAAAAAAAoEQJiAAAAAAAAgBIhIAYAAAAAAAAoEQJiAAAAAAAAgBIhIAYAAAAAAAAoEWXFLgAAAAAAAACWFeUpL3YJUCc6iAEAAAAAAABKhIAYAAAAAAAAoEQIiAEAAAAAAABKhIAYAAAAAAAAoEQIiAEAAAAAAABKRFmxCwAAAAAAAIBlxfyUF7sEqBMdxAAAAAAAAAAlQkAMAAAAAAAAUCIExAAAAAAAAAAlQkAMAAAAAAAAUCIExAAAAAAAAAAloqzYBQAAAAAAAMCyory8vNglQJ3oIAYAAAAAAAAoEQJiAAAAAAAAgBIhIAYAAAAAAAAoEQJiAAAAAAAAgBIhIAYAAAAAAAAoEWXFLgAAAAAAAACWFfNTXuwSoE50EAMAAAAAAACUCAExAAAAAAAAQIkQEAMAAAAAAACUCAExAAAAAAAAQIkQEAMAAAAAAACUCAExAAAAAAAAQIkoK3YBAAAAAAAAsKwoT3mxS4A60UEMAAAAAAAAUCIExAAAAAAAAAAlQkAMAAAAAAAAUCIExAAAAAAAAAAlQkAMAAAAAAAAUCLKil0AAAAAAAAALCvml5cXuwSoEx3EAAAAAAAAACVCQAwAAAAAAABQIgTEAAAAAAAAACVCQAwAAAAAAABQIgTEAAAAAAAAACWirNgFAAAAAAAAwLKivNgFQB3pIOY7o7y8PHfeeWcmTJhQ7FKWaWPGjEmnTp3SqVOnnH322cUup2RMnDgxd9xxR7HLAAAAAAAAvuMExHwnjBo1KkcddVR69eqVWbNmFbscWCwPPPBA9tlnnzz++OPFLgUAAAAAAPiOExDznfDAAw/k9ddfL3YZsET+/ve/Z/LkycUuAwAAAAAAKAECYgAAAAAAAIASISAGAAAAAAAAKBFlxS4AAAAAAAAAlhXzU17sEqBOBMQs06666qpcffXVVZ7bbbfdkiTt27fP008/XRjTqFGjvPvuuxkwYEBuuOGGjBkzJiuttFI22WST/OUvf0nz5s0L53jrrbfy4IMP5rXXXsv48eMzbdq0LL/88llttdXSuXPn9OjRI2uttVattU2ePDkDBgzIY489ltGjR2fq1KlZZZVVssUWW+TII4/MVlttVeOx8+bNy4ABA/LII4/kvffey5QpU7Liiitmww03TJcuXdKtW7c0bFjcCQCmTp2af/3rX3nmmWcyatSozJw5M6usskq23HLLHHroodlmm22qPe6VV17Jj3/84yRJ7969s+WWW2bAgAEZMGBARowYkRkzZmS11VbLTjvtlOOOOy7t2rX71u9l3Lhx+de//pXnn38+Y8aMydy5c7PqqqsWftcbbrhhtcf1798/55xzTpLkueeey8orr5w+ffrk4Ycfzscff5zZs2enQ4cO2W233XLsscemVatWVY7fddddM3bs2MLjV199NZ06dUqSnHbaaTn99NOrjDv44IPzu9/9Lpdeemkef/zxzJo1K6uvvnoOPfTQHHPMMVXO/dJLL+Xee+/Nm2++mc8//zxNmzZNhw4d8sMf/jBHHXVU2rZtW+09nX322RkwYEDatm2b559/PqNHj851112Xl156KV988UVatWqVrbfeOsccc0w222yzKsfOmTMnO+64YyZPnpxVVlklzz//fBo1alTj637llVfmmmuuSbJgHfGKewcAAAAAAL49AmJKSp8+fXLBBRcUHo8fPz7jx48vhMOzZs3Kb3/72zzyyCMLHTtlypRMmTIl77//fu68885cdNFF6d69e7XXeemll3LmmWdm8uTJVZ7/73//m4cffjgPP/xwfvrTn+a3v/3tQseOGTMmJ598coYPH17l+c8//zwvvPBCXnjhhdxxxx257rrrsuqqqy7eC1BPXnzxxZx11lkL3d+nn36aTz/9NA8++GAOPPDAXHjhhWncuHGN55k1a1aOO+64vPjii1WeHzVqVO64447cc889ue6667Lddtt9G7eRJLnvvvvSq1evzJgxo8rzo0ePzujRo3PvvffmZz/7WX7xi1+kQYMGNZ5n4sSJOfnkk/Puu+9WeX7EiBEZMWJE+vbtm9tvvz0dO3Zc4lrnzZuXE044IW+88UbhuQ8//LDKazx16tScffbZeeqpp6ocO3v27AwbNizDhg3LHXfckfPPPz8HHnhgrdd78803c+KJJ2bq1KmF5yZMmJCBAwfmkUceyW9/+9sce+yxhX2NGzfOfvvtl969e+fzzz/P4MGDs8MOO9R4/oceeihJssEGGwiHAQAAAABgKREQs0zbd999s+GGG+bhhx/OwIEDkyQXXnhhWrduneWWW67K2Pnz5+fiiy9Oy5Ytc8wxx6RDhw554403sskmmxTGnHvuuYVwePXVV0/37t2zxhprpGHDhvnkk08yYMCAjB07NnPnzk3Pnj2z3XbbLdSJOXjw4Bx//PGZN29ekmTnnXfOrrvumubNm+fdd99Nnz598tVXX+WWW27JqquuWiVg++KLL3LkkUdm3LhxSZIf/OAH2WeffbLqqqvm888/z8CBA/PWW2/lP//5T44++ujce++9adGiRf2/sLUYPHhwTjzxxMyZMycNGzbMHnvskR133DEtWrTIyJEj079//4wZMyb9+/fPrFmz8re//a3Gc/3hD3/IyJEj0759+xxyyCH53ve+l88++yx33313Pv7448ycOTO//vWv88QTT6RZs2b1fi/3339/zj777JSXl6dx48bp2rVrtt566zRp0iTDhw/PPffcky+++CLXX3995s2bl1/96lc1nuuss87KyJEj07FjxxxwwAFZbbXVMmrUqNx5550ZP358Jk6cmN/85jcZMGBAIWi+8MIL89VXX+X3v/99Jk6cmPXXXz+/+MUvkiRrr732QtcYOHBgZs2alU022SSHH354Zs+enUceeST77bdfkgUh8Mknn5zXX389SbLyyivn4IMPTqdOnTJz5swMGjQojz32WGbOnJlzzjkn8+bNyyGHHFLt/cyYMSNnnHFGpk6dmo033jgHHXRQWrZsmddeey333ntv5s6dm0svvTTNmzfPYYcdVjiue/fu6d27d5IFAXBNAfHbb7+dUaNGJUm6detW268JAAAAAACoRwJilmnrrrtu1l133QwbNqzw3A477JAOHTosNLa8vDxz5szJHXfckR/84AdJkv3337+w/7333suDDz6YJNl0001zxx13LBQyn3jiiTnxxBPz0ksv5auvvsoTTzyRo446qrB/9uzZueCCCzJv3rw0bNgwf/rTn9K1a9fC/m7duuWAAw7I4YcfnhkzZuSqq67KIYccUgh5e/bsWQiHzzrrrJx44olVrv/jH/84N954Y/7617/m448/zp///Of06tVrSV66JTJz5sz85je/yZw5c9KsWbNqu3uPP/74nHnmmXnqqafy8MMPZ/fdd8++++5b7flGjhyZnXbaKVdeeWWVAPjQQw/NEUcckeHDh2fChAl57rnnsvfee9frvYwbNy4XXHBBysvL07p169xyyy3ZYIMNqow57rjj8rOf/Sz//ve/849//CO777574b1T3b0cfPDBufDCC6tMq3zwwQfngAMOyIQJEzJs2LD85z//KXwpYccdd0ySXHzxxUmSlVZaKbvvvnuNNc+aNSsbbbRR7rzzzjRp0iRJcuSRRxb233zzzYVwePPNN8/1119fZVrrQw45JC+88EJOP/30zJw5M3/4wx+y7bbbZo011ljoWl9++WW+/PLLHHLIIenVq1fhnrp27ZquXbvmhBNOyMyZM/O3v/0t++yzT1q2bJlkwWdnnXXWyUcffZQnnngivXr1KtRaWcVnrWHDhunSpUuN9wwAAAAAANSv4i5iCkvZtttuW2PA9/jjjxe2zzrrrIXC4SRp0qRJjjvuuMLjjz/+uMr+Z599NiNHjkyyILirHA5X6NSpUyH4nT59ep555pkkyUcffZQnn3wySbLnnnsuFA5X+NnPflZY33fAgAGZOHFiteO+DQ888EAhwP7lL39Z7dTPTZs2zSWXXJIVV1wxSfKPf/yjxvM1btw4l1566ULdwS1atKiypu6QIUPqofqqevfuXZhW+o9//ONC4XCSrLjiirnsssvSuHHjlJeX5+abb67xfK1bt07Pnj0XWnO3TZs2OfTQQwuP63ovxxxzTLWB6+zZs3PbbbclSVq2bJmrrrpqoTWPk+SHP/xhfv3rXydZEDjfeuutNV6rU6dOueCCCxa6p6233jqnnXZakgVrbffv37/K/oovXnz55Zd57rnnFjrvvHnzCh3/2267bY3rIQMAAAAAAPVPQExJ2WqrrWrcd9JJJ2XgwIG54YYb0rlz5xrHVe5OnjlzZpV9zz77bGG7cmfx1x1wwAE544wzcvnll2frrbdOkjz22GMpLy9Pkhx00EG13kfF/lmzZuWll16qdWx9evTRR5MkjRo1ygEHHFDjuBVXXLHQCTt06NCMHz++2nFbbbVVWrduXe2+ymvSfvnll0taco0q7qV169bZZZddahy31lprZcstt0ySDBo0KHPnzq123C677FJtcJvU773U9B5+6623CmtC77///mnTpk2N5zjkkEMK4XHFlxKqc+yxx6asrPqJJg477LDC/VZ+3ycLOuUrptGuWGe4spdeeilffPFFoVYAAAAAgGXJ/JT7Wcwf/reYYpqSss4669S4r0mTJoUpq7+uvLw8Y8aMyZAhQwodv8mCdY0rq+gOXWmllapdQ7ZC27Ztc+qpp1Z57u233y5sf/LJJ7UGd5MmTSpsDx06dKlN0fvOO+8kSZo1a5bBgwfXOrYi7E4W1LjqqqsuNKa617rCCiusUNieM2fO4pZaq0mTJhXWv23RokWeeuqpWsdXdJPPmDEjH330UTp27LjQmKVxL02bNk379u2r3Vf5/bPtttvWep4mTZpkyy23zFNPPZVx48Zl3Lhx1Xbxbr/99jWeY4UVVkjHjh3zn//8p8q1kwXrd2+zzTZ55ZVX8uyzz2b69OlZfvnlC/srppdu1qxZ9thjj1prBQAAAAAA6peAmJJSOairyfz58zN48OC88sor+eijj/Lxxx/nk08+WahbOKkagiYpdEWuvvrqi11b5S7bP/7xj4t8XMU1v23Tpk3LtGnTCttfD7hrU1ONFWsvV6fytMZff53rqvJrPWrUqHq5l9reW/V1LxXr/H5TXdWtwf11ldcd/uKLLxYKiJs3b/6NUz+vvvrq+c9//pMZM2ZkxowZad68eWFf9+7d88orrxTW6u7evXuSBV33TzzxRJJkt912qxIcAwAAAAAA3z5TTFNSapoCuMLbb7+dLl265Nhjj83111+fxx9/PMOHDy+Ew2uttVat0z9PmTIlSapdv/ibVISvi2v69OlLdNzSvE5Nx9Y0ffG3bUlf66Tme/n6Or3fhtrev5XrqhzU1qTye7RiLebKFiW4rXyOr7+me+21V2Ft6Ycffrjw/NNPP124Xrdu3b7xGgAAAAAAQP3SQQz/33vvvZef/OQnhTC4ffv26dy5czp16pT11lsvG220UVZeeeWMHj069957b7XnWG655TJt2rR89dVXi339ymHbO++8k6ZNmy7ZjXxLKte32WabpW/fvkWspm4qgssk2XfffXP55ZcXsZr6Ufmeqgt8v67ymMrHVpg9e/Yin6NBgwaFNY0rLL/88tl9993z4IMP5qWXXsrkyZPTqlWrwprEq6yySnbcccdvvAYAAAAAAFC/BMTw//3pT38qhMM///nPc/LJJ6dBgwYLjZs6dWqN52jdunWmTZuWzz777BuvN3jw4LRp0yZrrLFGmjRpktatWxf2jR8/vsoUwP8LVlhhhTRp0iSzZ8/OhAkTil1OnVR+rZf1e6nQpk2bwvaYMWOywQYb1Dq+Yg3mJNVOJT116tSF1g7+ujFjxiRJWrVqVW13c/fu3fPggw9m7ty5ee6557LXXnvlpZdeSrIgmF8aXdcAAAAAAEBVppiGJLNmzSoEVx06dMgpp5xSbTicJMOGDStsf3092Y033jjJgjVdP/nkkxqvN23atPz0pz/Nvvvum1/96ldJkk033bSw/9VXX6213sGDB+cXv/hF/vKXv+T111+vdWx9adiwYeH+Pv3001rvL0luv/32/Pa3v83VV1+dsWPHLo0SF1nbtm2z6qqrJklhDd3aXH755Tn33HNz3XXXFaYR/1+zySabFLYHDx5c69jZs2fn3//+d5IFnbyrrLLKQmPKy8vz9ttv13iOyZMn58MPP0ySbLPNNtWO2X777Quv8zPPPJOXX3650F2///7711ojAAAAAMD/qvLycj+L+cP/FgEx3wmVw9wl+UMzZcqUwnG1rd86Z86c9O7du/B47ty5VfbvvPPOhe277767xvM8+uijmTdvXpIFIVqS7LbbboX9//znPzNnzpwaj7/66qvzyCOP5KabbsrkyZNrHFffKtd4yy231Dhu6tSpufLKK3Pffffluuuuq3YK42KruJeZM2fmzjvvrHHcxx9/nJtuuin33HNPbr/99kVam3dxVbx/58+fv8Tn2GKLLbLSSislSe6///5aO6PvvvvuQtBd+T37dX369Klx35133ll4j1Z+X1TWsGHD/8fefYZVce1vH7+HJigqYm+JihH12Hs3Ro2997/lWFLUmH6O0eQYS2LUaKIxxlhyEks0sQW7qNh77713QUVUEKTt5wUP+0gogpQB9vdzXbkyzKxZc29HtrB/s9ZSmzZtJEk7duzQxo0bJUkeHh4qV65cAq8GAAAAAAAAAACkFgrEyBSeL0C+zAhPd3d3a2H44sWLOnToUKw2wcHBGjp0aIwRxM+ePYvRpmXLltYRk3PmzNHWrVtj9XP58mXrmrc5c+ZU69atJUWNII4eiXn27FmNGDEiziLx1KlTdeDAAUlSsWLF1KhRo6S+3JfWtWtX5cyZU1JU8fDPP/+M1SY0NFQfffSRAgMDJUWNFHV3d0+zjIn1z3/+U46OjpKkH374QZs3b47V5vHjx/rggw+sxfzevXvLwSHlZ+aP/vub0PTlL5IlSxb16tXL2s/7778f5/fCrl279N1330mKWld6wIAB8fa5YcOGGA9EPN/Hzz//LCnq72CLFi3i7aN9+/aSokbNr1ixQpLUtm3bxL0oAAAAAAAAAACQ4liDGJlCgQIFrNvjxo1Tz549JUUVbBPDwcFBrVu31uLFixUZGakBAwaoS5cu+sc//qGIiAhduHBBq1at0v3792Oc9+TJkxhfOzk5afz48XrrrbcUFhamgQMHqnnz5qpfv77s7Ox06tQpLV682FpY/vzzz+Xq6hoje6dOnRQQECAvLy8dOXJEHTt2VNGiReXn56f169fr8OHD1sxjx45N03Vcc+bMqW+++Ubvv/++IiMjNXLkSK1du1bNmjWTm5ubrl27pqVLl1qnlM6fP791Cu30pnjx4ho6dKjGjh2r0NBQDRo0SI0bN9brr78uFxcXXbx4UYsXL5a/v78kqXTp0nrrrbdSJUv+/Pl14cIFnT9/XpMnT1aZMmVUqFChGNOOJ8a7776r7du369ixYzpy5IiaN2+uLl26yNPTU8HBwdq5c6e8vb2to+U/++wzeXh4xNufYRgaM2aMduzYoaZNm8rBwUF79uzRihUrFBkZKUdHR40aNSrO9YejlSpVSmXLltXp06cVHh4uwzCso4oBAAAAAAAAAEDao0CMTKFOnTpyc3NTQECADh48qIMHD8owDL3++uuJ7uPf//63Tpw4oTNnzig4OFjz5s2L1SZLliz6/PPPtXjxYp06dUrnz5+P1aZu3br68ccfNXToUAUFBWndunVat25djDYODg4aOnSodXRltCJFimjBggV67733dPXqVV29elXff/99rGtkz55dEyZMULVq1RL9+lJKkyZNNGXKFH3++ecKDAzUvn37tG/fvljtihcvrhkzZqTL0cPR+vTpIzs7O02YMEGhoaHatGmTNm3aFKtdpUqVNH36dGXJkiVVcrRq1Uo7d+6UJM2YMUOS1KJFC02ZMiVJ/Tg6OurXX3/VJ598om3btsnf318zZ86M1c7FxUWjR49+4TrAQ4cO1eTJk7VlyxZt2bIlxrFs2bJp6tSpql279gtztWvXTqdPn5YkVatWTYULF07CqwIAAAAAAAAAACmJAjEyhVy5cmnu3LmaOHGijh8/rqdPn8rd3V137txJdB85cuTQn3/+qfnz58vb21uXL19WaGioXF1d9eqrr6p27drq3r27ChYsqOvXr+vUqVPy9/fX3r17VatWrRh9NWnSRBs3btS8efO0bds23bhxQ8+ePVP+/PlVu3Zt/fOf/9Rrr70WZ46SJUtq1apV8vLy0oYNG3Tu3DkFBATIyclJxYoVU4MGDdSzZ0/lzZs3WX9mydGsWTNVr15dCxcu1Pbt23Xt2jUFBgbK1dVVnp6eat68uTp16pRqBdWU1KtXL73xxhtasGCBdu3apZs3byo4OFhubm4qW7as2rRpo1atWqXqSO2OHTsqJCRECxYs0I0bN2QYhkJCQl6qL1dXV82aNUvbtm3TihUrdOTIEd2/f1/ZsmVTkSJF1LhxY3Xu3DlRf3/efPNN1atXTzNmzNC+ffv06NEjFSpUSI0aNVL//v2VP3/+RGV6fiT0i4rSAAAAAAAAAAAgdRmW6LlGAQA2b9iwYfLy8pIkbdq0SUWKFEl2nxMmTNCvv/6qLFmyaNeuXcqePXuy+3zeH4V6pmh/SN+OOEWaHQFpyCM87ZZRgPl6f+RsdgSkIaNUabMjIA1FbN1udgSkIfuaVc2OgDQUeS72zGrIvJwGf2V2BKShG40Gmh0BaajEiQ1mR8hwahRqaHaEDGf/7W1mR8Bz7MwOAADIvMLCwrRq1SpJUSOSU7o4DAAAAAAAAAAAkoYCMQAgVURGRmrixIm6d++eJKlHjx4mJwIAAAAAAAAAAKxBDGQCly5d0pUrV5LdT5UqVeTu7p4CiVLHwYMHFRAQkOx+mjRpkvwwiJPFYlHz5s2VK1cu3bx501ocrlOnjqpWZao5AAAAAAAAAADMRoEYyATWrl2radOmJbufefPmqWbNmimQKHX88MMP2r9/f7L7OXfuXAqkQVwMw1BERISOHDli3efu7q4xY8aYmAoAAAAAAAAAAERjimkAQIqqX7++smXLphw5cqhx48ZauHChihYtanYsAAAAAAAAAAAgybBYLBazQwAA8LL+KNTT7AhIQ0ecIs2OgDTkEW5vdgSkod4fOZsdAWnIKFXa7AhIQxFbt5sdAWnIviZLy9iSyHPnzY6ANOQ0+CuzIyAN3Wg00OwISEMlTmwwO0KGU71QA7MjZDgHbvN7QXrCCGIAAAAAAAAAAAAAsBEUiAEAAAAAAAAAAADARlAgBgAAAAAAAAAAAAAbQYEYAAAAAAAAAAAAAGwEBWIAAAAAAAAAAAAAsBEOZgcAAAAAAAAAAAAAMgqLxWJ2BCBZGEEMAAAAAAAAAAAAADaCAjEAAAAAAAAAAAAA2AgKxAAAAAAAAAAAAABgIygQAwAAAAAAAAAAAICNoEAMAAAAAAAAAAAAADbCwewAAAAAAAAAAAAAQEYRKYvZEYBkoUAMAAAAAAAAAAAAwCaEhYVp8eLFWrVqlS5cuKCwsDAVKFBAdevWVe/evVWiRImX6nffvn3q06dPks8rXLiwNm/eHCtj5cqVFRYW9sLznZycdOLEiSRdkwIxAAAAAAAAAAAAgEzv4cOHevvtt2MVVK9du6Zr167pr7/+0ujRo9W+ffs0y2QYRqx9ly9fTlRx+GVRIAYAAAAAAAAAAACQqUVERGjIkCHW4nDFihXVvn17ubq66tChQ1q2bJlCQkL0xRdfqGDBgqpZs2aS+n/ttdf0008/vbCdxWLR2LFjdefOHUnS+++/H6vNuXPnrNtffPGFChUqFG9/dnZ2ScopUSAGAAAAAAAAAAAAkMktW7ZMBw8elCS1bdtWEyZMsBZX27Ztq9atW2vAgAF69uyZRo8erdWrVyep+Oru7q4mTZq8sN2MGTOsxeEePXrEOVo5ukBsZ2enrl27ytnZOdE5EiPpJWUAAAAAAAAAAAAAyEB+/fVXSVLOnDk1cuTIWMXf6tWr67333pMkXbp0ST4+Pime4ezZs5o2bZokqVixYvrss8/ibBddIH7llVdSvDgsUSAGAAAAAAAAAAAAEs1isfBfEv8z25kzZ3TlyhVJUps2beTq6hpnux49esje3l6S5O3tnaIZLBaLRowYYV1beMyYMXJxcYmzbXSBuFSpUimaIRoFYgAAAAAAAAAAAACZ1v79+63btWvXjrddjhw5VLZsWUnSzp07UzTDsmXLdPz4cUlRRer41jh++PCh/Pz8JFEgBgAAAAAAAAAAAIAku3DhgnX7tddeS7BtyZIlJUmPHj3S7du3U+T6z54909SpUyVJWbJk0SeffBJv2/Pnz1u3o7P6+/tr79692rFjhy5cuJDsUdkOyTobAAAAAAAAAAAAANKxW7duSZLs7OxUsGDBBNsWKFDAun379m0VKlQo2df/888/5evrK0nq3r17gn1GTy8tSYGBgerbt6/27t0boyicP39+vfXWW+rZs6d1SuykYAQxAAAAAAAAAAAAgEzL399fkpQtWzY5OTkl2NbNzc26HRAQkOxrR0ZGat68eZIkBwcH9e3bN8H2zxeIv/jiC+3ZsyfWiGFfX1+NHTtWgwcPVkhISJIzMYIYAAAAAAAAAAAAQKpp3Lhxgsc3bdqUqtePLqJmyZLlhW2fLyAHBwcn+9qbN2/WzZs3JUnNmzd/4Yjk5wvE2bJl08CBA9WiRQvlz59f9+7d04YNG/TTTz/pyZMn2rp1q0aNGqXx48cnKRMFYgAAAAAAAAAAACCRIpW89V+RNFu2bNHAgQNf6txNmzapSJEiCg8Pl6QXjh7+e5uIiIiXuu7z5s+fb90eMGDAC9v7+flJihrJ/Mcff6hEiRLWY4ULF1a/fv1Ut25dde/eXUFBQfLy8lK3bt1UuXLlRGeiQAwAAAAAAAAAAAAg1aT2COEXcXZ2liSFhYW9sG1oaKh129HRMVnXvXbtmvbu3StJqlq1qsqWLfvCc7Zv366AgACFhoYqX758cbYpVaqUPvjgA40bN06StHjxYgrEAAAAAAAAAAAAADK+V155Rf3793+pc7Nnzy5Jypo1qyTp2bNnLzzn+QJxYqakToiPj491u3nz5ok+7/l1kOPTtm1ba4H40KFDScpFgRgAAAAAAAAAAABAuuTh4aHPPvssWX3kyJFDkhQYGKjw8HA5OMRfIg0ICLBuu7u7J+u6mzdvliQZhqFmzZolq6+/c3d3l5ubmwICAqzTUieWXYomAQAAAAAAAAAAAIB0pFixYpKkyMhI+fr6Jtj27t271u3ChQu/9DUfPnyoI0eOSJIqVaqk/Pnzv3Rf8XnZKbAZQQwAAAAAAAAAAAAg0/Lw8LBuX7x4McHC74ULFyRJOXPmTFZRd8+ePYqIiJAkNW7cOFHnnD17Vnv27NH9+/fVpEmTBNcVDg0NtY52zps3b5KyUSAGAAAAAAAAAAAAEskii9kRkEQ1atSwbu/du1cNGzaMs93jx4915swZSVL16tWTdc3Dhw9btytWrJioc86fP6/x48dLilovOaEC8f79+xUWFpak/qMxxTQAAAAAAAAAAACATKtkyZIqUaKEJMnLy0tBQUFxtluwYIF11G+LFi2Sdc2TJ09Kilp/uGzZsok6p2bNmrKziyrfrlmzRoGBgXG2s1gsmjlzpvXrdu3aJSkbBWIAAAAAAAAAAAAAmVq/fv0kRa0NPGzYMIWGhsY4fuDAAf3888+SotYefvPNN5N1vYsXL0qSihYtKldX10Sdkz9/fjVt2lSS5O/vr+HDh8fKGRkZqbFjx2r//v2SokY616tXL0nZmGIaAAAAAAAAAAAAQKbWuXNnLVmyRMePH9eGDRvUuXNndenSRW5ubjp8+LCWLFmisLAwGYahUaNGycnJKVYff/31l4YPHy5J6tChg3U66L97+PChnjx5IknKnTt3knIOGzZMhw4d0v3797Vhwwa1a9dOnTt3VqFChXT37l0tX75cZ8+elRS19vC4ceNkGEaSrkGBGAAAAAAAAAAAAECmZmdnp5kzZ+qtt97SqVOndO7cOX399dcx2jg6OmrkyJFq0KBBsq7l6+tr3U7s6OFohQoV0q+//qr3339f165d0+XLl/Xtt9/Gavfaa6/phx9+UNGiRZOcjwIxAAAAAAAAAAAAgEzP3d1dixcv1qJFi7R69WpdunRJT58+Vd68eVWzZk3169dPnp6eyb7O82sc58iRI8nne3p6auXKlVq2bJm8vb11/vx5BQUFyc3NTSVLllSLFi3UoUOHOEc5J4ZhsVgsL3UmAADpwB+FepodAWnoiFOk2RGQhjzC7c2OgDTU+yNnsyMgDRmlSpsdAWkoYut2syMgDdnXrGp2BKShyHPnzY6ANOQ0+CuzIyAN3Wg00OwISEMlTmwwO0KGUy5/LbMjZDgnffeaHQHPsTM7AAAAAAAAAAAAAAAgbVAgBgAAAAAAAAAAAAAbQYEYAAAAAAAAAAAAAGwEBWIAAAAAAAAAAAAAsBEUiAEAAAAAAAAAAADARjiYHQAAAAAAAAAAAADIKCyymB0BSBZGEAMAAAAAAAAAAACAjaBADAAAAAAAAAAAAAA2ggIxAAAAAAAAAAAAANgICsQAAAAAAAAAAAAAYCMoEAMAAAAAAAAAAACAjXAwOwAAAAAAAAAAAACQUURaLGZHAJKFEcQAAAAAAAAAAAAAYCMoEAMAAAAAAAAAAACAjaBADAAAAAAAAAAAAAA2ggIxAAAAAAAAAAAAANgICsQAAAAAAAAAAAAAYCMczA4AAAAAAAAAAAAAZBQWWcyOACQLI4gBAAAAAAAAAAAAwEZQIAYAAAAAAAAAAAAAG0GBGAAAAAAAAAAAAABsBAViAAAAAAAAAAAAALARFIgBAAAAAAAAAAAAwEY4mB0AAAAAAAAAAAAAyCgiLRazIwDJwghiAAAAAAAAAAAAALARjCAGAGRoOSIizY6ANJTVwrNttqRb/VtmR0AaMoo1NjsC0tCNz3zMjoA0VPSHtmZHQBra13uL2RGQhiq9cd/sCEhDvo0Gmh0BaajolhlmRwAApCI+ZQUAAAAAAAAAAAAAG0GBGAAAAAAAAAAAAABsBAViAAAAAAAAAAAAALARrEEMAAAAAAAAAAAAJJJFFrMjAMnCCGIAAAAAAAAAAAAAsBEUiAEAAAAAAAAAAADARlAgBgAAAAAAAAAAAAAbQYEYAAAAAAAAAAAAAGwEBWIAAAAAAAAAAAAAsBEOZgcAAAAAAAAAAAAAMopIi8XsCECyMIIYAAAAAAAAAAAAAGwEBWIAAAAAAAAAAAAAsBEUiAEAAAAAAAAAAADARlAgBgAAAAAAAAAAAAAbQYEYAAAAAAAAAAAAAGyEg9kBAAAAAAAAAAAAgIzCIovZEYBkYQQxAAAAAAAAAAAAANgICsQAAAAAAAAAAAAAYCMoEAMAAAAAAAAAAACAjaBADAAAAAAAAAAAAAA2ggIxAAAAAAAAAAAAANgIB7MDAAAAAAAAAAAAABmFxRJpdgQgWRhBDAAAAAAAAAAAAAA2ggIxAAAAAAAAAAAAANgICsQAAAAAAAAAAAAAYCMoEAMAAAAAAAAAAACAjaBADAAAAAAAAAAAAAA2wsHsAAAAAAAAAAAAAEBGESmL2RGAZGEEMQAAAAAAAAAAAADYCArEAAAAAAAAAAAAAGAjKBADAAAAAAAAAAAAgI2gQAwAAAAAAAAAAAAANoICMQAAAAAAAAAAAADYCAezAwAAAAAAAAAAAAAZhcViMTsCkCyMIAYAAAAAAAAAAAAAG0GBGAAAAAAAAAAAAABsBAViAAAAAAAAAAAAALARFIgBAAAAAAAAAAAAwEZQIAYAAAAAAAAAAAAAG+FgdgAAAAAAAAAAAAAgo4iUxewIQLIwghgAAAAAAAAAAAAAbAQFYgAAAAAAAAAAAACwERSIAQAAAAAAAAAAAMBGUCAGAAAAAAAAAAAAABtBgRgAAAAAAAAAAAAAbISD2QEAAAAAAAAAAACAjMJisZgdAUgWRhADAAAAAAAAAAAAgI2gQAwAAAAAAAAAAAAANoICMQAAAAAAAAAAAADYCArEAAAAAAAAAAAAAGAjKBADAAAAAAAAAAAAgI1wMDsAAAAAAAAAAAAAkFFEWixmRwCShRHEAAAAAAAAAAAAAGAjKBADAAAAAAAAAAAAgI2gQAwAAAAAAAAAAAAANoICMQAAAAAAAAAAAADYCArEAAAAAAAAAAAAAGAjHMwOAAAAAAAAAAAAAGQUFlnMjgAkCyOIAQAAAAAAAAAAAMBGUCAGAAAAAAAAAAAAABtBgRgAAAAAAAAAAAAAbAQFYgAAAAAAAAAAAACwEQ5mBwBgnr1798pisah27dpmR8nw3njjDd26dUuFCxfW5s2bzY5jutDQUC1dulRr167V+fPnFRwcrLx586pSpUrq1KmT6tata3ZEAAAAAAAAAABsEgViwAYFBgZq/PjxWrp0qb755huz4yCTuXXrlgYOHKjz58/H2n/r1i2tWbNGzZs31/jx4+Xi4mJSSgAAAAAAAAB4ORaLxewIQLJQIAZs0KlTp7RkyRKzYyATevr0qfr166dr165JkkqVKqU2bdqoYMGCun79uhYvXqy7d+/K29tbFotFU6dONTkxAAAAAAAAAAC2hQIxACDFzJ4921ocbtOmjcaPHy8Hh//9U9OvXz/16dNHJ06c0Pr167Vv3z7VrFnTrLgAAAAAAAAAANgcO7MDAAAyB4vFosWLF0uS3NzcNHr06BjFYUnKmjWrvvjiC+vXa9euTdOMAAAAAAAAAADYOkYQAwBSREBAgMqXL68LFy6oatWqypYtW5ztSpcubd2+fft2WsUDAAAAAAAAAABiBDFsWEREhJYuXaoBAwaobt26KleunOrWrau33npLy5cvV2RkZIz2c+fOlaenpzw9PbV06dIE+w4MDFT58uXl6empt99+O842u3fv1qeffqpGjRqpfPnyqlGjhrp27aqZM2cqMDAw3r579+4tT09P9e3bV5J0/fp1jRkzRk2bNlWFChVUs2ZN9evXT6tWrZLFYolx7r59++Tp6ak+ffpY9w0fPtz6um7evBmjnaenpw4ePKhjx46pe/fu1v579eqlM2fOxOj76dOnmjt3rnr37q2aNWuqXLlyqlevnt566y0tW7ZMERER8b6m6GtNnjxZkrRhwwb16tVLNWrUUPny5dWqVStNnjxZAQEBsc7duHGj9fwJEybEew0paoTrG2+8IU9PT3Xs2DHBtiltz549KleunDw9PVWxYkXt37/femzYsGHy9PRU06ZNJUn379/XpEmT1LJlS1WqVEnVq1dXjx49tHDhQoWHh8fZf0r0kVy5cuXSjBkztGnTJn377bfxtrt79651O0+ePKmSBQAAAAAAAAAAxI0RxLBJN2/e1KBBg3T+/PkY++/fv68dO3Zox44dmj9/vn7++Wfly5dPktSqVStNmDBBERER8vb2VufOnePt38fHR6GhoZKk1q1bxzgWEhKiYcOGad26dTH2h4aG6tixYzp27Jjmzp2rH3/8UVWrVk3wdfj4+Ojf//63nj59at337Nkz7d69W7t379aaNWv0448/ytHR8cV/KPE4c+aMJk2apJCQEGv/x44dU6FChaxtDh48qE8//TRG4U+S7t27p3v37mnHjh2aM2eOpk+frqJFiyZ4vYkTJ+qXX36Jse/ixYu6ePGi/vrrL/32228qWbKk9VjDhg3l5uamgIAArV27VkOHDpVhGHH2fejQId26dUuS1LZt28T/ISTT8ePHNXjwYIWFhcnR0VHTpk1TjRo14mx75MgRDR48WP7+/tZ9wcHBOnz4sA4fPiwvLy/99ttvcnV1jfd6KdFHaomIiNAPP/xg/bp58+ZpngEAAAAAAAAAkiNSlhc3AtIxCsSwOQ8ePND//d//ydfXV5JUqVIltWjRQvny5dP9+/e1du1aHTlyRCdPnlTv3r21bNkyubq6Kk+ePKpVq5Z27dqlvXv3KiAgQG5ubnFeI3pdVRcXFzVp0sS6PzIyUu+995527twpSSpUqJA6deqkEiVKKCgoSLt375a3t7cePHigfv36adGiRSpTpkyc17h27Zo+/fRThYaGqmXLlqpXr54cHBy0b98+eXl5KTIyUlu2bNGCBQuso41fe+01/fTTTzp//ry1SNe7d2/VqlVLkpQ7d+5Y15k4caLCwsLUvXt3Va1aVVeuXFFAQIBy5swpSTpx4oTefvtta5G6cuXKatGihfLmzatbt25pxYoVunDhgs6fP6/u3bvrr7/+Uv78+eN8TevXr9eVK1dkZ2en9u3bq3bt2goKCtKKFSt05MgR+fn5qWfPnlq1apW1cO/k5KQWLVrojz/+0N27d3Xw4EFVr149zv5XrVolSbK3t49VuE8tly9f1jvvvKOnT5/KwcFBU6ZMUf369eNs+/jxY2tht0GDBmrcuLGyZcumY8eOafHixXr27JmOHz+uKVOm6D//+U+q9ZHSwsLC5Ofnp0OHDmnOnDk6deqUpKiHJxo2bJgmGQAAAAAAAAAAQBQKxLA5I0eOtBaHP/nkE7377rsxjvfp00ezZs3Sd999p6tXr2rixIkaPXq0JKlNmzbatWuXwsLC5OPjE+co4kePHmn37t2SpEaNGsVYh/X333+3FoebNGmi7777Ts7OztbjXbp0UdeuXTVo0CAFBwfrX//6l1avXh3niNjbt2/L0dFRs2fPVr169az727Vrp+rVq2vYsGGSpKVLl1oLxO7u7mrSpImyZ89ubV+2bNkYRey/e/bsmf71r3/FOVV2REREjBHMn376qd55550Ybfr166cxY8Zo0aJFun//vj7//HP997//jfNaV65cUZYsWTR9+vQYr6l79+4aO3as5s+fr4CAAE2ePFnjxo2zHm/fvr3++OMPSVFF4LgKxGFhYfL29pYk1alTJ02mNr57964GDBighw8fys7OTuPHj0/wzzp6Cu1vvvlGnTp1su5v06aNmjRpor59+8pisWjFihUaNmyYHBxiv4WnRB8prUaNGjFGuTs6Ourdd9/VwIEDU/3aAAAAAAAAAAAgJtYghk25fPmyfHx8JElvvvlmrOJwtHfeecc6BbCXl5d1qt6mTZsqS5YskmQtNv7dhg0bFBYWJinm9NLh4eH69ddfJUkFChSIVRyOVrt2bb311luSoqZW3rJlS7yv5//+7/9iFFKjdejQQYULF5YkXbhwwTo99MvImjVrjDWLn7dhwwZduXJFktSyZctYxWFJcnBw0MiRI1WhQgVJ0s6dO3XixIl4r/fBBx/Eek2GYVjXSpak5cuXx5g+uVKlSipWrJikqFHI0X/+z9uxY4e1eJoW00sHBARowIABun37tgzD0JgxY9SmTZsXntekSZMYhd1otWrVUrVq1SRFjRK+du1aqvaRUh4/fhyjOCxFFet37NgRYx1mAAAAAAAAAACQNigQw6asX79eFkvU2gBxFdCeF308ek1fSXJ1dVWjRo0kyTrN9N9Fry3s5uYWYyrhY8eO6c6dO5KiiqlxFYf/fm1J2rp1a7zt3nzzzXiPlSpVyrr9+PHjeNu9SLly5axF8b/btm2bdTu6qB0Xe3v7GMeji/R/lzVrVv3f//1fvH1EH4uMjNSOHTtiHG/Xrp2kqMJs9P163urVq63XaNq0abxZU0JwcLDeffddXbx4UZI0fPhwdenSJVHnJnRPowvkUsL3NCX6SCmhoaH65JNPNHnyZI0ZM0avv/66pKjvhwEDBmjx4sWpngEAAAAAAAAAAPwPU0zDphw7dsy6fePGjXgLlZL08OFD6/apU6eso4HbtGkjb2/vOKeZ9vf31969eyVFFemcnJysx44fP27dDgoKSvDakuTs7KyQkBCdPHky3jYeHh7xHnN1dbVuh4eHJ3ithJQoUSLeY0ePHpUk5ciRQ//4xz8S7Cd6nWNJ8Y4grly5srJmzRpvH1WrVrVuHzt2zFoUlqIKxFOnTpXFYtHq1atjrG0bFBSkzZs3S4oaBe7i4pJg1uQIDw/X+++/b/2zKVGiRLwjsOOSEvc0Lf5eJFaePHlijNTv1q2bli9frmHDhsliseirr75S7dq1VbRo0VTPAgAAAAAAAAAAKBDDxvj5+Vm3v/7660Sf9+DBA+t2gwYNlDNnTj169Eje3t4xCsTr169XRESEpJjTS0uyrnssSYsWLdKiRYsSde3np1L+u+fXEv6759eWjYyMTNS14pIjR454j0VnK1KkyAv7yZkzp/XP7f79+3G2iZ4mOj4FCxa0bv+9j8KFC6t69erav3+/fHx8FBISYh2lvXHjRgUHB0tSjKJyavD19Y1xry9fvqwlS5aoa9euiTo/Je5pWvy9SI727dvr2LFjWrhwoUJDQ/Xnn3/q3//+tylZAAAAAAAAACCpomcqBTIqppiGTQkMDHyp84KCgqzbTk5OatasmaTY00yvXbtWUtQaw9WrV0/xa//d88W+1PL8KOi/i86W2BG50QXb6GLt32XLli3B85+/Tlx/LtHF36dPn1pHDEvSqlWrJEl58+ZV7dq1E5U1uVq1aiVHR0dJ0qRJk2I8ZJAQe3v7ZF87JfpIbd26dbNuHz582MQkAAAAAAAAAADYFkYQw6Y8v+7v8ePH411b90Vat26txYsXx5hm+t69ezp48KCkqDWG7exiPn/x/LVnz56tBg0avNS10xMXFxc9efIk3oLv3z19+lSS4l1/OTQ0NFHnS1FrPP9d8+bN9dVXXykkJERr165Vy5Yt5e/vrz179kiKmh787/clNXTp0kVfffWVpkyZohkzZujRo0caP368Jk6cmOrXziien7o8oVHyAAAAAAAAAAAgZTGCGDYld+7c1u3np5tOqurVq6tAgQKSoqYvlqQNGzZYp+xt06ZNgte+d+/eS187PcmTJ48k6ebNmy9s6+/vrydPnkiS8ufPH2ebu3fvJtjH89fJly9frOOurq5q0qSJJGnXrl0KDQ3Vtm3brNN+t23b9oU5kytv3rwaM2aMDMPQwIEDVbhwYUnSypUrrYXqzOrw4cMaOnSounfvrp07dybY9tmzZ9btF40cBwAAAAAAAAAAKYcCMWxKhQoVrNv79+9PsO3evXv10UcfadKkSdaRwdHs7OzUqlUra7uQkBB5e3tLihoZWbZs2WRd++HDh3rvvfc0duxYrVy5MuEXZaLy5ctLkh4/fqxTp04l2Hbv3r3WbU9PzzjbHD16NMG1G56/DzVq1IizzfPTTO/Zs0dbtmyRJJUqVUplypRJMGNKcHJyso5SdnFx0fDhw63HRo0a9cJR0hnZo0ePtGLFCh05csT65x6fY8eOWbeLFy+e2tEAAAAAAAAAAMD/R4EYNqVx48bW7Xnz5iksLCzettOmTdO6des0e/bsGOsMR4seJRxdHD506JCkqOmn41K1alXrtMje3t66detWvNeeN2+efHx8NG/ePJ04ceJFLyvJnp9mOXrU88t4/s/zl19+ibddRESEfv31V+vXjRo1irPd3bt34y0shoWF6Y8//pAkZc2aVXXq1ImzXd26dZU3b15JUaO6o0eypsXo4bg0bdrUOp341atX9fPPP5uSIy1Ur17dOn34qlWrrCPG/85iscT4+xI96hsAAAAAAAAAAKQ+CsSwKRUqVLCOPD179qxGjBgRZ5F46tSpOnDggCSpWLFicRY0y5Qpo5IlS0qSvv/+e+s0xnFNLy1Frbvbu3dvSVFF5ffee0/379+P1W7Hjh2aPXu2JMnBwUF9+vRJ6st8oefXAH78+PFL99O0aVO9+uqrkqS1a9dq1qxZsdpERERozJgx1kJ3zZo1Va1atXj7HDlypK5evRqrj9GjR+vSpUuSpAEDBsS7frS9vb31HixfvlxBQUGys7OL976khREjRsjJyUlS1PrTly9fNi1LanJ1dVWXLl0kRY0mHj58eKwR0xaLRRMmTLBOt+3p6almzZqleVYAAAAAAAAAeFmRFgv/JfE/pC8OZgcA0tq4cePUqVMnBQQEyMvLS0eOHFHHjh1VtGhR+fn5af369Tp8+LCkqALt2LFjZW9vH2dfrVu31pQpU+Tr6yspqgD9yiuvxHvtd999V9u3b9exY8d05swZtWzZUp06ddI//vEPBQUFaf/+/Vq7dq11VO+HH36ookWLpvCfgKzrJ0vSnDlzlCtXLjk4OKhBgwbKmTNnovuxt7fXpEmT1LNnT4WGhuq7777T5s2b1bJlS+XJk0d37tzR8uXLdf78eUmSm5ubJkyYEG9/hmHIz89PHTt2VPfu3VWuXDn5+/vrr7/+sk5hXbJkSb399tsJ5mrXrp1+/fVXhYeHS4qajvr515zWXnnlFb311luaPn26wsLCNHLkSM2fP9+0PKnpgw8+0K5du3T58mVt3LhR7du3V+fOnVWwYEH5+vpqxYoVOn36tCQpe/bsmjx5cowR7QAAAAAAAAAAIHVRIIbNKVKkiBYsWKD33ntPV69e1dWrV/X999/Hapc9e3ZNmDAhwdGu0QXi579OiKOjo3799Vd9/PHH2r59ux49ehRj6uVodnZ2GjRokN55553Ev7AkyJs3r2rUqKH9+/fL19dXw4YNkyTNmjVLDRs2TFJfFSpU0G+//aaPPvpI9+7d05EjR3TkyJFY7cqUKaMff/xRBQsWjLevKlWqKH/+/Fq7dq3++9//xjpeuXJl/fzzz/GOHo5WunRplS5dWmfPnpVk3vTSz3v33Xe1YsUK3bp1S/v379dff/2ljh07mh0rxeXIkUO//vqrhgwZopMnT+rSpUtxPhTwyiuv6KeffpKHh4cJKQEAAAAAAAAAsF0UiGGTSpYsqVWrVsnLy0sbNmzQuXPnFBAQICcnJxUrVkwNGjRQz549rWvZxqdo0aKqXLmyjhw5Int7e7Vs2fKF13Z1ddXs2bO1bds2rVy5UkeOHNH9+/dlGIYKFCigmjVrqkePHipTpkxKvdw4TZ06Vd9++6127Nihhw8fytXVVQ8fPnypvqpVq6b169dr0aJF2rRpky5evKigoCDly5dPr732mtq3b68mTZrI0dExwX7s7e01efJkNWzYUAsXLtSFCxckRRWX27dvr44dO8rBIXFvWxUqVNDZs2fl7OycLqYwdnZ21n/+8x8NGjRIkjRhwgS9/vrrcnd3NzlZyitYsKAWLVqklStXavXq1Tp16pSCgoKUPXt2lS5dWs2aNVPHjh2t024DAAAAAAAAAIC0Y1gsTPwNwFyenp6SoqaCTomplyMiItSwYUPdu3dPrVu31nfffZfsPpF+rcnfw+wISEMHnJmS3JZ8VOe22RGQhrJ0amx2BKShGyN2mh0BaajoD+bP6IO0s6/3FrMjIA1VeuO+2RGQhvxPJvzgPzKXoltmmB0BacgxTwmzI2Q47tlfMztChuP/5ILZEfAcPmUFkOls375d9+7dkyR16tTJ5DQAAAAAAAAAAADpB1NMA8hU/Pz89O2330qSihUrptq1a5ucCAAAAAAAAACQmTA5LzI6CsQAMrx169ZpxowZcnJy0rlz5/Ts2TNJ0nvvvSfDMOI8x9/fX4cPH072tYsXLy4PD49k92OW4OBg7dq1K9n9FCxYUP/4xz9SIBEAAAAAAAAAAEhNFIgBZHh58+bV2bNnY+x788031bZt/GudXbhwQe+9916yrz1kyBC9//77ye7HLA8ePEiRP4cOHTpo/PjxKZAIAAAAAAAAAACkJgrEADK8V155RaVKldLVq1eVN29etWvXToMHDzY7FgAAAAAAAAAAQLpDgRiA6c6dO5es8/Ply6dVq1Yl6ZyaNWsm+7qZQZEiRfhzAAAAAAAAAADAhtiZHQAAAAAAAAAAAAAAkDYYQQwAAAAAAAAAAAAkUqQsZkcAkoURxAAAAAAAAAAAAABgIygQAwAAAAAAAAAAAICNoEAMAAAAAAAAAAAAADaCAjEAAAAAAAAAAAAA2AgKxAAAAAAAAAAAAABgIxzMDgAAAAAAAAAAAABkFBaLxewIQLIwghgAAAAAAAAAAAAAbAQFYgAAAAAAAAAAAACwERSIAQAAAAAAAAAAAMBGUCAGAAAAAAAAAAAAABtBgRgAAAAAAAAAAAAAbISD2QEAAAAAAAAAAACAjCLSYjE7ApAsjCAGAAAAAAAAAAAAABtBgRgAAAAAAAAAAAAAbAQFYgAAAAAAAAAAAACwERSIAQAAAAAAAAAAAMBGUCAGAAAAAAAAAAAAABvhYHYAAAAAAAAAAAAAIKOwyGJ2BCBZGEEMAAAAAAAAAAAAADaCAjEAAAAAAAAAAAAA2AgKxAAAAAAAAAAAAABgIygQAwAAAAAAAAAAAICNoEAMAAAAAAAAAAAAADbCwewAAAAAAAAAAAAAQEYRabGYHQFIFkYQAwAAAAAAAAAAAICNoEAMAAAAAAAAAAAAADaCAjEAAAAAAAAAAAAA2AgKxAAAAAAAAAAAAABgIygQAwAAAAAAAAAAAICNcDA7AAAAAAAAAAAAAJBRWCwWsyMAycIIYgAAAAAAAAAAAACwERSIAQAAAAAAAAAAAMBGUCAGAAAAAAAAAAAAABtBgRgAAAAAAAAAAAAAbAQFYgAAAAAAAAAAAACwEQ5mBwAAAAAAAAAAAAAyCossZkcAkoURxAAAAAAAAAAAAABgIygQAwAAAAAAAAAAAICNoEAMAAAAAAAAAAAAADaCAjEAAAAAAAAAAAAA2AgKxAAAAAAAAAAAAABgIxzMDgAAAAAAAAAAAABkFBaLxewIQLIwghgAAAAAAAAAAAAAbAQFYgAAAAAAAAAAAACwERSIAQAAAAAAAAAAAMBGUCAGAAAAAAAAAAAAABtBgRgAAAAAAAAAAAAAbISD2QEAAAAAAAAAAACAjMJisZgdAUgWCsQAAAAAAAAAAAAAbNa7776rrVu3aty4cerYsWOK9Hn+/Hn99ttv2rdvn/z8/JQ9e3Z5eHioffv26tChg+zt7dOkj7hQIAYAAAAAAAAAAABgk/766y9t3bo1RftcsmSJRo8erbCwMOs+f39/+fv768CBA/Ly8tJPP/0kNze3VO0jPhSIAQAAAAAAAAAAANicbdu26csvv0zRPnfs2KERI0bIYrHIxcVF3bt3V7ly5fTgwQMtXbpU58+f18GDB/XJJ5/ol19+kZ2dXar0kRAKxAAAAAAAAAAAAABsyl9//aWRI0fGGKGbXKGhoRo1apQsFouyZs2q33//Xf/4xz+sx3v06KFPPvlEGzdu1K5du7R27Vq1bt06xft4kaSVkwEAAAAAAAAAAAAgg3ry5Im+/PJLDR8+XKGhoSna94YNG3Tz5k1J0ltvvRWjsCtJTk5OmjBhgnVa6JkzZ6ZKHy9CgRgAAAAAAAAAAABIJAv/Jfm/9GL16tVq1qyZFi1aJElyd3dX9+7dU6z/tWvXSpIMw1CPHj3ibJMtWzZ17NhRknT+/HlduXIlxft4EQrEAAAAAAAAAAAAADK9RYsW6cGDB5KkevXqycvLSxUrVkyx/g8cOCBJ8vT0lLu7e7ztatWqZd3evn17ivfxIqxBDAAAAAAAAAAAAMAmFC5cWJ9++qlatWqVov36+vrq8ePHkqTXXnstwbYeHh7W7bNnz6ZoH4lBgRgAAAAAAAAAAABApvfJJ5+ofPnycnBI+RJp9LrBUlQROiH58+eXnZ2dIiMjdfv27RTtIzGYYhoAAAAAAAAAAABAple5cuVUKQ5L0sOHD63buXLlSrCto6OjsmbNKkkKCAhI0T4SgxHEAAAAAAAAAAAAAFJN48aNEzy+adOmNEqSeoKDg63bWbJkeWH7LFmyKDAwUCEhISnaR2JQIAYAZGitfP8wOwLSUMquCgIAMEupzmYnAJBaXvcdbHYEAKnEzewAAJCOhIfeMjtChvOiAnFCtmzZooEDB77UuZs2bVKRIkVe+tpJERERYd12cnJ6YfvoNuHh4SnaR2JQIAYAAAAAAAAAAACQajLDCOEXeX7Eb1hY2Avbh4aGSoqaKjol+0gMCsQAAAAAAAAAAAAA0qVXXnlF/fv3f6lzs2fPnsJp4he9HrAkPXv27IXto9s4OzunaB+JQYEYAAAAAAAAAAAAQLrk4eGhzz77zOwYL5QjRw7r9qNHjxJsGxYWpqdPn0qS3N3dU7SPxLBLUmsAAAAAAAAAAAAAQAzFihWzbt+5cyfBtr6+voqMjJQkFSpUKEX7SAwKxAAAAAAAAAAAAACQDLly5VLu3LklSRcuXEiw7cWLF63bpUqVStE+EoMCMQAAAAAAAAAAAAAkU/Xq1SVJZ86c0ZMnT+Jtt3fvXut2jRo1UryPF6FADAAAAAAAAAAAAADJ1KxZM0lSeHi4/vjjjzjbBAYGysvLS5JUvHhxlS5dOsX7eBEKxAAAAAAAAAAAAACQTE2aNFGRIkUkST/99JMOHjwY43hoaKiGDh2qgIAASVK/fv1SpY8XcUjyGQAAAAAAAAAAAABgY/bt26c+ffpIiprWef78+TGOOzk56YsvvtDgwYMVEhKivn37qkuXLqpSpYoCAgK0ePFinT9/XpJUpUoVde7cOdY1UqKPF6FADAAAAAAAAAAAAAAp4I033tDIkSM1duxYhYWFaeHChVq4cGGMNuXLl9f06dNlb2+fan0khAIxAAAAAAAAAAAAAKSQHj16qFq1apo7d652796te/fuydHRUaVKlVKbNm3UtWtXOTo6pnof8TEsFovlpc4EAAAAAAAAAAAAAGQodmYHAAAAAAAAAAAAAACkDQrEAAAAAAAAAAAAAGAjKBADAAAAAAAAAGzOhQsXzI4AAIApWIMYAAAAAAAgmSIjI3X58mU9ePBAQUFBeuONNyRJT548UbZs2WRnxzP6AJDelClTRmXKlFHbtm3VqlUr5c2b1+xIAACkCQrEAABkEIGBgVq9erUOHz6sBw8eKFu2bCpRooSaNGmicuXKmR0PL+HmzZs6ePCgLl68KF9fXz158kShoaEyDENOTk7KkSOH8uTJo+LFi6tcuXIqXbq02ZEBAMDfHD9+XL/88ot27typ4OBgSZJhGDp9+rQkacaMGZo3b5769Omj/v37y8nJycy4AIDnlC5dWoZhSJLs7OxUq1YttWvXTk2bNpWLi4vJ6QAASD0UiAEASAdu3rwpb29v3b59W3ny5FGzZs3k4eFhPb59+3YNGzZMDx8+jPP8119/XWPHjpW7u3taRUYy7Ny5U9OmTdOxY8eSdF7u3LnVqVMn9e3bV7ly5UqldABS09atW7VlyxadOnVK/v7+CgoK0r59+yRJq1at0smTJ9W7d28VKVLE5KRIjocPH+rkyZN68uSJwsLClNhfu9u3b5+6wZDivv/+e/3yyy+yWCwx7rNhGDpz5owk6T//+Y+WLl0qwzBUpkwZ/fLLL/zMlkncvHlTixYtivMBzmbNmpkdDykoODg4VrHQz89PCxcu1Llz55Q1a1ZVr15dHTt25CGQDGbq1Klas2aNrl27JknWYrGzs7OaNm2qNm3aqF69etb9yJx4PwdgiygQAwBgIovFookTJ2ru3LmKjIy07jcMQ++8844++ugjnTx5Uj169FB4eHi8HzAbhqFChQpp4cKFyp8/f1rFRxJZLBaNHTtWCxYssH79d9EfPGTJkkXPnj2L1cYwDOXIkUNff/21mjZtmvqhAaSIs2fP6t///rcuXrxo3WexWGIUkb755hvNmzdPDg4O+uijj/TWW2+ZFRcvyc/PT6NHj9aWLVsSXRSO9vyIU2QMkydP1syZMyVJDg4OqlatmpydnbV169YY39uTJ0/WL7/8ooiICBmGoUqVKmnhwoUUG9K5AwcOaO3atdYHOJs3b6769etbjy9ZskRff/21QkND4zy/dOnSmjx5sooVK5ZGiZHSLBaLfvvtN/3+++8qV66cpk6daj125swZ9e/fXwEBATHOefXVVzV79mwVLVo0jdMiuY4fP66VK1dq3bp1evDggaT//W6WO3dutW7dWm3btlXZsmXNjImXwPs5AMSNAjEAACb6+uuvtWDBgngLhSNGjNCmTZu0a9cuSVLDhg3VrVs3FS9eXM+ePdPx48c1d+5cXbp0SZJUoUIFLV68OE1fAxJv0qRJ+uWXXyRJuXLlUvv27VWhQgW5ubkpMDBQp06d0ooVK3Tnzh3VqlVLkydPlsVi0blz57R//35t3LjRWlyys7PTpEmT1LJlSzNfEoBEOHz4sPr37x/joQ9nZ2eFhITEKCINGTJEPj4+kqL+DXjvvfc0ZMgQ03IjaUJCQtS2bVvduHEjycVhKeaIU6R/Z8+eVceOHWWxWFSxYkVNmDBBr776qnx8fDRkyJBY9/Pq1av64IMPdP78eRmGoUmTJqlVq1YmvgLEJyQkRJ999pk2bNgQ61jr1q01fvx47du3TwMGDJAU9wN/0XLmzKmFCxfGmBkIGcfQoUO1atUqWSwWlSpVSitXrrQea9u2rc6fPx/neSVLltTy5cvl4OCQVlGRgiIjI7V7926tWrVKGzdu1NOnTyX9r1js4eGhtm3bqk2bNipYsKCZUfECvJ8DQMIoEAMAYJLjx4+rW7dukqRChQrpk08+UenSpXX37l399NNPOnz4sLJnz66goCBZLBZ99NFHevfdd2P1Exoaqs8++0zr1q2TYRj67rvvKBqmQ89/kNywYUNNnDhR2bNnj9Xu2bNn+uKLL7RmzRrVrl1bv/76a4zj69ev15dffqlHjx4pa9asWrduHaPGgXQsMDBQzZo104MHD+Ti4qIBAwaoc+fOOnnyZKwiUkBAgObOnavZs2crPDxc9vb2WrZsGeuPZxCzZs3S999/L8MwlCVLFjVv3lyenp5ydXVNdJGgQ4cOqZwSKWXEiBFasmSJ8uTJo3Xr1ln/TY+vQCxJjx8/VvPmzfXw4UM1aNDAOvoY6ctHH30kb2/vOI9FP7yzc+dOHT16VIZhqEePHtYHOENDQ3Xs2DHNnj1be/fulRQ1onTNmjUUCzOYvXv3qm/fvjIMQ66ururUqZOGDRsmSdq3b5/++c9/yjAMFStWTNOmTVPOnDk1a9YszZs3T4ZhaPTo0eratavJrwLJFRISos2bN2v16tXavXu3QkJCJEW9FxiGoapVq6p9+/Zq1qyZXF1dTU6Lv+P9HAASxrsZAAAmWbx4sSwWi9zc3LRkyRLrWnQeHh6qVq2a2rZtq2vXrskwDFWrVi3O4rAkOTk56dtvv9Xp06d1/fp1rV69mgJxOjR//nxFRkaqWLFimjp1arxrk2XJkkXffvutzp07pz179mj16tVq3bq19XizZs1UqFAh9ezZU8HBwVqwYIE++eSTtHoZSKQDBw6kWt/Vq1dPtb6R8hYuXKgHDx7I3t5eP//8s2rVqiVJOnnyZKy2bm5u+vDDD1WlShW9++67ioyM1B9//KHRo0endWy8hOgPIHPkyMEIExuwb98+GYahTp06xfnAV1xy5Mihrl27asaMGTp16lQqJ8TL2L17t7y9vWUYhsqVK6cvvvjC+gDnlClT5O3trVmzZik0NFSGYWj8+PFq166d9XwnJyfVrVtXdevW1fjx4zVnzhxdv35dXl5e6tKli4mvDEm1YsUKSVL27Nm1ePHiGFPLPl9w+te//mV9v//888916tQpHTp0SOvXr6dAnAk4OzurZcuWatmypZ49e6Y9e/Zo48aNWrFihcLDw3Xw4EEdPHhQX331lZo1a6bu3burcuXKZseGeD8HgMSgQAwAgEkOHDggwzDUvXt3a3E4WpYsWdS3b19rUaB58+YJ9uXo6KhOnTrp+++/14kTJ1ItM17e3r17ZRiGunbtGm9xOJqdnZ06deqk8ePHa+nSpTEKxJJUvnx5tW3bVkuXLtXWrVspEKdDvXv3TpW1JVmjNOPZtGmTDMNQ8+bNrcXhF6lfv75atGihNWvWaP/+/amcECnl6tWr1n/XKQ5nfn5+fpIkT0/PJJ1XsmRJSYq1binSh2XLlkmSChQooPnz58vZ2VmSVKxYMX3//fe6fv26Tp8+LcMw1LBhwxjFhL8bNmyY9u/frzNnzsjb25uCQgZz6NAhGYahbt26xVp3dOvWrZIkFxcXNWjQIMaxpk2b6tChQ/FOP42M6fHjx9q2bZu2bNmiHTt2WNeUj56YMyQkRCtXrtTKlStVp04djR49WkWKFDE5tW3j/RwAXszO7AAAANiqu3fvSlK8HyLXq1fPup07d+4X9le0aFFJfOCYXvn6+kpSotepKlCggCTp3LlzcR6vWrWqJOnGjRspkA4pzdPTUxaLJVX+Q8Zy9epVSVKdOnWSdF7NmjUl/e/fCqR/0Q+FJLVgiIwpenrJ0NDQJJ0XHBwsScqaNWuKZ0LyRU8z2rVrV2sxIZqdnZ369etn/bpx48Yv7K9t27ayWCw6e/ZsimdF6rp//74kqVSpUjH2X7x4UXfu3JFhGKpRo4YcHR1jHM+XL58k6eHDh2kTFKkmODhYK1eu1Lvvvqs6depo6NChWrdunZ48eSKLxaIyZcpo+PDh+uOPP9SvXz/lyZNHFotFu3btUvfu3XXt2jWzX4JN4/0cAF6MEcQAAJjE0dFRoaGhevDgQZzHowuEFoslUQUCf39/SXzgmF5ly5ZNjx8/1pUrVxLVPvqeR3+Q/HeRkZEx/o/05a+//tL06dP1008/WYtGrVu31quvvmpyMqS1ly0GZcuWTZJ4KCADKVq0qM6dO0dRwEYUKVJE586d04EDB9S+fftEnxc98pCRZenTvXv3JEmvvPJKnMejH9CTlKj1RqN/nn/8+HEKpENaCg8PlyTZ29vH2L99+3brdt26dWOdF/27XZYsWVIxHVJLWFiYtm3bpjVr1mjr1q3WNYejfx7Lly+f2rRpo/bt2+u1116znle5cmV9+umn+vbbbzVv3jw9ePBAkyZN0o8//mjK6wDv5wCQGBSIAQAwiYeHh44fPy4fHx/17ds31nFHR0ft3btXd+/ejfVkelxWrlwpwzBiPeWO9KFkyZI6dOiQFi9erD59+iT4S6jFYrGue1a4cOE42+zbt09S4kckI23Z29vr/fffV758+TR69GhZLBYdP35cX375ZaLXqkTmkCdPHt25c0eXL19O0nnR65MmZgYJpA9vvvmmzp49q3Xr1qlnz55mx0Eqq1+/vs6ePatVq1bpn//8Z6J+/tqyZYt12vm4Ckswn4uLi8LCwnTnzp04j+fLl08uLi4KDg5O1Cwu0f0kpviA9KVAgQK6ceOGLl26FGP/li1brNuvv/56rPP27t0riYdAMhKLxaK9e/dq9erV2rhxo548eWLdL0W9LzRp0kTt27dXnTp14l1GxsHBQcOHD9e6det07949lgkxGe/nAPBiTDENAIBJGjduLIvFokOHDmny5MlxjhJzc3NT6dKlE1zLMDIyUl9//bWOHTsmSWrWrFmqZcbLa9GihaSoqaYHDRqU4AizsWPH6syZMzIMI87prnx8fLRq1SoZhhFjKnKkP926ddOHH34oi8Wi69ev66uvvjI7EtJYlSpVZLFYtGzZskRPRfvgwQMtW7ZMhmGocuXKqZwQKeWf//ynChcurEOHDumnn34yOw5SWe/eva0fPvfv31/btm2Lt21ISIh+/fVXffTRR5IkJycnHiJIp0qVKiWLxaJVq1bFOUuLg4ODjhw5ogMHDqhTp04J9hUWFqalS5fKMAyVLVs2tSIjlVSrVk0Wi0WLFy/W7du3JUm7du3SgQMHZBiGSpcubV3iJ9ratWutD4FUr17djNh4CfXr11f//v31119/6fHjx9bfy2vWrKlx48Zp165dmjhxourWrRtvcTiaYRjWhwMiIiJSPTvix/s5ALyYYWHOMgAATBEYGKg2bdpYpxIuWbKk3nzzTb3//vuJOv/SpUvasWOHFi1apKtXr8pisejVV1/VqlWr5OTklJrR8RLCwsLUtm1b63qkuXLlUo8ePVS7dm3ly5dPISEhOnXqlBYuXKiTJ0/KYrHIzc1N3t7ecnNzkyQtX75cy5cv1759+2SxWJQ1a1atWrUq3lHGSD+GDBkiHx8fGYahX3/9VbVr1zY7EtLInj171K9fPxmGoaZNm2rSpElycnKSj4+PhgwZIsMwdObMGWv7O3fu6L333tPp06dlGIZmzZql+vXrm/gKkBRXr17Vu+++q+vXr6tMmTJ688035eHhIVdXV+uatQmhoJCxLF++XMOHD7d+nTt3bmXLlk3Xrl2TYRhq2bKl/Pz8dPLkSYWEhMhiscgwDP3nP/+hQJxOLVy4UGPGjJFhGGrbtq1GjRolFxeXJPcTGBiozz//XBs2bJBhGBo3blySpiKH+U6cOKGuXbtKkpydneXh4aGzZ88qPDxchmFo9OjR1uPbtm3TH3/8oW3btsliscjR0VHLly9P8CFfpB+lS5e2bpcoUULt2rVT27ZtX3qmpmbNmikyMlL169fXl19+mVIxkUS8nwPAi1EgBgDARKdPn1b//v0VEBAgKWq64OenLUtIly5ddPLkSUlR01/lyZNHc+bMUcmSJVMrLpLp+vXr6tWrl/z8/BJ8+txiscjFxUW//PJLjLWRevXqpUOHDsliscjJyUk//PCDGjVqlBbRkUz3799Xs2bN9PTpU3l6emr58uVmR0Ia+uijj+Tt7S3DMFSgQAG1bNlSgYGBWrRokQzD0C+//CI/Pz/t379f3t7e1vXuGjRooJkzZ5qcHolVrlw5SVHv4RERES8cZfR3hmHo9OnTqRENqWjFihUaPXq0nj59Kklx3vfoj10cHR01dOhQ9e7dO00zIvFCQ0PVqVMnXbhwQYZhKGfOnGrUqJHGjRuXqPN3796tzZs3a9WqVdaRiOXLl9eiRYtkZ8ckfhnNzJkzNXnyZElR39vR38sNGzaM8e/zd999p9mzZ1u/HjVqlLp37562YfHSatWqpVatWqldu3aqUKGC2XGQQng/B4AXo0AMAIDJ/Pz8NGnSJK1du1a1a9eO8eFCQj799FOtWbNGktSoUSONGDFChQoVSs2oSAH+/v4aO3asvL294512rEaNGho1apRKlCgRY/9HH32kzZs364033tD777/PqIQMZs6cOZo3b54kadKkSapSpYrJiZBWnj17psGDB2vXrl2S4i4gRYv+9axixYr69ddflS1btjTJiOR7fgTSy/j7aHJkHL6+vlqwYIHWr1+va9euxTqeL18+NW7cWP/85z9VrFixtA+IJLl165b69eun69evS5KKFi2qjRs3Jurc7t27W5d9sVgsKlGihH777Tflz58/1fIide3atUsLFy7UlStX5ObmpubNm6tnz56yt7e3tvHy8tLw4cNVsWJFffzxx6pVq5aJiZFU4eHhiZrlAxkP7+cAkDAKxAAApBOBgYHy8/OLVRSMz9atW3Xr1i3Vr19fr7zySiqnQ0q7e/eudu3apUuXLunJkyfKmjWrihQpolq1aum1116L85x79+4pZ86cTCEOZEAWi0Xz58/Xb7/9pjt37sTbLmfOnOrdu7cGDhzIh5UZzLRp05Ldx5AhQ1IgCcwUEBAgPz8/BQYGysXFRe7u7nyYnAEFBwdr1qxZWrJkiSpUqKDp06cn6rzPPvtMK1askLOzszp37qwPP/xQ2bNnT+W0MNujR48UHBysAgUKmB0FKSwkJESBgYFyc3Pj57IMivdzAIgfBWIAAAAASCMRERE6duyYjh8/Ll9fXwUGBsrZ2Vm5c+dWhQoVVLVqVWXJksXsmACSKCIiQhaLJc4CwrZt21S1alW5urqakAzJFRAQIDc3t0S1PXLkiB49eqTq1aszA0QGd/v2bUlRa4sn5d/lJ0+e6OjRo/L391e7du1SKx5SSWBgoJYtW6Zt27bp6NGjCg4OlhQ1y4ebm5uqV6+uJk2aqEWLFhSMMyDezwEgJgrEAACkM9EjkFq1aqXixYsn+rzjx49rzpw5CgkJSfRTsTAf9xvJ8ezZMz148ECSmGIeAExw584dTZ06VevXr9ePP/6ounXrxjju6+urhg0bytnZWW3atNHHH38sd3d3k9ICSKzSpUvLzs5OP/74oxo3bpzo81avXq1//etfypUrl/bs2ZOKCZHSlixZou+//14BAQGS/rfsx/OilwkpXry4Ro0apRo1aqRlRKRDp0+f1vz582UYhr755huz4wBAkvCoEwAA6cy0adNkGIbKlCmTpILhnTt3tHbtWrm4uKRiOqQ07jeSY8eOHRoyZIjs7Ox0+vRps+PgBQ4cOKBVq1apd+/esaaSDwwMVLNmzVS7dm316NFDVatWNSklzBIUFMQIlQzmwIEDGjRokIKCgiRJV65ciVUgvnHjhqSoaUqXLl2qbdu26bfffpOHh0ea5wWQNC8zpiY8PFxS1EhiZBxz5szRhAkTJEXddycnJ5UqVUqFChWSs7Oznj59qps3b+rixYsKDw/X5cuXNWDAAM2aNUu1a9c2OT3MdPv2bXl5eVEgBpAhUSAGACCTiC4OMTmIbeB+43n8PUjfnj59qn//+9/avHmzJKlKlSqxCsQ3b97UgwcPtGbNGq1Zs0adO3fWqFGjZG9vb0ZkJNPFixd19epVBQcHKyIiItZxi8Wi8PBwPXv2TE+ePNG5c+e0a9cuHThwwIS0eBkPHjzQkCFDFBgYKEkqVqyYChcuHKtdiRIlNHLkSK1Zs0YHDx6Un5+fBg0apOXLlytr1qxpHRvA3+zdu1d3795N8Hhiir2RkZF6/Pix5syZI0nKlStXSkVEKjt+/LgmTJggi8UiFxcXDRkyRN26dYtzWYBHjx5pwYIFmjFjhkJDQ/X+++9r7dq1ypcvnwnJAQBIHgrEAACY5Pfff9eGDRviPT5lyhTNnTv3hf1YLBY9evRIFy5ckGEYKlq0aErGRArhfgO2yWKxaNCgQdq/f7+1kB/XB9GRkZEqX768Tp48KYvFoqVLlyo0NNQ6mgUZw7lz5/TZZ5/p3LlzZkdBKps3b54ePXokwzD03nvvaciQIXG2c3d3V48ePdSjRw/NmTNH48eP140bN/Tnn3+qf//+aZwaL6tMmTKp0q9hGMwAYjLDMDR8+PA4j1ksFv3+++8v1WeDBg2SGw1pZM6cOdY15GfPnq1q1arF2zZnzpwaPHiwKlasqLfffltBQUH67bff9Nlnn6VhYgAAUgYFYgAATNKyZUtNmzZNjx49inXMYrHo4sWLie7r+dGDPXv2TJF8SFncb8A2rV69Wvv27ZNhGHrttdc0ZswYVa5cOVa7smXLasmSJbp27Zq++OILHTx4UCtXrlSbNm1Ur149E5IjqZ48eaL+/fvL39//pUb1V6hQIRVSIbVs27ZNhmGoXr168RaH/65v377avn27du/erfXr11MgzkCYqSPzqlmzpjp16qSlS5fGefxl7n316tU1dOjQ5EZDGjlw4IAMw1Dnzp0TLA4/r27dumrbtq2WL1+uzZs3UyAGAGRIFIgBADCJu7u7Pv/8c02ZMiXG/tu3b8swDOXKlUvOzs4v7MfOzk4uLi7Knz+/WrVqpQ4dOqRSYiQH9xuwTcuXL5ckFShQQIsWLXrhlLKvvvqqZsyYoZYtW+revXv6888/KRBnEAsXLtSDBw9kGIby5MmjTp06qUiRIlq+fLkOHz6s119/XY0bN9aTJ0905swZ+fj46OnTpzIMQ7NmzVL9+vXNfglIguvXr0uSmjRpkqTzGjVqpN27dyfpwTCY78MPP5QkrVu3ThcuXJDFYlH27NlVpUoVFS9eXK6urgoNDZWfn5+OHDmia9euyTAM2dnZqXLlyjIMw+RXgIQMHz5cbdu2tX5tsVj0z3/+U4Zh6MMPP1SVKlVe2IednZ2cnZ1VoEAB5cmTJzXjIoUFBARIiirsJ0WdOnW0fPly3b59OxVSAQCQ+igQAwBgorZt28b4MEKSSpcuLUn66quv1LhxYzNiIZVwvwHbc/r0aRmGoR49eiR6vVFXV1d17dpV06ZN09GjR1M3IFLM9u3bJUlZs2bV8uXLYxQIDh06pIcPH6pz587WfTdv3tTgwYN1/vx56xq1Li4uaZ4bLyd6VGG2bNmSdF7u3LklSeHh4SmeCaln0KBB+v7773X+/Hm5uLjok08+Ubdu3eTk5BRn+507d2rEiBG6e/euChYsqIkTJ6ZxYiRFtmzZVKNGjTiPvfbaa/EeQ+aQO3du+fr6xjnTU0Ki38dz5syZGrEAAEh1dmYHAAAAMRUqVEgFCxbkQ2Ibwf0GMrfAwEBJUpEiRZJ0XvHixSUpyR9WwjxXr161TlH5fHE4eurokydPKiQkxLq/SJEi+umnn+Ts7Kw7d+7or7/+SvPMeHmFCxeWJJ06dSpJ50WvTx1dKEbGsHXrVs2aNUsODg6aNWuWevfuHW9xWJLq1aunefPmKVu2bFq9erXWrl2bhmmREubNm6e5c+cmavQwMrbatWvLYrHIy8srSVOKb9iwQYZhqGbNmqmYDgCA1EOBGACAdGbz5s3avHmz6tSpY3YUpAHuN5C55c2bV5Lk6+ubpPMePnwoKWo0MTKG6GK+h4dHjP0eHh5ycHBQRESEzpw5E+NY0aJF1bx5c1ksFm3evDnNsiL5qlSpIovFoqVLlyb6+/vhw4dasmSJDMNI9DqXSB/mzp0rSerYsWOip6EtWrSoevToIYvFot9//z014yEV1KhRQzVq1FCuXLnMjoJUNmjQIGXPnl0nT57UyJEjFRkZ+cJz/vjjD23dulVOTk4aNGhQGqQEACDlUSAGACCD2rNnj+bMmaPFixfr0qVLZsdBKuN+AxlTiRIlZLFYtHLlyiSdt3r1ahmGoVKlSqVSMqS06HXk/17Ud3BwsI42jWvd2UqVKkmSLly4kLoBkaJ69OghKWqWgL59+8Yq/v/dpUuX1L9/f/n7+0uSunXrluoZkXKilwtI6lTDZcqUkfS/kePIuEJDQ3X//n3dvXtXt2/fTtR/yBheeeUVzZo1S7lz59aSJUvUsWNHrVixQvfu3YvRLjg4WHv27NEHH3ygMWPGyM7OTh9//LGyZs3K3wEAQIbEGsQAAKRTJ0+e1IIFC5QrVy4NHTrUuv/hw4caNGiQjh07Zt1nGIZat26tr7/+OsHp7pB+cb+BzKlDhw7auXOnzp49q6+//lpffPGFDMNI8JwffvhBR48elWEYatasWRolRXK5u7srKCgoztGkr776qq5fvx5nkShHjhySpICAgNSOiBRUpkwZ9enTR/PmzdPVq1fVsWNHVapUSVWqVFGhQoXk7OyskJAQ3b17V0ePHtWhQ4esU5d26tRJVatWNfkVICmiRxQ+ffo0Sefdv39fkmRvb5/imZD6IiIi9Pvvv2vp0qVxPuCTEMMwdPr06VRKhpT0+uuvS4p6CMBisejcuXMaNmyYJMnFxUXZsmVTaGionjx5Yn0fj/7/hAkTNGHChDj75e8AACC9o0AMAEA6tGDBAn399deSpPLly8c4NmLECB09ejTGPovFolWrVikoKEg//fRTWsVECuF+A5nXm2++qVKlSun8+fNasGCBDh8+rB49esQqIt25c0dHjx7V4sWLrQ+EvPLKK+rSpYvJrwCJVbFiRV2/fl3e3t7q169fjGPFihXT9u3bdeTIkVjnXbt2TZJkZ8cEXxnNsGHDFBgYaF0/+ujRo7H+zY4WXUxo166dRo8enVYRkUKKFi2qM2fOaPXq1eratWuizomIiNCyZctkGIY8PT1TOSFSw5AhQ7R161ZJStLatMhY7t69G+Pr5+/106dP430whL8TAICMjgIxAADpzLVr1zRu3DjrL5zPf2B86dIl+fj4yDAMZc2aVZ9++qnc3Nw0b948HT16VJs3b9a2bdvUsGFDs+IjibjfQObm6Oio6dOnq1u3bnrw4IHOnDmjL7/8MsFzLBaLcufOrZkzZ8rR0TGNkiK5GjdurFWrVun48eP65ptv9OGHHypbtmySoqaRnjdvnk6fPq09e/aodu3akqJGDf/555+SpEKFCpmWHS/Hzs5O33zzjdq1a6c5c+Zo7969Cg4OjtXO3t5e1atXV9++fa0j1ZCxNG/eXKdPn9aBAwc0efJkffzxxwm2Dw8P14gRI3Tu3DkZhqEOHTqkUVKklNWrV2vLli0yDEMWi0WFChVSqVKllD17djk48HFqZsL3JwDAVvETDQAA6cyff/6p8PBwOTg4aOLEiWrRooX12Jo1a6zb//rXv6zr3zVp0kQtW7bUrVu3tHLlSgqGGQj3G8j8ihQpotWrV2vChAlauXKldarSuNjZ2alp06YaMWKE8ubNm4YpkVzNmjXTa6+9posXL2r+/PlatmyZZs6cqWrVqqlRo0bKmTOnHj9+rIEDB6pVq1bKmjWrNm7cKF9fXxmGoXr16pn9EvCSatasqZo1ayo0NFQXL17U/fv39ejRI7m4uMjd3V1lypSRi4uL2TGRDD169NC8efP04MEDzZo1S7t371a3bt1UuXJl62wQwcHBunnzpvbv36+FCxfqypUrkqQqVaqoY8eOJr8CJFX0zAB2dnYaO3as2rdvb24gpJpx48aZHQEAAFNQIAYAIJ3ZvXu3DMNQmzZtYhQLJWnz5s2SokaitGrVyrrfyclJnTp1sq5biYyD+w3Yhly5cmn8+PH67LPPtH37dp04cUIPHjzQo0eP5OzsrNy5c+sf//iH6tevr8KFC5sdFy/BMAzNmDFDffv21Y0bN/T06VO5urpKilrD8LPPPtPnn3+u0NBQeXl5xTg3Z86cGjBggBmxkYKcnJxUtmxZs2MgFWTPnl2//PKLevfurSdPnujkyZM6efJkgudYLBaVLVtWP//8cxqlREo6ffq0dfQ3xWEAAJAZUSAGACCdiV4DqWrVqjH2+/n56ezZszIMQxUqVFCOHDliHC9SpIgk6f79+2kTFCmC+w3Ylly5cqldu3Zq166d2VGQCgoXLqw1a9Zo0aJF2rBhg4oWLWo91rFjR0VEROjbb7/VkydPrPtLlCihSZMmKX/+/GZEBpBIpUuXts4GsW7dugTXH82aNat69uyp999/X05OTmmYEiklerr4mjVrmpwEZrl3754ePHigp0+fysXFRfnz55e7u7vZsQAASDEUiAEASGeCgoIkKVZBcOfOndbtOnXqxDov+kOM59ewRfrH/QaAzMXJyUm9e/dW7969Yx3r0qWL2rRpo0OHDikgIECFCxdWxYoVZRiGCUmRUiIjI3X16lU9efJEYWFhCRYOn1e9evVUToaUlj9/fn3//ff6/PPPtXXrVp06dUoPHjxQYGCgXF1dVaBAAVWqVEkNGjSwziCAjCl//vy6ceOGwsPDzY6CNHTr1i399ttv8vHxka+vb6zjuXPnVqNGjdS/f38VL17chIQAAKQcCsQAAKQzuXLl0v3793X79u0Y+7du3WrdbtCgQazzTp8+LUmsWZnBcL8zp08//VSGYahXr16qVKmS2XEApCPOzs6qW7eu2TGQAoKCgvTDDz9oxYoVevz4cZLONQzD+m85Mp48efKoc+fO6ty580udf/nyZa1du1aSNGTIkJSMhhRSr149LVy4UDt37lSHDh3MjoM0sGzZMn311Vd69uxZvA/63L9/X0uXLtXq1as1bNgwdevWLY1TAgCQcigQAwCQzpQvX16bN2/WypUr1bNnTzk6OurWrVvatm2bDMNQvnz5VKFChRjnXLlyRV5eXjIMQ+XLlzcpOV4G9ztz2rlzpx4/fqz69evHKBD36dNHhmHoww8/VJUqVZJ9nUKFCvGhZQZx5swZLVu2TCdOnNDjx48VHh6uyMjIF55nGIZ8fHzSICFSy9OnT+Xv76+goCB5enpKihpxygwQGVtERIT69eunEydOJHrEMBDt8uXLmjZtmgzDoECcTvXr109eXl7y9vZW586dVbt2bbMjIRV5eXnpiy++kGEYslgscnNzU9WqVVW0aFE5Ozvr6dOnunbtmo4ePapHjx4pODhYo0aNUrZs2dS6dWuz48NE9erV06ZNm8yOAQAvhQIxAADpTLt27bR582adOXNG3bp1U61ateTt7a1nz57JMAy1b9/e2vbGjRvy8fHRzz//bD3eqVMn88IjybjfmVP01OF/LwDt379fhmHo4cOHKXKdsmXLaty4cSnSF1LPrFmzNGXKlBhFpMQWlJh6OGO6c+eO5s2bp61bt+rq1auSYo4Y/e9//6u1a9eqf//+atOmjYlJ8bIWL16s48ePyzAMGYahatWqydPTU66urnJw4KMWIKMrWrSoJk6cqH/9619655131KtXLzVt2lQeHh7Knj07D/lkIn5+fhozZoykqFk+/vWvf6lr165ydHSM1TY0NFSLFi3S999/r+DgYI0YMUK1a9dW7ty50zo2UkBKLBHh7OyswoULp1ZEAEhV/NYCAEA606xZMzVq1EhbtmzRmTNndObMGeuxwoUL65133rF+PXfuXC1YsMD6dfv27eNcrxbpF/c7c8qZM6f8/f21e/duij827ujRo5o8eXKMD5yyZcsmV1dX2dvbm5gMqWXRokUaN25cglNU3rx5U2fOnNHQoUO1evVq/fDDD3J2dk7jpEiOVatWSZKyZMmimTNnqmbNmiYnApCS+vfvL0lyd3fX7du3NWfOHM2ZMyfR5zONfMbx+++/Kzg4WHZ2dpo2bVqCy0A4OTmpd+/eKlGihN566y2FhIRo2bJlMX5nQ/rHEhEAEIUCMQAA6dAPP/ygn376SX/++acePXoke3t7NWrUSCNGjFC2bNms7UqUKCGLxSJnZ2cNGDBA7733nomp8bK435lP2bJltWPHDi1fvlznzp2Th4dHjBFl8+fPf6lpgw3D0DfffJOSUZHK5s+fL4vFYp0R4L333lORIkXMjoVUsmDBAn399dfWwnDRokXl5uamEydOxGgXfdxisWj79u365JNPNH369DTPi5d38eJFGYahrl27UhwGMqHdu3fHmMWDqeQzrx07dsgwDDVr1izB4vDz6tatq2bNmsnb21s+Pj4UiDMQlogAgP+hQAwAQDrk5OSkjz/+WB999JH8/f2VPXt2OTk5xWpXu3ZtTZgwQa+//rpy5sxpQlKkBO535jNgwADt3r1bERERsUaGWywW7du376X7pkCcsRw4cECGYahmzZpMB57J3bhxQ+PHj5ckvfrqq/r6669VvXp1+fj4xFpjdMyYMWrRooWGDRsmX19fbdmyRdu2bVPDhg3NiI6XEBYWJkmqWLGiyUkApIbnp5BF5nbz5k1JUWvJJkX9+vXl7e1tPR8ZA0tEAMD/8K4HAEA6ZhhGgusZFS9eXMWLF0/DREhN3O/Mo1atWpo+fbqmT5+uCxcuKDg42DqK1GKx8LS6DYleb7pVq1YmJ0Fqmz9/vsLCwuTq6qq5c+eqQIECCbavXbu2/vjjD7Vu3VrBwcFatmwZBeIMpFChQrp8+bJ1zXkAmcv8+fPNjoA08uzZM0mSi4tLks6Lbs+/AxkLS0QAwP9QIAYAAABSQcOGDWMVe0qXLi3DMDRt2jQ1btzYpGRIS+7u7vLz84sxXTwyp127dskwDHXq1OmFxeFohQoVUteuXTVnzhwdP348lRMiJTVq1EiXLl3S5s2b1bVrV7PjAABeUp48eXTnzh2dO3dOLVu2TPR5586dk6QEH/BF+sMSEQDwPxSIAQAwyfLly63b7du3j3P/y3q+P6QP3G/b8umnn8owDPXq1UuVKlUyOw5MVLFiRW3cuFEnTpxI0oeOyHhu374tSSpfvnySzitTpowkyd/fP8UzIfX069dPy5Yt07Zt27R8+XL+LQaADKpy5cq6ffu2li5dqgEDBihHjhwvPOfx48dasmSJDMNQ5cqV0yAlUgpLRADA/1AgBgDAJMOGDbOue/P8h4rR+1/W3/tD+sD9ti07d+7U48ePVb9+/RgF4kKFCskwDNaQtiE9e/bUxo0btWTJEvXp00cFCxY0OxJSWVKnkI+MjJSkONeeR/qVO3du/fzzzxo8eLCGDx+uzZs3q2nTpvLw8FD27Nllb2//wj4KFSqUBkkBpITHjx8rODhYkZGRsd7nLRaLwsPD9ezZMz158kTnzp3TunXrmKY6g+jcubPWrFkjf39/DRw4UNOmTZO7u3u87R88eKD3339f/v7+/C6WAbFEBAD8DwViAABMFN+HyKxPmjlxv21H9AcOdnZ2Mfbfvn1bhmHo0aNHZsSCCWrWrKl33nlHM2fOVK9evfSf//xHDRs2jPV3AxlfwYIFdeXKFR07dkxt2rRJ9Hl79+6VpERPS430oVmzZpJkLRZt3LhRGzduTPT5hmHo9OnTqRUPQAoIDAzU1KlTtXr1aj18+NDsOEgltWvX1htvvKHNmzfryJEjatGihdq2batatWqpaNGicnFxUXBwsG7cuKG9e/dq5cqVevz4sQzDUMOGDVW/fn2zXwKSgCUiAOB/KBADAGCScePGJWk/Mjbut23JmTOn/P39tXv37iQVipD5zJgxQy4uLipevLiuXLmiwYMHy8nJSa+++mqiRhkahqG5c+emUVokR506dXT58mV5eXlpwIABiRotfvz4ca1Zs0aGYahWrVppkBIp5dq1azG+5mEvIHOJiIjQgAEDrOvDJ/V7nFkhMpYJEyZo4MCBOnTokB49eqTff/9dv//+e5xto/8uVKxYUd99911axkQKYIkIAPgfw8JvMQAAAECKevvtt7Vjxw4ZhqEyZcrIw8NDDg4O8vLykmEYqlmz5ktNNWwYhr755ptUSIzUUrp06VjTyFsslkRNLR/d7syZM6kVDyno6tWrat26tSIiIlS8eHFNmTJFpUqVko+Pj4YMGRLrXq5fv15ffvmlHj16JHt7e61cuVIeHh4mvgIkxfDhw5PdBw+J2a743heQfnh5eWn48OHWf68rVqyoIkWK6MiRI7p9+7bKli0rDw8PPX78WGfPntXdu3clRf2sNmrUKLVo0SJRa9ki/QgNDdV///tfzZkzJ8HZfnLlyqVevXrp3XfflYMDY68yoqNHj2rw4MF6+PChmjZtyhIRAGwWBWIAAAAghe3du1cDBgxQREREjEJg9I/eyVl3mg+SM5bSpUsn63yKBxnLrFmz9P3331vXnP/HP/4hR0dHHT58WIZh6O2339a9e/d04MAB3bp1y/oQwDvvvKOPP/7Y7PgA0ggF4vRv4MCB2rp1q+zt7fXLL7+odu3akqTZs2fru+++0+uvv64ZM2ZY23t7e2vkyJF6/PixqlWrxvrDGVhoaKiOHj2qo0ePyt/fX0FBQXJxcVGePHlUvnx5Va1alRHiGVj0EhGPHj1SQEBAkn8vY4kIAJkJjzkBAAAAKaxWrVqaPn26pk+frgsXLig4ONhaCLJYLExFakPOnj1rdgSkoXfeeUcRERGaNm2aIiIidPLkSUn/eyhk9uzZ1rbR7wN9+/alOAwA6cyZM2dkGIaaN29uLQ5LUrVq1SRJ+/btU2RkpOzs7CRJzZs3V44cOTRgwAAdPHhQmzZtUuPGjU3JjqSZO3eunJyc1KpVK+XIkUNOTk6qUaOGatSoYXY0pAKWiACA/6FADABAOnbhwgWdOnVK9+/f17NnzxL9y8uQIUNSORlSA/c7c2nYsKEaNmwYY1/0dMPTpk3jQ0Mgkxo0aJAaNmyo//73v9q8ebOCg4NjtXFwcFCdOnX01ltv8QF0JmSxWBQUFCRXV1ezowB4SdFTDFeqVCnGfk9PTxmGoZCQEF24cEGenp7WY3Xq1FHt2rW1e/durVixgp/1MojFixfr8uXL8vb21ty5c82Og1TWoUMHsyMAQLpBgRgAgHTo6tWrGj58uI4ePfpS51MwzFi43wCQuZQtW1bfffedIiIidO7cOfn6+iowMFAuLi5yd3dX2bJl5ezsbHZMpJDg4GD99ddf2rJli06dOmUtLEVPQblgwQLt2bNH/fr1U9WqVc2MCiCJ8uTJE+PrrFmzKl++fPLz84tVIJaiHhDcvXs3U4dnILdv35YktWjRwuQkSAvjxo0zOwIApBsUiAEASGcCAgLUv39/3blz56WmO0rO2qZIe9xv2xL9gUTZsmVNTgKzPHz4UHv27NHJkyfl7++vp0+faurUqZKkw4cP6+HDh3rjjTf43s4k7O3tVbZsWb7nM7Ht27dr+PDh8vf3lxT3WvOXL1+Wj4+PNm3apO7du2vEiBHWaWkBpE9ubm7y9fW1fm8/75VXXrEWiP8ub968kqT79++nekakDCcnJ4WEhLCuMADA5lAgBgAgnZk/f75u374twzCUN29edevWTWXKlJGrqysFg0yI+21bmNLMdj19+lQTJ06Ul5eXnj17JknWdamjbdmyRb/88ouKFSumsWPHqkqVKmbFBZAIPj4++vDDDxUZGSmLxSInJyflyZPHOhot2vPF4z///FMREREaM2aMGZGRBh49eiQXF5cEi01Vq1bVvHnz0jAVksrT01O+vr7at2+fevbsGeNY8eLFdeDAAZ04cSLWedGF4fDw8DTJieR78803tWTJEi1atEht2rSRo6Oj2ZEAAEgTFIgBAEhnNmzYIElyd3eXl5dXrGnNkLlwvzOnAwcOWLerV68e5/6X9Xx/yBju3bun3r1769q1awnOFHDz5k1ZLBZduXJFffr00bRp0/T666+nXVCkiPDwcB08eFAXL17UkydPFBERkehzWTIg43jw4IE+++wzRUREyN3dXUOHDlXr1q21devWWPdx4sSJqlu3rsaPH6/AwEAtWbJEbdu2VbVq1UxKj+TYv3+/QkJC1KBBgxj7Fy1apOnTp8vPz0+GYahChQr64IMPVKdOnVh95MqVi/XH07l69epp27Zt2rx5s3x8fNSkSRPrsTJlykiK+rnu9u3bKlSokPXYqlWrJMWemhrp1/Dhw3X58mUdPnxY3bt3V9++fVWtWjUVLFjQ7GhIZZGRkbp69aqePHmisLCwRM/oxe9jADILw/IycxkCAIBUU6VKFQUHB2vIkCF67733zI6DVMb9zpxKly4twzBkGIZ1Dcrn97+sv/eH9M9isahLly46efKkJKlGjRrq1KmTHj58qPHjx8swDOs6hfv27dOPP/6ogwcPSpJy5MihdevWKXfu3KblR9L4+Pho1KhRevDgwUudz5qVGcfkyZM1c+ZMOTk5acmSJdZ1SH18fDRkyJAY39vRzpw5o65duyo8PFxt2rTRt99+a0Z0vKRr167pgw8+0Pnz51WnTh3997//tR6bO3euxo8fL0kxCgz29vYaPXq0OnfunOZ5kTxPnz7VG2+8YV1TvFq1aho5cqRKliype/fuqVGjRoqIiFDRokU1ePBgZcuWTUuWLNH27dtlGIZatmyp7777zuRXgcQYMWKEwsPDtXbtWoWGhlr3Z8mSRdmzZ3/h1NOGYcjHxye1YyIFBQUF6YcfftCKFSv0+PHjJJ3L72MAMhNGEAMAkM7Y29tLkooVK2ZuEKQJ7nfmFd9zmDyfaVtWrFihkydPyjAMffLJJ3r77bclKc4PEmvWrKmaNWtq6tSpmj59up48eaKFCxfq/fffT+vYeAmHDh2KMd1wUrGsQMaybds2GYahdu3aWYvDL1KmTBl16NBBixcv1uHDh1M5IVLSs2fP1K9fP925c0cWi0VXr161HgsMDNSUKVOs3/fly5dXzpw5tX//foWGhmrs2LGqVauWihQpYlJ6vIysWbNq0qRJGjRokMLCwnTw4EEFBgZKilpnuFevXpozZ45u3Lih4cOHxzjX3t5effv2NSE1XsaSJUti/Bsc/b0cEhKikJCQF57Pv98ZS0REhPr166cTJ07wexkAm0eBGACAdMbDw0PHjh3TrVu3zI6CNMD9zpzimyaW6WNtz5o1ayRJlStXthaHX+SDDz7Q3r17dfjwYW3bto0CcQYxe/ZsRUREyDAMNW/eXB07dlShQoXk7OzMh8eZ0M2bNyVFrSWbFJUqVdLixYt179691IiFVLJ06VLdvn1bhmHo9ddf1+DBg63HvL29FRwcLMMw1LZtW02YMEGSdPz4cfXq1UshISFatGiRPv30U7Pi4yXVq1dPy5cv15QpU7R9+3a98sor1mP//ve/df/+fa1evTrGOY6Ojho5cqTKly+f1nHxkp6fIhyZ3+LFi3X8+HHrbE/VqlWTp6enXF1d5eBAqQSAbeFdDwCAdKZVq1Y6evSoli1bpv79+/NLSibH/c6cKBAj2pkzZ6xTTSZFs2bNdPjw4Rij1JC+HTlyRIZhqGHDhpoyZYrZcZDKwsPDJemFU4/+XfS/83Z2dimeCaln8+bNkqJGgc+YMSPGsednhBgwYIB1u0KFCurQoYMWLVqk7du3UyDOoDw8PPTjjz8qJCREzs7O1v329vaaNGmSevbsqa1bt+rhw4cqUqSIWrZsyWjxDCb6+xu2IXqd8CxZsmjmzJmqWbOmyYkAwDz8RgIAQDrTo0cPlS5dWtevX9fQoUP19OlTsyMhFXG/gcwtICBAkpQnT54knZc3b15JUdOaImOInoayRYsWJidBWsiXL5+kpK8bfeTIkRjnI2M4f/68dUrx54WGhmrv3r0yDEOFCxdWqVKlYhwvV66cJOnOnTtplhWp4/ni8PMqV66sjz/+WGPGjNE777xDcRhI5y5evCjDMNS1a1eKwwBsHkNUAAAwyfLly+M91rJlS124cEHr1q3Tvn371KBBA7322mvKnj27HB0dX9h3+/btUy4oUgT3G7BNbm5uevDggfz8/JJ0XvT0tW5ubqmQCqmhYMGCunbtmiIjI82OgjRQs2ZNXb9+XcuWLdNbb72lnDlzvvCca9euycvLS4ZhqHr16mmQEikl+mGfAgUKxNh/4MABhYSEyDAM1alTJ9Z5Li4uksQDgEA6Nm3aNElRMzsVL1480ecdP35cc+bMUUhIiKZPn55a8ZDCwsLCJEkVK1Y0OQkAmI8CMQAAJhk2bFii1iR88OBBgsXFvzMMg4JhOsT9ti0HDhxItb4pKmQspUuX1s6dO7V27Vr16dMnUeeEh4frr7/+kmEYKl26dConREpp1qyZZs6cqa1bt6pDhw5mx0Eq69atm5YuXaqHDx9q0KBBmjZtmtzd3eNtf+LECX300UfWYmKXLl3SMC2SK0uWLAoPD1dQUFCM/du2bbNu169fP9Z5N27ckKREPUAAc9y+fdu6/fxatM/vf1msbZsxTJs2TYZhqEyZMkkqEN+5c0dr1661PgiCjKFQoUK6fPlyrPdzALBFFIgBADCRxWJJ0XZI37jftqN3796JeiAgqQzD0OnTp1O8X6Se5s2ba+fOnTp27Jhmz56tt99+O8H2ERERGjFihK5evSrDMPTmm2+mUVIkV//+/bVq1Spt2LBBy5YtU6dOncyOhFRUrlw59erVS/Pnz9eRI0fUpEkTNWjQQBEREdY2ixYt0r1797Rv3z4dPHhQUtT7eIcOHRi5lMF4eHjo+PHjOnDggDp27Cgp6mGe6PWHnZycVLdu3RjnhIeHW0eMlyxZMs0zI3EaN24sKfbPWG+88UayfpbjZ7bML/r+8rtbxtKoUSNdunRJmzdvVteuXc2OAwCmokAMAIBJxo0bZ3YEpCHut+3hwyJIUseOHTV37lxduHBB33//vU6ePKmOHTvq7t271jZhYWHy8/PT/v37NW/ePJ09e1aGYejVV19lJGoGkjNnTs2aNUuDBg3Sf/7zH61Zs0aNGzdW0aJFEz26iBkCMpbPP/9cwcHBWrp0qZ4+far169dLkrWoNGrUKGvb6H8T3nzzTY0ZMybNsyJ5GjZsqGPHjmnlypUqWbKkGjZsqDlz5uj27dsyDEMNGzZU1qxZre39/f31n//8R9evX5dhGNYiJNKfhH5e42e5zOX333/Xhg0b4j0+ZcoUzZ0794X9WCwWPXr0SBcuXJBhGCpatGhKxkQq69evn5YtW6Zt27Zp+fLlzMYFwKYZFn7aAQAAAFKUl5dXvMcePHigqVOnKjQ0VNmyZVPLli1VvXp1vfLKK8qWLZtCQ0Pl5+enw4cPa/ny5bp3757y5MmjUaNGqUCBAipXrlwavhKkhJs3b+r//u//5Ofnl6jRSBaLRTlz5tTChQvl4eGRBgmRUm7duqVRo0Zpx44dSR55xmizjGvTpk2aPXu2jh49Gm8bDw8Pvf3223wQnUE9evRILVu2lL+/f4z9FotFDg4OWrx4scqWLStJ+uGHHzRr1ixFRkbKYrGoaNGiWrVqlZydnc2IjhcYPny4dfv5BzoTuzxMQnhANH3x9/dXy5Yt9ejRoxj7oz8aT8r9fv7j9FGjRql79+4pExJp4ujRoxo8eLAePnyopk2bqmnTpvLw8FD27Nllb2//wvOZPh5AZkGBGACATM7Hx0fvv/8+HzzbCO53+vbs2TN17txZFy9eVLVq1TR58mTlyZMn3vZPnz7V8OHDtX79ehUuXFheXl7KkSNHGiZGSvH399eXX36pTZs2xfhQ0TCMWCOUatSooXHjxqlw4cJpHRPJ4Ovrq65du8rPz09S0keeGYahM2fOpEY0pBFfX18dP35cvr6+CgwMlLOzs3Lnzq0KFSro1VdfNTsekuns2bMaMmSIbt68ad3n5OSkMWPGxCj8z5o1S99//70kqVixYpoxY4aKFSuWxmkBxGXlypWaMmVKjH3RMwHkypUrUQ9y2NnZycXFRfnz51erVq2Y7SWDadasmaSoB38CAgJ4oA+ATWOKaQAAbADPg9kW7nf69dtvv+nChQsqUqSIZs2a9cJpZ7NmzarvvvtOFy9e1OXLlzVz5kz9+9//TqO0SEnu7u6aNm2arly5ovXr1+vYsWPy9fVVUFCQtYhUvnx5NW7cWBUqVDA7Ll7CzJkz5evrK0lydHRUgwYNVKRIEWXPnt3kZEgNc+fOlZOTk1q1amV9cCd//vxq2rSpycmQWkqXLq21a9dq+/btunLlitzc3PTGG28od+7cMdp5enqqVq1aat68uTp27CgnJyeTEiM54voeR8bXtm1btW3bNsa+0qVLS5K++uorpoO3AdeuXYvxNb87A7BlFIgBAACANLJmzRoZhqGuXbsmek1SBwcHdenSRePHj5ePjw8F4gzm7NmzKly4sLVIWLx4cQ0cONDkVEgN27dvlxQ17eAff/yh/Pnzm5wIqWnx4sW6fPmyvL29E7VmJTIHJycnNWnSJME2DRs2VMOGDdMoEVIL3+O2I3q64MT+bI6MjRHfAPA/FIgBAACANHLjxg1JUtGiRZN0XnSh6c6dOymeCalr7NixOn78uDp37qwRI0aYHQep6N69ezIMQ7169aI4bANu374tSWrRooXJSQCkBr7HbcfmzZvNjoA0xNrgAPA/FIgBAACANOLg4KBnz57p1q1bSTrv0qVLkqKmnEbGcuHCBYWGhsrNzc3sKEhlbm5u8vPzU968ec2OgjTg5OSkkJAQpg+2URcuXNCWLVt06tQp+fv7KygoSH/99Zckadu2bbp27Zo6duwoV1dXk5PiZfE9DiAuAQEB/FwPINOgQAwAAACkkTJlyujAgQNasmSJ+vTpk6gPHf39/bVw4UIZhqFKlSqlfkikqODgYElRU0sjc6tcubLWr1+vEydOqE2bNmbHQSp78803tWTJEi1atEht2rSRo6Oj2ZGQBnx9fTVixAjt2LHDus9iscgwDOvXe/fu1Zw5c/TTTz9p5MiRatmypRlRkUx8j9umU6dO6cSJE3r8+LHCw8MVGRmZqPOGDBmSysmQUg4ePKhq1aq91LleXl769ttvtWfPnhROBQDmoEAMAAAApJH27dvrwIEDun79ugYNGqSJEyfK3d093vbXrl3Thx9+KH9/fxmGoR49eqRhWqSEMmXK6NixYzp8+LBat25tdhykon79+mnjxo1asmSJOnfurFKlSpkdCalo+PDhunz5sg4fPqzu3burb9++/4+9+46K6trfBv5sVAQUEFFRwagYFTWa2FA0ir0gKPaK3Wgill/UGI0txd4TcmPU2LtGsIEFFUKsKAIqGLFGBKX3Duf9g5dJCBYGmDkz8HzWyrp6ztnnPrO2MwznuwvatGmDWrVqyR2NVOTJkycYM2YMYmNjIUnSW697+fIlJElCfHw85syZg+TkZAwdOlSNSakk8D1etjx69AhfffUVgoODi9SeBWLtMWXKFPz888/o0KFDods8e/YMS5Ysga+vrwqTERGpn5De9a2WiIiItJ6npyecnZ0hhCjyL7ykPdjfmi0nJwfjx4/HzZs3IYSAgYEBevbsiU8++QS1atVCxYoVkZaWhhcvXuDmzZvw8vJCVlYWJEnC4MGDsXz5crlfAikpMDAQY8eORWZmJubMmYMxY8ZwucpSbMeOHVizZg2MjY0xbdo02NnZcT/iUmrx4sXIysqCu7s7MjIyFMcrVqwIQ0PD977PhRDw9PRUdUwqIRkZGXBwcMDz58+ho6ODAQMGYPDgwQgLC8NXX32V73vX48eP8euvv+LkyZMAAD09PZw6dQp16tSR8yWQkvgeLzvi4+PRt2/f9w7+eBv+3qVdrKysoKuri02bNqFbt27vvDYzMxNbtmzBtm3bkJmZqVgxgv1NRKUFC8RERESlHAuGZQv7W/MlJydjypQp8PPzA4B8y1L+V95X9QEDBmDlypXQ0dFRS0YqOX5+fggKCsLatWuRkZEBAwMDfPTRR7C0tISRkVGhlqzkrBTtsGzZMgDAlStX8OLFC8V7W09PD8bGxihXrtw727OYoF2srKzyfX4r+2iFP6e1y/79+/H9999DCIE1a9YolpF/1/euY8eOYdGiRRBCYPz48Zg/f74c0amI+B4vOzZt2oQtW7ZACAFTU1MMHz4cjRs3hqGh4Xt/duextrZWcUoqKc2bN0dmZibKly+PNWvWvHUbgOvXr2PZsmV4/vy54v1vbm6ORYsWoWvXruqMTESkMlximoiIiIhIjSpVqoQDBw7Azc0NO3fuxF9//fXG63R0dNCqVStMmzYNnTp1UnNKKimjRo3K94A5OTkZN2/exM2bNwt9DxaItcOhQ4cUfS2EUDxMTE1NVexF/S7vGixCmqd27dpyRyA1Onv2LIQQ6Ny5c6H3GB8yZAguXLgAb29vXLlyRcUJqaTxPV52XLx4EQBQo0YN/P7776hWrZrMiUiVtm7diunTpyMlJQXz5s1DamoqBg8erDgfExOD1atXK1aBkCQJurq6mDx5MqZOnYqKFSvKFZ2IqMSxQExEREREJANHR0c4Ojri9evXCAgIQFRUFBITE2FkZITq1aujVatW79yfmLTHf2cdKTMLiUVD7cFiQtly6dIluSOQGj169AgA3rsc6X917twZ3t7eCA0NVUUsUiG+x8uO0NBQCCEwatQoFofLABsbG+zatQtTp05FbGwsFi9ejNTUVIwZMwZHjx7FunXrkJCQoPi+3rlzZyxevJjbBBBRqcQCMRERERGRjMzMzNCrV68itb1y5QqWLFnCpWk12J49e+SOQGrCYkLZcu3aNdSoUQMNGjSQOwqpQVJSEgDA2NhYqXYmJiYAgKysrBLPREQlQ1dXF2lpafjggw/kjkJq0qJFC+zfvx+TJk1CeHg4li9fjoMHD+LJkyeKwnDt2rWxcOFC9OjRQ+a0RESqwwIxEREREZGWSk1NxcuXLznLVIO1aNECenp6cscgLfTkyRO4u7sD4DLjmmjjxo24e/cuevfujU2bNskdh1TMxMQEkZGRSs8Efvz4MQBwRRAiDVavXj0EBgbi9evXckchNbK0tMTBgwcxadIkPH78WFEcrlChAiZOnIjPP/+c3+GJqNTTkTsAERERERFRaTV37lwMGzYMx44dkzsKaZknT57AxcUFP//8s9xR6A2ePXsGAGjWrJm8QUgtWrRoAUmScOLEiUJvE5CSkoJjx45BCIHmzZurOCHJLSsrC8nJyXj9+jW8vb2xYMECuSNRIdnZ2UGSJLi5uSm1DQhpv5o1a2L//v34+OOPIUkShBDo1asX/u///o/FYSIqE1ggJiIiIiIiUpHAwEDcvXsXd+/elTsKEZWgzMxMALkPl6n0c3BwAJC7F/Hy5cvfe31SUhJmzpypmJHYt29fleYj1cjKysLu3bsxZMgQtGnTBh999BGaNGnyxv+aN2+ONm3aoEuXLpg2bRrc3Nzkjk+FNGrUKDRp0gR//fUXli5dyiXhy5gqVapg9+7d6NSpEyRJgru7O5YsWSJ3LCIiteAS00RERERERCoSGxsLAGjTpo3MSYioJLVq1QpXr16Ft7e3onhIpVfv3r3Rtm1b+Pr6Yv/+/QgICMDAgQMRFRWluObZs2eIiIjAzZs3ceTIEURGRipmD9vZ2cmYnorK2dkZ3t7eAKD0zFJu/6E9YmJisGLFCnz55Zc4evQoLl26hK5du6JBgwaoXLkyypd//+NzR0dH1QclpXTv3l2p67OzswHkvtePHj0KLy8vVKhQocB1Qgh4enqWSEYiIrmxQExERERERKQi5ubmeP78OV6+fCl3FCIqQUuWLMHIkSNx5swZGBsb47PPPoOZmZncsUiFXFxc4OTkhIcPH+LevXu4d+8egH8Kgf+dJSxJEurUqcNl4rWUp6cnvLy8IISAJEmoXr06LCws8OzZM8TFxaFOnTqoXr06EhIS8Pz5c2RkZCj+LcycORO9evWS+RVQYXXp0iXf36OiopTaGkQIwQKxBnr58qXi/VsYQgjFe1iSJERERLz1OiKi0oIFYiIiolLOxMQEbdu2lTsGqQn7m0izTJ06FQsWLMDOnTvRoUMHtGjRQu5IRFQCAgMDMX78ePz88884cOAADhw4AHNzc1haWsLQ0BC6urrvbC+EwIoVK9SUlkqCsbExjh49ig0bNuDIkSNITU1967Xly5eHg4MDFi5cCENDQzWmpJJy6tQpxZ+XL1+OwYMHA8gdKODi4oJmzZph48aNAIC0tDTs378fmzdvRmZmJh48eIDPP/9cltykvDcVELkXsfarXbu23BGIiDSekPgTj4iIiIhIK3l6esLZ2RlCCAQHB8sdh97i0KFDWLFiBbKystC+fXu0bt0alpaWMDIyem8RCQAHfZRRfH9rNisrq3yziCRJUnpWEftVeyUkJMDb2xsBAQGIiIhAUlIS9PT0YGpqihYtWqBz586cUa7lunXrhvDwcNja2mLLli2K4zdu3MC4ceNgbGyMGzdu5Gtz6tQpzJs3D0II7Ny5E+3bt1d3bCoCV1fXYt9j4MCBJZCEiIhIvTiDmIiISEOlp6fD29sbd+/eRUJCArKyspCTk/PedpyRop3Y30Sl00cffQQAyMnJQU5ODq5du4Zr164Vur0QAkFBQaqKR0TF8N/x9sqMv+cSldrNyMgIDg4O3H+6FIuNjQWAAkXeJk2aAMgdJPDkyRNYWloqzjk4OCj2qD5+/DgLxFqCxV0qjidPnsDd3R1A7r7lRETahAViIiIiDXTjxg3MnTsXUVFRRWrPgqF2YX8TlV5ZWVn5/s4FnIhKh4sXL8odgYhUKDs7GwAKzAQ3MjJCtWrVEB0djYcPH+YrEANAjx494O/vj7t376otKxHJ58mTJ3BxcYEQggViItI6LBATERFpmFevXmHatGlIS0srUiGBM1K0C/ubqHTjgyKi0snc3FzuCESkQlWqVEFkZCTi4+MLnPvggw8QHR2NR48eFTiXt+9pRESEyjOS6uTk5ODJkyeIjo5GcnIyunXrBgBITExEpUqVoKOjI3NCIiKi4mOBmIiISMP89ttvSE1NhRACjRo1wvjx49G4cWMYGhqiXLlycsejEsb+JirdWCAmItIeecsH/3d5/7zjRcXtArSPpaUlIiMjERAQgBEjRuQ7V7duXfj5+eH+/fsF2sXFxQHI3T6GtE9gYCC2b9+OP//8E6mpqQDyv3/379+PPXv2YOzYsZg4cSJ0dXXljEtERFQsLBATERFpmD/++ANA7oOHQ4cOwcDAQOZEpErsbyIiIiLN8LbVXLg9QNnToUMHXL9+He7u7hg5ciRatGihOGdlZQUAuH79OuLi4lClShXFubzl5/99jLTDhg0bsH37dkiS9Nb3fGhoKGJiYrB582acP38e27dvR9WqVdWclIiIqGSwQExERKRhXr16BSEERowYwWJhGcD+JiIi0j4LFiwoVnshBFasWFFCaaiktG3bVqnjVHoNHToUv/zyC9LS0jB69GjY29tj+vTpsLCwQLdu3bBq1SqkpaVh2rRpmDt3LgwMDHDkyBFcuXIFQgh8/PHHcr8EUsLGjRuxdetWAED58uXRpk0b6OnpwcvLK991pqamKFeuHLKzsxEcHIzp06fjwIED3PaHiIi0EgvEREREGsbAwAAZGRkwMzOTOwqpAfubqHTz9fUt9j1YmCDSPK6urkUuCEiSxAKxhtq7d69Sx6n0MjExwdKlS7FgwQJkZmbCzc0NgwcPhoWFBerUqQMHBwecPHkSAQEBcHJyKtB+9OjRMqSmonjw4AG2bdumKOyvXr0adevWhaenZ4EC8f/93/9h4MCBmDlzJh4+fAh/f3+4u7ujX79+8oQnIiIqBhaIiYiINEzDhg3h6+uLv//+W+4opAbsb6LSzcnJqVizSrhvJZHmUnbZYSEETE1NYWhoqKJERFSSHB0dUb16daxfvx5BQUH44IMPFOeWLVuGsLAw3Lp1q0C76dOno0OHDuqMSsWwf/9+5OTkoFq1ati2bdt7P6Pr1auHffv2oU+fPoiNjcXJkydZICYiIq3EAjEREZGGcXR0xM2bN3H06FGMHz8eFStWlDsSqRD7m6j0496VRKVP3j6j75Keno6kpCQ8fPgQZ8+exZ9//gldXV38+OOPaNiwoRpSUknJW1J87NixaNKkSaHb3bhxAxs2bEBGRgZcXV1VFY9UqGPHjujYsSNCQ0NRo0YNxXEDAwPs3bsXp0+fhpeXF+Li4mBubg5HR0e0atVKxsSkrBs3bkAIgcGDBxd6AI+RkRGGDRuGLVu24P79+ypOSEREpBosEBMREWmYQYMG4fTp07h69SpmzZqFFStWoGrVqnLHIhVhf5MyfH198y03rK+vj9q1a3PfMw3m7Oz83mvS09ORmJiIkJAQBAYGIisrC82bN8f8+fNRvjx/ZSPSRObm5oW+tkWLFhgyZAh27NiBNWvWYOrUqThx4gRnEmuRvCXFe/TooVSBOC4uDgEBARwAWApYWFgUOCaEgIODAxwcHGRIRCUlIiICANC4cWOl2n344YcAct/nRERE2ohPG4iIiDSMn58fJk+ejPDwcHh7e6NLly5o06YNLC0tYWhoiHLlyr33HoUpSJBmYH+XLTt27MDEiROVbhcXF4fVq1fDzc0NwcHBiuMdO3bEpUuXSjIilTBl358vX77EvHnzcOfOHezfvx8bNmxQUTIiUreJEyfi4sWL8PPzw+7du/nzuwy4cuUKABTq+xxplu+++w4ODg5o2bKl3FFIxcqXL4/09HRkZGQo1S41NRVA7mxyIiIibSQkrndGRESkUaysrPLNBpQkSenZgf8uIJFmY3+XLVZWVpgxYwamT59e6Daurq5Ys2aNYnYC+7v0S0xMRN++fREdHY2NGzeiT58+ckeiEhYfHw99fX3o6uq+9ZrY2FiEhIQAAKytrdUVjVRs//79+P7779GwYUOcOnVK7jj0H9u2bcOhQ4cKHH/58iWEEKhatSr09PTeex9JkpCYmIikpCQAQLNmzXDs2LESz0uqk/cdvXbt2rC3t0e/fv3QqFEjuWORCjg6OuKvv/7CoEGDsHz5csVxT09PODs7Qwjxxu/f06dPx8WLF9G0aVMcP35cnZFJg7zv3wkRkSbjDGIiIiIN9N/xW8qM5+JSs9qH/V22uLi4ICUlBfPmzXvndU+fPsXSpUvh6+sLIPffReXKldURkWRmaGiIoUOH4pdffsGRI0dYINZCN2/eRFpaGjp37pzv+OHDh/G///0PEREREEKgRYsWmDlzJjp06FDgHiYmJiwMl0LGxsYAgNDQUJmT0JuMHj0aBw4cQHh4eIFzkiQhOjq6SPedMmVKcaORDCRJwsuXL7F161Zs3boVH374IRwcHNCvXz+llpknzdapUyc8ePAAp06dwrhx4wo1EODy5cu4ePEihBDo2LGjGlISERGVPBaIiYiINMyePXvkjkBqxP4uW2rVqoXw8HDs2LEDaWlpWLx4cYFrMjIysGXLFmzfvh2ZmZmKAQN2dnb4+uuv1R2ZZJK3r92DBw9kTkLKeP78OWbOnImHDx+iQ4cO+QrEu3fvxqpVqwDkFh0kSYK/vz+mTJmCb7/9FkOGDJErNqlRYGAgALxz9jjJx8DAAD/88AO2bNmS77ivry+EEPjwww9RpUqV995HR0cH+vr6MDMzg52dHdq1a6eixKQqHh4ecHd3h4eHBx49egQACAkJwcaNG7Fx40a0bNkSDg4O6NOnD0xMTGROS8Xh5OSEffv2IS0tDRMnTsTy5ctha2v7xmvT0tJw4MABbN68GUDuZ/no0aPVGZeIiKjEcIlpIiIiIiI1efXqFSZNmoTHjx9DCAFHR0esWLFCMRP82rVrWLZsGf7++29FYbhBgwZYvHgx2rdvL2d0UrNdu3Zh1apV0NPTg7+/v9xxqBDS09PRt29fhIeHQ5IkmJub4+LFiwCApKQkdOrUSbFfYfPmzWFsbIybN28iIyMD+vr6OHXqFCwsLOR8CaRi165dw+eff4709HS0adMGe/fulTsSFVLecsMuLi7o3r273HFIzUJCQuDu7g53d3c8f/4cwD+r+JQrVw4dOnSAvb09evbsCX19fTmjUhG5ublhwYIFir+bmpqiUqVKeP78OYQQsLOzQ0REBO7du4e0tDTFtkCLFi1igbiM4xLTRKTNOIOYiIiIiEhNatasiQMHDuCzzz5DQEAA3NzckJaWhq+//hrr1q3D6dOnAeTOLtTX18f06dMxfvx4lC/Pr+1lSXJyMg4ePAggd9Y5aYdjx44hLCwMQgh06dIFX3zxheLc2bNnkZqaCiEE+vfvj9WrVwPInU06ZswYpKWl4fDhw5gzZ45c8UlJLi4uhbouOzsbSUlJCA4Oxu3btxVFBUdHR9UGpBLVtm1bAOBM0TKqYcOGmDVrFmbNmoXg4GDFzOLQ0FBkZWXBx8cHPj4+WLp0Kbp27Qp7e3t07tyZ39+0iKOjI4QQ+Pbbb5GSkoKoqChER0crBgK4u7sD+GcroAoVKuCrr75icZiIiLQaZxATERFpgaioKNy/fx/R0dFITk6Gk5MTACA8PBz6+vqFWuqOtAf7u/RLS0uDs7Mz/vzzTwghoKOjg5ycHMVDp969e2PhwoUwMzOTOSkVV1hYWKGuyysiBQUFYdeuXQgJCYEQAhMmTMBXX32l4pRUEiZNmoQrV66gadOmOH78eL5z06ZNg5eXF4QQOHHiRL79DZcuXYrDhw+jcePGOHHihLpjUxHlzShVRt5nfNu2bbFnzx6l2xORZrl79y7c3d1x4cIFxb7iee9rY2NjXL9+Xc54VASvX7/G/v37ce7cOcVs8X+rUaMGunfvjnHjxqFevXrqD0gahzOIiUibsUBMRESkwTw8PLB9+3YEBQXlO573i4eLiwu2bNmCgQMHYs6cOSwcajn2d9mSlZWF+fPn48yZM4pjlpaWWLRoETp06CBjMipJRSkiAbmFJENDQ3h4eKBatWoqSEYlrVOnToiKisLXX3+NcePGKY5nZGTA2toa6enpMDc3h6enZ752R48exeLFi2FkZISbN2+qOzYVkZWVldJtqlatioEDB8LZ2ZnL0BKVMqdPn8batWsRERGhWCmAxSLtFhcXh4iICCQlJUFfXx9Vq1bl4E0qgAViItJmXOuEiIhIA+UVjv67lBWAfIWGvGXNjh07hj///BN79uxBnTp11J6Xiof9XTaVL18e69evh4mJCfbt2wchBIyMjNCiRQu5o1EJK8qY3Jo1a2LDhg0sDmuRuLg4ALl992++vr5IS0uDEOKNgz/yCoUpKSkqz0glZ8+ePYW6TkdHB7q6uqhatSr3mNYCeXuQCiGwYsWKAseL6r/3I+0nSRJu3ryJCxcuwMvLCy9fvlQcBwr+LCDtU6VKlSINyPX09MSMGTMghCgw8JfkN3jwYDg6OqJfv36oWrVqse/XunXrQn8nICLSNCwQExERaaDFixcrZhUaGxujR48ekCSpwJKVTZs2haenJ5KSkhAeHo5p06bB1dUVurq6csSmImJ/lz6FXVYYACZOnIi0tDQcO3YMAQEBGD9+PNauXYuKFSu+8fratWuXVExSg4EDBxbqOiEEdHV1YWpqiubNm6NDhw58b2uZihUrIisrC8nJyfmOe3t7K/7cqVOnAu1evHgBIPfzn7SHtbW13BFIBVxdXRWD8/5d0P338aJigVj75RWFz549iwsXLiA6OlpxHMj9HO/VqxccHBwU+1ZT2cQFOzXX/fv3ERQUhNWrV6NDhw7o378/evbs+dbfvd7HxMSE3wmISGuxQExERKRhfH19FQ+hunXrhpUrV8LIyAienp4FCoZjx46Fo6MjZs+ejatXr+LJkydwdXXF8OHDZUpPymJ/l07dunVT+kFy3vX379+HnZ3dW6/hTATtsnLlSrkjkJo0aNAAgYGB8PX1xaBBgwDkrhCRt6S0rq4uOnbsmK9NVlaW4mfAhx9+qPbMVHIiIyNRqVIlGBgY5DsuSRIOHjwIGxsb1K9fX6Z0pIy85YHfdLyouN+09npfUbhixYro2rUr7O3tYWtriwoVKsgZl4jeo3bt2ggLC0NWVhZ8fHzg4+MDAwMD9OrVC/3794eNjY3cEYmI1IYFYiIiIg1z5MgRAICFhQU2btz43hlkRkZG2LJlC/r06YPw8HB4eHiwYKhF2N+lF2cOkLJSUlIKFJdIe9ja2iIgIAAnT57Ehx9+CFtbW+zatQthYWEQQsDW1jZf/8bExGDRokX4+++/IYRA9+7dZUxPRXX37l2sXbsWvr6+2LJlC2xtbfOdDw8Px3fffQchBGxsbLBo0SJYWlrKlJbe5+LFi0odp9Lrxo0bby0KlytXDu3bt4e9vT169uyJypUryxmViJRw6dIl3L59G6dOncLZs2cRFxeH5ORkuLm5wc3NDdWrV4eDgwMcHBxgZWUld1wiIpVigZiIiEjD3L59G0IIDBo0qNDLi+rq6mLo0KHYvHkz/vrrLxUnpJLE/i6dCrusMJUdOTk5OHnyJE6dOoVZs2YV2Gs6Pj4eHTp0QIsWLTBq1Cg4ODjIlJSKavTo0di/fz9iYmKwbt06rFu3TnGuXLlymDZtmuLvmzdvxtatW5GTkwMgd5DQsGHD1J6ZisfDwwPz5s1DdnY2AODp06cFCsR///03gNzC0rVr1zB06FD8+uuvaNOmjdrz0vuZm5srdZxKr3HjxkEIkW/AX/PmzeHg4AA7OztUq1ZNxnREVBytW7dG69atsWjRIvj4+OD06dO4dOkSUlNTERERgR07dmDHjh1o2LChYr9iMzMzuWMTEZU4FoiJiIg0TFRUFACgXr16SrWrW7cuACAxMbGkI5EKsb9LJy4rTP8WGRmJadOmKZYH79u3b4EC8d9//43s7Gz4+/vD398fbm5u+PHHH1GpUiU5IlMRGBsb47fffoOzszNCQ0MVx3V1dfHdd9+hadOmimP6+vqKomK9evWwZcsW6OnpqT0zFV1oaCgWLlyIrKwsAEDHjh3x0UcfFbiuRYsW2Lp1K86cOYNTp04hOTkZs2fPxqlTp2BiYqLu2FREZ8+eRbdu3bg3fBkjSRLq1asHe3t7ODg4KL5/E1HpUL58eXTt2hVdu3ZFSkoKLly4gFOnTuHatWvIzs7Gw4cPsXbtWqxfvx7W1tYYMGAAevbsye/nRFRqsEBMRESkYfT19ZGZmYmkpCSl2sXGxgIAlzjTMuxvehsuN1w6ZGZmYtKkSQgJCYEkSdDR0UFaWlqB6wwMDNCnTx/4+PggOTkZV69excyZM/Hbb7/JkJqKysrKCu7u7vjjjz/w9OlTVKlSBd26dYOpqWm+6xo3boz27dujT58+Sq0gQZpj9+7dSE1NhRACK1aseOvKEQYGBujcuTM6d+6M7t27Y+bMmYiOjsa+ffswY8YMNaemopo9ezYqV66MHj16wN7eHh06dICOjo7csUiFxo0bBwcHhzcO/CiKuLg4hISEAADatm1bIvckopJjYGCAAQMGYMCAAYiNjYWXlxcuX76MK1euIDk5GdevX8f169fx7bffokePHhg0aBD3KyYircdvs0RERBomb2T61atXlWp3/vx5AMrPRCV5sb/LppycHLi5uWHSpEkIDAwscD4+Ph5t27bFyJEjcerUKRkSUkk5evQoHj58CADo0KEDLl++jDFjxhS4rkGDBti0aRO8vLzQp08fSJKEq1evwt3dXd2RqZh0dXXRo0cPTJkyBUOHDi1QHAag2J94xIgRLA5rqStXrkAIATs7u0JvK9CrVy/07t0bkiRxT1stlJSUhBMnTmDKlCno3LkzfvjhB/j7+8sdi1RkwYIFJVYcBoBbt27ByckJ48aNK7F7EpFqmJiYwN7eHkOGDEHfvn1RvnzuHDtJkpCamorTp09j4sSJ6NOnD86cOSNzWiKiomOBmIiISMN06dIFkiTh/PnzuHHjRqHaHDlyBDdu3IAQAp07d1ZxQipJ7O+yJzIyEkOHDsWCBQtw9epVRfHw3/693PBXX32FSZMmITk5WYa0VFweHh4AAEtLS2zbtu29+5cZGhpizZo1isEfx48fV3VEIiqCsLAwALlLSysjb7bR8+fPSzwTqc6yZcvQrl07xZ60UVFR2L9/P0aOHIkePXpg8+bNePz4sdwxSQv8e09jItIsGRkZOHv2LGbOnIl27dph6tSp+P3335GVlQVJkmBlZYVhw4bB1NQUkiTh2bNnmDt3LmbNmqXYOoSISJuwQExERKRhnJycUKVKFeTk5GDatGnYv3//WwtDL1++xPfff49ly5YByF1ueNSoUWpMS8XF/i5b8pYbDgoKgiRJEEK8c7lhAwMDxUzSmTNnypCYiuvhw4cQQmDo0KEoV65codro6upi0KBBkCQJ9+/fV3FCUpWQkBBs3boVs2bNgpOTEwYNGqQ45+3tjT179ii9vQBpjrzZRIV9X+fh1hDaacSIEdi9ezf++OMPLF68GK1btwaQW+wLDQ3Fli1bYG9vD0dHR/z222949eqVzImJiKgwsrOz8ccff2D+/PmwsbHB//3f/+HChQtISUmBJEmoVq0aJkyYgBMnTsDNzQ3fffcd/vjjD/zyyy+wtLRUDPb+5Zdf5H4pRERKExKHrhEREWmcK1euYOrUqYpRqOXKlYO+vj4SExMhhMDHH3+MiIgIhIeHA8h9OFWuXDls2rQJPXv2lDM6FQH7u+w4cOAAvvvuOwghYGNjg5UrV75zRmliYiIWL16Ms2fPQgiB9evXw87OTo2JqbhatGiBzMxMpfvO3d0dX375JSpUqIC7d++qMCGVtNevX2Px4sXw8fFRHMsbEBIcHAwAWL16NXbt2gUjIyMsXbqU72stNGDAADx8+BDDhg3Dt99+W+h2K1aswJ49e1C3bl2cO3dOhQlJ1V6/fg0PDw94eHggICBAcVwIASEEWrVqBQcHB/Tu3RtVqlSRLyhpBE9PTzg7O+f7WUClE/taO9y6dQunT5/GuXPnEBcXB+CfGf56enro3r07HB0d0bFjx7fuOR8REYGePXsiPT0d5ubm3D6CiLQOZxATERFpoI4dO2L79u2oUaMGJElCVlYWkpKSIIQAAAQEBCA8PBySJEGSJBgbG2Pz5s0sFmop9nfZweWGy568Pv7777+Vapc3+8zY2LjEM5HqPHnyBAMHDoSPj4/iM/tNY7JfvnwJSZIQHx+POXPm4OjRozKkpeLo0KEDJEmCm5sbHj16VKg2L168wLFjxyCEQPv27VWckFTNzMwM48ePx+HDh3Hp0iXMmzcPH330ESRJQk5ODm7duoVly5bh008/xbRp0+SOS0REANasWYOuXbvCyckJhw8fRmxsrOK7Wtu2bbF8+XJcuXIF69evR6dOnd5aHAaAGjVqoHHjxgCAqKgoteQnIipJLBATERFpqPbt2+PcuXP49ttv0aFDB1SqVCnfw+YKFSqgZcuWmDt3Li5cuIAePXrIHZmKgf1dNnC54bKncePGkCQJx48fR2ZmZqHaZGdnw9XVFUIING3aVMUJqaRkZGTg888/R0xMDIQQGDhwIPbt24c1a9YUuHbWrFno378/gNzZKsuXL8eLFy/UHZmKYcSIEdDR0UFGRgbGjx8PT0/Pd17/559/Yty4cUhJSYGOjg5Gjx6tpqSkDrVr18akSZNw7NgxXLx4EQsWLICZmZli4J+3t7fcEYmICMCOHTvw6tUrxe/Z9erVw6xZs3Dx4kXs3bsXgwcPRqVKlQp9v4yMDABA3bp1VRWZiEhlyssdgIiIiN5OT08Pw4cPx/DhwwEAycnJSEpKgr6+PgwNDRUzTKl0YH+XfqmpqQByR5srw8LCAgC4X6kWGjJkCDw9PfHixQvMmTMHq1atgoGBwVuvz8jIwNKlSxESEgIhBOzt7dWYlorj6NGjeP78OYQQWL16NRwcHADgjYXDBg0aYM2aNbC2tsaiRYuQnp6OAwcOYP78+eqOTUVUt25dfPnll1i3bh2io6MxY8YMmJmZ4ZNPPkHt2rWhp6eHtLQ0vHr1Cv7+/oqVQADgs88+Q6NGjWR+BVTS0tLS8Mcff+Dy5cvw8fFBdHQ0hBBvXEWAiIjkY2RkBDs7Ozg6OuLjjz8u1r2mTZuGatWqsUBMRFqJBWIiIiItUqlSJaVGs5J2Y3+XPmZmZggNDeVyw2WIra0trK2tcfPmTVy4cAH+/v4YOHAgWrVqBXNzc1SsWBHp6ekIDw+Hv78/3NzcEBYWBiEEmjdvrphlSpovb6/wzp07K4rD7zNkyBBcuHAB3t7euHLliooTUkmbPHky0tPTsWXLFmRmZuLVq1dv3Fc4r0Coo6ODadOmYebMmeqOSiqSlpaGy5cvw8PDAz4+PkhLSwPwT5/XrVsXDg4Ohf5MICIi1XJxcYGtrS0qVKhQIvfr06dPidyHiEgOLBATEREREalJ48aN8eLFCxw/fhyTJk0q1IMJLjes3YQQ+PHHHzF69Gg8fvwYkZGR2Lp16zvbSJIES0tL/PLLL2pKSSUhbx/abt26KdWuc+fO8Pb2RmhoqCpikYpNnz4ddnZ22L9/P7y9vd+4VHi1atVga2sLJycnWFlZyZCSStL7isLVqlWDnZ0dHBwc0Lx5czmjEhHRf3CrJiKif7BATEREJJMFCxao5L5CCKxYsUIl96aiY38TwOWGy6oqVarA1dUVv/76K/bt24f4+Pi3Xlu5cmUMHToUM2fOhL6+vhpTUnHlLQGv7Ex/ExMTAEBWVlaJZyL1qF+/PhYtWoRFixYhPj4eUVFRiI+Ph76+PqpWrQozMzO5I1Ixva8oXLlyZfTs2RMODg5o3749dHR05IxLRESFFBcXBx8fHwQEBCAqKgpJSUkwMTFBjRo1YG1tDRsbG+jq6sodk4hIJVggJiIikknejEBVYMFQ87C/CeByw2WZrq4uZsyYgenTp8PPzw/37t1TFJH09PRgamqKZs2aoU2bNiwMaykTExNERkYqPRP48ePHAICqVauqIhapmbGxcYFBAo8fP0aDBg1kSkQlwcbGpkBRuEKFCrC1tYW9vT26devGAgIRAcj9PtC2bVu5Y9B7REVFYePGjXBzc0NOTs4br9mxYwf09fUxefJkTJ48mZ/zRFTqsEBMREQko7wHTCVJVUVIKj72N3G5YdLR0UGbNm3Qpk0buaNQCWvRogU8PT1x4sQJTJo0qVCfzykpKTh27JhiEAhpn6SkJOzatQunT5/Gd999B2tr63znY2Ji0K9fP5iZmWHkyJGYOHEiHzBrodTUVAC5n+Ft27aFg4MDevfuDSMjI5mTEZGmad26Nfbu3St3DHqHx48fY8yYMYiLi3vv7+gpKSn46aef4OHhgX379im9UgwRkSZjgZiIiEgmFy9elDsCqRH7m/JwueGyKzQ0FO7u7ujbty/q1KmT71xaWhqcnJzQoUMHDBkypMB50nwODg7w9PTEo0ePsHz5cixatOid1yclJWH27Nl4/fo1hBDo27evmpJSSXn8+DGmTJmC8PBwAMCTJ08KFIj//vtvAEBERAQ2b96MM2fOYPv27Vx2Wss0adIEDg4OimI/EZU+6enp8Pb2xt27d5GQkICsrKy3ziz9N275o13i4+MxYcIExMbGAgAaN26MUaNGoXXr1qhVqxb09fWRkpKC0NBQ3Lp1CwcPHsTjx4/x6NEjfP7559i3bx+3ESCiUkNIqpjKQkRERBojLi4OISEhAMClrsoA9rd2ycnJ4XLDZUB2djZWrVqFAwcOICcnB2vXri2wn3RISAgcHBwghED58uUxffp0TJs2TabEVFROTk7w9fWFEAIfffQRBg4ciKioKPzvf/+DEAIeHh6IiIjAzZs3ceTIEURGRgIAmjdvjiNHjsicnpSRlJSE/v37IywsDABgaGiIRYsWYcCAAfmue/nyJQ4cOIBz584plh9v1qwZDh8+jPLlOWafqKzw9PSEs7MzhBAIDg6WOw79x40bNzB37lxERUUVqT37VHts2rQJW7ZsgRACY8aMwYIFC95Z8M3KysKyZcsUK758//33GDJkiBoTExGpDgvEREREpVzewwgdHR0EBQXJHYdUjP1NpHnmzJkDd3d3xRJ2zs7OcHZ2znfNnTt34OzsjOjoaAC5s1EmT56MOXPmqD0vFV18fDycnJzw8OHDQi0xLUkS6tSpgwMHDqB69epqSEglZevWrdiwYQOEEHB0dMSyZctQsWLFt16fnZ2NtWvXYteuXRBC4Ntvv8WwYcPUmJiI5MQCseZ69eoV+vbti7S0tCJtCcQ+1S729vZ4/PgxPvnkExw8eLBQbXJycjBkyBAEBQWhTZs22Ldvn4pTEhGpB4erEhERlREcE1a2sL+JNIOXlxfOnDkDIQSqV6+O+fPno2fPngWua9myJa5cuYJr167h+++/x5MnT7B9+3b06NEDH3/8sQzJqSiMjY1x9OhRbNiwAUeOHFHsW/om5cuXh4ODAxYuXAhDQ0M1pqSS4OnpCQD4+OOPsXLlyvdeX65cOcyfPx+3b9/G3bt3cerUKRaINZCLi4viz/8eyPPv40X134FBRKQZfvvtN6SmpkIIgUaNGmH8+PFo3LgxDA0NUa5cObnjUQnL2/rB0dGx0G10dHQwePBgBAUFcTAAEZUqLBATEREREcnk/Pnz8PT0RGBgIKKjo5Gamgo9PT2YmZmhcePG6NKlC/r27YsKFSrIHZWK6OjRowAAIyMj/P7776hRo8Y7r7exscHu3bvRr18/JCYmYt++fSwQa5mKFStiwYIFmD59Ory9vREQEICIiAgkJSUplpBv0aIFOnfuzL1MtdiTJ08ghICDg0Oh2wghYGdnh7t37+Lhw4cqTEdF5eLiopj9/98CcWFWBXgXFoiJNNMff/wBAKhbty4OHToEAwMDmRORKunr6yMzMxOVKlVSqp2JiQkADsQmotKFBWIiIiIiIjV7+PAhvvzySzx+/FhxLO9hQ1JSEpKTk/HkyRN4eHhg69atWLduHaysrOSKS8UQGBgIIQRGjx793uJwnurVq2P48OHYtm0bbt26peKEpCpGRkZwcHBQqoBI2iMzMxPAPw+MCytvUMC7ZpeTvCRJemMxuDhFgeIWl0n7WVpacpCAhnr16hWEEBgxYgSLw2VAo0aNcOvWLVy/fh329vaFbnf//n1FeyKi0oIFYiIiIiIiNbp//z6cnJyQmpqqeNhsZGQECwsL6OnpISUlBS9evEBycjIA4NGjRxgxYgQOHTrEIrEWiouLAwB8+OGHSrXLe/gUFRVV0pGIqATUqlULz58/R0hIiFLtnj9/DkD5wjKpx549e5Q6TlRYLBBrLgMDA2RkZHBVjzLCyckJvr6+cHV1Rb9+/WBjY/PeNs+fP8ehQ4cghMDIkSPVkJKISD1YICYiIiIiUpP09HQ4OzsjJSUFANC7d2989tlnaNasWYFrAwMDsW3bNly4cAFpaWmYMWMGTp8+jYoVK6o7NhWDiYkJIiMjERsbq1S7vNmFnMlCpJmaN2+OZ8+e4ejRo5g0aRIqV6783jZpaWk4evQohBBcOl5DWVtbK3WciLRfw4YN4evrq9iblkq3Xr16YfLkydi+fTs+//xzzJo1CyNHjoSent4br/fy8sLSpUuRkpICOzs7DBgwQM2JiYhUhwViIiIiIiI1OXz4MMLDwyGEwOzZszF16tS3XtuiRQv89NNP2LJlCzZt2oTQ0FC4u7tj4MCBakxMxVW3bl1ERETg7NmzGD16dKHbXbhwAQBQv359VUWjImrSpAmA3CVjg4KCChwvqv/ejzTb8OHDcerUKURHR+Ozzz7Dpk2b3rmMfGxsLObOnYuwsDAIIfhZrmXCwsIAAKampkoN1EpMTIS/vz9iYmJYVCDSUI6Ojrh58yaOHj2K8ePHczBmKbd582ZUqFAB9evXx9OnT7FmzRr89NNPaNmyJerXr49KlSohIyMDr169gr+/P169egVJkqCjo4PXr19j7Nixb7yvEAK7d+9W86shIioeFoiJiIiIiNQkr+j38ccfv7M4/G/Tpk2Dl5cX/P39cfLkSRYVtIyDgwN8fX1x69Yt/Pbbb5g0adJ72xw9ehQ+Pj4QQqB79+5qSEnKeNs+pMXZn5S0T5s2bdC3b194eHjgzp076N27N7p3745WrVrB3NwcFStWRHp6OsLDw+Hv7w9PT08kJydDCAFbW1t07dpV7pdASujWrRt0dHTw008/KfW57O3tjblz58LExIQFYiINNWjQIJw+fRpXr17FrFmzsGLFClStWlXuWKQiv/zyi2Jf+Lz/TUlJwdWrV3H16tU3thFCQJIk3L59+43n37Z3PRGRpmOBmIiIiIhITR4/fgwhBPr166dUO3t7e/j7++PZs2eqCUYq4+DggF9++QWvXr3CunXrcPv2bYwZMwYtW7aEvr6+4rq0tDQEBATgyJEjcHd3B5A7U02ZWcekHm3btlXqOJVeK1euRGxsLK5fv47U1FScOXMGZ86ceeO1eQMI2rZtiw0bNqgzJpWQogwCycrKApA7k5g0k5ubm8ru7ejoqLJ7U8nx8/PD5MmTER4eDm9vb3Tp0gVt2rSBpaUlDA0NUa5cuffeg/tLa5c3fZ5zoB8RlUUsEBMRERERqUlCQgIAoHr16kq1MzU1BQBER0eXeCZSLX19ffz8888YPXo0UlNTcfnyZVy+fBlCCBgbG0NPTw9paWmIj49XPJiSJAl6enpwcXHhHsQaaO/evUodp9JLT08Pu3btwvHjx7Fr1y48fPjwrdd+8MEHGDduHEaNGsVZRhrs+vXrePXq1TvPF6bYm5OTg4SEBOzatQtA7n70pJm+/vprlbwnhRAsEGuJ/34uZ2Rk4Nq1a7h27Vqh78ECsfZ48OCB3BGIiDQGC8RERERERGpibGyMmJgYvHz5Uql2eXsfGhkZqSIWqVjTpk3x+++/Y+nSpfD19QWQWwSOjY194/XNmjXDqlWr0LBhQ3XGJKIiGjRoEAYNGoRXr17h7t27iIqKQnx8PPT09GBqaopmzZrB0tJS7phUCEIILFiw4I3nJEnCvn37inTPzp07FzcaqYitrS28vb0VS8hS2fTfvlfm3wIH/RARkbZigZiIiIiISE2aNm0KHx8fnDhxAhMnTizUA6WcnBy4ublBCAErKys1pCRVsLS0xN69exEUFAQvLy/cvXsX0dHRBYpItra2aNOmjdxxqQjyikpjx45FkyZNCt3uxo0b2LBhAzIyMuDq6qqqeKQGNWvWRM2aNeWOQcXQrl07DB48GMeOHXvj+aIUENu2bYuvvvqquNFIRX799VccP34cS5YsQXZ2NgBgxIgRaNGihczJSF327NkjdwQiIiJZsEBMRERERKQmffr0gY+PD0JCQrB8+XIsWrTovW1WrFiBkJAQCCHQu3dvNaQkVWratCmaNm0qdwxSAVdXVwgh0KNHD6UKxHFxcQgICEDFihVVmI7UKTExESkpKdDX1+fKD1powYIF6N+/v+LvkiRh3LhxEEJg1qxZaNWq1XvvoaOjAz09PdSsWRPVqlVTZVwqAYMGDYKpqSlmzJiBzMxMnD9/HtOmTYOZmZnc0UgNrK2t5Y5AMrp//z48PT0RGBiI6OhopKamQk9PD2ZmZmjcuDG6dOmC1q1byx2TiEglWCAmIiIiIlKT/v37Y8eOHXjy5An279+PoKAgTJw4Ee3atYOhoaHiusTERNy4cQM7duzAnTt3IIRA3bp1MXDgQBnTE5EqXLlyBQBQrlw5mZNQUSUnJ+PIkSPw9PTE3bt3kZmZqTinp6eHRo0aoWvXrhg+fDj3otUClSpVemvBqGHDhiwmlVK2trZYtmwZFi5ciJiYGCxatAjbtm2TOxYRqUhkZCQWLFig+B6WR5IkCCHw8OFD+Pj4YPv27Wjfvj1WrVrFQSNEVOoIiRtsEBERlWqenp5wdnaGEALBwcFyxyEVY39rvpCQEEyYMAFRUVH5lpg2MjKCgYEBUlJSkJCQoDguSRKMjY1x8OBB7mFZCkRGRsLb2/utsxRsbW1Rq1YtuWPSO2zbtg2HDh0qcPzly5cQQqBq1arQ09N7730kSUJiYiKSkpIA5O49/bZlbUlzXblyBV999RViYmIAvHkJ4rzPelNTUyxfvhy2trZqzUjFd/PmTQC5BWIW+Uu3JUuW4MiRIxBCYMOGDejbt6/ckUgGUVFRuH//PqKjo5GcnAwnJycAQHh4OPT19VGlShV5A1KxvHjxAiNHjkR0dHS+n9vGxsbQ09NDSkoKEhMTFceFEDAxMcHRo0dhbm4uR2QiIpVggZiIiKiUY8GwbGF/a4eXL19i0aJFuHbt2nuvbdeuHVasWMGHEVouNTUVq1atgqura77Zhf+lo6ODgQMHYuHChTAwMFBjQiqslJQU9OvXD+Hh4SV6382bN3MZeS3j4+ODzz//HNnZ2ZAkCeXLl8eHH36IOnXqKB4wP3/+HE+ePEFOTg6A3Jni27dvh42Njczpqah8fX1x6tQpODk5oWHDhvnOJSUloXfv3rCxscHIkSO5LKkWyuvD6OhoWFhY4Pz589DR0ZE7FqmJh4cHtm/fjqCgoHzH836vcnFxwZYtWzBw4EDMmTOHhWItlJOTgwEDBiAkJAQA0KJFC0yePBnt27fPty1ETEwMrl+/jp07d+Lu3bsAcreKOXr0KFd9IaJSg0tMExERERGpmbm5ueJhg7e3N/z9/RETE4Pk5GTo6+ujWrVqaN68Obp3746PPvpI7rhUTLGxsXBycsLjx4/fOLvw37Kzs/H777/j1q1bOHjwIGeqaSADAwP88MMP2LJlS77jvr6+EELgww8/LNQDYx0dHejr68PMzAx2dnZo166dihKTKiQmJmLu3LnIysqCjo4OJkyYgEmTJsHU1LTAtREREdixYwf27NmD7OxszJkzB+fPn0flypVlSE5FlZKSgnnz5uHSpUsAgFatWhUoEIeGhiI6OhpnzpzBmTNnMGTIECxbtozFBC1SuXJlLFiwAIcPHwYA3L17Fx9//LHMqUjVsrKyMH/+fLi7uwPIvxrEv1f8CQ0NRVZWFo4dO4Y///wTe/bsQZ06ddSel4rOzc0NISEhEEJg+PDhWLJkyRsHgVStWhV2dnbo06cPvv32Wxw+fBjBwcG4ePEievXqJUNyIqKSxwIxERFRKWdpaQlnZ2e5Y5CasL+1S/PmzQ3navoAAI3jSURBVNG8eXO5Y5CKzZw5E48ePQIA1K5dG05OTrCxsYGFhQX09fWRkpKCZ8+e4fr16zh48CDCwsLw/PlzzJ07F7/99pvM6elNOnbsiI4dO+Y7ZmVlBQCYPXs2unfvLkcsUqN9+/YhPj4eQgisWLECjo6Ob722Ro0a+Prrr2FlZYWvv/4asbGxOHHiBEaPHq2+wFQskiTh888/x82bNxWFo1evXhW4LicnB82bN8e9e/cgSRKOHTuGjIwMrF69Wt2RqRjs7e1hb28vdwxSo8WLF+PMmTMAcpcZ7tGjByRJwvHjx/Nd17RpU3h6eiIpKQnh4eGYNm0aXF1doaurK0dsKgIPDw8AwIcffvjW4vC/6ejoYOnSpfDz88OjR49w/PhxFoiJqNTgEtNEREQaLjY2FteuXcO9e/cQExODlJQU/PjjjwAAPz8/xMbGolu3bvlGNpP2Yn8TlS7nz5/HzJkzIYRA165dsX79eujr67/1+pSUFMyZMweXL1+GEALbt28vUIgkzZS3P+H//d//oVWrVjKnIVUbPnw4AgMD0bFjR2zfvr3Q7aZMmQIfHx+0bt0a+/fvV2FCKkmnTp3CvHnzFKsEfPfdd2jZsuVbr3/+/Dm++eYb3Lp1C0IIbNu2DZ9++qkaExNRYfn6+sLJyQlCCHTr1g0rV66EkZHRW7fuSUhIwOzZs3H16lUIIbBs2TIMHz5cxldAyvj0008RHR2NuXPnYtKkSYVut2PHDqxZswYWFhbw9PRUYUIiIvXhDGIiIiINlZKSgrVr18LV1RXp6ekAcmcv/LswePnyZWzfvh316tXD8uXL+UBai7G/iUqnU6dOAcidObxx40ZUrFjxndcbGBhg06ZNsLOzQ1hYGI4ePcoCsZbYu3ev3BFIjZ49ewYA6Nmzp1LtevToAR8fH/z9998qSEWq4ubmBgCoWbMmDh8+/N494uvWrYstW7bAzs4OkZGROHToEAvEZVxcXJxiz9O2bdvKnIb+7ciRIwAACwsLbNy48b2zgY2MjLBlyxb06dMH4eHh8PDwYIFYi8TFxQHI3fJHGbVq1QKQu20EEVFpwQIxERGRBoqMjISTkxOeP3/+zv0qQ0NDIUkSnj59irFjx8LFxQVdunRRX1AqEezv0qdJkyYqua8QAkFBQSq5N6lGYGAghBAYPHjwe4vDeSpWrIghQ4Zg8+bN+WasEJHmSElJAZBbKFCGoaEhACA+Pr7EM5HqBAUFQQiBkSNHvrc4nKdy5coYNmwYXFxc4O/vr9qApPFu3boFZ2dn6Ojo8Luchrl9+zaEEBg0aFChl4rW1dXF0KFDsXnzZvz1118qTkglqXLlyoiPj0dkZKRS7aKiogAAlSpVUkUsIiJZsEBMRESkYfL2OMubmWJtbY3BgwcjNjYWq1atynftiBEjEBkZiVu3biErKwtfffUVPDw8YGpqKkNyKgr2d+nEXVwoT0xMDACgfv36SrWrV68eAOD169clHYmKacGCBQCg2Hv2v8eL6r/3I81mYmKCyMhIPH36VKl2eT/vTUxMVJCKVCUpKQlA7gxDZeR99nNAAOXhd0TNk1f4y/vuVVh169YFACQmJpZ0JFKhRo0a4ebNm3B3d1dsD1IYeXtUf/jhh6qKRkSkdiwQExERaZgTJ07g3r17EELgyy+/xJQpUwDgjfvctGvXDu3atcOPP/6I//3vf0hMTMSBAwcwY8YMdcemImJ/l05cOpDyGBgYICEhQeniQN71hZ11TOrj6uqqWP7/3wXdfx8vKhaItUeLFi3g6emJ48ePY/LkyYWadZaeno7ff/8dQgg0b95cDSmppFSvXh3h4eFKD9qJjY0FkDtjjYg0k76+PjIzMxUDQQqL72/t1L17d9y8eRP+/v7Yvn07Jk+e/N4227dvh7+/P4QQ6N69uxpSEhGpBwvEREREGiZvZGrLli0VxcL3mTlzJq5fvw4/Pz94e3uzYKhF2N+lE/cipTz169dHQEAALl26hBEjRhS63cWLFwH8MzuFNMt/94j/9/GiKm5xmdTLwcEBnp6eePnyJebOnYu1a9e+c0BHeno65s2bh5cvX0IIATs7OzWmpeKytLREWFgYTp48iQkTJhS63enTpyGEQKNGjVSYjoiKo27durh79y6uXr2KoUOHFrrd+fPnASg/85jkNWzYMOzYsQMRERFYv349goODMXny5DduERQcHIzt27fD3d0dQghUq1aN+00TUanCAjEREZGGCQ4OLtKDw969e8PPz0+xdCFpB/Y3UenWuXNn+Pv7w8fHB6dPn4a9vf1725w6dQo+Pj4QQsDW1lYNKUkZecX7wh6n0qlXr15o2bIl7ty5gwsXLsDe3h5jxoxBu3btUKdOHRgYGCAlJQUvXrzA9evXceDAAbx48QJCCLRo0YIFYi0zcOBA/Pnnn3jw4AF++OEHfPPNN+8d1LF582bFjLPevXurKSkRKatLly4IDAzE+fPncePGDbRr1+69bY4cOYIbN25ACIHOnTurISWVFH19faxfvx5TpkxBWloa3N3d4e7uDiMjI5ibmyt+fr98+RIJCQkAcgcA6urqYvPmzdDX15f5FRARlRwWiImIiDRMXFwcAKBatWpKtatevTqA3BkqpD3Y30Sl26hRo7Br1y4kJibi66+/RkhICMaNG4eqVasWuDYmJga7du3Cjh07AOQuWTh69Gh1R6b3MDc3V+o4lU5CCGzatAnjx4/H06dPERoailWrVr2zjSRJqFOnDlxcXNSUkkpKr1690KhRIzx8+BD79++Hn58fRo4ciVatWqF27drQ09NDWloawsPD4e/vjyNHjiAgIAAA8MEHHyg1K5GI1MvJyQl79uxBfHw8pk2bhrlz58LR0fGN1758+RI7duzAwYMHAeR+Vxs1apQa01JJaNOmDfbs2YN58+YpBlzHx8crCsJA/lVh6tati3Xr1nF7CCIqdVggJiIi0jBVqlRBdHQ0IiIilGoXGhqqaE/ag/1ddmVlZcHT0xOXL19GYGAgIiMjkZ6eDkNDQ9SsWRMtWrRA7969YWNjI3dUKoYqVapg+fLlmD17NrKzs7F161b89ttvaNiwIerUqQN9fX2kpqbixYsXCAkJQXZ2NiRJQrly5bBy5Uq+x7XI2bNn0a1bt0LtRUulg5mZGQ4fPow1a9bAzc0NWVlZb722fPny6N+/PxYsWABDQ0M1pqSSUKFCBfzvf//D8OHDER0djeDgYCxZsuSdbSRJgqmpKX799VdUqFBBTUmJSFmGhoZYv349pk6dirS0NPzwww9YuXJlvpmiI0aMQEREBMLDwwFA8V1txYoV/K6mpZo3bw53d3ecP38e3t7e8Pf3R0xMDJKTk6Gvr49q1aqhefPm6N69O3r27AkdHR25IxMRlTghFWeTJCIiIipxkydPxp9//olPPvkEhw4dUhz39PSEs7MzhBAIDg7O1yYrKwv29vZ4/vw5Pv30U2zbtk3dsamI2N9l08WLF/H999/j9evXimP//lr+72UrmzRpgjVr1uDDDz9Ua0YqWZcvX8bXX3+N+Ph4AG/ebzbv34CxsTFWrFiB7t27qzUjFY+VlRUqV66MHj16wN7eHh06dODDxDIkIiICV65ceesDZltbW8XqH6S9YmNjsXr1apw8eRI5OTlvvU5HRwc9evTA4sWL2e8E4N3f7UkzXL9+HfPnz1d8P3/fd7Xly5ejR48eas1IxffgwQOYm5tzsBYRETiDmIiISOP06dMHf/75JwICArBt2zZMmTLlnddnZ2dj8eLFePbsGYQQ6NWrl5qSUklgf5c9Bw8exPfffw9JkhQPmapUqYLatWtDX18fKSkpCA0NRWJiIgAgKCgIQ4cOxY4dO9CyZUs5o1MxdO3aFZcuXcLBgwfh7e2NwMDAfEvEV6xYER999BG6d++OoUOH8qGVlkpKSsKJEydw4sQJmJqaok+fPrC3t8cnn3widzRSsRo1amDgwIEYOHBgkdoHBQVh7969EEJgxYoVJZyOSoqJiQlWrVqF+fPn448//sDdu3cRHR2N+Ph46OnpwdTUFM2aNUOnTp247DyRlmnfvj3OnTuHEydO4Ny5cwgMDERSUpLivK6uLpo1a4bu3btj2LBhMDIykjEtFdXy5csRGBiIIUOGYPHixXLHISKSFWcQExERaZicnBwMGDAAISEhigLgoEGD8OLFC/zwww8QQiAwMBARERG4efMm9uzZgwcPHgDI3Rvn9OnTKF+eY8C0Bfu7bHny5AkGDBiAzMxMlCtXDiNHjsTo0aNRv379AtcGBwfjt99+w+nTpwEApqamcHd3h7Gxsbpjk4okJSUhOTkZBgYGhS4Ix8XFISQkBADQtm1bVcYjJR06dAgeHh7w9fVVzCzMm31kbm4OBwcH2Nvbo0GDBnLGJA3F2YVEpRvf49opOTkZSUlJ0NfXh6Gh4RtnFZN2ad++PeLj4/HFF19gxowZcschIpIVC8REREQaKDQ0FKNGjUJEREShfgmVJAnGxsY4cOAAHzxrIfZ32fHtt9/i4MGD0NHRwaZNmwo1A/zgwYP49ttvIYTA1KlTMXv2bNUHJY2V94BZR0cHQUFBcsehN4iKisK5c+fg7u4OPz8/xUoBeZ/vjRs3hoODA/r164eaNWvKGZU0CItHpdfjx4/h4eEBZ2dnuaOQjPgeJ9IMH3/8MTIyMrB27VrY29vLHYeISFacbkJERKSBLCws4ObmhiVLluDixYsF9ib97/gua2trrFy5kkvZaSn2d9nx559/QgiBfv36FXp58JEjR8Lb2xteXl7w9PRkgZgAoMDnAmmOatWqYfTo0Rg9ejRev34NDw8PeHh4ICAgAEDu3nd//fUX1q9fj1atWsHBwQG9e/dGlSpV5A1ORO/l6emJU6dO4dmzZ0hLS0N2dnaBz2NJkpCVlYX09HQkJycjOzsbAFggJiLSAE2aNEFAQAD8/PxYICaiMo8FYiIiIg1VtWpVuLi44OnTpzh37hwCAgLw+vVrJCcnK/Y4a968Obp3744WLVrIHZeKif1dNkRERAAAOnXqpFS7Xr16wcvLC6GhoaqIRUQqYmZmhvHjx2P8+PEICwtTFIvv3bsHSZJw69Yt3L59G99//z0+/fRTbNmyRe7IRPQWy5Ytw+HDhxV/f9NAnbyVAv57jsvSEslvwYIFKrkv947XLgsXLsTYsWNx+PBhWFhYYMyYMdDV1ZU7FhGRLFggJiIi0nD169fHtGnT5I5BasL+Lt0MDQ0RHR2NzMxMpdrp6OgAAPT19VURi4jUoHbt2pg0aRImTZqEly9fwtPTEzt27MDr16+RlZUFb29vuSMS0Vtcv34dhw4dUqzsoqOjg+rVqyMhIQHp6ekwMjKCvr4+EhISkJKSAuCfovDo0aOVHhhGRCXP1dVVZYM1WCDWHllZWZg7dy7Wrl2LtWvX4ueff8ZHH30ES0tLGBkZoUKFCu+9B1eEIKLSggViIiIiDZacnAwvLy+0adMGZmZm+c5lZGTgq6++QseOHWFnZ4dKlSrJlJJKCvu79GvXrh3OnDmDCxcuYPDgwYVud/XqVQDAJ598oqJkRKQOaWlp+OOPP3D58mX4+PggOjr6jVsJEJFmcXV1Vfx5+vTpmDp1KnR1dbF+/Xps27YN3bp1w8qVKwEAL168wM6dO3Hw4EEAQE5ODmxtbWXJTUT5qeLnLVcI0C6jRo3K12fJycm4efMmbt68Weh7sEBMRKUFC8REREQaateuXXBxcUFycjI2btyIPn365DsfGhqKs2fP4ty5c1i3bh2++eYb9O/fX6a0VFzs77Jh6tSpOH/+PLy9vbF//36MHj36vW0uXbqE06dPo3z58pgyZYoaUhJRSUpLS8Ply5fh4eEBHx8fpKWlAfjnIXXdunXh4OAABwcHOWMS0TvcuXMHQgi0bt0aM2bMUBy3trbGtm3b4OPjozhWp04dLFmyBBYWFlizZg0OHjyIwYMHo1mzZnJEJ6L/7+LFi3JHIA3xpr3jC4sDAoioNGGBmIiISAOtWbMGO3fuVPyi8vTp0wLXREZGQkdHBzk5OYiPj8f8+fORkJCAMWPGqDsuFRP7u+xo1KgR1q1bh7lz5+KHH37AnTt3MGHChDc+NA4NDcXBgwexe/du6OjoYOnSpWjVqpUMqYlIWe8rClerVg12dnZwcHBA8+bN5YxKRIUQHR0NAOjSpUu+43k/v6OjoxEaGgoLCwvFuYkTJ8LV1RWPHj3C4cOH8d1336ktLxEVZG5urpb/n7i4OISEhAAA2rZtq5b/Tyq8PXv2yB2BiEhjsEBMRESkYW7fvo0dO3ZACAEDAwNMnToVjo6OBa5r164dfH194eHhgU2bNiEqKgqrVq2CjY0NGjRooP7gVCTs79KpSZMm771GkiScOXMGZ86cQaVKlVCrVi3o6+sjPT0dERERiIuLU1xnbGyMAwcO4ODBgzh+/LiK0xNRUbyvKFy5cmX07NkTDg4OaN++vWJvcSLSfBkZGQBy9xL/t6pVq8LY2BgJCQl48OBBvgIxANjZ2WHz5s3w9/dXV1TSUJaWllyWtoy4desWnJ2doaOjg6CgILnj0H9YW1vLHYGISGOwQExERKRhDhw4AADQ09PDoUOH0KhRo7deW6lSJQwZMgStWrXCwIEDkZGRgd27d3OGghZhf5dOhV2mLO+6pKQkxUyDN0lISEB8fDyXNCPSYDY2NgWKwhUqVICtrS3s7e3RrVs36OrqyhmRiIrI2NgY0dHRSE5OLnCubt26uHv3Lh4/fowePXrkO1enTh0AQHh4uFpykurExcXBx8cHAQEBiIqKQlJSEkxMTFCjRg1YW1vDxsbmnZ/xLBCXParY75iKLywsDABgamqKihUrFrpdYmIi/P39ERMTgwEDBqgqHhGRWrFATEREpGH8/PwghMCIESPeWSz8N0tLSwwdOhT79u3DtWvXVJyQShL7u3TicnJEZU9qaioAQEdHB23btoWDgwN69+4NIyMjmZMRUXHVqVMH0dHR+Ouvvwqcq1u3LgIDA984UzAlJQXAP58PpH2ioqKwceNGuLm5IScn543X7NixA/r6+pg8eTImT57MwUBEGqxbt27Q0dHBTz/9hO7duxe6nbe3N+bOnQsTExMWiImo1GCBmIiISMNERUUBwBv3JH2Xjz76CADw+vXrEs9EqsP+Lp327t0rdwQiUrMmTZrAwcEB/fr1g5mZmdxxiKgEtW/fHnfu3IGbmxsmTJiQby/TvAF+165dQ2pqKvT19RXnrl69CgAwNDRUb2AqEY8fP8aYMWMQFxf33tmgKSkp+Omnn+Dh4YF9+/bB2NhYTSmJSFlFmd2dlZUFIHcmMRFRacECMRERkYYxMjJCTEyMYsZBYeWNaFdmmSSSH/ubiiMoKAh79+6FEAIrVqyQOw5Rmebq6ip3BCJSkaFDh2Lbtm1ITk7GoEGD4OTkhJEjR8LU1BSdO3fG+vXrkZiYiHnz5mHRokXQ19fHkSNHcO7cOQgh0LRpU7lfAikpPj4eEyZMQGxsLACgcePGGDVqFFq3bo1atWpBX18fKSkpCA0Nxa1bt3Dw4EE8fvwYjx49wueff459+/Zxr3kiGV2/fh2vXr165/nCFHtzcnKQkJCAXbt2AQBMTExKKiIRkexYICYiItIwderUQUxMDC5duoRhw4YVup2Pj4+iPWkP9jcVR1hYGFxdXVkgJiIiUqHatWtj5syZ2LBhA+Lj4/Hzzz+jTZs2MDU1RePGjdGpUyf4+Pjg4sWLuHjxoqKdJEkQQmDIkCEypqei2LlzJyIiIiCEwJgxY7BgwYICBd/KlSvDysoKVlZWGDFiBJYtW4Zjx47hzp07OH78OPudSEZCCCxYsOCN5yRJwr59+4p0z86dOxc3GhGRxmCBmIiISMP07t0b/v7+8Pb2hru7O+zs7N7bxtvbG2fPnoUQAra2tmpISSWF/U1EpF1cXFwUf3Z2dn7j8aL69/2ISLN89tlnMDExwcaNGxEbG4sPPvhAcW7VqlUYPXo0nj17VqDdwIED0bdvXzUmpZLg6ekJIQQ++eQTfPPNN++9vnz58vjuu+8QFBSEoKAguLm5sUBMJKN27dph8ODBOHbs2BvPF2WZ6bZt2+Krr74qbjQiIo3BAjEREZGGGTRoELZs2YKEhATMmzcPd+7cwZgxY1C3bt0C14aGhuLIkSPYuXMnJElC5cqV4eTkJENqKir2NxGRdnFxcYEQAkDBAnHe8aJigZhIsw0dOhSDBg3CrVu3UKtWLcVxU1NTuLq6Yvfu3fDy8kJcXBzMzc0xcOBA2Nvby5iYiurvv/8GADg6Oha6jY6ODgYPHoygoCAEBwerKBkRFdaCBQvQv39/xd8lScK4ceMghMCsWbPQqlWr995DR0cHenp6qFmzJqpVq6bKuEREascCMRERkYYxNjbGxo0bMWXKFOTk5GDfvn3Yt28fTExMULt2bejp6SEtLQ2vXr1CdHQ0gNxfdHR0dLB69WpUrVpV5ldAymB/ExFpn7xlY990vKiKW1wm7ZKcnIxKlSrJHYOKoFy5cmjXrl2B4/r6+pg2bRqmTZsmQyoqafr6+sjMzFT6fZq3P2lxfh4QUcmoVKkSrK2t33iuYcOGbz1HRFRWsEBMRESkgTp06IDffvsNy5YtUyxVFxMTg9jYWMU1/37oUKNGDaxatQodOnRQd1QqAexvIiLtsWfPHqWOU+k0duxYpWYg5fHy8sKiRYtQsWLFfHvVfvrpp/n+TkTyatSoEW7duoXr168rNQv8/v37ivZEpHnyvq81bNhQ5iRERPJjgZiIiEhDtW/fHqdOnYKXlxe8vLxw9+5dREdHIz4+Hnp6ejA1NUWzZs1ga2uLvn37QldXV+7IVAzsb6LSyc3NDUDue7xmzZqFbvf48WO4ubkhOTkZS5YsURy3tLTkMsQye9tsE85CKVtu3rwJIUS+wVyFkZ6ejqioKFSoUCHfcT09PZibm5dkRCIqBicnJ/j6+sLV1RX9+vWDjY3Ne9s8f/4chw4dghACI0eOVENKIlIWv68REf2DBWIiIiINVqFCBfTs2RM9e/aUOwqpAfubqPT5+uuvIYSAi4uLUgXikJAQbNu2DZUqVWKBWEuEhYUByN2LtGLFioVul5iYCH9/f8TExGDAgAGqikcqoszS4PHx8Th9+jQAKPVvhIjUr1evXpg8eTK2b9+Ozz//HLNmzcLIkSOhp6f3xuu9vLywdOlSpKSkwM7Ojp/nRFoiIyMDCQkJyMrKQk5OTqHa1K5dW8WpiIjUgwViIiIiIiIiDZNXbMzMzJQ5CRVWt27doKOjg59++gndu3cvdDtvb2/MnTsXJiYmLChooP/973/46aefChzPKwxPnz5d6XsKIdCkSZNiZyMi1dm8eTMqVKiA+vXr4+nTp1izZg1++ukntGzZEvXr10elSpWQkZGBV69ewd/fH69evYIkSdDR0cHr168xduzYN95XCIHdu3er+dUQ0b9lZ2dj3759OHbsGB49eqRUWyEEgoKCVJSMiEi9WCAmIiIqZW7evMllk8oQ9jeRZjh+/Dh8fX3fen7v3r3w9PR8730kSUJ8fDx8fHwghECtWrVKMiap2L/3iy+srKwsALkziUnzfPbZZ/Dw8EBISEiJ3bNChQqYMWNGid2PiEreL7/8ohgIkve/KSkpuHr1Kq5evfrGNkIISJKE27dvv/G8JElKrTpARKrh7OwMLy8vAEX77kZEVFqwQExERKShIiMjcf78eTx79gxpaWnIzs5+4y8vmZmZyMjIQGJiIh4+fIjY2FiOaNVC7G8i7WZtbY3vv/8eaWlpBc5JkoQbN24odb+8h8gDBw4sqYhUQq5fv45Xr16983xhir05OTlISEjArl27AAAmJiYlFZFKUPny5bFq1Srs27cv33FXV1cIIWBtbV2opSaFENDX14eZmRl69uyJ+vXrqyoyEZWQN30XZzGJSLudPn0aly9fVgzoqF27Nho1agRDQ0OUL89SCRGVLfzUIyIi0kAnT57E0qVL31hoeBeOStdO7G8i7WdhYYGZM2di9erVbzxf2AfKQgjo6emhZs2a6NevH6ZOnVqSMakECCGwYMGCN56TJKlAIbGw9+zcuXNxo5GKNGvWDCtXrsx3zNXVFQAwduxYpZYUJyLt8ODBA7kjEJEKHD9+HACgo6OD5cuXw9HRUd5AREQyYoGYiIhIwzx//hwLFy5ULDlZWEIINGvWDO3bt1dRMlIF9jdR6TFhwgRMmDAh3zErKysIIeDi4sIiUinRrl07DB48GMeOHXvj+aLMLmvbti2++uqr4kYjNXJ0dIQQolCzh4mIiEgzBAUFKVbpYXGYiMo6FoiJiIg0zP79+5GVlQUhBGxsbDBp0iRYWFjg559/xqlTpzB48GBMnToVCQkJCA4Oxv79+xEcHAwAGD58OIYNGybzKyBlsL+JSj8uR1n6LFiwAP3791f8XZIkjBs3DkIIzJo1C61atXrvPXR0dBSzxatVq6bKuKQCq1atkjsCERFpIEtLSzg7O8sdg94iNTUVQO6APyKiso4FYiIiIg2Tt0+lubk5fv31V1SoUAEA0LVrV5w8eRJ+fn6oU6cOgNwlDx0dHTFv3jx4eHhg5cqVsLW1hZmZmWz5STnsb6LSjUtUlk6VKlWCtbX1G881bNjwreeIiEg73b9/H56enggMDER0dDRSU1Ohp6cHMzMzNG7cGF26dEHr1q3ljkklIDY2FteuXcO9e/cQExODlJQU/PjjjwAAPz8/xMbGolu3bm/d6ocFYs1mZmaGFy9eKL2CFxFRacQCMRERkYZ59eoVhBBwdHRUFAsBoHnz5gCAp0+fIjY2FiYmJgCA8uXLY+XKlfD19UV0dDQOHjyI2bNnyxGdioD9TURUOuzZswdAboGYyo7IyEicPn0ad+/eRUJCArKyspCTk/PedkII7N69Ww0Jiag4IiMjsWDBAly5ciXfcUmSIITAw4cP4ePjg+3bt6N9+/ZYtWoVB29qqZSUFKxduxaurq5IT08H8E8/57l8+TK2b9+OevXqYfny5YVaMYQ0y6effooDBw7gzz//xMCBA+WOQ0QkKxaIiYiINExycjIAKGaN5rGwsIC+vj7S0tIQHByMDh06KM7p6enBwcEBO3fuxPXr19Wal4qH/U1UdsTGxuLevXtITExEZmZmoZee5v5o2uHfs4Z9fX1x6tQpODk5FSgYJyUloXfv3rCxscHIkSM540yLnTp1CkuWLEFaWppS7f5bcCAizfTixQuMHDkS0dHR+X5mGxsbQ09PDykpKUhMTFQcv379OgYOHIijR4/C3NxcjshURJGRkXBycsLz58/f+f0sNDQUkiTh6dOnGDt2LFxcXNClSxf1BaVimzBhAlxdXXH27FkMGTIENjY2ckciIpINC8REREQapnLlyoiPj3/jL6Z16tRBSEgIQkJC8hUMgX9mLD179kwdMamEsL9JGXFxcahSpYrcMUhJERER+Pbbb3H58mWl9yPOW2GAtENKSgrmzZuHS5cuAQBatWpVoEAcGhqK6OhonDlzBmfOnMGQIUOwbNkylCtXTo7IVESPHz/GggULuEQlUSmVk5ODL774AlFRUQCAFi1aYPLkyWjfvj2MjIwU18XExOD69evYuXMn7t69i5iYGMyYMQNHjx7l57qWkCQJn3/+ueL3KmtrawwePBixsbEF9psfMWIEIiMjcevWLWRlZeGrr76Ch4cHTE1NZUhORVGnTh2sXbsWc+fOxWeffYYxY8agZ8+eaNCgAQwNDaGjoyN3RCIitWGBmIiISMPUqFED8fHxePHiRYFz9erVQ0hICB4+fFjgXN4vMklJSSrPSCWH/V223Lp1C23atClSW1dXV6xZswbXrl1THPv0009x8eLFkopHKpCWloYxY8bgxYsXSheHSbvkPWC+efOmoq9fvXpV4LqcnBw0b94c9+7dgyRJOHbsGDIyMrB69Wp1R6Zi2LlzJ7KysiCEQIcOHfDZZ5+hcePGMDQ0ZFGIqBRwc3NDSEgIhBAYPnw4lixZ8sbCUdWqVWFnZ4c+ffrg22+/xeHDhxEcHIyLFy+iV69eMiQnZZ04cQL37t2DEAJffvklpkyZAgDw9PQscG27du3Qrl07/Pjjj/jf//6HxMREHDhwADNmzFB3bCqiiRMnAsh974aFhWHXrl3YtWtXodsLIRAUFKSidERE6sUCMRERkYZp27YtHj58CFdXV0ydOhW6urqKc5aWlpAk6Y3LCuf9klKxYkW1ZaXiY3+XLVOmTMHPP/9cYEb4uzx79gxLliyBr69vgXN6enpcwlDD7dmzB3///TeEENDT00OfPn3QuHFjVK5cGeXL89ex0uT06dO4ceMGhBBo2LAhvvvuO7Rs2bLAdU2bNsXRo0fx/PlzfPPNN7h16xZOnjwJBwcHfPrppzIkp6K4evUqhBBo2rQptm7dyqIwUSnj4eEBAPjwww/fWhz+Nx0dHSxduhR+fn549OgRjh8/zgKxljhz5gwAoGXLlori8PvMnDkT169fh5+fH7y9vVkg1iJ5P7/zcAAnEZVlfCJBRESkYRwcHLB//36Eh4dj7Nix+PLLLxX7GrZr1w5btmxBWFgYfv31V0ydOhUAcOfOHRw9ehRCCFhaWsoZn5TE/i5bUlNTMW3aNGzatAndunV757WZmZnYsmULtm3bptivlntWap+zZ88CAIyMjHDgwAE0aNBA5kSkKm5ubgCAmjVr4vDhwzAwMHjn9XXr1sWWLVtgZ2eHyMhIHDp0iAViLZK37OzgwYNZHCYqhYKDgxXbPBR2yVkdHR0MHDgQa9aswaNHj1SckEpKXl/b2dkp1a53797w8/Pjlj9apm3btnJHICLSGCwQExERaZhPPvkEffr0wdmzZxEQEIBx48Zhy5YtsLW1Rfv27WFpaYmnT59i06ZNOHbsGPT19fH48WNkZ2dDCIE+ffrI/RJICezvsqVChQrIyMjAzJkzsWbNmrc+iLp+/TqWLVuG58+fK0a1m5ubY9GiReqMSyXg2bNnEEJgxIgRLA6XckFBQRBCYOTIke8tDuepXLkyhg0bBhcXF/j7+6s2IJUoIyMjREdHw8TERO4oRKQCcXFxAKD0Si21atUCAERERJR0JFKRvL6uVq2aUu2qV68OAEhPTy/pSKRCe/fulTsCEZHG4K7rREREGmjNmjWwt7dXFIbq1KkDIHe/m5UrV0JPTw+SJCE0NBQhISHIzs4GADRp0gROTk6y5aaiYX+XHVu3boWBgQGysrIwb948/P777/nOx8TEYP78+ZgwYYKiOKyrq4svvvgC7u7u6Nq1q0zJqajyZn03btxY5iSkanl7wltYWCjVrn79+gCA+Pj4Es9EqtO0aVMAQEhIiMxJiEgVKleuDACIjIxUql3e6gKVKlUq8UykGlWqVAGgfFE/NDQ0X3siIiJtwwIxERGRBtLV1cW6devg5uaGL774QlEwBICPP/4YBw8eVOxhKkkS9PX1MWzYMOzevTvfHrakHdjfZYeNjQ127doFExMTZGdnY/Hixdi3bx8A4OjRo+jbty9OnjwJSZIgSRI6d+6MM2fOYObMmdxvWkvlvZ9jY2NlTkKqljeT6PXr10q1y/u3kVeMIO0wbNgwSJKEw4cPIyEhQe44RFTCGjVqBEmS4O7urlS7vP1sP/zwQ1XEIhWwsrJSuq+zsrJw/PhxCCFgZWWlwnRERESqwyWmiYiINExaWhr09PQA5P6y+qZfOK2srLBjxw5kZGQgPj4eVatW5f53Wor9Xfa0aNEC+/fvx6RJkxAeHo7ly5fj4MGDePLkiWIWee3atbFw4UL06NFD5rRUXL169cKDBw/g4eGB0aNHyx2HVMjS0hJhYWE4efIkJkyYUOh2p0+fhhACjRo1UmE6Kmk9evRA//79cfLkSUyaNAnLly9nHxKVIt27d8fNmzfh7++P7du3Y/Lkye9ts337dvj7+0MIge7du6shJZWEPn364M8//0RAQAC2bduGKVOmvPP6vEGeeduI9OrVS01JSRW8vLxw+fJl3L9/HzExMUhOTsaNGzcAAKdOncK9e/fg5OSk9AoxRETaQEh5T6GIiIhII0yfPh2RkZEYNmwYhgwZInccUjH2d9n16tUrTJo0CY8fP4YQApIkoUKFCpg4cSI+//xzxcAB0m7Jycno378/wsLC4OzsjOnTp8sdiVTkzJkzmDNnDoQQGD16NL755hvFEuNvs3nzZvzyyy8QQmDx4sUYNWqUmtJScZ06dQo5OTnYsmULnj59CiEEPvjgA1haWsLQ0PC9A7mEEFixYoWa0hKRslJTU9GnTx/FssN2dnaYPHkymjRpUuDa4OBgbN++XTEDtVq1ajh//jz09fXVmpmKJicnBwMGDEBISIii4Dto0CC8ePECP/zwA4QQCAwMREREBG7evIk9e/bgwYMHAIC6devi9OnTKF+ec7C0zYMHDzBv3jw8evRIcUySJAghEBwcDABYsWIF9uzZg/Lly2P27NmFGihCRKRNWCAmIiLSMJ07d1YUDL/99lu545CKsb/Ltri4OEydOhUBAQEQQsDOzg7r16+XOxaVsGfPnmHq1Kn4+++/0aRJE/Tq1QsNGjRA5cqVC/VAsW3btmpIScWVmZmJwYMH4+HDhxBCoEmTJhg5ciRatWqF2rVrQ09PD2lpaQgPD4e/vz+OHDmCgIAASJKkeMBcoUIFuV8GFZKVlVW+AQB5D5WVkfcAmog0061btzBlyhSkpaUpjhkZGcHc3BwGBgZISUnBy5cvFcvMS5IEXV1d7Nq1C61atZIrNhVBaGgoRo0ahYiIiEJ9lkuSBGNjYxw4cAANGjRQQ0IqSX5+fpg4cSLS09MVKzjlfU/7d4HY2dkZnp6eAHIHdk2fPh3Ozs6y5SYiKmksEBMREWmY5s2bIysrC2vWrIGDg4PccUjF2N+UlpaGGTNmwMfHB0IIDB06FN99953csaiEfPTRRwByHyRmZ2crXUASQiAoKEgV0UgFQkNDMXz4cERHRxf6AbOpqSn279+PevXqqT4glZji7jn57wfQRKS57t69i3nz5uHZs2eKY/8dHJKnbt26WLduHZo3b67OiFRCYmJisGTJEly8eDFfv+at9PNv1tbWWLlyJczNzdUdk4opKSkJvXv3RnR0NPT19TFp0iQMGTIE9+7dg7Ozc76fz3Fxcdi9eze2bduGrKwslCtXDr///jv3nSaiUoPrXxAREWkYc3NzPH/+HC9fvpQ7CqkB+7t0UnbfuezsbAC5DxmPHj0KLy+vN84kFEIoRrGTdsjKysr3d47PLd0sLCxw+vRprF69GidPnkROTs5br9XR0UHPnj2xePFiVK9eXY0pqSRcvHhR7ghEpAbNmzeHu7s7zp8/D29vb/j7+yv2KdXX10e1atXQvHlzdO/eHT179oSOjo7ckamIqlatChcXFzx9+hTnzp1DQEAAXr9+jeTkZOjp6cHU1FTR1y1atJA7LhXRgQMHEB0djXLlyuGXX35B+/btAQD37t0rcG2VKlUwa9YstGrVClOnTkVOTg4OHjzIlb+IqNTgDGIiIiIN4+rqigULFsDY2Bjbtm3jL5+lHPu7dMpberSwX7XfNhPlTddxxpl2cXFxKfY9uJSddoqNjcUff/yBu3fvIjo6GvHx8YoHzM2aNUOnTp0484iIiIhIjYYPH47AwMACW/t4enoWmEH8b3PmzMGZM2dQv359eHh4qDMyEZHKcAYxERGRhhk4cCDS09OxYsUKjBgxAu3bt0fr1q1haWkJIyMj6Orqvvce3K9Se7C/S6fatWvLHYE0BIu7ZZeJiQkGDBiAAQMGyB2FiIiU5ObmBgBo3749atasWeh2jx8/hpubG5KTk7FkyRIVpSNVSU5OhpeXF9q0aQMzM7N85zIyMvDVV1+hY8eOsLOzQ6VKlWRKScWRt1x8hw4dlGrXrl07nDlzBq9evVJBKiIiebBATEREpGHy9qvMyclBTk4Orl27hmvXrhW6Pfer1C7s79Lp0qVLckcgIi3y+PFjeHh4cEBBGZGcnIzz589j4MCBckchorf4+uuvIYSAi4uLUgXikJAQbNu2DZUqVWKBWMvs2rULLi4uSE5OxsaNG9GnT59850NDQ3H27FmcO3cO69atwzfffIP+/fvLlJaKKjU1FQBgYGCgVLu8AQFcjJWIShMWiImIiDQM96ssW9jfVBxPnjyBu7s7AM5ULa2Sk5M5Q0XLeHp64tSpU3j27BnS0tKQnZ1d4LNdkiRkZWUhPT0dycnJin3I+T7WPkFBQTh9+nSh+zspKQlhYWHIyclhgZioFAoLCwMAZGZmypyElLFmzRrs3LlT8fn99OnTAtdERkZCR0cHOTk5iI+Px/z585GQkIAxY8aoOy4VQ7Vq1RAeHo4nT54o1e7+/fsAAFNTU1XEIiKSBQvEREREGmb69On59iOl0o39TcXx5MkTuLi4QAjBwpIWePToEZ49e4bU1FRFQfDf/l1ESkxMxF9//YUrV67A19dXhrRUFMuWLcPhw4cVf3/ToJ+8z/z/nuPPAu2zdetWbNq0qdCDu/59HfubSDMcP378nT9n9+7dC09Pz/feR5IkxMfHw8fHB0II1KpVqyRjkgrdvn0bO3bsgBACBgYGmDp1KhwdHQtc165dO/j6+sLDwwObNm1CVFQUVq1aBRsbGzRo0ED9walIWrVqhdOnT+P333/HlClTCrWlU3R0NH7//XcIIdCyZUs1pCQiUg8WiImIiDTMjBkzitw2LS0N4eHhJZiGVI39TVT6/fXXX5g/fz7++usvuaOQCl2/fh2HDh2CEAKSJEFHRwfVq1dHQkIC0tPTYWRkBH19fSQkJCAlJQXAP0XC0aNHo1OnTnLGJyUFBQVhw4YNSrXJ6+/u3bsrvfchEamGtbU1vv/+e6SlpRU4J0kSbty4odT9JEmCEIIrBGiRAwcOAAD09PRw6NAhNGrU6K3XVqpUCUOGDEGrVq0wcOBAZGRkYPfu3fjuu+/UFZeKafDgwTh9+jTCw8Mxd+5crFu37p1F4vDwcEyfPh3x8fEQQmDAgAFqTEtEpFo6cgcgIiKi/Lp3744ePXrg6tWrSrXz8PBAq1atMGHCBBUlI1VgfxOVbomJiZg4cSL++usvSJKk9H/NmzeX+yVQIbm6uir+PH36dPj7++OPP/6Ak5MTJElCt27d4OXlBT8/P1y4cAGjRo1SXJ+TkwNbW1s5YlMRHTp0CAAUhaCzZ8/i3r17iqVGR48ejaCgIFy/fh07d+5Ely5dFDOImzRpkq//iUg+FhYWmDlzZoGfv3kK+/MayC0w1q9fH9OnT8fUqVPlekmkJD8/PwghMGLEiHcWh//N0tISQ4cOhSRJuHbtmooTUkmysbFBnz59IEkSLly4gN69e2Pt2rXw8fFRXHPlyhW4urpiwYIFsLOzQ3BwMIQQ6Ny5Mwf0EVGpwhnEREREGubly5cQQiA1NVXptjk5OYiKilJBKlIV9jdR6XbgwAFER0dDCIFq1aph8ODBsLCwgJubG/z8/NClSxd0794diYmJCA4OhqenJ1JSUiCEwNatW/kQSovcuXMHQgi0bt063+oQ1tbW2LZtW74Hj3Xq1MGSJUtgYWGBNWvW4ODBgxg8eDCaNWsmR3Qqglu3bgEAGjVqhJUrVyqO29jYYN++ffDy8sLixYtRpUoV2NjYwMbGBitXrsTu3bvxyy+/wM7ODvXr15crPhH9y4QJEwoMurSysoIQAi4uLujevbtMyUgd8n6fUvZn8EcffQQAeP36dYlnItVavXo1EhMTceXKFYSHh2PHjh0A/lnpY/LkyYpr8waAfPzxx0qvHEJEpOlYICYiIpJJdHQ00tPT33o+JiYGYWFh771PTk4OEhISsH//fgC5y16R5mF/E5VNf/zxBwDAwMAAbm5uqFatmuLc7du3ERsbiyFDhiiOhYaG4osvvsDDhw+xdOlSnDlzBvr6+mrPTcqLjo4GAHTp0iXf8bwHztHR0QgNDYWFhYXi3MSJE+Hq6opHjx7h8OHDXKJSi0RGRkIIATs7u3zH8woGYWFheP36NczMzBTnvvrqK3h6eiIsLAyHDh3CggUL1JqZiJRT2P3FSbsZGRkhJiZGsf1DYeXk5AAAKlasqIpYpEIVK1bE9u3bsXfvXuzcufOd2zYZGxvDyckJ06ZNQ/nyLKUQUenCTzUiIiKZnD9//o0PgvNGrS5ZskTpewoh0KJFi2Jno5LH/iYqm549ewYhBIYMGZKvOJz33r137x7S0tKgp6cHIHepy59//hkODg4IDw/H8ePHMXr0aFmyk3IyMjIAALVr1853vGrVqjA2NkZCQgIePHiQr0AMAHZ2dti8eTP8/f3VFZVKQN7KH+bm5vmOm5mZoXLlykhOTsaDBw/yFYjLlSsHBwcHbNmyBb6+vmrNS0TKefDgQYne78qVK1iyZAmEEPD09CzRe1Px1KlTBzExMbh06RKGDRtW6HZ5K4PUqVNHVdFIhYQQGDt2LEaPHo2AgAAEBgbi9evXSEpKgp6eHkxNTdGiRQu0bt2agwCIqNTiHsREREQyGTlyJFq1alWkPSnf9p+RkRHmzp0r90ujN2B/E5VN8fHxAIAGDRrkO96gQQOUL18e2dnZCA4OzneuTp06ir3RLl26pLasVDzGxsYAgOTk5ALn6tatCwB4/PhxgXN5D5bfNXuFNI+RkREAvHF1kA8++AAA8OjRowLn8paVfvnypQrTEZGmSU1NxcuXL/ne10C9e/eGJEnw9vaGu7t7odp4e3vj7NmzEELA1tZWxQlJlcqVK4dWrVph/PjxmD9/Pr7//nt88803mDZtGjp06MDiMBGVapxBTEREJKOVK1fi5MmT+Y65uLhACIG+ffvC0tLyvfcQQkBfXx81a9ZEhw4dUKVKFRWlpeJifxOVPXp6ekhOTkblypXzHS9fvjzMzc3x999/49GjR2jZsmW+85988gnc3NwQEhKizrhUDHXq1EF0dDT++uuvAufq1q2LwMBABAUFFTiXt6RlUfaiJ/nUqlULsbGxePr0aYFz9erVQ1BQ0BtnIGZlZQF480ACIiJSv0GDBmHLli1ISEjAvHnzcOfOHYwZM0YxuOvfQkNDceTIEezcuROSJKFy5cpwcnKSITUV1dSpU+Hg4IDu3btzGxciKvNYICYiIpLRBx98AGdn53zHXFxcAAD9+vVD9+7d5YhFKsL+Jip7qlatiuTkZLx+/brAubp16+Lvv/9+Y0Exb3ZiXFycqiNSCWnfvj3u3LkDNzc3TJgwId/Sw40aNQIAXLt2DampqfkeSF69ehUAYGhoqN7AVCzt2rXD/fv34erqis8++0zxngX+WTHg2rVryM7ORrly5RTn7ty5AyB3X3IiIpKfsbExNm7ciClTpiAnJwf79u3Dvn37YGJigtq1a0NPTw9paWl49eoVoqOjAeTuT62jo4PVq1ejatWqMr8CUoa3tzf++OMP6OnpoVu3brC3t0enTp24vzARlUlcYpqIiEjDODs7Y/r06YWaTUraj/1NVLp9/PHHkCQJZ8+eLXCuXr16kCRJUTD6t+fPnwMAdHT4K5u2GDp0KMqXL4/k5GQMGjQILi4uigfJnTt3BgAkJiZi3rx5ePXqFeLj47Ft2zacO3cOQgg0bdpUzvikpEGDBkFHRwcxMTEYNGgQXF1dFbPBO3ToAACIjo7GDz/8oNif2t3dHW5ubhBCKAYNEBGR/Dp06IDffvsNdevWVWznExMTg/v37+P27du4f/8+oqKiFOdq1KiB7du3c4CvFqpQoQIkSUJqairc3d3xxRdf4NNPP8WSJUvg6+srdzwiIrUSkiRJcocgIiIiIiLleXp6wtnZGUKIAvvYkmY4e/YsZs+eDSEEnJycMGvWLFSqVAlAbrHoyy+/hBACO3bsgI2NDYDcWcMDBgzA69evYWlpWej98Eh+W7duxYYNGwDkbgmwc+dOtG/fHgAwZcoU+Pj4QAiRr40kSRBCYMOGDejbt6/aM1PR/fDDD9i3bx+A3P7evn07OnbsCAAYPnw4AgMDAeQuNV++fHkkJSUp+vvbb7/FsGHDZMtOROrF72zaITMzE15eXvDy8sLdu3cRHR2N+Ph46OnpwdTUFM2aNYOtrS369u0LXV1dueNSESQlJcHT0xMeHh64cuWKYuuHvO9nNWvWRL9+/WBvbw8rKys5oxIRqRwLxEREREREWooPGzWfJEno378/Hj16BCB3Wdlff/0Vbdq0QWpqKrp06YKEhATo6uqiX79+MDAwwIULF/D69WtFUXnhwoUyvwpSxtGjR7Fx40bExsbi4sWLqF27NoDc2aSjR4/Gs2fPCrQZNGgQVqxYoeakVFySJGHTpk3YuXMnMjMzcf78edSpUwcA8PTpU4waNQqxsbEF2n366afYtm1bgcECRFR68TsbkeZJSEjA+fPn4eHhgevXryM7OxvAP8ViS0tLODg4oF+/foqf70REpQkLxEREREREWooPG7XDy5cvMX78eLx48QJCCLi6uipmJBw/fhwLFy5846zSKlWq4MSJEzAzM5MjNhVDdnY2bt26BWtr63x9m5qait27d8PLywtxcXEwNzfHwIEDYW9vL2NaKq6YmBh4eXlhwIAB+fYbjoyMxI8//ligvydOnIgKFSrImJiI1I3f2Yg0W0xMDM6fPw93d3fcunULOTk5AP4pFrdo0QIODg7o27cvTE1N5YxKRFRiWCAmIiIiItJSfNioPTIyMnD48GGcP38eW7ZsUSwzDeTOOF2zZg0SExMVxywtLbFu3TruS0tERFQK8Dtb6XXz5k1YW1vLHYNKUFRUFM6dO4ezZ8/Cz88P2dnZikJxuXLlcO/ePZkTEhGVDBaIiYiIiIi0FB82lh5paWm4ffu2Ypbhxx9/zOVniYiISgl+Z9N8kZGROH/+PJ49e4a0tDRkZ2fjTY/NMzMzkZGRgcTERDx8+BCxsbEICgqSITGpWkZGBjw8PLBhwwZERERAkiS+h4moVCkvdwAiIiIiIqKyTk9PDx07dpQ7BhEREVGZc/LkSSxduhRpaWlKtcsrGFLpkZCQAE9PT5w/fx43btxQ/JvIGyzQsmVLOeMREZUoFoiJiIiIiIiIiN5g7NixAHL3INy9e3eB40X13/sREZE8nj9/joULFyIrK0updkIINGvWDO3bt1dRMlKXvKLw2bNnce3aNcW/hbyi8Icffgh7e3vY29vDwsJCzqhERCWKBWIiIiIiIjUZPHgwHB0d0a9fP1StWrXY92vdujX27NlTAsmouNzc3BR/dnR0fOPxovr3/YhIvW7evPnG2WFvO14YnHFGRKQ59u/fj6ysLAghYGNjg0mTJsHCwgI///wzTp06hcGDB2Pq1KlISEhAcHAw9u/fr1hiePjw4Rg2bJjMr4CK4n1F4Zo1a6Jfv35wcHCAlZWVnFGJiFSGexATEREREamJlZUVhBAoV64cOnTogP79+6Nnz56oWLGi3NGomPL6VgiRbx+6vONF9d/7EZF65T0U/u+eg8V9WMw9DInKFu5BrLkGDBiAv/76CxYWFvDw8ECFChUAAB4eHvi///s/WFpawt3dXXF9VlYW5s2bBw8PD+jr6+Ps2bMwMzOTKz4p6fjx428tChsbG6N3796wt7dH27ZtOZiLiEo9ziAmIiIiIlKT2rVrIywsDFlZWfDx8YGPjw8MDAzQq1cv9O/fHzY2NnJHpGJ429hbjskl0l4PHjxQ6jgREWmXV69eQQgBR0dHRXEYAJo3bw4AePr0KWJjY2FiYgIAKF++PFauXAlfX19ER0fj4MGDmD17thzRqQgWLlwIIYTi+3nFihXRtWtXODg4oHPnzvn+DRARlXYsEBMRERERqcmlS5dw+/ZtnDp1CmfPnkVcXBySk5Ph5uYGNzc3VK9eHQ4ODlzKTAutXLlSqeNEpN0ePHgAc3NzGBoayh2FiIiKITk5GQBQp06dfMctLCygr6+PtLQ0BAcHo0OHDopzenp6cHBwwM6dO3H9+nW15qXi09HRQfv27eHg4ICePXuiUqVKckciIpIFC8RERERERGrUunVrtG7dGosWLYKPjw9Onz6NS5cuITU1FREREdixYwd27NiBhg0bKvYr5rJ1mm/gwIFKHSci7bZ8+XIEBgZiyJAhWLx4sdxxiIioiCpXroz4+Pg3rvhSp04dhISEICQkJF+BGAAaNmwIAHj27Jk6YlIJWbhwIfr16wdTU1O5oxARyY4FYiIiIiIiGZQvXx5du3ZF165dkZKSggsXLuDUqVO4du0asrOz8fDhQ6xduxbr16+HtbU1BgwYwBHuWmjBggVIS0vD4MGD8emnn8odh4hKSEhICDIyMlClShW5oxCRFtDX10ft2rW5p6kGqlGjBuLj4/HixYsC5+rVq4eQkBA8fPiwwDkdHR0AQFJSksozUskZO3Zsvr/Hxsbi2rVruHfvHmJiYpCSkoIff/wRAODn54fY2Fh069aN710iKpVYICYiIiIikpmBgQEGDBiAAQMGIDY2Fl5eXrh8+TKuXLmC5ORkXL9+HdevX8e3336LHj16YNCgQdyvWEvcuHED4eHh0NHRYYGYqBRJTU0FANSvX1/mJESkLi9evEBgYCCioqKQmpoKPT09mJmZoXHjxrC0tHxn244dO+LSpUtqSkrKaNu2LR4+fAhXV1dMnToVurq6inOWlpaQJOmNy0gHBQUByN3DlrRPSkoK1q5dC1dXV6SnpwMAJEnKVwi+fPkytm/fjnr16mH58uVo1aqVXHGJiFSCBWIiIiIiIg1iYmICe3t7mJqawsjICG5ubsjOzoYkSUhNTcXp06dx+vRp1K1bFzNmzEC/fv3kjkzvEBUVBQDo1KmTzEmIqCQ1adIEAQEB8PPzg729vdxxiEiF3N3d8csvv+DRo0dvveaDDz7A9OnT0b9/fzUmo5Lg4OCA/fv3Izw8HGPHjsWXX34Ja2trAEC7du2wZcsWhIWF4ddff8XUqVMBAHfu3MHRo0chhHjv4ADSPJGRkXBycsLz58/fuLR4ntDQUEiShKdPn2Ls2LFwcXFBly5d1BeUiEjFhPSuT0EiIiIiIlKLjIwMXLp0Ce7u7vjzzz8Vs9Pyvq5bWVmhRYsWuHTpkqLoKIRAr169sGHDBpQrV0627PR23bp1Q3h4OL7++muMGzdO7jhEVEICAwMxduxYZGZmYs6cORgzZky+WWdEpP1ycnKwcOFCnDhxAgDeWUgCcr+X2dnZYe3atYrlh0k7zJ49G2fPnlXMHt2yZQtsbW0hSRL69euHp0+fAgAsLCygr6+Px48fIzs7G0IIzJ07F5MmTZIzPilBkiQMHToU9+7dAwBYW1tj8ODBiI2NxapVqyCEQHBwMIDclYB++ukn3Lp1CwBgZGQEDw8P7l9MRKUGC8RERERERDLJzs7GlStXcObMGXh6eiIlJQXAPw8gq1evDnt7ezg6OqJx48YAch9Went7Y+3atXjy5AmEEJg+fTqcnZ1lex30dr/99hvWrl0LMzMzHDhwAObm5nJHIqIS4Ofnh6CgIKxduxYZGRkwMDDARx99BEtLSxgZGaFChQrvvQc/t4k02w8//IB9+/YBAMqVK4dOnTrBxsYGderUgb6+PpKTk/H8+XNcv34dV65cQU5ODoQQGD9+PObPny9zelJGRkYGFi5ciNOnT0MIgTNnzihmBgcEBGD8+PFITU1VFJDzvqs3bdoUhw4d4gAhLeLm5oavv/4aQgh8+eWXmDJlCgDA09MTzs7O+QrEeX788Uf873//gxACX3zxBWbMmCFHdCKiEscCMRERERGRmt26dQunT5/GuXPnEBcXB+CfB016enro3r07HB0d0bFjx7fOQImIiEDPnj2Rnp4Oc3NzXLx4UV3xSUnr16/H9u3bYWBgADs7O7Ru3VpRRCrMA8XatWurISURKcPKyirfPoX/3bewMP77AJqINMe9e/cwdOhQALnLR2/evBlWVlZvvT44OBizZ8/G8+fPIYTAiRMn0KhRI3XFpRLy4MEDXLhwAdOmTcs30OfBgwdYs2YNrl27BkmSoK+vDwcHB8ybNw+GhoYyJiZlTZkyBT4+PmjVqhUOHDigOP6uAjEAjBo1Cn5+fvjoo49w7NgxdUYmIlIZ7kFMRERERKQma9asgYeHB169egXgn6KwEAJt27aFo6Mj+vTpg0qVKr33XjVq1EDjxo0RGBioWHKaNE/v3r0BABUqVEBycjKOHTum1EMlIQSCgoJUFY+IiuG/4+2VGX+vbDGZiNTr8OHDkCQJBgYG2LFjx3tXAGnSpAl27NgBBwcHpKam4vDhw1i8eLGa0lJxpKWlQU9PD0Du4J83DQSwsrLCjh07kJGRgfj4eFStWpXbu2ip4OBgxXLwyujduzf8/Pzw7Nkz1QQjIpIBC8RERERERGqyY8cOCCEURYR69ephwIABGDBgQJFmiWZkZAAA6tatW6I5qeQ8f/4839+5gBNR6bBnzx65IxCRCt28eRNCCAwZMqTQ20OYm5tjyJAh2LNnD3x9fVWckErKnDlzEBkZiWHDhmHIkCHvvFZXVxfVq1dXUzJShbzVm6pVq6ZUu7x+T09PL+lIRESyYYGYiIiIiEiNjIyMYGdnB0dHR3z88cfFute0adNQrVo1Fog12MCBA+WOQEQqYG1tLXcEIlKhiIgIAECLFi2Uapd3fVhYWIlnItW4e/cuIiMj0aRJk/cWiEn7ValSBdHR0Yr3eGGFhoYq2hMRlRYsEBMRERERqYmLiwtsbW3z7WlWHH369CmR+5DqrFy5Uu4IREREVERZWVlFuj4nJ0cVcUgFYmNjAQBt2rSROQmpg5WVFf7880+4u7tj7NixhWqTlZWF48ePQwjxzr3IiYi0jY7cAYiIiIiIyooePXqUWHGYiIi0182bN+WOQETvkLes9O3bt5Vqd+vWLQBArVq1SjwTqUZeX798+VLmJKQOeQNsAwICsG3btvden52djcWLFyv2Hu7Vq5cq4xERqRVnEBMRERERySQuLg4+Pj4ICAhAVFQUkpKSYGJigho1asDa2ho2NjbQ1dWVOyYREb1FZGQkzp8/j2fPniEtLQ3Z2dlv3Gs8MzMTGRkZSExMxMOHDxEbG4ugoKD/196dR3VZJX4c/1w2QVPAJR3FNDVFE819hwp3wLU9zVwas7FsftlMOdW0aNNiiyOVUzbm1mjuS2hqKWou6LgL7mgoKioqgiACz+8PD99icAHh+30w369zOAee+9zv+XAaGPx+nnuvDYkBFETr1q114MABLViwQP369VO9evVuOGfPnj1asGCBjDFq06aNC1KiOAwdOlSvvvqqJk2apLZt2xZ6W3HcWvr06aPJkydr//79+vjjj7Vr1y716dNHJ06ccNxz+fJlJSUlKSYmRlOmTNGePXtkjFGNGjU4PgbA74qxrvYvFwAAAABOc/r0aX3yySeaP3/+dbcg9PHx0ZAhQzRkyBCK4t+B1NRUJSQkKD09XTk5OflKJMuylJWVpUuXLunChQvau3evli9frmXLltmUGMD1LFy4UH//+9+VkZFRqHmWZckYo7i4OCclA1BUhw4dUnh4uCzLUoUKFfT++++rXbt217x/7dq1euWVV3T69Gm5u7tr4cKFql27tgsToyhmzJihd999V1lZWWrdurWaNWumWrVqqVy5cgX6G7xFixYuSInicvToUT3xxBNKSkqSMeaG91uWJV9fX3377bf8XAP4XaEgBgAAAFzo4MGD6tevn86dO3fVVWb/yxijOnXqaNq0afL19XVBQhS3EydO6J133lF0dLSys7MLPZ8SCSh5jhw5orCwsEKfT2qMUYMGDdS6dWu9/PLLTkoHoDj885//1Oeff+4okOrWravWrVurevXq8vHxUXp6uhISErRhwwbt27fP8fDH0KFD9eKLL9obHgXWsGFDSVfOjc7JySlQYfhbxhh2hLgFJScn64033tCPP/6Y599kxph8/0Zr2bKl/vGPfzi2IweA3wsKYgAAAMBFzp8/r4iICCUlJUmS6tWrpyeeeELNmjXTH/7wB/n4+OjixYs6evSoNm/erP/85z86ePCgjDFq0qSJpk2bJjc3N5u/CxTGpUuX1KNHD/3yyy8FeiDgf1WqVElr1qxxQjIARfHuu+9qypQpjq1kBw8erICAAH322WdatGiR+vbtq6FDhyolJUVxcXGaPn264uLiZIzRW2+9pUceecTubwFAAXz44Yf6+uuvJem6xWHu/8cPHDhQf/3rX12SDcUjMDCwSPPZEeLWFh8frx9++EHbt2/XyZMnlZaWJm9vb1WoUEFBQUEKDQ1l23EAv1sUxAAAAICLfPrpp5owYYKMMerXr59effXV6xa+WVlZevPNNzV79mwZY/TOO+/ooYcecmFiFNXUqVM1ZswYGWNUqlQphYaGKiAgQCtXrtT+/fvVsmVLNW3aVBcuXFBcXJy2bt3qWL3yySefqHPnzjwUAJRAPXv21N69exUQEKAlS5bI09NTkrRkyRL9+c9/Vq1atRQVFeW4PysrSy+//LKWLFkiHx8fLV26VJUrV7YrPoBC+O9//6t//etf2rBhgzIzM/ONe3h4qH379ho8eDBbDd+Cxo8fX+hVw/9r+PDhxZQGAADXoSAGAAAAXCQ8PFwHDx7Ufffdp//85z8FmpOTk6OHHnpIsbGxat68uaZNm+bklChOgwYN0rp16+Tl5aW5c+eqTp06kqRp06Zp9OjRat26tb755hvH/Tt27NCLL76o48ePq27dupozZ448PDxsSg/gWlq1aqWUlBT96U9/ylMMHD16VB07dpQxRuvWrZO/v79jLCMjQx07dtSZM2fYgha4BWVmZiouLk5nzpxRWlqafHx8VKlSJdWvX79A59Ti9ycjI0PHjx/X3XffbXcUAAAKjUfRAQAAABf55ZdfJEm9evUq8Bw3Nzf17dtXEmfR3or27dsnY4x69erlKIcl6b777pMkbdmyRZcvX3Zcb9SokSIjI+Xu7q59+/bp+++/d3VkAAWQlpYmSapevXqe6wEBAfLx8ZGU/3e2t7e3IiIiZFmWNmzY4JqgAIqNl5eXGjdurAcffFARERHq2LGjGjduTDl8iwsNDVXHjh21bt26Qs1bsmSJmjZtqoEDBzopGQAAzkVBDAAAALhIbmlQpkyZQs3LXYHG5j+3npSUFEn5z7erW7eu3NzcdPnyZe3duzfPWIMGDfTAAw/IsiwtWbLEZVkBFNwdd9wh6eq/l3NL4/379+cbu+eeeyRJhw8fdl44AECBHTt2TMeOHVN6enqh5+bk5Oj06dNOSAUAgPOxVxkAAADgInXr1tXmzZu1YcMGhYeHF3je7t27HfNxa/Hw8NDly5fl5+eX57qXl5f+8Ic/KDExUQcOHFDDhg3zjLdu3VrLly/Xvn37XJgWQEHdeeedOn/+vBISEvKN1axZU/v377/qz2/umeKpqalOzwjgxiIjIx2f/3a7+N9ev1mcS1uynDlzRpcuXbrmeHJyshITE2/4Ojk5OUpJSdH06dMlFf7BTwAASgoKYgAAAMBF+vfvr02bNmnevHkKCwtTmzZtbjjnyJEjmjFjhowxevzxx12QEsXJ399f6enpV11dUqNGDSUmJuZbQZw7T7ryZiWAkqdFixbat2+f5s2bp6FDh+bZYrZWrVrX3EY6NjZWklSqVCmXZQVwbZGRkTLGSMpfEOdev1kUxCXLsmXL9Pbbb+e7nvvf+Y033ij0axpj1KhRoyJnAwDADmwxDQAAALhI586dNWTIEGVnZ2vYsGGaNGmSMjIyrnn/qlWr9NRTT+nixYvq3r27evbs6cK0KA733nuvLMtSdHR0vrGaNWvKsizt2LEj39iJEyckXVmlAqDkiYiIkCQdP35cTz31lGJiYhxjrVq1kiQlJibqX//6l+P61q1bNWvWLBljVKtWLdcGBnBN1zrCw7Ksm/5AyfP444+radOmRfrv+r8f5cqV08iRI+3+1gAAuCnG4q8WAAAAwCXGjRsnSVq6dKni4+NljJGPj4+aNGmiu+++W2XKlFFmZqZOnDihbdu26cSJE7IsS25ubmratKlja9L/ZYzR5MmTXfmtoIDmzJmjv/3tbzLG6JVXXtGAAQMcY3PnztWoUaPk7u6uOXPmOM4pzszMVM+ePRUfH6/q1atr+fLldsUHcB0vvviili5d6lh9NmHCBIWEhMiyLIWFhSk+Pl6SFBAQIB8fHx08eFDZ2dkyxmjkyJEaPHiwnfEBSHke7mjZsuVVr9+s374eSoZffvlFCxcuzHMtd7V4t27dCvTwTu7f71WqVFHbtm3zHSMCAMCtgoIYAAAAcJHAwMB82xVallWkLQxz58fFxRU1Hpzg8uXL6ty5s2NFcEBAgD755BM1bNhQKSkpCgkJUUZGhvz8/NSvXz+VKVNGCxYsUFxcnIwxeuihh/TOO+/Y/F0AuJrMzEyNGjVKixcvljFG33//vaNc2L59u55++mmlp6c7fsfnvv3SoEEDzZgxI8+21AAAe+T+fR4ZGanQ0FC74wAA4DIUxAAAAICL5K4QLW4UxCVbXFycnn76aZ0/f17GGH333XcKCgqSJH355Zf6+OOPr/rggI+Pj+bOnau7777bjtgACmjPnj1avny5nn32WXl6eua5/sEHH2j9+vWOn+mIiAi9/PLLKlu2rI2JAdxIYmKiJKlChQqFOjP8woUL2rZtm5KTkzka5BYRGRkpSQoLC+NvLgDAbYWCGAAAAACcLDk5WV9++aWWLVumefPmydfX1zH2ySefaOLEicrOznZc8/Pz0wcffKDg4GA74gIoRpmZmTp//rzKly8vd3d3u+MAKIDAwEC5ublp/PjxhVpVunjxYo0cOVL+/v5av369ExMCAAAUDQUxAAAAANjsxIkTWr16tc6dO6dq1aopJCREd9xxh92xAFzDzp07HTsBAPj9udlth+fPn69XXnlFHh4e2rVrlxMTAgAAFI2H3QEAAAAA4HZXpUoVPfLII3bHAFBADz/8sGrWrKnw8HC2JQVuYRs2bNCJEyeuO37hwoUbvk5OTo5SUlL0zTffSJL8/f2LKyIAAIBTsIIYAAAAsMnu3bu1YsUK7dixQ2fOnFF6erq8vb1VuXJl1atXT/fff7+aNWtmd0wUQXh4uCIiIhQWFqaAgAC74wAoJrmrC3PVr19fPXr0ULdu3VS5cmUbkwEojI0bN+rpp5/Odz337dLf/pwXRp8+fTRmzJiiRAMAAHAqCmIAAADAxU6dOqVXX31VP//8c57rlmXleyOydevWeu+99ygcblG/LZEaN26siIgIdevWTeXLl7c5GYCi+Oijj7R06VIlJCRI+rVEcnNzU7NmzdSjRw916dJFZcuWtTMmgAJ47bXXNHv27GJ7vRYtWigyMlK+vr7F9poAAADFjYIYAAAAcKGEhAQ9/vjjOnPmjH77p7ivr6+8vb118eLFPFsZGmPk7++vWbNmqVq1anZERhF06NBBp06dkvRrgeTu7q5WrVopIiJCnTp1UpkyZeyMCKAIdu7cqaioKC1dulTHjx+X9OvPuqenpzp06KDw8HCFhobKy8vLzqgAriEtLU27d+92fG1ZlgYMGCBjjEaMGKGmTZve8DXc3Nzk7e2tKlWqqGLFis6MCwAAUCwoiAEAAAAXycnJUc+ePbV//35JUqNGjTRkyBC1bt1a5cqVc9yXnJysDRs2aNKkSdq5c6ckqUGDBpo1a5bc3d1tyY6bY1mW/vvf/yoqKko//PCDzpw5I+nXAqlUqVK6//77FR4erpCQEHl6etoZF0ARbN261VEW/++DIaVLl1anTp0UFhamdu3ayc3Nzc6oAG4gdweQyMhIhYaG2h0HAACg2FEQAwAAAC4yd+5cjRo1SsYYPfroo3rjjTeuWxLk5OTorbfe0syZM2WM0bhx49S5c2cXJkZxysnJ0caNG7VkyRItW7ZM586dk/RrgVSuXDl17txZYWFhat26tY1JARSFZVnavHmz42f99OnTkn79WS9fvry6deum1157zc6YAK4jJiZGknTPPffI39/f5jQAAADFj4IYAAAAcJFnnnlGa9as0T333KMFCxYUaAVZ7qrjAwcOKCQkRBMmTHBBUjhbdna21q1bp6ioKP34449KSUmR9GuBVKlSJYWFhSksLEwNGza0MyqAIsgti3/88UdFRUUpKSlJ0pWf9bi4OJvTAQAAALhdURADAAAALtK+fXudOXNGI0eO1ODBgws879///rc++OADBQQEaMWKFU5MCDtcvnxZP//8s3744QetWrVKZ8+elXSlQDLGKDY21uaEAG7W7t27tXLlSkVHR2v37t2yLEuWZVEQA7eYlJQUpaenKycnR//7VqplWcrKytKlS5d04cIF7d27V0uWLNHUqVNtSgsAAHBjHnYHAAAAAG4XuVsKV6tWrVDz/vCHP0iSY+UZfl88PT11//33q27dumrQoIEmTpyopKSkfG9AA7g17NixQ0uWLNEPP/yg48ePS5Lj57lMmTLq3LmzIiIi7IwIoABSU1P1z3/+U4sXL3Y8vAUAAPB7QUEMAAAAuMgdd9yh8+fP69SpU4Wal3t+ZZkyZZwRCzbav3+/li5dqmXLlunAgQOO65ZlycfHRx07drQxHYCCul4p7OnpqeDgYEVEROjBBx+Ul5eXnVEBFEB2drYGDx6sHTt2SFKhH9ri5xwAAJR0FMQAAACAi9StW1cxMTGKiopS//79Czzv+++/lyTVqVPHWdHgQrml8NKlS3Xo0CFJv77x7OHhoXbt2ik8PFwdO3aUj4+PnVEBXMf1SmFjjFq0aKEePXqoS5cuKleunJ1RARTSwoULtX37dhljJEn33XefAgICtHXrViUmJqpBgwaqXbu2UlJStGfPHp04cULSlZ/9N998U926dbMzPgAAwA1REAMAAAAuEhoaqpiYGG3btk0TJ07UkCFDbjhn4sSJ2rZtm4wxCg0NdUFKOMP1SmFJatKkiSIiItStWzf5+/vbFRNAAT344IP5SmFJql+/vsLDwxUeHq7KlSvbFQ9AEf3www+SJDc3N02cOFFt2rSRJH311Vf66KOPVKlSJX3wwQeO+5cuXaq///3vSklJ0eLFi/Xoo4/akhsAAKCgjMXBVgAAAIBLpKenq2vXro6zhLt3764hQ4aofv36+e6Ni4vTxIkTFRUVJUmqWLGili1bxorSW8z48ePzlMLSr2VSnTp1FBERobCwMAUEBNgVEcBNCAwMdHweEBCgsLAw9ejRQ7Vr17YxFYDiEhISoqSkJHXv3l0fffSR4/rWrVv1+OOPy8fHR//973/l5ubmGFu3bp0GDx4sSYqMjOTBPgAAUKKxghgAAABwER8fH3300Ud65plnlJGRoaioKEVFRalcuXKqVq2aSpcurYsXL+rYsWNKSUmRdKVM9PLy0rhx4yiHb0GfffaZjDGOUrhKlSoKCwtTREREnoIJwK2lfPny6tatm8LDw9WkSRO74wAoZufPn5d0ZWvp36pXr56MMcrIyND+/ftVr149x1jbtm3Vpk0brVu3TgsWLKAgBgAAJRoFMQAAAOBCzZs315QpU/Tyyy/r8OHDkq68CZlbCEt5tyutUaOGxo4dq6CgIFdHRTEpV66cunTpooiICLVo0cLuOACKwZo1a+Tu7l5sr/fzzz/rjTfekDFGK1asKLbXBVA0FStWzPN16dKldeeddyopKSlfQSxdWXm8bt06xcXFuTImAABAoVEQAwAAAC4WFBSkqKgoLVu2TNHR0dq2bZuSk5OVlpYmHx8fVaxYUUFBQQoNDVWnTp3ybF+IW8tnn32m4OBgeXp6FsvrHTp0yLHt+PDhw4vlNQEUXnGWw9KVIwiOHTsmY0yxvi6Am+Pn56eTJ08qOTk539hdd93lKIj/V6VKlSRJp0+fdnpGAACAoqAgBgAAAFxkz549qlatmsqWLSs3Nzd17dpVXbt2tTsWnKi4t5c8dOiQIiMjZYyhIAYAwEnq1aunkydPauPGjXryySfzjN19993atGmTdu7cmW9ebjGclZXlkpwAAAA3i6UIAAAAgIuMGTNG7du31zvvvGN3FAAAAFxD+/btZVmWfvrpp3zbvtevX1+StGnTJiUmJuYZW7RokaT8W1MDAACUNBTEAAAAgIvs379fmZmZ8vPzszsKAAAArqFv377y8/NTdna2nn/+efXv318HDhyQJHXs2FEeHh7KysrS008/rfnz52v58uX64x//qJ07d8oYo6ZNm9r8HQAAAFwfBTEAAADgIunp6ZKubE0IAACAkql06dIaO3asPDw8ZFmWNm/erNTUVElXzhnu16+fLMtSQkKCXn31Vb3wwgtas2aNpCtnlD/99NM2pgcAALgxCmIAAADARXK3JNyyZYvNSQAAAHA97du31/z589WpUyd5eXnprrvucoy9/PLLCg8Pl2VZeT48PT315ptvKigoyMbkAAAAN+ZhdwAAAADgdjFq1Cg99dRTmjlzpgICAtSvXz95eXnZHQsAAABXUbt2bY0fP14ZGRny9vZ2XHd3d9fYsWP15JNPatWqVTp79qwCAgLUvXt3BQQE2JgYAACgYCiIAQAAABfJysrSyJEj9eGHH+rDDz/UZ599poYNG6pWrVoqV66cPD09b/gaw4cPd0FSAACA29f333+vsmXLqkOHDjLG5CmHf6tJkyZq0qSJi9MBAAAUHQUxAAAA4CJPPPGEjDGOr9PS0hQTE6OYmJgCvwYFMQAAgHN99dVX2rt3r9q2bauvv/7a7jgAAADFjoIYAAAAcCHLsq779fX8tlwGAACAcyQkJEiSQkJCbE4CAADgHBTEAAAAgItMmTLF7ggAAAAoIF9fX7sjAAAAOAUFMQAAAOAiLVu2tDsCAAAAbqBdu3ZatmyZFi9erJ49e9odBwAAoNi52R0AAAAAuF0kJiYqMTFRly5dKtS8CxcuaM2aNVqwYIGTkgEAACDX3//+d9WsWVNr167VsGHDtGXLFmVlZdkdCwAAoNiwghgAAABwkQcffFBubm4aP368QkNDCzwvOjpaI0eOlL+/P6tYAAAAnGzWrFkKDQ3VtGnTtGrVKq1atUqenp6qXr26ypYtKy8vr+vON8Zo8uTJLkoLAABQeBTEAAAAgAtZllXoObkrVi5cuFDccQAAAPA/Pv30Uxlj8lzLzMzUoUOHbjjXsqx8cwEAAEoaCmIAAACgmG3YsEEnTpy47nhByt6cnBylpKTom2++kST5+/sXV0QAAABcx9Ue6ruZB/0AAABKIgpiAAAAoJgZY/Tqq69edcyyLE2bNu2mXjM4OLio0QAAJZCPj4+qVq3KqkOghNizZ4/dEQAAAJyKghgAAAAoZq1atVLfvn01e/bsq47fzOqTFi1a6C9/+UtRowEAXGj9+vXau3evSpcurWbNmql27dpXva9du3b66aefXJwOAAAAwO3KWOyNAgAAABS7tLQ07d692/G1ZVkaMGCAjDEaMWKEmjZtesPXcHNzk7e3t6pUqaKKFSs6My5KgPPnz8vHx0deXl7XvOfs2bPav3+/JKlly5auigbgGnbt2qXp06fL398/z0M8Z8+e1bBhw7R9+3bHNWOMwsPDNXr06Ov+nAMAAACAs7GCGAAAAHCCMmXKXLPAu+eeeyj3bkMxMTHKyMjIt1X4zJkz9fnnnyspKUnGGDVq1EgvvPCC2rZtm+81/P39+d8OUEJMnz5do0ePliQFBQXlGXv99de1bdu2PNcsy9KiRYuUlpamzz77zFUxAQAAACAfVhADAAAALhITEyPpSkHs7+9vcxq4ypEjR/TCCy9o3759atu2rb7++mvH2OTJk/Xee+9Jyrv1uLu7u9566y099NBDLs8L4MaOHDmisLAwZWVlSZLuu+8+zZgxQ5J08OBBhYWFyRij0qVL66WXXpKfn5+mTJmibdu2yRijCRMmKCQkxM5vAQAAAMBtzM3uAAAAAMDtomXLlmrZsiXl8G3k0qVLGjhwoPbt2yfLsnT48GHHWGpqqj799FNZliXLshQUFKT27dvLy8tL2dnZGjNmjI4ePWpfeADXNGPGDGVlZcnDw0OffPKJoxyWpO+//97x+ciRI/XEE0+oe/fumjJligICAiRJCxcudHlmAAAAAMjFFtMAAACATTIzM5WSkqKsrCzl5OQUaE7VqlWdnArFafbs2UpMTJQxRvfff7+ee+45x9jSpUuVnp4uY4x69Oih999/X5K0Y8cO9evXTxkZGZo5c6Zeeuklu+IDuIZ169bJGKOIiAh169Ytz9hPP/0k6cpOAGFhYY7rXl5e6tu3r8aNG5dv+2kAAAAAcCUKYgAAAMCFsrOzNW3aNM2ePVsHDhwo1FxjjGJjY52UDM6QWxTVr19fEyZMyDO2YsUKx+eDBw92fN6oUSP17t1bM2fO1OrVqymIgRLoxIkTkqRmzZrluZ6UlKQ9e/Y4zhMvV65cnvHcFcSnT592TVAAAAAAuAoKYgAAAMCFhg8frlWrVknKe+Ysfp/27dsnY4x69uyZ53pmZqY2bNggY4yqVaumunXr5hlv2LChZs6cqePHj7syLoACSktLk6R8BfDatWsdn7dt2zbfvPT0dEmSmxsnfgEAAACwDwUxAAAA4CKLFy/WypUrZYyRZVmqWrWq6tatq7Jly8rDgz/Nf4/OnTsnSapSpUqe65s2bVJGRoaMMVctkXx8fCRJFy9edHpGAIXn7++v06dPKzExMc/13AeAJCk4ODjfvNxdICpVquTUfAAAAABwPbwLBQAAALjI3LlzJV1ZOTZmzBj16tXL3kBwulKlSikrK8ux2jBXdHS04/MOHTrkm5eQkCBJ8vX1dW5AADclKChIP/30kxYuXKgnn3xSnp6eOnbsmKKjo2WM0Z133qlGjRrlmRMfH6958+bJGKOgoCCbkgMAAACAxJ5GAAAAgIvExsbKGKPevXtTDt8mateuLenKiuFcWVlZjvOHvby81K5duzxzsrKyHCVSnTp1XBcWQIHlbhsfFxenRx99VB988IH69++vS5cuSVKe3/EJCQmaNGmSHn30Ucd43759XZ4ZAAAAAHKxghgAAABwkdyzJ1u1amVzErhKSEiItm/froULF6pOnToKCQnRN998o8TERBljFBISotKlSzvuT05O1muvvaZffvlFxhiFhobamB7AtXTp0kUPPPCAVq5cqbi4OMXFxTnGqlWrpj/+8Y+OrydPnqzp06c7vu7Vq9dVt5YHAAAAAFdhBTEAAADgIpUrV5Z0ZYUobg9PPvmkKlSooJycHI0dO1YRERGaM2eOJMnd3V3PPvus495x48apQ4cOWrlypSQpICBAjzzyiC25AdzYuHHjNHToUJUrV06WZcnNzU0dO3bU9OnTVaZMGcd9tWrVkmVZKlWqlP70pz9pzJgxNqYGAAAAAApiAAAAwGXat28vy7K0du1au6PARXx9ffX111+rWrVqsizL8eHl5aXRo0erQYMGjnt9fHyUnZ0ty7JUs2ZNffXVV/L29rYxPYDr8fLy0p///Gdt2LBBP//8s7Zu3arIyEjHw0C52rRpo/fff1/R0dF6/vnn5ebGWzEAAAAA7GUsy7LsDgEAAADcDhISEtSjRw9lZmZq4sSJatOmjd2R4CKZmZlavXq14uPj5efnpwcffFAVKlTIc090dLQmTZqkrl27qk+fPvLy8rIpLQAAAAAA+D2jIAYAAABcaMWKFRo5cqSys7PVr18/derUSbVr11bZsmVZVQYAvzNHjhzRvn37VLp0aTVs2FC+vr52RwIAAAAACmIAAADAVQYNGiRJOnz4sBITE2WMKdR8Y4xiY2OdEQ0AcBNOnjypWbNmycfHR4MHD3Zcv3TpkkaNGqWoqCjHNW9vbz399NMaMWKEHVEBAAAAwIGCGAAAAHCRwMBARyl8M3+GG2MUFxdX3LEAADdh+fLlGjlypDIzM9WkSRN9++23jrHXXntNs2fPzjfHGKNHHnlEb731liujAgAAAEAeHnYHAAAAAG4XLVq0sDsCnKR+/fqS8q/yzr1+s1g1DpRMp06d0ssvv6zMzExZlqUzZ844xo4dO6Y5c+bIGCN3d3cNGDBAvr6+mjVrlhISEvTdd9+pR48eatasmY3fAQAAAIDbGQUxAAAA4CJTp061OwKc5ForwtmwCfh9+vbbb5WRkSFjjEaOHKkBAwY4xr7//ntZliVjjJ5//nkNHTpUkvTII48oLCxMycnJmjt3LgUxAAAAANtQEAMAAABAEV1rdTirxoHfp7Vr18oYo44dO2rIkCF5xn766SdJV3YA6NOnj+O6n5+fHn74YU2YMEGbN292aV4AAAAA+C0KYgAAAAAoomutDmfVOPD7dPToUUlS+/bt81w/d+6cduzYIWOMAgMDValSpTzjNWvWlCQlJSW5JCcAAAAAXA0FMQAAAGCTVatWaeXKldq9e7eSk5OVlpamjRs3SpIWLVqkXbt2qX///goICLA5KQDgty5cuCBJ8vf3z3N93bp1ysnJkTFG7dq1yzcvOztbkpSTk+P8kAAAAABwDRTEAAAAgIvt2bNHL7/8sg4cOOC4lnteZa6dO3dqypQpmj59ul588cV8W5ji9+f8+fPy8fGRl5eX3VEA3EDZsmV17tw5nTp1Ks/1VatWOT7v0KFDvnm5v/crVKjg1HwAAAAAcD1udgcAAAAAbidbtmzRY489pgMHDsiyLFmWpVKlSuW7LzExUZKUlZWljz76SJGRka6OimIWExOj1atX57s+c+ZMhYSEqHXr1rrvvvv02GOPad26dTYkBFBQDRo0kGVZWrZsmePa2bNnHecP+/r6qnnz5nnmJCcna/bs2TLG6N5773VpXgAAAAD4LQpiAAAAwEVSU1P1/PPPKyMjQ97e3ho+fLhWrVqlsWPH5rt39OjRGjZsmDw8PGRZlr744gvt2bPHhtQoqiNHjqhnz54aMGCAJk+enGds8uTJevPNN5WUlCTLspSTk6Nt27bpmWee0ezZs21KDOBGunXrJunKgx/PPvuspk+frsGDBys1NVXGGIWHh8vN7cpbLhcvXtSyZcv00EMPObamDg8Pty07AAAAAFAQAwAAAC7y7bff6syZM3J3d9cXX3yh4cOHq0qVKle918/PTyNGjNAXX3whNzc35eTk6D//+Y+LE6OoLl26pIEDB2rfvn2yLEuHDx92jKWmpurTTz91rCQPCgpS+/bt5eXlpezsbI0ZM0ZHjx61LzyAa+rdu7caN24sy7IUHR2t0aNHKy4uTtKV1cPDhg1z3PvBBx9oxIgROn78uCSpXbt26tKliy25AQAAAECiIAYAAABc5scff5QxRl27dlXr1q0LNKdDhw7q1q2bLMtSTEyMkxOiuM2ePduxXfj999+vTz75xDG2dOlSpaenyxijnj17atasWZo4caKmTZsmLy8vZWRkaObMmXZFB3Ad7u7umjhxomOlcO6DHvXr19eUKVPynDFcq1Ytx3ivXr00fvx4G5MDAAAAgORhdwAAAADgdpG7erRt27aFmteqVSt9//33OnHihBNSwZlyzyOtX7++JkyYkGdsxYoVjs8HDx7s+LxRo0bq3bu3Zs6cqdWrV+ull15yTVgAhVK2bFmNHTtWf/vb35SQkCA/Pz/ddddd+e5r3ry5XnjhBXXp0kW1a9e2ISkAAAAA5EVBDAAAALhIenq6JKl06dKFmlemTBlJkmVZxZ4JzrVv3z7HCuHfyszM1IYNG2SMUbVq1VS3bt084w0bNtTMmTMdW9ICKLn8/f3l7+9/zfEGDRqoQYMGLkwEAAAAANfHFtMAAACAi1SsWFGSdOjQoULN2717tyTl2bIUt4Zz585JUr6zpjdt2qSMjAxJV19R7uPjI0m6ePGicwMCKHaWZSk1NdXuGAAAAABwTRTEAAAAgIs0bdpUlmVpzpw5yszMLNCcM2fOaM6cOTLGqEmTJk5OiOJWqlQpSVJaWlqe69HR0Y7PO3TokG9eQkKCJMnX19eJ6QAUh/T0dE2fPl1DhgxRmzZtdO+996ply5aO8enTp2v48OH673//a2NKAAAAAPgVBTEAAADgIn379pUkHT9+XCNHjrxhSXz8+HE988wzOn/+vCTl26YYJV/ueaObNm1yXMvKynKcP+zl5aV27drlmZOVlaV58+bJGKM6deq4LiyAQlu9erU6duyo0aNH6+eff9bZs2eVk5OT50iAQ4cOacWKFerXr5/eeust5eTk2JgYAAAAADiDGAAAAHCZNm3aqGvXrlq6dKmWL1+uLl26qHv37nm2Iv3555+VlJSkmJgYLV26VBkZGTLGKDg4+KorTVGyhYSEaPv27Vq4cKHq1KmjkJAQffPNN0pMTJQxRiEhIXnOpE5OTtZrr72mX375RcYYhYaG2pgewPWsWLFCI0aMcBTCXl5eqlixohITE/Pcl5ycLOnK1tMzZsxQdna23n77bTsiAwAAAIAkyVi/fawVAAAAgFNdunRJzz33nH7++WdJkjHmmvfm/qneuHFj/fvf/1aZMmVckhHF5/z58+revbujIMplWZY8PDz03XffqUGDBpKkcePG6csvv3SUTdWrV9eiRYvk7e1tR3QA13HmzBl17txZaWlpKl++vP7yl78oPDxcq1at0vDhw2WMUVxcnKQruwLMnz9f7733nlJTU2WM0dSpU9W8eXObvwsAAAAAtyu2mAYAAABcqFSpUpo4caJGjRqlP/zhD7Is65ofvr6+Gj58uKZPn045fIvy9fXV119/rWrVquX5b+vl5aXRo0c7ymFJ8vHxUXZ2tizLUs2aNfXVV19RDgMl1JQpU5SWliYvLy9NmjRJvXr1kofH1Tdp8/Dw0EMPPaSpU6fK09NTkvTdd9+5Mi4AAAAA5MEW0wAAAICLGWP01FNP6cknn9T27du1Y8cOnTx5UqmpqfL29laFChXUqFEjNWvWTKVKlbI7LoooMDBQUVFRWr16teLj4+Xn56cHH3xQFSpUyHNfvXr11Lp1a3Xt2lV9+vSRl5eXTYkB3Eh0dLSMMerZs6fq1atXoDn169dX79699d1332nLli1OTggAAAAA10ZBDAAAANjE3d1dTZs2VdOmTe2OAifz8vJSx44dr3tPSEiIQkJCXJQIQFEcPXpUktSsWbNCzbvvvvv03Xff6dSpU86IBQAAAAAFwhbTAAAAgIsMHTpUixcvVnp6ut1RAABFkJWVJUmFXumfuw21mxtvxwAAAACwDyuIAQAAABeJjo7W6tWr5e3trQcffFDh4eHq0KHDNc+txO/PsmXLtGLFCu3YsUNnzpxRenq6vL29VblyZdWrV0/333+/unXr5jinFEDJdOeddyohIUFxcXHq3r17gedt3brVMR8AAAAA7MI7UQAAAICLeHp66vLly0pPT1dUVJSioqLk6+urzp07KyIiQi1atLA7Ipxk3759+r//+z8dPHjQcc2yLElSamqq0tLSdOjQIS1ZskRffvmlxo4dq8DAQLviAriBVq1a6ZdfftGcOXM0ZMgQ+fr63nDOkSNHNG/ePBlj+H0PAAAAwFbsaQQAAAC4yPr16/Xee+8pJCRE7u7usixL586d06xZs/TUU0/pgQce0NixY7Vnzx67o6IY7d69W4899pgOHjwoy7JkWZbKli2rBg0aqGnTpgoMDFTp0qUdYwcOHNBjjz3G/w6AEuzRRx+VMUZnz57VsGHDlJycfN37d+7cqUGDBikjI0OS9PDDD7siJgAAAABclbFyH1sHAAAA4DIpKSlatmyZlixZog0bNig7O1uSZIyRJNWqVUsREREKCwtT9erV7YyKIrh06ZK6du2q48ePS5K6dOmiP/7xj7r33nvz3btjxw599dVXWr58uSSpevXqWrx4sUqVKuXSzAAKZsyYMZo6daqMMfLx8VFwcLCys7O1fPlyGWP05ptv6tSpU9q4caM2b97smNe7d2+9++67NiYHAAAAcLujIAYAAABslpycrGXLlikqKkqbN29WTk6OpF/L4kaNGikiIkLdunVThQoV7IyKQpoyZYreffddGWP04osvaujQoTecM2HCBH366acyxujdd99V7969XZAUQGFZlqXXX39ds2fPlvTr7+xr3StJnTt31scff8zZ8wAAAABsRUEMAAAAlCCnT5/WDz/8oKVLl2rLli3Kzs52lA7u7u7atWuXzQlRGP3799emTZt03333acaMGQWe99hjj2nbtm1q06aNJk2a5MSEAIrqxx9/1FdffaVt27Zd857atWvrmWeeUa9evVyWCwAAAACuhUdWAQAAgBKkYsWKevLJJ/Xwww9ryZIl+vjjj5WUlCTLshzbUOPWcfDgQRljFBYWVqh54eHh2rZtmw4fPuycYACKTWhoqEJDQ3Xy5Ent2LFDJ0+eVGpqqry9vVWhQgU1atRINWrUsDsmAAAAADhQEAMAAAAlREpKilasWKFly5Zp48aNysjIkPTr1qRNmjSxMx5uQkpKiiSpUqVKhZqXu5X4mTNnij0TAOeoXLmyOnXqZHcMAAAAALghCmIAAADARrml8NKlS7V+/XplZWVJ+rUUrlOnjsLDwxUeHq6AgAA7o+Im+Pr6Kjk5WceOHSvUvMTERElSuXLlnBELAAAAAADcxiiIAQAAABe7USlcpUoVhYWFKSIiQoGBgXZGRRE1aNBAa9as0YIFCzRo0CDHedLXk5OTo/nz58sYw39/4BaQk5Ojw4cP68KFC7p8+bLjd/mNtGjRwsnJAAAAAODqKIgBAAAAF5k7d+41S2FfX1916dJF4eHhatGiRYGKRJR8Xbt21Zo1a7R//36NGTNGr7322g3nvPvuu9q/f7+MMerSpYsLUgK4GWlpaRo3bpwWLFjg2E6+oIwxio2NdVIyAAAAALg+YxX00VYAAAAARRIYGChjjKMULlWqlB544AFFREQoODhYnp6eNidEcbt8+bJ69eqlQ4cOSbpyjvSgQYPUqlUrlS1b1nHfhQsXtHHjRv373//W1q1bJUk1atTQ4sWL5eHBc71ASZOdna3HH39cO3fuLPCK4d8yxiguLs4JyQAAAADgxninAQAAAHAhNzc3tW7dWhEREerUqZPKlCljdyQ4kaenpz799FMNHDhQp0+f1tatW/X8889LunK+cOnSpXXx4sU8qw8ty5Kvr68+//xzymGghPruu++0Y8cOGWNkjFHz5s1Vr1493XHHHfzcAgAAACjxWEEMAAAAuMiUKVMUFhamChUq2B0FLnbs2DG99tprWr9+/Q3vbdWqld59911Vq1bNBckA3IwnnnhCW7Zskbe3t/71r3+pVatWdkcCAAAAgAKjIAYAAABscvbsWa1fv167du1ScnKyLl68qH/+85+SpC1btujs2bN68MEHOY/4d2Tnzp2Kjo7Wtm3blJycrLS0NPn4+KhixYoKCgpSaGioGjZsaHdMADfQsmVLXbhwQf3799eoUaPsjgMAAAAAhcK+RwAAAICLXbx4UR9++KHmzZunS5cuSbqyrfBvi+CVK1dq4sSJqlmzpsaMGaOmTZvaFRfFKCgoSEFBQXbHAFBEly9fliQ1btzY5iQAAAAAUHhudgcAAAAAbienTp1Snz59NGPGDGVkZMiyLF1tU5+jR4/KsizFx8frqaee0qpVq1wfFkUWGRmpyMhIxcfHF2rejh079H//93967rnnnJQMQFFUrVpVkpSWlmZzEgAAAAAoPApiAAAAwEUsy9KwYcN0+PBhWZalli1b6v3339crr7yS797HHntMzZs3lyRlZWXpL3/5i86cOePqyCiiyMhIffbZZzp06FCh5h0/flxRUVEFOrMYgOs98MADsixLP/30k91RAAAAAKDQKIgBAAAAF1mwYIF27dolY4xeeuklTZkyRT179lRAQEC+e1u1aqVp06Y5VpBeuHBB3377rasjwyaxsbGSdNXV5QDsN3DgQPn7+ys6Olrz58+3Ow4AAAAAFIqxeMcBAAAAcIlnnnlGa9asUdOmTfOUvStWrNDw4cNljFFcXFy+eU888YS2bNmihg0bavbs2a6MjAKaNm2ali1blu96TEyMjDGqU6eO/P39b/g6lmXp/Pnz2r9/vySpTp06WrRoUbHnBVB027Zt03PPPaezZ8+qU6dO6tSpk2rXrq2yZcvK3d39hvNzt6kGAAAAAFfzsDsAAAAAcLuIi4uTMUbdu3cv1LwuXbpoy5YtOnz4sHOCoci6d++uyMhInT9/Pt+YZVk6cOBAgV/rt8/wPvnkk8WSD0Dx6tKliyQpJydHlmVp+fLlWr58eYHnG2McOwUAAAAAgKtREAMAAAAucu7cOUlSxYoVCzWvUqVKkqRLly4VdyQUk/Lly2vUqFH69NNP81xPTEyUMUb+/v7y9va+4eu4ubnJx8dHlStXVlhYmHr37u2kxACK4siRI3m+ZnM2AAAAALcSCmIAAADARfz8/HTmzBklJSUVat7Ro0cd81Fy9ejRQz169MhzLTAwUJL0zjvvKDQ01I5YAJygV69eMsbYHQMAAAAAbgoFMQAAAOAigYGBWrt2raKiovTUU08VaE5WVpbmzp0rY4yjbMSto2rVqjLGyMfHx+4oAIrRe++9Z3cEAAAAALhpbnYHAAAAAG4XXbt2lSRt375dX3311Q3vz87O1uuvv+44e7hz587OjAcnaNWqlRo1aqScnBy7owAoRmz5DwAAAOBWxgpiAAAAwEX69OmjyZMna//+/fr444+1a9cu9enTRydOnHDcc/nyZSUlJSkmJkZTpkzRnj17ZIxRjRo1OI/2FrRx40YdP35cbm5uat++vd1xABSTVq1aqWXLlgoJCVFwcLCqV69udyQAAAAAKDBjWZZldwgAAADgdnH06FE98cQTSkpKKtD5lZZlydfXV99++61q167tgoQoTo0aNdLly5f1j3/8Q7169bI7DoBiEhgYmOd3eM2aNXX//fcrODhYLVq0kIcHz+MDAAAAKLnYYhoAAABwoYCAAM2fP18dO3aUdKUAzv34368ty1LLli01d+5cyuFbVMWKFSVJ58+ftzkJgOL05JNP6q677nL8ro6Pj9c333yjQYMGqVWrVnr++ec1a9YsJSUl2R0VAAAAAPJhBTEAAABgk/j4eP3www/avn27Tp48qbS0NHl7e6tChQoKCgpSaGioGjVqZHdMFMHXX3+tDz/8UJUrV9a3336ratWq2R0JQDE6evSo1q5dq7Vr12rDhg1KTU2VpDyriwMDAxUcHKyQkBA1adKkQLtHAAAAAIAzURADAAAAgBN99NFHmjhxokqXLq3u3burWbNmqlWrlsqVKycvL68bzq9ataoLUgIoquzsbG3dutVRGMfGxionJ0fSr4VxuXLl1L59e4WEhKhHjx52xgUAAABwG6MgBgAAAAAn6dKliyTp+PHjyszMLPTKQWOMYmNjnRENgJOdPXtW69at09q1a7Vu3TqdPHnSMebm5sbPNgAAAADbeNgdAAAAAAB+r44cOZLna57PBW4fbm5u8vHxkb+/v+68806dPHlSxpg8584DAAAAgB0oiAEAAADASXr37m13BAAukpSUpM2bN2vz5s3atGmTDh48mK8ItixLvr6+at68uU0pAQAAAIAtpgEAAAAAAAotISFBmzZtcpTCCQkJjrHfvtXi7++vFi1aqEWLFmrZsqXq1atnR1wAAAAAcGAFMQAAAAAAQCEEBwfr1KlTjq9/WwhXqFAhTyF8zz332BERAAAAAK6JghgAAAAAAKAQkpKSHOcJG2PUpk0b9e7dW40bN1aNGjXsjgcAAAAA18UW0wAAAADgJImJiUV+japVqxZDEgDFKTAw0PG5MUbSla2kmzdvrpYtW6p58+Z57gEAAACAkoSCGAAAAACcJDAw0FEe3QxjjGJjY4sxEYDicPr0aW3cuNHxceTIEcdY7s98uXLl1LRpU7Vs2VItWrTQvffeW6TfBwAAAABQXCiIAQAAAMBJirqC0BijuLi4YkoDwFlOnjzpKItjYmKUkJDgGMsthUuXLq2mTZs6zidu0qSJXXEBAAAA3OYoiAEAAADASV599dUb3nPp0iVduHBBBw4c0PHjx2WMUVBQkJ5++mlJUvfu3Z2cEkBxO378uKMs3rJliw4fPizp17KY3QEAAAAA2ImCGAAAAABKiG3btmnUqFGKj4/XgAED9Morr9gdCUAR7d27V1FRUZo2bZouXrwoy7LYHQAAAACArSiIAQAAAKAEOXHihCIiIpSamqp///vfatOmjd2RABRCfHy8Nm7cqA0bNigmJkZnz56VJP327Zd77rlHixYtsisiAAAAgNuch90BAAAAAAC/qlKlivr27atvvvlG06ZNoyAGSrhjx45pw4YNjjOIk5KSHGO5pXCZMmXUpk0bBQcHKzg4WFWqVLErLgAAAABQEAMAAABASXPvvfdKkrZv325zEgBXs2jRIkcpfOzYMcf1/10lnFsIN2vWTB4evAUDAAAAoGTgXycAAAAAUMKkpKRIki5cuGBzEgBX8/LLL8sYk6cQLlOmjNq2besohStXrmxjQgAAAAC4NgpiAAAAAChBsrOzNXfuXEnSnXfeaXMaANdiWZbq1q3rKISbNm3KKmEAAAAAtwT+5QIAAAAANsvJyVFqaqpiY2M1YcIE7d69W8YYtWvXzu5oAK7inXfeYZUwAAAAgFuWsX67HxIAAAAAoNjUr1//puZZlqVSpUpp0aJFuuuuu4o5FQBnsixLaWlpuuOOO+yOAgAAAABXxQpiAAAAAHCSm30e18fHR++//z7lMHALSE9P19y5c7Vy5Urt3r1b58+flyTFxsZKkqZPn67169dr4MCBatasmZ1RAQAAAEASBTEAAAAAOE2LFi0KdJ+bm5u8vLxUoUIFBQUFqVu3bipfvryT0wEoqtWrV+vVV19VcnKypF8fCjHGOO45dOiQVqxYoR9//FGPPfaYXn/9dbm5udmSFwAAAAAkCmIAAAAAcJqpU6faHQGAk6xYsUIjRoxQTk6OLMuSl5eXKlasqMTExDz3/bY8njFjhrKzs/X222/bERkAAAAAJEk8sgoAAAAAJdTly5ftjgDgKs6cOaO//vWvys7Olr+/v9577z1t2bJFo0aNynfvhx9+qNGjR+uOO+6QZVmaNWuWNm/ebENqAAAAALiCghgAAAAAnOTgwYM3PTcmJkY9e/YsxjQAisuUKVOUlpYmLy8vTZo0Sb169ZKHx9U3afPw8NBDDz2kqVOnytPTU5L03XffuTIuAAAAAORBQQwAAAAATtK/f3/t2bOnUHPOnTunV199VQMGDFB8fLyTkgEoiujoaBlj1LNnT9WrV69Ac+rXr6/evXvLsixt2bLFyQkBAAAA4NooiAEAAADASZKTkzVgwADt2LGjQPfPnTtX3bp10/z582VZlpPTAbhZR48elSQ1a9asUPPuu+8+SdKpU6eKOxIAAAAAFBgFMQAAAAA4iTFGKSkpGjhw4HXPHD106JD69++vv/3tbzp37pwsy1LZsmX1t7/9zYVpARRUVlaWJMnLy6tQ83K3oXZz4+0YAAAAAPbhXyQAAAAA4CT/+Mc/5O7urrS0ND3zzDNau3ZtnvHMzEz985//VK9evbR582ZZliXLstSzZ08tXbpU/fr1syk5gOu58847JUlxcXGFmrd169Y88wEAAADADhTEAAAAAOAkvXr10vjx4+Xt7a309HQ999xzWrFihSRp/fr1ioiI0BdffKHMzExZlqW6detq2rRpev/991WhQgWb0wO4llatWsmyLM2ZM0fnz58v0JwjR45o3rx5MsaoRYsWTk4IAAAAANdGQQwAAAAATvTAAw9o4sSJKleunDIzM/Xiiy9qyJAhGjRokH755RdZlqU77rhDr7zyiubNm6fmzZvbHRnADTz66KMyxujs2bMaNmyYkpOTr3v/zp07NWjQIGVkZEiSHn74YVfEBAAAAICrMpZlWXaHAAAAAIDfu71792rIkCE6deqUjDHK/adYeHi4/vrXv6pSpUo2JwRQGGPGjNHUqVNljJGPj4+Cg4OVnZ2t5cuXyxijN998U6dOndLGjRvznEHeu3dvvfvuuzYmBwAAAHC7oyAGAAAAABdJSEjQ4MGD9csvv8gYo169eukf//iH3bEA3ATLsvT6669r9uzZkiRjzHXvlaTOnTvr448/loeHh0syAgAAAMDVUBADAAAAgAslJydryJAhio2NlTFGI0aM0LPPPmt3LAA36ccff9RXX32lbdu2XfOe2rVr65lnnlGvXr1clgsAAAAAroWCGAAAAACK6KmnnirU/ampqYqNjZV0ZdVh48aN5eXlle8+Y4wmT55cLBkBONfJkye1Y8cOnTx5UqmpqfL29laFChXUqFEj1ahRw+54AAAAAOBAQQwAAAAARRQYGHjd7WVvhmVZMsYoLi6uWF8XgP3OnTsnPz8/u2MAAAAAuE252R0AAAAAAH4PLMsq1g8AJdfmzZtveu68efPUrVu3YkwDAAAAAIXDCmIAAAAAAIBCaNKkiT777DO1bdu2wHMOHz6sN954Q5s2bZIkdgcAAAAAYBtWEAMAAAAAABRCenq6nn32Wf300083vPfy5csaP368evTooU2bNrFDAAAAAADbURADAAAAAAAUgqenpzIzM/XCCy8oKirqmvdt2LBBERER+vzzz5WZmSnLslStWjV9/vnnLkwLAAAAAHmxxTQAAAAAAEAhrF+/Xn/605908eJFubu76+2331bfvn0d48nJyXr//fe1cOFCSVfOKPfy8tKQIUM0dOhQlSpVyq7oAAAAAEBBDAAAAAAAUFg7duzQ0KFDdfbsWbm5uWnUqFHq16+fZs2apbFjxyolJcWxnXRwcLBef/11Va9e3ebUAAAAAEBBDAAAAAAAcFMOHTqkwYMH6/jx4zLGqFatWjp06JCjGK5atapGjRqljh072pwUAAAAAH5FQQwAAAAAAHCTTpw4ocGDB+vgwYMyxsiyLHl6emrQoEEaNmyYvL297Y4IAAAAAHm42R0AAAAAAADgVlWlShVNnz5djRs3lmVZMsaoc+fO+vOf/0w5DAAAAKBEoiAGAAAAAAAoAj8/P02ePFkdOnSQZVmKiorSG2+8YXcsAAAAALgqtpgGAAAAAAC4itDQ0ELdn52drRMnTkiSjDGqVKmSPD09891njNGKFSuKJSMAAAAAFJaH3QEAAAAAAABKomPHjjnOFS4IY4yMMZIky7KUlJR0zfsAAAAAwC4UxAAAAAAAAFdRtWpVuyMAAAAAQLFji2kAAAAAAAAAAAAAuE242R0AAAAAAAAAAAAAAOAaFMQAAAAAAAA36dixY9q1a1e+66tXr9YTTzyhZs2aqUOHDnrppZe0b98+GxICAAAAQF5sMQ0AAAAAAFBIycnJGjVqlKKjo9WhQwd9+eWXjrGoqCiNHDlSlmUp920XY4xKlSqlcePGKSQkxK7YAAAAAEBBDAAAAAAAUBg5OTnq3bu39u3bJ8uyVKNGDf3www+SpEuXLun+++/X2bNnJUl33nmnypQpo/j4eEmSr6+vlixZovLly9uWHwAAAMDtjS2mAQAAAAAACmHhwoXau3evJKlBgwb685//7Bj78ccfdfbsWRljFBISop9++klLlixRZGSk3NzclJKSohkzZtgVHQAAAAAoiAEAAAAAAApj2bJlkqS77rpLM2bMUNeuXfONSdJzzz0nDw8PSVLHjh3VvXt3WZallStXujYwAAAAAPwGBTEAAAAAAEAhxMbGyhijhx56SF5eXo7r2dnZ+vnnnyVJFStWVOPGjfPMa9asmSQpISHBdWEBAAAA4H9QEAMAAAAAABRCcnKyJCkgICDP9a1bt+rChQsyxqht27b55vn6+kqSUlNTnR8SAAAAAK6BghgAAAAAAKAQcreNvnTpUp7ra9ascXzerl27fPOOHTsmSbrjjjucmA4AAAAAro+CGAAAAAAAoBBq1KghSdq5c2ee67nnD7u7uys4ODjfvCVLlsgYo7vvvtv5IQEAAADgGiiIAQAAAAAACqFdu3ayLEuzZ8/W0qVLlZ6ervHjxys+Pl7GGLVu3Vp+fn6O+7OysvT2228rNjZWkhQSEmJTcgAAAACQjGVZlt0hAAAAAAAAbhUnT55Ut27dlJ6enue6ZVkyxmjSpElq3bq1JOmbb77RF198oZSUFFmWpfLlyysqKipPgQwAAAAArsQKYgAAAAAAgEKoXLmyIiMjVa5cOVmW5fgwxmjEiBGOcliS0tLSdP78eVmWJT8/P33++eeUwwAAAABs5WF3AAAAAAAAgFtN27ZttWTJEi1atEjx8fHy8/NT165dFRgYmOe+2rVrq3r16uratasGDhyo8uXL25QYAAAAAK5gi2kAAAAAAAAAAAAAuE2wxTQAAAAAAAAAAAAA3CYoiAEAAAAAAAAAAADgNkFBDAAAAAAAAAAAAAC3CQpiAAAAAAAAAAAAALhNUBADAAAAAAAAAAAAwG2CghgAAAAAAAAAAAAAbhMUxAAAAAAAAAAAAABwm6AgBgAAAAAAAAAAAIDbBAUxAAAAAAAAAAAAANwm/h9D5LqntOmsVAAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "TOP_K = 10\n", - "selected_highest_score = feature_metrics.sort_values([\"score\"], ascending=False)\n", - "print(selected_highest_score)\n", - "selected_highest_score = selected_highest_score.head(TOP_K).index\n", - "\n", - "feature_metrics.loc[selected_highest_score,:]\n", - "corr_sel_df = plot_miner_correlation(scaled_dmf[selected_highest_score])" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "id": "98414438", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Before: 0 columns in 34 rows\n", - "After: 0\n" - ] - } - ], - "source": [ - "import numpy as np\n", - "from sklearn.impute import SimpleImputer\n", - "df= dmf.loc[:,dmf.columns.isin(selected_highest_score)]\n", - "\n", - "imp_mean = SimpleImputer(missing_values=np.nan, strategy='mean')\n", - "imp_mean.fit(df)\n", - "imp_df = imp_mean.transform(df)\n", - "imp_df = pd.DataFrame(imp_df, columns = df.columns)\n", - "print(\"Before:\", len(df.loc[:, df.isna().any()].columns), \"columns in\", len(df.loc[:, df.isna().any()]), 'rows')\n", - "print(\"After:\", len(imp_df.loc[:, imp_df.isna().any()].columns))" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "id": "c645fdeb", - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "/Users/andreamaldonado/miniconda3/envs/py39/lib/python3.9/site-packages/sklearn/base.py:457: UserWarning: X has feature names, but PCA was fitted without feature names\n", - " warnings.warn(\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAC4QAAALsCAYAAAABXZj9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdZ3wUVd/G8Ws3lSSE0HvvPfQWuiBNQUXAgjfeeqMoiApW7L2hUiwgiF2KgFKkd6QTSgKh14QQWhKSkGST3X1e5MmYJT0kWQK/7xtn55yZ+c/M7lk/4ZqzJrvdbhcAAAAAAAAAAAAAAAAAAAAAoMgxO7sAAAAAAAAAAAAAAAAAAAAAAEDeEAgHAAAAAAAAAAAAAAAAAAAAgCKKQDgAAAAAAAAAAAAAAAAAAAAAFFEEwgEAAAAAAAAAAAAAAAAAAACgiCIQDgAAAAAAAAAAAAAAAAAAAABFFIFwAAAAAAAAAAAAAAAAAAAAACiiCIQDAAAAAAAAAAAAAAAAAAAAQBFFIBwAAAAAAAAAAAAAAAAAAAAAiigC4QAAAAAAAAAKXVJSkrNLuKlxfW4u3A8AtwrGMwAAAAAAgFsTgXAAAAAAAADcNr777jvVr19f9evX17Bhw3K0zd69e41t6tevrx49euRou6NHjxrb+Pv7y2Kx3Ejp6Wzfvt3Y/8svv5yv+y7o4yxYsEDjxo3Ll33dTFavXq3//ve/6tSpkxo3bqyWLVuqX79+CgsLy9V+9uzZo3vvvTfDttDQUON+DB8+PD/KLnSHDh3S+PHj1a1bNzVt2lT+/v7q0aOHVq1apQULFhjnN2XKFGeXKinr+3EzK6wxIj8MHz7cqDU0NNTZ5WSrKF1bIK1b9fsXAAAAAAAAkquzCwAAAAAAAAAKS4cOHYzlAwcOyGKxyN3dPcttNm3a5PA6LCxMx48fV+3atbPcbseOHcZy69atsz3O7SAuLk5PPvmkduzYobZt2zq7nHz1/fff6+OPP3ZYl5ycrDNnzqhs2bI53s9HH32kH374QXa7Pb9LvCns3r1bjz76qBITEx3Wh4WFydfXVzExMU6qLGO3+v0AcHu4lb9/AQAAAAAAkIJAOAAAAAAAAG4bjRo1kp+fn6KiomSxWBQUFKRWrVpluc31gfDUddkFwnft2mUsBwQE5K3gW0xkZKRDUP5WER8fry+//NJ43bx5c3Xo0EHu7u4ym825ehhg5cqVt3T4+IsvvjDC4BUrVlTfvn1VokQJRUVFqVGjRrmeTb2g3er3A8Dt4Vb9/gUAAAAAAMC/CIQDAAAAAADgtmE2m9WuXTutWLFCkhQYGJhlIDwqKkpBQUGSpG7dumn9+vWSUgLhI0aMyPJYO3fuNJY7dep0Y4VnoF27djp8+HC+7xe5d/LkSSPkXKNGDf3+++9ycXFxclU3p5CQEEmSyWTSb7/9pkqVKjm033vvvbr33nudUdotpyiNET///LOzSwAAAAAAAACAIs3s7AIAAAAAAACAwtShQwdjOTAwMMu+//zzj2w2mySpX79+xqzgO3fuVEJCQqbbnTp1ShcvXpQklS9fXnXr1r3RsnETi4uLM5YbN25MGDwLqdeqTJky6cLgAAAAAAAAAAAgbwiEAwAAAAAA4LbSsWNHY3nPnj1Z9t20aZOx3KFDB3Xu3FmSlJiYqB07dmS6XUHPDo6bS+pDA5Lk7u7uxEpufna7XRLXCQAAAAAAAACA/OTq7AIAAAAAAACAwlS9enVVrlxZYWFhioyM1IkTJ1SrVq0M+27evFmSVK9ePZUrV06dOnXSDz/8ICklLN6lS5cMt9u1a5exnDaAfr3jx49r7ty52rJli86fP6+EhASVLl1azZo1U9++fdWnTx+ZTKYMt92+fbseeeQRSdI999yjjz76KMN+VqtVixYt0qJFi3Tw4EHFxcWpdOnSat26tR5++GG1aNFC06dP18SJEyVJP/30k9q1a5dpzZJ07Ngx/fLLL9qyZYsiIiLk6empypUrq1evXho6dKhKlSqVaa2pduzYofr160uS2rZtq59//tmh/ejRo5o3b562b9+us2fPymKxyM/PTzVq1FCHDh10//33q1y5clnWmVNXrlzRnDlztGnTJp04cUKxsbHy9fVV9erV1blzZw0bNizdOUlSjx49FBYW5rBu4cKFWrhwofH68OHDOaoh9Vpkti6r/YSHh+unn37Sxo0bde7cOZnNZlWqVEndunXTsGHDVLly5WyPHx8fr3nz5mnt2rU6duyYoqKi5OPjoxo1aqhr16564IEH5Ofnl6Nzud7LL7/scE0kKSwszOH8Ut93CxYs0CuvvCJJGj16tMaMGWP0CQ0NVc+ePSVJ48aN02OPPaZp06Zpzpw5ioqKUoUKFdSuXTuNHz9evr6+kqTY2FgtXLhQa9eu1aFDh3T16lV5e3urbNmyat26tfr376+2bdumq/lG7kdGUt8rqe/1S5cu6fvvv9eaNWt0/vx5ubi4qFatWurdu7cefPBB+fj4ZLiftNdnzpw5ql69uj755BOtWbNGVqtV1apVU+/evTVq1Khsx4jUmgICAjRz5kzFxsbq999/18qVK3XmzBnFx8erXLlyat++vR544AE1btw42/O8evWq5s+fr7Vr1+rIkSOKjY2Vt7e3ateurR49emjo0KHGvUlr+PDhxkM2a9asUZUqVTI859T3yerVq/Xbb78Z97RMmTJq2bKlHnjgAbVp0ybbOu12u9asWaP169dr7969unjxomJjY+Xl5aVSpUqpefPm6tevn7p165btvvLDhQsXNHfuXG3cuFEnTpxQfHy8ihcvrvr16+vOO+/UfffdJw8Pjyz3sW/fPv3xxx/atWuXzp8/L6vVqjJlyqhJkybq06eP+vTpI7M54zmC0r5XJk2apD59+mjfvn367bfftGvXLl24cEElSpRQ3bp1NXToUPXp08fY9sqVK/r111+1cuVKhYaGymQyqXbt2rrrrrv04IMPytU1/T9DTZkyRVOnTpWUcr8rV66shQsX6o8//tDx48cVFxdnfJ6HDx+uBg0a5Og65tc1+Pzzz9W/f3+FhITo999/17Zt23ThwgW5ubmpevXquuOOO/Twww9n+jlNKzw8XLNnz9bmzZsVGhqquLg4lSxZUo0aNVKvXr00cOBAubm5Zbjt9WPeyJEjdebMGf3222/auHGjwsPDZTKZVLlyZXXv3l3Dhw9X2bJlMz2vVNl9/wIAAAAAAKBoIhAOAAAAAACA20779u01f/58SVJgYGCGgfBDhw7p4sWLkqSAgABJKcEpd3d3WSwWbdy4URMmTMhw/6kzhJtMpgxnCLfZbPr000/1448/ymq1OrSFh4crPDxcK1asUNOmTTV58mRVqlQpT+cZGRmpJ554Qvv27XNYf/78eS1ZskRLly7VE088IW9v7xzvc9q0aZo8ebKSk5ONdQkJCYqKitKBAwf066+/atKkSWrVqlWeapakr7/+WlOmTHGYeVuSLl68qIsXL2rnzp2aPn26JkyYoCFDhuT5OFJKqPajjz7StWvXHNZfvnxZly9fVmBgoGbMmKFXX31VgwcPvqFjFYSFCxfq7bffVnx8vMP6I0eO6MiRI/r111/18ccfq1evXpnuY8uWLXrxxReN93uqyMhIRUZGas+ePZo5c6befvtt9e/fv0DOIy8+/PBDhyDjqVOnFBMTozfffFOSFBwcrFGjRunChQsO20VHRys6OlrHjh3T7Nmz1aNHD33++ecqVqxYodQdFBSkUaNGpbveQUFBCgoK0k8//aQZM2ZkG4JNSkrS448/ruDgYGPdwYMHVbVq1VzXFBwcrDFjxujcuXMO68+ePauzZ89q/vz5Gjt2rJ588slM97F06VK9/fbbio6OdlgfHR2twMBABQYG6scff9SXX36p1q1b57pGKSXI/frrr2vu3LkO68PDw7V06VItXbpUDz/8sCZMmJBp8Pf48eN69tlndeTIkXRtV69e1dWrV3Xq1Cn99ddf6ty5syZNmpSrMTK3fvzxR02cOFGJiYkO6yMjI7Vt2zZt27ZNP/74o77++mvVrl073fbR0dF64403tHz58nRtYWFhCgsL04oVKzRt2jRNmjRJNWrUyLamL774QtOnT3cYg1PH3y1btuiBBx7QW2+9pb1792rMmDHpPmP79+/X/v37tWHDBk2fPl0uLi6ZHstisWjUqFFat26dw/rU996CBQv03HPPaeTIkZnuoyCuwfTp0zVp0iSH77r4+Hjjc/rzzz9r5syZWX5Ov//+e3355Zfp7u2FCxd04cIFrV+/Xt99950mT56c4UMo1/vzzz/11ltvZTre//LLL5oyZQq/TAIAAAAAAHCbIhAOAAAAAACA207Hjh0dAuEZBX03btxoLHfu3FmS5OnpqdatW2vLli06deqUzp49my58GR4ebswa3bBhwwxnlh43bpz+/vtvSSmh8Q4dOqh58+Zyd3fXmTNntG7dOkVFRSkoKEhDhgzR/PnzVb58+VydY2xsrIYPH66jR49Kkjw8PHTHHXeoTp06io6O1po1a3T27Fl9++23OZpBWpJWrlypuLg4SVLt2rUVEBCgUqVK6fTp01q+fLmuXbumixcvauzYsVqyZIkxo3S1atX04osv6urVq/r2228lSVWrVtUDDzwgSapYsaJxjL/++kuTJk2SJJnNZgUEBKhRo0by8vJSRESE1q9fr7CwMCUkJOj1119XlSpVspyFPStpZ0aXpCpVqqh79+4qU6aMLl68qHXr1iksLExxcXGaMGGCrly54hBKfPLJJxUTE6MzZ85o9uzZkqQmTZqoX79+ua7lxRdflJQSuE8N1Kauy0xwcLAxq3LFihXVo0cPlStXTuHh4Vq+fLmioqIUFxenF154QYsWLVK1atXS7WPNmjUaO3askpKSJKXMoN+lSxeVLVtWUVFR2rx5s44cOaKYmBiNGzdO165d0/3335+rc+vXr5/q1q0rSfrkk08kSSVKlNATTzxh9Mmotqzs2LFDmzZtSre+V69ecnFxMR6GuHTpkiSpZs2a6ty5s8qUKaOrV6/q4MGD2rJliyRp7dq1euONN/Tpp58a+8nL/ciJS5cuGWFwb29v3XnnnapWrZrOnTunFStWKDo6WhcvXtTDDz+sX375Jcuw6bRp0xzC4KnSzt6cExERERo5cqQuX76ssmXLqkePHqpUqZIuXbqk5cuX6+LFi7LZbPriiy/UuHFjYzxMa+HChXrllVdkt9slydhPhQoVdP78ea1evVqXL1/WxYsX9fjjj+uPP/5QnTp1clWnJH311VfGe75JkyYKCAiQ2WzWtm3bFBgYKEn65ZdfdO3aNX344YcZnuuDDz6oqKgoo86uXbuqcuXKMpvNCg8P16ZNm4wxfNOmTZo4caLeeOONXNeaE1OnTtWUKVOM19WqVVPXrl1VqlQpnT17VitWrFBcXJxOnTqlRx55RH/99ZfKlClj9I+Li9N///tf431gMpnUrl07+fv7y83NTUePHtX69euVkJCgQ4cOaciQIfr9998zDJan+uGHH7Rnzx5JUps2bdSyZUslJydr27ZtOnDggCTp999/V82aNfX1118rKipKDRs2VOfOneXh4aEdO3Zo+/btklJ+ZePXX39NN0N1Wm+++aZxT9u1a6c2bdrIYrFow4YNOnz4sGw2myZOnCiLxaLRo0en274grsGcOXOMc/D391fbtm3l6empw4cPa+3atUpKStKlS5f01FNPafny5XJ3d0+3j08//VQzZswwXrdo0UKtW7eWj4+Pzp07p3Xr1unChQs6deqUHnjgAf32229Zft43btyo3bt3y2azqV69egoICJCvr69OnjyplStXKj4+XnFxcXrmmWe0atUq4/89cvP9CwAAAAAAgKKNQDgAAAAAAABuOx06dJDJZJLdbjdChNdLDZsWK1bMYTbbTp06GUHSTZs26cEHH3TYLjXYltr3ej/99JMRBq9SpYomT56sxo0bO/SJiYnRa6+9ZoQxx40bp19++SVX5zhlyhQjDF6jRg1NmzbNYVbU8ePHa+LEiZo1a5YRfsxOXFyc3Nzc9Prrr2vIkCEymUxG29NPP62HHnpI58+f18WLFzV//nw99thjklICZ4899phCQ0ONQFrquut9/fXXklLC4N988426devm0P7KK6/o1Vdf1aJFiyRJ3377bZ4C4du2bXMIg48ZM0ZPPvmkXF3//ZPpyy+/rClTpmjatGmSUmbNbd68udq1aydJxuzk27dvNwLhdevWzfC8spO6za+//moEkLPbz7Vr12QymTR69GiNGjXKYRbeZ599ViNGjNChQ4cUHx+vH374IV2o9dy5c3r55ZeVlJQks9msl156SY888ojDzMovvfSSFixYoDfeeENJSUl655131LJlyyzDlNfr0qWLunTpIunfQLiPj0+erlOq1M/nyJEj9cgjj8jd3V1btmwxguVz5swxwuADBgzQp59+mm7G6LVr12rMmDFKTk7W4sWLNXbsWFWpUkVS3u5HTpw4cUJSSpj566+/dnjQ47nnntOYMWO0a9cuxcTE6O2339bvv/+e5TXw8vLSm2++qTvuuENxcXFatmxZus9MdlLHiaFDh2rChAny8PAw2saNG6fRo0dr8+bNkqRZs2alC4SHh4frrbfeMsLgw4YN0yuvvCJPT0+jz4svvqhnnnlG//zzj+Lj4/X22287zO6eUzt27JDZbNbrr7/uMPaOHTtWf/31l1599VUlJydrwYIFGjBgQLox+PPPPzfC4F26dNGUKVMc6pSk5ORkffTRR0Z9Cxcu1Isvvpiu343av3+/pk6darx+5pln9OSTTzp8jseNG6fHHntMhw4d0qVLlzRx4kSHoPu7775rBKHLlCmjyZMnp/t1hrCwMD3zzDMKDg5WdHS0Ro8erb/++ivDELMk7dmzR15eXvryyy/VtWtXY73VatW4ceO0bNkySdIHH3wgKWWcfPTRRx32MWXKFOPc5s+fn2UgfMeOHfL09NTEiRN1xx13GOuff/55fffdd8Y4/c0336hPnz7pHiQoiGuwfft2eXl5aeLEierRo4dDW3BwsEaMGKGYmBhj5vG77rrLoc+aNWuMMLifn58+//zzdO/FxMREffrpp/r555+NIPeSJUsyrWnnzp1ycXHRe++9l+6hnDFjxuiRRx7RuXPnFBsbq7lz5xqz+efm+xcAAAAAAABFW8a/mQgAAAAAAADcwkqXLm3MWHzy5ElduXLFoT0uLs5hhtS0Aa2AgABjOaMZinfu3GksXx8AS0hIMALP7u7umjFjRrowuCQVL15cn3/+uerXr2/sc+vWrTk+v/DwcP3666+SUgLt3333nUMYXJLc3Nz08ssva8CAATner5QSvBw6dKhDGFxKCbePHTvWeL1r165c7VeSoqKidOrUKUlSvXr1Mgy2urm56Z133lGxYsUkSUeOHJHFYsn1sb788ktj+dFHH9Xo0aMdwuCpx3r++ef18MMPS5JsNpvDdjeDYcOGafTo0Q4hUkkqWbKkXn31VeN1Rvdj+vTpunr1qqSUQP+IESPShaYl6d5779Vzzz0nSbJYLEao0NmGDh2qcePGqWzZsipRooT69u1rfJ727t1r9Hv88cczPK8ePXoYQU5XV1ft37+/UOouW7asZs6cmW7W/1KlSunbb79VhQoVJKX8esH69euz3Ne7776rQYMGycfHR+XLl9eIESPk5eWV65ratm2rt99+2yEMLqWMH++8847xeseOHbJarQ59fvrpJyUkJEiSunfvrrfffjtdeNrHx0dffvml8asBO3bs0MmTJ3Ndp5TysMP1D+JI0sCBAzV+/Hjj9eeff+7QHh8fr+XLl0tK+cWEDz/8MMOQt6urq1588UX5+vpKSnnwIjXIn59mzJhhhOgffvhhPf300+k+x2XKlNHUqVONsWnx4sXGrzQcP35cf/31l6SUsWr69OnpgtCSVLlyZc2aNcuYCfrEiRP6888/s6zt+eefdwiDS5KLi0u6Gbr79u2bLgwupfx6gre3t6ScjdHvv/++QxhcSpnpe+TIkRo+fLiklKD+5MmTHfoU5DWYMGFCujC4lPIwx4gRI4zX13832+12ffHFF8bryZMnZ/hwmIeHh1577TXje+706dPGuWTmiSeeyPAXGqpWrerw/Zub/18AAAAAAADArYNAOAAAAAAAAG5LaWeVTg1/p9q6dauSkpIkOQbAJal+/foqW7aspJRZplP7pUoNhBcrVixdMG3VqlWKjIyUJPXu3Vs1a9bMtD4XFxc98cQTxuvUGbFzYvXq1UZd9957rzFrckbGjRuXYVg2Ix4eHkY4LyNpr+m5c+dyWO2/0gayw8LCdPHixQz7FStWTPPnz9fWrVu1bdu2TGdUzUxoaKhxz728vNKFHK/33HPPGSHbwMDAAgmH5tXjjz+eaVurVq2Ma3P9/bBYLEb40N3dPcNQZ1qPPPKIcQ2WL1+epxB+fssoFJwq7Xvp+s93WuPGjdPq1au1b98+9evXL1/ry8yoUaOMYPT1ihcv7nAvVq5cmel+/Pz88q3mYcOGpXvII1XlypVVuXJlSVJSUpIxY3qqtWvXGstjxozJ9Bi+vr4aOnSoWrRooXvvvVeJiYm5rrNcuXJZzmz88MMPq1SpUpJSZnIODw832pKSkjRhwgSNHDlSo0ePVpkyZTLdj7u7u2rVqmW8Tg1h5xeLxWI8UOTq6qpRo0Zl2rdq1aoaMGCA2rRpo0GDBhnX/++//5bNZpOUMgt+Rg8XpfL19dXTTz9tvJ4/f36mfb28vDR06NAM22rXri03NzfjdeqvJFzPzc1N1atXl5TyIE3qrOwZadq0aZYPJj311FPGMTdt2uTwvimoa+Dj46O777470/a2bdsay6m/RJBqz549xqz7LVq0MH5RIjNp73123/NZjXlt2rTJtCYAAAAAAADcHgiEAwAAAAAA4LaUNrwcGBjo0LZ582Zj+fpAuMlkMra9du2aw0zEly5dMma4bt26dbqgctrZw7MKrqXy9/c3lnfv3p1t/1QbNmwwlnv27Jll30qVKqlp06Y52m+TJk0ynFE3VdqAZV4ClD4+PmrYsKEkKSYmRvfdd59mzpyp48ePp+tbu3ZtI/iZW9u2bTOWAwIC5OPjk21dad8HeZn9vCBUqFBBVapUybTd1dVVJUuWlJT+fhw4cEDXrl2TJNWoUcOYzTczbm5uatKkiaSUMGtQUNCNlH7DvL29Va9evUzb04Yj33vvPb3++uvaunVruiB72bJlVbVq1XQzMxek7ELcaT+zacei6zVv3jzHD3Nkp1mzZlm2p/2spQ3khoaGGmNe2bJlsx3Xnn/+ec2ePVsffvihGjRokOs677zzznQz+afl5uamzp07G6/TXj9fX18NGTJE48aN08iRI7M8TmhoqPH5kFJmp85Pe/bsMfbftGnTLMPpkvTxxx/rl19+0XvvvadKlSpJchzHevfune0x+/TpY4T+g4ODFR8fn2G/+vXrZ/qQjclkcqg1q3uYdqb6rB4g6d+/f5Z1lypVSs2bN5eU8p2b9ruwoK5Bw4YNs3zQKLPPg5T77/lGjRoZx9q/f3+m77VKlSoZD6PltiYAAAAAAADcHjL/yykAAAAAAABwC2vdurXc3NyUlJSUaSC8UqVKql27drptAwICjNmVt2/fboRPd+zY4dDneseOHTOWP/74Y3388cc5rjc3M26fOXPGWK5bt262/evXr699+/Zl26906dJZtqcNaqbO2ppb48eP18iRI2W1WhUREaFPPvlEn3zyiSpVqqSAgAB17txZHTt2zDbEnZXQ0FBjOaeh1AYNGhizNZ89ezbPx85P2d0P6d97cv39SPtePHLkiOrXr5+rY6ededkZKlWqlGUYevDgwZozZ46OHz8uq9WquXPnau7cuSpWrJjatm2rgIAAdevWLcvZ8wtC5cqVjZB+ZqpWrSpPT08lJCTowoULSk5OzjAEndXDALmVXSC5WLFixnLa99L58+eN5ZyMNTcqJwHbOnXqGMthYWFZ9o2IiNCpU6d05swZnTlzRseOHVNISEi697fdbs9bwZlIu/+09eZG2nEs9UGarBQvXlxVqlTR2bNnlZycrPDwcIdZ0FOVK1cuy/2k/dyVKFEiR/2yktN7mvogTtp7WlDXILuxNe2DUVmNrb/88ot++eWXbOtKlZCQoCtXrmR4D7KrKbPPKAAAAAAAAG4fzBAOAAAAAACA25K3t7cxK25wcLAxg+nJkyeNwG9GoW5J6tSpkzHL6Pbt2431aWeO7tSpU7rtoqOj81xvUlKSw4y1Wbl06ZKx7Ovrm21/Pz+/HO03u1mk80NAQIC+/vprVahQwWH9uXPnNHfuXI0ZM0YdOnTQmDFj0gX5cyoqKspYzum5p+13I/cxP93I/bjRc3D2NShevHiW7d7e3po1a5a6devmsD4+Pl4bNmzQ+++/r169emnQoEH69ddflZSUVIDV/isnIX7p3/Oz2+26fPlyln3yQ9owaXbShqPT1paTseZG5eRXAdKGlDO6dpcvX9bHH3+sgIAAdenSRY888ohee+01TZ8+XWvXrjXC2gU5a/yVK1eM5bxet7TjWFbB7LRyMo7l5r2QH9coJ5+JzO7pzXANrldQY+uN1AQAAAAAAIDbAzOEAwAAAAAA4LbVsWNH7d69WxaLRcHBwWrZsqU2bdpktGcWCC9durQaNGigkJAQ7d27V4mJifLw8DAC4eXLl89wttzk5GRjeejQoapevXqu6s1oluCMpIbbpZzNFJrfs9/eqG7dumnVqlXasGGDVq5cqc2bNzsEKC0Wi1auXKmVK1fq6aef1jPPPJOr/eflfG+1GVetVqux3LhxY/Xv3z9X2/v7++dzRbmTk89C+fLlNW3aNB06dEjLli3TunXrdPjwYYc+ISEheueddzRv3jz9+OOPOQ6V5lVOP8Np329ubm43tK+ClHZMKwyZXYu00r63r++/e/duPfXUUw5BYklyd3dXjRo1VK9ePfn7+6tTp0568803HX71IT/lx3W70XEs9aGm62W2vqDk5H2c2T0tqGtwI9LW2qdPH+PBs5zK6UMjAAAAAAAAwPWc/xdjAAAAAAAAwEnat2+vKVOmSJL279+vli1b6p9//pGUMvNphw4dMt02ICBAISEhslgs2rdvn+rXr68jR45Iynh2cMlxBtPOnTurV69e+XUqDvz8/HTx4kVJ0tWrV+Xl5ZVl/6tXrxZIHTfC3d1dvXr1Uq9evWS323X48GFt27ZNmzZt0rZt24xA5VdffaW2bduqffv2Od532vsQGRmZo23S9iuMmZALWtpzKF++vB577DEnVlOwGjRooAYNGui5557T5cuXtW3bNv3zzz9at26d8aBBSEiIPvjgA3388ccFWktsbGy2fWw2m2JiYiSlhF9LlixZoDXdiLSzlKfWXJBycoy0MyyXKVPGWI6MjNSYMWOMMHjDhg318MMPq2XLlqpevXq62a7j4+Pzp+gM5Md18/X1Ncb5qKiobMd5yXEcy88Z5m/EjdzTm/EapB1bW7RooREjRuT7MQAAAAAAAICMmJ1dAAAAAAAAAOAs/v7+RoAsKChIVqvVmOW7WbNmWQZ/04a+Dx48qMDAQGO20swC4VWrVjWWjx49mm19VqvVIQiXU7Vr187VcY4dO5brYxQmk8mkBg0aaMSIEZo5c6bWrl2r+vXrG+1//fVXrvaXdmb262eMzkxISIixnPY+FlVpzyGn9z86OrrIz5ReunRp9e/fXx988IE2btyo//3vf0bb0qVLC3zG69OnT2d7jJMnTxqz/FeuXLnQZ2zOjbTvoxMnTmTbPyQkRC+88IImT56srVu35vp4x48fz7ZP6oM5klStWjVjed68ebp8+bKklFnx586dq8GDB6tWrVrpwuCSHH6VIL9/RSG3123Tpk165ZVX9NVXX2n//v2SpBo1ahjthw4dynYf0dHROnfunCTJbDarcuXKuay6YNzIPb0Zr0Fuv+clx/caAAAAAAAAkFcEwgEAAAAAAHDbcnV1Vdu2bSVJwcHBOnTokDGDb0BAQJbbtmrVygiTHz58WIGBgZJSwssdO3bMcJvWrVsby6tXr862vlWrVqlt27Zq3bq1nnjiiexP6P+lnpMkbdiwIcu+V65cMQKGBS27YOuaNWv02GOPqXv37po2bVqm/cqXL68nn3zSeB0REZGrOtLeh82bN2c7a3NMTIxDeNXf3z9Xx7sZtWjRQq6uKT8geebMmWyD8YmJibrzzjvVrFkz9e7dO0fhS2eJjIzUc889p7vvvlt33XVXpv3c3Nz03HPPGZ/jpKQkIzBcUBITE7V9+/Ys+6xZs8ZY7tGjR4HWc6Nq1qxpzGAeHh6e7cMFGzZs0KJFi/TVV19p586duT7exo0bs2xPTEw0fuXB1dVVnTt3Ntr27dtnLA8aNEju7u6Z7ic0NFRhYWHG6/x+EMLf319mc8o/z+zfvz/bB39WrlypBQsWaPLkyUbIuFWrVkb7ihUrsj1m2j4NGzaUp6dnXkrPd9nd04iICAUHB0tKeaCjefPmRtvNeA3Sfr9s2LBBSUlJWfYPCgpShw4d1KJFC913330F9lDKzfxgCQAAAAAAAPIHgXAAAAAAAADc1jp06CApZebetWvXGuvTBgkz4u7urjZt2khKmZk0NWzYsGFDlSpVKsNt+vTpo2LFikmSDhw4oMWLF2e6f4vFoilTpkhKCSSnnfU7O4MGDTLChvPnzzdmRM3IN998k21gLb+knYXXarWma7fb7dq8ebPOnTuX7WzNkZGRxnL58uVzVUf16tXVokULSdK1a9c0derULPtPmjRJ8fHxkqS6des6zE6e37K7RvnF29tbvXr1Ml5/8sknWc6CPGPGDEVGRiopKUnXrl1TnTp1Cqy2G1WiRAlt2bJFhw8f1pEjR7J84OHatWtKTEyUlBIgLl26tEN7QdyPb775JtNrHRUVpR9//NF43bdv33w5ZkFKG7r/5ptvMu1nsVg0b94843XPnj1zfaw9e/ZkObP4rFmzjHB1x44dVaJECYfjp0o7fmTkww8/dHid3yFdHx8fde/e3ajr+++/z7TvlStXtGzZMkkpDzF06dJFUso4nxryXbp0qQ4cOJDpPmJiYvT1118br/v163fD55BfVqxYkeWDBFOnTjU+e7179za+26Sb8xp06NBBFSpUkCRdvHhRM2fOzLSv3W7XxIkTJaWMRVWqVDEe1MlvhfXdAgAAAAAAAOchEA4AAAAAAIDbWmog3G63a/bs2ZIkPz8/NW3aNNttO3XqJEk6duyYMYNp6rqMlCxZUo888ojxesKECRmGwqOiovTcc88ZITlvb2/997//zeEZSZUrV9bgwYMlpYTMRo4cqdDQUIc+drtdM2bM0M8//5zj/d4oHx8fY/n8+fPpQmldunRR2bJlJaXMuv7OO+8oISEh3X5OnjzpEOLu3bt3rmsZO3asESScNWuWpk6dmi70mZycrMmTJxvXyGQy6dVXX831sXIj7TVKO0NxQRg1apQxS/LmzZv1wgsvpJst3W63a968eQ5BylGjRhVYaDE/mM1mDRo0yHj9/PPP69SpU+n6WSwWvfbaa8b7sGfPnunOqyDux86dOzVhwgQjiJ7qwoULGjlypC5duiRJGjBggJo1a5YvxyxII0aMMGZZX7Jkib744ot0n6WEhAS9+OKLxjjUsWNHNW7cOE/He+6554xfZEhr7ty5mjx5sqSU4PSLL77o0N6gQQNj+ffff9eZM2fS7SMyMlJjx45N9wsOqQ+E5Kcnn3zSCOlOnz5dv/76a7o+UVFRGjt2rGJiYiSlBKBTx8iaNWvq7rvvlpQyu/3IkSO1e/fudPsIDw/XY489pvDwcElSrVq19OCDD+b7+eRVUlKSnnzySR0/ftxhvdVq1dSpUzV37lxJKQ96jB492qHPzXgN3Nzc9NRTTxmvJ02apFmzZqWbZT4+Pl5vv/228YCDq6urRo0aVSA1Sdl//wIAAAAAAKDou3n/ag8AAAAAAAAUgvr166tMmTK6dOmSEcTs0KGDwyykmQkICJCUEixNnX02q0C4JD3zzDPau3evtm/frsTERI0fP14zZ85Ux44d5e3trdDQUK1atcoIAJrNZr3//vsqU6ZMrs5r/Pjx2rFjh06dOqWjR4+qf//+uuOOO1SnTh3FxsZqw4YNOnr0qCTJ09PTCF7n5LzzysfHR35+foqKilJYWJieeuoptWrVSsWKFdPw4cPl7u6uV155Rc8//7wkac6cOVq7dq26dOmiSpUqSZKOHDmi9evXG2Harl27GjPt5kaHDh00evRoYxb2KVOmaOHCherevbvxfli3bp1DkP6pp55Sx44db/QyZKlKlSo6ePCgJOnpp59W//79FR8fr6efftoIb+eX+vXr64033tDrr78uu92uxYsXa9OmTerZs6eqVq2qK1euaPv27Tp8+LCxTffu3W+qMGlmRo0apb///lsXLlzQ2bNn1a9fP3Xt2lW1atWSr6+vIiIitH79eiPk7evrq2effTbdfgrifri5uWn+/PnasmWLevXqpdKlS+v06dNasWKF4uLiJEnVqlUr8IcP8kvlypX13nvvafz48bLZbPr222/1999/q3v37ipdurQuXLiglStX6sKFC5KkUqVK6Z133snTsdzc3BQZGamHHnpIXbt2VdOmTWWxWLR582bjoRwp5SGAunXrOmw7ZMgQ/fjjj0pMTFRkZKT69++v3r17q2bNmrJYLDpx4oQ2bNhgjOVubm7GrydERUXlqd6sNGvWTM8995w+++wz2Ww2vfPOO5o9e7Y6d+6sEiVKKDQ0VCtWrDBmPK9Ro4ZeeOEFh328+eabCgkJ0ZEjR3Tp0iU99NBDat++vfz9/eXm5qZjx45p7dq1xvju4+OjL774wgjw3wzc3Nx09uxZDRw4UHfccYfq16+vmJgYrVu3TidOnJCUEpZ+6623MvwevBmvwdChQ7Vr1y4tWrRINptNH330kWbPnq0uXbqoVKlSOnfunNatW6eLFy8a24wbN87hoYX8lt33LwAAAAAAAIo+AuEAAAAAAAC47bVv315LliwxXqcGvbNTu3ZtVapUSefOnZMkFStWTK1atcpyG1dXV82YMUNvv/225s+fL7vdrpCQEIWEhKTrW6JECb3zzjvq06dPLs7m321nzZqlJ598UocPH1ZCQoLDOUqSi4uLXnzxRa1atUq7du2SpHwPHV9v6NChmjZtmiRp/fr1Wr9+vYoXL24E0vr376/IyEh99NFHSkpK0sWLFzV//vwM93XnnXfq448/znMto0ePVsmSJfXZZ5/p2rVrCg0NzXDGdC8vL7311lsaOHBgno+VU0OGDNGqVatkt9t15MgRHTlyRFLKuTZq1Cjfj3f//ferePHievPNNxUVFaWoqKhMr/d9992nt956y5hZ/Wbm5+enH374QaNGjdLp06dltVq1du1arV27Nl3fqlWr6rPPPlOtWrXStRXE/fjiiy/0wgsvKDw8XD/99FO69tatW2vKlCkqVapUnvbvDP3795ebm5tee+01RUdH68yZM/rxxx/T9atZs6YmT56sqlWr5uk4w4cP16FDh7RlyxatW7dO69atc2h3d3fXu+++6zBDfKqqVatq4sSJGj9+vBISEmSxWNKNiVLKLwEMGTJEjRs31htvvCFJOnDgQJ7qzc7//vc/eXl56ZNPPlFCQoLDeywtf39/TZo0SSVKlHBY7+3trd9++00vvfSS1qxZI7vdrq1btxqzTqfVuHFjffnll6pWrVqBnEtejR07VkuXLlVISIiWLVumZcuWObQXL15cX3zxhTp37pzh9jfrNfj4449VqVIlzZw5U0lJSTp16lSGv1Tg6emp8ePHF0ooO7vvXwAAAAAAABRtBMIBAAAAAABw2+vQoUOeAuFSyozg8+bNkyS1adMmR4Fqd3d3vf/++xo+fLjmz5+v7du36/z584qLi5OPj4/q1Kmjrl27avDgwTcUCq1UqZIWLFigBQsWaOnSpTp69KiuXr2qUqVKqX379nr00UfVsGFD/f3338Y2BT1z7LPPPis/Pz8tWLBAoaGhslqtKlGihK5cuWKc68MPP6wuXbrojz/+0Pbt23Xq1CnFxsaqWLFiKlu2rNq2bau77rpLrVu3vuF6HnroId15552aPXu2Nm/erNOnT+vq1avy8vJS7dq11a1bNw0ZMqTQwrmdO3fWN998o++++05HjhxRfHy8SpYsacxeXxD69OmjgIAAzZs3Txs3btTRo0cVFRUlNzc3VaxYUa1atdL999+vZs2aFVgNBaF27dpavHixFi1apNWrV+vw4cO6cuWK7Ha7Spcurfr166tnz54aOHCgPDw8MtxHQdyPXr16afHixfruu++0efNmXbhwQT4+PmrWrJkGDRqkvn37FonQ/fV69+6tdu3aafbs2Vq/fr1OnjypmJgY+fj4qEGDBurbt6/uueeeTK91Tnh5een777/XggUL9Mcff+jo0aNKTExUtWrV1KVLFw0fPtz4NYGM9OrVS4sWLdKPP/6orVu36ty5c7JarfL29la1atXUvHlz3XfffWrYsKEiIiJkNptls9m0atUqTZgwoUDGx4ceekh33HGHfvvtN23evFmhoaGKjY1ViRIl1LRpU911113q27evXFxcMty+ePHi+vrrr7Vr1y79+eef2rlzpy5evCiLxaLSpUurefPm6tu3r3r37p3pPpypdOnSmjt3rn777TctWrRIJ0+elN1uV82aNdWzZ089+OCD2Y6/N+M1MJvNeu655zR48GDNnTtXW7ZsMe6tl5eXatSooY4dO2ro0KFZvmfzU06+fwEAAAAAAFB0mex2u93ZRQAAAAAAAABwnr59++rEiROSpK1btxIMA/JZjx49FBYWJkk6fPiwk6spWhYsWKBXXnlFUsqs/mPGjHFyRbhRU6ZM0dSpUyVJH374oe69914nVwQAAAAAAAAUfcwQDgAAAAAAANxidu/ereDgYNWoUUNNmzbNMuB97do1I6jq5+dHGBwAAAAAAAAAAKCIIRAOAAAAAAAA3GLCw8P1wQcfSJKGDh2qd955J9O+c+fOVWJioiSpdevWhVIfAAAAAAAAAAAA8o/Z2QUAAAAAAAAAyF9t27aV2Zzyp78///xTW7duzbDfqlWrNHHiREmSyWTS8OHDC61GAAAAAAAAAAAA5A9mCAcAAAAAAABuMeXKldMDDzygX3/9VYmJiRoxYoTatGmjxo0by8/PT5cuXdKePXt04MABY5uHH35Y7du3d2LVAAAAAAAAAAAAyAsC4QAAAAAAAMAt6NVXX1VSUpLmzp0rSdq5c6d27tyZrp/ZbNaYMWM0atSowi4RAAAAAAAAAAAA+YBAOAAAAAAAAHALcnV11bvvvqshQ4Zo/vz5CgwMVGhoqCwWi0qVKqUKFSooICBA99xzj6pWrerscgEAAAAAAAAAAJBHJrvdbnd2EQAAAAAAAAAAAAAAAAAAAACA3GOG8Hxkt9tls5GvR+6ZzSbeOwAKFeMOgMLEmAOgsDHuAChMjDkAChNjDoDCxrgDoDAx5gAobIw7AAoTYw7ywmw2yWQy5agvgfB8ZLPZdeVKnLPLQBHj6mpWyZLeunr1mpKTbc4uB8BtgHEHQGFizAFQ2Bh3ABQmxhwAhYkxB0BhY9wBUJgYcwAUNsYdAIWJMQd5VaqUt1xcchYINxdwLQAAAAAAAAAAAAAAAAAAAACAAkIgHAAAAAAAAAAAAAAAAAAAAACKKALhAAAAAAAAAAAAAAAAAAAAAFBEEQgHAAAAAAAAAAAAAAAAAAAAgCKKQDgAAAAAAAAAAAAAAAAAAAAAFFEEwgEAAAAAAAAAAAAAAAAAAACgiCIQDgAAAAAAAAAAAAAAAAAAAABFFIFwAAAAAAAAAAAAAAAAAAAAACiiCIQDAAAAAAAAAAAAAAAAAAAAQBFFIBwAAAAAAAAAAAAAAAAAAAAAiihXZxcAAAAAAAAAAAAA5zObTTKbTc4uI89sNrtsNruzywAAAAAAAAAKHYFwAAAAAAAAAACA25zZbJJfyWJyMbs4u5Q8s9qsioqMJxQOAAAAAACA2w6BcAAAAAAAAAAAgNuc2WySi9lFk7d9r7Cr551dTq5V9q2gZ9r/V2aziUA4AAAAAAAAbjsEwm9idrtdVmuy7Hb+cHkrs9lMSkhwkcWSKKuVew0UFpPJJLPZRWaz2dmlAAAAAAAAADeNsKvndTLyrLPLAAAAAAAAAJALBMJvQhZLouLjY5WQcE12u83Z5aAQXLpkls3GvQYKn0nu7h5ydy8mLy9vmYvwz+ECAAAAAAAAAAAAAAAAAG5PBMJvMgkJ1xQVdUkuLi7y8ioud3eP/5+91uTs0lCAXFxMzA4OFCq77Ha7kpKSZLHEKzY2SvHxMSpZspxcXd2cXRwAAAAAAAAAAAAAAAAAADlGIPwmYrEkKirqkjw9vVSiRGmZTITAbxeurmYlJzNDOFDY3N095e1dXMnJyYqKuqDLl8+rdOmKcnXl6xEAAAAAAAAAAAAAAAAAUDSYnV0A/hUfHysXFxfC4ABQyFxdXVWqVHlJKWMxAAAAAAAAAAAAAAAAAABFBYHwm4TdbldCwjV5enoTBgcAJzCbXeTp6a34+FjZ7XZnlwMAAAAAAAAAAAAAAAAAQI4QCL9JWK3Jstttcnf3cHYpAHDb8vQsJpvNKpvN6uxSAAAAAAAAAAAAAAAAAADIEQLhN4nU2WjNZm4JADhL6hhss9mcXAkAAAAAAAAAAAAAAAAAADlD+vimY3J2AQBwG2MMBgAAAAAAAAAAAAAAAAAULQTCAQAAAAAAAAAAAAAAAAAAAKCIIhAOAAAAAAAAAAAAAAAAAAAAAEUUgXAAAAAAAAAAAAAAAAAAAAAAKKIIhAMAAAAAAAAAAAAAAAAAAABAEUUgHChEAQGtFRDQWqNHj8ywPTk5WT/8MCPDtvfff8vYPjz8XEGWWWjOnQvT0qWLnF1GoQsPP2fcy/fff8uhLTBwl9E2c+Y05xQIAAAAAAAAAAAAAAAAAACKDFdnF4C8M5tNMptNzi6jUNlsdtlsdmeXUSAOHQrRBx+8pRMnjmvEiMedXU6Bmz37F82Y8a26d79D/fvf7exyAAAAAAAAAAAAAAAAAAAAiiQC4UWU2WySn5+XXFxur0nerVaboqKu3ZKh8Pnz5+jEiePOLqPQTJ36pbNLAAAAAAAAAAAAAAAAAAAAKPIIhBdRZrNJLi5mffbrboVGxDi7nEJRpXxxjX+olcxmU5ENhG/evMvZJeAm17Jla94nAAAAAAAAAAAAAAAAAAAgxwiEF3GhETE6Hhbt7DIAAAAAAAAAAAAAAAAAAAAAOIHZ2QUAAAAAAAAAAAAAAAAAAAAAAPKGGcKBNEaNekxBQfvk4eGh5cvXy83NLV2fn3/+QdOmTZUkDR/+qJ544ul0faxWq/r3v0OxsTG6885+ev31dyRJAQGtJUn+/i01dep0SdL777+lZcuWOGyfUb/rRUVF6ffff9Y//2xUePg5eXp6qlq16urTZ4AGDBgoFxeXLM91587tWrp0kYKC9iky8orc3d1VsWIltWvXUYMHD1WZMmUz3C5tvfPmLVLFipUy7Ddz5jTNmvWdJGny5G/VsmVrh3NLtWzZEmN/r776pvr1uyvLuq+3fv0aLV++VCEhBxUdHaVixbxUrlx5tW7dVoMG3aeqVatluf3Fixe0ePGf+uefTQoPP6eEhHiVLVtOLVq00uDBw1SnTt1Mtz1x4riWLVuiwMBdiog4r9jYGHl6eqp06TJq1qyFBg26T/XrN8jV+QQG7tIzzzwpSXr00f/psceeMNr+/nuxPvjgbUnSggVLVbJkKS1c+IdWr16hs2fPKCnJoooVK6lz524aNuwh+fqWyPJY27dv1cKF83TgQLBiYq6qVKnSat26rR566D+qXr2GHnzwPp05c1p9+w7QhAlv5eo8AAAAAAAAAAAAAAAAAABA4SAQDqTRvn1HBQXtU2Jiog4cCJK/f8t0ffbs2WUs790bmOF+Dh4MVmxsjCSpQ4dO+V5nUNB+TZr0qaKjo411iYmJCgrar6Cg/Vq9eoU++2ySPDw8020bExOjDz54S5s2bXBYb7FYdPToER09ekR//DFbzz//Uq7D2YXJYrHojTde1ubNGx3Wx8RcVUzMVR0/flR//DFbzzzzvO67b2iG+1i5cpk++ug9WSyJDuvDwkIVFhaqZcuW6Omnx2rIkAcd2m02myZP/lwLFsyVzWZzaIuNjVVsbKxOnz6lxYsXauTIp/TII//NhzN2FBUVqZdffl5Hjhx2WH/y5AmdPHlCixYt1OTJ36hWrTrptrXb7Zo06TP98ccch/UXLkTo778Xa/XqlXr11TfyvWYAAAAAAAAAAAAAAAAAAJD/CIQDabRv30nfffeNpJSZmq8PhCcnJysoaJ/x+tChg0pMTJSHh4dDvx07tkmSXFxc1LZthyyPOXjwMHXr1l1z5vyuwMCUsPkHH3wmSSpRwi/Dbd5//01ZrVb5+7dU9+53yMvLS4cOHdRffy1QcnKy9uzZrR9+mJlu9nKLxaKXX35e+/btkST5+ZXUgAEDVbt2HSUmJmj79m1av36NEhIS9MEHb8tms2rAgEFZ1p9bqef26qvjJUktW7bW4MHDJEn16uV8Nu0ffphhhMHr1auvXr36qkKFCoqNjdW+fXu0atVyWa1WffHFp2rUqIkaNmzssP3y5Uv13ntvSpLMZrO6d79Dbdq0k4uLi/bv36e//14kq9WqyZM/V/nyFdS1aw9j2xkzvtUff8yWlHIN+/UboGrVqsvd3UPh4ee0du0qHT9+TJL03XffqG3bDmrQoGFeLlem3nprgs6cOa3ateuoT58BKleunEJDz2rhwj906dJFRUVF6t1339D33/8qk8nksO0330w2wuA+Pj4aOPA+1a1bT9HRUVq+/G+FhBzQu+++IXd393ytGQAAAAAAAAAAAAAAAAAA5D8C4UAa9erVV6lSpXXlymUFBu7Sf/870qH94MFgxcfHG6+TkpJ08GCwWrRo5dBv+/atkqTGjZvK19c3y2PWr99AjRs30vr164x1Xbp0y3Ibq9WqMWOe09ChDxnr+vYdoK5de2js2FGy2+1atGiBRo58yiEM/PvvPxth8CZNmumTT76Qr28Jo33AgEHavn2rJkx4QQkJCfr880/VsmUbVapUOct6cuP6cytfvkK253s9m82mhQv/kCTVrVtP3347yyG8fNddg9ShQ4DefPMVSdL8+XP12mtvG+3R0VGaMuVzSZKnp6c+/vgLtWrVxmjv23eAevS4Q+PHPyOr1aqvvpqkzp27yWw2KzIyUrNn/yJJqlixkmbM+CldcH/48Ef10Ufv6u+/F8tut2v16hX5Hgg/c+a0BgwYqBdeeFUuLi7G+gEDBuq//31Ily9f1tGjR3T4cIgaNGhktJ88eUJz5vxm1D9lyjRVqFDRaL/33iGaOvVLzZnzq8N7HQAAAAAAAAAAAAAAAAAA3JzMzi4AuJmYTCa1a5cyo/eBA0FKTExwaN+zZ7ckqX79hvLx8ZEkI2Cd6urVaB06dFCS1KFDpwKps127jg5h8FQtW7ZW8+YtJEnR0dGKiDhvtFksFiMI7ONTXO+//4lDGPzffXfQqFHP/P82iUb4+WYSFRWpmJirkqRWrdpmOJN1z5691LhxUzVs2Eh+fiUd2pYtW6Lo6GhJ0mOPPekQBk/Vpk079et3tyTp3LkwHTgQJEnasmWTLBaLJOk//3ksw1nczWazHn54hPH67NnTuT/JbJQsWUrjxr3sEAaXpNKly+juu+81XoeEHHRo//XXH2W1WiVJb7zxrkMYXEr5DIwe/ayaNm2W7zUDAAAAAAAAAAAAAAAAAID8RyAcuE779h0lpcz+vX//Poe2wMCUQHiLFq1Uv37KrMt79wY69Nm5c4dsNpskqUOHgAKpsWfPXpm21atX31i+fPmysRwcvF9Xr6aEoPv06afSpctkuo+7775HJUqkhMU3bdpwo+XmOx+f4kYQet261QoPP5dhv2nTZum7737S6NHPOqzfuvUfSZK7u7vuvntQpscZPHionnhitN5//1NVrVpdknTnnf00e/ZCTZw4RT163JHptmlnVU9ISMzJaeVKp06d5ebmlmFb7dp1jOXY2Bhj2Wazadu2lHNv2LCRmjZtnuH2JpNJw4Y9nI/VAgAAAAAAAAAAAAAAAACAguLq7AKAm02bNu3l4uIiq9WqwMBdatOmnaSUgHhwcEpA3N+/hdzc3LR79w4dOBCk5ORkubqmfJx27NgqSSpXrrzq1KlbIDXWrFkr0zZvbx9j2WL5N4h84ECwsdyyZfoZsdNyc3NTs2b+2rRpgy5evKBLly6qTJmyN1Bx/nJ3d1fHjp21adN6RUSc10MP3a8OHTqqY8fOateuQ7a1ps6aXatWHYfrdb3ates4hKslydXVVVWqVFWVKlUz3ObChQgdPhyi3bt3GetsNmvOTiwXqlevmWlb2nNKTk42lk+ePKGoqChJkr9/qyz336JF6xsrEAAAAAAAAAAAAAAAAAAAFAoC4cB1fH191ahRYwUF7dfu3TuN9QcPBisxMVFms1nNmrUwZqiOj4/XkSOH1KhRE0nSzp3bJUnt2nUssBp9fIrnqJ/dbjeWo6KuGMtpZ6/OTNo+V65cvqkC4ZL0/PMv6tixIwoPPyeLJVEbNqzThg3rJEl16tRTQEAX9ezZO114PjExQdeuxUmSKlSocEM1BAXt065dO3Tq1AmdPXtWYWFnFRcXl65f2vuQX3x8Mg+yp743JRmz1UvSpUsXjeXszt3X11fFi/sqJubqDVQJAAAAAAAAAAAAAAAAAAAKmtnZBQA3o9Qw9+HDIUZ4ODAwZcbnWrXqyNfXV82a+RvB271790iSTpw4rgsXIiRJHTt2KrD6Umcjz41r164Zy8WKFcu2v4eHp7EcH5+Q6+MVtLJly+mHH37T8OGPpgurHzt2RD/8MEPDhw/RK6+MN2bFlqSrV/8NOHt4eOTp2GfOnNYTTzyqUaMe08yZ07RmzSodOXLICIOXL19B99xzf572nVNpQ985FR0dbSzn5Nw9PT2z7QMAAAAAAAAAAAAAAAAAAJyLGcKBDLRv30kzZnwrq9WqvXv3qGPHACMQ7u/fUpLk7e2junXr69Chg9q/f48efHC4duzYKklyc3NT69btnFZ/Rjw9/w2Bx8fHZ9s/bZ+8BIMtFkuut8ktb28fPfHE0xo58ikdPHhA27b9o127tuvgwQOyWq2SpE2b1uvKlcv69tvvZTKZHILuiYmJuT7mpUuX9NRTjysqKlKSVLJkKbVu3VZ16tRVzZq1VadOXZUrV15Wq1ULF87Lj9PMN2lD4DkJ+Sck3HwPAgAAAAAAAAAAAAAAAAAAAEcEwoEM1K/fQCVLllJk5BUFBu5SmzbtdOBAsCTJ37+F0c/fv+X/B8L3yW63a8eObZKk5s1b5GgW7sJUqlRpY/ncuTDVqVM3y/6hoWeM5bJl/52B22QyGcupoeuMxMXF5qXMPDGZTGrcuIkaN26ixx57QlevRmv16pX65pspio+/pgMHgrRr13a1adNePj4+cnNzU1JSkiIiIrLcr91u186d21W5chWVL19Brq6umjlzmhEGHzjwXj333IsZztgeGxtTIOd6I8qVK2csnz9/Lsu+cXGxN+U5AAAAAAAAAAAAAAAAAAAAR2ZnFwDcjEwmk9q16yBJCgzcqcOHQ2SxpMwm3bx5S6NfixatJElXr0br8OEQ7du3R5LUsWNAIVecvYYNGxnLgYE7s+xrsVgUHBwkKSVInjZM7u7ubizHxcVluo8TJ47ntdRsnTlzSgsWzNOXX36qsLDQdO2+viV07733a9SoMca6Y8eOSZLMZrPq1q3//zUey3K29NOnT+n550dr6NBBmjbtK0nSli2bJKXMtv3MM89nGAaXpKNHj+Tt5ApQnTr15O6eMkv4/v37suyb+pADAAAAAAAAAAAAAAAAAAC4uREIBzLRvn1HSdKxY0e1efNGSVKNGrVUsmRJo0+zZv4ym1M+Rj/++L0SExP/f9tOuT5e2pm3bTZbnuvOTNOmzeXn5ydJWr78b12+fCnTvosWLVBMzFVJUocOjudSsmQpY/no0UMZbn/+fLhCQg5kWU/q+eblXA8ePKDPP/9Yf/wxRxs2rMu0n6+vr7Gcdsb21MB+YmKiVqxYmun2q1evMJZbt24rKSX8L0murq5GuDojc+f+biwnJydn2q8wubm5qXPnLpKkkJADOnToYKZ958+fU1hlAQAAAAAAAAAAAAAAAACAG0AgHMhE27btZTabZbPZtGDBPEmSv38Lhz7FixdXnTp1JUmbNq2XJFWuXEXVqlXP9fE8PT2N5dQwdn7y8PDQffcNlSTFxsbotdde1NWr6Y+zc+c2ffvtVGObBx98xKG9QYN/ZxqfPfs3XbvmOEt4TEyM3nnndSUlJWVZT+r5xsTE5PpcOnYMkIdHShj7p59m6syZU+n6WCwWzZs3W1JK+Lx583/v3d1332MExL/9dmqG4fWgoH2aPfsXSVKVKtXUpk07SVKFChUlpcyOvmbNynTbJScna8qUz42ZxFNqScz1ORaUYcMeNh5iePvt13Tx4oV0fX7++Qdt27alsEsDAAAAAAAAAAAAAAAAAAB54OrsAoCbla9vCTVq1ETBwfuN0LO/f8t0/Vq0aKUjRw4brzt0CMjT8cqWLW8sf/zx++rV6065u3uoU6fOedpfRoYPf1Rbt/6jgweDFRS0Xw8+eJ/uumuQateuo4SEBO3YsU3r1q2W3W6XJI0e/ZyqV6/hsI82bdqpXLnyunAhQqdOndB//ztcgwbdq9Kly+jUqZNasuRPXb58WQ0bNlJISOYzUJctW05nzpzW9u1b9NtvP6tChYqqWbOWatasle15+PqW0IMPPqJZs75TbGysRox4SP36DVDduvVVrFgxnTsXpqVLFys8PEySdMcddzrst1Sp0ho7drw++uhdxcbGatSox9S37wA1b95CyclJ2r9/n1as+FtWq1UuLi564YVXjBB1374DNH3615Kkd999Q7t27VCTJs3k6uqqM2dOa9Wq5QoPP+dQb2xsbPY3p5A0bNhY9903VPPm/a6zZ8/okUeGaeDAe1WnTl3FxsZq7dpVCgzcJRcXF1mtVkkyzh0AAAAAAAAAAAAAAAAAANx8CIQDWWjfvqOCg/cbr/39W6Xr4+/fUnPm/Ga87tChU56O1bVrN33//TQlJSVp48Z12rhxnUqWLKXFi9PPQp1Xrq6u+uKLqXrrrQnauvUfRUVF6uefZ6Xr5+npqRdeeFV33tkvXZu7u7veeut9vfDCWMXFxSk09IymTv3SoU/37ndo8OChevrp/2VaS8+evTVr1neyWq36+utJkqQHH3xETz31TI7OZcSIxxUefk7Lly+VxZKoP/+cn2G/Tp066+WXX0u3fsCAgUpKStLkyROVlJSkxYv/1OLFfzr0KVasmF5++Q21atXGWPfAA8O1d2+gduzYJqvVqiVL/tKSJX85bOfi4qL//OcxHT16RJs2rVdExHnFxcXK29snR+dW0EaPflZXr0ZrxYq/FRNzVb/88oNDu6enp559drw++ug9SZKbm7sTqgQAAAAAAAAAAAAAAAAAADlBILyIq1K+uLNLKDTOONf27TtqxoxvU45fparKlCmTrk/z5i1kMplkt9vl6empFi3Sh8Zzolq1Gpo4cYpmzpymo0ePyGJJlLu7e74Hib29ffTpp5O0des/Wr58qYKD9ysy8oq8vLxUsWIlBQR01YABA1W6dPpzTdWsmb9+/XW+Zs/+Rf/8s1ERERHy8iqm2rXr6e67B6lnz94KDg7Kso4RIx6Xi4uLli1bogsXIuTq6qZr167l+DxcXFz02mtvq3fvvlq6dJFCQg7o8uVLstvtKlWqtBo3bqLevftlOcP6PfcMVrt2HTRv3mzt3LlNERHnZbXaVKFCBbVv31FDhjyoChUqOmzj5uamTz+dpMWL/9TKlct04sQxxcfHq1gxL1WqVEnNm7fUoEH3qXr1GlqwYJ42bVovq9Wq9evXqn//u3N8fgXJxcVFr7/+jnr06KXFixcqJOSArl69qpIlS6lduw4aPvxRY5Z4SSpe/PYZZwAAAAAAAAAAAAAAAAAAKGpM9rSpP9wQq9WmK1fi8rRtUpJFly+Hq3TpijmajddsNsnPz0suLuY8Ha+oslptioq6Jpvt1nrburqalZxsc3YZgCE4OEhPPvmoJGn8+Jc1aNBgJ1dUOHI7FhdVrq5mlSzprcjIOMYeAAWOMQdAYWPcAVCYGHMAFKaCHnNS9//Syg90MvJsvu+/oNUsWVUf936VMRnIR/y/DoDCxJgDoLAx7gAoTIw5yKtSpbxznBNmhvAiymazKyrqmsxmk7NLKVQ2m/2WC4MDhemdd15XUlKSGjZsrAcfHJ5pv82bNxjL9eo1KIzSAAAAAAAAAAAAAAAAAABAHhAIL8IIRwPILYslUevXr9WGDWvVvHkLNW7cJF2fffv2aP78OZKkKlWqqmHDxoVdJgAAAAAAAAAAAAAAAAAAyCEC4QBwGxk48F6tX79WNptNY8Y8oZ49e6lx4yYqXryEoqKuaO/ePdq4cZ2sVqvMZrNefvl1mUy31y8RAAAAAAAAAAAAAAAAAABQlBAIB4DbSJs27fXUU2M1bdpUWSyJWrZsiZYtW5Kun49Pcb322tvy92/phCoBAAAAAAAAAAAAAAAAAEBOEQgHgNvMgw8OV6dOnfXXX/MVGLhb586FyWJJVMmSpVShQgV17txdffv2V8mSpZxdKgAAAAAAAAAAAAAAAAAAyIbTA+F2u11LlizR/PnzFRISomvXrqls2bJq06aNHnroITVr1uyG9t+jRw+FhYXlqO/mzZtVtmzZGzoeABQF1avX0DPPjHN2GQAAAAAAAAAAAAAAAAAA4AY5NRCekJCgsWPHav369Q7rw8LCFBYWpsWLF+vZZ5/VyJEj87T/2NhYnTt3Lh8qBQAAAAAAAAAAAAAAAAAAAICbj1MD4RMmTDDC4LVr19aQIUNUpkwZHThwQLNnz9a1a9c0ceJElS9fXgMHDsz1/g8fPiy73S5JevLJJ9W0adMs+5coUSLXxwAAAAAAAAAAAAAAAAAAAAAAZ3FaIPyff/7RkiVLJEnt27fX9OnT5eHhIUkaMGCABg8erAcffFBRUVH64IMP1LNnT/n4+OTqGIcPHzaWBw0apJo1a+bfCQAAAAAAAAAAAAAAAAAAAACAk5mddeDvv/9ekuTq6qr33nvPCIOnql27tl5//XVJUlRUlObNm5frY6QGwj08PFS9evUbrBgAAAAAAAAAAAAAAAAAAAAAbi5OCYRHRUVpy5YtkqTOnTuratWqGfbr16+fSpcuLUlavnx5ro+TGgivU6eOzGanZd8BAAAAAAAAAAAAAAAAAAAAoEA4JSW9a9cu2Ww2SVL79u0z7Wc2m9WmTRtJ0r59+xQdHZ3jY9jtdh09elSSVK9evRuoFgAAAAAAAAAAAAAAAAAAAABuTk4JhKcGtaXsw9p16tSRlBLwPnLkSI6PERYWptjYWElS3bp1JUmxsbHatWuXNmzYoJCQEFmt1tyWDgAAAAAAAAAAAAAAAAAAAAA3DVdnHDQsLMxYrly5cpZ9K1So4LBd6ozh2Tl8+LCxbDabNXr0aK1du9YhBO7n56eHH35Y//vf/+Tp6ZnT8gEAAAAAAAAAAAAAAAAAAADgpuCUGcKvXLliLJcsWTLLvn5+fsZyVFRUjo+RNhD+0UcfadWqVelmBI+KitLUqVM1fPhwh5oAAAAAAAAAAAAAAAAAAAAAoChwygzhCQkJxrKHh0eWfd3d3TPcLjtpA+Fubm569NFHNWjQIFWtWlVRUVHasGGDJk2apIsXL2r//v167rnnNGvWLJnNN5aRd3XN2/Y2m+mGjouiy2T69792u3NrAZDCxcWU5/G8KHBxMTv8FwAKEmMOgMLGuAOgMDHmAChMBT3m3Cpj2a1yHsDNgP/XAVCYGHMAFDbGHQCFiTEHhcEpgfDk5GRjOW3gOyNp29Nul52IiAhJKYHz77//Xq1btzbaypUrp/vvv19dunTRkCFDdP78eW3btk1///23BgwYkONjXM9sNqlkSe88bZuQ4KJLl8y3fAgRmWOwB5zPZjPJbDarRAkveXp6OrucAufrW8zZJQC4jTDmAChsjDsAChNjDoDCxJiTNa4PkP/4XAEoTIw5AAob4w6AwsSYg4LklEB42pBdUlJSlqFwi8ViLGcXHk9r9uzZio2NVUxMjCpWrJhhn/Lly+u1117T6NGjJUlz5869oUC4zWbX1avX8rStxZIom80mq9Wu5GRbnmtA0WMypYTBrVYbM4QDTma12mWz2RQdfU3x8VZnl1NgXFzM8vUtpqtX42W18p0DoGAx5gAobIw7AAoTYw6AwlTQY07q/os6xmQg//D/OgAKE2MOgMLGuAOgMDHmIK98fYvleLJhpwTCvby8jOXExMQcB8I9PDxydRwfHx/5+Phk2adHjx7y8fFRbGys9uzZI5vNJrM57zM15zXMbbWSBL5dpYbACYMDN4/b5eEcq9V2W5wngJsDYw6Awsa4A6AwMeYAKEyMOVnj+gD5j88VgMLEmAOgsDHuAChMjDkoSHlPPt8AX19fYzkqKirLvmnbS5Uqle+1uLi4qHr16pJSwufZ1QMAAAAAAAAAAAAAAAAAAAAANwunBMJr1KhhLIeHh2fZ9/z588ZypUqVCqQeNze3AtkvcL2AgNYKCGit0aNHZtienJysH36YkWHb+++/ZWwfHn6uIMssskaPHmlco+sNHnyXAgJaa/Dgu5xQGQAAAAAAAAAAAAAAAAAAQMFwdcZBa9eubSwfPXpUbdu2zbTv0aNHJUkmk0l169bN0f7Pnj2rtWvX6vLly2rZsqW6deuWZf+IiAhJKcHwEiVK5OgYNwOz2SSz2eTsMgqVzWaXzWZ3dhkF4tChEH3wwVs6ceK4Rox43NnlAAAAAAAAAAAAAAAAAAAAoAhwSiC8RYsWcnNzU1JSkrZv366HHnoow35Wq1U7d+6UJDVo0EC+vr452v+FCxf0wQcfSJJ69OiRZSD85MmTxizlTZs2lYuLSy7OxHnMZpNK+hWTuYjUm19sVqsio+JvyVD4/PlzdOLEcWeXAQAAAAAAAAAAAAAAAAAAgCLEKYFwX19ftW/fXps2bdLatWt17tw5VapUKV2/pUuX6sqVK5Kkvn375nj/TZo0kY+Pj2JjY7Vp06ZM9y9J33zzjbE8cODAXJ6J85jNJpldXHThzy9luRzq7HIKhXvpKio36FmZzaYiGwjfvHmXs0u4bf3xx2JnlwAAAAAAAAAAAAAAAAAAAJDvnBIIl6QRI0Zo06ZNSkpK0vPPP68ZM2bIx8fHaD927Jjef/99SZK3t7fuv//+HO/bw8NDQ4YM0ffff6+kpCSNGzdO3333ncP+JWnmzJn666+/JEk1atTQPffckw9nVrgsl0NlOX/S2WUAAAAAAAAAAAAAAAAAAAAAcAKnBcIDAgJ05513asWKFdqzZ48GDhyoBx54QBUrVtTBgwf1+++/Ky4uTpL04osvqlSpUg7bb9++XY888ogkqW3btvr5558d2p966imtW7dOJ0+eVGBgoPr376+hQ4eqRo0aioyM1N9//61du1Jma/b29tZnn30mDw+PQjhzAAAAAAAAAAAAAAAAAAAAAMgfTguES9LHH3+suLg4bd68WaGhofr0008d2k0mk0aPHq1hw4blet/FixfXrFmzNHr0aAUHB+v8+fOaNGlSun4VK1bUxIkT1bRp0zyfB24do0Y9pqCgffLw8NDy5evl5uaWrs/PP/+gadOmSpKGD39UTzzxdLo+VqtV/fvfodjYGN15Zz+9/vo7kqSAgNaSJH//lpo6dbok6f3339KyZUscts+o3/WioqL0++8/659/Nio8/Jw8PT1VrVp19ekzQAMGDJSLi0ser4J0+vQpLVgwV7t371R4+DlJUsmSpdS4cRP16NFbXbt2z3L7pKQkbdiwVn//vUSnT5/UlSuX5e3trXr1GqhPn/664447ZTabM9z22rVrWrp0kXbs2Krjx48pOjpKkuTrW0J169ZXt2491Lt3X7m65m74Gjz4Lp0/H64KFSrqjz8WO7SlXu/HH39SI0Y8rsDAXVqwYJ4OHAhSVFSkSpTwU/PmLXT//cPUpEmzLI8TEXFes2f/qm3b/lFExHl5eHiqTp26uvvue9SrVx+H98/mzbtydQ4AAAAAAAAAAAAAAAAAAADXc2ogvFixYpoxY4YWL16sP//8UyEhIYqJiZGfn59atWqlRx55RK1atcrz/itWrKg5c+ZoyZIlWrp0qQ4cOKCrV6/Kx8dHNWrUUO/evTV06FB5e3vn41mhKGvfvqOCgvYpMTFRBw4Eyd+/Zbo+e/b8G+Lduzcww/0cPBis2NgYSVKHDp3yvc6goP2aNOlTRUdHG+sSExMVFLRfQUH7tXr1Cn322SR5eHjmet/Lly/VRx+9q+TkZIf158+H6/z5cK1Zs0qtWrXVRx9NVLFixdJtHx5+Ti+/PE7Hjx91WB8VFaUdO7Zpx45tWrLkL3300UR5eTl+9nbs2Ka3357gcF6pLl68oIsXL2jLlk3688/5mjhxiooXL57r88vOtGlf6ZdffpDdbjfWXbp0UWvWrNTatas0cuTTGj58RIbbBgbu0ssvj9O1a3HGOovFoj17dmvPnt3auHG9ateuk+81AwAAAAAAALcSs9kks9nk7DLyzGazy2azZ98RAAAAAAAAAPKJUwPhUsos4HfffbfuvvvuXG3Xrl07HT58ONt+rq6uGjRokAYNGpTHCnE7ad++k7777htJKeHe6wPhycnJCgraZ7w+dOigEhMT5eHh4dBvx45tkiQXFxe1bdshy2MOHjxM3bp115w5vyswMCVs/sEHn0mSSpTwy3Cb999/U1arVf7+LdW9+x3y8vLSoUMH9ddfC5ScnKw9e3brhx9mZjh7eVZOnjxhhMF9fHx01133qG7dejKZTDpz5rQWLVqgy5cva/fuHfr668kaN+4lh+2joqL0xBOP6sqVy5KkOnXqqXfvvipXrpzOnQvTn3/O14ULEQoM3KV33nldH330ucOxX3rpOSUlJcnFxUUBAV3UokUrlSxZSpcvX9aBA0Fat261bDabDh4M1syZ0/Tss+NzdX7ZWblymc6cOS0vL28NGHC3GjZsrPj4eK1evUKBgbtkt9s1ffpXatu2verXb+Cw7aFDIXrhhbFKTEyUJHXu3FWdOnWRm5ub9uzZrWXLlmjdutXauXNbvtYMAAAAAAAA3ErMZpP8/Lzk4pLxLwwWBVarTVFR1wiFAwAAAAAAACg0Tg+EAzeTevXqq1Sp0rpy5bICA3fpv/8d6dB+8GCw4uPjjddJSUk6eDBYLVo4zmS/fftWSVLjxk3l6+ub5THr12+gxo0baf36dca6Ll26ZbmN1WrVmDHPaejQh4x1ffsOUNeuPTR27CjZ7XYtWrRAI0c+JZMp5zPpLFq00JgZfOLEqWrcuIlD+733DtHjjw9XRMR5LV36l0aPHuswC/lXX31phMHvvfd+PfvsCzKb//2Hm8GDh+rJJ/+rEyeOa/PmjQoM3KWWLVtLkmbM+EZJSUmSpLff/kDduvW8rroHdNddg/Tcc0/Lbrdr9erl+R4IP3PmtCpUqKgpU6apYsVKxvq7775HH3zwtv7+e7HsdruWLv0rXSB80qRPlZiYKJPJpFdeeUP9+t1ltN15Zz/17XuXXnhhrGJjY/O1ZgAAAAAAAOBWYjab5OJi1me/7lZoRIyzy8m1KuWLa/xDreTm5iKr1Zav+04NyRdUWL4oh/ABAAAAAACA2x2BcCANk8mkdu06aNmyJTpwIEiJiQkOgec9e3ZLkurXb6iwsLOKjY3Vvn17HALhV69G69Chg5KkDh06FUid7dp1dAiDp2rZsrWaN2+hvXsDFR0drYiI86pQoWKO93vmzGlJUokSJdKFwSWpZMmSuv/+YVq8+E9VrlxFV65cMYLTUVFRWrHib0lS3br1NHbseIcwuCR5eXnrhRde1ahRj0mSVq1aoZYtWyshIUFbt26RJDVv3iKDMHiK1q3bqnHjpgoO3q+oqChdvRotX98SOT6/nBg7dpxDGDzViBGP6++/F0uSQkIOOrQFBu5SUNB+SdKAAYMcwuCpmjf319NPj9Wnn36Qr/UCAAAAAAAAt6LQiBgdD4t2dhm55lfcQ3abTb6+xQrsGAW5bwAAAAAAAABFE4Fw4Drt23fUsmVLlJSUpP3796lNm3ZGW2BgSiC8RYtW8vEprt27d2jv3kCH7Xfu3CGbLWXmlw4dAgqkxp49e2XaVq9efaOmy5cv5yoQXqJESrg6OjpaS5b8pQEDBqbrM2zYwxo27OF067dt+8c470GDBsvFxSXDYzRt2lyPP/6kypevoHr1UmbZ9vT01B9/LFJYWKi8vb2zrLFixUoKDk4JXyckJORrINzd3T3Te1apUmV5eXnr2rU4xcY6zkz0zz8bjeUhQx7IdP/9+t2l6dO/UnR00fuHLAAAAADA7c1sNslszvmvkN1MbDa7bDa7s8sAcJvwKeYmk9msC39+KcvlUGeXkytetVqoVPf0E5EAAAAAAAAAuPkRCAeu06ZNe7m4uMhqtSowcJcRCE9KSlJw8D5Jkr9/C7m5uWn37h06cCBIycnJcnVN+Tjt2LFVklSuXHnVqVO3QGqsWbNWpm3e3j7GssWSmKv9du/eUytXLpMkffTRu1qwYJ66dOmm9u07qn79hjKZMv+H39RZ0aWU0HdWRox4PN26UqVKq1Sp0hn2v3btmo4fP6r9+/caYXBJRgA9v1SpUtW4jxnx9k4JhCcnWx3W79mTEsD38/PL8t64ubmpadPm2rx5Y6Z9AAAAAAC42ZjNJvn5ecnFxZx955uQ1WpTVNQ1QuEACpXlcqgs5086u4xccStd2dklAAAAAAAAAMgjAuHAdXx9fdWoUWMFBe3X7t07jfUHDwYrMTFRZrNZzZq1MGbAjo+P15Ejh9SoURNJ0s6d2yVJ7dp1LLAafXyK56if3Z67f+js3Lmb7rrrHi1evFCSdOTIIR05ckgzZnwrP7+S6tChk7p27aH27TumC05fuXLFWM7NrOTXu3TpkjZtWq8jRw7r7NnTCgsL1aVLFzM8l9yeX3bShukzknrP7XbHIPrlyxclSeXLZ3/elStXyWN1AAAAAAA4h9lskouLWZ/9uluhETHZb3ATqVK+uMY/1Epms4lAOAAAAAAAAAAAuGURCAcy0K5dRwUF7dfhwyG6di1OXl7eCgzcJUmqVauOfH191ayZvzGT+N69e9SoUROdOHFcFy5ESJI6duyUo2NlMel2prKaxfpGvfTSBLVp007z5v2m4OAgI3QdFRWpZcuWaNmyJapQoaJeeuk1Y/Z0Sbp6NdpY9vDwyPVxk5OT9c03U/THH7NltVrTtXt6eqply9a6dOmSjhw5lIczy15q4Du3oqNTzj0n5+3h4ZmnYwAAAAAA4GyhETE6HhadfcebUEHNbp6634KcPd1msxNmBwAAAAAAAAAAWSIQDmSgfftOmjHjWyPs3blzF+3Zs1uS1LJlK7m6mlWihK/q1auvkJCDCgraK1fX/2jXrpTZwd3c3NS+fQe5umb8j4EmkyldmylNMjyj7dK2u7iYM9232Zy+n92e8vPIOdWjxx3q0eMOXbx4QVu2bNbOndu1e/dOxcRclSSdPx+ul156XtOmfa+6detLSglsp0pMTJSXl1eOjydJH3zwtlauXCYpJfDevHlLNWzYSLVq1VbNmrVVs2Ytubq66t13Xy+wQHheeXh4KDk5WQkJ8dn2TUxMKISKAAAAAACAJPkV95DdZpOvb7ECPU5B7t9mtSoyKp5QOAAABchsNjn8+0pRwsNjAAAAAABAIhAOZKh+/QYqWbKUIiOvKDBwlzp06KDg4P2SpCa1q8tyKVSS1KxBPYWEHNS+vYFKvHhWWzetkyQ1b9xILnGXZYnLeP/2pERjH6lsif92vr7t+vakyHBZ3DMOeFuvXTWWk6MvKikqQm5+5XNw1umVLVtOAwfeq4ED75XValVg4C5Nn/61QkIOyGJJ1G+//aw333xPklSyZCljuwsXIlSjRs1M93v48CGZzSZVqlRZ3t4+CgraZ4TBK1WqrC+//FqVKlXOcNuYmNg8nUtBKlu2vOLiTuj8+fPZ9j1/PrwQKgIAAAAAAJLkU8xNJrNZF/78UpbL6f/ecrNzL11F5QY9K7PZRNALAIACYjab5OfnVaC/+FGQrFabYmISjF98zU/8GgoAAAAAAEUHgXAgAyaTSe3addDy5UsVGLhThw4dlMVikSQ1r19H9qRESZJ/wwaas1C6GhOjQ4dCtP/AAUlS+5YtjD4ZstvSt9us/zZntG3a9mRL5vtP28+aJHtyUlanakhMTNCGDet1+vRJValSVX37DnBod3FxUZs27dSgQSPddVcvJScn6/jxo0Z7/foNtHhxynJw8P4sA+GfffahQkIOyM+vpJYsWaUtWzYbbY8++r9Mw+CSdOzYkX/PrwD+uJkXjRs30alTJ3T1arROnTqZ6bnbbDYFBwcVcnUAAAAAAMByOVSW8yedXQYAALgJmc0mubiY9dmvuxUaEePscnKlYc1SGjmwifz8cverrbnFr6EAAAAAAHDzIxAOZKJ9+45avnypjh07qk2bNkqSalStIr8SJYw+TRs1MGZo+vmP+Ur8/9B4+5Ytcn08k+nf2RVsNpvM5sKdicJsdtFHH70riyVRNWvWShcIT+Xl5SU3NzclJyerWLF//8DYrl1Hmc1m2Ww2LV78p/r3v1smU/qfVwwNPatDhw5Kklq1aiNJio6OMtqLFcv8j4rr1q3WhQsRxuvk5ORcnWNB6d79Di1dukiStGDBXD3//EsZ9lu3bo0uX75UmKUBAAAAAAAAAIAcCI2I0fGwaGeXkStVyvnwaygAAAAAAEASgXAUQYX1k30dOvwbcP7jj7mSpGaNGjr0Ke7trdo1aujoiZPavH2nJKlyhfKqWrlSro/n6eFuLMfExqmEb/EbqD733Nzc1LlzF61Zs0onT57QL7/8oIcfHpGu3/z5cxUfHy9Jat783+B7xYqV1KVLN61fv1YHDgTpu+++0ciRTzlsGxcXq48+eteY2fvee+83tk21ePFf6tq1R7ow+c6d2/XJJx84rEudtd3Z2rZtrzp16unYsSP688/5at68hXr27O3Q5/jxY/rii0+cVCEAAAAAAAAAALhV8WsoAAAAAACAQDiKnIjLcYpPLIyZoc2qU7ehjhw+oGvX4iRJ/o0bp+vl37iRjp74949s7Vu1zNPRypYubSx/+vW3uqNLgNzd3NWxTas87S8vHn10pDZt2iCLxaJvv52q7du3qmPHzipbtqyioiK1Y8d2bdmySZLk5+enIUMedNj+2Wdf1L59exUZeUU//fS9AgN36Y47eqtECT+dPXtGixYt1KVLFyVJ/fvfbQTKe/bsre+/n66kpCRt375FI0f+R7169VXp0qV1+fIlbdmyWbt37zSC5Kni4mIL4apkz2w264UXXtXo0f9TUlKS3nzzVa1du0odOgTI3d1DBw7s1+LFf8liSZSLi4usVmuhzwAPAAAAAAAAAAAAAAAAAABuTQTCUeRYkm1KtFgL5VhN/dvqyOEDxmv/xo3S9fFv3FjzFi81Xuc1EN65fVvNmj1XScnJ2rR9hzZt36GSJUrozx9m5Gl/eVGjRk299dYHevfd1xUfH689e3Zrz57d6fqVLVtO7733icqUKeOwvkyZMvrqq+l68cXnFBp6VsHB+xUcvD/d9r1799ULL7xqvK5UqbLGjXtJn376oaxWq0JCDiok5GC67Zo3b6Feve7UZ599JEk6duyowyzlztS4cRO99dYHeu+9NxQfH68NG9Zpw4Z1Dn0GDBio8PBw7d69Q25ubk6qFAAAAAAAAAAAAAAAAAAA3EoIhBdx7qWrOLuEQuOMc23eoq3mz5klSapcsaJKlyqZrk+zRg1kMplkt9vl6eEh/ybpZxHPiWqVK+uTNyZo1uy5OnbylCxJFrm7uynu2jV5e3nd0HnkRpcu3fTzz/O0cOE87dq1Q2FhZxUfH6/ixX1VrVp1BQR01aBB98rLyzvj86hWQz/9NEeLF/+p9evX6MSJY4qLi5Ovbwk1btxEd999rzp06JRuuwEDBqlWrTqaM+c3BQXt05Url+Xq6qqSJUurXr16uvPO/goI6KLY2FhNmjRRSUlJWrdute67b0hBX5Ic69q1u+rVm6M5c37Ttm1bdPFihNzc3FW/fgPde+8Qde3aXU8//T9JUvHivk6uFgAAAAAAAAAAAAAAAAAA3AoIhBdRNptdNqtV5QY96+xSCpXValVysq3Qjlerdn39uXSzKpT2kuVSqOxJien6+BYvrvUL5uZofxsWzsuyvWXTJmrZtEmGba88M1qvPDM622M8OmyIHh12YyHpChUqaNSoMXne3t3dXffdNyTXYe1GjZro7bc/yLKPr6+v1q3bmmHb1KnTM93ujz8WZ9q2efOuHNWX1T5SVaxYSc8+Oz7T9sjIK5KkcuXK5+iYAAAAAAAAAAAAAAAAAAAAWSEQXkTZbHZFRsXLbDY5u5Qcc3ExK+JynCw3EOhOTrbJkmTNx6qAG7dixd9atWq5KlWqrOHDH1XZsuUy7Hfq1EmdPXtGklSvXoPCLBEAAAAAAAAAAAAAAAAAANyiCIQXYTabXTab3dll5Ep8YrISLQS6cWvx8Smubdu2SJLsdmncuJfS9bl2LU4ff/yu7PaUz2yvXncWao0AAAAAAAAAAAAAAAAAAODWRCAcAG5QmzbtVLFiZYWHh2nhwnk6cuSQunbtoXLlyikhIUFnzpzS8uV/68qVy5Kku+4apObNWzi5agAAAAAAAAAAAAAAAAAAcCsgEA4AN8jd3V0ffviZXnzxWV24EKEDB4J04EBQhn0HDRqssWPHFXKFAAAAAAAAAAAAAAAAAADgVkUgHADyQZ06dfXbb/O1ZMmf2rRpo06cOKarV6Pl5eWtsmXLqmnT5urf/241atTE2aUCAAAAAAAAAAAAAAAAAIBbCIFwAMgnnp6eGjx4mAYPHubsUgAAAAAAAAAAAAAAAAAAwG2CQDgAAAAAAEWM2WyS2Wxydhl5ZrPZZbPZnV0GAAAAAAAAAAAAANwSCIQDAAAAAFCEmM0m+fl5ycXF7OxS8sxqtSkq6hqhcAAAAAAAgCKmoCYqSP1bV0H+zYtJCgAAAHArIxAOAAAAAEARYjab5OJi1me/7lZoRIyzy8m1KuWLa/xDrWQ2m/gHOAAAAAAAgCLEbDappF8xmV1cCuwYvr7FCmzfNqtVkVHx/E0KAAAAtyQC4QAAAAAAFEGhETE6Hhbt7DIAAAAAAABwmzCbTTK7uOjCn1/KcjnU2eXkinvpKio36FkmKQAAAMAti0A4AAAAAAAodAX1878F/fPC/LQwAAAAAAC43Vkuh8py/qSzywAAAACQBoFwAAAAAABQaPyKe8husxXoz/9KBffzwvy0MAAAAAAAAAAAQMbMZpPMZpOzy8gTJgVCUUcgHAAAAAAAFBqfYm4ymc38tDAAAAAAAAAAAMAtxGw2yc/Pq8B+xbWgWa02xcQkyG7P/38DKuhfuJUItINAOAAAAAAAcAJ+WhgAAAAAAAAAAODWYTab5OJi1me/7lZoRIyzy8mVhjVLaeTAJvLz8yrQ4xTkL+jyK7cgEA4AAAAAAAAAAAAAAAAAAIAbFhoRo+Nh0c4uI1eqlPMpsr9wK/Ert0hBIBwAAAAAAAAAAAAAAKAQmM0mmc0mZ5eRJy4uZmeXAAAAUKD4hVsUZQTCAQAAAAAAAAAAAAAACpjZbJKfnxfBagAAAAD5jkA4AAAAAAAAAAAAAABAATObTXJxMeuzX3crNCLG2eXkWssG5fRIv0bOLgMAAABABgiEAwAAAAAAAAAAAAAAFJLQiBgdD4t2dhm5VqWcj7NLAAAAAJAJfocIAAAAAAAAAAAAAAAAAAAAAIooAuEAAAAAAAAAAAAAAAAAAAAAUES5OrsA5J3ZbJLZbHJ2GTnm4mJWMQ9Xubjk/TmE5GSbLEnWfKyqcHW9535Jkn/jRpr03tvp2pOTk/Xrgj/1nyGD07V9OHmqlq/bIEmaPe0rVSxXrmCLRb6aOXOaZs36TpI0efK3atmytdH2/vtvadmyJZKkefMWqWLFSk6pMSvnzoVpz57d6t//7nRtAQEp5+Lv31JTp04v7NIAAAAAAAAAAAAAAAAAALitEQgvosxmk/xKFpOL2cXZpeSKr2+xG9o+2WrVgSMXi3QoPDOHjx/Xh5O/0skzZzMMhAPOMnv2L5ox41t1735HhoFwAAAAAAAAAAAAAAAAAADgPATCiyiz2SQXs4smb/teYVfPO7ucQlHZt4Keaf9fubqab8lA+IKly3TyzFlnlwGkM3Xql84uAQAAAAAAAAAAAAAAAAAAZIJAeBEXdvW8TkYSIi4qNiyc5+wScBOaMOEtTZjwlrPLyLPNm3c5uwQAAAAAAAAAAAAAAAAAAG5bZmcXAAAAAAAAAAAAAAAAAAAAAADIGwLhAAAAAAAAAAAAAAAAAAAAAFBEuTq7AOBm8s5rz+jI4WC5u3to+g+L5Ormlq7Pr/MXavovv0mSHrrvHo18+MF0faxWq+7+z2OKjYtT725dNGHsGElS13vulyT5N26kSe+9LUn6cPJULV+3wWH7jPpdL+rqVc35c5H+2blL5y9clKeHh6pWrqQ7u3dV/5495OLikuvzDw8/p/vvv1uS9Prr7+jOO/tp48b1WrRogY4ePayYmBiVKlVarVu31dChD6lmzVpZ7i86OkoLF/6hrVv/0Zkzp5WQEC8/v5Jq2LCxevfuo27deuaojkaNmuiLLz7R/v175erqpqpVq2nkyFFq06a9Bg++S+fPh2vgwHv1wguv6sCBYM2Z86uCgvYpOjpapUuXUfv2HTV8+AiVK1deknT1arR+//0XrV+/RhEREfL09FSTJk310EMj1Ly5f6bnY7PZtH79Wm3evEEHDgQpKipSiYmJKl7cV1WrVlP79h11zz33q3jx4rm67u+//5aWLVsiSZo3b5EqVqwkSZo5c5pmzfouV/t69dU31a/fXflSd0BAa4fXy5YtMepMe5zUfv7+LTV16vQM68qv98KNvicBAAAAAAAAAAAAAAAAALjVEAgH0mjeoq2OHA6WxZKoY0cPqkGj5un67Ak+YCzvP3Aww/2EHD2m2Lg4SVL7li3zvc7gQ4c1ZcYsRcfEGOsSLRZFHzqs4EOHtWbTP/rktVfk4eGR52PYbDa9++4bWrHib4f158+Ha8mSv7Rs2RK9+uqbuvPOfhluv2HDOn344TuKjY1xWH/x4gVdvHhBGzeuk79/S7333ify8/PLtI4LFyI0ZcoXioqK/P81CQoJOaAyZcql6/vbbz9r2rSpslqtxrrw8DAtXDhPmzat19dfz1BiYqJeeGGszp8PN/pYLInasmWztm/fqnfe+VBdu/ZIt+/z58P10kvP6fjxY+naIiOvKDLyivbv36t582br88+nqm7depmeU0EymUwOr2+GuvPrvXCj70kAAAAAAAAAAAAAAAAAAG5FBMKBNJq1aKt5s7+XJB08sDddIDw5OVnBhw4Zrw8dO65Ei0Ue7u4O/Xbs2StJcjGb1bZF+lB5Wvf176eAdm01f8nfRtj8vZdfkCSVyGSm6Q8nTZXVZpN/40bq1rGDihUrpkPHjmnxylVKTrZqb/AB/Thvfoazl+fUzz/P0pkzp+XnV1J3332Pateuo6ioKC1dukhHjhyS1WrVJ5+8r1at2qhMmbIO2/7zzya98cbLRjC7bdsO6ty5q3x9fXXmzGktXbpI58+Ha+/eQI0e/T9Nn/6jvLy8Mqxj1qwZslgS1bNnb3XsGKALFy7o8OGQdDNB79y5XX/9tUCenp66557BatiwsS5fvqT58+cqIuK8Ll26qIkTP9bZs6d1/ny4unbtro4dO8tsNmvt2lXauvUfWa1WffbZR+rYsbPc0swOb7FYNHbsKIWFhUqSGjZsrO7d71DZsmUVFxen06dPacmSvxQff02RkVf03ntv6scff8/ztU91xx13qm7d+ln2CQrap99//1mSVLlyFQUEdM23uj/44DNJ0quvjpcktWzZWoMHD5Mk1avXIEfnkJ/vhRt5TwIAAAAAAAAAAAAAAAAAcKsiEA6kUaNmXZUoUVLR0ZE6GLRH997/H4f2kKPHFJ+QaLxOSk5WyJGj8m/S2KHfzr37JEmN6tdTcR+fLI9Zr3Yt1atdS5u37zDWdW7XNsttrDabnn70Pxpy9wBjXZ/uXdWlfTs9/+Y7stvtWrJytf730AMyZbGfrJw5c1r16zfU559PUYkSfsb6gQPv1QsvjNXOnduVmJiolSuX68EHhxvt167F6f3335LVapWLi0uGMzY/8MBwvfnmK/rnn006deqkpk79Qi++OCHDOiyWRA0aNFjjx7+cZb3nzoWpeHFfTZ78rcMs13fccaeGDh2kpKQkbd++RZL00kuv6a67Bhl9+vYdoNdff1nr1q1WZOQV7du3R61b/3sPFi1aYISqBw8eqmeffSHd8R966D/6738f0pUrl3X8+FGdOHFMtWrVybLm7FSvXkPVq9fItP3ChQh99tmHkiRPT0+9//6nKp7mIYIbrbtLl24OfcuXr5BuXVby+72Q1/ckAAAAAAAAAAAAAAAAAAC3MrOzCwBuJiaTSc38U4LAx46GyJKY6NC+9/9n8K5fu5Z8/n8W430HQxz6XI2J0aFjxyRJ7Vu1LJA627bwdwiDp2rZtImaN2ooSYqOiVHExUs3dJyXX37dIXgrSa6urho+/FHj9aFDBx3a//xzvq5ejZYkDRv2cLoAsJQSXn7rrQ9UoUJFSdKyZUt06dLFTOt45JFHM21La/jwEQ5hcEkqV6682rfvaLxu1aqtQxg8Vb9+dxnLJ0+ecGhbv36tJKlYsWL63/9GZXjsMmXKqH//u43XZ8+eyVHNeZWYmKgJE17QlSuXJUkvvjhBderUdejj7LoL4r2Ql/ckAAAAAAAAAAAAAAAAAAC3MgLhwHWat0gJhCcnJ+nI4WCHtj3/Hwj3b9JY9evUliTtO+gYPt21P0g2m12S1KGAAuE9Ajpm2la3Vk1j+UpUVJ6PUblylXTh6lS1a/8783VsbIxD25YtmyVJLi4uGjbsoUz3X6xYMd1331BJUlJSkrZu/SfDfhUrVlK5cuVzVHPPnr0z3Ueqzp27ZNinfPkKxnJcXKxD28cff67vv/9Fn346Sd7emc/4nvY4CQkJOao5rz777EOFhKS89+67b4h69+6bro+z687v90Je35MAAAAAAAAAAAAAAAAAANzKCIQD12navLXM5pSPxoHgPcb6pKQkBR86LElq3qihGtZNCaAePHxEyVar0W/nnr2SpLKlS6t2jeoFUmONqlUzbfMqVsxYtlgseT5G9eo1M21LGy5OTk52aDt4MCU0X7NmbZUsWSrLY7Ru3SbddterVq1GdqVKSplpOm2oO6209VauXCXT7VNZ09zP1O3r1Wsgf//0Af/k5GQdO3ZUixYt1PLlS431NpstR3Xnxbx5s7Vs2RJJUtOmzTRmzPMZ9nN23fn9XsjrexIAAAAAAAAAAAAAAAAAgFuZq7MLAG423j7FVbtuQx09fEAH0wTCDx4+okSLRWazSc0aNZSLi4skKT4hUUePn1DDenUlSTv37pcktWvpX2A1Fvf2zrTNZDIZy/YbOIaPT+YzSru6/jt0pA0Qx8XFymJJlCRVqlQ522Ok7RMZeTnXdaRVvLhvjvp5eHhmuD7tdctMfHy8/vlnow4cCNbZs6cVGnpW4eHn0gXIJcluv5Grn7nAwF2aOvUL/R979x0eRbm/f/yeTSEFEgg9gAKRqvSuFBER6VUQAb8UG4rlWFBEFD0o9nawgB5pgtIEaSIgAiItgDTpvQRCSUJIT3bn9we/7CHSkpDdyW7er+vycrPzPDP3Yvg4u/uZZyQpLKy4/v3v97L898gvud39u3Ct30kAAAAAAAAAAAAAAAAAALwdDeHAVdSp11j79/6tI4f2KTkpSSoepL927JAkVb7lFhUpXFi1alSXj80mu8Ohbbt2q0bVKjp87LjOnr/UzNqsQQOX5fPx9XHZvp3H8Mn5MZKSkpyPAwOv3nh9ucubs5OTU646xt/fP1vHzk3enFi8eIHGjftU8fEXrnrs6tVrKjS0qNau/cNlGU6fPq3XXx8hu90uHx8fvfXWWJUoUfK6c6zK7YrfBVf/NwYAAAAAAAAAAAAAAAAAwBPREA5cRZ26TTT7x4my2+36e+dWVapwr/7afqkhvM7tNSVJwUFBuq1yJe09cFDbd+3Wg926aONfWyVJfr6+alCnllXxLRMQEOh8fK2m3sslJydfNreQSzLlhQUL5um998Y4f65atbpq1aqtiIgqqlixkqpUqabAwEAtXDjPZQ3hqakpevXVFxQXFytJGjr0adWtWz/f5vbW3wUAAAAAAAAAAAAAAAAAAPIbGsKBq6hYuYpCQosp/kKsdmzfonb3ttLfe/dK+l9DuCTVvb2m9h44qB2798g0TUVu3SZJqn17DQUG3HhVZG9TuHBh+fsXUlpaqqKiTt5w/IkTx5yPS5Ys5cpouZaSkqIvvvhU0qXVyt9992M1btz0qmMvXkxwWY533x2jffsu/Q7ec09bPfhg/+uOtzq3N/4uAAAAAAAAAAAAAAAAAACQH9msDgDkR4ZhqHbdRpKkHdu3aM+eXUpLS5Mk1alZwzmu7u23S5LiExK09+Ahbd+1W5LUrEEDNyfOHwzDUPXql/58Dh8+qNjYmOuO37w50vk4IqKKS7Pl1vbtW5WQcKlh+t57212zqVqSDhzY63xsmmaeZfjhh++1bNkSSVLFipX1yiujbjjH6tze+LsAAAAAAAAAAAAAAAAAAEB+REM4cA116jWWJB05fEB//LFaklSxQnkVDQ11jqlVs7psNkOSNHX2HKX+/6bxpvXr5fh4hvG/v44OhyPXua3WvHkrSZLdbtePP0675rikpCTNnTtbkmSz2dSs2V1uyZdTFy7EOR8HBgZec9ypU1FavXqV8+eMjIw8OX5k5AZ9/fV/JEnBwcF65533FRQUdMN5eZnbMC79juf099LbfhcAAAAAAAAAAAAAAAAAAMiPaAgHrqFW7YYyDJscDodmz54pSap92ergklQkOFgRFStKktZsuLTCcbkypVWhXHiOjxdQyN/5+GJCYi5TW69z524qUiREkvTjj99r6dJfrhiTmpqit956TdHRpyVJ99/fUWXKlHVrzuwqW/Z//y1Xrfo9S6N1pqiok3rllReUnJzkfC5zRfmbERV1Um+88arsdrtsNptef32MbrmlYrbm5mXugIAASdLFixdzlN/bfhcAAAAAAAAAAAAAAAAAAMiPfK0OAORXhYuE6LYq1bV/3y4lJV1q0K57++1XjKt7e03tP3TY+XPTBvVzdbySxYs7H3/w5de6t2Vz+fv5685GDXK1P6sUKVJEr776ukaOHC673a633hqlX3/9RS1atFSRIqE6fvyoFi2ar1OnoiRJ5ctX0HPPvWhx6murWfMO3XprRR09ekTnzp3VwIEPqWvXHipfvoISEi5q584d+v335UpNTc0yLzEx4aaOm5aWphEjXlR8/AVJ0n33tVdoaKgiIzcoNTX1mqt1BwQEqHHjpnmau2TJUjp27Kg2bFir6dOnqkyZsqpUqbIqVap83dfgbb8LAAAAAAAAAAAAAAAAAADkRzSEA9dRu14T7d+3y/lz3dtrXjGm7u23a9aCRc6fc9sQ3qJpY038cabSMzL0x4aN+mPDRhULDdW8Sd/man9WatHibv373+/qnXfeVGJiojZsWKsNG9ZeMa5Bg8YaPfptBQUFW5AyezJX5v7Xv55SfPwFnT17Rt9++/UV40qVKq2XXnpVL730rCTpwIH9N3Xc8+fP6eDB/+1jyZJFWrJk0XVmXFKmTFnNnr0gT3O3aXOfJk78Rna7XV9++Zkk6aGHHtaTTz5zwzze9LsAAAAAAAAAAAAAAAAAAEB+REO4hysXUsbqCG5jxWutU6+x5syYeOn4ZcuqeFixK8bUrlldhmHINE0FFCqkundcuYp4dtxSrpzef32kJv44UwcOH1Faepr8/f2UmJSk4KCgm3odVmjV6h7VqVNfP/00U+vWrdGJEyeUmpqqUqVK6bbbqqpTp65q0qSZDMOwOuoNVatWXZMmTdf06VO1ceM6nT59WqbpUEhIqCpVqqwWLVqpffvOCgoKUo0aNbV79y5t3LheiYkJCg4u7PG5Bw58RD4+Pvrll4U6cyZavr5+SkpKynYOb/pdAAAAAAAAAAAAAAAAAAAgv6Eh3EM5HKbsDrueaTrY6ihulWG3KyPD4bbjVY6opnmL1qhM8SClnTshMz31ijEhRYpo5U8zs7W/VXNnXXd7/Vp3qH6tO666bcQzwzTimWE3PMagB3tr0IO9s5Xnn8qWDdeaNZuyNTY744oWLarBgx/T4MGPuSzH7NkLbjhmyJDHNWTI4zd1zFKlSuu551684bG++WZKjjOMHDlaI0eOzlGe7LrZ3JLk4+OjgQMf0cCBj1x1e375XciLPy8AAAAAAAAAAAAAAAAAADwNDeEeyuEwFRebLJvNc1bU9fGxKfp8otJuoqE7I8OhtHR7HqYCAAAAAAAAAAAAAAAAAAAAPBcN4R7M4TDlcJhWx8iR5NQMpabR0A0AAAAAAAAAAAAAAAAAAADkBZvVAQAAAAAAAAAAAAAAAAAAAAAAuUNDOAAAAAAAAAAAAAAAAAAAAAB4KBrCAQAAAAAAAAAAAAAAAAAAAMBD0RAOAAAAAAAAAAAAAAAAAAAAAB6KhnAAAAAAAAAAAAAAAAAAAAAA8FA0hAMAAAAAAAAAAAAAAAAAAACAh6IhHAAAAAAAAAAAAAAAAAAAAAA8lK/VAUzT1MKFCzVnzhzt3r1bSUlJKlmypBo1aqR+/fqpdu3aN32Mffv2aeLEidqwYYPOnDmjIkWKKCIiQt26dVP37t3l4+OTB68EAAAAAAAAAAAAAAAAAAAAANzL0obwlJQUPfvss1q5cmWW50+ePKmTJ09qwYIFeu655/TYY4/l+hizZs3Sm2++qfT0dOdzMTExiomJUWRkpObOnasvvvhCRYsWzfUxAAAAAAAAAMBVfHw880aPDocph8O0OgYAAAAAAAAAAF7P0obwkSNHOpvBIyIi1Lt3b5UoUUJ///23fvzxRyUlJemjjz5S6dKl1bVr1xzv/48//tCoUaNkmqYCAwP14IMP6o477tD58+c1e/Zs7du3T5s2bdLzzz+vb7/9VjZbfvhihS9IAMA61GAAAAAAQP7hE1xUDtOhkJBAq6Pkit1hV1xsMk3hAAAAAAAAAAC4mGUN4X/++acWLlwoSWratKkmTJigQoUKSZI6deqkXr166aGHHlJcXJzeeecdtWnTRoULF872/tPS0jR69GiZpqmgoCB9//33uv32253b+/btq+eff17Lli3Tn3/+qcWLF6tTp055+yJzwDAMSZLD4bAsAwAUdJk1OH9cIAQAAAAAKOhsAcGyGTZ9vv47nYw/bXWcHCkXUkbPNB0sm82gIRwAAAAAAAAAABezrCH8u+++uxTA11djxoxxNoNnioiI0KhRo/TCCy8oLi5Os2bN0qBBg7K9/6VLl+rEiROSpEceeSRLM7gk+fv767333lNkZKTi4uI0fvx4SxvCfXx8ZRg2paWlqlAhz1zxB/mbYUgm370B15WSkiybzUc2m4/VUQAAAAAAcDoZf1qHY49bHQMAAAAAAAAAAORTliyBGhcXp7Vr10qSWrRooQoVKlx1XIcOHVS8eHFJ0pIlS3J0jMWLF0u6tPJ23759rzomODhYPXr0kCTt27dPhw8fztEx8pJhGAoICFJKSqJMunaRhwybj0xJPj42+fp65j8+PqzWDNdzOOxKSUlUYGBh510bAAAAAAAAAAAAAAAAAADI7yxZIXzTpk1yOBySpKZNm15znM1mU6NGjbRkyRJt27ZNFy5cUGhoaLaOERkZKUmqVq2awsLCrjmuadOmztXKV69erUqVKmX3ZeS5wMDCSk5O1IUL5xUaWpyGROQNm02GpOiEc0p3pFudJsf8bH4qXbiE1THg5TIyMhQXd0bSpVoMAAAAAAAAAAAAAABwM2w2QzabZ/Z/ORymHA4WNQU8jScvvErduXmWNITv37/f+bhq1arXHXvbbbdJkkzT1L59+9SoUaMb7j86Olrx8fGSpCpVqlx3bEREhPPxnj17brhvV/L3L6SiRUsoLu6c0tNTFRAQJH//ANlsNkmeeXJwOYfDkOlIl0yH1VFyxGE3lJaWqnS7Q6YHFhyb3S4zLVVpaSlKs2dYHSfHTB+70tJSZbd73p898rNLJxAZGelKTU1WWlqKfHx8VLx4Gfn6WvK/RgAAAAAAAAAAAAAA4CVsNkNFiwXKx+ZjdZRcsTvsiotNpjkT8BA+wUXlMB0KCQm0OkquUXduniVdbydPnnQ+Lleu3HXHlilTJsu87DSEnzhxItv7L126tGw2mxwOh6Kiom64b1cLCAhSWFhpJScnKCkpQYmJ8VZHyjM2m00X41OUbveshvCMVB8po5DsCbEyPbCh2khOlk9quuJTLijDA/P7+vjKJ8XuvKsAkLcM+fsXUpEiRRUYGCybh74RAwAAAAAAAAAAAAAA+YfNZsjH5qPP13+nk/GnrY6TI+VCyuiZpoNlsxk0ZgIewhYQLJth88iaI1F38oolDeExMTHOx8WKFbvu2KJFizofx8XFZWv/sbGx2d6/n5+fgoKClJCQkO39u5q/fyH5+xdSSEiY7Ha7TA9bUftqfHwMhYYG6Z2JG3X8zEWr4+RIoxqlNbhLZZ2e/Z7Sz5288YR8JvC2+ipx70B9uGa8TsSfsjpOjpUPKasXmz+uCxeSWCUcecowDNlsPv//LgwAAAAAAAAAAAAAAAB562T8aR2OPW51DAAFBDWnYLOkITwlJcX5uFChQtcd6+/vf9V515OcnJzt/WeOSUhIyPb+r8fXN28bC/38vGO1Wh8fmwICAhQSEqzQZM9qcC9cOEgBAQEKKhyqtFTPamaXpKDgIpf+7AsXUagj0eo4ORZS+FL+tDRTdg9bXR7WutTwbVgdI9dMUzJcFD/zz8XPz0c+PnnfEG+apgxXhXcDh8OUaXIBCnLOk+uOJ9ccybPrDjUHuZH5d6l86SIWJ8mdUmFBkiT/4uUtTpJzmZldWdNcjbqD3PDkuuPJNUeS/EJLSbq0OoqnyczsqfUS1vHkmiN5dt3x5JojUXeQe55cdzy55kie/x6L91fIDU+uOZJn1x1PrzkSdQe548nfX0me/R1W5v498T0W76+QW558ruPJ5zkSn+vgEsO04Gzx4Ycf1oYNGyRJe/bsuW7zxrp16zRw4EBJ0tNPP61hw4bdcP/z5s3Tyy+/LEl655131LNnz+uOv/vuu3Xq1CmVL19ev/32WzZfxZU8uRHFHRwO02NPMk2HQ4YHryLscDg8ehVkh+mQzfDc/LCGJ9ccybPrDv8/REHlyXXHk2uORN1BweTJNUfy7LpDzUFB5cl1x5NrjuTZn+vwmQ5yy5NrjuTZdceTa45E3UHueXLd8eSaI3l23aHmILc8ueZInl13PLnmSNQd5A41x1qeXHeoOcgtT6471BxrUXduniUrhAcEBDgfp6enZ1kF/J/S0tKcj6837nKXrwqenp5+w/GZx/Dz88vW/q/F4TAVH590U/vwZp581aGrrzgsXDhACQkpcjhcc32GK/O7A1c6I6d8fGwKCQnUh9M260S0563sX796KT3coabOzPtUaedPWB0nR/yLl1epbs+5tKa5GjUHueHJdceTa47k+XWHmoPc8uT3V5Jnv8fy9IZw6g5yy5PrjifXHMmzP9eh5iC3PLnmSK77e0vNuTHqDnLLk+uOJ5/rZO7/8/Xf6WT86TzfvyuVCymjZ5oOVnx8Mne4RY55cs2RPPdcx5NrjkTdQe548vdXEt9hWY33V8gtTz7X8eT3VxKf63irkJDAbK+cbklDeFBQkPNxampqthvCL2/0zsn+byRzzOWN6rmVkcGJN3LG1/fSX9b0dDu/P0AeOxF9UQdPXrA6Ro6VL1VYkpR2/oTSTh+2OE3uUNNQUHli3fGGmiNRdwD8D++xALgTNQeAO1FzALibq+tO5v5Pxp/W4djjeb5/d7DbHdRkII9Qc7KHuoPc8MTvryS+wwLgXfhcB+5gyfrqISEhzsdxcXHXHXv59rCwsBzv/8KF65/QpKenKykpKUf7BwAAAAAAAAAAAAAAAAAAAID8wJKG8IoVKzofnzp16rpjT5/+3616wsPD83z/0dHRcjgcOdo/AAAAAAAAAAAAAAAAAAAAAOQHljSER0REOB/v37//umMztxuGoSpVqmRr/8WKFVPx4sWztf8DBw44H1etWjVb+wcAAAAAAAAAAAAAAAAAAACA/MCShvB69erJz89PkrRhw4ZrjrPb7YqMjJQkVa9eXSEhIdk+RqNGjSRJu3fv1sWLF685bv369c7HjRs3zvb+AQAAAAAAAAAAAAAAAAAAAMBqljSEh4SEqGnTppKkFStWKCoq6qrjFi1apJiYGElS+/btc3SMdu3aSZIyMjL0ww8/XHVMQkKC5s6dK0mqVKmSqlevnqNjAAAAAAAAAAAAAAAAAAAAAICVLGkIl6SBAwdKktLT0/X8888rISEhy/YDBw7o7bffliQFBwfrgQceyNH+7733XpUvX16S9MUXX2jTpk1ZtqelpWn48OGKi4uTJA0aNCgXrwIAAAAAAAAAAAAAAAAAAAAArONr1YGbN2+udu3a6ddff9Vff/2lrl27qm/fvipbtqx27dqlH374QYmJiZKk4cOHKywsLMv8DRs26OGHH5YkNW7cWFOnTs2y3d/fXyNHjtSTTz6plJQUDRw4UA888IDq16+vuLg4zZw5U/v27ZMk1a9fX7169XLDqwYAAAAAAAAAAAAAAAAAAACAvGNZQ7gkvffee0pMTNSaNWt04sQJffDBB1m2G4ahYcOG6cEHH8zV/u+55x698cYbevvtt5Wenq7p06dr+vTpWcbUqlVLX375pXx8fHL9OgAAAAAAAAAAAAAAAAAAAADACpY2hAcGBurbb7/VggULNG/ePO3evVsXL15U0aJF1aBBAz388MNq0KDBTR2jb9++atiwoSZPnqy1a9fq7Nmz8vPzU9WqVdW5c2f17t1bfn5+efSKAAAAAAAAAAAAAAAAAAAAAMB9LG0Ily6tAt6lSxd16dIlR/OaNGmivXv3ZmtslSpVNGbMmNzEAwAAAAAAAAAAAAAAAAAAAIB8y2Z1AAAAAAAAAAAAAAAAAAAAAABA7tAQDgAAAAAAAAAAAAAAAAAAAAAeytfqAAAAAAAAAAAAAAAAAAAA/JN/8fJWR8gVT80NAPBcNIQDAAAAAAAAAAAAAAAAAPKNhOR0mQ6HSnV7zuooueaw2+VwmFbHAAAUEDSEAwAAAAAAAAAAAAAAAADyjbiLqTJsNsXHJ8tud+T5/n18bAoJCXTZ/iXJ4TBpCAcAuA0N4QAAAAAAAAAAAAAAAADghcqXLmJ1hFzJzG23O5SR4ZqGbXfsHwAAd6EhHAAAAAAAAAAAAAAAAAC8iMNhym536MV+DayOkmt2u4MVtgEAyCYawgEAAAAAAAAAAAAAAADAizgcpuLikmSzGVZHyTWHw6QhHACAbKIhHAAAAAAAAAAAAAAAAAC8DA3VAAAUHDarAwAAAAAAAAAAAAAAAAAAAAAAcoeGcAAAAAAAAAAAAAAAAAAAAADwUDSEAwAAAAAAAAAAAAAAAAAAAICHoiEcAAAAAAAAAAAAAAAAAAAAADwUDeEAAAAAAAAAAAAAAAAAAAAA4KFoCAcAAAAAAAAAAAAAAAAAAAAAD+VrdQAAAFylfOkiVkfIlVJhQZIk/+LlLU6Sc56YGQAAAAAAAAAAAAAAAAA8GQ3hAACv43CYstsderFfA6uj5JrpcKhUt+esjpErDrtdDodpdQwAAAAAAAAAAAAAAAAAKBBoCAcAeB2Hw1RcXJJsNsPqKPmSj49NISGBio9Plt3uyPP9OxwmDeEAAAAAAAAAAAAAAAAA4CY0hAMAvBJNyTdmtzuUkZH3DeEAAAAAAAAAAAAAAAAAAPexWR0AAAAAAAAAAAAAAAAAAAAAAJA7NIQDAAAAAAAAAAAAAAAAAAAAgIeiIRwAAAAAAAAAAAAAAAAAAAAAPBQN4QAAAAAAAAAAAAAAAAAAAADgoWgIBwAAAAAAAAAAAAAAAAAAAAAPRUM4AAAAAAAAAAAAAAAAAAAAAHgoGsIBAAAAAAAAAAAAAAAAAAAAwEPREA4AAAAAAAAAAAAAAAAAAAAAHoqGcAAAAAAAAAAAAAAAAAAAAADwUDSEAwAAAAAAAAAAAAAAAAAAAICH8rU6AAAAAOAtypcuYnWEHCsVFmR1BAAAAAAAAAAAAAAAANwEGsIBAACAm+RwmLLbHXqxXwOrowAAAAAAAAAAAAAAAKCAoSEcAAAAuEkOh6m4uCTZbIbVUXLMx8emkJBA+Rcvb3WUXPHU3AAAAAAAAAAAAAAAAHmFhnAAAAAgDzgcphwO0+oYOeZwmHLY7SrV7Tmro+Saw273yD97AAAAAAAAAAAAAACAvEBDOAAAAFCAORymYuOSXba6eeYK5PHxybLbHS45hqc24wMAAAAAAAAAAAAAAOQFGsIBAACAAs4dDdV2u0MZGa5pCAcAAAAAAAAAAAAAACjIbFYHAAAAAAAAAAAAAAAAAAAAAADkDg3hAAAAAAAAAAAAAAAAAAAAAOChaAgHAAAAAAAAAAAAAAAAAAAAAA9FQzgAAAAAAAAAAAAAAAAAAAAAeChfqwMAAAAAAAAAAAAAAAqmciFlrI6QY56YGQAAAADg3WgIBwAAAAAAAAAAAAC4lcNhyu6w65mmg62Okit2h10Oh2l1DAAAAAAAJNEQDgAAAAAAAAAAAABwM4fDVFxssmw2w+ooueJwmDSEAwAAAADyDRrCAQAAAAAAAAAAAABuR1M1AAAAAAB5w2Z1AAAAAAAAAAAAAAAAAAAAAABA7tAQDgAAAAAAAAAAAAAAAAAAAAAeioZwAAAAAAAAAAAAAAAAAAAAAPBQNIQDAAAAAAAAAAAAAAAAAAAAgIeiIRwAAAAAAAAAAAAAAAAAAAAAPBQN4QAAAAAAAAAAAAAAAAAAAADgoWgIBwAAAAAAAAAAAAAAAAAAAAAPRUM4AAAAAAAAAAAAAAAAAAAAAHgoGsIBAAAAAAAAAAAAAAAAAAAAwEPREA4AAAAAAAAAAAAAAAAAAAAAHoqGcAAAAAAAAAAAAAAAAAAAAADwUDSEAwAAAAAAAAAAAAAAAAAAAICHoiEcAAAAAAAAAAAAAAAAAAAAADwUDeEAAAAAAAAAAAAAAAAAAAAA4KFoCAcAAAAAAAAAAAAAAAAAAAAAD0VDOAAAAAAAAAAAAAAAAAAAAAB4KBrCAQAAAAAAAAAAAAAAAAAAAMBD0RAOAAAAAAAAAAAAAAAAAAAAAB6KhnAAAAAAAAAAAAAAAAAAAAAA8FA0hAMAAAAAAAAAAAAAAAAAAACAh6IhHAAAAAAAAAAAAAAAAAAAAAA8FA3hAAAAAAAAAAAAAAAAAAAAAOChaAgHAAAAAAAAAAAAAAAAAAAAAA9FQzgAAAAAAAAAAAAAAAAAAAAAeCgawgEAAAAAAAAAAAAAAAAAAADAQ9EQDgAAAAAAAAAAAAAAAAAAAAAeytfqAOnp6Zo5c6YWLFig/fv3Kz09XWXKlNFdd92lAQMGqHLlyje9/3r16ik9Pf2GY/39/bVjx46bOh4AAAAAAAAAAAAAAAAAAAAAuIulDeGxsbF69NFHr2jCPnr0qI4ePaqffvpJb775prp165brYxw6dChbzeAAAAAAAAAAAAAAAAAAAAAA4Gksawi32+0aNmyYsxm8Tp066tatmwoXLqzNmzdrzpw5SklJ0ciRI1W2bFk1adIkV8fZu3ev8/HIkSMVHh5+zbE2my1XxwAAAAAAAAAAAAAAAAAAAAAAK1jWED5nzhxt2rRJktSlSxe99957zobsLl26qFOnThoyZIhSU1P15ptvauHChblq2M5sCLfZbOrdu7cCAgLy7kUAAAAAAAAAAAAAAAAAAAAAgIUsWxL7u+++kySFhobqjTfeuKLZu1GjRnrqqackSQcPHtTy5ctzdZzMhvBbbrmFZnAAAAAAAAAAAAAAAAAAAAAAXsWShvDdu3fr8OHDkqTOnTurcOHCVx3Xt29f+fj4SJKWLFmSq2NlNoRXrVo1V/MBAAAAAAAAAAAAAAAAAAAAIL+ypCF848aNzsfNmjW75riQkBDVrFlTkrRmzZocHyc2NlZnzpyRREM4AAAAAAAAAAAAAAAAAAAAAO9jSUP4/v37nY+rVKly3bG33XabJOnChQuKiorK0XH27dt3xXFiYmK0fv16/fHHH9q/f79M08zRPgEAAAAAAAAAAAAAAAAAAAAgv/C14qAnT56UJNlsNpUtW/a6Y8uUKeN8HBUVpfDw8GwfZ+/evc7HCQkJGjhwoNavX5+lCbx06dJ65JFH1K9fP/n4+GR73wAAAAAAAAAAAAAAAAAAAABgNUtWCI+JiZEkBQcHy9/f/7pjixYt6nwcFxeXo+Nc3hA+cuRIrVu37ooVwaOjo/X222/rySefVEpKSo72DwAAAAAAAAAAAAAAAAAAAABWsqQhPLPxulChQjcce3nDeHJyco6Oc3lDeHBwsF544QUtX75cO3bs0IoVK/TKK6+oSJEikqSVK1dq9OjROdo/AAAAAAAAAAAAAAAAAAAAAFjJN6cTfv/9dz3xxBO5Othvv/2m8uXLKyMjQ5JuuDr4P8fY7fYcHe/MmTOSLq0y/sMPP6hy5crObeXKldOgQYN011136cEHH1RiYqLmzp2rPn36qF69ejk6zuV8fS3psYcH8/GxZfk3ALgadQeAO1FzALgbdQeAO1FzALgTNQeAu1F3ALiTq2uOt9Qyb3kdQH7AuQ4Ad6LmwB1y3BCeFwICAiRJ6enpNxyblpbmfOzn55ej46xevVpxcXFKS0tTqVKlrjqmatWqeuaZZzR27FhJ0syZM3PdEG6zGSpWLDhXc4GQkECrIwAoYKg7ANyJmgPA3ag7ANyJmgPAnag5ANyNugPAnag518efD5D3+HsFwJ2oOXClHDeE33LLLRo8eHCuDlakSBFJUlBQkCQpNTX1hnMubwgvVKhQjo9ZtGjRG47p0qWLsyF88+bNOT5GJofDVHx8Uq7no2Dy8bEpJCRQ8fHJstsdVscBUABQdwC4EzUHgLtRdwC4EzUHgDtRcwC4G3UHgDu5uuZk7t/TUZOBvMO5DgB3ouYgt0JCArO9snyOG8IjIiL08ssv5zjU5UJCQiRJCQkJysjIkK/vtWPExcU5H4eFhd3Uca8lLCxMRYsWVVxcnM6cOXNT+8rI4C8rcsdud/D7A8CtqDsA3ImaA8DdqDsA3ImaA8CdqDkA3I26A8CdqDnXx58PkPf4ewXAnag5cKXstY3nsYoVK0qSHA6HoqOjrzv29OnTzsflypVzWSY/Pz+X7RsAAAAAAAAAAAAAAAAAAAAAXCHHK4TnhYiICOfjAwcOXLfRe//+/ZKk0NBQlS5dOtvH2LNnj9atW6dz587p3nvvVb169a45Ni0tzbkSecmSJbN9DAAAAAAAAAAAAAAAAHiGciFlrI6QK56aGwAAAO5jSUN448aNnY/Xr1+vVq1aXXVcfHy8du/eLUlq1KhRjo6xb98+vfvuu5Kk1NTU6zaEb9y4Uenp6ZKkOnXq5Og4AAAAAAAAAAAAAAAAyL8cDlN2h13PNB1sdZRcszvscjhMq2MAAAAgn7KkIfy2225T5cqVdejQIc2dO1fDhg1TcHDwFeOmTZsmu90uSWrfvn2OjtGkSRPZbDY5HA4tWrRIzz33nAoXLnzFONM0NX78eOfPXbt2zeGrAQAAAAAAAAAAAAAAQH7lcJiKi02WzWZYHSXXHA6ThnAAAABck82qAw8aNEiSFBsbq1deeUVpaWlZtkdGRuqrr76SJJUrV0733XdfjvZfunRptW3bVpIUExOjESNGXHEMh8Oht99+Wxs3bpR0aRXy5s2b5+r1AAAAAAAAAAAAAAAAIH9yOExlZDg89h+awQEAAHA9lqwQLkm9evXSrFmztH37di1dulS9evXSAw88oKJFi2rLli2aNWuW0tPTZRiGRo8eLX9//yv28dNPP2nEiBGSpO7du+vdd9/Nsv2VV17R5s2bde7cOS1dulRdu3ZVr169FB4ertOnT2vevHnas2ePJKlkyZIaO3asDMNzrwYFAAAAAAAAAAAAAAAAAAAAULBY1hBus9k0fvx4PfLII/r777+1d+9ejRkzJssYPz8/vfHGG2rZsmWujhEeHq7vvvtOTz/9tI4ePapDhw7p/fffv2JclSpV9Nlnn6lChQq5Og4AAAAAAAAAAAAAAAAAAAAAWMGyhnBJCgsL08yZMzVjxgwtXLhQBw8eVFJSkkqWLKkmTZpo0KBBqlat2k0do1q1apo/f77mzJmjJUuWaN++fUpMTFTRokV12223qX379urevftVVyAHAAAAAAAAAAAAAAAAAAAAgPzMME3TtDqEt7DbHYqJSbQ6BjyMr69NxYoFKzY2URkZDqvjACgAqDsA3ImaA8DdqDsA3ImaA8CdqDkA3I26A8CdqDkA3I26A8CdqDnIrbCwYPn42LI1NnujAAAAAAAAAAAAAAAAAAAAAAD5Dg3hAAAAAAAAAAAAAAAAAAAAAOChaAgHAAAAAAAAAAAAAAAAAAAAAA9FQzgAAAAAAAAAAAAAAAAAAAAAeCjDNE3T6hDewjRNORz8cSLnfHxsstsdVscAUIBQdwC4EzUHgLtRdwC4EzUHgDtRcwC4G3UHgDtRcwC4G3UHgDtRc5AbNpshwzCyNZaGcAAAAAAAAAAAAAAAAAAAAADwUDarAwAAAAAAAAAAAAAAAAAAAAAAcoeGcAAAAAAAAAAAAAAAAAAAAADwUDSEAwAAAAAAAAAAAAAAAAAAAICHoiEcAAAAAAAAAAAAAAAAAAAAADwUDeEAAAAAAAAAAAAAAAAAAAAA4KFoCAcAAAAAAAAAAAAAAAAAAAAAD0VDOAAAAAAAAAAAAAAAAAAAAAB4KBrCAQAAAAAAAAAAAAAAAAAAAMBD0RAOAAAAAAAAAAAAAAAAAAAAAB6KhnAAAAAAAAAAAAAAAAAAAAAA8FA0hAMAAAAAAAAAAAAAAAAAAACAh6IhHAAAAAAAAAAAAAAAAAAAAAA8FA3hAAAAAAAAAAAAAAAAAAAAAOChaAgHAAAAAAAAAAAAAAAAAAAAAA9FQzjgYvv377c6AgAAAAAAAAAAAAAAAAAAALyUYZqmaXUIwJvVqFFDNWrUUJcuXdSxY0eVLFnS6kgACqiEhAQtXLhQW7Zs0fnz5xUcHKzKlSvr3nvv1R133GF1PAAe6MSJE9q0aZMOHDig6OhoXbx4UWlpaTIMQ/7+/goJCVGJEiVUqVIl3XHHHapevbrVkQEAAG6aw+HQoUOHdP78eSUmJuqee+6RJF28eFHBwcGy2ViDAwAAAAAAAAAAuBcN4YCLVa9eXYZhSJJsNpuaNm2qrl27qm3btgoMDLQ4HQBvceLECS1ZskRRUVEqUaKE2rVrp4iICOf21atX65VXXlFsbOxV59999916++23FRYW5q7IADzYmjVrNG7cOG3bti1H84oXL66ePXtq4MCBKlasmIvSASiIkpOTr3h/debMGU2fPl179+5VUFCQGjVqpB49esjf39+ilAA83fbt2/Xtt99qzZo1Sk5OliQZhqFdu3ZJkr7++mtNmTJFDz/8sAYPHky9AQAAAAAAAAAAbkNDOOBin3/+uRYtWqSjR49KkrM5PCAgQG3btlXnzp3VvHlz5/MAkBOmaeqDDz7Q5MmT5XA4nM8bhqHHHntMzz33nHbu3Km+ffsqIyND1/rfvmEYCg8P1/Tp01W6dGl3xQfgYUzT1Ntvv61p06Y5f/6nzHOaQoUKKTU19YoxhmEoJCREY8aMUdu2bV0fGoDXMk1TEydO1Pfff6877rhDn3/+uXPb7t27NXjwYMXFxWWZc+utt+qbb75RhQoV3JwWgKf7+OOP9e2338o0zSznN4ZhaPfu3ZKk1157TbNnz5ZhGKpRo4a+/fZbLroFkCdWrlyp33//XX///bdiYmKUmJioDRs2SJIWLFignTt3asCAASpfvrzFSQF4utjYWO3cuVMXL15Uenr6NT9P/qdu3bq5NhgAr3fixAnNmDHjqne5bdeundXxAAAAbgrnOnAXGsIBN9m+fbvmz5+vX375RefPn5f0v4ap4sWLq1OnTurSpYtq1qxpZUwAHmbMmDGaNm3aNZsyR40apd9++01//vmnJKlVq1bq06ePKlWqpNTUVG3fvl2TJ0/WwYMHJUm1a9fWzJkz3foaAHiODz/8UN9++60kqVixYurWrZtq166tokWLKiEhQX///bd+/vlnnTp1Sk2bNtUnn3wi0zS1d+9ebdy4UcuWLdOBAwckXbpzyocffqgOHTpY+ZIAeLDhw4drwYIFMk1TVatW1fz5853bunTpon379l113m233aZ58+bJ19fXXVEBeLhPPvlE48ePlyT5+vqqYcOGCggI0MqVK7M0hH/yySf69ttvZbfbZRiG6tatq+nTp7MIAIBc27Nnj1566SXn+yjp0kVxl9eed955R1OmTJGvr6+ee+45PfLII1bFBeDBzpw5ozfffFO///57tpvAM11+xxQAuJrIyEgtXrzYeZfb+++/Xy1atHBunzVrlsaMGaO0tLSrzq9evbo++eQTVaxY0U2JAQAAso9zHeQnNIQDbuZwOLR27VotWLBAy5YtU1JSkqT/NYdHRESoS5cu6ty5s8qWLWtlVAD53Pbt29WnTx9JUnh4uJ5//nlVr15dp0+f1hdffKEtW7aoSJEiSkxMlGmaeu655/T4449fsZ+0tDS9/PLL+uWXX2QYhj766CMaNAFcYc+ePerRo4dM01SrVq30wQcfqEiRIleMS01N1ciRI7Vo0SI1a9ZM3333XZbtv/76q15//XVduHBBQUFB+uWXX7gzAYAcW79+vQYOHCjDMFS4cGH17NlTr7zyiiRpw4YN+r//+z8ZhqGKFStq3LhxCg0N1YQJEzRlyhQZhqE333xTvXv3tvhVAPAEl58D1alTR++9955uvfVWLV++XMOGDcvSlClJR44c0TPPPKN9+/bJMAx9+OGH6tixo4WvAICn2rJliwYPHpzlzksBAQFKSUnJUnuGDRum5cuXS7r0GfNTTz2lYcOGWZYbgOdJSUlRly5ddPz48Rw3g0u64nwIADKlpKTo5Zdf1tKlS6/Y1qlTJ7377rvasGGDhgwZIunqd6TMFBoaqunTpysiIsJleQEAAHKCcx3kRzSEAxZKSUnRihUrtHDhQq1du1YpKSmSLn14ZhiGGjRooG7duqldu3YqXLiwxWkB5DeZtyMvWrSoFi9enOVW5KmpqerSpYuOHj0qwzDUsGFDTZ069Zr7Sk9PV6dOnXTs2DG1bt1aX375pTteAgAPMnLkSM2ZM0cVK1bU/Pnz5e/vf82xDodDXbt21YEDB/TBBx+oU6dOWbbv2LFD/fr1U3p6uh599FE9//zzro4PwMuMGDFCc+fOVUhIiGbOnJll1YQ333xTP/zwgwzD0Lhx49SmTRvntn79+mnz5s2666679N///teC5AA8zahRozRr1iyVKFFCv/zyi/OCuGs1hEtSfHy87r//fsXGxqply5bO1cUBILsSEhLUrl07nT9/XoGBgRoyZIh69eqlnTt3XlF74uLiNHnyZH3zzTfKyMiQj4+P5syZo+rVq1v8KgB4igkTJujjjz+WYRgqVKiQ7r//flWrVk2FCxfO9p2Vunfv7uKUADzRc889pyVLllx1W+aFbGvWrNHWrVtlGIb69u3rvMttWlqatm3bpm+++Ubr16+XJN16661atGgRd30DcIXIyEiX7btRo0Yu2zcAz8a5DvIjfnsACwUEBKhDhw7q0KGDUlNTtW7dOi1btkw///yzMjIytGnTJm3atEn//ve/1a5dOz344IOqV6+e1bEB5BORkZEyDEMPPvhglmZwSSpUqJAGDhyoN998U5J0//33X3dffn5+6tmzpz7++GPt2LHDZZkBeK7169fLMAz17t37us3gkmSz2dSzZ0+9++67mj179hUN4bVq1VKXLl00e/ZsrVy5koZwADm2efNmGYahPn36XHELvZUrV0qSAgMD1bJlyyzb2rZtq82bN2vfvn1uSgrA023YsEGGYahnz55XvTvK1YSEhKh37976+uuv9ffff7s4IQBvNH36dJ0/f14+Pj766quv1LRpU0nSzp07rxhbtGhRPfvss6pfv74ef/xxORwO/fDDD87PhADgRjIbGEJCQliRDkCeWbt2rZYsWSLDMHTHHXdo5MiRzrvcfvrpp1qyZIkmTJigtLQ0GYahd999V127dnXO9/f311133aW77rpL7777riZNmqRjx45p7ty5euCBByx8ZQDyowEDBsgwjDzfr2EY2rVrV57vF4Dn41wH+ZXN6gAALq0ctXTpUs2fP19Lly6V3W6XYRgyTVOmaSolJUXz58/XQw89pCFDhujEiRNWRwaQD5w+fVqSrvkBffPmzZ2PixcvfsP9VahQQdKllaUA4J+io6MlSWXLls3W+DJlykiS9u7de9XtDRo0kCQdP348D9IBKGjOnTsnSapatWqW5w8cOKBTp07JMAw1btxYfn5+WbaXKlVKkhQbG+ueoAA83pkzZyRJ1apVy9G82267TRLvrwDkzm+//SbDMHT//fc7m8FvpEWLFmrfvr1M09TGjRtdnBCANzly5Ihz4RGawQHklTlz5ki69Dnx1KlTVbduXQUEBKhixYr6+OOPVbNmTWeDVKtWrbI0SP3TK6+8opo1a0rSNVfhBFCwVatWzdlfk9f/AMDVcK6D/IoVwgGLJCcna9myZVq0aJH+/PNP2e12SXKeUNasWVNdu3ZV7dq1tXTpUi1cuFBnz57Vn3/+qQcffFDTpk3TrbfeauVLAGAxPz8/paWl6fz581fdntmMaZqms3n8emJiYiRJQUFBeRcSgNcIDg5WfHy8Dh8+nK3xmXUnOTn5qtsdDkeWfwNATmRkZEiSfHx8sjy/evVq5+O77rrrinmZ502FChVyYToA3sTX11epqalKS0vL0bzMcyDeXwHIjSNHjkiS7rzzzhzNa9KkiRYtWpStz4EAIFPmapo5vQAOAK5n69atzjtOBgQEZNlms9k0aNAgvfTSS5KkNm3a3HB/Xbp00a5du7Rnzx6X5AXg2X766Sd9+eWX+uKLL5znNp06daKnBoDLcK6D/IqGcMCN0tPTtWrVKi1atEgrV65USkqKpP81gZcqVUqdO3dWt27dVKVKFee8evXq6YUXXtD777+vKVOm6Pz58/rwww/1n//8x5LXASB/iIiI0Pbt27V8+XINHDjwiu1+fn5av369Tp8+fcXqmFczf/58GYZxxUqbACBdWuVy8+bNmjlzph5++GEVLlz4mmNN09TPP/8sSSpXrtxVx2zYsEFS9lccB4DLlSlTRsePH9fBgwezPP/77787H999991XzFu/fr0kqXz58i7NB8B7lC9fXnv37lVkZKS6deuW7XkrV650zgeAnMrtRSXBwcGSxCp2AHKkQoUK2rt3L3dSApCnzp49K0m65ZZbrro98w6Skq77WXOmzEWQ4uPj8yAdAG/j4+Ojp59+WqVKldKbb74p0zS1fft2vf766ypSpIjV8QB4Ic51kF/ZrA4AeDvTNLVu3TqNHDlSd911l55++mktWbJEycnJMk1TAQEB6ty5s/773/9q1apVeumll7I0g2fy9fXViBEjVLJkSW77CUDSpasITdPU5s2b9cknn1z1y76iRYuqevXq173Vp8Ph0JgxY7Rt2zZJUrt27VyWGYDnat++vSQpOjpaQ4cOve6XhG+//bZ2794twzCuesXz8uXLtWDBAhmGoebNm7ssMwDv1bBhQ5mmqZkzZyoqKkqS9OeffyoyMlKGYah69eqqUKFCljmLFy/Wb7/9JsMw1KhRIytiA/BALVq0kGmaWrBggfbt25etOb///ruz3lztbgUAcCMlSpSQJB06dChH8/7++29JUvHixfM8EwDvdd9998k0Tf3yyy9WRwHgRQIDAyVJp06duur2UqVKKTAwUKZp6vjx4zfcX+Z+stNQBaDg6tOnj5599lmZpqljx47p3//+t9WRAHgpznWQX9EQDrhYixYtNHjwYP3000+Kj493Nmw2adJEY8eO1Z9//qkPPvhAd911l/PWNddiGIZzZSm73e7y7ADyt4ceesi5su6ECRPUpUuXHN054ODBg5o0aZI6duyoadOmSbp09WLv3r1dkheAZ+vTp48qVaokSdq0aZM6duyo//znP9q0aZOOHTumffv2ae7cuXrggQecNSU0NFSDBw927mPevHkaOHCgnn76aZmmqcDAQA0aNMiS1wPAs/Xt21eGYejcuXPq2LGjevXqpccffzzL9kyrVq3SE088oRdeeEHSpYttL98OANczYMAABQYGKj09XYMHD9aqVauuOTYlJUXfffednnvuOUmSv7+/+vXr56akALxJ/fr1ZZqm5syZo7S0tGzNOX/+vObMmSPDMFSvXj0XJwTgTf7v//5P5cqV0+bNm/XFF19YHQeAl6hatarz4lqHw3HFdl9fX/3111+KjIxUz549r7uv9PR0zZ49W4ZhqGbNmq6KDMBLPP7447r33nudNWjdunVWRwLghTjXQX5lmNw7EHCp6tWrOx9XrlxZXbt2VZcuXZxNnDnVrl07ORwOtWjRQq+//npexQTgoXbt2qXBgwcrLi5OklS2bFn9/vvv2Zr7wAMPaOfOnZIu3c2gRIkSmjRpkm677TZXxQXg4Y4dO6b+/fvrzJkz172QLbPZ+9tvv81yO6z+/ftr8+bNMk1T/v7++uyzz9S6dWt3RAfghcaPH69PPvlE0qWLZzM/3mjVqpXGjx/vHPfRRx/pm2++cf48evRoPfjgg+4NC8CjzZs3TyNGjHD+XLx4cQUHB+vo0aMyDEMdOnTQmTNntHPnTqWkpMg0TRmGoddee42GcAC5sm7dOg0aNEiGYaht27b68MMP5e/vr+XLl2vYsGEyDEO7d+92jj916pSeeuop7dq1S4ZhaMKECWrRooWFrwCApzly5Igef/xxHTt2TDVq1NB9992niIgIFS5cWL6+vjecz12YAPzT9OnT9dZbb8kwDHXp0kWjR492rqSZEwkJCXr11Ve1dOlSGYahsWPHqlu3bnkfGIBXOXfunNq1a6ekpCRVq1ZN8+bNszoSAC/DuQ7yKxrCARdr2rSpOnbsqK5du6p27dpWxwHghc6cOaMPP/xQixcvVrNmzbI0PF3PCy+8oEWLFkmSWrdurVGjRik8PNyVUQF4gZiYGL399ttasmTJNe9Y0rhxY40ePVqVK1fO8vxzzz2nFStW6J577tHTTz+tiIgId0QG4MX+/PNPTZ8+XYcPH1bRokV1//33q1+/fvLx8XGOmTt3rkaMGKE6deroX//6l5o2bWphYgCe6ueff9abb76ppKQkSbrqxXGZH7P6+flp+PDhGjBggFszAvAuzz33nJYsWSLDMFSmTBl16NBBCQkJmjFjhgzD0LfffqszZ85o48aNWrJkiVJSUiRJLVu2zHJxHADcyB133CHp0rmM3W6/4d1s/8kwDO3atcsV0QB4sLS0NPXs2VP79++XYRgKDQ1V69atNXbs2GzNX7t2rVasWKEFCxY478Jdq1YtzZgxQzabzcXpAXiDSZMmacqUKZKkDz/8UPXr17c4EQBvwrkO8isawgEXy8jIyNbqCQBwsxISEnTmzJkrGjCvZeXKlTp58qRatGihW265xcXpAHib06dP688//9TBgwd18eJFBQUFqXz58mratKmqVKly1Tlnz55VaGio/P393ZwWQEF24cIFJScnq0yZMlZHAeDhoqOjNW3aNP366686evToFdtLlSqlNm3a6P/+7/9UsWJF9wcE4FVSU1P15JNP6s8//5R09QtRMmV+zVOnTh199913Cg4OdktGAN7h8jvd5sY/71oAAJlOnjypQYMG6dixY5KkChUqaNmyZdma++CDD2rbtm2SLp3rVK5cWRMnTlTp0qVdlhcAACAnONdBfkRDOGChlJQUJSQkqGjRojSNAwAAAEA2RUVFSZKKFy+uQoUKZXvexYsXtXXrVsXExKhr166uigegAIiLi9OZM2eUkJCgwMBAhYWF8WE9gDxnmqamTp2qiRMn6tSpU9ccFxoaqgEDBuiJJ57gc2YAOTZu3Lib3sewYcPyIAkAb5ScnKwJEyZo1qxZql27tr788stszXv55Zf1888/KyAgQL169dKzzz6rIkWKuDgtAABAznCug/yGhnDAjRISEjRnzhytWrVKW7duVXJysqRLqycULVpUjRo10r333qv27dvzwT2AXMv8AL9jx46qVKlStudt375dkyZNUkpKSrZPUgGAmgPACtWrV5fNZtN//vMftWnTJtvzFi5cqBdffFHFihXTunXrXJgQgLey2+0yTfOqn9usWrVKDRo0UOHChS1IBsCb2e12bdu2Tdu3b1d0dLQSEhIUEBCg4sWLq3bt2mrQoEGOLpIDAACwQlxcnIoWLZqtsX/99ZcuXLigRo0acfcTAPlGamqqzp8/L0kKDw+3OA2A/IZzHeQHdJwCbjJr1ix9/PHHiouLk/S/23hmPo6JidHSpUu1dOlSffXVVxo9erQaN25sUVoAnmzcuHEyDEM1atTIUXPmqVOntHjxYgUGBrowHQBvQ80BYJXcXN+ekZEh6dJK4QCQE6dOndLnn3+uX3/9Vf/5z3901113ZdkeHR2txx9/XAEBAercubP+9a9/KSwszKK0ALyNj4+P6tevr/r161sdBQAAINey2yAlSfXq1XNdEADIpT/++EPDhg2TzWbTrl27rI4DIJ9xxbnOrl27NHXqVBmGoXfeeSeXyVCQ0BAOuMGkSZP03nvvSbrUtODv76+qVasqPDxcAQEBSkpK0okTJ3TgwAFlZGTo0KFDGjJkiCZMmKBmzZpZnB5AQZH5ppWbhwBwB2oOgOxYv369Tp8+fd3t2Wnudjgcio+P16RJkyRJxYoVy6uIAAqAyMhIDR06VImJiZKkw4cPX9EQfvz4cUlSSkqKZs+erVWrVmnixImKiIhwe14A3iUyMlILFizQgAEDVKVKlSzbEhIS1K5dOzVr1kx9+/ZVgwYNLEoJoCBLTExkRTsAAFCg8N0WAHeJiorS3LlzaQhHttEQDrjY9u3b9d5778k0TQUGBmrYsGHq06fPVW8ffOHCBU2bNk1ff/210tLS9PTTT2vx4sUqVaqUBckB5Hfff/+9li5des3tn376qSZPnnzD/ZimqQsXLmj//v0yDEMVKlTIy5gAvAQ1B4AVDMPQiBEjrrrNNE19//33udpny5YtbzYagALi/PnzGjZsmBISEiRJFStWVLly5a4YV7lyZb3xxhtatGiRNm3apDNnzmjo0KGaN2+egoKC3B0bgBdISkrSSy+9pBUrVkiS6tevf0VD+IkTJ3T+/HktWrRIixYtUq9evTR69Gj5+PhYERmAFzhw4ICOHDmi5ORk2e32K7abpqmMjAylpqbq4sWL2rt3r/78809FRkZakBYAAAAAAFyOhnDAxSZNmiTTNOXr66tvvvlGDRs2vObY0NBQPfnkk6pTp44effRRJSYmauLEiXr55ZfdmBiAp+jQoYPGjRunCxcuXLHNNE0dOHAg2/u6/Crmfv365Uk+AN6FmgPACk2aNFHPnj01e/bsq27PzUosjRo10vDhw282GoACYsqUKbpw4YIMw9BTTz2lYcOGXXVcWFiY+vbtq759+2rSpEl69913dfz4cf34448aPHiwm1MD8HSmaWro0KHauHGj83znandNcTgcqlWrlnbu3CnTNDV79mylpaU571YJANm1d+9evfzyy9q7d6/VUQB4uRo1arhkv4ZhOO9KCQAAABRUNIQDLhYZGSnDMNSrV6/rNoNf7q677lKXLl00b948rVixgoZwAFcVFhamV199VZ9++mmW56OiomQYhooVK6aAgIAb7sdmsykwMFClS5dWx44d1b17dxclBuDJqDkArDJixAh16dLF+bNpmvq///s/GYahZ599VvXr17/hPmw2mwICAlSmTBmVKFHClXEBeJlVq1bJMAw1b978ms3g/zRw4ECtXr1aa9eu1a+//kpDOIAcW7hwoTZs2CDDMFSlShW99dZbqlev3hXjatasqVmzZuno0aMaOXKkNm3apPnz56tz585q3ry5BckBeKKLFy9q8ODBiomJydVFt7Vr13ZBKgDeKjd1BgAAAED20BAOuFhcXJykS6vQ5cSdd96pefPmKSoqygWpAHiLLl26ZGmQkqTq1atLkv7973+rTZs2VsQC4KWoOQCsEBwcrMaNG191W5UqVa65DQDywrFjxyRJ9957b47mtW7dWmvXrs3RXVQAINO8efMkSWXKlNGMGTMUFBR03fG33nqrvv76a3Xo0EFnz57Vjz/+SEM4gGybPn26zp8/L8MwVKJECfXs2VPly5fXvHnztGXLFt19991q06aNLl68qN27d2v58uVKSkqSYRiaMGGCWrRoYfVLAOBBnn32WUnSL7/8ov3798s0TRUpUkT169dXpUqVVLhwYaWlpenMmTP666+/dPToURmGIZvNpnr16skwDItfAQAAAJB/0RAOuFjx4sUVHR2tCxcu5GheRkaGJCk0NNQVsQB4sfDwcElSYGCgxUkAFATUHABWmDJliqRLDeEA4EqZq9cFBwfnaF7x4sUl/e/zHQDIiV27dskwDPXt2/eGzeCZChcurN69e2vcuHHaunWrawMC8CqrV6+WJAUFBWnevHlZ7qq0efNmxcbGqlevXs7nTpw4oSeffFL79u3TG2+8oUWLFvG5EIBsGzp0qD7++GPt27dPgYGBev7559WnTx/5+/tfdfyaNWs0atQonT59WmXLltUHH3zg5sQAAACA57BZHQDwds2aNZNpmpo7d26OboG1dOlSGYahJk2auDAdAG+0YsUKrVixQnfeeafVUQAUANQcAFZo3LixGjdurGLFilkdBYCXK1eunCTp77//ztG8vXv3SvpfYzgA5ERCQoIkqXz58jmaV6lSJUnK8eIkAAq2I0eOyDAM9erVK0szeO3atSVJO3fuVEpKivP58uXL64svvlBAQIBOnTqln376ye2ZAXiulStXasKECfL19dWECRM0YMCAazaDS1Lz5s01ZcoUBQcHa+HChVq8eLEb0wIAAACehYZwwMWGDh2qIkWKaOfOnXrjjTfkcDhuOOeHH37QypUr5e/vr6FDh7ohJYCCaN26dZo0aZJmzpypgwcPWh0HgJej5gBwpbS0NJ07d06nT59WVFRUtv4BgOyoX7++TNPU7NmzFR0dna05sbGxmjVrlgzDUMOGDV2cEIA3KlmypCRlu+5kio2NlXRptXAAyK7Mi0giIiKyPB8RESFfX1/Z7Xbt3r07y7YKFSro/vvvl2maWrFihduyAvB8kydPliT16NFDjRo1ytacChUqqG/fvjJNU99//70r4wEAAAAezdfqAIC3u+WWWzRhwgQ9/fTTmjVrlrZv365BgwbpzjvvdH6wL0nJycnaunWrfvjhBy1btkw2m03/+te/FBQUdM1mhfDwcHe9DAAeaOfOnZo2bZqKFSum4cOHO5+PjY3V0KFDtW3bNudzhmGoU6dOGjNmzHVXYgCAa6HmAHA3u92u77//XrNnz9aBAwdyNNcwDO3atctFyQB4k759+2rmzJlKSEjQwIED9fHHH6tGjRrXHH/w4EG9+OKLiomJkWEY6tOnjxvTAvAWlStXVlRUlObPn69BgwZle97ChQtlGIaqVq3qwnQAvE1AQIASExOvuJjE19dX5cqV07Fjx3TgwAHVq1cvy/a6detq3rx52r9/vzvjAvBwu3btkmEYaty4cY7mZb4Py7wbEwAAAIAr0RAOuNjdd98t6dKKdaZpau/evXrllVckSYGBgQoODlZaWpouXrwo0zQlyfnv9957T++9995V90sDA4DrmTZtmsaMGSNJqlWrVpZto0aN0tatW7M8Z5qmFixYoMTERH3xxRfuignAS1BzAFhh2LBhWrlypaT/vYcCgLxWo0YNPfzww5oyZYqOHDmiHj16qG7duqpfv77Cw8MVEBCglJQUnT59Wlu3btXmzZudNalnz55q0KCBxa8AgCfq3r271qxZoz179mjMmDEaOXKkDMO47pzPPvtMW7dulWEYateunZuSAvAGYWFhSkxMvOpdCW699VYdO3bsqg2YISEhkqS4uDhXRwTgRTLvpp2UlJSjeefOnZMk+fj45HkmAAAAwFvQEA642OnTp7P8fHmjQlJS0jXf7NLQACC3jh49qrFjxzrriM1mc247ePCgli9fLsMwFBQUpBdeeEFFixbVlClTtHXrVq1YsUKrVq1Sq1atrIoPwMNQcwBYYeHChfr9999lGIZM01R4eLiqVq2qIkWKyNeXjzoA5K1XXnlFCQkJ+umnnyRJW7duveKCt0yZ50Rdu3bVm2++6a6IALzMfffdp6pVq2rfvn2aNm2atmzZor59+15xMcqpU6e0detWzZw503lXpltuuUUPPPCAxa8AgCepU6eOjh07piVLllxxV4KKFStq9erV+uuvv66Yd/ToUUlZPwsCgBupUKGCdu/erYULF6p3797ZmmO32zVnzhwZhqFq1aq5OCEAAADgufiWFHCx7t27Wx0BQAHz448/KiMjQ76+vvrggw/Uvn1757ZFixY5H7/44ovq27evJOnee+9Vhw4ddPLkSc2fP5/mTADZRs0BYIXMpkybzaa3335b3bp1szYQAK9ms9n0zjvvqGvXrpo0aZLWr1+v5OTkK8b5+PioUaNGGjhwoPOOcQCQG35+fvryyy/Vp08fnT9/Xrt379brr79+3Tmmaap48eIaP368/Pz83JQUgDdo06aNFixYoO3bt+udd97Rs88+q+DgYElS3bp1NWXKFO3atUvr1q1Ts2bNJF1aFfzHH3+UJIWHh1uWHYDnuf/++7Vr1y5FRkbqk08+0b/+9a/rjs/IyNCoUaO0d+9eGYbBd+8AAADAddAQDrjY2LFjrY4AoIBZu3atDMNQ586dszRmStKKFSskXWpU6Nixo/N5f39/9ezZ03l7YQDILmoOACvs2rXL+SUgzeAA3KVJkyZq0qSJ0tLSdODAAZ07d04XLlxQYGCgwsLCVKNGDQUGBlodE4CXKF++vBYuXKj33ntP8+fPl8PhuOZYm82mtm3batSoUSpZsqQbUwLwBu3atVOVKlV04MABTZ06VXPmzNH48ePVsGFDtW7dWqGhoYqPj9cTTzyhjh07KigoSMuWLVN0dLQMw1Dz5s2tfgkAPEjfvn01ZcoUnT9/XhMmTNDatWvVp08f1atXz3knlOTkZJ04cUIbN27U9OnTdfjwYUlS/fr11aNHD4tfAQAAAJB/0RAOAICXOX36tCSpQYMGWZ4/c+aM9uzZI8MwVLt2bYWEhGTZXr58eUnSuXPn3BMUgFeg5gCwQubKvE2aNLE4CYCCyN/fXzVr1rQ6BoACoFixYnr33Xf18ssva/Xq1dqxY4fOnz+vCxcuKCAgQMWLF9ftt9+uFi1aqFy5clbHBeChDMPQ119/rYEDB+r48eNKSkpS4cKFJUmBgYF6+eWX9eqrryotLU1z587NMjc0NFRDhgyxIjYAD1WkSBF9++23GjBggC5evKidO3dq586d151jmqZq1qypr776yk0pAQAAAM9EQzhgkbNnz+r8+fNKSkpSYGCgSpcurbCwMKtjAfACiYmJknRF8+WaNWucj++8884r5mU2VtlsNhemA+BtqDkArFC6dGkdP35cGRkZVkcBAABwuWLFiqlr167q2rWr1VEAeKly5cpp0aJFmjFjhpYuXaoKFSo4t/Xo0UN2u13vv/++Ll686Hy+cuXK+vDDD1W6dGkrIgPwYNWrV3feCeWXX36RaZrXHBsUFKR+/frp6aeflr+/vxtTAgAAAJ6HhnDAjU6ePKmJEydq+fLlio6OvmJ78eLF1bp1aw0ePFiVKlWyICEAb1CsWDGdO3dOUVFRWZ5fuXKl83HLli2vmLdr1y5J4tbCAHKEmgPACs2bN9f06dO1Zs0ade/e3eo4AAoIh8OhI0eO6OLFi0pPT79u08LlGjVq5OJkAAAAN8/f318DBgzQgAEDrtj2wAMPqHPnztq8ebPi4uJUrlw51alTR4ZhWJAUgDcoXbq0Pv74Y7366qtauXKl/v77b50/f14JCQkqXLiwypQpo7p166ply5bOuxYAwLW88MILMgxD/fv3V926da2OAwCAZWgIB9xkzpw5+ve//63U1NRrfmF47tw5zZ49WwsXLtQrr7yiPn36uDklAG9Qq1YtrVixQvPnz1e/fv3k5+enkydPatWqVTIMQ6VKlVLt2rWzzDl8+LDmzp0rwzBUq1Yti5ID8ETUHABWGDRokObOnaslS5aoV69eatasmdWRAHixxMREffbZZ/r5558VHx+fo7mGYTgvhAMAAPBkAQEBuuuuu6yOAcDLlChRQr169VKvXr1yNf/QoUNavHixJGnYsGF5GQ2AB1mzZo3i4+PVokWLLA3hDz/8sAzD0LPPPqv69evf9HHCw8NZoAQAkK/REA64wdy5czVy5EgZhiHTNFW0aFE1aNBAFSpUUEBAgJKSknT06FFt3bpVFy5cUHJyskaPHq3g4GB16tTJ6vgAPEzXrl21YsUK7d69W3369FHTpk21ZMkSpaamyjAMdevWzTn2+PHjWr58ub766ivn9p49e1oXHoDHoeYAsEKFChX0wQcf6MUXX9Rjjz2m/v37q23btoqIiFCRIkVks9msjgjAS9jtdg0aNEg7duzI9orgAJBXdu/erTlz5mjHjh2Kj49XRkaGHA7HDecZhqHly5e7ISEAb5aUlKSYmBglJiaqWrVqki7dMYX3WwDyk0OHDmncuHEyDIOGcKAAS0xMlKQrzlM2btwowzAUGxubJ8epWbOmxo4dmyf7AoDsaN68uX777TerY8CD0BAOuNiZM2f01ltvSbq0esKLL76o3r17y8/P74qxaWlpmjFjhj7++GMlJydr1KhRatasmYoXL+7u2AA8WLt27dS6dWv9/vvv2r17t3bv3u3cVq5cOT322GPOnydPnqxp06Y5f+7WrZvuvPNOt+YF4NmoOQCsMHjwYElSWFiYoqKiNGnSJE2aNCnb81mxF0B2zZw5U9u3b5dhGDIMQw0bNlS1atVUuHBh+fry0SoA15kwYYI+/fTTLBejZPfCFMMwXBULgJc7deqUpkyZopUrV+rIkSOSsr5/+u9//6vFixdr8ODB6ty5s4VJAQAA/ic0NFQxMTFau3Yt5ygA8g2Hw6EjR47o4sWLSk9Pz/bnOo0aNXI+DggIULly5VwVEV6Iby0AF/v++++VnJwsm82mcePGXfd2ev7+/howYIAqV66sRx55RCkpKZozZ06WRioAyI7PPvtMX3zxhX788UdduHBBPj4+at26tUaNGqXg4GDnuMqVK8s0TQUEBGjIkCF66qmnLEwNwFNRcwC429q1a7M0OrFqLwBXWbBggSSpUKFCGj9+vJo0aWJxIgAFwdatW/XJJ59kOccJDg5W4cKF5ePjY2EyAN5sxowZGjt2rFJTU6/5HuvEiRPavXu3hg8froULF+qzzz5TQECAm5MCAABkVbNmTf3xxx+aN2+e9u7dq4iIiCwX8k+dOjVXd1EyDEPvvPNOXkYFUAAkJibqs88+088//6z4+PgczWVBI9wsw+RbU8Clunfvrj179uj+++/XJ598ku15zz33nJYsWaLatWtr5syZLkwIwJuZpqmYmBgVKVJE/v7+V2w/fPiwtm/frrvvvluhoaEWJATgTag5ANxlwIABN72PqVOn5kESAN6ucePGunjxogYMGKBXX33V6jgACogXXnhBixYtkmEY6tatm5566imVL1/e6lgAvNi0adM0ZswYZyN4hQoVVLRoUe3YsUOGYTjvCPf66687v7MyDEOtW7fWl19+aVluAFi+fLmGDRuWpVYBKHjWr1+vIUOGyG63X3UhkZu5ixK1BUBO2O129e3bVzt27MjVYkac0+BmsUI44GInTpyQJDVv3jxH81q0aKElS5Y45wNAbhiGoeLFi19ze6VKlVSpUiU3JgLgzag5ANyFZm4A7pKeni5JqlOnjsVJABQkkZGRMgxDTZo00dixY62OA8DLHT9+XO+++64k6dZbb9WYMWPUqFEjZ5Pl5d566y21b99er7zyiqKjo/X7779r1apVatWqlRXRAQAAJElNmzbVl19+qS+//FL79+9XcnKyTNOUYRgyTZM7TAJwm5kzZ2r79u0yDEOGYahhw4aqVq2aChcunOXOBYCr8FsGuFhqaqokKTAwMEfzMscnJibmeSYAAAAAAADcWHh4uA4dOsTnMwDcKjY2VpLUsWNHi5MAKAimTp2q9PR0FS5cWJMnT1aZMmWuO75Zs2b64Ycf1KlTJyUnJ2vOnDk0hAMAAMu1atXqinOS6tWryzAMjRs3Tm3atLEoGYCCZMGCBZKkQoUKafz48WrSpInFiVDQ0BAOuFiJEiV06tQp7d27Vx06dMj2vL1790rSdVfZBFCwzZs3z/m4W7duV30+ty7fHwBI1BwAAFAwtW7dWgcPHtSKFSvUu3dvq+MAKCDCwsJ05swZBQcHWx0FQAHw559/yjAM9ezZ84bN4JnCw8PVu3dvTZo0Sdu3b3dxQgAAgOt74YUXZBiG+vfvr7p161odB0ABduDAARmGod69e9MMDkvQEA64WL169RQVFaXZs2dryJAhCgkJueGc+Ph4zZo1S4ZhqF69em5ICcATvfLKK87bzFzeTJn5fG79c38AIFFzAORv8fHxSk5OlsPhuOL2n6ZpKiMjQ6mpqbp48aL27t2rX375RVOnTrUoLQBPMmjQIM2ZM0erVq3SvHnzOG8B4BZ16tTRsmXLtGPHjhwtMgIAuREVFSVJqlWrVo7m1ahRQ5IUExOT55kAAAByYs2aNYqPj1eLFi2yNISHh4fLMAyFhoZaFw5AgZKeni7p0mc7gBVoCAdcrFevXlq0aJFiYmL0xBNPaNy4cQoLC7vm+PPnz+vpp59WTEwMDVIAbuifDU83eh4AbgY1B0B+kpCQoM8//1wLFy5UbGys1XEAeKnixYvrq6++0pNPPqkRI0ZoxYoVatu2rSIiIlSkSBH5+PjccB/h4eFuSArAm/Tr10/Lli3TrFmz9PDDD6ts2bJWRwJQAOT08x2HwyFJ8vf3d0UcAACAbEtMTJQk2Wy2LM9HRUXJMAxduHDBilgACqDw8HAdOnTIWZcAd6MhHHCxZs2a6Z577tGKFSv0119/qX379urSpYuaNm2qChUqKDAwUMnJyTp+/LjWr1+v+fPnKz4+XoZhqFWrVmrRooXVLwFAPjV27NgcPQ8AN4OaAyA/sdvtGjJkiPPW5DltXKBhAUB2tWvXTpKcdyBYtmyZli1blu35hmFo165drooHwEs1adJEjz32mMaPH6/+/fvrtddeU6tWra5obgCAvFC2bFkdPnxY27ZtU+fOnbM9b/369ZKkMmXKuCoaAABAtoSGhiomJkZr167N0fkMAOS11q1b6+DBg1qxYoV69+5tdRwUQIbJcn6Ay128eFFPPPGENm/eLOnSl4HXkvlXsk6dOvruu+8UHBzslowAAAAA4Cnmzp2rESNGON9b1alTR+XLl9dff/2lqKgo1axZUxEREYqPj9eePXt0+vRpSZfei40ePVrt27dXSEiIlS8BgIeoXr36Tc03DEO7d+/OozQACoqvv/5akvTzzz/r8OHDMgxD/v7+uvXWW7N1dwLDMDR58mR3RAXgBcaMGaPvv/9ewcHBWrhwofOuBMuXL9ewYcOuej6zfft2PfTQQ7Lb7erXr59ee+01K6IDwHVrFYCC49FHH9Uff/whwzBUo0YNRUREyNfXV3PnzpVhGGrSpEmu7rxkGIbeeecdFyQG4K3Onz+vTp06KS4uTmPHjlW3bt2sjoQChhXCATcoUqSIJk6cqP/+97+aNGnSdW9HU6xYMfXv31+PP/64fH35KwoAAAAA//Trr79KunQL0G+//VbNmjWTJH3zzTf66KOPVLJkSb3//vvO8UuWLNEbb7yh+Ph4LVy4UH369LEkNwDP0717d6sjACiAPv30U+eFb5n/Tk1N1f79+2841zTN6y5IAgD/1L9/f/34449KSkrSkCFD9Omnn6pq1arXHP/rr7/q9ddfV0ZGhnx8fNS3b183pgUAALjSkCFDtHbtWtntdu3evTvLBSKmaWrDhg253jcN4QByonjx4vrqq6/05JNPasSIEVqxYoXatm2riIiIbF3kL0nh4eFuSApvxQrhgJulpaVp69at2rp1q2JiYpSYmKjAwECVKFFCtWrVUoMGDbh9OQAAAABcR6tWrXTmzBl16NBBH330kfP5v/76S3379lVgYKA2b94sm83m3LZ27VoNGTJEkjRu3Di1adPG7bkBAACyg7sTAHC3CRMm6OOPP5ZhGDIMQ7fffrv8/Py0ZcsWGYahRx99VGfPnlVkZKROnjzpvPjkscce07/+9S+r4wMowFghHECmVatW6csvv9T+/fuVnJzsPF+52ba4PXv25FFCAAVBu3btJEkXLlxQXFxcji/aNwxDu3btckU0FBAsPwy42OTJk+Xv76+OHTsqJCRE/v7+aty4sRo3bmx1NAAFwP79+/X333/r3LlzSk1NzfYb3mHDhrk4GQBvRM0B4C6Zd12qW7duluerVasmwzCUkpKi/fv3q1q1as5td955p5o1a6a1a9fq559/piEcAADkWzQcAHC3xx57THa7XePGjZPdbtfOnTsl/e8uBd98841zbObnPQMHDqQZHAAA5ButWrVSq1atsjxXvXp1GYbBAiEA3Obo0aNZfmatZrgbDeGAi82cOVOHDh3SkiVLNHnyZKvjACggjhw5ohEjRmjr1q25mk9zJoCcoOYAsEqJEiWy/BwUFKRSpUrpzJkzVzSES5e+FFi7di0rRgHIE6ZpKjExUYULF7Y6CgAAwE0bOnSoWrVqpf/+979asWKFkpOTrxjj6+urO++8U4888ggLHwEAAADAP3Tv3t3qCCjgaAgHXCwqKkqS1L59e4uTACgo4uLiNHjwYJ06dSpXVxvm9JY1AAo2ag4AKxQtWlTR0dGKiYm5Ytstt9zibAj/p5IlS0qSzp075/KMALxPcnKyfvrpJ/3+++/6+++/nXcryLyF57Rp07Ru3ToNGjRIDRo0sDIqAABArtSsWVMfffSR7Ha79u7dq+joaCUkJCgwMFBhYWGqWbOmAgICrI4JAACQLWPHjpV06RwHANwhs+4AVqEhHHAxf39/paSkyN/f3+ooAAqIqVOnKioqSoZhqGTJkurTp49q1KihwoUL03gJIM9RcwBYoVq1aoqOjtaGDRvUr1+/LNsqVaqkyMhI7dix44p5mY3gGRkZbskJwHusXr1aI0aMcF6Iknkh3OXnO4cOHdLy5cv122+/6cEHH9SoUaNks9ksyQvAu8TGxmrdunXauXOnYmJilJSUpM8//1yStGXLFsXGxuqee+7hPRiAPOPj46OaNWvSPAUAADwaK/UCAAoaGsIBF7vvvvs0a9YszZgxQ507d5afn5/VkQB4uaVLl0qSwsLCNHfuXJUoUcLiRAC8GTUHgBWaN2+uVatWacWKFVq+fLnuvfde57YaNWpIkiIjIxUVFaXw8HDntgULFkgStQpAjixfvlzPPvusHA6HTNOUv7+/SpQo4bwrXKbLm8V//PFH2e12vfXWW1ZEBuAlkpKS9MEHH2ju3LlKTU2VdKnGXN74/fvvv+vbb79VxYoV9fbbb6t+/fpWxQUAAMhTFy5cUGBg4HUXXmvQoIGmTJnixlQA8qPIyEjn40aNGl31+dy6fH8AAOR3hpmb+7oDyLakpCQ9+uij2rJli2rWrKmBAweqYcOGKlu2rNXRAHip+vXrKzk5WcOGDdNTTz1ldRwAXo6aA8AKSUlJuueee3ThwgVJUsOGDfXGG2/otttu09mzZ9W6dWvZ7XZVqFBBTz75pIKDgzVr1iytXr1ahmGoQ4cO+uijjyx+FQA8wfnz53XfffcpMTFRYWFhGj58uDp16qSVK1dq2LBhMgxDu3fvlnTp7gPz5s3Tu+++q4SEBBmGoalTp6phw4YWvwoAnujs2bMaMGCAjh49qn9+jXN57fnXv/6lX375RZLk6+urcePG6e6773Z3XABeICMjQ5s2bdKBAwd08eJF2e32bM8dNmyYC5MB8FYbN25USkqKWrZsmeX5GTNm6Msvv9SZM2dkGIZq166tZ555RnfeeadFSQHkd9WrV5dhGDIMQ7t27bri+dz65/4AICccDoeOHDmiixcvKj09/YrPd66FC1FwM1ghHHCxsWPH6pZbbtHOnTu1a9cuDR8+XJJUqFAhFSlS5LpXNEuXTjCXL1/ujqgAvISPj48kqWLFitYGAVAgUHMAWCEoKEgffvihhg4dqvT0dG3atEkJCQmSpJIlS6p///6aNGmSjh8/rhEjRmSZ6+Pjo4EDB1qQGoAnmjJlihITE+Xv76+JEyeqWrVq1xzr6+urXr166fbbb1fv3r2VkZGhmTNn0hAOIMdM09TQoUN15MgRSVLjxo3Vs2dPxcbG6t13380y9sEHH9TZs2e1adMmZWRkaPjw4frll19UvHhxC5ID8FTLly/X6NGjdf78+VzNpyEcQE4cPXpUzzzzjPbt26c777wzS0P45MmTnec7pmnKNE1t3bpVjz76qN5880316tXLqtgA8rlrNVqyTioAd0tMTNRnn32mn3/+WfHx8Tmay4UouFk0hAMuNmvWrCxXHGaebKakpCglJeWG82/makUABVNERIS2bdumkydPWh0FQAFAzQFglebNm2vevHn69NNPtXr1at1yyy3ObS+99JLOnTunhQsXZpnj5+enN954Q7Vq1XJ3XAAeatWqVTIMQ127dr1uM/jlatSooe7du2vmzJnasmWLixMC8EY///yzdu7cKcMw9Pzzz+vRRx+VpKsuHNKkSRM1adJEn3/+ub788ktdvHhR06dP19NPP+3u2AA81ObNm/Xss8/K4XDkqmGK77EA5ERqaqoGDRqkU6dOyTRN5wVwkpSQkKBPP/3UWYtq1aql0NBQbdy4UWlpaXr77bfVtGlTlS9f3qL0APKra12cxkVrANzNbrdr0KBB2rFjBxekwBI0hAMuFh4ebnUEAAVMx44dtXXrVs2ZM0eDBw+Wry//uwfgOtQcAFaKiIjQf/7zH6WkpCggIMD5vI+Pjz788EP169dPK1euVGxsrMqXL68OHTrwpSGAHDlx4oQkqUGDBjmaV7duXc2cOVNnz551RSwAXm7RokWSpHr16jmbwW/kmWee0fr167VlyxatWrWKhnAA2fbNN9/IbrfLMAzdf//96tGjh8LDwxUQEECzN4A8N3v2bEVFRckwDN1999168sknnduWLFmi5ORkGYahLl266L333pMkbd++Xf3791dKSopmzJihF154war4APIpGsIB5BczZ87U9u3bZRiGDMNQw4YNVa1aNRUuXJjv0eEW/JYBLrZixQqrIwAoYPr27as5c+Zo7969Gj58uMaMGaOgoCCrYwHwUtQcAPnB5c3gl6tXr57q1avn5jQAvElGRoYkyd/fP0fzMj/ct9lseZ4JgPfbvXu3DMNQhw4dcjSvXbt22rJlS5aVNgHgRv766y8ZhqFWrVrp008/tToOAC+X+d15jRo19PXXX2fZdvndUIYMGeJ8XLt2bXXv3l0zZszQ6tWraQgHAAD51oIFCyRJhQoV0vjx49WkSROLE6GgoSEcAAAPNW/evGtu69Chg/bv369ffvlFGzZsUMuWLVWlShUVKVJEfn5+N9x3t27d8i4oAK9AzQEAAAVRqVKldPz4ce3evTtHjZl//fWXcz4A5FRcXJwkqUSJEjmaV7JkSUlSampqXkcC4MVSUlIkSe3bt7c4CYCCYN++fTIMQ127ds3yfFpamtavXy/DMFSuXDlVrVo1y/Y77rhDM2bM0KlTp9wZFwAAIEcOHDggwzDUu3dvmsFhCRrCARcbN26cJKljx46qVKlStudt375dkyZNUkpKir788ktXxQPgwV555ZVs3bLz/Pnz123k/CfDMGjOBHAFag4AK0RFRTkfh4eHX/X53Lp8fwBwLU2aNNGxY8c0Z84cPfLIIwoNDb3hnKNHj2ru3LkyDEONGjVyQ0oA3qZo0aI6f/68zpw5k6N5J06ccM4HgOwqW7asjh49KofDYXUUAAVA5oVvZcqUyfJ8ZGSkUlJSZBiG7rzzzivmBQYGSpKSkpJcnhGA54mMjHTZvvlsB0BOpKenS5Lq1KljcRIUVDSEAy42btw4GYahGjVq5Kgh/NSpU1q8eLHzzS0AXI1pmnk6DgCuh5oDwN3atGkj6dLFI7t27XI+f88992TrIpVr+ef+AOBa+vTpo9mzZys2NlZDhw7VuHHjFBYWds3xO3bs0HPPPedsZHjggQfcmBaAt6hevbrWrFmjxYsX6+GHH87WnIyMDP30008yDEPVq1d3cUIA3qRdu3YaP368Vq5cqe7du1sdB4CXK1SokDIyMpSYmJjl+VWrVjkft2jR4op5x48fl6RsXaQLoOAZMGDATX1efC18jgwgp8LDw3Xo0KErznUAd6EhHMinMk8qaagCcC1jx461OgKAAoSaA8AK13s/xHslAO5wxx13qH///po6dar++usv3XvvvWrZsqXsdrtzzIwZM3T27Flt2LBBmzZtknTpC8Pu3buzEgyAXLn//vu1Zs0abdu2Td98840effTR64632+0aNWqUjhw5IsMwdN9997kpKQBvMHjwYC1YsEBLly7VnDlz1LNnT6sjAfBiERER2r59uyIjI9WjRw9Jly5sW758uSTJ399fd911V5Y5GRkZzrsw3XbbbW7PDMAz8HkxgPygdevWOnjwoFasWKHevXtbHQcFEA3hQB75/vvvtXTp0mtu//TTTzV58uQb7sc0TV24cEH79++XYRiqUKFCXsYE4EVYrQWAO1FzAFjhWrWnW7duLlnxBQCu5tVXX1VycrJmz56tpKQk/frrr5LkrEOjR492js388vG+++7TW2+95fasALxDjx49NHnyZO3fv18ff/yxdu7cqR49euj06dPOMenp6Tpz5ow2btyoKVOmaM+ePTIMQ7feeivv3wDkSGhoqCZMmKChQ4fqtdde06JFi9SmTRtVqFAh23exbdSokYtTAvAWrVq10rZt2zR//nzddtttatWqlSZNmqSoqCgZhqFWrVopKCjIOT4mJkavvfaajh07JsMwnHeTA4DLXW9Ro/Pnz+vzzz9XWlqagoOD1aFDBzVq1Ei33HKLgoODlZaWpjNnzmjLli2aN2+ezp49qxIlSmj06NEqU6aMG18FAG8waNAgzZkzR6tWrdK8efPUrVs3qyOhgDFMLpEC8kRMTIw6dOigCxcuZHk+869YTpoVLv9rOXr0aD344IN5ExIAcmH58uV6+umnuSUWALeg5gAAgPzqt99+0zfffKOtW7dec0xERIQeffRRPugHcNNOnDihhx56SGfOnMnWZ8umaSo0NFTTp09XRESEGxIC8CYnT57U6NGj9ccff+T44ls+wwGQExcuXFCHDh0UExOT5XnTNOXr66uZM2eqZs2akqTPPvtMEyZMkMPhkGmaqlChghYsWKCAgAArogPwQKmpqerVq5cOHDighg0b6pNPPlGJEiWuOT4pKUkjRozQr7/+qnLlymnu3LkKCQlxY2IA3mDr1q168sknFRsbq7Zt26pt27aKiIhQkSJF5OPjc8P54eHhbkgJb8UK4UAeCQsL06uvvqpPP/00y/OZVzMXK1YsW29ObTabAgMDVbp0aXXs2JHVXADkC1w/BsCdqDkAbmTy5Mny9/dXx44d+UAegNu0adNGbdq0UXR0tLZv367o6GglJCQoICBAxYsXV+3atXXrrbdaHROAlyhfvrzmzZun119/Xb/99luW90mGYVzxvqlx48YaO3asypUr5+6oADxcdHR0lgtQ+FwGgCuFhobqv//9r4YNG6YTJ044n/f399dbb73lbAaXpMDAQNntdklSxYoV9fXXX9MMDiBHJk6cqP3796t8+fKaMGHCDe9+EhQUpI8++kgHDhzQoUOHNH78eL300ktuSgvAG7Rr106SnBe0LVu2TMuWLcv2fC64xc2iIRzIQ126dFGXLl2yPFe9enVJ0r///W9uYQUAAAAAeWDmzJk6dOiQlixZosmTJ1sdB4AXu9oFKKVLl1bbtm0tTgagIAgLC9O4ceN0+PBh/frrr9q2bZuio6OVmJjovBilVq1aatOmjWrXrm11XAAeavz48YqOjpYk+fn5qWXLlipfvryKFClicTIA3qp69epavHixVq9ercOHD6to0aK65557VLx48SzjqlWrpqZNm+r+++9Xjx495O/vb1FiAJ5q0aJFMgxDvXv3vmEzeCZfX1898MADevfdd7V8+XIawgHkyNGjR7P8zAW3cDcawgEXy7yNQ3ZPLgEAAAAA1xcVFSVJat++vcVJAHg7LkABYIU9e/aoXLlyzmbMSpUq6YknnrA4FQBvtXr1akmXvs/64YcfVLp0aYsTASgI/P39de+99153TKtWrdSqVSs3JQLgjY4fPy5JqlChQo7mZZ4PnTp1Ks8zAfBu3bt3tzoCCjgawgEXW7FihdURAAAAAMCr+Pv7KyUlhZWhALgcF6AAsMLbb7+t7du3q1evXho1apTVcQB4ubNnz8owDPXv359mcAAA4FV8fX2VmpqqkydP5mjewYMHJUlBQUGuiAXAi40dO9bqCCjgbFYHAAAAAAAAyIn77rtPpmlqxowZSk9PtzoOAC+WeeEJF6AAcKf9+/crLS1NRYsWtToKgAIgs9aULFnS2iAACqT9+/drwoQJevbZZzVgwAD16NHDuW3VqlWaMmWKEhISLEwIwJPVqFFDpmlq1qxZSktLy9acmJgYTZ8+XYZhqG7duq4NCAD/EBcXZ3UEeDhWCAfc6O+//9aOHTsUHx+vjIwMORyObM0bNmyYi5MBAAAAgOcYMWKEDh06pC1btujBBx/UwIED1bBhQ5UtW9bqaAC8zH333adZs2ZpxowZ6ty5s/z8/KyOBKAASE5OliRVqlTJ4iQACoJ69erp119/1Y4dO9S5c2er4wAoIKKjozVq1Cj98ccfzudM05RhGM6f169fr0mTJumLL77QG2+8oQ4dOlgRFYAH69atmyIjI3Xs2DENHTpUH3zwgcLCwq45/ujRo3r22WcVExMjwzDUt29fN6YF4A02bdqkhg0b5mru3Llz9f7772vdunV5nAoFCQ3hgBscOHBAw4cP1+7du3M1n4ZwAAAAAPifsWPH6pZbbtHOnTu1a9cuDR8+XJJUqFAhFSlS5IYr+RqGoeXLl7sjKgAPxwUoAKxQo0YNbdu2TVu2bFGnTp2sjgPAyw0aNEjLli3TrFmz1KtXL1WtWtXqSAC83KFDh9S/f3/FxsbKNM1rjjt58qRM09SFCxf0wgsvKDExUQ888IAbkwLwdN27d9fPP/+sjRs3au3atWrbtq3atm2runXrqmzZsipUqJBSUlJ0/Phxbdy4UStXrlRGRoYkqUePHmrVqpXFrwCAp3n00Uf1xRdf6M4778z2nCNHjuj1119XZGSkC5OhoDDM651hA7hpFy5cUPv27W/4hvZaDMPIdSM5AOSF5cuXa9iwYdQjAG5BzQGQHdWrV8+yYlRO32tRYwBk16hRo5SRkaHFixdnubUwF6AAcKXt27fr4YcfVnp6ul544QX179//hvUGAG7Gd999p/fff1+hoaF64okn1KFDB5UuXdrqWAC8UFpamjp37qyjR4/KZrOpa9eu6tmzp6KiojR8+PAsn9kcPHhQ48eP1/z58yVJAQEBWrBggSpUqGDlSwDgYRITE/Xoo49qy5YtkpTlc+V/yvycuWvXrho7dqxsNptbMgLwHtWrV5e/v78+/fRT3XPPPdcdm56erq+//lrffPON0tPTnXdL4fsr3AxWCAdcbOLEic7byZQoUUJ9+vRRtWrVVKRIEfn4+FgdDwAAAAA8Tnh4uNURABQQs2bNuuoFKCkpKUpJSbnh/Ot9yQgA15KRkaEXX3xRH3zwgT744AN98cUXuuOOO1S5cmWFhITIz8/vhvvgrpMAsmv06NGSpAoVKuj48eN6//339f777ysgIEChoaE3/C6LC+AA5MSsWbN09OhRGYah9957T507d5akq9aRiIgIvf/++2rcuLFee+01paamavr06Xr55ZfdHRuABwsODtb06dM1b948TZw4UXv37r3qOJvNpvr16+uJJ55QixYt3JwSgLfw8/NTWlqannnmGb3//vvq0KHDVcetX79eo0eP1tGjR52fOZcrV06vvfaaO+PCC9EQDrjYb7/9JkkqVaqU5syZoxIlSlicCAAAAAA824oVK6yOAKCA4AIUAFZ46KGHslxQkpiYqI0bN2rjxo3Z3gcN4QCy68cff3TWHMMwnM0IycnJSk5OvuF8LoADkBNLliyRYRhq2bKlsxn8Rnr16qVly5Zp1apV+vPPP12cEIC36tatm7p166bo6Ght27ZN586d08WLFxUSEqKSJUuqfv36CgsLszomAA83YcIEPfXUU0pKStJLL72k5ORk9ezZ07k9JiZG7733nvMOKKZpyt/fX4888ogef/xxFSpUyKro8BI0hAMuduLECRmGoYceeohmcAAAAAAAAA/CBSgArJLZkHmtn6+H5kwAOcEFcADc6cCBA5Kke+65J0fzWrZsqVWrVunEiROuiAWgACldurTuu+++XM39888/9frrr3OHFADX1KxZM02aNEmPP/64YmNjNWrUKCUnJ6t///6aNWuWPvzwQ8XHxzs/52nZsqVGjRqlChUqWJwc3oKGcMDF/P39lZKSoltuucXqKAAAAAAAAMiBdevWqVSpUoqIiLA6CoACZMqUKVZHAFCAcAEcAHdKSEiQJIWGhuZoXrFixSRJGRkZeZ4JALIrOTlZJ0+e5CJcANdVu3ZtTZs2TUOGDNGpU6f09ttv64cfftChQ4ecjeDh4eF69dVXde+991qcFt6GhnDAxSpWrKjt27crOjra6igAAAAAUCBlZGQoNTVVCf+PvTuPqzH9/wf+uirpJCUho4yRncHYyYyQNaLsW3bDjBjfscxkDGaxjnWm+YwZxr4zCqkQarJnSShkCSna9011//7w68w0hQ6dczun1/Px6DG67uu653UeD3PNOfd5X9eVloZbt27B19cXS5YskTsWEWmB1atX4/r16+jZsyfWrFkjdxwiKiOaNWsGIyMjuWMQEb2R+/fvw9vbGwDg6uoqcxoieteYm5sjNjZW5Z2+7927BwCoXLmyOmIRERERlSobGxvs2rULEyZMwL1795TF4OXKlcP48ePx2Wef8dkPqQULwonUzMHBAdeuXYOnpyfGjBnDlYJERERERESlIDc3Fzt27MDhw4cRERGBrKws5OXllXg8C8KJqCQiIiIAAE2aNJE3CBGVKbNmzUJMTAyGDBmCQYMGyR2HiEgl9+/fh7u7O4QQLAgnoiKaNWsGPz8/HDx4EBMmTCjRd+cZGRnYv38/hBBo2rSpBlISERERvb3q1atjx44dmDx5Mq5duwYhBHr06IH/+7//kzsa6TA9uQMQ6boRI0agUaNGuH37NhYsWMBjrIiIiIiIiEqBq6srli5dips3byItLQ25ubmQJKlEP0REJfX8+XMALx7eExFpSkhICK5fv47r16/LHYWIiIioVDk6OgIA7t69i0WLFr22f1paGqZPn648jbt3795qzUdERERUmipVqoQtW7bgk08+gSRJ8Pb2xvz58+WORTqMO4QTqVlCQgIWL16ML7/8Evv27cPJkyfRpUsX1KlTByYmJjAweP1/hk5OTuoPSkREREREpCX8/Pzg7+8PIQQkSULVqlVhbW2NiIgIJCUloWbNmqhatSpSUlLw8OFD5OTkKHecmj59Onr06CHzKyAibdGyZUucPXsWAQEBysIFIiJ1S0xMBAC0bt1a5iREREREpatnz55o06YNgoKCsGPHDly7dg3Ozs6Ii4tT9omIiEBMTAwuXryIvXv3IjY2Vrk7uIODg4zpiYiIiF6wt7dXqX/BCbeSJGHfvn3w9/dHuXLlivQTQsDPz69UMlLZxIJwIjXr3Llzod/j4uKwf//+Eo8XQrAgnIhkZW5ujjZt2sgdg4jKCM45RFQShw8fVv550aJFGDhwIADA3d0d7u7uaNKkCVavXg0AyMrKwo4dO7B27Vo8f/4ct27dwmeffSZLbiLSPvPnz8fw4cNx5MgRmJmZ4dNPP4WlpaXcsYhIx1lZWeHhw4d48uSJ3FGIiIiISp27uztcXFxw584d3LhxAzdu3AAA5WL+/+4CLkkSatasiV9//VXjWYmIiIiK8+TJE+WmRSUhhFC+15EkCTExMS/tR/Q2WBBOpGbFTfw8opyItEmrVq2wbds2uWMQURnBOYeISuL69esQQsDOzk5ZDA5AuaDk7NmzyjYjIyNMmDAB1apVw+zZs3Hs2DGcP38e7du313huItI+ISEhGDt2LH799Vfs3LkTO3fuhJWVFWxsbFCxYkUYGhq+crwQAosXL9ZQWiLSFZMnT4abmxs2bdoEW1tbNGvWTO5IRERERKXGzMwM+/btw6pVq7B3715kZma+tK+BgQEcHR0xd+5cVKxYUYMpiYiIiF6uRo0ackcgKhYLwonUbMmSJXJHIKIyKjs7GwEBAbh+/TpSUlKQm5uL/Pz8145jwQIRvQnOOUSkSYmJiQBQpKi7UaNGAICUlBTcv38fNjY2ymuOjo7Ko4gPHDjAgnAiKpHZs2cX2pVFkiQ8efJEpV17+V6HiFTl7OyM7OxsLF68GMOGDUP79u3RqlUr2NjYwNTU9LWLUQDw5CUiIiJ6p5UvXx5ubm6YOnUqAgICcO3aNcTExCAtLQ1GRkawsLBAs2bN0KlTJ57SRERERO+ckydPyh2BqFgsCCdSM2dnZ7kjEFEZdOHCBcyaNQtxcXFvNJ4FC0SkCs45RKRpeXl5AFDkC0FTU1NUqVIF8fHxuHPnTqGCcADo1q0bgoODcf36dY1lJSLt99+T3lQ5+Y1HfBLRm/jwww8BAPn5+cjPz8e5c+dw7ty5Eo8XQiA0NFRd8YiIiIhKjampKRwdHeHo6Ch3FCIiIqJ3zv379+Ht7Q0AcHV1lTkNaQMWhBMREemYp0+fYsqUKcjKylKpUKEACxaISBWcc4hIDpUqVUJsbCySk5OLXHv//fcRHx+Pu3fvFrlWcIRfTEyM2jMSkW44ceKE3BGIqAzKzc0t9PubfNYiIiIiIiIiIiLtdv/+fbi7u0MIwYJwKhEWhBPJID8/H/fv30d8fDzS09PRtWtXAEBqaioqVKgAPT09mRMSkTb7888/kZmZCSEE6tevj7Fjx6JBgwaoWLEi9PX15Y5HRDqGcw4RycHGxgaxsbG4du0ahg0bVuharVq1cOXKFdy8ebPIuKSkJABAdna2JmISkQ6wsrKSOwIRlUH8go+IiIiIiIiIiIhUxYJwIg0KCQnBhg0bcPr0aWRmZgIofHznjh07sHXrVowePRrjx4+HoaGhnHGJSEv9/fffAF4UQ+3evRvGxsYyJyIiXcY5h4jkYGtri/Pnz8Pb2xvDhw9Hs2bNlNcaNmwIADh//jySkpJQqVIl5bWCnX7/3UZERET0rmFBOBEREWm7Ro0aASj8Xfi/29/Uf+9HRERERET/4DbERBqyatUqDBs2DMePH0dGRgYkSVL+FIiMjERCQgLWrl2LYcOGISEhQcbERKStnj59CiEEhg0bxsJMIlI7zjlEJIfBgwdDoVAgJycHI0eOhJubGyIjIwEAXbt2hRACWVlZmDJlCi5duoTQ0FAsXLgQZ86cgRACzZs3l/kVEBERERERERHpruK+C/9v+5v+EBERERFR8bhDOJEGrF69Gn/88QcAwMDAAK1bt4aRkRH8/f0L9bOwsIC+vj7y8vIQFhaGqVOnYufOnRBCyJCaiLSVsbExcnJyYGlpKXcUIioDOOcQkRzMzc2xYMECuLm54fnz5/D09MTAgQNhbW2NmjVrwtHREYcOHcK1a9fg4uJSZPzIkSNlSE1E2sjNze2txgshsHjx4lJKQ0REREREpB3atGmjUjsREREREb09FoQTqdmtW7ewfv165S50y5YtQ61ateDn51ekIPz//u//4OzsjOnTp+POnTsIDg6Gt7c3+vTpI094ItJK9erVQ1BQEB49eiR3FCIqAzjnEJFcnJycULVqVaxcuRKhoaF4//33ldcWLlyIqKgoXLp0qci4qVOnwtbWVpNRiUiLeXh4vPFCfUmSWBBORG8kKCjore/BYisiIiKS07Zt21RqJyIiIiKit8eCcCI127FjB/Lz81GlShWsX78eFStWfGX/Dz74ANu3b0evXr2QmJiIQ4cOsSCciFTi5OSEixcvYt++fRg7dizKly8vdyQi0mGcc4hITh07dkTHjh0RGRmJatWqKduNjY2xbds2eHl5wd/fH0lJSbCysoKTkxNatmwpY2Ii0kaqHkkuhICFhcVrnwEREb2Mi4vLW50aKYRAaGhoKSYiIiIiIiIiIiKidx0LwonU7MKFCxBCYODAgSX+ItDU1BRDhgzBunXrcPPmTTUnJCJdM2DAAHh5eeHs2bP44osvsHjxYlSuXFnuWESkozjnENG7wNraukibEAKOjo5wdHSUIRER6YoTJ068tk92djbS0tJw584d+Pr64vTp0zA0NMTPP/+MevXqaSAlEekiVRejEBEREWkDNzc3AMDo0aPRqFGjEo+7cOECVq1ahZycHHh4eKgrHhFRIUFBQYVOX1IoFKhRo8ZbLeAlIiJSJxaEE6lZTEwMAKBBgwYqjatbty4AICkpqbQjEZGOu3LlCiZOnIjo6GgEBASgc+fOaN26NWxsbFCxYkXo6+u/9h6urq4aSEpEuoBzDhHJ4fvvv4ejoyNatGghdxQi0nFWVlYl7tusWTMMGjQIGzduxPLlyzF58mQcPHiQO4UTkcpK8hkpOzsbqampCA8PR0hICHJzc9G0aVN89dVXMDDgVz9ERET0bvLw8IAQAt26dVOpIDwpKQnXrl3jCZVEpJKNGzdi/PjxKo9LSkrCsmXL4OnpibCwMGV7x44dcfLkydKMSEREVKr4VJBIzQwMDJCdnY2cnByVxmVmZgJ4cdQ5EZEqRowYUWhVck5ODs6dO4dz586V+B4sziSikuKcQ0Ry2LlzJ3bt2oUaNWqgb9++6NOnD+rXry93LCIiAMD48eNx4sQJXLlyBVu2bOF7HSJSmarzxpMnTzB79mxcvXoVO3bswKpVq9SUjIiIiEgeZ86cAYASbUBCRFRg+fLlyMzMxNSpU0s8xsPDA8uXL+fmjUREpJVYEE6kZtbW1rh9+zaCgoLg5ORU4nH+/v7K8UREqvrvscKqHDPMI66ISFWcc4hIDpIk4cmTJ/jjjz/wxx9/oG7dunB0dESfPn1U2tGXiEgdHBwccPnyZRw9epQF4USkdlZWVvj999/Ru3dv+Pj4oEePHujVq5fcsYhIByUnJ0OhUMDQ0PClfVq1aoWtW7dqMBURvYvWr1+P3bt3v/T6/PnzsXjx4tfeR5IkpKamIi0tDUII2NjYlGZMIioD3N3dkZGRgdmzZ7+y34MHD7BgwQIEBQUBeDH/mJiYaCIiERFRqWFBOJGaffLJJ7h16xYOHz6MMWPGlGjXulOnTuHEiRMQQqBjx44aSElEuoQP24lIkzjnEJEcfHx84O3tDR8fH9y9excAEB4ejtWrV2P16tVo0aIFHB0d0atXL5ibm8uclojKIjMzMwBAZGSkzEmIqKyoWLEiBg8ejN9++w179+5lQTgRvZGLFy8iKysLnTp1KtS+Z88e/O9//0NMTAyEEGjWrBmmT58OW1vbIvcwNzdH27ZtNRWZiN5RI0eOxM6dOxEdHV3kmiRJiI+Pf6P7Tpo06W2jEVEZ8t577yE6OhobN25EVlYWvv322yJ9cnJysG7dOmzYsAHPnz9Xbnrk4OCAr7/+WtORiYiI3oqQVNm+j4hUFhMTg549eyIrKwsWFhZYtGgR7Ozs4OfnB1dXVwghEBYWBgDIysrCzp07sXbtWmRnZ6N8+fI4evQoqlevLvOrICIiIiIiejeFh4fD29sb3t7eePjwIYB/Th/Q19eHra0t+vbti+7du0OhUMgZlYjKkMWLF2Pr1q0wMzPDhQsX5I5DRGXEkSNHMHPmTFSuXBlnz56VOw4RaZGHDx9i+vTpuHPnDmxtbfHnn38qr23ZsgVLly4FUPhUOH19fXz33XcYNGiQxvMSkXY4c+YM1q1bV6gtKCgIQgjUrVsXlSpVeu099PT0oFAoYGlpCQcHB7Rr105NaYlIFz19+hQTJkzAvXv3IISAk5MTFi9erHx+fO7cOSxcuBCPHj1Svs+pU6cOvv32W7Rv317O6EREAFBsfSHRq7AgnEgDPD094ebmpvzdwsICFSpUwMOHDyGEgIODA2JiYnDjxg1kZWVBkiQIITBv3jyMHDlSxuRERERERETaIywsTLlzeMGuvAUP942MjNClSxf07dsXnTp1goEBD00jIvU4d+4cPvvsM2RnZ6N169bYtm2b3JGIqIzYvHkzli5dCiMjIwQHB8sdh4i0RHZ2Nnr37o3o6GhIkgQrKyucOHECAJCWloZPPvkEmZmZAICmTZvCzMwMFy9eRE5ODhQKBQ4fPgxra2s5XwIRaZGGDRtCCAF3d3fY29vLHYeIyoDk5GR8+umnuHbtGoQQ6NWrF77++musWLECXl5eAF4selMoFJg6dSrGjh3LZ8dE9M5gQTipiv8HI9IAJycnCCHw3XffISMjA3FxcYiPj1cWJnh7ewP4Z2eFcuXKYc6cOSwGJ6JSExcXh5s3byI+Ph7p6elwcXEBAERHR0OhUJRoFwYiopLinENEcmnUqBEaNWqEmTNn4vr16/D29sbx48cRGRmJzMxM+Pj4wMfHB2ZmZjh//rzccYlIC7i7u5eoX15eHtLS0hAWFobLly8r2kOLVgAAvjBJREFUF/s7OTmpNyAR0f+Xnp6OXbt2AXhxLDoRUUnt378fUVFREEKgc+fO+Pzzz5XXfH19kZmZCSEE+vXrh2XLlgEAQkJCMGrUKGRlZWHPnj2YOXOmXPGJSMu0adMGAGBubi5zEiIqK8zMzLBlyxa4urri9OnT8PX1xbFjx5Cfn6+s0enZsyfmzp0LS0tLmdMSERG9He4QTqRBz549w44dO3D06FHlUeb/Vq1aNdjb22PMmDH44IMPNB+QiHSOj48PNmzYgNDQ0ELtBSsH3d3dsW7dOjg7O2PmzJks0iSit8I5h4jeVV5eXvjpp58QExOjLNLkTgpEVBIFu9epouBxa5s2bbB161aVxxMRRUVFlahfwWKU0NBQbN68GeHh4RBCYNy4cZgzZ46aUxKRrpgwYQLOnDmDxo0b48CBA4WuTZkyBf7+/hBC4ODBg6hfv77y2oIFC7Bnzx40aNAABw8e1HRsIiIiIpXk5ubiq6++wpEjR5RtNjY2mDdvHmxtbWVMRkT0ctwhnFTFHcKJNMjS0hJffvklvvzySyQlJSEmJgZpaWlQKBSoXLkyVxsSUakp+ED73xMIABQqRoiMjERubi7279+P06dPY+vWrahZs6bG8xKRduOcQ0TvGkmScPHiRRw/fhz+/v548uSJsh0AqlevLmc8ItIyqu6nUblyZTg7Oysf1BMRqapr165vPH+YmJhg/PjxpZyIiHTZnTt3IIRA//79C7Xn5OTg/PnzEELAysqqUDE4AHz44YfYs2cPoqOjNRmXiIiI6I0YGBhg5cqVMDc3x/bt2yGEgKmpKZo1ayZ3NCIiolLDgnAimVSqVOmNdsX08/PDtGnTIIQosvsmEVGBb7/9Vrm62czMDN26dYMkSUV2eGncuDH8/PyQlpaG6OhoTJkyBR4eHjA0NJQjNhFpKc45RPQuKCgC9/X1xfHjxxEfH69sB17MTz169ICjo6PyeGIiotfZunVrifrp6enB0NAQlStXhrW1tZpTEVFZ8CaHu1avXh2rVq1ClSpV1JCIiHRVUlISgKILZ4OCgpCVlQUhRLG7ZioUCgBARkaG2jMSkfZxc3MD8GLDkMWLFxdpf1P/vR8REVDyU5YAYPz48cjKysL+/ftx7do1jB07Fj/99BPKly9fbP8aNWqUVkwiKgMGDhwIJycn9OnTB5UrV37r+7Vq1arEz6iJABaEE2mlN/kygIjKjqCgIHh4eEAIga5du2LJkiUwNTWFn59fkeLM0aNHw8nJCTNmzMDZs2dx//59eHh4YOjQoTKlJyJtwzmHiOT0uiLw8uXLo0uXLujbty/s7OxQrlw5OeMSkRZq27at3BGIqAxydnYuUT8hBAwNDWFhYYGmTZvC1taWC26JSGXly5dHbm4u0tPTC7UHBAQo//zJJ58UGff48WMALxbfEhH9V8EzYwCFCrj/3f6mWBBORP/1JqcsFfS/efMmHBwcXtqHGzUSkSpu3ryJ0NBQLFu2DLa2tujXrx+6d+/+0kUnr2Nubs5n1KQSFoQTERHpmL179wIArK2tsXr16td+EWhqaop169ahV69eiI6Oho+PD4sziajEOOcQkRwuXLjw0iJwfX19tG/fHn379kX37t1hYmIiZ1Qi0jGxsbGoUKECjI2NC7VLkoRdu3ahQ4cOqF27tkzpiEhXLFmyRO4IRFSG1KlTByEhIQgKCsKAAQMAALm5ufDz8wMAGBoaomPHjoXG5ObmKos669atq/HMRKQdJEkqtkDzbTY/e9ticiLSXdxYkYjeBTVq1EBUVBRyc3MRGBiIwMBAGBsbo0ePHujXrx86dOggd0TScSwIJyIi0jGXL1+GEAIDBgwo8a5QhoaGGDx4MNauXYvbt2+rOSER6RLOOUQkhzFjxkAIUeghf9OmTeHo6AgHBwdUqVJFxnREpIuuX7+On376CUFBQVi3bh3s7OwKXY+Ojsb3338PIQQ6dOiAefPmwcbGRqa0RFSWZGRkFFmkQkSkCjs7O1y7dg2HDh1C3bp1YWdnh82bNyMqKgpCCNjZ2RWaZxISEjBv3jw8evQIQgjY29vLmJ6I3lUnTpxQqZ2I6G2U9JQlIiJ1O3nyJC5fvozDhw/D19cXSUlJSE9Ph6enJzw9PVG1alU4OjrC0dERDRs2lDsu6SAWhBMREemYuLg4AMAHH3yg0rhatWoBAFJTU0s7EhHpMM45RCQXSZLwwQcfoG/fvnB0dFTOK0REpc3HxwezZ89GXl4eAODBgwdFCsIfPXoE4MXcdO7cOQwePBi///47WrdurfG8RKQ78vPzcejQIRw+fBhffPEFmjVrVuh6cnIybG1t0axZM4wYMQKOjo4yJSUibTZy5Ejs2LEDCQkJWLFiBVasWKG8pq+vjylTpih/X7t2Lf744w/k5+cDeHFi3JAhQzSemYjefVZWViq1ExG9DZ6yRETvklatWqFVq1aYN28eAgMD4eXlhZMnTyIzMxMxMTHYuHEjNm7ciHr16sHJyQl9+vSBpaWl3LFJR+jJHYCIiIhKl0KhAACkpaWpNC4xMREAYGJiUuqZiEh3cc4hIjmMGTMG+/fvh6+vL1xdXd+6GDwpKQlBQUEICgoqpYREpCsiIyMxd+5c5ObmQpIk2Nra4sMPPyzSr1mzZvjjjz/Qv39/CCGQnp6OGTNmKN/zEBGpKjY2FoMHD4abmxvOnj2LO3fuFOnz6NEj5OXlITg4GHPmzMGECROQnp4uQ1oi0mZmZmb4888/YWVlBUmSlD+Ghob48ccf0bhxY2VfhUKBvLw85QLd9evXw8jISMb0RKRtfH19kZOTI3cMIqIiMjIy5I5ARDrGwMAAXbp0wcqVK3HmzBksW7YMH3/8MfT09CBJEu7cuYOffvoJXbt2xbhx4+Dp6cnnOvTWWBBORESkYwoKos6ePavSuGPHjgFQfZdfIirbOOcQkRzc3NyKLch8U5cuXYKLiwvGjBlTavckIt2wZcsWZGZmQgiBJUuW4M8//yx2129jY2N06tQJy5Ytw5o1awAA8fHx2L59u4YTE5EueP78OSZMmIDQ0FBIkgQhBLKysor0MzY2Rq9evWBsbAxJknD27FlMnz5dhsREpO0aNmwIb29vuLu7Y+bMmfjhhx9w6tQpODk5FerXoEEDtG/fHgsXLsShQ4f4XIeIVDZjxgzY2tri66+/xunTp5UnDhARqVN+fj48PT0xYcIEhISEFLmenJyMNm3aYPjw4Th8+LAMCYlI1xkbG6N///7YsGEDTp8+jSVLlqBHjx4wNjZGXl4ezp8/Dzc3N3z88ceYPXs2zp07J3dk0lIsCCciItIxnTt3hiRJOHbsGC5cuFCiMXv37sWFCxcghECnTp3UnJCIdAnnHCLSJZIkyR2BiN4xZ86cgRACDg4OcHZ2LtGYHj16oGfPnpAkCSdOnFBzQiLSRfv27VPuCG5ra4tTp05h1KhRRfrVqVMHa9asgb+/P3r16qUsCvf29tZ0ZCLSAYaGhujWrRsmTZqEwYMHw8LCokgfOzs7bN68GcOGDYOhoaEMKYlIF6SlpeHgwYOYNGkSOnXqhB9//BHBwcFyxyIiHcXTl4joXWNubo6+ffti0KBB6N27NwwMDAC8+I4qMzMTXl5eGD9+PHr16oUjR47InJa0DQvCiYiIdIyLiwsqVaqE/Px8TJkyBTt27HjpB9YnT57ghx9+wMKFCwEAJiYmGDFihAbTEpG245xDREREuiwqKgoA0LFjR5XGdejQAQDw8OHDUs9ERLrPx8cHAGBjY4P169fD0tLylf0rVqyI5cuXK3fqPXDggLojEhEREb2RhQsXol27dhBCQJIkxMXFYceOHRg+fDi6deuGtWvX4t69e3LHJCIdwdOXiOhdkpOTA19fX0yfPh3t2rXD5MmT8ddffyE3NxeSJKFhw4YYMmQILCwsIEkSIiIiMGvWLHzxxRfIy8uTOz5pCSFx+ysireLn5wdXV1cIIRAWFiZ3HCJ6R505cwaTJ09WvinU19eHQqFAamoqhBBo3rw5YmJiEB0dDeDFSkN9fX2sWbMG3bt3lzM6EWkhzjlEpO34OYuIXqZ169ZIT0/H0qVL0b9//xKP8/LywqxZs6BQKHD16lU1JiQiXdSuXTukpKTgq6++wtixY0s87o8//sCqVatgbm7Oo4WJ6I2Fh4fj1KlTuHnzJhISEpCenq5caBIQEICHDx9iwIABMDExkTkpEWmzuLg4HD16FN7e3rhy5Yry1DYhBACgQYMGcHR0RJ8+fVC9enU5oxKRFtu5cye+//57CCHQoUMHLFmy5JULblNTU/Htt9/C19cXQgisXLkSDg4OGkxMRLomLy8PZ86cwZEjR+Dn54eMjAwA/5xYW7VqVfTt2xdOTk5o0KABACA/Px8BAQH46aefcP/+fQghMHXqVLi6usr2Okh7GMgdgIiIiEpfx44dsWHDBnz11Vd49uwZcnNzkZaWpnyQdu3aNQD/vMk0MzPDokWL0K1bN9kyE5H24pxDREREusrKygp37tzBlStXVCoIDwkJAQBUq1ZNXdGISIdlZmYCUH0Osba2BgCkpaWVeiYi0n3Pnj3Dt99+i8DAQGVbwU6aBc6fP4/Nmzfj119/xYIFC1ggRURvrEqVKhg5ciRGjhyJZ8+ewcfHBz4+Pspnybdu3cLt27excuVKtGzZEo6OjujZsycqVaokb3Ai0ir/PX1JX1//lf0LTl+6desWHj58iAMHDvD9DhG9kUuXLsHLywtHjx5FUlISgH++KzcyMoK9vT2cnJzQsWNH6OnpFRqrp6eHLl26oEmTJujevTuys7Ph4eHBgnAqERaEExER6aj27dvj6NGjOHjwII4ePYqQkJBCXwgaGhqiSZMmsLe3x5AhQ2BqaipjWiLSdpxziIiISBfZ2tri9u3b8PT0hIuLC+rWrfvaMY8fP8b+/fshhED79u01kJKIdI2lpSUiIyPx6NEjlcY9ffoUwItFuEREqrh//z5GjRqFxMREvOpw6SdPnkCSJCQnJ2PmzJlIT0/H4MGDNZiUiHSRpaUlxo4di7FjxyIqKkpZHH7jxg1IkoRLly7h8uXL+OGHH/Dxxx9j3bp1ckcmIi1x584dCCEwePDg1xaDFzA0NMSAAQOwatUq3Lx5U80JiUjXLF++HD4+PspnNP8+BaVNmzZwcnJCr169UKFChdfeq1q1amjQoAFCQkIQFxen1tykO1gQTkREpMOMjIwwdOhQDB06FACQnp6OtLQ0KBQKVKxYsdDuLkREb4tzDhEREemaYcOGYcuWLcjJycHYsWOxcOHCV55ycvr0acyfPx8ZGRnQ19fHyJEjNZiWiHRFgwYN8PjxYxw4cAATJkxAuXLlXjsmLy8PHh4eEEKgcePGGkhJRLoiJycHn332GRISEqCnpwcnJycMHDgQUVFRmDNnTqG+X3zxBYyMjHDo0CFIkoRFixahffv2qFmzpkzpiUjX1KhRAxMmTMCECRPw5MkT+Pn5YePGjcqTKQMCAuSOSERahKcvEZGmbdy4EUIIZSH4Bx98gP79+6N///6oUaOGyvfLyckBANSqVatUc5LuYkE4ERFRGVKhQoUSrTQkIioNnHOIiIhI29WqVQtffvklVqxYgfj4eEybNg2Wlpb46KOPUKNGDRgZGSErKwtPnz5FcHAwoqOjlQ/7P/30U9SvX1/mV0BE2mjQoEHw8/PD48ePMXPmTCxduhTGxsYv7Z+Tk4MFCxYgPDwcQgj07dtXg2mJSNvt27cPDx8+hBACy5Ytg6OjIwDAz8+vSN86depg+fLlaNu2LebNm4fs7Gzs3LkTX331laZjE5EOy8rKwt9//41Tp04hMDAQ8fHxhQqriIhKiqcvEZEcTE1N4eDgACcnJzRv3vyt7jVlyhRUqVKFBeFUYiwIJyIiIiIiIiIiInqJiRMnIjs7G+vWrcPz58/x9OlTHD16tEi/guIEPT09TJkyBdOnT9d0VCLSEXZ2dmjbti0uXryI48ePIzg4GM7OzmjZsiWsrKxQvnx5ZGdnIzo6GsHBwfD09ERUVBSEEGjatCn69esn90sgIi3i6+sLIQQ6deqkLAZ/nUGDBuH48eMICAjAmTNn1JyQiMqCrKwsnDp1Cj4+PggMDERWVhaAfz5n1apVC46OjiWep4iIAJ6+RESa5+7uDjs7uxLNNyXRq1evUrkPlR0sCCciItJSbm5uarmvEAKLFy9Wy72JSHtxziEiIqKybOrUqXBwcMCOHTsQEBCAx48fF+lTpUoV2NnZwcXFBQ0bNpQhJRHpCiEEfv75Z4wcORL37t1DbGws/vjjj1eOkSQJNjY2+O233zSUkoh0xd27dwEAXbt2VWlcp06dEBAQgMjISHXEIqIy4HVF4FWqVIGDgwMcHR3RtGlTOaMSkZbi6UtEpGndunWTOwKVcSwIJyIi0lIFK5PVgcWZRPRfnHOIiIiorKtduzbmzZuHefPmITk5GXFxcUhOToZCoUDlypVhaWkpd0Qi0iGVKlWCh4cHfv/9d2zfvh3Jyckv7WtiYoLBgwdj+vTpUCgUGkxJRLogLS0NAGBmZqbSOHNzcwBAbm5uqWciIt31uiJwExMTdO/eHY6Ojmjfvj309PTkjEtEWo6nLxGR3JKSkhAYGIhr164hLi4OaWlpMDc3R7Vq1dC2bVt06NABhoaGcsckHcKCcCItY25ujjZt2sgdg4jeEQUPyEqTugo+iUj7cc4hIiIiesHMzKxI0dS9e/dQp04dmRIRkS4yNDTEtGnTMHXqVFy5cgU3btxQLkYxMjKChYUFmjRpgtatW7MQnIjemLm5OWJjY1Xe6fvevXsAgMqVK6sjFhHpqA4dOhQpAi9Xrhzs7OzQt29fdO3alUVRRFRqePoSEcklLi4Oq1evhqenJ/Lz84vts3HjRigUCkycOBETJ07keyAqFSwIJ9IyrVq1wrZt2+SOQUTvgBMnTsgdgYjKEM45REREVJalpaVh8+bN8PLywvfff4+2bdsWup6QkIA+ffrA0tISw4cPx/jx4/kAn4hKjZ6eHlq3bo3WrVvLHYWIdFCzZs3g5+eHgwcPYsKECSVavJ+RkYH9+/crd88kIiqpzMxMAC/e37Rp0waOjo7o2bMnTE1NZU5GRLqKpy8Rkabdu3cPo0aNQlJS0ms3XMvIyMAvv/wCHx8fbN++XeWTm4j+iwXhRBqSnZ2NgIAAXL9+HSkpKcjNzX3pCqB/E0Jg8eLFGkhIRNrGyspKI/+epKQkhIeHAwBPKCAqwzjnEBERUVl17949TJo0CdHR0QCA+/fvFykIf/ToEQAgJiYGa9euxZEjR7BhwwZYWlpqPC8R6ZbIyEh4e3ujd+/eqFmzZqFrWVlZcHFxga2tLQYNGlTkOhFRSTg6OsLPzw93797FokWLMG/evFf2T0tLw4wZM/Ds2TMIIdC7d28NJSUiXdCoUSM4OjoqF9QSEWkCT18iIk1JTk7GuHHjkJiYCABo0KABRowYgVatWuG9996DQqFARkYGIiMjcenSJezatQv37t3D3bt38dlnn2H79u3Q09OT+VWQNmNBOJEGXLhwAbNmzUJcXNwbjWdBOBHJ6dKlS3B1dYWenh5CQ0PljkNEOo5zDhEREb1L0tLSMGnSJERFRQEAKlasWOwXg1WrVsWECRNw9OhRREZGIjw8HJ9//jn27NkDAwM+giUi1eXl5WHp0qXYuXMn8vPzUaNGjSIF348fP8b169dx48YNbNy4EVOnTsWUKVNkSkxE2qpnz55o06YNgoKCsGPHDly7dg3Ozs6FvtOKiIhATEwMLl68iL179yI2Nla5O7iDg4OM6YlI23h4eMgdgYjKMJ6+RETqtmnTJsTExEAIgVGjRsHNza1IgbeJiQkaNmyIhg0bYtiwYVi4cCH279+Pq1ev4sCBAxg0aJBM6UkXcDkBkZo9ffoUU6ZMQVxcHCRJUvmHiOhdwTmJiDSJcw4RERG9C3bu3ImoqCgIIeDs7IzTp0+jf//+RfpZWVlh9uzZOHr0KMaOHQsACA0NxYEDBzScmIh0xZw5c7B9+3bk5eVBkiREREQU6ZOWlgYLCwtIkoTnz59j7dq1WLlypebDEpHWc3d3R/369SFJEm7cuIEffvgBv/32G4QQAIDevXtjzJgx+PXXXxEbGwtJkmBtbY1ff/1V5uRERERERETvDj8/Pwgh8NFHH+Gbb7557W7fBgYG+P7779G4cWNIkgRPT0/NBCWdxe1piNTszz//RGZmJoQQqF+/PsaOHYsGDRqgYsWK0NfXlzseERERERERERG9hJ+fHwCgefPmWLJkyWv76+vr46uvvsLly5dx/fp1HD58GEOGDFF3TCLSMf7+/jhy5AiEEKhatSq++uordO/evUi/Fi1a4MyZMzh37hx++OEH3L9/Hxs2bEC3bt3QvHlzGZITkbYyMzPDvn37sGrVKuzduxeZmZkv7WtgYABHR0fMnTsXFStW1GBKItIm7u7uyj+7uroW2/6m/n0/IiJVHDt2DH5+fggJCUF8fDwyMzNhZGQES0tLNGjQAJ07d0bv3r1Rrlw5uaMSkZZ69OgRAMDJyanEY/T09DBw4ECEhoYiLCxMTcmorGBBOJGa/f333wCAWrVqYffu3TA2NpY5EREREREREf2bjY0Nv0wkomLdv38fQgg4OjqWeIwQAg4ODrh+/Tru3LmjxnREpKv27dsHADA1NcVff/2FatWqvbJ/hw4dsGXLFvTp0wepqanYvn07C8KJSGXly5eHm5sbpk6dioCAAFy7dg0xMTFIS0uDkZERLCws0KxZM3Tq1AmWlpZyxyWid5y7u7vylIH/FoQXtL8pPsMhIlXduXMHX375Je7du6dsKzipNi0tDenp6bh//z58fHzwxx9/YMWKFWjYsKFccYlIiykUCjx//hwVKlRQaZy5uTkAnqJNb48F4URq9vTpUwghMGzYMBaDExERERERvYNYEE5EL/P8+XMA/zyQL6mCIqlX7a5JRPQyISEhEEJg5MiRry0GL1C1alUMHToU69evx6VLl9SckIh0mampKRwdHVVaEEdEVBxJkoot/n6bQqe3LSYnorLn5s2bcHFxQWZmpnL+MTU1hbW1NYyMjJCRkYHHjx8jPT0dAHD37l0MGzYMu3fvZlE4Eamsfv36uHTpEs6fP4++ffuWeNzNmzeV44neBgvCidTM2NgYOTk53C2BiIiIiIiIiEjLvPfee3j48CHCw8NVGvfw4UMAqheSExEBQFJSEgCgbt26Ko0r+NIwLi6utCMRERERqWTr1q0qtRMRqUN2djZcXV2RkZEBAOjZsyc+/fRTNGnSpEjfkJAQrF+/HsePH0dWVhamTZsGLy8vlC9fXtOxiUiLubi4ICgoCB4eHujTpw86dOjw2jEPHz7E7t27IYTA8OHDNZCSdBkLwonUrF69eggKCsKjR4/kjkJERERERERERCpo2rQpIiIisG/fPkyYMAEmJiavHZOVlYV9+/ZBCIHmzZtrICUR6Rpzc3PExsYiMTFRpXEFpxLwpEoiIiKSW9u2bVVqJyJShz179iA6OhpCCMyYMQOTJ09+ad9mzZrhl19+wbp167BmzRpERkbC29sbzs7OGkxMRNquR48emDhxIjZs2IDPPvsMX3zxBYYPHw4jI6Ni+/v7+2PBggXIyMiAg4MD+vfvr+HEpGtYEE6kZk5OTrh48SL27duHsWPHcvUgEREREREREZGWGDp0KA4fPoz4+Hh8+umnWLNmDapVq/bS/omJiZg1axaioqIghOCXhkT0RmrVqoWYmBj4+vpi5MiRJR53/PhxAEDt2rXVFY2ItFijRo0AAEIIhIaGFml/U/+9HxHRq0RFRQEALCwsVPrePDU1FcHBwUhISGChFBGVWMFnpObNm7+yGPzfpkyZAn9/fwQHB+PQoUN8tkNEKlm7di3KlSuH2rVr48GDB1i+fDl++eUXtGjRArVr10aFChWQk5ODp0+fIjg4GE+fPoUkSdDT08OzZ88wevToYu8rhMCWLVs0/GpIG7EgnEjNBgwYAC8vL5w9exZffPEFFi9ejMqVK8sdi4iIiIiI6J3n6emptns7OTmp7d5EpDtat26N3r17w8fHB1evXkXPnj1hb2+Pli1bwsrKCuXLl0d2djaio6MRHBwMPz8/pKenQwgBOzs7dOnSRe6XQERayNHREUFBQbh06RL+/PNPTJgw4bVj9u3bh8DAQAghYG9vr4GURKRtJElSqZ2ISB26du0KPT09/PLLLyq9ZwkICMCsWbNgbm7OgnAiKrF79+5BCIE+ffqoNK5v374IDg5GRESEeoIRkc767bffIIQAAOU/MzIycPbsWZw9e7bYMUIISJKEy5cvF3tdkiTlvYhehwXhRGp25coVTJw4EdHR0QgICEDnzp3RunVr2NjYoGLFitDX13/tPVxdXTWQlIiIiIiI6N3y9ddfq+UhlxCCBeFEVGJLlixBYmIizp8/j8zMTBw5cgRHjhwptm9BQVWbNm2watUqTcYkIh3i6OiI3377DU+fPsWKFStw+fJljBo1Ci1atIBCoVD2y8rKwrVr17B37154e3sDeLHbpiq7ihNR2dGmTRuV2omI1OVNFqLk5uYCeLFTOBFRSaWkpAAAqlatqtI4CwsLAEB8fHypZyIi3Vfcex0uxCVNYUE4kZqNGDGiUAFDTk4Ozp07h3PnzpX4HiwIJyIiIiKissjOzg4BAQHK3RGIiORgZGSEzZs348CBA9i8eTPu3Lnz0r7vv/8+xowZU+R5EBGRKhQKBX799VeMHDkSmZmZOHXqFE6dOgUhBMzMzGBkZISsrCwkJycr3yNJkgQjIyO4u7vD2NhY5ldARO+ibdu2qdRORPQ2zp8/j6dPn77yekmKu/Pz85GSkoLNmzcDAMzNzUsrIhGVAWZmZkhISMCTJ09UGhcVFQUAMDU1VUcsItJht27dkjsClXEsCCfSgP8WLqhSyMAvD4mIiIiIqKz6/fffceDAAcyfPx95eXkAgGHDhqFZs2YyJyOismjAgAEYMGAAnj59iuvXryMuLg7JyckwMjKChYUFmjRpAhsbG7ljEpGOaNy4Mf766y8sWLAAQUFBAF48V05MTCy2f5MmTbB06VLUq1dPkzGJiIiIiiWEgJubW7HXJEnC9u3b3+ienTp1ettoRFSGNG7cGIGBgTh48CDGjx9fovqb/Px8eHp6QgiBhg0baiAlERFR6WFBOJGabd26Ve4IREREREREWmvAgAGwsLDAtGnT8Pz5cxw7dgxTpkyBpaWl3NGIqIyqXr06qlevLncMIioDbGxssG3bNoSGhsLf3x/Xr19HfHx8kcUodnZ2aN26tdxxiUhLFRRsjh49Go0aNSrxuAsXLmDVqlXIycmBh4eHuuIRkZZq164dBg4ciP379xd7/U1OgmvTpg3mzJnzttGIqAzp1asXAgMDER4ejkWLFmHevHmvHbN48WKEh4dDCIGePXtqICUREVHpERLPXCYiIqJX8PPzg6urK4QQCAsLkzsOEek4zjlE9DIHDhzA3LlzIYTAxx9/jPXr18sdiYjKuNTUVGRkZEChUPAIYSIiItJaDRs2hBAC7u7usLe3L/G4o0eP4osvvkD58uVx7do1NSYkIm2Vnp6OmzdvKn+XJAljxoyBEAJffPEFWrZs+dp76OnpwcjICNWrV0eVKlXUGZeIdNDz58/h5OSE+/fvAwBatGiB8ePHo127dqhYsaKyX2pqKi5cuICNGzfi6tWrAIBatWrBy8sLBgbca5WI3tzNmzfh5+eHkJAQxMfHIzMzE0ZGRrC0tESDBg3QuXNntGrVSu6YpEP4fy0iIiIiIiIieucNGDAAwcHB2Lt3L06fPg0fHx/07t1b7lhEVIakp6dj79698PPzw/Xr1/H8+XPlNSMjI9SvXx9dunTB0KFDYW5uLmNSIiIiIvU7c+YMAEBfX1/mJET0rqpQoQLatm1b7LV69eq99BoRUWkpV64c1qxZg3HjxiEuLg5Xr17FtGnTAACmpqYwNjZGRkYGUlJSlGMkSYKZmRn+97//sRiciN5YbGws3NzclJ+bCkiSBCEE7ty5g8DAQGzYsAHt27fH0qVLeTIulQruEE4kg7i4ONy8eRPx8fFIT0+Hi4sLACA6OhoKhQKVKlWSNyAR0b9wt14i0iTOOUT0KmlpaejZsyfi4+NhbW2NY8eOQU9PT+5YRFQGnDlzBnPmzEFCQgKA4o83F0IAACwsLLBo0SLY2dlpNCMR6a7Y2FgEBAS8dDcpOzs7vPfee3LHJKJ33Pr167F79+4i7U+ePIEQApUrV4aRkdFr7yNJElJTU5GWlgYAaNKkCfbv31/qeYlIN128eBHAi4JwLqQlIk158uQJ5s2bh3Pnzr22b7t27bB48WJYWVlpIBkR6aLHjx9j+PDhiI+PL/Qc2czMDEZGRsjIyEBqaqqyXQgBc3Nz7Nu3j3MPvTUWhBNpkI+PDzZs2IDQ0NBC7QXFTu7u7li3bh2cnZ0xc+ZMFoYT0TuBxZlEpEmcc4jodby8vLBnzx4AwKxZs9C8eXOZExGRrgsMDMRnn32GvLw8SJIEAwMD1K1bFzVr1lQ+wH/48CHu37+P/Px8AC92ytywYQM6dOggc3oi0maZmZlYunQpPDw8Cp1K8F96enpwdnbG3LlzYWxsrMGERKRNMjIy0KdPH0RHR5fqfdeuXYuePXuW6j2JqGwICgrC4cOH4eLignr16hW6VrApQIcOHTB8+HC0atVKppREpEuuX7+OgIAABAcHIyEhAenp6VAoFKhSpQqaNm0Ke3t7fPjhh3LHJCItlp+fj/79+yM8PBwA0KxZM0ycOBHt27eHqampsl9CQgLOnz+PTZs24fr16wCAxo0bY9++fTyFid4KC8KJNCA3NxdfffUVvL29ARTeRerfxU5ff/01PD09IYRA9erVsXXrVtSsWVOWzEREBe7fv6+cv1xdXWVOQ0S6jnMOERERvUtSU1PRrVs3JCcnQ09PD2PHjsWECRNgYWFRpG9MTAw2btyIrVu3Ij8/H5UrV8axY8dgYmIiQ3Ii0naJiYlwcXHBvXv3ij2V4L+EEKhVqxZ27drF3TaJ6KXOnDmDdevWFWoLCgqCEAJ169Yt0UZFenp6UCgUsLS0hIODA9q1a6emtESkqzIyMjB79mycPHkSALBkyRI4OTkV6nPr1i04OTkpT2IaNGgQFi5cyAIpIiIieqcdOHAAc+fOhRACQ4cOxfz581950m1+fj6+++477NmzB0IIrF27Fj169NBgYtI1LAgn0gA3Nzd4eHgAeHH8Q7du3SBJEg4cOFCoIHzr1q34+eeflcfs1alTBx4eHjA0NJQtOxFpv8TERJw7dw43btxAQkICMjIy8PPPPwMArly5gsTERHTt2lX5UI2I6G1wziEiIiJd8ttvv2Ht2rUQQhRbpFAcT09PfP311xBCYN68eRg5cqT6gxKRznFxcUFQUBAAoEaNGnBxcUGHDh1gbW0NhUKBjIwMRERE4Pz589i1axeioqIghICtrS3+/PNPmdMTkTZp2LAhhBBwd3eHvb293HGISMdJkoSxY8fi4sWLykVvM2bMwJQpUwr1Cw0NxYIFC3Djxg1IkgQhBPr164dly5bJEZuIiIioRCZNmoTAwEDUq1cPBw8efGUxeIGCXcXv3r0LOzu7Iot4iVTx+r9xRPRWgoKC4OHhASEE7O3tcfz4cSxatAhdu3Yt0nf06NE4efIkbG1tAbzYIbOgkJyISFUZGRn47rvv0KVLF8ycORObNm2Cp6cnjh8/ruxz6tQpuLq6wsHBAVeuXJExLRFpO845RKTNkpKSEBQUpCy6IiIq4O/vDyEEOnbsWKJicABwcnLCJ598AkmSlCefEBGp4tixY8ode7t27YojR45g3LhxaNiwIUxMTKCvr4+KFSuiadOmmDRpEry8vNClSxdIkoSzZ8/izJkzcr8EItIibdq0QevWrXm6ABFphJeXFy5cuAAAqFevHnbt2lWkGBwAGjdujH379sHX1xetW7eGJEk4dOgQTp8+renIRERERCUWFhYGIQScnJxKVAwOvDiFydnZGZIk4e7du2pOSLrOQO4ARLpu7969AABra2usXr36tbt9m5qaYt26dejVqxeio6Ph4+ODoUOHaiIqEemQ2NhYuLi44OHDh688VjgyMhKSJOHBgwcYPXo03N3d0blzZ80FJSKdwDmHiLTdpUuX4OrqCj09PYSGhsodh4jeIREREQCA7t27qzSuW7duCAwMxKNHj9SQioh03eHDhwG82Bl89erVKF++/Cv7GxsbY82aNXBwcEBUVBT27duHjh07aiIqEemAbdu2yR2BiMoQT09PAED16tWxZ88eGBsbv7J/rVq1sG7dOjg4OCA2Nha7d+/Gxx9/rIGkRKRNGjVqpJb7CiH4vJiIVJKUlAQAsLKyUmnce++9BwCIiYkp7UhUxnCHcCI1u3z5MoQQGDBgwGuLwQsYGhpi8ODBkCQJt2/fVnNCItI1kiThs88+Q0REBCRJQtu2bbFs2TJ8/fXXRfoOGzYMrVu3BgDk5uZizpw5iI+P13RkItJinHOISJe8alELEZVNGRkZAF4s4FdFxYoVAQDJycmlnomIdF9ISAiEEBg4cOBri8ELlC9fHoMGDYIkSQgLC1NzQiIiIqI3ExoaCiEEhg8f/tpi8AImJiYYMmQIJElCcHCwegMSkVaSJEltP0REqjAxMQHwYkM1VcTFxQEAKlSoUOqZqGzhDuFEalYwYX/wwQcqjatVqxYAIDU1tbQjEZGOO3jwIG7cuAEhBL788ktMmjQJAODn51ekb7t27dCuXTv8/PPP+N///ofU1FTs3LkT06ZN03RsItJSnHOIiIhIl5mbmyM2NhYPHjxQaVzBzuLm5uZqSEVEui4hIQEAULt2bZXGFTyDfvbsWWlHIiId4ObmBuDFTpeLFy8u0v6m/ns/IqJXSUtLA/DidG1VFLwv4qJbIipOmzZt5I5ARAQAqF+/Pi5evAhvb2+4uLiUeNyRI0cAAHXr1lVXNCojWBBOpGYKhQLPnz9XfrgtqcTERAD/rBwiIiqpgjeKLVq0UBZmvs706dNx/vx5XLlyBQEBASzOJKIS45xDREREuqxZs2bw8/PDgQMHMHHixBKd/padnY2//voLQgg0bdpUAymJSNcYGxsjJSVF5YKngv4l3VWciMoWDw8PCCEAoFAB97/b3xQLwomopKpWrYro6GiVF7Dxu3MiepVt27bJHYGICABgb2+PixcvIjg4GBs2bMDEiRNfO2bDhg0IDg6GEAL29vYaSEm6TE/uAES6rmCn77Nnz6o07tixYwBU31mciCgsLAxCCDg4OKg0rmfPngD+2cmOiKgkOOcQERGRLnN0dAQAPHnyBLNmzUJ2dvYr+2dnZ2P27Nl48uQJAKj8HomICPhnB8yTJ0+qNO7EiRMA/nkmTUT0X5IkvbT9TX+IiFRhY2MDSZJw6NAhlcZ5eXlBCIH69eurKRkRERHR2xsyZAgsLS0BACtXrsTMmTMRFhZWbN+wsDDMnDkTK1euhBACVapUwdChQzUZl3QQdwgnUrPOnTsjJCQEx44dw4ULF9CuXbvXjtm7dy8uXLgAIQQ6deqkgZREpEuSkpIAAFWqVFFpXNWqVQHgtQUORET/xjmHiIiIdFmPHj3QokULXL16FcePH0ffvn0xatQotGvXDjVr1oSxsTEyMjLw+PFjnD9/Hjt37sTjx48hhECzZs1YEE5Eb6RTp04IDg5GYGAgvLy80Ldv39eOOXz4MAIDAyGEgJ2dnQZSEpG2KVg0UtJ2IiJ1cHZ2xunTp3Hr1i38+OOP+Oabb157SsHatWuVu2YWbDRCRERE9C5SKBRYuXIlJk2ahKysLHh7e8Pb2xumpqawsrJSPk9+8uQJUlJSALxYoGtoaIi1a9dCoVDI/ApI27EgnEjNXFxcsHXrViQnJ2PKlCmYNWsWnJyciu375MkTbNy4Ebt27QLw4sirESNGaDAtEemCSpUqIT4+HjExMSqNi4yMVI4nIiopzjlERESky4QQWLNmDcaOHYsHDx4gMjISS5cufeUYSZJQs2ZNuLu7ayglEemaESNGYPPmzUhNTcXXX3+N8PBwjBkzBpUrVy7SNyEhAZs3b8bGjRsBvHimPHLkSE1HJiItYGVlpVI7EZE69OjRA/Xr18edO3ewY8cOXLlyBcOHD0fLli1Ro0YNGBkZISsrC9HR0QgODsbevXtx7do1AMD777+PwYMHy/wKiEhb5ebmws/PD6dOnUJISAhiY2ORnZ2NihUronr16mjWrBl69uyJDh06yB2ViLRc69atsXXrVsyePVt5WnZycrKyABwofHpTrVq1sGLFCjRt2lTTUUkHCYlneRGp3ZkzZzB58mTk5eUBAPT19aFQKJCamgohBJo3b46YmBhER0cDeDHp6+vrY82aNejevbuc0YlIC02cOBGnT5/GRx99hN27dyvb/fz84OrqCiFEkSNpcnNz0bdvXzx8+BAff/wx1q9fr+nYRKSlOOcQkS541ZxFRAQAKSkpWL58OTw9PZGbm/vSfgYGBujXrx/c3NxQsWJFDSYkIl1z/PhxzJgxA/n5+QBePFOuV68eatasCYVCgczMTDx+/Bjh4eHIy8tTPlNeu3YtunXrJnN6ItImvr6+6Nq1KwwNDeWOQkRlRGRkJIYOHYr4+PjX7g4OvPju3MLCAjt27MAHH3yg/oBEpHNOnDiBH374Ac+ePVO2/btc7t9zUaNGjbB8+XLUrVtXoxmJSPfk5+fj2LFjCAgIQHBwMBISEpCeng6FQoEqVaqgadOmsLe3R/fu3aGnpyd3XNIR3CGcSAM6duyIDRs24KuvvsKzZ8+Qm5uLtLQ05ZvKglXNBW84zczMsGjRIj64J6I30qtXL5w+fRrXrl3D+vXrMWnSpFf2z8vLw7fffouIiAgIIdCjRw8NJSUiXcA5h4iIiMoCU1NT/Pjjj5g+fTrOnDnz0gf4dnZ2qFq1qtxxiUgHdO/eHe7u7vj666+RnJyM3Nxc3Lp1C7du3SrU79/PlBcvXgx7e3s54hKRFpsxYwZMTEzQrVs39O3bF7a2tixGICK1sra2hpeXF5YtW4ZDhw4pF8AVR09PD927d8e3337Lz1pE9EZ27dqFH374AZIkKT8/VapUCTVq1IBCoUBGRgYiIyORmpoKAAgNDcXgwYOxceNGtGjRQs7oRKSFbt26BSsrK1SsWBF6enro1asXevXqJXcsKkO4QziRBmVlZeHgwYM4evQoQkJCkJaWprxmaGiIJk2awN7eHkOGDIGpqamMSYlIm+Xn56N///4IDw9XFlsOGDAAjx8/xo8//gghBEJCQhATE4OLFy9i69atyi8Ta9WqBS8vLxgYcM0YEZUM5xwi0gXcIZyINCU0NBTbtm2DEAKLFy+WOw4RaYH09HTs2rULAQEBCAkJQXZ2tvJa+fLl8eGHH8Le3h6DBw/myQRE9EYaNmwI4J+dMS0sLNCrVy/07dsXH330kYzJiKgsSExMxN9//43r168jPj4eycnJMDIygoWFBZo0aYJPPvkEVlZWcsckIi11//599O/fH8+fP4e+vj6GDx+OkSNHonbt2kX6hoWF4c8//4SXlxeAF++JvL29YWZmpunYRKTFXFxcEBISgkGDBuHbb7+VOw6VQSwIJ5JReno60tLSoFAoULFixRIdiUVEVBKRkZEYMWIEYmJiSnzcnpmZGXbu3Ik6depoICER6RLOOUSk7VgQTkSawvmGiN5WWloa0tPTYWxsXOIC8KSkJISHhwMA2rRpo854RKSFdu/eDR8fHwQFBSl36S14vmNlZQVHR0f07duXz3CIiIhI63z33XfYtWsX9PT0sGbNmhKdWrtr1y589913EEJg8uTJmDFjhvqDEpHOaN++PZKTk/H5559j2rRpcsehMojnfRHJqEKFCrC0tISpqSmLwYmoVFlbW8PT0xPdunUDAOURWAXrwP79uyRJaNu2LQ4cOMCH+kT0RjjnEBERERERaYaJiQksLS1V2g380qVLcHFxwZgxY9SYjIi01bBhw7Blyxb8/fff+Pbbb9GqVSsAL57nREZGYt26dejbty+cnJzw559/4unTpzInJqKy6t69e3B3d5c7BhFpkdOnT0MIgT59+pSoGBwAhg8fjs6dO0OSJPj5+ak5IRHpmszMTAAo9iQCIk3g2exEREQ6qnLlynB3d8eDBw9w9OhRXLt2Dc+ePUN6erryuL2mTZvC3t4ezZo1kzsuEWk5zjlERERERETvNh4YS0SvUqVKFYwcORIjR47Es2fP4OPjAx8fH1y7dg0AcOvWLdy+fRsrV65Ey5Yt4ejoiJ49e6JSpUryBicireTn54fDhw8jIiICWVlZyMvLK/JeRZIk5ObmIjs7G+np6cjLywMAuLq6yhGZiLRQTEwMAOCTTz5RaVyPHj3g7++PyMhIdcQiIh3WqFEjXLt2DVeuXEHfvn3ljkNlEAvCiUqJm5ubWu4rhMDixYvVcm8iKhtq166NKVOmyB2DiMoIzjlERERERERERNrN0tISY8eOxdixYxEVFaUsDr9x4wYkScKlS5dw+fJl/PDDD/j444+xbt06uSMTkRZZuHAh9uzZo/y9uEVrBadr//caT90mIlVUrFgR8fHxeP78uUrj9PT0AAAKhUIdsYhIh82dOxejR4/Gnj17YG1tjVGjRsHQ0FDuWFSGsCCcqJR4eHio7QMoC8KJ6E2lp6fD398frVu3hqWlZaFrOTk5mDNnDjp27AgHBwdUqFBBppREpCs45xARERERERER6ZYaNWpgwoQJmDBhAp48eQI/Pz9s3LgRz549Q25uLgICAuSOSERa5Pz589i9ezeEEJAkCXp6eqhatSpSUlKQnZ0NU1NTKBQKpKSkICMjA8A/ReAjR45UeZdfIirb2rVrhyNHjuD48eMYOHBgicedPXsWAPDRRx+pKRkR6arc3FzMmjULP/30E3766Sf8+uuv+PDDD2FjYwNTU1OUK1futffgaSj0NlgQTlSK1HHkJlc5E9Gb2rx5M9zd3ZGeno7Vq1ejV69eha5HRkbC19cXR48exYoVK/DNN9+gX79+MqUlIm3HOYeIiIiIiIiISDdlZWXh77//xqlTpxAYGIj4+HhlMScRkSo8PDyUf546dSomT54MQ0NDrFy5EuvXr0fXrl2xZMkSAMDjx4+xadMm7Nq1CwCQn58POzs7WXITkXaaPHkyjh07hoCAAOzYsQMjR4587ZiTJ0/Cy8sLBgYGmDRpkgZSEpEuGTFiRKFav/T0dFy8eBEXL14s8T1YEE5vgwXhRKXkxIkTckcgIlJavnw5Nm3apHwg/+DBgyJ9YmNjoaenh/z8fCQnJ+Orr75CSkoKRo0apem4RKTlOOcQEREREREREemWrKwsnDp1Cj4+PggMDERWVhaAfzZHqlWrFhwdHeHo6ChnTCLSMlevXoUQAq1atcK0adOU7W3btsX69esRGBiobKtZsybmz58Pa2trLF++HLt27cLAgQPRpEkTOaITkRaqX78+VqxYgVmzZuHHH3/E1atXMW7cuGLnkcjISOzatQtbtmyBnp4eFixYgJYtW8qQmoi03X8XzqqykJYbx9LbEhKXbhNplaSkJISHhwMA2rRpI3MaInoXXb58GSNHjoQQAgqFApMnT4aTkxMsLS2L9E1PT4ePjw/WrFmDuLg4GBgY4ODBg6hTp44MyYlIG3HOISJdcP/+fXh7ewPgzgtEpF5+fn5wdXWFEAJhYWFyxyGiMoJzDxGV1OuKwKtUqQIHBwc4OjqiadOmckYlIi3VqlUrZGRkYObMmZg4caKyPSEhAba2thBC4Pjx47C2ti40ztHREXfv3sXgwYPx/fffazo2Eb3jGjVq9No+kiQpCy0rVKiA9957DwqFAtnZ2YiJiUFSUpKyn5mZGWrUqAEhBA4cOKDO6ESkY1TZCfxl2rZtWwpJqKziDuFEWubSpUtwdXWFnp4eQkND5Y5DRO+gnTt3AgCMjIywe/du1K9f/6V9K1SogEGDBqFly5ZwdnZGTk4OtmzZwodpRFRinHOI6F2QlJSEwMBAXLt2DXFxcUhLS4O5uTmqVauGtm3bokOHDjA0NHzpeBsbGxaCExERERFRmfS6InATExN0794djo6OaN++PfT09OSMS0RaLicnBwBQo0aNQu2VK1eGmZkZUlJScOvWrSIF4Q4ODli7di2Cg4M1FZWItEhJ90It6JeWlqbciLE4KSkpSE5O5k69RKQyFnOT3FgQTqSluLk/Eb3MlStXIITAsGHDXlmY+W82NjYYPHgwtm/fjnPnzqk5IRHpEs45RCSnuLg4rF69Gp6ensjPzy+2z8aNG6FQKDBx4kRMnDjxlYXhREREREREZU2HDh2KFIGXK1cOdnZ26Nu3L7p27crPUURUaszMzBAfH4/09PQi12rVqoXr16/j3r176NatW6FrNWvWBABER0drJCcRaZc2bdrIHYGICAAQFRUFALCwsED58uVLPC41NRXBwcFISEhA//791RWPygAWhBMREemYuLg4AECTJk1UGvfhhx8CAJ49e1bqmYhId3HOISK53Lt3D6NGjUJSUtJrF8xmZGTgl19+gY+PD7Zv3w4zMzMNpSQiIiIiInq3ZWZmAgD09PTQpk0bODo6omfPnjA1NZU5GRHpopo1ayI+Ph63b98ucq1WrVoICQkp9pTsjIwMAP/MWURE/7Zt2za5IxARAQC6du0KPT09/PLLL7C3ty/xuICAAMyaNQvm5uYsCKe3woJwIiIiHWNqaoqEhATlw7GSKthVU5VVikREnHOISA7JyckYN24cEhMTAQANGjTAiBEj0KpVK7z33ntQKBTIyMhAZGQkLl26hF27duHevXu4e/cuPvvsM2zfvp3HnBMREREREQFo1KgRHB0d0adPH1haWsodh4h0XPv27XH16lV4enpi3LhxsLKyUl4rOIHy3LlzyMzMhEKhUF47e/YsAKBixYqaDUxE9C+hoaHYtm0bhBBYvHix3HGI6B31uk2MipObmwvgxU7hRG+DBeFEREQ6pmbNmkhISMDJkycxZMiQEo8LDAxUjiciKinOOUQkh02bNiEmJgZCCIwaNQpubm5FCrxNTEzQsGFDNGzYEMOGDcPChQuxf/9+XL16FQcOHMCgQYNkSk9ERERERPTu8PDwkDsCEZUhgwcPxvr165Geno4BAwbAxcUFw4cPh4WFBTp16oSVK1ciNTUVs2fPxrx586BQKLB3714cPXoUQgg0btxY7pdARGVYVFQUPDw8WBBORDh//jyePn36yuslKe7Oz89HSkoKNm/eDAAwNzcvrYhURrEgnIiISMf07NkTwcHBCAgIgLe3NxwcHF47JiAgAL6+vhBCwM7OTgMpiUhXcM4hIjn4+flBCIGPPvoI33zzzWv7GxgY4Pvvv0doaChCQ0Ph6enJgnAiIiIiIiIiIg2rUaMGpk+fjlWrViE5ORm//vorWrduDQsLCzRo0ACffPIJAgMDceLECZw4cUI5TpIkCCH4PIeIiIjeCUIIuLm5FXtNkiRs3779je7ZqVOnt41GZRwLwomIiHTMgAEDsG7dOqSkpGD27Nm4evUqRo0ahVq1ahXpGxkZib1792LTpk2QJAkmJiZwcXGRITURaSvOOUQkh0ePHgEAnJycSjxGT08PAwcORGhoKMLCwtSUjIiIiIiI6N3k7u6u/LOrq2ux7W/q3/cjInqdTz/9FObm5li9ejUSExPx/vvvK68tXboUI0eORERERJFxzs7O6N27twaTEhERERWvXbt2GDhwIPbv31/sdUmSVL5nmzZtMGfOnLeNRmUcC8KJiIh0jJmZGVavXo1JkyYhPz8f27dvx/bt22Fubo4aNWrAyMgIWVlZePr0KeLj4wG8eDOqp6eHZcuWoXLlyjK/AiLSJpxziEgOCoUCz58/R4UKFVQaV3DU3ps8iCMiIiIiItJm7u7uEEIAKFoQXtD+plgQTkSqGjx4MAYMGIBLly7hvffeU7ZbWFjAw8MDW7Zsgb+/P5KSkmBlZQVnZ2f07dtXxsREREREhbm5uaFfv37K3yVJwpgxYyCEwBdffIGWLVu+9h56enowMjJC9erVUaVKFXXGpTKCBeFEREQ6yNbWFn/++ScWLlyo3EUhISEBiYmJyj7/LoSqVq0ali5dCltbW01HJSIdwDmHiDStfv36uHTpEs6fP6/Sl4E3b95Ujici0oT09HSVF68QERERqYskScUWf7/Notm3LSYnorJLX18f7dq1K9KuUCgwZcoUTJkyRYZURERERCVToUIFtG3btthr9erVe+k1InViQTgREZGOat++PQ4fPgx/f3/4+/vj+vXriI+PR3JyMoyMjGBhYYEmTZrAzs4OvXv3hqGhodyRiUiLcc4hIk1ycXFBUFAQPDw80KdPH3To0OG1Yx4+fIjdu3dDCIHhw4drICUR6YLRo0ertKNLAX9/f8ybNw/ly5fHiRMnlO0ff/xxod+JiIiINGXr1q0qtRMREREREZFqCj5f1atXT+YkVFaxIJyIiEiHlStXDt27d0f37t3ljkJEZQDnHCLSlB49emDixInYsGEDPvvsM3zxxRcYPnw4jIyMiu3v7++PBQsWICMjAw4ODujfv7+GExORtrp48SKEEIVOPimJ7OxsxMXFoVy5coXajYyMYGVlVZoRiUgHeXp6Anix8LZ69eolHnfv3j14enoiPT0d8+fPV7bb2NjA1dW1tGMSkZZ52e503LWOiIiIiIiodPDzFcmNBeFEREREREREpFXWrl2LcuXKoXbt2njw4AGWL1+OX375BS1atEDt2rVRoUIF5OTk4OnTpwgODsbTp08hSRL09PTw7NkzjB49utj7CiGwZcsWDb8aItIGQogS901OToaXlxcAoHz58uqKREQ67Ouvv4YQAu7u7ioVhIeHh2P9+vWoUKECC8KJqMSioqIAABYWFiq9d0lNTUVwcDASEhK46JaIiIiIiKgYOTk5SElJQW5uLvLz80s0pkaNGmpORbqMBeFERERUyMWLF7lqkYg0hnMOEb2J3377TVmcWfDPjIwMnD17FmfPni12jBACkiTh8uXLxV6XJEmlgk8i0i3/+9//8MsvvxRpL5gXpk6dqvI9hRBo1KjRW2cjIiqpgqLO58+fy5yEiLRJ165doaenh19++QX29vYlHhcQEIBZs2bB3NycBeFERERERET/X15eHrZv3479+/fj7t27Ko0VQiA0NFRNyagsYEE4ERGRjoqNjcWxY8cQERGBrKws5OXlQZKkIv2eP3+OnJwcpKam4s6dO0hMTOQbTCJSGeccItK04uaY4tqIiEri008/hY+PD8LDw0vtnuXKlcO0adNK7X5EpHsOHDiAoKCgl17ftm0b/Pz8XnsfSZKQnJyMwMBACCHw3nvvlWZMIioD3uSzVG5uLoAXO4UTERERERHRC66urvD39wfA761I81gQTkREpIMOHTqEBQsWICsrS6Vx3BmTiN4E5xwi0rRbt27JHYGIdIyBgQGWLl2K7du3F2r38PCAEAJt27Yt0VGdQggoFApYWlqie/fuqF27troiE5EOaNu2LX744YdiP0tJkoQLFy6odL+Cz1jOzs6lFZGIdMj58+fx9OnTV14vSXF3fn4+UlJSsHnzZgCAubl5aUUkIiIiIiLSal5eXjh16pTy1NoaNWqgfv36qFixIgwMWKpL6se/ZURERDrm4cOHmDt3rnKHlpISQqBJkyZo3769mpIRkS7inENERES6okmTJliyZEmhNg8PDwDA6NGjYW9vL0csItJh1tbWmD59OpYtW1bs9ZLuIiWEgJGREapXr44+ffpg8uTJpRmTiHSEEAJubm7FXpMkqcjCuJLes1OnTm8bjYiIiIiISCccOHAAAKCnp4dFixbByclJ3kBU5rAgnIiISMfs2LEDubm5EEKgQ4cOmDBhAqytrfHrr7/i8OHDGDhwICZPnoyUlBSEhYVhx44dCAsLAwAMHToUQ4YMkfkVEJE24ZxDREREuszJyQlCiBLtDk5E9CbGjRuHcePGFWpr2LAhhBBwd3fnYhQiKjXt2rXDwIEDsX///mKvv8lR5m3atMGcOXPeNhoREREREZFOCA0NVZ7exmJwkgMLwom0jI2NDVxdXeWOQUTvsILjhK2srPD777+jXLlyAIAuXbrg0KFDuHLlCmrWrAngxQ54Tk5OmD17Nnx8fLBkyRLY2dnB0tJStvxEpF045xDRu+DmzZvw8/NDSEgI4uPjkZmZCSMjI1haWqJBgwbo3LkzWrVqJXdMItJCS5culTsCEZVRb1KYSUT0Om5ubujXr5/yd0mSMGbMGAgh8MUXX6Bly5avvYeenp7yVIIqVaqoMy4REREREZFWyczMBPBiQS6RHFgQTqRhiYmJOHfuHG7cuIGEhARkZGTg559/BgBcuXIFiYmJ6Nq1K4QQxY5nQTgRvc7Tp08hhICTk5OyMBMAmjZtCgB48OABEhMTYW5uDgAwMDDAkiVLEBQUhPj4eOzatQszZsyQIzoRaSHOOUQkp9jYWLi5ueHMmTOF2iVJghACd+7cQWBgIDZs2ID27dtj6dKlXIRCRERE77xbt27JHYGIdFSFChXQtm3bYq/Vq1fvpdeIiIiIiIjo9SwtLfH48WPk5ubKHYXKKBaEE2lIRkYGfvrpJ3h4eCA7OxvAP0UKBU6dOoUNGzbggw8+wKJFi0q0EwMR0X+lp6cDgHJH3gLW1tZQKBTIyspCWFgYbG1tldeMjIzg6OiITZs24fz58xrNS0TajXMOEcnl8ePHGD58OOLj4wvtoGlmZgYjIyNkZGQgNTVV2X7+/Hk4Oztj3759sLKykiMyEWmx2NhYeHl54fr160hJSUFubi7y8/NfO04IgS1btmggIREREdGb2bp1K4AXBeFERERERET05j7++GPs3LkTp0+fhrOzs9xxqAxiQTiRBsTGxsLFxQUPHz585VGfkZGRkCQJDx48wOjRo+Hu7o7OnTtrLigR6QQTExMkJycXO9/UrFkT4eHhCA8PL1ScCfzzwD8iIkITMYlIR3DOISI55Ofn4/PPP0dcXBwAoFmzZpg4cSLat28PU1NTZb+EhAScP38emzZtwvXr15GQkIBp06Zh37590NfXlys+EWmZw4cPY/78+cjKylJp3H83AiAiehOJiYm4ceMGUlNT8fz581c+X/43Jycn9QYjIp3x713Bg4KCcPjwYbi4uBQpEE9LS0PPnj3RoUMHDB8+HK1atdJ0VCIiIiKNSkpKQqVKleSOQURaZNy4cfDw8ICvry8GDRqEDh06yB2JyhgWhBOpmSRJ+Oyzz5TFTm3btsXAgQORmJiIpUuXFuo7bNgwxMbG4tKlS8jNzcWcOXPg4+MDCwsLGZITkbaqVq0akpOT8fjx4yLXPvjgA4SHh+POnTtFrunp6QF48WCfiKikOOcQkRw8PT0RHh4OIQSGDh2K+fPnK+eVf6tcuTIcHBzQq1cvfPfdd9izZw/CwsJw4sQJ9OjRQ4bkRKRt7t27Bzc3Nx7xSUQaFxMTg++++w6nTp0qcRF4ASEEC8KJSCUZGRmYPXs2Tp48CQBo2bJlkYLwyMhIxMfH48iRIzhy5AgGDRqEhQsXcrEtERERvbMuXbqE1q1bv9FYDw8PLF++HOfOnVO2ffzxxzhx4kRpxSMiHVSzZk389NNPmDVrFj799FOMGjUK3bt3R506dVCxYsViv8siKk0sCCdSs4MHD+LGjRsQQuDLL7/EpEmTAAB+fn5F+rZr1w7t2rXDzz//jP/9739ITU3Fzp07MW3aNE3HJiIt1qZNG9y5cwceHh6YPHkyDA0NlddsbGwgSRLOnz9fZFxoaCgAoHz58hrLSkTaj3MOEcnBx8cHAFC3bt2XFoP/m56eHhYsWIArV67g7t27OHDgAAvCiahENm3ahNzcXAghYGtri08//RQNGjRAxYoVWfxERGqTlZWFUaNG4fHjxyoXgxMRqapgY6OLFy8q55ynT58W6Zefn4+mTZvixo0bkCQJ+/fvR05ODpYtW6bpyEREREQlMmnSJPz6669FTrF9lYiICMyfPx9BQUFFrhkZGcHKyqo0IxKRjhk/fjyAFxsWRUVFYfPmzdi8eXOJxwshlN+jE70JFoQTqdmRI0cAAC1atFAWg7/O9OnTcf78eVy5cgUBAQEsCCcilTg6OmLHjh2Ijo7G6NGj8eWXXyqP/WzXrh3WrVuHqKgo/P7775g8eTIA4OrVq9i3bx+EELCxsZEzPhFpGc45RCSHsLAw5c6XJd1NQU9PD87Ozli+fDnu3r2r5oREpCvOnj0LIQQaN26MP/74g0XgRKQRW7duxaNHjyCEgJGREXr16oUGDRrAxMQEBgb8WoeISpeXlxcuXLgAIQTq1auH77//Hi1atCjSr3Hjxti3bx8ePnyIb775BpcuXcKhQ4fg6OiIjz/+WIbkRERERK+WmZmJKVOmYM2aNejatesr+z5//hzr1q3D+vXr8fz5c0iSBCGEhpISka4oeJ5cgAv9SdP45JBIzQoKFRwcHFQa17NnT1y5cgURERHqCUZEOuujjz5Cr1694Ovri2vXrmHMmDFYt24d7Ozs0L59e9jY2ODBgwdYs2YN9u/fD4VCgXv37iEvLw9CCPTq1Uvul0BEWoRzDhHJISkpCQBU3o3lvffeAwDExMSUdiQi0lFxcXEAgIEDB7IYnIg0xtfXFwBgamqKnTt3ok6dOjInIiJd5unpCQCoXr069uzZA2Nj41f2r1WrFtatWwcHBwfExsZi9+7dLAgnIiKid1K5cuWQk5OD6dOnY/ny5S+t2zl//jwWLlyIhw8fKos3raysMG/ePE3GJSId0KZNG7kjUBnHgnAiNSsoVKhSpYpK46pWrQoAyM7OLu1IRFQGLF++HAYGBvDy8oIQAjVr1gTw4niZJUuWYOzYscjMzERkZCSAf1YlNmrUCC4uLrLlJiLtxDmHiDTNxMQEycnJiI2NVWlcQWFnhQoV1BGLiHSQqakp4uPjYW5uLncUIipDIiIiIITAsGHDWAxORGoXGhoKIQSGDx/+2mLwAiYmJhgyZAjc3d0RHBys3oBEREREb+iPP/7A1KlTkZGRgdmzZyMzMxMDBw5UXk9ISMCyZctw6NAhAC++vzI0NMTEiRMxefJklC9fXq7oRKSltm3bJncEKuNKdq4yEb2xSpUqAVB9B7qCgqmC8UREqjA0NMSKFSvg6emJzz//XFmcCQDNmzfHrl27YGtrC+DFB1uFQoEhQ4Zgy5YtMDQ0lCs2EWkpzjlEpGn169eHJEnw9vZWadyRI0cAAHXr1lVHLCLSQY0bNwYAhIeHy5yEiMqSgqOFGzRoIHMSIioL0tLSAADW1tYqjatduzYAIDk5udQzEREREZWGDh06YPPmzTA3N0deXh6+/fZbbN++HQCwb98+9O7dG4cOHYIkSZAkCZ06dcKRI0cwffp0FoMTEZFW4g7hRGrWsGFDnD59Gt7e3hg9enSJxuTm5uLAgQMQQqBhw4ZqTkhEuiYrKwtGRkYAXsxBxc0jDRs2xMaNG5GTk4Pk5GRUrlyZx58T0RvhnENEcrC3t8fFixcRHByMDRs2YOLEia8ds2HDBgQHB0MIAXt7ew2kJCJdMGTIEPz999/Ys2cPxo4dC1NTU7kjEVEZULNmTdy+fRuJiYlyRyGiMqBq1aqIjo7Gs2fPVBpXMEeZmJioIxYRERFRqWjWrBl27NiBCRMmIDo6GosWLcKuXbtw//595Ym2NWrUwNy5c9GtWzeZ0xIREb0d7hBOpGa9evUCAFy7dg3r169/bf+CVYkREREAgB49eqgzHhHpoJkzZ2LIkCHYv3//a/saGhqiatWqLMwkojfGOYeI5DBkyBBYWloCAFauXImZM2ciLCys2L5hYWGYOXMmVq5cCSEEqlSpgqFDh2oyLhFpsW7duqFfv36Ij4/HhAkTcOfOHbkjEVEZ0KNHD0iSBB8fH7mjEFEZYGNjA0mScOjQIZXGeXl5QQiB+vXrqykZERERUemwsbHBrl27UKdOHUiSpCwGL1euHCZPngxvb28WgxORWvj7+2PBggUYNGgQunbtinbt2imvHT58GEuWLEFkZKSMCUnXCKlguRMRqUV+fj769++P8PBwCCHQo0cPDBgwAI8fP8aPP/4IIQRCQkIQExODixcvYuvWrbh16xYAoFatWvDy8oKBATfzJ6KS69SpE2JjYzFkyBB89913cschIh3HOYeI5HLp0iVMmjQJWVlZyjZTU1NYWVnB2NgYGRkZePLkCVJSUgAAkiTB0NAQmzdvRsuWLeWKTURa5vDhw8jPz8e6devw4MEDCCHw/vvvw8bGBhUrVnztQjchBBYvXqyhtESkK9LT09GvXz9ERUXB1dUVU6dOlTsSEemwI0eOYObMmRBCYOTIkfjmm28ghHjlmLVr1+K3336DEALffvstRowYoaG0RERERG8uKSkJkydPxrVr1yCEgIODA1auXCl3LCLSQbdu3cLs2bNx9+5dZZskSRBCKDc4Wrx4MbZu3QoDAwPMmDGjRKfhEr0OC8KJNCAyMhIjRoxATEzMax+iAS/+B2BmZoadO3eiTp06GkhIRLqkadOmyM3NxfLly+Ho6Ch3HCLScZxziEhO169fx+zZs5UnLAEo9Jnr3488atWqhRUrVqBp06aajEhEWq5hw4ZF5pWSPNv5t5edYEBE9CoRERGYPHkyHj16hEaNGqFHjx6oU6cOTExMSrSBSJs2bTSQkoh0wfPnzzFw4EDcuXMHQgg0atQIw4cPR8uWLVGjRg0YGRkhKysL0dHRCA4Oxt69e3Ht2jVIkqTc2KhcuXJyvwwiIiKiEsnKysK0adMQGBgIIQQGDx6M77//Xu5YRKRDrly5gvHjxyM7O1v5PVXB56p/F4S7urrCz88PwIvvtqZOnQpXV1fZcpNuYEE4kYYkJCRg/vz5OHHiRKGiBCEE/vufYdu2bbFkyRJYWVlpOiYR6YBevXrh4cOH+OKLLzBlyhS54xCRjuOcQ0Ryy8/Px7FjxxAQEIDg4GAkJCQgPT0dCoUCVapUQdOmTWFvb4/u3btDT09P7rhEpGUaNmz4VuP//YCfiKikPvzwQwAvFqHk5eWpvBBFCIHQ0FB1RCMiHRUZGYmhQ4ciPj6+xBsbWVhYYMeOHfjggw/UH5CIiIjoFezt7VXqn5eXh6dPnwJ48fmpatWqxS5wE0IoizWJiEoiLS0NPXv2RHx8PBQKBSZMmIBBgwbhxo0bcHV1LfS8OCkpCVu2bMH69euRm5sLfX19/PXXX2/9TJrKNhaEE2nYgwcPcPToUVy7dg3Pnj1Deno6jIyMYGFhoSxUaNasmdwxiUiLeXh4wM3NDWZmZli/fj3nFCJSK845REREpMuePHny1vfggn8iUhUXoxCRHBITE7Fs2TIcOnQI+fn5L+2np6eHbt264dtvv0XVqlU1mJCIiIioeAUnvJW0BO5lp0wW14+frYhIFX/88QdWrVoFfX19/Pnnn2jfvj0AwM/Pr0hBeIHAwEBMnjwZkiRhyJAh+O677+SITjri9ecKElGpql27NnfPJCK1cnZ2RnZ2NhYvXoxhw4ahffv2aNWqFWxsbGBqagpDQ8PX3oPHChNRSXHOISI5eHp6AgDat2+P6tWrl3jcvXv34OnpifT0dMyfP19N6YhIl7CYm4jkwOOBiUgO5ubmWLp0Kb766iv8/fffuH79OuLj45GcnKzc2KhJkyb45JNP+B6JiIiI3ik1atSQOwIREQDgxIkTEEKgV69eymLw1/nkk0/Qu3dvHDlyBBcvXlRzQtJ13CGcSIPS09Ph7++P1q1bw9LSstC1nJwczJkzBx07doSDgwMqVKggU0oi0nYFxwrn5+cjPz+fxwoTkVpxziEiORTs+OLu7q7ScaC+vr6YMWMGKlSogMuXL6sxIREREREREREREREREZUl7dq1Q0pKCn788UcMHDhQ2f6qHcIBYO/evZg/fz4UCgWuXr2qycikY/TkDkBUVmzevBl2dnaYNWtWsRN3ZGQkfH19MX/+fHTt2hWHDh2SISUR6YLc3Fzk5uYqj/WUJEnlHyKikuKcQ0TaJCoqCgDw/PlzmZMQUVmQnp4ODw8PuWMQERERqc29e/fg7u4udwwiIiIijbh//z7c3d35/oeIXiozMxMAYGxsrNK4go1j+d05vS0DuQMQlQXLly/Hpk2blJP2gwcPivSJjY2Fnp4e8vPzkZycjK+++gopKSkYNWqUpuMSkZabOnWqyjv0EhG9Kc45RKROBw4cQFBQ0Euvb9u2DX5+fq+9jyRJSE5ORmBgIIQQeO+990ozJhGVAaGhofDy8kJERASysrKQl5dX5OG8JEnIzc1FdnY20tLSEBUVhfz8fDg7O8uUmojKqvT0dJ5ASUQq8/Pzw+HDh0v8fic9PR15eXkAAFdXVzkiExEREWlUQUG4EILvf4ioWFWqVEF0dDTu37+v0ribN28CACwsLNQRi8oQFoQTqdnly5exceNGCCFgbGyMyZMnw8nJqUi/du3aISgoCD4+PlizZg3i4uKwdOlSdOjQAXXq1NF8cCLSWtOmTXvjsVlZWYiOji7FNESk6zjnEJE6tW3bFj/88AOysrKKXJMkCRcuXFDpfpIkQQjB4kwiUskff/yBNWvWlHh3ln/348I5Inpbd+/eRUREBDIzM5WFl//27+LM1NRU3L59G2fOnHnlojoiov9auHAh9uzZo/y9uPc9Be9r/nuN73eIiIiIiIheaNmyJby8vPDXX39h0qRJMDQ0fO2Y+Ph4/PXXXxBCoEWLFhpISbqMBeFEarZz504AgJGREXbv3o369eu/tG+FChUwaNAgtGzZEs7OzsjJycGWLVvw/fffayouEekAe3t7CCHw/fffw9bWtsTjfHx8MHPmTFSrVg3+/v7qC0hEOoVzDhGpk7W1NaZPn45ly5YVe72kxZlCCBgZGaF69ero06cPJk+eXJoxiUiHhYaGYtWqVSqNKSiKsre3V+n9ERHRv92+fRtfffUVbt++LXcUItJx58+fx+7duyGEgCRJ0NPTQ9WqVZGSkoLs7GyYmppCoVAgJSUFGRkZAP55vzNy5Eh88skncsYnIiIiIiJ6ZwwcOBBeXl6Ijo7GrFmzsGLFilcWhUdHR2Pq1KlITk6GEAL9+/fXYFrSRSwIJ1KzK1euQAiBYcOGvbIY/N9sbGwwePBgbN++HefOnVNzQiLSNU+ePIEQApmZmSqPzc/PR1xcnBpSEZGu4pxDROo2btw4jBs3rlBbw4YNIYSAu7s77O3tZUpGRGXB7t27AbwoenJycsLkyZNhbW2NpUuXYvv27Rg5ciS++eYbpKSkICwsDFu2bIG/vz+EEGjUqBFGjBgh8ysgIm2UmpqK8ePHIyEhocQL4P6tWbNmakhFRLrKw8ND+eepU6di8uTJMDQ0xMqVK7F+/Xp07doVS5YsAQA8fvwYmzZtwq5duwC8eLZjZ2cnS24iIiIiIqJ3TYcOHdCrVy/4+vri+PHj6NmzJxwcHJCWlqbsc+bMGcTExODixYvw9fVFVlYWhBDo1KkTF9zSW2NBOJGaFRQ5NWnSRKVxH374IQDg2bNnpZ6JiHRDfHw8srOzX3o9ISEBUVFRr71Pfn4+UlJSsGPHDgAvTisgIvovzjlE9K55k+IoIiJVXbp0CQBQv359ZSEU8OLB/vbt2+Hv749vv/0WlSpVQocOHdChQwcsWbIEW7ZswW+//QYHBwfUrl1brvhEpKV27tyJ+Ph4CCFQpUoVDBw4ENbW1vD09MSVK1fQuXNn2NvbIzU1FWFhYfDz80NGRgaEEPjjjz/45SERqeTq1asQQqBVq1aYNm2asr1t27ZYv349AgMDlW01a9bE/PnzYW1tjeXLl2PXrl0YOHCgyt+BERERERER6aply5YhNTUVZ86cQXR0NDZu3Ajgn5OWJk6cqOxb8F1X8+bNVT6pkqg4LAgnUjNTU1MkJCQoj9Erqfz8fABA+fLl1RGLiHTAsWPH8P333xdpL3gTOX/+fJXvKYTgLlJEVCzOOUT0Lrl161ap3u/MmTOYP38+hBDw8/Mr1XsTkXaLjY2FEAIODg6F2gsW8kdFReHZs2ewtLRUXpszZw78/PwQFRWF3bt3w83NTaOZiUj7/f333wAAY2NjeHp6okqVKsprly9fRmJiIgYNGqRsi4yMxOeff447d+5gwYIFOHLkCBQKhcZzE5F2io+PBwB07ty5UHtBkXd8fDwiIyNhbW2tvDZ+/Hh4eHjg7t272LNnT7HPjIiIiIiIiMqi8uXLY8OGDdi2bRs2bdqE6Ojol/Y1MzODi4sLpkyZAgMDlvLS29OTOwCRrqtZsyYA4OTJkyqNK9hxoWA8EdF/DR8+HC1btoQkSaX2Y2pqilmzZsn90ojoHcQ5h4h0WWZmJp48eYInT57IHYWI3jGZmZkAACsrq0LtlpaWMDExAVB0kYq+vj4cHR0hSRKCgoI0E5SIdEpERASEEBg0aFChYvCCBbU3btxAVlaWst3a2hq//vorjIyMEB0djQMHDmg8MxFpr5ycHABAjRo1CrVXrlwZZmZmAIpflOvg4ABJkhAcHKz2jERERERERNpECIHRo0fDz88PO3fuxNdff41x48Zh8ODBcHFxwYwZM7Bx40b8/fffcHV1ZTE4lRr+TSJSs549eyI4OBgBAQHw9vYusqNUcQICAuDr6wshBOzs7DSQkoi01ZIlS3Do0KFCbe7u7hBCoHfv3rCxsXntPYQQUCgUqF69OmxtbVGpUiU1pSUibcc5h4iIiMoaU1NTJCYmIjs7u8i1999/H2FhYbh7926R5ze1a9cGAC40IaI3kpycDACoU6dOofY6derAwMAAeXl5CAsLQ4sWLZTXatasiV69esHT0xMnT57EyJEjNZqZiLSXmZkZ4uPjkZ6eXuRarVq1cP36ddy7dw/dunUrdK1gQ6NX7XZHRERERERUlunr66Nly5Zo2bKl3FGojGBBOJGaDRgwAOvWrUNKSgpmz56Nq1evYtSoUahVq1aRvpGRkdi7dy82bdoESZJgYmICFxcXGVITkbZ4//334erqWqjN3d0dANCnTx/Y29vLEYuIdBTnHCIiIipr3nvvPSQmJuLBgwdFrn3wwQcIDQ0tdsfM3NxcACi2sIqI6HWMjIyQnp6uPImggIGBAaysrPDo0SPcvXu3UEE4AHz00Ufw9PREeHi4JuMSkZarWbMm4uPjcfv27SLXatWqhZCQEISGhha5lpGRAeCfE1WIiIiIiIjKusmTJ8PR0RH29vZQKBRyx6EyiAXhRGpmZmaG1atXY9KkScjPz8f27duxfft2mJubo0aNGjAyMkJWVhaePn2K+Ph4AIAkSdDT08OyZctQuXJlmV8BEWmbgmLNkuzUS0T0tjjnEBERkS5r164dbt68CQ8PD3z66acwNTVVXivYuffcuXPIy8uDvr6+8trVq1cBAMbGxpoNTEQ6oXLlykhPT8ezZ8+KXKtVqxYePXpUbOFmwRyVlJSk7ohEpEPat2+Pq1evwtPTE+PGjYOVlZXyWv369QG8eL+TmZlZqKDh7NmzAICKFStqNjAREREREdE7KiAgAH///TeMjIzQtWtX9O3bF5988gkMDFimS5qhJ3cAorLA1tYWf/75J2rVqgVJkiBJEhISEnDz5k1cvnwZN2/eRFxcnPJatWrVsGHDBu6ySURvxNXVFa6ursojyomI1IlzDhEREemyAQMGQE9PDwkJCRgwYAA8PDyUu2Ha2toCAOLj4/Hjjz8iJycHAODt7Q1PT08IIZRFVEREqmjevDkkSYKvr2+Rax988AEkSVIuPPm3hw8fAgD09PjVDxGV3ODBg2FgYID09HQMGDAA7u7uyg2MOnXqBABITU3F7Nmz8fTpUyQnJ2P9+vU4evQohBBo3LixnPGJiIiIiIjeGeXKlYMkScjMzIS3tzc+//xzfPzxx5g/fz6CgoLkjkdlAJ8KEmlI+/btcfjwYfzyyy8YOHAg6tevj8qVK0NfXx8VKlRArVq14ODggGXLlsHPz0/5pSIREREREREREcmjbt26GDFiBCRJQmRkJObOnasswmzRogWaN28OANi9ezfatWuHNm3aYObMmcjNzQUA9OvXT7bsRKS9CjYKCQkJweLFi5Genq689tFHHwEAQkNDce7cOWV7UlISdu/eDQCoUaOG5sISkdarUaMGpk+fDkmSkJycjF9//RXh4eEAgAYNGuCTTz6BJEk4ceIEunTpgvbt22PVqlWQJAkAMGjQIDnjExERERERvTPOnTuHpUuXws7ODvr6+pAkCUlJSdi3bx9Gjx6NLl26YMWKFbh165bcUUlHCang0zoRERERERERURnk5+cHV1dXCCEQFhYmdxwiesdIkoQ1a9Zg06ZNeP78OY4dO4aaNWsCAB48eIARI0YgMTGxyLiPP/4Y69evhxBC05GJSMtJkoR+/frh7t27AABjY2P8/vvvaN26NTIzM9G5c2ekpKTA0NAQffr0gbGxMY4fP45nz55BCAEXFxfMnTtX5ldBRNpm3759WL16NRITE3HixAnl4pL4+HiMHDkSERERRcYMGDAAixcv1nBSIiIiInnwOTIRqSIlJQXHjh2Dj48Pzp8/j7y8PABQPi+2sbGBo6Mj+vTpo3zeTPS2WBBORERERERERGUaH+QTUUkkJCTA398f/fv3h76+vrI9NjYWP//8M/z9/ZGUlAQrKys4Oztj/PjxKFeunIyJiUibPXnyBGPHjsXjx48hhICHhwcaNmwIADhw4ADmzp1bZMGJJEmoVKkSDh48CEtLSzliE5GWy8vLw6VLl9C2bdtCc0xmZia2bNlS5P1O3759ZUxLREREpFl8jkxEbyohIQHHjh2Dt7c3Ll26hPz8fAD/FIc3a9YMjo6O6N27NywsLOSMSlqOBeFE77iLFy+ibdu2cscgIiIiIiLSWXyQT0RERO+inJwc7NmzB8eOHcO6detQoUIF5bV9+/Zh+fLlSE1NVbbZ2NhgxYoVaNy4sRxxiYiIiIiIdBqfIxNRaYiLi8PRo0fh6+uLK1euIC8vT1kYrq+vjxs3bsickLQZC8KJNCQ2NhbHjh1DREQEsrKykJeXh+L+83v+/DlycnKQmpqKO3fuIDExEaGhoTIkJiIiIiIiKhv4IJ+IiIi0UVZWFi5fvqzcrbd58+ZFdg0nIiIiIiKi0sHnyERUmnJycuDj44NVq1YhJiYGkiRxfqG3ZiB3AKKy4NChQ1iwYAGysrJUGlcw0RMRERERERERERER/ZuRkRE6duwodwwiIiIiIiIiIiqBlJQU+Pn54dixY7hw4YKylrBgU9kWLVrIGY90AAvCidTs4cOHmDt3LnJzc1UaJ4RAkyZN0L59ezUlIyIiIiIiIiIiABg9ejSAF89jtmzZUqT9Tf33fkREREREREREpBkDBw6Ek5MT+vTpg8qVK7/1/Vq1aoWtW7eWQjIiKksKisB9fX1x7tw5ZQ1hQRF43bp10bdvX/Tt2xfW1tZyRiUdwIJwIjXbsWMHcnNzIYRAhw4dMGHCBFhbW+PXX3/F4cOHMXDgQEyePBkpKSkICwvDjh07lEc/DB06FEOGDJH5FRARERERERER6baLFy8We0rby9pLgie/EdHreHp6Kv/s5ORUbPub+vf9iIiIiIiIyqKbN28iNDQUy5Ytg62tLfr164fu3bujfPnyb3Q/c3NztG3btpRTEpEuel0RePXq1dGnTx84OjqiYcOGckYlHSOkgr9lRKQW/fv3x+3bt2FtbQ0fHx+UK1cOAODj44P/+7//g42NDby9vZX9c3NzMXv2bPj4+EChUMDX1xeWlpZyxSciIiIiItJ5fn5+cHV1hRBCuUCXiMqWgofu/50H3vZhPOcVInqVhg0bQggBIQRCQ0OLtL+p/96PiIiIiIioLOratSuioqIAQPkZy9jYGD169EC/fv3QoUMHOeMRkQ46cODAS4vAzczM0LNnT/Tt2xdt2rThZiKkFtwhnEjNnj59CiEEnJyclMXgANC0aVMAwIMHD5CYmAhzc3MAgIGBAZYsWYKgoCDEx8dj165dmDFjhhzRiYiIiIiIiIjKhFu3bqnUTkRUWl62Zw/38iEiIiIiIno7J0+exOXLl3H48GH4+voiKSkJ6enp8PT0hKenJ6pWrQpHR0fu0EtEpWbu3LkQQiif65QvXx5dunSBo6MjOnXqVKh2kEgdWBBOpGbp6ekAgJo1axZqt7a2hkKhQFZWFsLCwmBra6u8ZmRkBEdHR2zatAnnz5/XaF4iIiIiIiIiInrh1q1bsLKyQsWKFeWOQkQ6aMmSJSq1ExERERERkWpatWqFVq1aYd68eQgMDISXlxdOnjyJzMxMxMTEYOPGjdi4cSPq1asHJycn9OnTB5aWlnLHJiItpqenh/bt28PR0RHdu3dHhQoV5I5EZQgLwonUzMTEBMnJycXu6FKzZk2Eh4cjPDy8UEE4ANSrVw8AEBERoYmYREREREREZZZCoUCNGjV4PB8RFbFo0SKEhIRg0KBB+Pbbb+WOQ0Q6xtnZWaV2IiIiIiIiejMGBgbo0qULunTpgoyMDBw/fhyHDx/GuXPnkJeXhzt37uCnn37CypUr0bZtW/Tv35+FnESksrlz56JPnz6wsLCQOwqVUSwIJ1KzatWqITk5GY8fPy5y7YMPPkB4eDju3LlT5Jqenh4AIC0tTe0ZiYiIiIiItN3jx48REhKCuLg4ZGZmwsjICJaWlmjQoAFsbGxeObZjx444efKkhpISkTYJDw9HTk4OKlWqJHcUIipD3NzckJWVhf/X3p1HZVkn7h+/PmyCJoi4jWKalqK57zsm7oDg0u5SqVmNpTPZN3WqabPNajKtnLJF07I0TVPcMPfdXNDAfQkFRUVFkUXg/v3hz6cYMcWAmwfer3M45+Gz3OfinBmM57nuz923b1+1a9fO7jgAAAAAUKSULFlSYWFhCgsL09mzZ7Vy5UqtWLFC69atU3JysjZu3KiNGzfqlVdeUefOndWnTx+1bt3a7tgAnMDAgQOzfX/27Flt2LBBu3fvVmJioi5duqQPP/xQkrRt2zadPXtWnTp14sAi5BkK4UA+a968ufbt26e5c+dq2LBh8vDwcMzVqFFDlmVp48aN1+yLjo6WJJUoUaLAsgIAAACAs4mIiNAnn3yiAwcOXHfN7bffrr///e/q1atXASYDUBSkpKRIku644w6bkwAoTjZt2qT4+Hi5uLhQCAcAAACAfOTr66uQkBD5+fnJ29tbP/74ozIzM2VZllJSUrRgwQItWLBA1apV09NPP63g4GC7IwNwApcuXdL48eM1d+5cpaWlSZIsy8pW/F6xYoWmTJmi6tWra9y4cWrSpIldcVGEuNgdACjqQkNDJUnx8fEaOHCgNm/e7Jhr2bKlJCkuLk7//e9/HePbt2/XrFmzZIy54Ul2AAAAAFAcZWVlafTo0Xr22Wd14MABWZZ13a+jR4/q+eef17PPPqusrCy7owNwInXq1JF05bQWACgop0+fliS1b9/e5iQAAAAAUDSlp6dr8eLFeuaZZ9SyZUsNGzZMP/zwgzIyMmRZlgICAnTffffJz89PlmXpyJEjGjVqlEaMGKHMzEy74wMoxE6dOqU+ffpo5syZSk1NdXxW9b+OHTsmy7J0+PBhDRw4UCtXriz4sChyjJXT/9oA5KmRI0dq8eLFjrt8Jk+erMDAQFmWpeDgYB0+fFiS5O/vLy8vLx08eFCZmZkyxmjUqFEaPHiwnfEBAAAAoNB5/fXXNX36dEmSq6ur2rdvr9atW6tq1ary8vJScnKyjh49qo0bN2rdunXKysqSMUaPPPKInn/+eZvTA3AWUVFRGjhwoC5fvqxnn31W/fv3z/b0NwDID506dVJ8fLxGjx6tQYMG2R0HAAAAAIqEzMxMrVu3TgsXLlRkZKQuXbokSY6iZvny5RUSEqLw8HDVrl1b0pWDSVatWqXx48fr0KFDMsbo73//u4YPH27bzwGg8LIsS/fee692794tSWrRooX69u2rs2fP6q233pIxRjExMZKuPCFu4sSJ2rp1qyTJ29tbixYtkp+fn2354fwohAMFID09XWPHjtWCBQtkjNHChQsdJ3/v3LlTjzzyiFJSUhyF8av/t6xbt65mzpzJB40AAAAA8Ae7d+/WvffeK0m6/fbbNWHCBAUEBFx3fUxMjEaOHKmjR4/KGKN58+apVq1aBRUXgBPbtm2boqOjNX78eKWnp6tkyZKqV6+eatSoIW9vb7m7u9/wGnxACCC3Pv/8c40fP14VK1bUN998oypVqtgdCQAAAACc1tatW7VgwQItWbJE586dk/R7L8fT01NBQUEKDw9X27Zt5eLikuM1EhIS1KVLF6WlpalKlSpavnx5QcUH4ER+/PFHjR49WsYY/fOf/9TQoUMlSZGRkRo+fHi2QvhVH374oT7++GMZY/TUU0/p6aeftiM6iggK4UAB2rNnj5YtW6Ynnngi2weGe/bs0TvvvKMNGzbIsix5eXkpNDRUzz33nEqXLm1jYgAAAAAofF588UXNmjVLJUuW1E8//XRTJanjx48rNDRUKSkpeuihh/Tiiy8WQFIAzi4gIMBxA7905cPCP35/M/73DX4AuBnvvfeepkyZopIlS6pnz55q2rSp42aUmzlApHLlygWQEgAAAAAKr3feeUeLFi3SiRMnJP1eAjfGqFmzZgoPD1f37t1VqlSpm7refffdp6ioKJUoUUI7d+7Mt9wAnNfQoUO1Zs0aNWnSRN98841j/M8K4ZL00EMPadu2bapXr55mz55dkJFRxLjZHQAo6lJTU+Xp6SnpyoeIOZ1aFxAQoC+++ELp6ek6f/68ypYtK1dX14KOCgAAAABOYfPmzTLGqF+/fjd9YmaVKlXUr18/TZs2TVu2bMnnhACKkv89TyM352vktjwOAJLUrVs3SZK7u7uSk5M1e/bsXH0YaIxRdHR0fsUDAAAAAKfwxRdfyBjjeC+nevXqCgsLU1hY2C3dRJueni5JqlatWp7mBFB0xMTEyBijnj175mpft27dtG3bNh05ciR/gqHYoBAO5LNnn31Wp06d0n333ad+/fr96VoPDw+VL1++gJIBAAAAgHNKSEiQJDVo0CBX+66uj4uLy/NMAIqmadOm2R0BQDF09OjRbN/zoFcAAAAAuDXe3t7q2bOnwsPD1bBhw790rSeeeELlypWjEA7gus6dOydJKleuXK72Xe0LpqWl5XUkFDMUwoF8tmvXLp06dUp16tS5YSEcAAAAAHDzMjIybml9VlZWfsQBUAS1aNHC7ggAiqHevXvbHQEAAAAAnN6kSZMUGBgod3f3PLle9+7d8+Q6AIquMmXK6MyZM46DjW7WsWPHHPuBv4JCOJDPzp49K0lq1qyZzUkAAAAAoGioUqWKDh48qF9++UXh4eE3vW/r1q2SpL/97W/5lAwAAOCve/PNN+2OAAAAAABOr3PnznZHAFDMBAQEaO3atYqIiNDAgQNvak9GRobmzJkjY4wCAgLyOSGKOgrhQD6rUqWKjh49quPHj9sdBQAAAACKhFatWunAgQOaN2+e+vfvr9q1a99wz549ezRv3jwZY9S6desCSAkA0ubNmzllHAAAAAAAoBA4d+6c1qxZo507d+r06dO6ePGifH19VaFCBbVo0UKtW7eWh4eH3TEBOLHu3btr7dq12rlzpz777DMNHTr0T9dnZmbqxRdf1JEjR2SMUdeuXQsoKYoqY1mWZXcIoCibO3euxowZIx8fH3322Wdq0KCB3ZEAAAAAwKkdOnRIISEhsixLfn5+evvtt9W2bdvrrl+7dq1Gjx6t06dPy9XVVfPnz1fNmjULMDEAZ3fq1CktXbpUR44cUWpqqjIzM5XT26qXL19Wenq6Lly4oH379uns2bOKjo62ITEAAAAAAAAk6fTp0/rPf/6jH3/8UVlZWddd5+XlpSFDhmjIkCEUwwHckqysLIWFhWn//v2OgnefPn0UGxur119/XcYYRUVFKSEhQZs3b9a0adO0Z88eSVK1atW0YMECublxxjNuHYVwoADMnDlTb7zxhjIyMtSqVSs1bdpUNWrUkLe39039R2Tz5s0LICUAAAAAOI8PP/xQH3/8sYwxkqRatWqpVatWqlq1qry8vJSSkqLY2Fht3LhR+/btk2VZMsZo2LBhGjlypL3hATiV+fPn69///rdSU1Nzte/q752YmJh8SgagOLh48aJiY2OVkpKirKysa25GsSxLGRkZSktL04ULF7R3714tW7ZMS5cutSkxAAAAABQeBw8eVP/+/XXu3Lkcb+7/X8YY3XnnnZo+fbp8fHwKICGAoubYsWN66KGHlJCQ4PgM689YliUfHx998803HGaEv4xCOJDP6tWrJ+nKHUBZWVk39Yv+j4wxnCQFAAAAADkYP368Pv/8c0n607+1rr718eijj+r5558vkGwAioajR48qODhYGRkZudpnjFHdunXVqlUrPffcc/mUDkBRduLECb322mtatWqVMjMzc72fm1EAAAAAFHfnz59XaGioEhISJEm1a9fWQw89pKZNm+pvf/ubvLy8dOnSJR07dkxbt27Vt99+q4MHD8oYo8aNG2v69OlycXGx+acA4IwSExP10ksvafny5dluRjHGXHNzSosWLfTmm2+qSpUqBR0TRRCFcCCfBQQE/KX9nCQFAAAAANf3yy+/6L///a82btyo9PT0a+bd3NzUrl07DR48mKcvAci1N954Q9OmTZMxRq1bt9bgwYPl7++vjz76SD/99JP69u2rYcOGKSkpSTExMZoxY4ZiYmJkjNErr7yi++67z+4fAYATSktLU69evfTbb7/d1Al2/6t8+fJas2ZNPiQDAAAAAOfxwQcfaPLkyTLGqH///hozZsyfFrwzMjL08ssva/bs2TLG6LXXXlO/fv0KMDGAoubw4cNasmSJdu7cqZMnTyo5OVmenp7y8/NT/fr1FRQUpAYNGtgdE0UIhXAgn02cODHXp4L/r+HDh+dRGgAAAAAomtLT0xUTE6MzZ84oOTlZXl5eKl++vOrUqSMPDw+74wFwUmFhYdq7d6/8/f21aNEiubu7S5IWLVqkf/zjH6pRo4YiIiIc6zMyMvTcc89p0aJF8vLy0uLFi1WxYkW74gNwUl9//bXGjRsnY4xKlCihoKAg+fv7a8WKFdq/f79atGihJk2a6MKFC4qJidH27dsdT6f8z3/+o65du3KKHQAAAIBiLyQkRAcPHlSjRo307bff3tSerKws9evXT9HR0WrWrJmmT5+ezykBAMg7bnYHAIq6p59++pb3pqamKj4+Pg/TAAAAAEDR5OHhoYYNG9odA0ARc+LECRljFB4e7iiDS1L9+vUlXTnh5ezZs/L19ZV05akEb775prZs2aIzZ87o22+/1ciRI+2IDsCJrVixQpLk7u6u2bNn684775R05eTv119/XcYYjRgxwrE+KipKI0eOVHx8vD755BN17tyZQjgAAACAYu+3336TJIWHh9/0HhcXF/Xt21fR0dGKiYnJp2QAAOQP3hEE8llQUJA6d+6s9evX52rfokWL1KRJEz366KP5lAwAAAAAAAB/Jjk5WZJUtWrVbOP+/v7y8vKSpGs+HPT09FRoaKgsy9LGjRsLJiiAImXfvn2Om1GulsElqVGjRpKkbdu26fLly47xBg0aaNKkSXJ1ddW+ffu0cOHCgo4MAAAAAIXO1fduSpUqlat9V2/8tywrzzMBAJCfOCEcyGfHjx+XMUYpKSm53puVlaXTp0/nQyoAAAAAKPwmTZrkeD18+PAcx2/VH68HANdz22236fz58zl+AFi1alXt379f+/fvV5s2bbLN3XXXXZKkI0eOFERMAEVMUlKSJCkgICDbeK1ateTi4qLLly9r7969qlevnmOubt26uueee7Rs2TItWrRIYWFhBZoZAAAAAAqbWrVqaevWrdq4caNCQkJuet+vv/7q2A8AgDOhEA7kkTNnzigtLe2684mJiYqLi7vhdbKyspSUlKQZM2ZIyv2digAAAABQVEyaNEnGGEnXFsKvjt8qCuEAbkaFChV0/vx5xcbGXjNXvXp17d+/X/v27btmzsXlyoMZL168mO8ZARQ9bm5uunz5ssqUKZNt3MPDQ3/7298UFxenAwcOZCuES1KrVq20bNmyHH8vAQAAAEBxM2DAAG3ZskVz585VcHCwWrdufcM9R48e1cyZM2WM0YMPPlgAKQEAyDsUwoE8snTpUr366qvXjF8tKbz00ku5vqYxRg0aNPjL2QAAAADAWVmWlWP5+688rvOvlskBFB/NmzfXvn37NHfuXA0bNkweHh6OuRo1asiyLG3cuPGafdHR0ZKkEiVKFFhWAEWHr6+vUlJScnx6ZLVq1RQXF6e9e/fmuE+6cjgJAAAAABR3Xbt21ZAhQzRlyhQ9+eSTGjFihB588EF5enrmuH7lypX697//rUuXLqlnz548eQkA4HQohAN55MEHH9SCBQv0yy+/5Nk1fXx8NGrUqDy7HgAAAAA4k2nTpuVqHADyWmhoqGbMmKH4+HgNHDhQ//znP9WiRQtJUsuWLTV58mTFxcXpv//9r4YNGyZJ2r59u2bNmiVjjGrUqGFnfABO6u6779bx48e1atUqDRw4MNtc9erVtX79ekVFRV2z78SJE5KuPIUSAAAAAIq7CRMmyN3dXXfccYcOHz6sd955RxMnTlTjxo11xx13qFSpUkpPT9eJEye0Y8cOnThxQpZlycXFRSdPnrzm77GrjDGaOnVqAf80AADcmLH+ypFaALL57bffNH/+/GxjVx9l3qNHj5v6ENAYIy8vL1WqVElt2rS55rGgAAAAAAAAKDgjR47U4sWLHU8XmDx5sgIDA2VZloKDg3X48GFJkr+/v7y8vHTw4EFlZmbKGKNRo0Zp8ODBdsYH4IR++OEH/etf/5IxRqNHj9agQYMcc3PmzNHYsWPl6uqqH374QQEBAZKk9PR0hYWF6fDhw6pataqWLVtmV3wAAAAAKBQCAgKueVrk9Z5IebOu7o+Jifmr8QAAyHMUwoF8dvU/MCdNmqSgoCC74wAAAACA04uLi5Mk+fn5qUSJEje978KFC9qxY4cSExN53CeAm5aenq6xY8dqwYIFMsZo4cKFjpv+d+7cqUceeUQpKSmODxOvvt1at25dzZw5Ux4eHrZlB+CcLl++rK5duzpO/Pb399d//vMf1atXT0lJSQoMDFRqaqrKlCmj/v37q1SpUpo3b55iYmJkjFG/fv302muv2fxTAAAAAIC9rt5Am9cohAMACisK4UA+mzRpkiQpODhYd9xxh81pAAAAAMD5BQQEyMXFRRMnTszVjbcLFizQqFGj5Ovrqw0bNuRjQgBF0Z49e7Rs2TI98cQTcnd3zzb+zjvvaMOGDbIsS15eXgoNDdVzzz2n0qVL25gYgDOLiYnRI488ovPnz8sYo++//17169eXJH366ad6//33czzpzsvLS3PmzOG9aAAAAAAAAKCYcbM7AFDUDR8+3O4IAAAAAFDk3Mr97RkZGZKunBQOALkVEBCQ48lSAQEB+uKLL5Senq7z58+rbNmycnV1tSEhgKKkTp06WrRokT799FMtXbpUt99+u2Pu8ccfV3JysqZMmaLMzEzHeJkyZfTOO+9QBgcAAAAAAACKIU4IBwAAAAAAhdLGjRt14sSJa8ZHjx4tY4z69++vu++++4bXycrKUlJSkr766iudOHFC5cuX15o1a/IjMoAiZteuXY4TeQGgsDlx4oRWr16tc+fOqUqVKgoMDNRtt91mdywAAAAAAAAANqAQDgAAAAAACqVNmzbpkUceuWb86lsZxphbum6fPn00bty4vxINQDEREBCg6tWrKyQkRMHBwZy6CwAAAAAA4KR+/fVXRUZGKioqSmfOnFFKSoo8PT1VsWJF1a5dWx07dlTTpk3tjgkAwC2jEA4AAAAAAAqtF154QbNnz86z6zVv3lyTJk2Sj49Pnl0TQNEVEBCQ7eaTOnXqqFevXurRo4cqVqxoYzIARVlISIhCQ0MVHBwsf39/u+MAAAAAgFM7deqUxowZo3Xr1mUbtyzrmkNHWrVqpbfeeov3fQAATolCOAAAAAAAKLSSk5P166+/Or63LEuDBg2SMUYjRoxQkyZNbngNFxcXeXp6qlKlSipXrlx+xgVQxLz33ntavHixYmNjJf3+ZAIXFxc1bdpUvXr1Urdu3VS6dGk7YwIoYv54M0rDhg0VGhqqHj16qGzZsjYnAwAAAADnEhsbqwcffFBnzpzRHytyPj4+8vT01KVLl3ThwgXHuDFGvr6+mjVrlqpUqWJHZAAAbhmFcAAAAAAA4FSulqQmTZqkoKAgu+MAKAZ27dqliIgILV68WPHx8ZJ+L4e7u7urffv2CgkJUVBQkDw8POyMCqAIaN++vU6dOiXp9981rq6uatmypUJDQ9WlSxeVKlXKzogAAAAAUOhlZWUpLCxM+/fvlyQ1aNBAQ4YMUatWreTt7e1Yl5iYqI0bN+rLL7/Url27JEl169bVrFmz5Orqakt2AABuBYVwAAAAAADgVDZv3ixJuuuuu+Tr62tzGgDFzfbt2x3l8P8tbJYsWVJdunRRcHCw2rZtKxcXFzujAnBSlmXpl19+UUREhJYsWaIzZ85I+v13TYkSJdSxY0eFhIQoMDBQ7u7udsYFAAAAgEJpzpw5Gjt2rIwxuv/++/XSSy/96Xs1WVlZeuWVV/Tdd9/JGKMJEyaoa9euBZgYAIC/hkI4AAAAAAAAAOSSZVnaunWrFi1apKVLl+r06dOSfi9sli1bVj169NALL7xgZ0wATi4rK0ubNm1y/K45d+6cpN9/13h7e6tr164KDg5Wq1atbEwKAAAAAIXL0KFDtWbNGt11112aN2/eTd24f/VU8QMHDigwMFCTJ08ugKQAAOQNCuEAAAAAAMCpJSUlKSUlRVlZWfrftzksy1JGRobS0tJ04cIF7d27V4sWLdLXX39tU1oARdHVcvjy5csVERGhhIQESVcKmzExMTanA1BUZGZmav369YqIiNDy5cuVlJQk6fdyePny5RUcHKzg4GDVq1fPzqgAAAAAYLt27drpzJkzGjVqlAYPHnzT+7744gu988478vf3V2RkZD4mBAAgb7nZHQAAAAAAACC3Ll68qA8//FALFizQ2bNn7Y4DoJiLjo7Wpk2b9Msvv+j06dMyxlxzgwoA/FWurq5q37692rdvr8uXL2vdunVasmSJVq5cqbNnzyohIUFfffWVpk6dqujoaLvjAgAAAICtrj5hqUqVKrna97e//U2SHDf8AwDgLCiEAwAAAAAAp5KZmanBgwcrKipKknJduvTw8MiPWACKmaioKC1atEhLlixRfHy8pN9/H5UqVUpdu3ZVaGionREBFGHu7u7q2LGjatWqpbp162rKlClKSEjgZhQAAAAA+P9uu+02nT9/XqdOncrVvtOnT0u68v4OAADOhEI4AAAAAABwKvPnz9fOnTtljJEkNWrUSP7+/tq+fbvi4uJUt25d1axZU0lJSdqzZ49OnDghSTLG6OWXX1aPHj3sjA/Aif1ZCdzd3V0dOnRQaGioOnXqxM0nAPLN/v37tXjxYi1dulQHDhxwjFuWJS8vL3Xu3NnGdAAAAABQONSqVUubN29WRESEBgwYcNP7Fi5cKEm688478ysaAAD5gkI4AAAAAABwKkuWLJEkubi4aMqUKWrdurUk6bPPPtN7772n8uXL65133nGsX7x4sf79738rKSlJCxYs0P33329LbgDO6c9K4MYYNW/eXL169VK3bt3k7e1tZ1QARdjVEvjixYt16NAhSb//LnJzc1Pbtm0VEhKizp07y8vLy86oAAAAAFAoBAUFafPmzdqxY4emTJmiIUOG3HDPlClTtGPHDhljFBQUVAApAQDIO8bi+YEAAAAAAMCJBAYGKiEhQT179tR7773nGN++fbsefPBBeXl56ZdffpGLi4tjbv369Ro8eLAkadKkSbyZD+CmdOrU6ZoSuCTVqVNHISEhCgkJUcWKFe2KB6CI+7MSuCQ1btxYoaGh6tGjh3x9fe2KCQAAAACFUkpKirp3766EhARJUs+ePTVkyBDVqVPnmrUxMTGaMmWKIiIiJEnlypXT0qVLueEWAOBUOCEcAAAAAAA4lfPnz0uSGjVqlG28du3aMsYoNTVV+/fvV+3atR1zbdq0UevWrbV+/XrNmzePQjiAmxIXF+d47e/vr+DgYPXq1Us1a9a0MRWAom7ixInZSuDS70XwO++8U6GhoQoODpa/v79dEQEAAACg0PPy8tJ7772noUOHKjU1VREREYqIiJC3t7eqVKmikiVL6tKlSzp+/LiSkpIkXfnby8PDQxMmTKAMDgBwOhTCAQAAAACAUypXrly270uWLKkKFSooISHhmkK4dOVk8fXr1ysmJqYgYwJwYmXLllWPHj0UEhKixo0b2x0HQDHx0UcfyRjjKIFXqlRJwcHBCg0NVUBAgM3pAAAAAMB5NGvWTNOmTdNzzz2nI0eOSLpy4MjVAriU/UlM1apV07vvvqv69esXdFQAAP4yCuEAAAAAAMCplClTRidPnlRiYuI1c7fffrujEP6/ypcvL0k6ffp0vmcEUDSsWbNGrq6ueXa9devW6aWXXpIxRpGRkXl2XQBFj7e3t7p166bQ0FA1b97c7jgAAAAA4LTq16+viIgILV26VKtWrdKOHTuUmJio5ORkeXl5qVy5cqpfv76CgoLUpUsXubi42B0ZAIBbQiEcAAAAAAA4ldq1a+vkyZPatGmTHn744Wxzd9xxh7Zs2aJdu3Zds+9qETwjI6NAcgJwfnlZBpeklJQUHT9+XMaYPL0ugKLlo48+UocOHeTu7p4n1zt06JAiIiIkScOHD8+TawIAAABAYbdnzx5VqVJFpUuXlouLi7p3767u3bvbHQsAgHzDLU0AAAAAAMCptGvXTpZl6eeff77mhN06depIkrZs2aK4uLhscz/99JMkqVy5cgUTFAAA4BYEBQXlWRlculIInzRpkj766KM8uyYAAAAAFHbjxo1Tu3bt9Nprr9kdBQCAAkEhHAAAAAAAOJW+ffuqTJkyyszM1NNPP60BAwbowIEDkqTOnTvLzc1NGRkZeuSRR/Tjjz9q2bJlevzxx7Vr1y4ZY9SkSRObfwIAAAAAAAAAQH7av3+/0tPTVaZMGbujAABQICiEAwAAAAAAp1KyZEm9++67cnNzk2VZ2rp1qy5evChJKl++vPr37y/LshQbG6sxY8bomWee0Zo1ayRJrq6ueuSRR2xMDwAAAAAAAADIbykpKZKkO+64w+YkAAAUDArhAAAAAADA6bRr104//vijunTpIg8PD91+++2Oueeee04hISGyLCvbl7u7u15++WXVr1/fxuQAAAAAAAAAgPxWp04dSdK2bdtsTgIAQMFwszsAAAAAAADArahZs6YmTpyo1NRUeXp6OsZdXV317rvv6uGHH9bKlSt19uxZ+fv7q2fPnvL397cxMQAAAAAAAACgIIwdO1YDBw7Ud999J39/f/Xv318eHh52xwIAIN9QCAcAAAAAAE5l4cKFKl26tNq3by9jTLYy+B81btxYjRs3LuB0AAAAAAAAAAC7ZWRkaNSoURo/frzGjx+vjz76SPXq1VONGjXk7e0td3f3G15j+PDhBZAUAIC8QSEcAAAAAAA4lc8++0x79+5VmzZt9Pnnn9sdBwAAAAAAAABQyDz00EMyxji+T05O1ubNm7V58+abvgaFcACAM6EQDgAAAAAAnEpsbKwkKTAw0OYkAAAAAAAAAIDCyrKsP/3+z/yxTA4AgDOgEA4AAAAAAJySj4+P3REAAAAAAAAAAIXQtGnT7I4AAECBohAOAAAAAACcStu2bbV06VItWLBAYWFhdscBAAAAAAAAABQyLVq0sDsCAAAFysXuAAAAAAAAALnx73//W9WrV9fatWv15JNPatu2bcrIyLA7FgAAAAAAAACgkIiLi1NcXJzS0tJyte/ChQtas2aN5s2bl0/JAADIH5wQDgAAAAAAnMqsWbMUFBSk6dOna+XKlVq5cqXc3d1VtWpVlS5dWh4eHn+63xijqVOnFlBaAAAAAAAAAEBB69Spk1xcXDRx4kQFBQXd9L5Vq1Zp1KhR8vX15QmVAACnQiEcAAAAAAA4lQ8++EDGmGxj6enpOnTo0A33WpZ1zV4AAAAAAAAAQNFjWVau91x9GuWFCxfyOg4AAPmKQjgAAAAAAHA6Ob2Rfytv7gMAAAAAAAAAnNfGjRt14sSJP52/mXJ3VlaWkpKS9NVXX0mSfH198yoiAAAFgkI4AAAAAABwKnv27LE7AgAAAAAAAACgEDDGaMyYMTnOWZal6dOn39I1O3To8FejAQBQoFzsDgAAAAAAAAAAxYGXl5cqV66sypUr2x0FAAAAAACgSGjZsqX69u0ry7KyfV31v+M389WsWTP93//9n40/FQAAuWcsnqcMAAAAAAAAALdsw4YN2rt3r0qWLKmmTZuqZs2adkcCAIfIyEgNHz5cxhjFxMTYHQcAAAAA8lxycrJ+/fVXx/eWZWnQoEEyxmjEiBFq0qTJDa/h4uIiT09PVapUSeXKlcvPuAAA5As3uwMAAAAAAAAAQGG2e/duzZgxQ76+vtlOhzp79qyefPJJ7dy50zFmjFFISIhef/11eXh42BEXQDFy/vx5eXl5/envm6ZNm2ratGkFmAoAAAAAClapUqXUokWLHOfuuuuu684BAFCUcEI4AAAAAAAAAFzHjBkz9Prrr0uS6tevr++//94xN3z4cEVGRl6zxxijTp066aOPPiqwnACKps2bNys1NVUdOnTINv7dd9/p448/VkJCgowxatCggZ555hm1adPGpqQAAAAAULhs3rxZ0pVCuK+vr81pAADIfxTCAQAAAAAAACAHR48eVXBwsDIyMiRJjRo10syZMyVJBw8eVHBwsIwxKlmypJ599lmVKVNG06ZN044dO2SM0eTJkxUYGGjnjwDASR09elTPPPOM9u3bpzZt2ujzzz93zE2dOlVvvfWWpCuPQb/K1dVVr7zyivr161fgeQEAAAAAAADYy83uAAAAAAAAAABQGM2cOVMZGRlyc3PT+PHj1aNHD8fcwoULHa9HjRqlBx98UJLUuXNn9ezZU8ePH9f8+fMphAPItbS0ND366KOKj4+XZVk6cuSIY+7ixYv64IMPHEXw+vXry8fHR5s3b1Z6errGjRunVq1ayd/f36b0AAAAAFA4paenKykpSRkZGcrKyrqpPZUrV87nVAAA5B0K4QAAAAAAAACQg/Xr18sYo9DQ0GxlcEn6+eefJV05kTc4ONgx7uHhob59+2rChAnasWNHQcYFUETMnj1bcXFxMsaoY8eOeuqppxxzixcvVkpKiowx6tWrl95++21JUlRUlPr376/U1FR99913evbZZ+2KDwAAAACFRmZmpqZPn67Zs2frwIEDudprjFF0dHQ+JQMAIO+52B0AAAAAAAAAAAqjEydOSJKaNm2abTwhIUF79uyRMUYNGjSQt7d3tvmrJ/OePn26YIICKFKu3nBSp04dTZ48WQ0aNHDMRUZGOl4PHjzY8bpBgwbq3bu3LMvS6tWrCy4sAAAAABRiw4cP11tvvaUDBw7IsqxcfwEA4Ew4IRwAAAAAAAAAcpCcnCxJ1xS+165d63jdpk2ba/alpKRIklxcOI8DQO7t27dPxhiFhYVlG09PT9fGjRtljFGVKlVUq1atbPP16tXTd999p/j4+IKMCwAAAACF0oIFC7RixQoZY2RZlipXrqxatWqpdOnScnOjMgcAKHr41w0AAAAAAAAAcuDr66vTp08rLi4u2/jKlSsdrzt06HDNvquPEy5fvny+5gNQNJ07d06SVKlSpWzjW7ZsUWpqqowxOd6M4uXlJUm6dOlSvmcEAAAAgMJuzpw5kq7csD9u3DiFh4fbGwgAgHzGETUAAAAAAAAAkIP69evLsizNnz9fly9fliQdP35cq1atkjFGFSpUUIMGDbLtOXz4sObOnStjjOrXr29HbABOrkSJEpJ+f0rBVatWrXK8bt++/TX7YmNjJUk+Pj75mA4AAAAAnEN0dLSMMerduzdlcABAsUAhHAAAAAAAAAByEBYWJkmKiYnR/fffr3feeUcDBgxQWlqaJGX7MDE2NlZffvml7r//fsd83759CzwzAOdXs2ZNSVdOBL8qIyNDkZGRkiQPDw+1bds2256MjAzHzSh33nlnwYUFAAAAgEIqJSVFktSyZUubkwAAUDDc7A4AAAAAAAAAAIVRt27ddM8992jFihWKiYlRTEyMY65KlSp6/PHHHd9PnTpVM2bMcHwfHh6uNm3aFGheAEVDYGCgdu7cqfnz5+vOO+9UYGCgvvrqK8XFxckYo8DAQJUsWdKxPjExUS+88IJ+++03GWMUFBRkY3oAAAAAKBwqVqyo2NhYZWRk2B0FAIACwQnhAAAAAAAAAHAdEyZM0LBhw+Tt7S3LsuTi4qLOnTtrxowZKlWqlGNdjRo1ZFmWSpQoob///e8aN26cjakBOLOHH35Yfn5+ysrK0rvvvqvQ0FD98MMPkiRXV1c98cQTjrUTJkxQ+/bttWLFCkmSv7+/7rvvPltyAwAAAEBh0q5dO1mWpbVr19odBQCAAmEsy7LsDgEAAAAAAAAAhZllWUpMTFTp0qXl4eFxzfzhw4cVFRWljh07ysfHx4aEAIqSPXv2aPjw4Tp27JhjzMPDQ6+++qrCw8MdY59++qnef/99SVL16tU1efJkVa9evYDTAgAAAEDhExsbq169eik9PV1TpkxR69at7Y4EAEC+ohAOAAAAAAAAAABQyKSnp2v16tU6fPiwypQpo06dOsnPzy/bmlWrVunLL79U9+7d1adPnxxvWAEAAACA4ioyMlKjRo1SZmam+vfvry5duqhmzZoqXbq0XFxc7I4HAECeohAOAAAAAAAAAH/B0aNHtW/fPpUsWVL16tXjhHAAAAAAAACbPfbYY5KkI0eOKC4uTsaYXO03xig6Ojo/ogEAkC/c7A4AAAAAAAAAAIXZyZMnNWvWLHl5eWnw4MGO8bS0NI0dO1YRERGOMU9PTz3yyCMaMWKEHVEBAAAAAAAgaf369dlK4JyZCgAo6iiEAwAAAAAAAMB1LFu2TKNGjVJ6eroaN26crRD+2muvaeHChdnWp6SkaPLkyUpMTNQrr7xS0HEBAAAAAAAgqXnz5nZHAACgQBmL258AAAAAAAAA4BqnTp1Sly5dlJaWJsuyVK1aNS1ZskSSdPz4cXXu3FmS5OrqqkGDBsnHx0ezZs1SbGysjDGaPn26mjZtauePAKAQq1OnjqRrH0N+dfxW8VhzAAAAAAAAoPhxsTsAAAAAAAAAABRG33zzjVJTUyVJo0aN0oIFCxxzCxcudDxq+Omnn9Zzzz2nxx9/XLNmzZKfn58kac6cOQUfGoDTsCzL8XW98Vv9AgAAAAAAAFC8uNkdAAAAAAAAAAAKo7Vr18oYo86dO2vIkCHZ5n7++WdJV07i7dOnj2O8TJkyuvfeezV58mRt3bq1QPMCcC7Xe3w5jzUHAAAAAAAAkFsUwgEAAAAAAAAgB8eOHZMktWvXLtv4uXPnFBUVJWOMAgICVL58+Wzz1atXlyQlJCQUSE4Azunrr7/O1TgAAAAA4NatXLlSK1as0K+//qrExEQlJydr06ZNkqSffvpJu3fv1oABA+Tv729zUgAAbg2FcAAAAAAAAADIwYULFyRJvr6+2cbXr1+vrKwsGWPUtm3ba/ZlZmZKkrKysvI/JAAAAAAAAK5rz549eu6553TgwAHHmGVZMsY4vt+1a5emTZumGTNmaOTIkdc8KQ4AAGfgYncAAAAAAAAAACiMSpcuLUk6depUtvGVK1c6Xrdv3/6afVc/YPTz88u/cAAg6fz580pPT7c7BgAAAAAUStu2bdMDDzygAwcOyLIsWZalEiVKXLMuLi5OkpSRkaH33ntPkyZNKuioAAD8ZRTCAQAAAAAAACAHdevWlWVZWrp0qWPs7Nmz+vnnnyVJPj4+atasWbY9iYmJmj17towxuvvuuws0L4CiZ/PmzVq9evU14999950CAwPVqlUrNWrUSA888IDWr19vQ0IAAAAAKJwuXryop59+WqmpqfL09NTw4cO1cuVKvfvuu9esff311/Xkk0/Kzc1NlmXpk08+0Z49e2xIDQDAraMQDgAAAAAAAAA56NGjh6QrhcwnnnhCM2bM0ODBg3Xx4kUZYxQSEiIXlytvsV66dElLly5Vv379dOHCBUlSSEiIbdkBOLejR48qLCxMgwYN0tSpU7PNTZ06VS+//LISEhJkWZaysrK0Y8cODR06VLNnz7YpMQAAAAAULt98843OnDkjV1dXffLJJxo+fLgqVaqU49oyZcpoxIgR+uSTT+Ti4qKsrCx9++23BZwYAIC/hkI4AAAAAAAAAOSgd+/eatiwoSzL0qpVq/T6668rJiZG0pXTwZ988knH2nfeeUcjRoxQfHy8JKlt27bq1q2bLbkBOLe0tDQ9+uij2rdvnyzL0pEjRxxzFy9e1AcffOB41Hn9+vXVrl07eXh4KDMzU+PGjdOxY8fsCw8AAAAAhcTy5ctljFH37t3VqlWrm9rTvn179ejRQ5ZlafPmzfmcEACAvEUhHAAAAAAAAABy4OrqqilTpjhOAr9awKxTp46mTZsmPz8/x9oaNWo45sPDwzVx4kQbkwNwZrNnz1ZcXJwkqWPHjvrPf/7jmFu8eLFSUlJkjFFYWJhmzZqlKVOmaPr06fLw8FBqaqq+++47u6IDAAAAQKFx9ebaNm3a5Gpfy5YtJUknTpzI60gAAOQrN7sDAAAAAAAAAEBhVbp0ab377rv617/+pdjYWJUpU0a33377NeuaNWumZ555Rt26dVPNmjVtSAqgqPj5558lSXXq1NHkyZOzzUVGRjpeDx482PG6QYMG6t27t7777jutXr1azz77bMGEBQAAAIBCKiUlRZJUsmTJXO0rVaqUJMmyrDzPBABAfqIQDgAAAAAAAAA34OvrK19f3+vO161bV3Xr1i3ARACKqn379jlOAP+j9PR0bdy4UcYYValSRbVq1co2X69ePX333XeKj48vyLgAAAAAUCiVK1dO8fHxOnToUK72/frrr5KU7clwAAA4Axe7AwAAAAAAAACAs7EsSxcvXrQ7BoAi6Ny5c5KkSpUqZRvfsmWLUlNTJeX8yHMvLy9J0qVLl/I3IAAAAAA4gSZNmsiyLP3www9KT0+/qT1nzpzRDz/8IGOMGjdunM8JAQDIWxTCAQAAAAAAAOAGUlJSNGPGDA0ZMkStW7fW3XffrRYtWjjmZ8yYoeHDh+uXX36xMSWAoqBEiRKSpOTk5Gzjq1atcrxu3779NftiY2MlST4+PvmYDgAAAACcQ9++fSVJ8fHxGjVq1A1L4fHx8Ro6dKjOnz8vSdc8tQkAgMLOze4AAAAAAAAAAFCYrV69WmPGjFFiYqKkK6eDS5IxxrHm0KFDioyM1PLly/XAAw/oxRdflIsL53EAyL2aNWsqKipKW7ZsUZ8+fSRJGRkZioyMlCR5eHiobdu22fZkZGRo7ty5MsbozjvvLPDMAAAAAFDYtG7dWt27d9fixYu1bNkydevWTT179sz2xLd169YpISFBmzdv1uLFi5WamipjjDp06JDjjbgAABRmFMIBAAAAAAAA4DoiIyM1YsQIZWVlybIseXh4qFy5coqLi8u27o9l8ZkzZyozM1OvvvqqHZEBOLnAwEDt3LlT8+fP15133qnAwEB99dVXiouLkzFGgYGBKlmypGN9YmKiXnjhBf32228yxigoKMjG9AAAAABQeLz99tu6cOGC1q1bp/j4eH3xxReSfr/Jf8iQIY61Vw8AaNiwod5///2CDwsAwF9krKv/mgEAAAAAAAAAHM6cOaOuXbsqOTlZZcuW1f/93/8pJCREK1eu1PDhw2WMUUxMjKQrp/P++OOPeuutt3Tx4kUZY/T111+rWbNmNv8UAJzN+fPn1bNnT8eNJldZliU3Nzd9//33qlu3riRpwoQJ+vTTTx03rVStWlU//fSTPD097YgOAAAAAIWOZVn6+uuv9eWXXyo+Pv6663x8fDRgwAA98cQTcnPjjFUAgPPhXy8AAAAAAAAAyMG0adOUnJwsDw8Pffnll6pdu/Z117q5ualfv366++67dd999ykjI0Pff/89hXAAuebj46PPP/9cw4cP17FjxxzjHh4eevXVVx1lcEny8vJSZmamJKl69eqaPHkyZXAAAAAA+ANjjAYOHKiHH35YO3fuVFRUlE6ePKmLFy/K09NTfn5+atCggZo2baoSJUrYHRcAgFtGIRwAAAAAAAAAcrBq1SoZYxQWFvanZfA/qlOnjnr37q3vv/9e27Zty+eEAIqqgIAARUREaPXq1Tp8+LDKlCmjTp06yc/PL9u62rVrq1WrVurevbv69OkjDw8PmxIDAAAAQOHm6uqqJk2aqEmTJnZHAQAgX1AIBwAAAAAAAIAcXD2Zt2nTprna16hRI33//fc6depUfsQCUEx4eHioc+fOf7omMDBQgYGBBZQIAAAAAJzHsGHDFBoaqqCgIHl5edkdBwCAfEchHAAAAAAAAABykJGRIUm5PnHXze3K264uLi55ngkAAAAAAAA3tmrVKq1evVqenp7q1KmTQkJC1L59e8f7NgAAFDX8CwcAAAAAAAAAOahQoYJiY2MVExOjnj173vS+7du3O/YDwF+1dOlSRUZGKioqSmfOnFFKSoo8PT1VsWJF1a5dWx07dlSPHj3k7u5ud1QAAAAAKDTc3d11+fJlpaSkKCIiQhEREfLx8VHXrl0VGhqq5s2b2x0RAIA8ZSzLsuwOAQAAAAAAAACFzYsvvqhZs2apbNmyWrRokXx8fCRJkZGRGj58uIwxiomJybbn6NGjCgsLU1pamvr27avXX3/djugAioB9+/bpn//8pw4ePOgY++NHOsYYx+uaNWvq3XffVUBAQIFmBAAAAIDC6uLFi4qMjNSiRYu0bt06x5Pgrv4tValSJQUHByskJIS/pQAARQKFcAAAAAAAAADIwe7du3XvvfdKkho3bqxJkyapbNmy1y2E79q1SyNHjtTx48dljNHMmTPVsGFDu+IDcGK//vqrBgwYoJSUFEcJ3NvbW/7+/vL09NSlS5cUGxur5ORkxx5PT0/NnDmTIgMAAAAA/I+kpCQtXbpUixYt0saNG5WZmSnp93J4jRo1FBoaquDgYFWtWtXOqAAA3DIK4QAAAAAAAABwHePGjdPXX38tY4y8vLzUoUMHZWZmatmyZTLG6OWXX9apU6e0adMmbd261bGvd+/eeuONN2xMDsBZpaWlqXv37oqPj5ckdevWTY8//rjuvvvua9ZGRUXps88+07JlyyRJVatW1YIFC1SiRIkCzQwAAAAAziIxMVFLly5VRESEtm7dqqysLEm/l8MbNGig0NBQ9ejRQ35+fnZGBQAgVyiEAwAAAAAAAMB1WJalF198UbNnz5b0+4eD11srSV27dtX7778vNze3AskIoGiZNm2a3njjDRljNHLkSA0bNuyGeyZPnqwPPvhAxhi98cYb6t27dwEkBQAAAADndvr0aS1ZskSLFy/Wtm3blJmZ6Xjvx9XVVbt377Y5IQAAN49COAAAAAAAAADcwPLly/XZZ59px44d111Ts2ZNDR06VOHh4QWWC0DRM2DAAG3ZskWNGjXSzJkzb3rfAw88oB07dqh169b68ssv8zEhAAAAABQt6enpWrRokd5//30lJCTIsiwZYxQTE2N3NAAAbhpH1AAAAAAAAADADQQFBSkoKEgnT55UVFSUTp48qYsXL8rT01N+fn5q0KCBqlWrZndMAEXAwYMHZYxRcHBwrvaFhIRox44dOnLkSP4EAwAAAIAiJCkpSZGRkVq6dKk2bdqk1NRUSb8/Aa5x48Z2xgMAINcohAMAAAAAAADATapYsaK6dOlidwwARVhSUpIkqXz58rna5+fnJ0k6c+ZMnmcCAAAAgKLgagl88eLF2rBhgzIyMiT9XgK/8847FRISopCQEPn7+9sZFQCAXKMQDgAAAAAAAAAAUEj4+PgoMTFRx48fz9W+uLg4SZK3t3d+xAIAAAAAp3SjEnilSpUUHBys0NBQBQQE2BkVAIC/hEI4AAAAAAAAANxAVlaWjhw5ogsXLujy5cuODw1vpHnz5vmcDEBRU7duXa1Zs0bz5s3TY489JmPMDfdkZWXpxx9/lDGGAgMAAAAASJozZ851S+A+Pj7q1q2bQkJC1Lx585v6uwsAgMKOQjgAAAAAAAAAXEdycrImTJigefPmKSkpKVd7jTGKjo7Op2QAiqru3btrzZo12r9/v8aNG6cXXnjhhnveeOMN7d+/X8YYdevWrQBSAgAAAEDhNnbsWBljHCXwEiVK6J577lFoaKg6dOggd3d3mxMCAJC3jHWzR9kAAAAAAAAAQDGSmZmpBx98ULt27brpE8H/yBijmJiYfEgGoCi7fPmywsPDdejQIUlS48aN9dhjj6lly5YqXbq0Y92FCxe0adMmffHFF9q+fbskqVq1alqwYIHc3DgPCAAAAEDxFhAQIFdXV7Vq1UqhoaHq0qWLSpUqZXcsAADyDYVwAAAAAAAAAMjBt99+q1deecXx2OBmzZqpdu3auu222266bDl8+PD8jAigiNq/f78effRRnT59Otujy729vVWyZEldunQp21MLLMuSj4+Pvv32W9WoUcOOyAAAAABQqEybNk3BwcHy8/OzOwoAAAWCQjgAAAAAAAAA5OChhx7Stm3b5Onpqf/+979q2bKl3ZEAFCPHjx/XCy+8oA0bNtxwbcuWLfXGG2+oSpUqBZAMAAAAAJzP2bNntWHDBu3evVuJiYm6dOmSPvzwQ0nStm3bdPbsWXXq1CnbTbkAADgTnhkIAAAAAAAAADk4cOCAjDG67777KIMDKHBVqlTRl19+qV27dmnVqlXasWOHEhMTlZycLC8vL5UrV07169dXUFCQ6tWrZ3dcAAAAACiULl26pPHjx2vu3LlKS0uTdOUpS38sfq9YsUJTpkxR9erVNW7cODVp0sSuuAAA3DIK4QAAAAAAAACQg8uXL0uSGjZsaHMSAMVZ/fr1Vb9+fbtjAAAAAIDTOXXqlAYMGKCjR4/Ksqzrrjt27Jgsy9Lhw4c1cOBATZo0SR07diy4oAAA5AEXuwMAAAAAAAAAQGFUuXJlSVJycrLNSQAUJ5MmTdKkSZN0+PDhXO2LiorSP//5Tz311FP5lAwAAAAAnIdlWXryySd15MgRWZalFi1a6O2339bo0aOvWfvAAw+oWbNmkqSMjAz93//9n86cOVPQkQEA+EsohAMAAAAAAABADu655x5ZlqWff/7Z7igAipFJkybpo48+0qFDh3K1Lz4+XhEREdqwYUM+JQMAAAAA5zFv3jzt3r1bxhg9++yzmjZtmsLCwuTv73/N2pYtW2r69OmOG2wvXLigb775pqAjAwDwl1AIBwAAAAAAAIAcPProo/L19dWqVav0448/2h0HAP5UdHS0JP3pY9ABAAAAoLhYuHChJKlx48YaOnToTe155pln1KRJE1mWpVWrVuVnPAAA8pyb3QEAAAAAAAAAoDDy8/PTJ598oqeeekpjxozRzz//rC5duqhmzZoqXbq0XF1db3iNypUrF0BSAM5o+vTpWrp06XXnP/jgA02dOvWG17EsS+fPn9f+/ftljFHVqlXzMiYAAAAAOKWYmBgZY9SzZ89c7evWrZu2bdumI0eO5E8wAADyCYVwAAAAAAAAAMhBt27dJElZWVmyLEvLli3TsmXLbnq/McZxYi8A/K+ePXtq0qRJOn/+/DVzlmXpwIEDN32tP54K/vDDD+dJPgAAAABwZufOnZMklStXLlf7ypcvL0lKS0vL60gAAOQrCuEAAAAAAAAAkIOjR49m+/6PhUsA+KvKli2rsWPH6oMPPsg2HhcXJ2OMfH195enpecPruLi4yMvLSxUrVlRwcLB69+6dT4kBAAAAwHmUKVNGZ86cUUJCQq72HTt2zLEfAABnQiEcAAAAAAAAAHIQHh4uY4zdMQAUYb169VKvXr2yjQUEBEiSXnvtNQUFBdkRCwAAAACcXkBAgNauXauIiAgNHDjwpvZkZGRozpw5MsY4/jYDAMBZUAgHAAAAAAAAgBy89dZbdkcAUAxVrlxZxhh5eXnZHQUAAAAAnFb37t21du1a7dy5U5999pmGDh36p+szMzP14osv6siRIzLGqGvXrgWUFACAvEEhHAAAAAAAAABykJaWphIlStgdA0Ax07JlS6WmpiorK8vuKAAAAADgtPr06aOpU6dq//79ev/997V792716dNHJ06ccKy5fPmyEhIStHnzZk2bNk179uyRMUbVqlVT7969bUwPAEDuGcuyLLtDAAAAAAAAAEBh06hRI7Vo0UKBgYHq0KGDqlatanckAMVAp06dFB8fr549e+q9996zOw4AAAAAOK1jx47poYceUkJCgowxN1xvWZZ8fHz0zTffqGbNmgWQEACAvEMhHAAAAAAAAAByEBAQkO3DwurVq6tjx47q0KGDmjdvLjc3HsAIIO81aNBAly9f1ptvvqnw8HC74wAAAACAU0tMTNRLL72k5cuX6481OWOM/rc216JFC7355puqUqVKQccEAOAvoxAOAAAAAAAAADl47bXXtHbtWh09etQxdrUgXrJkSbVp00YdOnRQYGCgKlSoYFdMAEXM1RPCR48erUGDBtkdBwAAAACKhMOHD2vJkiXauXOnTp48qeTkZHl6esrPz0/169dXUFCQGjRoYHdMAABuGYVwAAAAAAAAAPgTx44d09q1a7V27Vpt3LhRFy9elKRsp4cHBAQ4yuGNGze+qccQA0BOPv/8c40fP14VK1bUN998w8l0AAAAAAAAAG6IQjgAAAAAAAAA3KTMzExt377dURCPjo5WVlaWpN8L4t7e3mrXrp0CAwPVq1cvO+MCcFLvvfeepkyZopIlS6pnz55q2rSpatSoIW9vb3l4eNxwf+XKlQsgJQAAAAAAAIDCgkI4AAAAAAAAANyis2fPav369Vq7dq3Wr1+vkydPOuZcXFwUHR1tYzoAzqhbt26SpPj4eKWnp+f6iQPGGH73AAAAAAAAAMWMm90BAAAAAAAAAMBZubi4yMvLS76+vqpQoYJOnjwpY4wsyxJncQC4FUePHs32Pb9LAAAAAAAAANwIhXAAAAAAAAAAuEkJCQnaunWrtm7dqi1btujgwYPXlDUty5KPj4+aNWtmU0oAzqx37952RwAAAAAAAADgZIzF0RIAAAAAAAAAkKPY2Fht2bLFUQKPjY11zP3xrVVfX181b95czZs3V4sWLVS7dm074gIAAAAAAAAAgGKIE8IBAAAAAAAAIAcdOnTQqVOnHN//sQDu5+eXrQB+11132RERAAAAAAAAAACAQjgAAAAAAAAA5CQhIUHGGFmWJWOMWrdurd69e6thw4aqVq2a3fEAAAAAAAAAAAAkScb647E2AAAAAAAAAABJUkBAgOO1MUaS5Ovrq2bNmqlFixZq1qxZtjUAkBfi4uL+8jUqV66cB0kAAAAAAAAAOAsK4QAAAAAAAACQg9OnT2vTpk2Or6NHjzrmrhbEvb291aRJE7Vo0ULNmzfX3Xff7ZgDgFsREBDwl36PGGMUHR2dh4kAAAAAAAAAFHYUwgEAAAAAAADgJpw8edJRDt+8ebNiY2Mdc1fLmyVLllSTJk3UvHlzNW/eXI0bN7YrLgAn9VefPGCMUUxMTB6lAQAAAAAAAOAMKIQDAAAAAAAAwC2Ij493lMO3bdumI0eOSPq9HM4pvQBuxZgxY264Ji0tTRcuXNCBAwcUHx8vY4zq16+vRx55RJLUs2fPfE4JAAAAAAAAoDChEA4AAAAAAAAAf9HevXsVERGh6dOn69KlS7Isi1N6ARSIHTt2aOzYsTp8+LAGDRqk0aNH2x0JAAAAAAAAQAGjEA4AAAAAAAAAuXT48GFt2rRJGzdu1ObNm3X27FlJ0h/fbr3rrrv0008/2RURQDFy4sQJhYaG6uLFi/riiy/UunVruyMBAAAAAAAAKEBudgcAAAAAAAAAgMLu+PHj2rhxozZt2qRNmzYpISHBMXe1BF6qVCm1bt1aHTp0UIcOHVSpUiW74gIoZipVqqS+ffvqq6++0vTp0ymEAwAAAAAAAMUMhXAAAAAAAAAAyMFPP/3kKIEfP37cMf6/p4BfLYA3bdpUbm685QrAHnfffbckaefOnTYnAQAAAAAAAFDQ+HQCAAAAAAAAAHLw3HPPyRiTrQBeqlQptWnTxlECr1ixoo0JAeB3SUlJkqQLFy7YnAQAAAAAAABAQaMQDgAAAAAAAADXYVmWatWq5SiAN2nShFPAARQ6mZmZmjNnjiSpQoUKNqcBAAAAAAAAUND45AIAAAAAAAAAcvDaa69xCjiAQisrK0sXL15UdHS0Jk+erF9//VXGGLVt29buaAAAAAAAAAAKmLH++LxTAAAAAAAAAMANWZal5ORk3XbbbXZHAVDE1KlT55b2WZalEiVK6KefftLtt9+ex6kAAAAAAAAAFGacEA4AAAAAAAAAN5CSkqI5c+ZoxYoV+vXXX3X+/HlJUnR0tCRpxowZ2rBhgx599FE1bdrUzqgAnNytnuPj5eWlt99+mzI4AAAAAAAAUAxRCAcAAAAAAACAP7F69WqNGTNGiYmJkn4vaxpjHGsOHTqkyMhILV++XA888IBefPFFubi42JIXgHNr3rz5Ta1zcXGRh4eH/Pz8VL9+ffXo0UNly5bN53QAAAAAAAAACiMK4QAAAAAAAABwHZGRkRoxYoSysrJkWZY8PDxUrlw5xcXFZVv3x7L4zJkzlZmZqVdffdWOyACc3Ndff213BAAAAAAAAABOhiNqAAAAAAAAACAHZ86c0fPPP6/MzEz5+vrqrbfe0rZt2zR27Nhr1o4fP16vv/66brvtNlmWpVmzZmnr1q02pAZQ3F2+fNnuCAAAAAAAAAAKGIVwAAAAAAAAAMjBtGnTlJycLA8PD3355ZcKDw+Xm1vOD110c3NTv3799PXXX8vd3V2S9P333xdkXABFxMGDB2957+bNmxUWFpaHaQAAAAAAAAA4AwrhAAAAAAAAAJCDVatWyRijsLAw1a5d+6b21KlTR71795ZlWdq2bVs+JwRQFA0YMEB79uzJ1Z5z585pzJgxGjRokA4fPpxPyQAAAAAAAAAUVhTCAQAAAAAAACAHx44dkyQ1bdo0V/saNWokSTp16lReRwJQDCQmJmrQoEGKioq6qfVz5sxRjx499OOPP8qyrHxOBwAAAAAAAKAwohAOAAAAAAAAADnIyMiQJHl4eORqn5ubmyTJxYW3XwHknjFGSUlJevTRR7V169brrjt06JAGDBigf/3rXzp37pwsy1Lp0qX1r3/9qwDTAgAAAAAAACgM+EQCAAAAAAAAAHJQoUIFSVJMTEyu9m3fvj3bfgDIjTfffFOurq5KTk7W0KFDtXbt2mzz6enp+vDDDxUeHq6tW7fKsixZlqWwsDAtXrxY/fv3tyk5AAAAAAAAALtQCAcAAAAAAACAHLRs2VKWZemHH37Q+fPnb2rP0aNHNXfuXBlj1Lx583xOCKAoCg8P18SJE+Xp6amUlBQ99dRTioyMlCRt2LBBoaGh+uSTT5Seni7LslSrVi1Nnz5db7/9tvz8/GxODwAAAAAAAMAOFMIBAAAAAAAAIAf333+/jDE6e/asnnzySSUmJv7p+l27dumxxx5TamqqJOnee+8tiJgAiqB77rlHU6ZMkbe3t9LT0zVy5EgNGTJEjz32mH777TdZlqXbbrtNo0eP1ty5c9WsWTO7IwMAAAAAAACwkbEsy7I7BAAAAAAAAAAURuPGjdPXX38tY4y8vLzUoUMHZWZmatmyZTLG6OWXX9apU6e0adMmbd261bGvd+/eeuONN2xMDqAo2Lt3r4YMGaJTp07JGKOrH+mEhITo+eefV/ny5W1OCAAAAAAAAKAwoBAOAAAAAAAAANdhWZZefPFFzZ49W5JkjPnTtZLUtWtXvf/++3JzcyuQjACKttjYWA0ePFi//fabjDEKDw/Xm2++aXcsAAAAAAAAAIUIhXAAAAAAAAAAuIHly5frs88+044dO667pmbNmho6dKjCw8MLLBeA4iExMVFDhgxRdHS0jDEaMWKEnnjiCbtjAQAAAAAAACgkKIQDAAAAAAAAwE06efKkoqKidPLkSV28eFGenp7y8/NTgwYNVK1aNbvjAXAiAwcOzNX6ixcvKjo6WtKVpxU0bNhQHh4e16wzxmjq1Kl5khEAAAAAAACAc6AQDgAAAAAAAAD54Ny5cypTpozdMQAUUgEBATLG5Ok1LcuSMUYxMTF5el0AAAAAAAAAhZuL3QEAAAAAAAAAoDDaunXrLe+dO3euevTokYdpABRFlmXl6RcAAAAAAACA4okTwgEAAAAAAAAgB40bN9ZHH32kNm3a3PSeI0eO6KWXXtKWLVskiVN6AQAAAAAAAABAvuOEcAAAAAAAAADIQUpKip544gn9/PPPN1x7+fJlTZw4Ub169dKWLVs4qRcAAAAAAAAAABQYCuEAAAAAAAAAkAN3d3elp6frmWeeUURExHXXbdy4UaGhofr444+Vnp4uy7JUpUoVffzxxwWYFgAAAAAAAAAAFFfG4qgaAAAAAAAAALjGhg0b9Pe//12XLl2Sq6urXn31VfXt29cxn5iYqLffflvz58+XJFmWJQ8PDw0ZMkTDhg1TiRIl7IoOAAAAAAAAAACKEQrhAAAAAAAAAHAdUVFRGjZsmM6ePSsXFxeNHTtW/fv316xZs/Tuu+8qKSlJV99i7dChg1588UVVrVrV5tQAAAAAAAAAAKA4oRAOAAAAAAAAAH/i0KFDGjx4sOLj42WMUY0aNXTo0CFHEbxy5coaO3asOnfubHNSAAAAAAAAAABQHFEIBwAAAAAAAIAbOHHihAYPHqyDBw/KGCPLsuTu7q7HHntMTz75pDw9Pe2OCAAAAAAAAAAAiikXuwMAAAAAAAAAQGFXqVIlzZgxQw0bNpRlWTLGqGvXrvrHP/5BGRwAAAAAAAAAANiKQjgAAAAAAAAA3IQyZcpo6tSpat++vSzLUkREhF566SW7YwEAAAAAAAAAgGLOWJZl2R0CAAAAAAAAAOwSFBSUq/WZmZk6ceKEJMkYo/Lly8vd3f2adcYYRUZG5klGAAAAAAAAAACA63GzOwAAAAAAAAAA2On48eMyxuhmz84wxsgYI0myLEsJCQnXXQcAAAAAAAAAAJDfKIQDAAAAAAAAKNYqV65sdwQAAAAAAAAAAIBbZqybPfYGAAAAAAAAAAAAAAAAAAAAAFCouNgdAAAAAAAAAAAAAAAAAAAAAABwayiEAwAAAAAAAMANHD9+XLt3775mfPXq1XrooYfUtGlTtW/fXs8++6z27dtnQ0IAAAAAAAAAAFBcGcuyLLtDAAAAAAAAAEBhlJiYqLFjx2rVqlVq3769Pv30U8dcRESERo0aJcuydPVtVmOMSpQooQkTJigwMNCu2AAAAAAAAAAAoBihEA4AAAAAAAAAOcjKylLv3r21b98+WZalatWqacmSJZKktLQ0dezYUWfPnpUkVahQQaVKldLhw4clST4+Plq0aJHKli1rW34AAAAAAAAAAFA8uNgdAAAAAAAAAAAKo/nz52vv3r2SpLp16+of//iHY2758uU6e/asjDEKDAzUzz//rEWLFmnSpElycXFRUlKSZs6caVd0AAAAAAAAAABQjFAIBwAAAAAAAIAcLF26VJJ0++23a+bMmerevfs1c5L01FNPyc3NTZLUuXNn9ezZU5ZlacWKFQUbGAAAAAAAAAAAFEsUwgEAAAAAAAAgB9HR0TLGqF+/fvLw8HCMZ2Zmat26dZKkcuXKqWHDhtn2NW3aVJIUGxtbcGEBAAAAAAAAAECxRSEcAAAAAAAAAHKQmJgoSfL39882vn37dl24cEHGGLVp0+aafT4+PpKkixcv5n9IAAAAAAAAAABQ7FEIBwAAAAAAAIAcuLm5SZLS0tKyja9Zs8bxum3bttfsO378uCTptttuy8d0AAAAAAAAAAAAV1AIBwAAAAAAAIAcVKtWTZK0a9eubONLly6VJLm6uqpDhw7X7Fu0aJGMMbrjjjvyPyQAAAAAAAAAACj2KIQDAAAAAAAAQA7atm0ry7I0e/ZsLV68WCkpKZo4caIOHz4sY4xatWqlMmXKONZnZGTo1VdfVXR0tCQpMDDQpuQAAAAAAAAAAKA4MZZlWXaHAAAAAAAAAIDC5uTJk+rRo4dSUlKyjVuWJWOMvvzyS7Vq1UqS9NVXX+mTTz5RUlKSLMtS2bJlFRERka0wDgAAAAAAAAAAkB84IRwAAAAAAAAAclCxYkVNmjRJ3t7esizL8WWM0YgRIxxlcElKTk7W+fPnZVmWypQpo48//pgyOAAAAAAAAAAAKBBudgcAAAAAAAAAgMKqTZs2WrRokX766ScdPnxYZcqUUffu3RUQEJBtXc2aNVW1alV1795djz76qMqWLWtTYgAAAAAAAAAAUNwYy7Isu0MAAAAAAAAAAAAAAAAAAAAAAHLPxe4AAAAAAAAAAAAAAAAAAAAAAIBbQyEcAAAAAAAAAAAAAAAAAAAAAJwUhXAAAAAAAAAAAAAAAAAAAAAAcFIUwgEAAAAAAAAAAAAAAAAAAADASVEIBwAAAAAAAAAAAAAAAAAAAAAnRSEcAAAAAAAAAAAAAAAAAAAAAJwUhXAAAAAAAAAAAAAAAAAAAAAAcFIUwgEAAAAAAAAAAAAAAAAAAADASVEIBwAAAAAAAAAAAAAAAAAAAAAn9f8AUzxTz7+npVkAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "import numpy as np\n", - "from sklearn.preprocessing import Normalizer\n", - "from sklearn.preprocessing import StandardScaler, MinMaxScaler\n", - "from sklearn.decomposition import PCA\n", - "import matplotlib.pyplot as plt\n", - "import seaborn as sns\n", - "\n", - "X = imp_df\n", - "scaler = StandardScaler()\n", - "minmaxscaler = MinMaxScaler()\n", - "scaled_X_train = scaler.fit_transform(X)\n", - "normed_X = Normalizer(norm=\"l2\").fit_transform(X)\n", - "minmaxscaled_X = minmaxscaler.fit_transform(X)\n", - "\n", - "\n", - "import pandas as pd\n", - "from sklearn.decomposition import PCA\n", - "\n", - "pca = PCA(n_components=2).fit(minmaxscaled_X)\n", - "minmax_pca = PCA(n_components=2).fit(X)\n", - "scaled_pca = PCA(n_components=2).fit(scaled_X_train)\n", - "norm_pca = PCA(n_components=2).fit(normed_X)\n", - "\n", - "\n", - "X_train_transformed = pca.transform(X)\n", - "X_train_minmax_transformed = pca.transform(minmaxscaled_X)\n", - "X_train_std_transformed = scaled_pca.transform(scaled_X_train)\n", - "X_train_norm_transformed = norm_pca.transform(normed_X)\n", - "\n", - "\n", - "first_pca_component = pd.DataFrame(\n", - " pca.components_[0], index=X.columns, columns=[\"without scaling\"]\n", - ")\n", - "first_pca_component[\"with scaling\"] = scaled_pca.components_[0]\n", - "first_pca_component[\"with normalization\"] = norm_pca.components_[0]\n", - "first_pca_component.plot.bar(\n", - " title=\"Weights of the first principal component\", figsize=(30, 8)\n", - ")\n", - "\n", - "_ = plt.tight_layout()\n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "id": "79720cd5", - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "10" - ] - }, - "execution_count": 12, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "weights = pca.components_[0]#*np.sqrt(pca.explained_variance_)\n", - "len(weights)" - ] - }, - { - "cell_type": "code", - "execution_count": 13, - "id": "a90487c3", - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAACVAAAAMQCAYAAADL7NzZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeZyO9f7H8fd1XfcyC8MQxl6UpVIRyolQUipLe6Si47TKOZWlOpKjQrRKWk6WKHVK5UdUIp1WW7RaWk8nhYmJwczcy3Vdvz/mmEy2uc29zNz36/l49MB1fb/XvO9vF+br+lzfr+G6risAAAAAAAAAAAAAAAAASEFmogMAAAAAAAAAAAAAAAAAQKJQQAUAAAAAAAAAAAAAAAAgZVFABQAAAAAAAAAAAAAAACBlUUAFAAAAAAAAAAAAAAAAIGVRQAUAAAAAAAAAAAAAAAAgZVFABQAAAAAAAAAAAAAAACBlUUAFAAAAAAAAAAAAAAAAIGVRQAUAAAAAAAAAAAAAAAAgZVFABQAAAAAAAAAAAAAAACBleRIdIJm4rivHcRMdIymZpsHYIqa4xxBL3F+INe4xxNrB7jHTNGQYRpwTpQbmF4fGn3/xx5jHH2OeGIx7/DHm8ceYxx9jXjbMMWKD+cW++D0ZfYxp9DGm0ceYxgbjGn2MafQxptFXGcY0kvkFBVRR5Diu8vJ2JzpG0vF4TGVnZyo/v0DhsJPoOEhC3GOIJe4vxBr3GGLtUPdYjRqZsiwebsQC84uD48+/+GPM448xTwzGPf4Y8/hjzOOPMS875hixwfyiNH5PRh9jGn2MafQxprHBuEYfYxp9jGn0VZYxjWR+wRZ+AAAAAAAAAAAAAAAAAFIWBVQAAAAAAAAAAAAAAAAAUhYFVAAAAAAAAAAAAAAAAABSFgVUAAAAAAAAAAAAAAAAAFIWBVQAAAAAAAAAAAAV1A8//KDWrVvr1VdfTXQUAAAAIGl5Eh0AAAAAqEwcx5FthxMdIy4syyPeuQAAAABiJ5XmF1LxHMM0mWNEIhQKaejQoSooKEh0FAAAAFQC8ZpjOI6hoiJLwWBAtu3G/OvtT7TnFxRQAQAAAGXguq7y8/NUWLgr0VHiKjOzqqpXz0h0DAAAACCppOr8QpLS06soK6uGDMNIdJRK4bHHHlOVKlUSHQMAAAAVXCLmGFu3mnIcJ25fb3+iOb+ggAoAAAAogz0TjypVsuXz+ZP+H/td11UwGNCuXdu1adMmpadXS3QkAAAAIGmk2vxC2nuO8ZskqVq1mglOVPGtXLlS//rXvzR37lx16dIl0XEAAABQgSVijmFZRsJWn4rF/KLSFVA99dRT+uCDDzRr1qwDtvntt99077336r333pNhGDrvvPM0fPhwpaenl7R544039Nhjj2njxo1q0qSJRowYoQ4dOsTjIwAAAKCScRy7ZOJRpUpWouPEjc/nlyRt375dfn8VScn/UAcAAACItVSdX0i/zzF27fpNVatms53fQeTn52v48OEaOXKk6tatG5VrejyM9x6WZZb6EeXHmEYfYxp9jGlsMK7Rx5hGX7KPaSLmGIZRPJ627chNTA1VqflFdnYNmaZVrutVqgKq559/Xo888ojatm170HZDhgxRYWGhZsyYofz8fP39739XQUGB7r//fknSsmXLNGzYMA0fPlynnXaa5syZo2uvvVZz585V06ZN4/FRAAAAUInYti3p92/GU4nP51dBgRQO2zLNSjV9AAAAACqkVJ5fSL9/btsOyzR9CU5TcY0ePVqtW7dWz549o3I90zSUnZ0ZlWslk6ys9EM3QkQY0+hjTKOPMY0NxjX6GNPoS9YxLSoqkmmayshIi3vRfKKL0jIy0lRQYCoz06e0tLRyXatSPAHZsmWL7r77bi1fvlxHHnnkQduuWbNGK1as0MKFC0uKocaMGaNBgwbp1ltvVZ06dfTPf/5T3bp101VXXSVJGjFihNasWaNnn31WY8aMifXHAQAAQCWVCttq/NHvnzlBr5AAAAAASSoV5xdS6n7uSMydO1erVq3S/Pnzo3ZNx3GVn18QtetVdpZlKisrXfn5hbJtJ9FxkgJjGn2MafQxprHBuEYfYxp9yT6mwWBAjuPItqVwOD6fryKsQCVJti05jqMdOwpUWGjvcz4rK73MRV6VooDqq6++ktfr1bx58/T444/r559/PmDbVatWqVatWqVWkmrfvr0Mw9Ann3yic845R6tXr9btt99eqt8pp5yiRYsWxewzAAAAAAAAAAAAHMorr7yibdu2qUuXLqWO33333Vq4cKGeeeaZw7puvB6mVSa27TAuUcaYRh9jGn2MaWwwrtHHmEZfso6pbce/gmlP0VQii6f2Zttuuf/fVooCqjPOOENnnHFGmdpu2bJln/3AfT6fqlevrk2bNik/P18FBQXKyckp1aZ27dravHlz1DIDAAAAFZHjOJo+/Z+aP3+udu3aqZNOaqNbbx2hevXqJzoaAAAAgEqIOUb0PfDAAyoqKip1rHv37hoyZIh69eqVoFQAAABA7CVyflEpCqgiUVhYKJ9v333T/X6/AoFAyaTjj232nC+veO8nmQr2LKeW6L0zkby4xxBL3F+INe6x+HCc5NliYsaMZ/Taay/rzjtHq1at2nriiUm69dabNWvWv+T1evdpv2d3Dcsyuc8AAAAA7CPSOQYOrU6dOvs9XrNmzQOeAwAAAJJBIucXSVdAlZaWpmAwuM/xQCCgjIwM+f1+SdqnTSAQUHp6erm+tmkays7OLNc1cGBZWeX7/wMcCvcYYon7C7HGPRZbRUWWtm41ZVlGVArmbVv6eK2pLb8ZqpPtqsOxjiwrCkEPIRQK6cUXn9dNNw3R6aefLkm67777df75Z+v995eqe/dz9umzp3isSpU0paWlxT4kAAAAgIjZtrRsnaXc7YZqV3d1aks7rnOMG264WX/6U0dJ0j/+MU59+pyjd99dorPO2neOAQAAAKBiS9X5RdIVUOXk5Gjx4sWljgWDQW3fvl21a9dW9erVlZGRodzc3FJtcnNzy/3mhuO4ys8vKNc1sC/LMpWVla78/ELZdvLtR4rE4x5DLHF/Ida4x+IjGAzIcZyo7KG9YJlHI6f7tWnb74VYdWs6undgQOedGi5v1INat26dCgp2q3XrtiWfIz09U82aNdfq1Z/ojDO679PHcYo3MN+1q0iFhfY+57Oy0lmZCgAAAEigRM4xvvlmgwoKduvkk9uVHKtataqaNWuhzz5bQwFVFG3YsCHREQAAAJACUnl+kXQFVO3atdMDDzygH3/8UY0bN5YkrVixQpJ08sknyzAMtWnTRitWrNAll1xS0m/58uVq27Ztub9+eR+o4cBs22F8EVPcY4gl7i/EGvdYbNm2G5XrLFjm0aAH0vTHq23eZmjQA2l6ZmhRTCcgv/5a/BLBH18cOOKIWsrN3bLfPu7/wtq2I9flHgMAAAAqkso4xwAAAABQMaX6/KLSvypu27Z+/fVXFRUVSZJOPPFEtWnTRrfccos+//xzLVu2TKNGjVKfPn1KBnngwIFasGCBpk+fru+++04TJkzQunXrdPXVVyfyowAAACCJ2bY0crr/fxMPo9Q593+/vmu6X/a+izxFzZ7vmb1eX6njPp9PgcC+22ADAAAAqLiYYwAAAACIFuYXSVBAtWnTJnXs2FELFy6UJBmGocmTJ6tBgwa6+uqr9be//U2nn366Ro8eXdKnY8eOGjt2rF544QVdcMEFWrZsmZ588kk1bdo0QZ8CAAAAyW7ZOut/S94a+z3vytAv20wtWxe7jcT9fr8kKRQqPdEIBoNKT0+L2dcFAAAAEH3MMQAAAABEC/OLSriF3/jx40v9ukGDBvvs/V2zZk1NmjTpoNfp06eP+vTpE+14AAAAwH7lbt//pONw2x2O2rWLV2TdunWr6tdvUHJ869Zf1bTpMTH7ugAAAACijzkGAAAAgGhhfpEEK1ABAAAAlUHt6n/cNbx87Q7H0Uc3U2ZmptasWVVybOfOnfr66/U66aTWMfu6AAAAAKKPOQYAAACAaGF+UQlXoAIAAAAqo1Nb2qpb09HmbUbJfuF7M+Sqbk1Xp7aM3QbiPp9PF154qZ544jFVr56tnJx6mjLlUdWuXUddupwZs69bGTmOo8mTJ+vll1/Wzp071a5dO40aNUoNGzbcb/tQKKRJkyZp7ty52rlzp44//nj9/e9/V8uWLeOcHAAAAKmCOQYAAACAaGF+wQpUAAAAQFxYlnTvwICk4onG3vb8+p6BAVmx2z5ckjRo0PU677zeGj/+Xt1ww59lWZYeemiyPB7erdjblClTNHv2bN1zzz168cUX5TiOBg0apGAwuN/2o0eP1quvvqqxY8fqlVdeUY0aNfSXv/xFO3fujHNyAAAApArmGAAAAACihfkFK1ABAKLIMCS/36ug7ZVpFv9V6jqOvGZIgUA40fEAIOHOOzWsZ4YWaeR0vzZt+/0Njro1Xd0zMKDzTo39n5WWZenGG4foxhuHxPxrVVbBYFDTpk3T0KFD1aVLF0nSww8/rE6dOmnRokU6//zzS7X/6aef9Morr+jJJ59Up06dJEn33nuv+vTpoy+//FIdOnSI90cAUAl4PKZMyyvbtWSahmzHlWXYcu2QwmEn0fEAAJUEcwwAAOLP5/PIlleSKcOQHMeV1wwpFArLcWK3tRUAxFqqzy8ooAIARIXP55Usn1Z9LT23SPrPpuKCqmYNTV3dw68WjfwynACFVABS3nmnhnVOu7CWrbOUu91Q7erFS97G+q0NlN369eu1e/fuUoVPWVlZOvbYY7Vy5cp9Cqg+/PBDVa1aVaeffnqp9u+8807cMgOoPAzDkOVLUzBs6ZUl0qIVrrbvkqpmGOraxqO+Z3qV5nfkhAoTHRUAUEkwxwAAID68Xkuy0vTzVmnaQumL76RgWKp3hKHLz/Sp04l+WXZQoQOsYA4AlUEqzy8ooAIAlJvP79Ov+V5dN1Fa92Ppc2v/I819X2rfUnr8Vr+q+A0FA6GE5ASAisKypNOOj90+4SifzZs3S5Lq1q1b6njt2rVLzu3thx9+UMOGDbVo0SI9/fTT2rJli4499ljdfvvtatq0aVwyA6gcDMOQx5+uue8bunemq4Ki0uc/2SA9NsfV3y41NaBHhmQX7f9CAAD8AXMMAABiy+fzKKw0DZvs6s3lpc9t+K+0dLXUoLarJ27zqmldU6EA8zkAlVeqzi8ooAIAlIvP59H2Ap8uH+3ql60HbrdindTvH9LLY3zyeR2FQqn3ly4AoHIoLCxe9cXn85U67vf7tWPHjn3a79q1Sz/++KOmTJmi4cOHKysrS0888YT69eunhQsXqmbNmoedxeMxD7tvsrMss9SPiD3GvPwMj1+vvW/q708feEuHQEi6/3lXti39+fw0SYx5vHGvxx9jHn+MefztPeaWZRyidWqwLIPvdwEAlYJpGnJNv66f4OrDLw7cbmNu8XOQl/7h0ZF1vLxMDgCVDAVUAIByseXThNkHL57a45uN0lPzpMEXeCVRQAUAqJjS0ooLFoLBYMnPJSkQCCg9PX2f9h6PR7t27dLDDz9csuLUww8/rM6dO+u1117ToEGDDiuHaRrKzs48rL6pJCtr3/8niC3G/PDl/iaNnVX8+/tQJr0iXdRFqlaFMU8Uxj3+GPP4Y8zjLysrXT6foa1bzZQtIHIcQ6Zpqlq1jFLfbwMAUFF5vF793wc6aPHUHjsLpLunuZp+p08SBVQAUJlQQAUAOGwej6mgberNZQd+g/6P5rwr3XyRR6ZpyHHK3g8AgHjZs3Vfbm6uGjVqVHI8NzdXzZs336d9Tk6OPB5Pqe360tLS1LBhQ23cuPGwcziOq/z8gsPun+wsy1RWVrry8wtl206i46QExrx8LI9PL73j0e7Csn0PHHSkmW9Kt11uKhxkzOOJez3+GPP4Y8zjb+8xLywslOM4sm1X4XDqjb9tu3IcRzt2FKiwcN8X7LKy0lkdDQBQobimV8+/Xfb2K9ZJm7ZK9Wt4FAyGYxcMABBVFFABAA6b12vpreWuCoNl7/Prdunz71yd1MRSIMDEAUDl4rqpV/j5+2dOnW1GWrRooSpVqmj58uUlBVT5+flau3at+vfvv0/7du3aKRwO64svvlCrVq0kSUVFRfrpp5903nnnlStLKj5Qi5RtO4xTnDHmh8c1Lb25PLK/R95aId1yGWOeKIx7/DHm8ceYx59tFxdOSak5v5B+/9ypWkAGAKhcPB5TefnSF99H1m/u+9JNfSxJPAcBED+pOMeI5mfmNQ4AwGEzDENbt0f+QD1vZ3FfAKgsLMuSJAWDgQQnib9gMCDDkDweK9FR4sbn86l///564IEHtGTJEq1fv1633HKLcnJy1L17d9m2rV9//VVFRUWSpLZt2+pPf/qTRowYoVWrVunbb7/V8OHDZVmWevfuneBPA6CisCwpf3dkfXbsTqXyVQBIHak8v5B+/9yWxfvdAICKzzAM7TyMBcJ37JZshxkdgPhI5TlGNOcXzFAAAIfNdV1Vy4y8qjcrIzUroAFUXqZpKT29inbt+k2S5PP5k74Q1HVdBYMB7dq1XTVrZss0LTlO6rwdPmTIEIXDYY0cOVJFRUVq166dpk6dKq/Xq40bN+rMM8/UuHHjdOGFF0qSHnvsMT3wwAMaPHiwioqK1KZNG82cOVM1atRI8CcBUFHYjpSeFlmfDL/Ed80AkHxScX4h7T3H+E3p6VVkmrzfDQCo+Fy3eG4WqYw0yTJd7btZLQBEX6LmGI5jlKywG2+xmF9QQAUAOGzhsKMurSWvRwqVcRXaapnSSUcbCoeZNgCoXLKyigth9kxAUkVmZlXVrVtX27cfxqt2lZhlWRo2bJiGDRu2z7kGDRpow4YNpY5VqVJFo0eP1ujRo+OUEEBlY7i2zmht6Yvvyt6nS+vY5QEAJFaqzi8kKT29SsnnBwCgorNtW7WzpaPrS9/+XPZ+53WQDMqnAMRRIuYYpmkm/MXraM4vKKACABy2UMhWZpqrM0829ObysvXp1bF40hBOUDUyABwuwzBUrVpNVa2aLdsuY9VoJWdZHvl8npR4Gx4AYs1wQ+rX3dKUuWV7+cAwpIHnGqqSLv1WFPN4AIA4S8X5hVQ8x2DlKQBAZeK6kpywLu/m1b3Plu25RqsmxQVXgaLU+TseQOLFe45hWYaqVcvQjh0FCVuFKtrzCwqoAADl4jGCGtbXr2VfSdt3Hbxt/SOkwRdKpoLxCQcAMWCapkzTl+gYAIBKJhSyVTXN1Y0XGHr05UO3v/JsqW5NVxJFrACQzJhfAABQ8dnhkC47w6u570lf/nDwtn6vNPJqQ4bLcxAAiRGvOYbHYyotLU2FhbbC4cSuQhUtvOoBACiXQCCsujXCmnWXlHOQ1RGPqis9d5eUlR5SMMiytamMhWwAAECqskOFur73/14qOMC/yBiGdNU50u1XSIYTiG9AAAAAAMA+bNuR1whoxt8NtT7mwO2qZkhPDZdaHWUrGKCACgAqG1agAgCUWygQ0NF1XS15xKeFy1y9sFj6z+bihz/HNJCu7C51PdmQ4QSZNKQov9+jsOuTz2vKdYvvjWAoLEsU1AEAgNThOK7sYIFuvCBdl55haPpC6e1V0s7dUpV0qXNr6Zpzi1dutUOFcik8BwAAAIAKIRAIqYrf1Quj/VqxTnr2Denz76SwXfxy+UVdDF3cRfJZYYUC7MMOAJURBVQAgKgIBoIyzZB6dvDqvA5eWZYhQ1Io7MpSSKFASI6TmP1vkTgejynTm65vf5amLZTe/8xVYUCqlimd1d7SwHMt1armyg4Wcn8AAICUYNuubLtAtapauu0yr27vb0kq/t45GLKLC8yLwpKKv5cCAAAAAFQMgUBYhhHWKc29anOMt/iFYRW/LCMnJDscUiiQHNtYAUAqooAKABA1juMqUBSUFFRor+PhRAVCQnk8pgxPuu58WnrtvdLndhVKMxZKM9+U/nqxoWt7ZigcLKCICgAApIziVTht2X9YoJW1OQEAAACg4nJdqagoJCmkQjbcAICkwquMAAAgJkzv/oun9uY40sMvSTPeNGR60+IXDgAAAAAAAAAAAAD+hwIqAAAQdX6/R9/+LM19v2ztJ73sKhCy2KYGAAAAAAAAAAAAQNzxlBIAAERd2PVp2oKyty8MSi8tlQzLG7tQAAAAAAAAAAAAMWYYhnw+j9LSvPL7Pbw8DlQS/E4FAABR5/Waev+zyPq8s9qV7VixCQQAAAAAAAAAABBDlmXK6/fLm5ap9Rv9WvqZT8s3+BVwMmT5MuT3exIdEcBB8DsUAABElWFIcqXdRZH1KywqfisDAAAAAAAAAACgMvH5LDlGmp5dZOjFxa5+3Pz7uXSfq3NONTT4Qr/q1vAoFIjwAQqAuGAFKgAAEFWuW1xEVb1KZP2qVZEc141NKAAAAAAAAAAAgBjwei3ZRrqunSjd/1zp4ilJKgxKr70n9blT+upHSz6/PzFBARwUBVQAACDqQiFbZ7ePrM95HSSvGY5NIAAAAAAAAAAAgBhwTb/+Md3Vh18cvN3OAunaCdKugEcejxWfcADKjAIqAAAQdaaCurrH/7bzK4NqmVLP0wzZ4VBsgwEAAAAAAAAAAESJx2Npd5Ghue+Xrf1vO6XZb0syvTHNBSByFFABAICoCwZt1cl2NfjCQ7c1Temev0iGG5Zts4UfAAAAAAAAAACoHAzLoxcWS6EINth46R3J8njK/BI6gPiggAoAAMSEEyrUjRdIt10upfn23yYrU3pkiNTtZFd2qCi+AQEAAAAAAAAAAMohbJta92NkfX7eKhUGJNOkggqoSDyJDgAAAJKTbbtyAwW65tx09etm6oUlrt77VNpdVLxl3/l/knqdZshQWOFAkVwWnwIAAAAAAAAAACnAdaXiJah4OAJUFBRQAQCAmHEcV06gQGkeU9f08Orqsy0ZpiHXceUxw7LDYYVtJ9ExAQAAAAAAAAAAImaZro6qG1mfI6pJGWlSsJDnI0BFwhZ+AAAg5sJhR6FAQE6oQHZgt5xQgYKBoGyKpwAAAAAAAAAAQCVluCFdcZYhK4LKiws7S3Y4zM4cQAVDARUAAAAAAAAAAAAAAECEQiFb2VUddWtbtvbpfunqcwwZbii2wQBEjAIqAAAAAAAAAAAAAACAw2C6QY2/3tBxRx28nd8rTfqrlF3FVihkxyccgDKjgAoAAAAAAAAAAAAAAOAwBINhpVkBzb5bGtBDqpZZ+rxhSKe1kp4bJZ12vKNwsDAxQQEclCfRAQAAAAAAAAAAAAAAACqrYDAkr9fR0Mt9GtrX0rtrXP281VCVNOm0Vq5qVZcsBRUIsHUfUFFRQAUAAAAAAAAAAAAAAFAOxdvyFcqyDJ3VxiPTNOS6rmzbUTBgK5zogAAOigIqAAAAAAAAAAAAAACAKLBtV7bNSlNAZWMmOgAAAAAAAAAAAAAAAAAAJAoFVAAAAAAAAAAAAAAAAABSFgVUAAAAAAAAAAAAAAAAAFIWBVQAAAAAAAAAAAAAAAAAUhYFVAAAAAAAAAAAAAAAAABSFgVUAAAAAAAAAAAAAAAAAFIWBVQAAAAAAAAAAAAAAAAAUhYFVAAAAAAAAAAAAAAAAABSFgVUAAAAAAAAAAAAAAAAAFIWBVQAAAAAAAAAAAAAAAAAUhYFVAAAAAAAAAAAAAAAAABSFgVUAAAAAAAAAAAAAAAAAFKWJ9EBAAAAAABA4nk8pgzLq7BjyZDkypXPDCsUCstx3ETHAwAAAAAAAICYoYAKAAAAAIAUZpqGTG+agmFLL78tffC5q6KglF3V0IWdfep0ol+WE5JrhxIdFQAAAAAAAABiggIqAAAAAABSlGWZsnzpenqe9OT/uSoMlD7/1gqp3hGuHrzJq5OONhMTEgAAAAAAAABijH/9BAAAAAAgRVnedD3ysvTwS9qneGqPX7ZKA8a6+uw7S4FgfPMBAAAAAAAAQDxQQAUAAAAAQAry+z36fpP01P8dum0gJA2d4ioQkgwj9tkAAAAAAAAAIJ4ooAIAAAAAIAWFXa+mLyx7+4250sdfSl6vJ3ahAAAAAAAAACABKKACAAAAACDFGIbk8Vh6c3lk/V59TyoKUUAFAAAAAAAAILlQQAUAAAAAQIoxDENhW9pVGFm/33ZKYgs/AAAAAAAAAEmGAioAAAAAAFKM60oeq/i/SKT7i/sCAAAAAAAAQDKhgAoAAAAAgBTjuq5s29VprSLr17WN5PfYsQkFAAAAAAAAAAlCARUAAAAAACnIYwR11Tllb181Q+p1muTY4diFAgAAAAAAAIAEoIAKAAAAAIAUFAiE9afjVeZVqG691JDfJzkOe/gBAAAAAAAASC4UUAEAAAAAkIJc15XsgKbcJnU64cDtDEMa2le6vJurzLT45QMAAAAAAACAePEkOgAAAAAAAEiMYDAsn8/V08PTtHK99Owb0kdfSoGQVKOq1ONUaeC5Uk6N4mIrKSPRkQEAAAAAAAAg6iigAgAAAAAghQWDtgyjQKc09+jkZl55LFOuileeCoVsWQoqWGTL42ERawAAAAAAAADJiQIqAAAAAABSnOu6KioKSQrJNiTDMOQ4riTJTmw0AAAAAAAAAIg5CqgAAAAAAEAJ1y0uqAIAAAAAAACAVMH6+wAAAAAAAAAAAAAAAABSFgVUAAAAAAAAAAAAAAAAAFIWBVQAAAAAAAAAAAAAAAAAUhYFVAAAAAAAAAAAAAAAAABSFgVUAAAAAAAAAAAAAAAAAFIWBVQAAAAAAAAAAAAAAAAAUhYFVAAAAAAAAAAAAAAAAABSlifRAcrCcRxNnjxZL7/8snbu3Kl27dpp1KhRatiw4T5tH3vsMU2ePHm/17nwwgs1btw4SdLAgQP10UcflTrfvn17zZo1K/ofAAAAAAAAAAAAAAAAAECFVCkKqKZMmaLZs2dr/PjxysnJ0cSJEzVo0CDNnz9fPp+vVNtrrrlGl19+ealj06dP1wsvvKABAwaUHNuwYYNGjx6tbt26lRzzer0x/RwAAAAAAAAAAAAAAAAAKpYKX0AVDAY1bdo0DR06VF26dJEkPfzww+rUqZMWLVqk888/v1T7zMxMZWZmlvx67dq1mjlzpu655x41b95ckrRt2zZt27ZNJ554omrVqhW3zwIAAAAAAAAAAAAAAACgYjETHeBQ1q9fr927d6tDhw4lx7KysnTsscdq5cqVh+w/ZswYtW3bVhdccEHJsQ0bNsgwDB111FExyQwAAAAAAAAAAAAAAACgcqjwK1Bt3rxZklS3bt1Sx2vXrl1y7kCWLl2qNWvWaO7cuaWOf/3116patarGjBmjDz/8UBkZGTrnnHN044037rMlYKQ8ngpfk1bpWJZZ6kcg2rjHEEvcX4g17jHEGvcYAAAAAAAAAABIdhW+gKqwsFCS9ils8vv92rFjx0H7Tp8+XV27dlXLli1LHf/6668VCAR0wgknaODAgVq3bp0mTJigX375RRMmTDjsrKZpKDs789ANcViystITHQFJjnsMscT9hVjjHkOscY8BAAAAAAAAAIBkVeELqNLS0iRJwWCw5OeSFAgElJ5+4Ic4v/zyi5YvX66nn356n3NjxozRiBEjVK1aNUlSs2bN5PV6dcstt2j48OE64ogjDiur47jKzy84rL44MMsylZWVrvz8Qtm2k+g4SELcY4gl7i/EGvcYYu1Q91hWVjqrUwEAAABAlG3btk3jx4/X+++/r0AgoHbt2mnEiBFq2rRpoqMBAAAASanCF1Dt2bovNzdXjRo1Kjmem5ur5s2bH7Df4sWLVaNGDZ122mn7nPN4PCXFU3scc8wxkoq3DDzcAipJCod5cBkrtu0wvogp7jHEEvcXYo17DLHGPQYAAAAA8XPTTTfJcRw9/fTTyszM1KOPPqoBAwZo0aJFB325HAAAAMDhqfCvirdo0UJVqlTR8uXLS47l5+dr7dq1ateu3QH7rVq1Su3bt5fHs2+N2JVXXqk77rij1LEvvvhCXq9XRx55ZNSyA6h4DMOQYSQ6BQAAAAAAAADs344dO1S/fn3de++9OuGEE9S0aVPdeOONys3N1TfffJPoeAAAAEBSqvArUPl8PvXv318PPPCAatSoofr162vixInKyclR9+7dZdu28vLyVLVq1VJb/K1du1YXXXTRfq959tlna+zYsTrhhBPUsWNHffHFF5owYYL+/Oc/q0qVKvH6aADixOu1JNMry+OR6xYfsx1XlkIKBUOJDQcAAAAAAAAAe6lWrZoefPDBkl/n5eVpxowZysnJ0dFHH53AZAAAAEDyqvAFVJI0ZMgQhcNhjRw5UkVFRWrXrp2mTp0qr9erjRs36swzz9S4ceN04YUXlvT59ddfVb169f1er3///jIMQ7NmzdLYsWNVq1YtDRgwQNdee22cPhGAeDAMyeNLV36hqecXSa+972rzNsnrkU48Wrr6HK+6tPbJUjDRUQEAAAAAAABgH3fddZdeeukl+Xw+PfHEE8rIyDjsa3k8FX5TkrixLLPUjyg/xjT6GNPoY0xjg3GNPsY0+hjT6EvGMTVcd896LCgv23aUl7c70TGSjsdjKjs7U7/9tlvhsJPoOKgkiounMrR4taFhj0uBAyw0ddxR0tTbDdU/wlB+PvcYoo8/wxBr3GOItUPdYzVqZCbVBKkiYX5xcPz5F3+Mefwx5onBuMcfYx5/jHn8MeZlxxyjtG+//VZFRUV6/vnntXDhQs2ePVvHHXdcxNdxXVeGYcQgIQAAAJAcKsUKVAAQKa/Pr4/WGrr1MSlsH7jdVz9IV93r6tX7DHksk3/AAgAAAAAAAFBh7Nmy77777tNnn32m5557TuPGjYv4Oo7jKj+/INrxKi3LMpWVla78/ELZNv8mHA2MafQxptHHmMYG4xp9jGn0MabRV1nGNCsrvcwvaFBABSDpGIYk06Nxzx28eGqPr3+SXlwi9T/LIykc63gAAAAAAAAAcEB5eXn6+OOPdfbZZ8vjKX6MY5qmjj76aOXm5h72dXl5dF+27TAuUcaYRh9jGn2MaWwwrtHHmEYfYxp9yTSmrIMLIOn4/V59+q307cay93lxieTKI1axBgAAAAAAAJBIW7du1a233qqPP/645FgoFNLatWvVtGnTBCYDAAAAkhcFVACSTtix9PbKyPp8/4u0bYdb5uX7AAAAAAAAACAWmjVrptNPP1333nuvVq5cqa+//lq333678vPzNWDAgETHAwAAAJISlQIAko7jSoWByPsVBg0ZLEEFAAAAAAAAIMEeeughdejQQbfccosuueQSbd++Xc8//7zq1auX6GgAAABAUvIkOgAARJvHdFW9SuT9sjIl13WjHwgAAAAAAAAAIlC1alWNHj1ao0ePTnQUAAAAICWwAhWA5OPauriLFMliUu1aSFXTXYXDTsxiAQAAAAAAAAAAAACAiocCKgBJJxgMq25NqX3Lsve58hzJY4ZjFwoAAAAAAAAAAAAAAFRIFFABSEqGG9S9fzHKtJVf93ZSt5OlcIgCKgAAAAAAAAAAAAAAUg0FVACSUjAQUoOaIb042tDR9fffxmNJl50hPTLEUFam5LpufEMCAAAAAAAAAAAAAICE8yQ6AADESjAQUKNarubf79UnGwy9uMTVljzJ45FOOlq68mxD1TIdmW5AUnqi4wIAAAAAAAAAAAAAgASggApAUgsFgzKMoNo18+qEph4ZMuRKsgxHhhtSKGBLHhbjAwAAAAAAAAAAAAAgVVFABSDpua5UVBSSFNKeTfrCiQwEAAAAAAAAAAAAAAAqDJZdAQAAAAAAAAAAAAAAAJCyKKACAAAAAAAAAAAAAAAAkLIooAIAAAAAAAAAAAAAAACQsiigAgAAAAAAAAAAAAAAAJCyKKACAAAAAAAAAAAAAAAAkLIooAIAAAAAAAAAAAAAAACQsiigAgAAAAAAAAAAAAAAAJCyPIkOAAAAAAAAAAAAAAA4NNM05PV5FbQ9MgzJdSWPacu1QwqHnUTHAwCg0qKACgAAAAAAAAAAAAAqOK/PL5leLVntau4HUl6+lO6XTjvBq8u6euX3O3JChXIcN9FRAQCodCigAgAAAAAAAAAAAIAKzOtP1ydfWxr6uKstv5U+98Hnria9JF3fx9C1vTJkBwtl26xGBQBAJCigAgAAAAAAAAAAAIAKyuPza/U3lq4Z7yoU3n+bwqD08EvFPw65KE22XRDfkAAAVHJmogMAAAAAAAAAAAAAAPZlGIZMy6sRTxy4eGpvT86VftxiyO9nHQ0AACJBARUAAAAAAAAAAAAAVEBer6X3PnP189ay95m+UAq73tiFAgAgCVFABQAAAAAAAAAAAAAVUFHIo7nvR9bnzeWS12PJMGKTCQCAZEQBFQAAAAAAAAAAAABURIa0fVdkXfJ3S7ZbvP0fAAAoGwqoAAAAAAAAAAAAAKAicqV0f2Rd/F7JNCTXjU0kAACSEQVUAAAAAAAAAAAAAFAB+Ty2urSObCWp006QwrYjlwoqAADKjAIqAAAAAAAAAAAAAKiAHDusCzpJVdLL3mdAD8lrhGIXCgCAJEQBFQAAAAAAAAAAAABUQI7jyjRs3XJp2VahOv1EqV0LKRAIxzgZAADJhQIqAAAAAAAAAAAAAKignFCR+nZzNbSvZBykjqrzSdLjtxqSXcT2fQAARMiT6AAAAAAAAAAAAAAAgP1zHFcKFuiac9N1XgdDz74hLfhY+m2nlOaT/nS8dHUP6eRmkmsXKhi0Ex0ZAIBKhwIqAAAAAAAAAAAAAKjAHMeVU1SgnGqWhl7u0x1XWnJdyZAUsh15jZACRSGx8BQAAIeHAioAAAAAAAAAAAAAqASKV5cqlB2UDMOQ5Mp1JdacAgCgfCigAgAAAAAAAAAAAIBKxmW5KQAAosZMdAAAAAAAAAAAAAAAAAAASBQKqAAAAAAAAAAAAAAAAACkLAqoAAAAAAAAAAAAAAAAAKQsCqgAAAAAAAAAAAAAAAAApCwKqAAAAAAAAAAAAAAAAACkLAqoAAAAAAAAAAAAAAAAAKQsCqgAAAAAAAAAAAAAAAAApCwKqAAAAAAAAAAAAAAAAACkLAqoAAAAAAAAAAAAAAAAAKQsCqgAAAAAAAAAAAAAAAAApCwKqAAAAAAAAAAAAAAAAACkLAqoAAAAAAAAAAAAAAAAAKQsCqgAAAAAAAAAAAAAAAAApCwKqAAAAAAAAAAAAAAAAACkLAqoAAAAAAAAAAAAAAAAAKQsCqgAAAAAAAAAAAAAAAAApCwKqAAAAAAAAAAAAAAAAACkLAqoAAAAAAAAAAAAAAAAAKQsCqgAAAAAAAAAAAAAAAAApCwKqAAAAAAAAAAAAAAAAACkLAqoAAAAAAAAAAAAAAAAAKQsCqgAAAAAAAAAAAAAAAAApCwKqAAAAAAAAAAAAAAAAACkLE+iAwAAAAAAAAAAAAAAImeahkzTkCQ5jivHcROcCACAyokVqAAAAADgDxzH0aRJk9SpUyeddNJJ+stf/qKffvqpTH3nzZun5s2ba+PGjTFOCQAAAAAAUpXP55HlS5fhzdTW3enatjtdpi9THl+6fD7W0AAAIFL87QkAAAAAfzBlyhTNnj1b48ePV05OjiZOnKhBgwZp/vz58vl8B+z3888/a8yYMXFMCqQ2w5D8fq+CtiXXLX7j2mfZCoVCvHUNAAAAICkZhuTxpeuX30xNnS/N+9DVrsLic1mZrnqeZurP5/mVk+1VOFgol6kRAABlwgpUAAAAALCXYDCoadOmaciQIerSpYtatGihhx9+WJs3b9aiRYsO2M9xHA0bNkzHHXdcHNMCqcvr88mblqnV3/r0jxmWbpls6s5/mlqwwvu/t67TZBhGomMCAAAAQFR5fOla+qmpc4dKsxerpHhKkvJ3S88vks4dJr33uSmPLz1xQQEAqGQooAIAAACAvaxfv167d+9Whw4dSo5lZWXp2GOP1cqVKw/Y78knn1QoFNJ1110Xj5hASvP607Rho1c9R0h9/yHNeVda8on0+kfSbZOlTje5mvuhRx5/hkyTIioAAAAAySEtzauvfjT1t0lSIHTgdkVB6a+PSut/MpWW5o1fQAAAKjG28AMAAACAvWzevFmSVLdu3VLHa9euXXLujz7//HNNmzZNc+bM0ZYtW6KWxePhnZcDsSyz1I+IvYoy5pbHq69+9Kj/Pa4KA/tvk5cv/f1pV4VFhq44K11OuCi+IaOkoox5qmHc448xjz/GPP4YcwBANITl02NzpFD40G0DIemxV6TJf/NKOki1FQAAkEQBFQAAAACUUlhYvPa9z+crddzv92vHjh37tC8oKNDQoUM1dOhQHXnkkVEroDJNQ9nZmVG5VjLLymI7gnhL9Jjn75ZueUwKhAyZh3gGPX62dFZ7S8c0qNy/lxI95qmKcY8/xjz+GPP4Y8wBAIfL67W0bYf0wRdl7/Pep9L2XaayMyyFQnbMsgEAkAwooAIAAACAvaSlpUmSgsFgyc8lKRAIKD193wde9957r4466ihdfvnlUc3hOK7y8wuies1kYlmmsrLSlZ9fKNt2Eh0nJVSEMff5PPrwC6/+W8Y6RceRpi+Qhvd15NoHWK6qAqsIY56KGPf4Y8zjjzGPP8a87LKy0lmpCwD2w7JMrdpQPM8pK9uR1nzj6qw2JgVUAAAcAgVUAAAAALCXPVv35ebmqlGjRiXHc3Nz1bx5833av/LKK/L5fGrdurUkybaL/0Hy/PPP1/XXX6/rr7/+sLOEwzxcOxTbdhinOEvkmNuyNOfdyPq8/pF0x5WWigKV9z7hPk8Mxj3+GPP4Y8zjjzEHABwuwyjeli9Sh9MHAIBURAEVAAAAAOylRYsWqlKlipYvX15SQJWfn6+1a9eqf//++7RftGhRqV9/9tlnGjZsmJ5++mk1a9YsLpmBVGEYhrbtu5PmQW3Ll1y3eFtMx3FjEwwAAAAAYsxxXDWoFXm/BkdIrstcCACAQ6GACgAAAAD24vP51L9/fz3wwAOqUaOG6tevr4kTJyonJ0fdu3eXbdvKy8tT1apVlZaWpsaNG5fqv3nzZklSvXr1VL169QR8AiB5Oa6U5ousT5q3+EceGAAAAACozEIhWyc3N1TvCFe/bC1bnwa1pROONhQsYvs+AAAOhY3EASQlyzLl8/tleNJleNJletPk93tkGIlOBgAAKoMhQ4bo4osv1siRI9W3b19ZlqWpU6fK6/Vq06ZN6tixoxYuXJjomEDK8Vq2Tjkusm/q27WUbNsV9VMAAAAAKjPHceXYYV12Rtn79O1myHVCvFACAEAZsAIVgKRiWYYMK01h19JL70jL17oKhKQ62dKlZ1g69ki/5IQUDAQTHRUAAFRglmVp2LBhGjZs2D7nGjRooA0bNhyw7ymnnHLQ8wAOn2uH1PdMrx6bIxWV8Vv6q3tIHiOocGyjAQAAAEDMuXZQg3qma9V66f3PD96280nSgB6unFAoLtkAAKjsKsUKVI7jaNKkSerUqZNOOukk/eUvf9FPP/10wPbz5s1T8+bN9/lv48aNJW3eeOMNnXvuuTrhhBPUp08fffzxx/H4KABiyLJMWb4M/XOBqT9d72rMDFdvrZDeXSP96x3popHSxXdJP231yev3JzouAAAAgAiFw478Xkd/Pr9s7du3lE5rZSgQoHwKAAAAQOVn245Mp0hPDJWuPFvKSNu3TWZa8YskU26VTKdItu3EPygAAJVQpViBasqUKZo9e7bGjx+vnJwcTZw4UYMGDdL8+fPl8/n2ab9hwwa1b99eDz30UKnjNWrUkCQtW7ZMw4YN0/Dhw3Xaaadpzpw5uvbaazV37lw1bdo0Lp8JQHQZhmR60zVhtjT9ILvpfPWDdNndrl4a41WDGo6CQd68AAAAACoTN1ykmy5I1+5CacYbB27XroX01DBDsovYrgIAAABA0ggGbXk8RRrRz6dbL7P02nvS1z+5MgypeSNDfTpJHtOW7ICCYYqnAAAoqwpfQBUMBjVt2jQNHTpUXbp0kSQ9/PDD6tSpkxYtWqTzz9/3tdOvv/5azZs3V61atfZ7zX/+85/q1q2brrrqKknSiBEjtGbNGj377LMaM2ZMzD4LgNjx+7369PuDF0/t8dtOadgUV7NH+SRRQAUAAABUJsVvTxdqeL909TytuIhq0QopECp+saJdS+mqs6UzT5YMp4jVpwAAAAAknXDYllQon8dU3zM8CjvFmw55LUfhUFh2kMIpAAAiVeG38Fu/fr12796tDh06lBzLysrSscceq5UrV+63z4YNGw64kpTjOFq9enWp60nSKaeccsDrAaj4Qo63TMVTe3z6jfTDJsnvr/B1pAAAAAD+wLYdhQO7dVyjgMZd6+rT6YbWTDP05UxD0++QurUOKRwooHgKAAAAQFILhx0FA0E5oSI5oSIFioJs2QcAwGGq8AVUmzdvliTVrVu31PHatWuXnNvbjh07tGXLFq1atUo9e/ZUx44ddeONN+qHH36QJOXn56ugoEA5OTlluh6Ais80DckwteSTyPq9tFQKOxRQAQAAAJWR60qBQFh2sEDhwG55VSAnuFvhot0KBIJyHLbtAwAAAAAAAFA2Fb5yoLCwUJLk8/lKHff7/dqxY8c+7b/55htJkuu6GjdunIqKivTEE0+oX79+mj9/vsLh8AGvFwgEyp3X46nwNWmVjmWZpX4E/siyTP1WIIUifLk8L19yZcjDPYYY4s8wxBr3GGKNewxAZVBcLEXBFAAAAAAAAIDDU+ELqNLS0iRJwWCw5OeSFAgElJ6evk/7tm3b6uOPP1Z2drYMw5AkTZ48WV26dNGrr76qSy65pOR6ezvQ9SJhmoayszPLdQ0cWFZW+f7/ILkV2v9biSoCaX7J5zNVNaP4j0LuMcQS9xdijXsMscY9BgAAAAAAAAAAklWFL6Das3Vfbm6uGjVqVHI8NzdXzZs332+fGjVqlPp1enq6GjRooC1btqh69erKyMhQbm5uqTa5ubmqU6dOubI6jqv8/IJyXQP7sixTWVnpys8vZN9mHFCaN13NG0rrfix7n06tDBluSPn5NvcYYoY/wxBr3GOItUPdY1lZ6axOBQAAAAAAAAAAKrUKX0DVokULValSRcuXLy8poMrPz9fatWvVv3//fdr/61//0kMPPaSlS5cqIyNDkrRr1y795z//0cUXXyzDMNSmTRutWLGiZDUqSVq+fLnatm1b7rzhMA8uY8W2HcYXB+SzQurf3ae//7Ns23YcUU3q1lYKFAVLVq7iHkMscX8h1rjHEGvcYwAAAAAAAAAAIFlV+FfFfT6f+vfvrwceeEBLlizR+vXrdcsttygnJ0fdu3eXbdv69ddfVVRUJEk6/fTT5TiOhg8frm+++UZffPGFbr75ZtWoUUMXXnihJGngwIFasGCBpk+fru+++04TJkzQunXrdPXVVyfyowIoBzscVu9OUvNGh24rSbdeZsh1wnKcshVcAQAAAAAAAAAAAACA5FThC6gkaciQIbr44os1cuRI9e3bV5ZlaerUqfJ6vdq0aZM6duyohQsXSire8m/GjBkqKChQ3759NWDAAFWtWlUzZ86U3++XJHXs2FFjx47VCy+8oAsuuEDLli3Tk08+qaZNmybyYwIoB9t25FFAM+401KLxgduZpnR7f0N9OrmyQ4H4BQQAAAAAAAAAAAAAABVShd/CT5Isy9KwYcM0bNiwfc41aNBAGzZsKHXsuOOO07Rp0w56zT59+qhPnz7RjAkgwQKBkKqnS6/e69cby1zNWiR9+k3xuSrp0vl/kq45T2pQy5EdLJTrsvoUAAAAAAAAAAAAAACprlIUUAFAWQWDIZlmWOed6lWPU72SDIXCkt8nhcO2LIUULAonOiYAAAAAAAAAAAAAAKggKKACkHQcx1WgKCgpKNM0ZBlSsFByXVd2osMBAAAAAAAAAAAAAIAKhQIqAEnNcdimDwAAAAAAAAAAAAAAHJiZ6AAAAAAAAAAAAAAAAAAAkCgUUAEAAAAAAAAAAAAAAABIWRRQAQAAAAAAAAAAVCDbt2/XqFGjdPrpp6tNmzbq27evVq1alehYAAAAQNKigAoAAAAAAAAAAKACufXWW7VmzRo99NBDeuWVV9SyZUv9+c9/1vfff5/oaAAAAEBSooAKAAAAAAAAAACggvjxxx/14YcfavTo0Wrbtq2OOuoo3XXXXapdu7bmz5+f6HgAAABAUqKACgAAAAAAAAAAoILIzs7W008/rVatWpUcMwxDhmEoPz8/gckAAACA5OVJdAAAAAAAAAAAAAAUy8rKUufOnUsde+utt/Tjjz/qzjvvPOzrejy8U7+HZZmlfkT5MabRx5hGH2MaG4xr9DGm0ceYRl8yjikFVAAAAAAAAAAAABXU6tWrdccdd6h79+7q0qXLYV3DNA1lZ2dGN1gSyMpKT3SEpMOYRh9jGn2MaWwwrtHHmEYfYxp9yTSmFFABAAAAAAAAAABUQIsXL9bQoUPVpk0bPfDAA4d9HcdxlZ9fEMVklZtlmcrKSld+fqFs20l0nKTAmEYfYxp9jGlsMK7Rx5hGH2MafZVlTLOy0su8ShYFVAAAAAAAAAAAABXMc889p/vuu0/nnHOO7r//fvl8vnJdLxyuuA+2EsW2HcYlyhjT6GNMo48xjQ3GNfoY0+hjTKMvmcY0eTYjBAAAAAAAAAAASAKzZ8/WPffcoyuuuEIPPfRQuYunAAAAABwcK1ABAAAAAAAAAABUED/88IPGjh2rs846S9ddd522bt1aci4tLU1Vq1ZNYDoAAAAgOVFABQAAAAAAAAAAUEG89dZbCoVCevvtt/X222+XOnfBBRdo/PjxCUoGAAAAJC8KqAAAAAAAAAAAACqI66+/Xtdff32iYwAAAAApxUx0AAAAAAAAAAAAAAAAAABIFAqoAAAAAAAAAAAAAAAAAKQsCqgAAAAAAAAAAAAAAAAApCwKqAAAAAAAAAAAAAAAAACkLAqoAAAAAAAAAAAAAAAAAKQsCqgAAAAAAAAAAAAAAAAApCwKqAAAAAAAAAAAAAAAAACkLAqoAAAAAAAAAAAAAAAAAKQsCqgAAAAAAAAAAAAAAAAApCwKqAAAAAAAAAAAAAAAAACkLAqoAAAAAAAAAAAAAAAAAKQsCqgAAAAAAAAAAAAAAAAApCwKqAAAAAAAAAAAAAAAAACkLAqoAAAAAAAAAAAAAAAAAKQsCqgAAAAAAAAAAAAAAAAApCwKqAAAAAAAAAAAAAAAAACkLAqoAAAAAAAAAAAAAAAAAKQsCqgAAAAAAAAAAAAAAAAApCwKqAAAAAAAAAAAAAAAAACkLAqoAAAAAAAAAAAAAAAAAKQsCqgAAAAAAAAAAAAAAAAApCwKqAAAAAAAAAAAAAAAAACkLE+iAwBIDJ/PkkyPbNuQYbjymI4CgZBcN9HJAAAAAAAAAAAAAAAA4ocCKiDF+P1e2fIpN1969d/Sth1Sml86s4100jE+uU5Y4WCAQioAAAAAAAAAAAAAAJASKKACUojP71duvkcj/yl98IXkOL+fe2a+dHR9afgVHnU83lI4WCiXKioAAAAAAAAAAAAAAJDkDquAqrCwUKtWrdLGjRu1c+dOZWdnq379+mrbtq18Pl+0MwKIAp/fq83bPbp0lPTr9v23+fZn6YYHpAk3GurRPk2hQGFcMwIAABxMQUGBNm3apF27dik7O1t16tSR3+9PdCwAAAAAKeL777/Xxo0bS+Yk9erVU+PGjRMdCwAAAEAURFRAtW7dOj311FNasmSJQqHQPufT09PVtWtXXXvttWrRokXUQgKIAtOnIY8euHhqD9uRbn9Sat/SVM1MS6GQHZd4AAAA+xMMBjVnzhzNnz9fX3zxhWz79+9NLMtS27Zt1aNHD11wwQW8zAEAAAAg6rZu3arp06fr9ddfV25ubqlV+w3DUIMGDdSjRw9dddVVOuKIIxKYFAAAAEB5lKmAateuXbrnnnu0YMECnXLKKRo1apRatWqlBg0aKD09XTt27NCWLVu0atUqvf/++7rooovUo0cPjRo1SllZWbH+DAAOwe/3aN1/pS++K1v7UFia+ab0t4u9kiigAgAAifHqq6/qwQcfVCAQUNeuXdWjRw/Vr19fGRkZ2rFjhzZv3qzVq1froYce0uTJkzVkyBBdcskliY4NAAAAIAnYtq3HH39czzzzjOrVq6cLLrhArVq1KjUn2bJliz755BO98847mjlzpq6++moNHjxYXq830fEBAAAARKhMBVS9e/dWt27d9O677+73DYoaNWqoRo0aatmypa688kr9/PPPmjZtmvr06aN33nkn6qEBRCbkePXC4sj6vPaeNLSvR3ZI2uulKgAAgLi47rrr9Ouvv2rUqFHq2rXrAVeXGjBggILBoBYuXKjp06dr0aJF+uc//xnntAAAAACSzUUXXaQGDRpo9uzZOv744/fbplWrVurWrZtGjBihVatW6ZlnntEll1yiuXPnxjcsAAAAgHIrUwHVM888o6OOOqrMF61fv77uuusuXXHFFYcdDED0uK6hTVsj67N1hxS2i5ehdqmgAgAAcda9e3dddNFFZWrr8/nUp08f9e7dW3PmzIlxMgAAAACp4Pbbb9epp55a5vZt27ZV27Zt9fHHH8cwFQAAAIBYMcvSKJLiqb01adLksPoBiDZXnjKVS/7ONCWrTH9CAAAARF9Zi6f2ZhgGW/gBAAAAiIpIiqf21qFDhygnAQAAABAPEZZUFMvLy9PUqVP10Ucf6ddff9UzzzyjxYsXq0WLFurWrVu0MwIoJ4/l6KSjTS1dXfY+xx8lOY4rx2H1KQAAUDH8+9//1kcffaTc3FzdeuutWrdunY477jjVr18/0dEAAAAAJLlgMKg5c+aUPBcZO3asVqxYoeOOO04nnHBCouMBAAAAKKeI15f56aef1KtXL7300kuqU6eOtm3bJtu29cMPP2jIkCF69913YxATQHm4dlj9zpJ8EZRM9u8umQrFLhQAAEAZFRYW6pprrtF1112nV155RW+++aby8/P1wgsv6MILL9Q333yT6IgAAAAAklheXp4uuugi3Xffffrxxx/1+eefq6ioSO+++66uvPJKrVmzJtERAQAAAJRTxAVU999/v2rWrKklS5Zo8uTJct3i1WkefPBBnXHGGXryySejHhJA+YTDtjL8rvqWcYG4pvWk8/5kKBSkgAoAACTeQw89pK+++kozZszQsmXLSuYg999/v+rUqaNHH300wQkBAAAAJLMJEyZo9+7dWrhwoV577bWSOcmkSZPUqlUrTZo0KcEJAQAAAJRXxAVUH3/8sW688UZlZWXJMIxS5y677DLe/gYqKrtII66Qzutw8GZH1ZVm/N2Q6QbYvg8AAFQIb7zxhm699VadeuqppeYgtWvX1g033KBPPvkkgekAAAAAJLulS5fqr3/9qxo3blxqTuL3+3XNNdfoq6++SmA6AAAAANEQwYZee3Xy7L9bMBjcp6gKQMUQDjvyGkWaeFOaepwqzXxLWrH29/MNa0uXnSldcZaU7gkqEGD1KQAAUDHk5+erfv36+z1XrVo1FRQUxDkRAAAAgFQSCARUvXr1/Z6zLEuhEP+WCgAAAFR2ERdQtW3bVk899ZQ6dOggv98vSTIMQ47j6IUXXlCbNm2iHhJAdIRCtky7QN1ae3VGG6/yC6TtO6U0n1SnhiHXCcm1QwoEnERHBQAAKHHMMcdo/vz56tix4z7n3nnnHR1zzDEJSAUAAAAgVbRq1UqzZ89W586d9zk3f/58HX/88QlIBQAAACCaIi6guu2229S3b191795dp5xyigzD0NSpU/Xdd9/pxx9/1OzZs2ORE0CUOI6rQCAoKaiqPlNZRxhyXSlU5Mh12bIPAABUPDfccIMGDx6s7du3q2vXrjIMQytXrtSrr76qF198UQ8++GCiIwIAAABIYn/96181YMAA9e7dW507d5ZhGHr99df12GOP6YMPPtAzzzyT6IgAAAAAysmMtEOzZs00Z84cnXLKKVq+fLksy9JHH32kRo0a6cUXX1TLli1jkRNADITDjkIhW+GwTfEUAACosLp166aJEydqw4YNGj16tFzX1fjx4/Xmm29q9OjROueccxIdEQAAAEASa9u2raZPn6709HQ988wzcl1XM2bM0K+//qqnnnpKp556aqIjAgAAACiniFegkqSjjjpKEyZMkGVZkqTCwkKFw2FVrVo1quEAAAAAQJJ69uypnj176vvvv9f27duVlZWlJk2ayDQjficEAAAAACLWrl07vfjiiyoqKtKOHTtUpUoVZWZmJjoWAAAAgCiJ+GlDKBTS3XffrUsvvbTk2Jo1a9ShQwfdf//9chwnqgEBAAAAYOHChRo1apSaNGmiNm3aKD8/X5deeqneeeedREcDAAAAkAKefvppXXvttUpLS1OdOnX05ZdfqmPHjnruuecSHQ0AAABAFERcQPXYY49p3rx5Ou+880qOHXvssRo6dKheeukl9voGAAAAEFVz587Vrbfequ3bt5ccq169umrVqqXBgwdr8eLFiQsHAAAAIOlNmzZNjzzyiI488siSY40aNdI555yj8ePH6+WXX05cOAAAAABREXEB1fz58zVixAhdc801JceqV6+uAQMG6JZbbtGcOXOiGhAAAABAaps6daoGDhyoSZMmlRxr0qSJnnjiCV199dWaMmVKAtMBAAAASHYvvvii/va3v+nOO+8sOVa3bl2NHDlSgwcP1owZMxIXDgAAAEBURFxA9dtvv6lhw4b7PdekSRNt3ry53KEAAAAAYI///ve/6ty5837PnX766fr+++/jnAgAAABAKtmyZYtatWq133MnnniiNm7cGOdEAAAAAKIt4gKqJk2a6K233trvuXfeeUeNGzcudygAh8/v98iX5pflS5M/zS+fz5PoSAAAAOVSq1Ytff755/s9t379emVnZ8c5EQAAAIBUUr9+fX388cf7Pbdy5Url5OTEOREAAACAaIu4suKqq67S7bffru3bt6tbt26qWbOm8vLytHTpUr3xxhsaN25cLHICOASf3yfX8Oo/Wwy9/rGrnQVSVqbU+zSP6h3hl+EGFQyEEh0TAAAgYueff76eeOIJZWRk6KyzzlKNGjVK5iCPPfaYrrzyykRHBAAAAJDELr30Uk2cOFGhUGif5yLTp0/XbbfdluiIAAAAAMop4gKqPn36aPfu3ZoyZYoWLVpUcjw7O1t33XWX+vTpE818AMrA60/Thp8t3TND+mSDW+rcY3Ok9i2luwf6dFSOpVCgKDEhAQAADtNNN92k77//Xvfee6/uu+++kuOu6+qcc87RzTffnMB0AAAAAJLdgAEDtGXLFs2aNUszZswoOW5Zlq6++moNHDgwceEAAAAARMVh7e11xRVXqF+/fvrhhx+0fft2ZWVlqUmTJjLNiHcEBFBOXp9fX/zg0YCxrgoD+2+zYp102d3SrLssNW/gVyhwgIYAAAAVkNfr1aRJk/T111/rk08+0Y4dO1S1alWdfPLJatGiRaLjAQAAAEgBI0aM0I033qg1a9Zox44dysrK0gknnMCW4gAAAECSOKwCKkkyDENNmjSJZhYAEbIsQ468uuHBAxdP7bGrULrhAemdR70yzaAcxz14BwAAgAqmWbNmatasWaJjAAAAAEhRVatW1emnn57oGAAAAABiIOICqry8PN1333169913VVhYKNctXYRhGIbWrl0btYAADszyeDX3Q1d5+WVrvzlPWrzKVfe2XgWKgrENBwAAECWu6+rll1/W0qVLVVhYKMdxSp03DEPPPvtsgtIBAAAASHZFRUV64oknDjonWbx4cYLSAQAAAIiGiAuoxowZo6VLl+q8885TTk4O2/YBCeQYXr28NLI+/3pHOqONRxIFVAAAoHJ48MEH9cwzz6hBgwbKycmRYRilzv/xpQ4AAAAAiKb77rtPc+bMUfv27dWyZUueiwAAAABJKOICqvfee0933nmnLrvssljkARABr2Xol62RPTD8Zavk8RiyqZ8CAACVxNy5czVw4ECNGDEi0VEAAAAApKBFixbplltu0bXXXpvoKAAAAABiJOLXJLxerxo2bBiLLAAi5LquPBGWQVqW9IcVpgEAACq0Xbt2qUuXLomOAQAAACBFhUIhnXDCCYmOAQAAACCGIi6gOuuss/T666/HIgtQYfxhV5gKKxR21apJZH1aNZEcmwoqAABQeZx88slavXp1omMAAAAASFEdO3bUe++9l+gYAAAAAGIo4i38jj32WD3yyCP66aefdOKJJyotLa3UecMwdNNNN0UtIBAPpmnI6/PKllcey5BcyZUr1w7LsUMKhytmwZHXDGlAD5/eWFb2PtecJ3nMkOzYxQIAAIiqQYMGadiwYQqHwzrxxBOVnp6+T5t27dolIBkAAACAVHDuuefq7rvvVl5e3gHnJH369Il/MAAAAABRE3EB1ZgxYyRJK1eu1MqVK/c5TwEVKhuf3yuZfi1d4+rZN6W1/3Fl21K9I6RLunp1SVev/P6wQoGiREfdRyAQ0olH+9T+WGnF2kO373ySdHR9KVAYjnk2AACAaBk4cKAk6fHHH5dUPOfYw3VdGYahdevWJSQbAAAAgOT3t7/9TZI0d+5czZ07d5/zhmFQQAUAAABUchEXUK1fvz4WOYCE8Pm9ytvl18Bxrr7+qfS5bzZKY2e5euwVafItHrVrnq5QoDAxQQ/AdSXZAT15W5quHuvqi+8O3Pbk5tKjfy1uDwAAUJnMnDkz0REAAAAApLAlS5YkOgIAAACAGIu4gOpQdu3apSpVqkT1mo7jaPLkyXr55Ze1c+dOtWvXTqNGjVLDhg332/6bb77RxIkT9dlnn8k0TbVr106333676tWrJ0mybVutW7dWIFC6kGTw4MG6+eabo5odFZfHY6oo7NOV97r6/pcDt9tZIF030dVzd5k6vrFPgUAwfiHLIBAIK91XpNmj0vSvd6QXF7v69uffzzdrKPXvbuiizq4sBRQIsPoUAACoXNq3b5/oCAAAAABSWP369Q963nXdOCUBAAAAECsRF1AFg0E9++yzWrFihYLBYMnEwHVdFRQU6Ntvv9Vnn30W1ZBTpkzR7NmzNX78eOXk5GjixIkaNGiQ5s+fL5/PV6rtb7/9poEDB6pNmzaaNWuWgsGgxo8fr0GDBum1116T3+/Xf/7zHwUCAf3f//2fatasWdI3IyMjqrlRwVk+zZingxZP7VEUlMY/J80c6ZVUsQqoJCkYDMuyCnTFmV5dcZZHm/Ok3YVSlQypTrYkJyQ7HFLAdhIdFQAA4LB8/vnnWr58+X7nIJ988oleeumlBCcEAAAAkMwWLlx4wOcin376qd57770EJwQAAABQHhEXUE2YMEHPPfecmjVrpry8PPn9ftWoUUNff/21QqGQBg8eHNWAwWBQ06ZN09ChQ9WlSxdJ0sMPP6xOnTpp0aJFOv/880u1X7x4sQoKCjRhwgSlpaVJkiZOnKguXbpo9erV6tChgzZs2KAqVaqoRYsWUc2KysMwDBmmRy8tLfubQas2SD/lSo2O8CgYrHirONm2I9sOyDACqpNlyahWvMVfqMgWL0ABAIDK7Pnnn9e9996737e6TdNUx44dE5AKAAAAQKqYPHmyJk+erKpVqyocDsvr9crj8SgvL0+maeqSSy5JdEQAAAAA5WRG2mHRokUaOHCg5s2bp/79++v444/Xyy+/rEWLFql+/fpynOiucLN+/Xrt3r1bHTp0KDmWlZWlY489VitXrtynfYcOHTRlypSS4imp+KGKJOXn50uSNmzYoKZNm0Y1JyoXj8fUj5tdbdoWWb83lkumFfFvm7hyXSkUshUM2gqFKJ4CAACV33PPPafTTz9dy5cv1zXXXKNLL71Un376qR599FH5/X716tUr0REBAAAAJLHXXntNffr00YoVKzRgwAB17dpVH330kebMmaPq1avrmGOOSXREAAAAAOUU8QpUeXl5Ov300yVJzZo1K9kqo06dOrr22ms1ffr0qK5CtXnzZklS3bp1Sx2vXbt2ybm9NWjQQA0aNCh17Omnn1ZaWpratWsnSfr6668VDof15z//WevXr1edOnV09dVXq3fv3uXO6/FU7OKaysj6X8GSFcXCJY/HVEFR5P0KiiRXJv+fk0ws7jFgD+4vxBr3GGKtItxjGzdu1O23365q1arp+OOP1+OPP660tDSdffbZ+v777zVz5sx9VqYFAAAAgGjZsmWLevbsKcMw1LJlSy1YsECSdPzxx+v666/Xyy+/rP79+yc4JQAAAIDyiLiAqmrVqgoGg5Kkxo0ba9OmTdq1a5eqVKmiI488Ups2bYpqwMLCQkmSz+crddzv92vHjh2H7D9r1iw999xzGjlypGrUqCFJ+uabb+Q4joYMGaKcnBz9+9//1h133KFQKKSLL774sLOapqHs7MzD7o+Dy8pKj+r1sqtKZoTPAWtkSVUyTJmmN6pZUDFE+x4D9sb9hVjjHkOsJfIe83q9JSvMNm7cWD/++KNCoZC8Xq9OPvlkTZ8+PWHZAAAAACS/jIwMGYYhqXhOsnHjRhUVFSktLU0tW7bUxo0bE5wQAAAAQHlFXEDVtm1bzZo1S+3bt1fjxo2Vnp6uxYsXq0+fPlqzZo2qVKkS1YB7HpQEg8FS2/IFAgGlpx/4IY7runr00Uf1xBNP6IYbbtCVV15Zcu7111+XbdvKzCwudmrRooV++eUXTZ06tVwFVI7jKj+/4LD7Y/8sy1RWVrry8wtl29HbIrJuzQw1refqmzLObT2W1Os0Q7t3Fykcju5WlUisWN1jgMT9hdjjHkOsHeoey8pKj/nqVC1bttTSpUt1yimn6KijjpLjOPrss8/Utm3b/a5KCwAAAADR1KpVK82dO1d/+tOfdNRRR8myLH388cfq2rWrvvvuu31eAAcAAABQ+URcQDV48GBdccUVuvbaazVr1iz169dPd911l2bOnKkNGzaob9++UQ24Z+u+3NxcNWrUqOR4bm6umjdvvt8+oVBId9xxh15//XXdcccdGjBgQKnzexdi7dGsWTPNmzev3HkprIkd23aiOr4+K6Qruns1eppbpvannyRlZToqKgpHLQMqlmjfY8DeuL8Qa9xjiLVE3mMDBw7U4MGDlZ+fr7Fjx+rMM8/U8OHD1b17d82fP18nn3xyQnIBAAAASA3XX3+9Bg4cqPz8fD355JPq1auXRowYoVNOOUUffPCBunXrluiIAAAAAMop4lfFmzdvrjfeeEPXX3+9JOm2227TTTfdpCOOOEI33HCDhg8fHtWALVq0UJUqVbR8+fKSY/n5+Vq7dq3atWu33z7Dhw/Xm2++qQcffHCf4qn8/Hy1b99er776aqnjX3zxhY455pioZkfFZodDuqSLq/bHHrptzWrSqAGSR6GY5wIAAEBp3bp105NPPqmmTZtKksaMGaMjjzxSL774opo0aaK77rorwQkBAAAAJLN27dppzpw56tGjhyRp1KhROvvss/X999/rnHPO0ciRIxOcEAAAAEB5RbwClSTVqlVLtWrVkiQZhlFSTBULPp9P/fv31wMPPKAaNWqofv36mjhxonJyctS9e3fZtq28vDxVrVpVaWlpevXVV7Vw4UINHz5c7du316+//lpyrapVqyorK0unnnqqHn74YdWsWVONGzfWokWLNG/ePD311FMx+xyoeGzbkc8K6J/D/Ro+RVq0UnL3sxjV0Q2kJ4caqlMtpECAAioAAIBE6NKli7p06SJJys7O1rRp0xIbCAAAAEBKadGihVq0aCFJ8vv9uueeexKcCAAAAEA0lamAavLkybrkkktUp04dTZ48+aBtDcPQTTfdFJVwewwZMkThcFgjR45UUVGR2rVrp6lTp8rr9Wrjxo0688wzNW7cOF144YV6/fXXJUkTJkzQhAkTSl1nT5uxY8fqscce0913361t27apadOmmjRpkjp16hTV3Kj4gsGwvF5XD9+cps150vSF0lc/SGFbalBb6tfN0MnNJTlBBQPBRMcFAABIGStXrtSxxx6rzMxMrVy58pDtD7Q6LQAAAAAcjrlz56pz587Kzs7W3LlzD9m+T58+Mc8EAAAAIHYM193fmjultWjRQi+99JJOOOGEkjcsDnhBw9C6deuiFrAysW1HeXm7Ex3jsBmGIcsyJEmO48pxDnlrxIXHYyo7O1O//bZb4bATs6/j83lkux65hinDMOQ6rnxW8apTh/5dgsosXvcYUhP3F2KNewyxdqh7rEaNTFlWxDuDH9If5yCGYch1XRlG8fere36+58dknINU9vlFrPHnX/wx5vHHmCcG4x5/jHn8Mebxx5iXXazmGJFKtucizC9K4/dk9DGm0ceYRh9jGhuMa/QxptHHmEZfZRnTSOYXZVqBav369SU/X7t2rUwz8ZMXRI/Xa0mGV7I82r7Tle1I1asYsuTIYwQVCIQTHTEugsGwpNKftYgd+wAAABJi5syZatq0acnPAQAAACCelixZolq1apX8HAAAAEByK1MB1d569eql2267TV27do1FHsSZz+9XfqFHM9+S5ix1teW34uPpPlfnnGroz+f71STHJztUWGFWpAIAAEDya9++fcnP58+fr4svvlgnnnhiAhMBAAAASCX169cv+fmoUaM0aNAgdejQIYGJAAAAAMRSxEtJbdq0Senp6bHIgjjzpfm1fqNHPYZJj7+qkuIpSSoMSq+9J/W+XfrXUlOWL13/2y0FAAAAiKt58+Zp9262mgAAAACQGKtXry7ZThwAAABAcoq4gKpnz56aMWOGcnNzY5EHceLzWcrb6dWfx0l5+QduZzvSmBmulnxiyOvzH/SalmXK67Xk8ZgUWwEAACBqWrdureXLlyc6BgAAAIAU1alTJ82bN0+hUCjRUYCk5/GYSk/3KT3dp4wMn3w+K9GRAABAioh4C7///Oc/WrVqlTp37qzq1asrIyOj1HnDMLR48eKoBURs2PLp6Xmu8nYeuq3rSo/Okbq19cgwAnL32snPNA15fV7ZrleFQUM7d7pK80vVq0hywrLDIdm2E7PPAQAAgOTXvHlzTZ06VW+++aZatGix3znI2LFjE5QOAAAAQLLz+/2aN2+e3njjDTVt2nS/c5Jnn302QemA5OD3exR2fSoMmZr7kZS73VXVDENntXN1RJZkKahAgCJGAAAQOxEXUNWtW1c9e/aMRRbEiWkakmFp7vvuoRv/z7cbpc++lVo39aqoqPgbVK/XkuFJ078/lWa8KS37yi0prjq6gdSvm1eXdPXKZwUUDPJNLQAAAA7P22+/rdq1aysUCumLL77Y5zxbaQAAAACIpc2bN6t169Ylv3bd0v+2/sdfA4iMz+9T3m6fxj3natEKV7/XSbkaO0vq2Eoa3s+nJnUthQJFiYwKAACSWMQFVOPGjYtFDsSRZZn6fpOrHbsj6/fBF9JJTYsfTnk8pmSladgU6fWP9m377cbirf9eWio9e6dP1dLFmwEAAAA4LO+8806iIwAAAABIYbNmzUp0BCBp+Xxe/Zrv1WV3u9q0bd/zjiO995n0yQZp2h0etTrKr1AgEP+gAAAg6ZmH23Hbtm3atGmTfvnlF/3yyy/auHGjvvnmG73wwgvRzIcYMAwpGI68Xygsue7/3u630jR21v6Lp/a2/kfpmvGSa/qLV74CAAAAouz7779PdAQAAAAAKaqgoEDvvfdeomMAlZJhSLJ8uuFB7bd4am+7i6TrH3AVcryyrMN+vAkAAHBAEa9AtX79eg0dOlTffffdfs8bhqG+ffuWOxhix3Wl2tUj71e3piHLdOX1WsovNPTikrL1++oHaelqV2e09ipQFIz8CwMAACClbd++XY888ohWrFihYDBYsj2G67oqKCjQjh07tG7dugSnBAAAAJCsfv75Z40ePbpkTrI/zEmAyPn9Xn36XfFzpLL4baf06r+ly7t6ZdusQgUAAKIr4hLtCRMmaMeOHRoxYoTat2+vjh076q677lLnzp1lGIZmzpwZi5yIolDIVo0sqX3LsvdJ90m9TpNCobBcw6vZb0thu+z9n31TcuSNPCwAAABS3rhx4zRnzhw1btxYlmWpatWqatWqlUKhkPLz8zVmzJhER0QFYxiS3++R6U2X5cuU5cuU6U2X3+8pfsMZAAAAiMC4ceO0evVqXXLJJWrZsqXatGmja665Rs2bN5dhGJo8eXKiIwKVUsD26PlFkfX51zuuDCvi9SEAAAAOKeICqs8++0x//etfNWDAAJ177rkqLCxUv3799OSTT6pbt27sBV5JmArp6h5lb9+jg+TzOAqHHdmuqU82RPb1PvtWMk2DhxUAAACI2Pvvv6+bb75ZTzzxhC677DLl5OTokUce0ZtvvqnmzZvr22+/TXREVCA+n1fetEx9+aNfI58x1fcfUt9/SCOfMfXVf/3ypmXK5+PlDgAAAJTdypUrdcstt2jkyJG68MIL5ff7NWzYML3yyitq166dliwp43YNAEoxDFM/bomsz09bJEM8bwIAANEXcQFVMBjUkUceKUk68sgjtX79+pJzF154oT799NNoZUMMhYIhdW0tXXbGods2ayjddbUhS8XLoRqSQuEIv15Je76jBQAAQGTy8/PVunVrSVLTpk315ZdfSpIyMzN1zTXX6N13301gOlQkPp9X2wv96vcP6eK7pP/7QPri++L//u8D6aKR0hVjpB1Ffvn8FFEBAACgbHbv3q3mzZtLkpo0aaK1a9dKkizLUr9+/bRs2bJExgMqMVdWhE8qTVOSIbluTAIBAIAUFnEBVb169fTTTz9JKi6g2rVrlzZu3ChJ8vl82rFjR3QTIiYcx5UbLtTdA6W/XiJVy9y3jceSepwqvTjaUJoVUDBYvGefK1c5NSL7ejk1irfRcPmOFgAAABHKzs7Wzp07JRXPQbZt26bt27dLkurUqaMtWyJ8XRVJyeu1VBD2q98/XK355sDtVn8t9fuHq8KQX16vFb+AAAAAqLRq166trVu3SpIaN26sHTt26Ndff5UkVa9eXdu2bUtkPKDycl21aBRZlxaNJNvmWRMAAIi+iAuounfvrgcffFBvvfWW6tSpoyZNmuiRRx7Rhg0bNG3aNDVs2DAWORED4bAjJ1Soa8939OEUQ+OvK16R6qIu0i2XSu8/Lk280VW6p0jBYKikn98K67IzI/tavTtJ4XCEy1YBAAAAkjp06KAnn3xSP//8sxo1aqRq1arptddekyQtXbpU2dnZCU6IisAxfHr4X65+2HTott//Ik2a48oxfLEPBgAAgEqvc+fOeuSRR7RmzRrVr19fOTk5mjZtmnbt2qVXXnlFderUSXREoFLyGCFd3SOyPld0l0yFDt0QAAAgQhEXUA0ePFht2rTRnDlzJEl33HGH3n77bfXp00fLli3TzTffHPWQiB3bdhQOFkr2bvXpGNLIq2yNHmDr2vPDqpZWJDtQoGCwdOFTIBBSm2bS0Q3K9jV8HunKsw0ZDt/QAgAAIHJ//etftW3bNo0YMUKGYei6667T/fffr1NOOUUzZszQRRddlOiISDDLMuXK0rwPy95n7vuSDEuWxTbjAAAAOLghQ4YoKytLjz76qCTplltu0bPPPqt27dpp/vz5GjhwYIITApVTMBhWw9pSl9Zla39UXal7O0OhIM+bAABA9Hki7eD3+zVp0iSFQsXfnHTq1Emvv/66vvzySx133HFq1CjCtTZRIdi2K9sOlvw6eJC2riu5dkiT/+bT5aNdbd914LaWKY2/QaqWYSsUsKMXGAAAACmjfv36Wrhwof7zn/9IkgYOHKgjjjhCq1ev1gknnKALLrggsQGRcF6vpX9/7ip/d9n7bN8lLf/KVcfjLdk2q+UCAADgwLKzs/Xyyy8rNzdXktSrVy/Vq1dPn376qU444QS1b98+pl//qaee0gcffKBZs2bF9OsAiWA4AT0yJE1X3+fqs28P3K5+LWnaHZLhBuU4bOEHAACiL+IVqMaOHau1a9fK6/WWHGvYsKF69OhB8VQKCQWDalQ7pJfvMdS+5f7bHFVXmnKbdE47V+FgUXwDAgAAIGksXrxYHo9HLVq0KDnWs2dP3X333RRPQZJkGFLezsj7bcuXDIMVqAAAAHBwzz77rPLy8lS7du2SY23bttWgQYNiXjz1/PPP65FHHonp1wASKRgMK80q0nN3GRraV2pQu/T5GlnSoPOluWOlnOohBQMHWwIAAADg8EW8AtW8efM0a9YsNWnSRL1791bPnj1Vt27dWGRDBRcKBNSghqMZd/q08VfplX9Lv+2U0v1St7aG2jaXXCekcDAgl5cBAAAAcJgGDx6s6tWr69xzz1Xv3r114oknJjoSKhjXlbIyIu+XlSnmKgAAADikiRMnauLEifrTn/6kPn366Mwzz5Tf74/p19yyZYvuvvtuLV++XEceeWRMvxaQaIFAWB5Pga7p4dWfz/Pq659c/bZLqpImtWxsyHXDMt2Qgux0AgAAYijiAqoPP/xQH3zwgRYsWKCnnnpKjzzyiNq2bas+ffqoe/fuqlKlSixyooIKBkOSQmpY06O/XmQpbBsyTclr2goUhXgYAQAAgHJ77bXX9Prrr+uNN97QCy+8oEaNGqlXr17q1auXGjZsmOh4qADCYVunHmco3eeqsIwvI6f7pVOONRQO8w/wAAAAOLj3339fb7zxhhYuXKjbbrtNGRkZ6t69u3r37q1TTz01Jl/zq6++ktfr1bx58/T444/r559/jsnXARLF5/PIkUe2Y8iVZFqOHDukcDCoZvVMGYYh15XCIVuO44qZGwAAiLWIC6gsy1Lnzp3VuXNnBYNBvfPOO1q4cKHGjBmjMWPG6IwzztBDDz0Ui6yowILBsKSwJMn+338AAABANLRs2VItW7bUsGHD9Mknn2jBggWaPXu2Jk+erJNOOkm9e/fW5ZdfnuiYSKBw2JHP5+icUw299l7Z+pzbQfJatsJBJ7bhAAAAUOllZ2erX79+6tevnzZt2qSFCxdq4cKFGjhwoOrUqaOePXvqtttui+rXPOOMM3TGGWdE9ZoejxnV61VmlmWW+hHlV9Yx9Xo9Crtebcoz9PwiVz9vlTyWdNIxli7u7JXP58hQULZdPFczTUOmmZpbr3OfRh9jGhuMa/QxptHHmEZfMo6p4brlWyPIdV0tW7ZMCxYs0GuvvSbDMPTll19GK1+lYtuO8vJ2JzpGwvh8lhx5ZTvF38h697wtEC7fAwmPx1R2dqZ++213ua8F7A/3GGKJ+wuxxj2GWDvUPVajRmZCJki7du3SI488ohdeeEGO42jdunVxzxBrqT6/OJQ/3pt+v0e5+X5d8Hdp246D9z2imjR3rKEjqhYpEAjHJ3AS4O+c+GPME4Nxjz/GPP4Y8/hjzMsuUXOMSP33v//VzJkz4zInuf322/Xzzz9r1qxZh30N13VlGKlZhIKKIxyWNuVJw6ZIH36x75bqGWnSFd2lWy4p3nIdAAAgniJegWqPTz75RAsXLtSbb76pvLw8HXfccRoxYoTOP//8aOZDJeDzeeQYfm3eLj3/trQxt/htgROaWrqkq1c+vyPZRfzDAAAAAMolGAxq6dKlWrBggf7973/LcRx17dpVvXv3TnQ0VACBQFi1siw9d5dXg8YXv8W8P/VrSVNvN1SzaojiKQAAAERk8+bNWrhwoV5//XWtW7dONWvWVP/+/SvFnMRxXOXnFyQ6RoVhWaaystKVn19YstIRyudQY+r1Wtpe4Ncld7n675b9X2NXgfTUXGnzVmn89ZIbLlI514Go1LhPo48xjQ3GNfoY0+hjTKOvsoxpVlZ6mV/QiLiAasKECXrzzTe1adMm1a1bVxdffLF69eqlpk2bRhwUlZ/P59WuoE9DH5fe+6z02wKvf+Tq4Zekft0M3XZ5urxGkUIhNvcDAABAZP79739rwYIFWrJkiXbv3q2TTjpJt99+u84991xVq1Yt0fFQgQQDAR1Z29Wih3x6Y7mr2W9L3/9SfK5pfemKs6SzTzFkukEFA8HEhgUAAECl8fzzz2vhwoVas2aNfD6fzjzzTP3tb39Tx44dZZoVf7WsPXjJeV+27TAuUXagMXXNNN097cDFU3v7vw+kbm2ls062FChi7sZ9Gn2MaWwwrtHHmEYfYxp9yTSmERdQvfTSSzr77LPVu3dvtW/fPhaZUEn4fB7tCvp16ShXP2zaf5vCgDR1gbQ5T5p4Y5pMu0COk7pvCwAAACBy1113nRo1aqSBAweqV69eatSoUaIjoQILBoIyzZDOP9Wrc0/1yrKKtymxbVemG1IoGFKYOQkAAAAicN9996l9+/a677771L17d2VmsrcYEAmv19LOIkOLV5W9z6y3pDNP9kqigAoAAMRHxAVUH330kXw+XyyyoJKx5dM9Mw5cPLW3BR9LZ54snXuKl7cFAAAAEJEXXnhBrVu3TnQMVCKO4/5v3hFUKNFhAAAAUOktXbpUderUSXQMoNKyPJbmLjEUCpf9ZZYV66TfdhmqnmYpHGZ3EwAAEHsRry1L8RQkyeMxVRQy9daKsveZ+ZbkyBu7UAAAAEhKFE8BAAAASCSKp4DyCduGtuRFvhLwtu2uKtEumQAAoJKLeAUqQJK8Xo/+9W8pEMHr3J9+I/26XapV1VIoxNsCAAAAAAAAQGXl8ZgyjD1b5Tpy2CIXiJnx48cnOgJQLqYh+Q7jiaTfJ7n89QIAAOKEum0cFtsxtOW3yL9r3bpDJf+wAgAAAAAAAKDyMAwpLc0ry5+h3eF0/Sc3Tf/dlibDkynLly7f4TwdBwAkPdNw1CXCxaWPqCY1rG3Itp3YhAIAAPgDZrQ4LKbhyncYu/Gl+SSX1wUAAAAAAACASsWyDJnedK382tTUBa7e+1Ta80w7K9NVr9NM/aWnX7WqeRQKFCU0KwAkK6/XkuWxZNuGDFMyXFvBYLjCr9IUCIR04tE+Hd1A+nZj2fpc0lVynTArHAIAgLhhBSocFtd11PnEyPrUqCodWZe3BQAAAAAAAIDKxDQNmd4MPTHXUP97XC1d/XvxlCTl75aeWySdP0L67HuPvP60xIUFgCTk93tk+TKUX5Sm6W/69OBLHk1+1aOv/uuXNy1TPr9PFXnzD9eV5IR122WSWYYnk3WypYHnSoYbink2AACAPcq0AtVVV10V0UVnzpx5WGFQeQSDYR13lF8tG0vrfixbnz6nS+JtAQAAAJTB5MmTI2o/ePDgGCUBAACA5fXptfcNPfbKwf9db2eBdO0EV/Pvt1Qny6NgMBynhED03XHHHRG1HzduXIySINX5/D79VuDT6Gmulnwihe3f/yx+/DWpZWNpWF+vTj3Wo3CwoMKuRhUKBtT5JEv3/cXUXc+4Ctv7b1fvCGn6nYaqpoUUDBygEQAAQAyUqYDqj1uurVmzRoZh6KSTTlKtWrW0fft2ffrpp3JdV127do1JUFQsxW8LhHTb5V5dN7H0G2f7c0Q16S89eVsAAAAAZfPHAirDMOS6rizLUnZ2tnbs2KFQKCSv16tq1apRQAUAABAjhmHIML16Ym7ZnsjvLJD+OV+64wqvJAqoUHktX7681K9zc3MVDodVr169kuciP/30k3w+n1q0aJGglEh2Pp9Xebt8unSUq5+37r/Nuh+lv0yQHrjJ0Nnt0hUKFMY3ZBm5rhQOFKr3aelqf6yhaQukeR8U/70hSU3qSX27Gbqkqyu/FVQwEExsYAAAkHLKVEA1a9askp/PmDFDeXl5mjp1qnJyckqO5+Xl6dprr1WDBg2inxIVUigY1J+O82jcdYbufFoHfFugTrY0/U6pekaYtwUAAABQJuvXry/5+ccff6xbb71Vd911l84++2xZliVJeu+99/T3v/9dt99+e6JiAgAAJD2/36MPv3T/n737DnOiavs4/j0zKbvs0pEiRQEVpNkAxQZKsYC9INWG+qqIVBH7IwqCgAqIKIIg1seGYsVeHhUQCxawgCKINOlbMklm3j8iKystgWSz5fe5rr1kZ85Jbg+zS87Mfe7DijXx93nlE7ixh41tG6LRYloKRWQP3nvvvYI/z549mzFjxjBhwgRatGhRcPyXX37hmmuu4bTTTktHiFIGeFaA/uN3nTy1TdSFoQ9Bq8Y2VbJswuHi+SzG8zzCoVz2r+RjWA8/t/S2yQ2BbUGGH1w3jBcN44T2sGpfREREJAXi2Gm4sEcffZTrr7++UPIUQJUqVfi///s/nn322aQFJ8Wb50HEyaNLG5c546DXKVAx65/zB9SEoT0Nb4wx1K8RwQmF0hesiIiIiJRYd955J/369eP0008vSJ4COPHEE7n++uu577770hidiIiISOnmehZzFyXWZ0suLF/jYVkJ334WKZbuu+8+Bg4cWCh5CuCggw6if//+PProo2mKTEqzYNDHr3/C/MV7bgvgRGDGmx6e8ac2sCRwnAhRJ49wfg5Bk4vPy8HJ30o4FCISUfKUiIiIpEdcFai2l5+fv8OWftvk5OTsc0BSssRWC+RRq5LN0O4BbuoVWy1gGcgMghvVagERERER2Td//vkntWvX3um5qlWr8tdffxVxRCIiIiJlh+ftuvL87kQiYEzy4xFJhw0bNlChQoWdnvP5fOTm5hZxRFIWRFwfT76dWJ+XPoLB3XxEw7Hf38Wd53mqVCgiIiLFRsJLgI455hjGjRvH0qVLCx3//vvvuf/++2nbtm3SgpOSw3GihVYL+MnFydNqARERERHZd40bN+bJJ58kGi385C4UCvHoo4/usAo8GVzXZfz48ZxwwgkcfvjhXHHFFSxfvnyX7X/++WeuvPJKjj76aNq0aUO/fv1YuXJl0uMSERERKWq25XFAjcQyoSwLqlcB19VDcSkdDj/8cB566CE2bdpU6PiaNWuYMGECRx99dJoik9LM9SxW7mHrvn9btwmcMBhlsIqIiIgkLOEKVDfffDM9evSgS5cu1K1bl8qVK/PXX3+xYsUKDj74YG666aZUxCklhFYLiIiIiEiyDRw4kMsvv5wOHTpwwgknULlyZdatW8eHH35IXl4eTzzxRNLfc9KkSTz11FPcc8891KxZk3vvvZc+ffowe/ZsAoFAobYbNmzg0ksv5cgjj2TmzJk4jsM999xDnz59eOmllwgGg0mPT0RERKSoRCIRzjguwD1PQm5+fH2Obw7lMyGiqvRSSgwdOpRevXpx0kknccQRR1CpUiX++usvvvrqKypWrMhDDz2U7hClFPLw8NmJJ0LZFuxF4UARERGRMi/hClS1atXitdde4+abb6Zp06ZkZWXRokULhg8fzgsvvEClSpVSEKaIiIiIiJRVrVu35plnnqF58+a89957TJ06lY8++ohjjz2WF198kUMPPTSp7+c4DtOmTaNfv360a9eOxo0bc99997Fq1SrmzJmzQ/t33nmH3NxcRo8ezSGHHEKzZs249957WbJkCV9++WVSYxMREREpapGIi9+Ocsax8fe5rDP4jJO6oESKWOPGjXn11Vfp2rUrW7du5bvvviM/P5/LLruMV155hTp16qQ7RCmF/JZL8waJ9Tn0ADDGUwVAERERkb2QcAUqgMzMTHr06EGPHj2SHY+IiIiIiMgOmjZtyvjx44vkvRYvXkxOTg5t2rQpOFahQgWaNGnC/Pnz6dKlS6H2bdq0YdKkSWRkZBQcs6zYWpXNmzcXScwiIiIiqWR5Djf1zuCHZfDtkt23/b+zofWhEAqFiyQ2kaJSo0YNhg4dmu4wpAzx3AjdO/p48EVwIvH16dHJgKsEVhEREZG9sVcJVOvXr2fq1Kl8+umnrF27lkcffZR33nmHxo0b06FDh2THKCIiIiIiwocfflgwBxkwYACLFi2iadOm1K5dO6nvs2rVKiBWfXd71atXLzi3vTp16uyw4vyRRx4hIyODVq1aJTU2ERERkXQIh6MEAiGeuDXIiMfhlf9BXqhwm/2rwVVnGi44ycMN5+Gp+ImUMo7j8PzzzxfMSUaMGMG8efNo2rQpLVq0SHd4UgpFIlHKBT0uPNnwxI7FkHdQpzqcdTxEI3FmW4mIiIhIIQknUC1fvpxu3boRCoU46qijWLx4MdFolF9//ZVJkyYxadIk2rVrl4JQRURERESkLMrLy+Paa6/l008/JTs7m5ycHC6//HKefvppfvjhB5544gkOPvjgpL4fQCAQKHQ8GAyyadOmPfafOXMmTzzxBLfccgtVqlTZp1h8voR3XS8zbNsq9F9JPY150dOYp4fGvehpzIve3oy567pk+ELcdkmAG3tavPwJ/L7aw2dDy0ZwwmEGvAi4YYzR55h/03Vesq1fv56LL76YpUuX0qBBA3755Rfy8/P54IMPuOeee5g+fTpHHHFEusOU0iiaz029Mlm3Cd6cu+tmtfeDGTfFtk91om7RxSciIiJSiiScQDVq1CiqVq3KzJkzKVeuHM2aNQNg7NixhEIhJk+erAQqERERERFJmnHjxvH9998zffp0WrZsWTAHGTVqFH369OGBBx5g4sSJSXu/bVvxOY5TaFu+UChEZmbmLvt5nscDDzzAQw89xNVXX02vXr32KQ7LMlSunLVPr1EWVKiw678TSQ2NedHTmKeHxr3oacyL3r6M+eVdwAkbLAMBPxgD4P/7S3ZF13nJNHr0aHJycnj99depXbt2wZxk/PjxXH755YwfP57HHnsszVFKaRSJuPhNPuP6ZtCpFTz+Fnz98z/nq1eG89vBZZ0NWQEHJ6Tt+0RERET2VsIJVJ999hkjRoygQoUKRKPRQue6du1K//79kxWbiIiIiIgIb7zxBgMHDuSYY44pNAepXr06V199NXfeeWdS32/b1n1r1qyhXr16BcfXrFlDo0aNdtonHA4zbNgwXn31VYYNG8Yll1yyz3G4rsfmzbn7/DqllW1bVKiQyebNeUS1wrpIaMyLnsY8PTTuRU9jXvSSPeb6xLJnus7jV6FCZrGr1PX+++9z0003ccABBxSakwSDQS677DJuvPHGNEYnpV04HMWK5nL60X5OPdrPuk2wYQtkBKBudQNuBLwwTii65xcTERERkV1KOIEKwOfbeTfHcTCxpUYiIiIiIiJJsXnzZmrXrr3TcxUrViQ3N7mP7Bo3bkx2djZz584tSKDavHkzP/zwAz179txpnxtuuIG3336bsWPH0rlz56TFEono4dqeRKOuxqmIacyLnsY8PTTuRU9jXvQ05kVPY14yhUIhKlWqtNNztm0TDoeLNiApc1zXI5TvAA7Vsm32Kw+eB1HHxXW9dIcnIiIiUiokvIyjZcuWPPzww4UeUhhjcF2Xp59+miOPPDKpAYqIiIiISNl28MEHM3v27J2ee++99zj44IOT+n6BQICePXsyZswY3n33XRYvXsyAAQOoWbMmnTp1IhqNsnbtWvLz8wF48cUXef311xkwYACtW7dm7dq1BV/b2oiIiIiISMnVvHlznnrqqZ2emz17dsGWfiJFIRyO4jhRwuGokqdEREREkijhClSDBg2iW7dudOrUiaOPPhpjDFOnTmXJkiUsW7Zsl5MIkZLE57OwLAvwcF1Pq8JERERE0ujqq6+mb9++bNy4kZNOOgljDPPnz+fFF1/kmWeeYezYsUl/z379+hGJRLjlllvIz8+nVatWTJ06Fb/fz4oVK2jfvj0jR47k3HPP5dVXXwVg9OjRjB49utDrbGsjIiIiIiIl1/XXX88ll1zCWWedRdu2bTHG8OqrrzJhwgQ++eQTHn300XSHKCIiIiIi+8h4npdwevpvv/3GhAkTmDt3Lhs3bqR8+fK0atWKa6+9lkaNGqUizhIhGnVZvz4n3WGUOj6fReXKWWzYkJPSRCZjIBj0E/b85OQZVqyNHTughiHod/FbYfLzVYq5NCqqa0zKJl1fkmq6xiTV9nSNVamShW0nXNg2YbNnz2bs2LGsWrWq4FjVqlXp378/F1xwQcrfPx00v9g9/f4rehrzoqcxTw+Ne9HTmBc9jXnR05jHr6jmGImaP38+Y8eOZeHChbiuizGGJk2aMHDgQI477rh0h7dHml8Upp/J5NOYJp/GNPk0pqmhcU0+jWnyaUyTr6SMaSLzi4QrUAEceOCBKVnlLZIulmWwA5l8+YvFlFc9PvoaItHYuYDPo2Mrw5VnBji4to+Ik89e5B2KiIiIyD4444wzOOOMM1i6dCkbN26kQoUKNGjQ4O+qoSIiIiIiIqnVqlUrnnnmGfLz89m0aRPZ2dlkZWWlOywREREREUmSvUqg8jyPRYsWkZubu9NEklatWu1zYCJFxRiwA5k8+bbFiJke/76knQi89hm8NQ9GX21xausMwqG89AQrIiIiUsY1aNAg3SGIiIiIiEgZtWnTJvLy8nBdl02bNrFp06aCc/vvv38aIxMRERERkX2VcALVwoULuf766wu2ztiWQGWMwfM8jDEsWrQouVGKpJA/EOCDr81Ok6e2F4nCDQ9B3eoWLer7tZ2fiIiISBFZv349d999Nx988AF5eXk7LOIwxvDDDz+kKToRERERESntli1bxtChQ/nmm2922UbPRURERERESraEE6hGjhyJz+dj5MiR1KxZU1tmSInnGT+TZrHb5KltIlGYNAsm9vcDSqASERERKQp33nkn77//Pp07d9YcREREREREitzw4cP57bff6Nu3r+YkRcCyDACuG8dNexERERGRJEk4ger7779n3LhxdOjQIRXxiBSpYNDHLyvh2yXx9/noa9iYY1E50yYcjqYsNhERERGJ+eijj7jpppvo2rVrukMREREREZEyaP78+dx999106dIl3aGUWrZtYfv8GNsHmL+PerjRCF40TCTipjM8ERERESkDEk6gqlq1KrZtpyIWkSJnWRZf/myA+FeyRF1YvMzjuCZmz41FREREZJ/5/X7q1q2b7jBERERERKSMys7OpmLFiukOo9QKBIOEoj6efc/wzDseS1d6eMABNeDC9n66nuQnIxgmHAqlO1QRERERKcUSrjPbvXt3Hn74YXJzc1MRj0iRMgYikcT7RaKxvsWFz2cRCAYxvgyMLxN/MIjfr0RHEZGyxrYtfD6roNS9SGnRsWNHXn311XSHISIiIiIiZdRZZ53Fk08+iedpS7lkCwSD/LzSR4f+MHy6x88rYouYXRd+/RNGPeFx8vUe3/7qJxDMSHe4IiIiIlKKJVyBatmyZSxZsoTjjjuOgw8+mIyMwh9YjTHMmDEjaQGKpJLrejTc38Pvg7rVITMIW/Ng+ZrYBG1X6tUoHvuv+3wW2EGciM0L78L3v3pEo3BgLYtuHXxUKOdheSEcp/huNWjbBp/fTyQay+f02S7RSEQlmWWPbNtg/s5kjEZddP9KyirLMoQjYPkzyQsZHMcju5zB9lz8VphQKKyfDynxmjRpwv3338/y5cs57LDDdjoHufbaa9MUnYiIiIiIlHaZmZksWLCAjh070rx5853OSUaMGJGm6EquYNDHqo0+Lr4bNmzZdbuNW+Hyezyeu9NH/Rp+QqFw0QUpIiIiImXGXiVQNW7cuOD7f6+40AoMKUkikSjHNje8fR/4bMjNh/LlYP1meP4Dj5c/hvX/mrg1qx8rHezkpzcpye+38ewM7n0ann3XI+9f1YsnvQSntDbcfUUmwUA+jrMXpbZSyLZjyV8Ym5c/9fhuKbgeNNzfxzknBghmQMAfS2RzwkoCkBhjIBj0E3b9uJ7FppxYAmTFLIPnhvGiYSXfSZkSDPqJEOTJt+GJt+CH32K/JP0+jw4tDZd1DtD0wABuOI9oVD8bUnLdeeedAMyfP5/58+fvcF4JVCIiIiIikkovvfQS5cuXx3Vdvvnmmx3Om+K0XUEJEvECjH9h98lT22zNg3H/9bjvOj+w8wQqv9/G9tlEowZjgfGiOE5E95RFREREJC4JJ1DNnDkzFXGIFLlAwIdnBXlzLjz6KrzzRey4bUOHo+Di0wwXnwY3TPKYt+iffpecDsZL7woXyzJgZzBwArw1b+dtIlF47TNYtsrjyduD+P0e4XDxqETl89kYXwaTZsETb3ls3Pr3CWPAg+Ez4IzjYGgPmPiCx9qNhotPDdKycQCioWKXDCZFw7YtLH8mC3+Fqa/Buws8wn9fCgfW9Liog5+L2vsIBsM4ISe9wYoUgUDAz4bcIJeM8Ph5hSlUOTEcgTc+j3316QKDLsrEC+UWi+qJIntj8eLF6Q5BRERERETKsPfeey/dIZQ6Pp+FE7V44/P471W8/yVsybWomGEXutcdDPqIeAG2hAyz3jWs3eiR4Yd2R/hoUj+IccOEHUeJVCIiIiKyWwknUImUBoGAj5Ab5KpRMPcHD4whGICQA9FoLCnprXlwwUkw7jrDteM8vvkFLuoApx8DESe9CVQ+f4AXPza8NW/PM77vfoV7n4IbewSAvNQHtweWZTC+DG6cDK/8b7sTxhAOw6Yc8DyY+iosXgaPDTNcd79Hr7s8jmoEjwzJoFwxrKglqWVZBsufyYQX4KFZO57/bRXc84THk3Pg8Vv81KyEkqikVLMsg2sFuXSkx4+/g2Xtuu2jr0KFLLi8cwZuKP3/DoiIiIiIiIiI2LbFl9/vuLPC7kSi8MlCj7OOtQoSqALBAJvy/NzxWGyRdDjyzz3ziS9C4wNg8EV+jm3qI+LkaRcVEREREdmluBKoDj30UJ599llatGhB48aNd1uO1hjDDz/8kLQARZLNGMAO0ncszN12qXoeFbIMuTbkhSio4vHc+7Et/UZdbfj4a+h5iocbzktrBQ9jAMvHzLfij+HlT2BoDxvbttK+hZPP7+fl/xVOnjLGEI7Axhxgu/+t/30LD74IfboYrhnnseBHuGSkx9O3Z2DbuWn/f5GiY/mCPPG24aFZu7/ul6+Bi++G2aP8+HwRbecnpZY/4Gf2Zx6Ll8XX/pFX4NLTi8e/AyLx6t27N7fffjsNGzakd+/eu21rjGHGjBlFFJmIiIiIiJQF7du358EHH6Rx48acfPLJe3wu8s477xRhdCWfMYac/MT7bc0zQOzvIhDwsTE3wAW3eaxYs/P2i5fBVffC6GsMp7XOIKzFZSIiIiKyC3ElUF177bXUqFGj4M/az1tKsmDQz1e/wCcL/3XC8yiXYSiXAY4D2/IuZn0MN/aE3qdGCYfyiUbTu0LF77dZtoq4H5oDbMmFt7/w6HK0TV5e+h6cGwOe5efxN3c8tyWXQslT2zz5Nlx3PtSrAb+vhm+XwPMfQNd2fqLRBJYnSYllWQaMj8kvxfez9/tq+O97hp4d/BDRNSKlk2v8zHwr/vZb8+Clj+GCE31Eo6rOJiXD9quC97RCWCuIRUREREQk2Vq3bk1WVlbBn/VcJLk8z2O/Son3q1HFK5gDelaQgRN3nTy1TdSFGydDy8YW1cvbOE509x1EREREpEyKK4Gqb9++BX++7rrrUhaMSFEIu34ee30XJ/+eeAUDhuB2h2e84dHvPC/tyVMQW5mzan3i/WKTyPRO8rclf/3w2z/HjDGEo7HyyzuzbhO89yV0aAnTXosde+ptj64n+zAmpH3rywC/38/suR7rt8Tf55l3PHp20jUipZNlGVzXsHBJYhf3Z995nH2cnaKoRJJv5syZO/2ziIiIiIhIURg5cmTBn++55540RlI6hcNRDjvIUKOyx+oN8fWpmAUntjCEw1ECAR/L18Jn38X5fhGY/joM6uoHlEAlIiIiIjuKK4Hq30KhED/++COO4xRk+ruuS15eHl988QWDBw9OapAiyeT3W3zxY2JVDOYvAg8rlWHFzfMgI5B4v4yAId2LpIwx/LGu8DEPCO2hGMrKdVAp+5/vf1oeS6yqUs7SFm1lgBO1mPt9Yn2WrIScPMjQdmVSCm3b9jRRTninhf5ESrzc3Fy++OILTjzxxHSHIiIiIiIipdxff/21y+ci3bp1S3N0JYvrethehAtPtpnwQnx9zj4BDFEiUResAE/MSew9X/4Ybuzhww0nHq+IiIiIlH4JJ1DNnTuX66+/nk2bNu30fFZWlhKopNgyBvD2nLDzb04ELGMoDmkY0ahL43qGchkeuQnsEX98C69YJJIE/f864LHHCkF+H4T/tSgoNx+qZqlsdtlgcPbipkY4Cpl7lSYsUry5rkdmJmRlQE4C/w7sVwks4xWLf8tEEvXHH39wxx13MG/ePBxn5x/kFi1aVMRRiYiIiIhIWbF48WIGDx7MkiVLdnreGKMEqr3gRR2uPLMcH37tsXDnQ1vg4DrQ/0KD8WJzQtczrFy3+z7/tn4L5DtgW7qvLCIiIiI7Srikzn333UflypUZP348HTp0oFOnTkyePJnu3btjjGHKlCmpiFMkKTwPPDyqV06sX7WKsQfWxUE06uKzo5x+TPx9jjgYDqwJodBelCxJomjUpfEBplASlTHssTJWy8aw7M/CxyqU27FSmJROtuVRvUpifYJ+KF/OFJufW5Fk8jyPSCRKl2MT63dRe/Bb6f13QGRvjRw5ki+//JILLriAQw89lCOPPJLLLruMRo0aYYxh4sSJ6Q5RRERERERKsdGjR7Np0yaGDh1K69atOf7447n11ltp27Ytxhgef/zxdIdYIkUiLn6Tz+O3GDq22vV94hNawNN3GDJ8IcLbrbS192LTCNve84JeERERESmbEv54+eOPP9K3b186duzISSedxJ9//knbtm259dZbOf/883nooYdSEadI0riRKGcen1ifC04Cv118Hjr7TJhrzoEKWXG0tWHAhQbLS39d4kjEJcPv0ql14eOZu9mS8KhGUGc/mDP/n2MtGkLFbLR9XxlhEaFb+z0n2m3vlNaA5yqBSkotnwlz6enxb83avAE0qpf+RFqRvTV//nwGDBjALbfcwrnnnkswGGTIkCG88MILtGrVinfffTfdIYqIiIiISCn2zTffcP3113PJJZdw+umnk5eXR/fu3Zk8eTIdOnRg5syZ6Q6xxAqFIgStPO6/Dt57AC45PZYwdXwL6NkJ5oyDh4dAlj8fJ/TPPW6f7dLioMQqSR1UJ7ZYU/cMRURERGRnEk6gcl2XGjVqAHDAAQfw888/F5w75ZRT+OGHH5IXnUgKeG6Y7h12spXcLtSoDCcfaQjvzR5iKRIKRahZOcqjQw2Vsnfdzu+D0ddAy8buLre7KWo+43DNOYbMYOx7z/Ow7Fis/2ZZMKArvPpprLTyNr1OAYvi8/chqeU4EWpWgWOaxt/nss6xa02ktAqFItSr4TKk255vFFYuD+OuM3iufm9KyZWTk0OjRo0AaNCgQcGcw7Ztunfvzueff57O8EREREREpJRzHIcDDzwQgAMPPJDFixcXnDv33HP5+uuv0xNYKeE4USKhHGpWzGfwhVEeHOgxaaDH0O5R6lYNEc7PwXEKLwrzomEuOhkydrM499+6dzDganGZiIiIiOxcwglU9erV48cffwSgfv365OXlsXTpUgAikQg5OTnJjVAkySKRKNkZLiOuiiXo7E5GAB643oAbLnarUsKhfJodGOatsXDdeVBzuy3OKmTFVue8NRZObeUSCeUVm7LEoVCEA6pHmDQQymXEjhmgfLnCFYZ8Noy+GuruBw+//E/wx7eAzm0oVgltknqW53DvNabQdb4r118Ah9T1VGlHSr2ok8clp3ncfaWhWsWdtzniYHjuTkPtqmHCISUVSslVvXp11q1bB8QWcWzatIm1a9cCUKlSJf766690hiciIiIiIqXc/vvvz/Lly4FYAtXWrVtZsWIFAIFAgE2bNqUzvFLDcaJEw/l44Vy8cC5uOH+HxKltIhGXjIDLRe3je+3a1eD8dhCN6L6yiIiIiOzcTmq+7N4ZZ5zBmDFj8DyPnj170qxZM4YPH06vXr2YPHkyBx10UCriFEmqiJPPaUdnkhEwjHgc/li3Y5uD6sDIK6HpgVHCoVDRBxmHcChE+WCE/zvTzzXn+NiS6+F6UKGcwXWj2IRximESScTJ5+hDM3httM3UV+GV/3lszjVULg8hB7oc+3cFIR9cPdZjS24sueqU1nDvNQbj5hW7hDZJLccJUyXb8PxdAW6c7PG/b9khKbBaRbjuPMMFJ3m44bz0BCpShFzXAyeXc47P4NwTfcyZZ/hooUfIgaoV4cKToH4tMF6oUIl7kZKobdu23H///dSsWZMjjjiCmjVrMm3aNK699lpeeOGFggq5IiIiIiIiqdCpUyfGjh1LuXLlOOWUU2jQoAH3338/V1xxBdOmTaNu3brpDrFsiuZzQ/dMVm+AN3ZTmLhWVZh+k8FvOThht+jiExEREZESxXheYnVpXNfl3nvvZd26ddx77718++23XHHFFWzcuJHs7GweeughWrVqlap4i7Vo1GX9elXgSjafz6Jy5Sw2bMghEkne5MYYsP0ZWLaPj7/xmDMftubFtjo663g47KBYGeBwMdn6bk+MMViWwZjYQ/WSkGAUCNhECYCxWbvRw/ViVVTyQjD7fx6v/A/woHlDuOx02L8aEM0nHI4mNY5UXWOSfIGAH9cKsHo9PPserNkAAR8c2xw6tjR4bgQ3EipW17+uL0m1bdfY1hyHfMcABsvy8JmIKrFJUuzp91iVKlnYdsKFbROyYcMGrrzySrKyspg+fTqvvPIKN954I9umMrfddhvdunVLaQzpoPnF7unf2KKnMS96GvP00LgXPY150dOYFz2NefyKYo6RqFAoxJAhQ8jLy2PKlCl8/PHH9O3bF8dxsG2bcePG0alTp3SHuVuldX7h99vgy+CtufD4m/DVz/+cq1YRLjgJLu0M5YNhnO2qc+tnMvk0psmnMU0+jWlqaFyTT2OafBrT5CspY5rI/CLhBKqd2bp1K0uXLqVBgwZkZ2fv68uVWKV1ApJuqf7BM8YQCPgIR208DMZ4BOwooVC42Gx7V9pZlsGyLIwBz/OwfT7Crg/LMngugBurprWLcs37qqT8cpd/BAI2nvERicaSBv2WSzhc/LbaBF1fknq6xiTVikMC1TZr1qyhevXqAHzxxRd8/fXXtGjRgtatWxfJ+xc1zS92T7//ip7GvOhpzNND4170NOZFT2Ne9DTm8SuOCVTbhMNh/H4/AL///jvff/89TZs2pV69emmObM9K8/zCsgx+vx/X+Fm3CdZvhowA1KsRW3BpvPAOi3L1M5l8GtPk05gmn8Y0NTSuyacxTT6NafKVlDFNZH6R8BZ+O5OdnU2LFi2S8VIiRc7zPEKhMBDb3sgD8rXTUZGKVcz6ZwIbiTiAw/a/ZpNbc0pKOseJsu2q8IDiucmmiIgk27bkKYCWLVvSsmXLNEYjIiIiIiJlzbbkKYB69eqViMSpssB1PUKh2D3latk2+5UHz4Oo4xbLBZciIiIiUjzFlUDVuHFjjDFxvaAxhh9++GGfghIRERERkbKtd+/ecbc1xjBjxowURiMiIiIiImXNySefnNBzkXfeeSfFEUk8/l1pSkREREQkXnElUF177bVxTxRERERERET2VSI7jSdhV3IREREREZFCWrdureciIiIiIiJlSFwJVNddd12q4xARERERESkwc+bMdIcgIiIiIiJl2D333JPuEEREREREpAjFlUD1b+vWrePxxx9n3rx5bNq0iapVq9KmTRt69epFhQoVkh0jrusyceJEnnvuObZs2UKrVq247bbbqFu37k7bb9iwgbvuuouPPvoIYwydO3fmhhtuIDMzs6DNG2+8wYQJE1ixYgUNGjRg6NChtGnTJumxi4iIiIhIcnzyySfMnz+fjRs3Uq1aNdq0aUPLli3THZaIiIiIiJQBoVCIWbNm7fBcpEuXLvh8e/WoRZIsELCxbRtjYpWKw+EokYib7rBEREREpIRI+FP94sWL6d27N6FQiCOOOILatWuzbt06Hn74Yf773//y9NNPs//++yc1yEmTJvHUU09xzz33ULNmTe6991769OnD7NmzCQQCO7Tv168feXl5TJ8+nc2bN3PzzTeTm5vLqFGjAPj8888ZMmQIN9xwA8cddxzPP/88V155JbNmzaJhw4ZJjV1ERERERPbNpk2buOqqq/j666/x+XxUqlSJjRs3MmnSJE488UQmTJiw03mBlGyBgA/btvA8MAbC4YgefoiIiIhIWqxcuZLevXuzYsUK6tatS9WqVfntt994+eWXmT59OjNmzKBixYrpDrPMCgb9RAmwdjO8/5Vhax7UqOzRoaXBF4hi4+A40XSHKSIiIiLFXMIJVPfccw+1atXi0UcfZb/99is4vnr1avr06cOoUaN44IEHkhag4zhMmzaNwYMH065dOwDuu+8+TjjhBObMmUOXLl0Ktf/qq6+YN28er7/+ekEy1J133kmfPn0YOHAgNWrUYMqUKXTo0IHevXsDMHToUL766itmzJjBnXfembTYRURERERk340YMYJff/2ViRMn0r59e4wxuK7LO++8w6233sp9993H0KFD0x2mJEkwGMA1flashXcXGHJDHtUrG047JkAw4P798COS7jBFREREpAy5++67cV2Xl156iUMPPbTg+Hfffcd1113H6NGjufvuu9MYYdnlD2bw00qbMU/DJ9+C63oF58pleHQ51uKG7plkBUI4TjiNkYqIiIhIcWcl2uGbb76hX79+hZKnAGrUqEHfvn359NNPkxYcxCpe5eTkFNper0KFCjRp0oT58+fv0P6LL75gv/32K1RJqnXr1hhjWLBgAa7r8uWXX+6wXd/RRx+909cTESkqxhh8Pgu/38a2E/71LCIiUmp98MEHDB48mA4dOmCMAcCyLDp16sSAAQOYPXt2miOUZDAG/MFMFv4W4JIR0HEg3POkx/jn4ZYpHsdd7XHzFMOWUJBAUBXHRERERKTozJ07l8GDBxdKngJo1qwZ/fv35913301TZGWbP5jBV7/46Ho7fPQNuP8qWJubD/99D86/xWNTfoBAQFstioiIiMiuJfxpsXLlymzZsmWn56LRKBkZGfsc1PZWrVoFQK1atQodr169esG57a1evXqHtoFAgEqVKvHnn3+yefNmcnNzqVmzZlyvlyifT0kPybYtkUQJJZIq6b7GbNvCMz4wPv7a5OFEDJWyIRj0CNhhwuEInrfn15HiKd3Xl5R+usYk1YrDNeZ5HtWqVdvpuVq1apGbm1vEEUkq+AIZfPa9xTXjPEI7WRie78DLn8CCn+C5OwNUySr6GEVERESkbAoGg9i2vdNz2dnZeLp5V+R8Pov8sI+rx3rkhXbf9rdV0O8BmD4sCKiarYiIiIjsXMIJVNdeey1jxoyhXr16HHnkkQXHly5dygMPPEDfvn2TGmBeXh4QS4LaXjAYZNOmTTtt/++229qHQiHy8/N3+Xqh0B4+Ze+BZRkqV9Zd/FSpUCEz3SFIKZeOaywSgfVb4Ik5sdVQK9bGqmrYFpx4mOGS04O0PjRI+XJFHpokmX6HSarpGpNUS+c1ds455/DQQw/RunVrsrL++bwdiUR44oknOOecc9IWmySH32+zNd/mugfYafLU9lasgesf8Jhxs79oghMRERGRMq93796MGzeOZs2aUbt27YLjmzZtYvLkyfTu3TuN0ZVNxvbz9NuwOSe+9vN+gF//hIY1fYRCSqISERERkR0lnEA1a9YsQqEQPXr0oE6dOtSoUYMNGzbw22+/4boujzzyCI888ggQ247qnXfe2acAt1W0chynUHWrUChEZuaOD3EyMjJwHGeH46FQiHLlyhEMBgte79/nd/Z6iXBdj82btfo92WzbokKFTDZvziMadffcQXbJGPD7fYQivtg3gPFc/HaEcDia5ujSJ13XmM/v54+//PS+22PFmsLnXBfeXRD76n0qDOsJRPNxXa1mK2n0O0xSTdeYpNqerrEKFTJTXp0qMzOT3377jfbt29O+ffuCOciHH37IqlWrqFixIsOGDQNic5ARI0akNB5JPs/y8+TbsS024jFvESz9E444OLVxiYiIiIgA/Pbbb2zYsIFTTz2Vo446qmBOsmDBAvLy8sjIyGDu3LlAbE4yY8aMNEdc+lm2j+ffT+xe6cy34OZeflSFSkRERER2JuEEqjp16lCnTp1Cx+rWrUuLFi2SFtT2tm3Ht2bNGurVq1dwfM2aNTRq1GiH9jVr1twhactxHDZu3Ej16tWpVKkS5cqVY82awtkKa9asoUaNGvscbySiB5epEo26Gt99EAj6wQrwxc/wxFvw++pYDlXjAywuPjVAg/3BuKEyvfqmKK8x27bIj/h2mjz1b4+/CVUrQJ/OASKRvCKJT5JPv8Mk1XSNSaql8xp75ZVXyM7OBuCzzz4rdK5mzZp8+eWXBd+bv5PEpWSxbR8vfJjgw4834aDae24nIiIiIrKvVqxYUfA8IhqNsnLlSgCaNGlS0GbbNn7azi/1YvM+w++rExvrZavBQ3NGEREREdm5hBOoRo4cmYo4dqlx48ZkZ2czd+7cggSqzZs388MPP9CzZ88d2rdq1YoxY8awbNkyDjjgAADmzZsHwFFHHYUxhiOPPJJ58+ZxwQUXFPSbO3cuLVu2LIL/I5GiFwgGWLPJz9Vj4YffCp9buCS2ddzxLWD89RlkBvJxnLKbRFVUbJ+fZ941rFgT3yR/6mtwWWcb27ZUYUZERMqc9957L90hSApZlsH14I+1ifVbsRb0sUhEREREisLMmTPTHYLsRKLrZ1JcPFlERERESriEPy4+9NBDu1xBsXr1aq644op9Dmp7gUCAnj17MmbMGN59910WL17MgAEDqFmzJp06dSIajbJ27Vry82N7PRx22GEceeSRDBgwgIULF/L5559z2223cfbZZxdUmLr00kt57bXXeOyxx1iyZAmjR49m0aJFXHzxxUmNXaQ4CAZ9bMgJcNEdOyZPbe+ThXDx3R4RMvD5NJNMJWMAy8cz78S/QmpzDsz+n4ftSzjvVURESiGfz8Lvt8vMv9lffPHFLs95nlewhbiUXJZJ/OGHZQAt7hcRERGRIvDKK6/s8lxeXh633357EUYjnufheR6H1E2s3yF1wUKrMERERERk5xJ+4jJ+/Hh69uzJH3/8Uej4Sy+9RJcuXfj666+TFVuBfv36cf7553PLLbfQrVs3bNtm6tSp+P1+/vzzT44//nhef/11IFa6deLEidSpU4eLL76Y/v37c+KJJ3LHHXcUvN7xxx/PiBEjePrppznnnHP4/PPPmTx5Mg0bNkx67CLpFvEC3POEx59/7bntt0th6msexgqkPrAyzLIs8kKGX/7Yc9vtzVsE4aidmqBERKTYs21DIBggkJnF5lAmf2zIYEsoE39GFoFgAMsqvdsQ9O7dm3HjxhGJFK6SuXTpUrp27cp9992XpsgkGVw39vCjcb09t91ek/oQ8KcmJhERERGR7d1www0MGjSILVu2FDo+d+5cunTpwgsvvJCmyMowN0z3jvHPgy0Lep8KtgmnMCgRERERKckSLmXy2GOPcdNNN3HWWWdxyy23cNxxx3HrrbfywQcf0KFDB2699dakB2nbNkOGDGHIkCE7nKtTpw4//vhjoWNVq1Zl/Pjxu33Ns88+m7PPPjuZYYoUOz6fRX7YYs78+JfmP/ceXHWmL7aViqsl/akSiSY+ttpZUUSk7AoGfUQJ8tIn8OTb8P2v/5xr3hB6dfLT5Vg/PjdUKrfivfrqq3n44Yf53//+x5gxY6hfvz7Tpk1j/PjxVK5cmUmTJqU7RNlXbpjuHQPcMiW+z0g+G3qfYiiXAaG8FMcmIiIiImXeiBEjGDFiBGeeeSajRo2iRYsWjB49mqeffpqmTZsyceLEdIdY5kQjEc46PsCDLxLX4uFOrWC/SuDkR1Mem4iIiIiUTAknUB1zzDG88sorjBo1imHDhhEIBKhcuTITJ06kQ4cOqYhRRPaS328z+3OPfCf+Pn+sg0XLPA6tY5fKB7DFged5ZGcaMoMeeaH4+9WqArblob8VEZGyJRDwkR8N0uce+OLHHc9/uwRueAhe+hgeHhwkEPBwnNJ1Q/i6667jpJNOYtiwYZx77rkceOCB/PTTT/To0YP+/ftTrly5dIco+2jbw4+HXop9Ht2Tzm2gUrYHlN7KayIiIiJSfJx77rkcc8wx3HrrrVxyySVUrVqV3NxcbrzxRnr16oVllY3t1YuTaNQl4HOYNixAr+Ee6zbtuu1RjWDU1WC5+UUXoIiIiIiUOHv1qT4SiRCNxh7KeJ6H4zjk5+uDp0hxY4xh3abEHypt2AJGz6JSxnU9XDfK6W3i72MMdO8IltKnRETKFGMAO0jf+3aePLW9z76DgRMBO6MoQityzZo1o3fv3oRCIRYtWsRBBx1Ez549lTxVSkSjLj7jMP0mQ43Ku297XHO4+wqDTQKZ6CIiIiIi+2i//fbjyCOPBGDt2rVUq1aNZs2aKXkqjZyQw4HVw7x8j6F7Ryj/r+lhneowuBvMuBkCJlTqFhuJiIiISHIl/Ml+1qxZnHbaabz55pvceuutfPTRR7Rp04bBgwdz5ZVX8ueff6YiThHZC54HFbIT71c+M9ZXUsdnwlx2OsR7f+WYplCzKqoKJiJSxgQCPr7/FT5ZGF/7d76AX/+MbflXmvz222/07t2b2267jY4dOzJ58mTy8/M588wzmTJlCq7rpjvEMs3nswgEg9iBLAKZWdiBLHyBDHw+O6HXcUIOdaqFefkeuPR0qFy+8PmD6sBtlxgeuQFs8olE9PcuIiIiIkVj3rx5nHnmmUyaNIlLL72U2bNnU7VqVXr16sUdd9zB1q1b0x1imeWEQlQpl89NPV0+fcjw1G0w5QZ4aQS8Pc5w2WkRTDRP91VFREREZI8SfrJy44030qpVK0aMGEHdunUBGDt2LKeccgp33HEHXbp0YcGCBUkPVEQSF4lEaX8k/MeCaJzPl6qUh6b1DZGwVuOkUigUoX6tAEO7W4x8YvfZarWqwphrDJarKgsiImVN2Asw483E+jz2Otx2sR9KUdXCM888k3LlyjF27FhOP/10ILa1+JgxYxg3bhyvv/46L730UpqjLHuMMfgCGYQiNs+9DW/O9dicC+WCcNKRNj062mRneETDebhufNn5TihExYwIg7r6GXyRjx+Xx7Y8rlIeDqwFnhvGDYdxoi4+n1b6i4iIiEjR6N27NwceeCBPPvkkhx9+OABPPvkk06dP54EHHuD999/nww8/TG+QZVgsOSqCbVsceVBsnuB5EM6P4mmlsIiIiIjEKeE7zjfffDMzZ84sSJ7aplOnTrz66quccMIJSQtORPZNOBylUrbLiYfH3+esE8DzInE/5JK9F3Xy6HWKy+irDbWr7XjesqDt4fD8cEPlbAfHCRd5jCIikl5+n+GrnxPr89XPYNulK7Gkbdu2vPbaawXJUwAZGRnccsstzJgxgy1btqQxurLJGIMvmMmsTyyOvdpjxEyPL3+CX1bAwiXwwHNw3DUw5VWDL1gO245/f2jHiRJ18nHDORxaJ5+jDgpxYPV8wvk5hEMhovGuDBARERERSZJLLrmEl19+uSB5CmKfiS+99FJeeuklatWqlb7gpEA06hIKRQiFIjhORMlTIiIiIpKQhCtQ9erVq+DPW7ZsYc2aNdStWxfbtqlSpQr3339/MuMTkX3kM2GG9ggyf5HH1rzdt629H1x9DlheGNWfSj3X9fBCeXQ+JsgZx/n4+BuPT76FkAPVK8MFJ0HVCmB5+Tih0lNFRERE4mcZQySS2A3fcARM/LkqJcKECRN2ea5169bMnj27CKMRADuQwayPDTc9sus24Qjc999YJdT/OyuTaDQ3ofdwXQ/H0adSEREREUm/G2+8sdD3oVCIQCCAMYb69evz9NNPpykyERERERFJloQTqADmzp3LmDFj+O677zDG8NxzzzFlyhRq1qy5w0RCRNIrPz9Mvf1sZtxsc9W9sG7Tzts12B+mDYPywTBOSA+qiorneUScfIwxnNjcx7FNbTzAZ3ngRfR3ISJSxkWiHjWrwqr18fepVRWipbCS5Pr165k6dSqffvopa9eu5dFHH+Wdd96hcePGdOjQId3hlSk+n4UTsbnr8fius4kvwvntDNWybcLaJlpERERESqilS5cyfvx4Pv30U7Zu3cpzzz3H888/T4MGDQotPBcRERERkZIp4b09PvvsMy6//HIyMjIYPHhwQQnUxo0b8/jjj/PYY48lPUgR2TfhUD6H1ovw/njD3VcYmjeECllQuTy0bgITB8Croww1K4ZxQk66wy2TPM8jFAoTDefjhvNxQiFVXBAREYwX5vx2iZWTuuAk8JnSVblw+fLlnHnmmfz3v/+lRo0a/PXXX0SjUX799Vf69evHBx98kO4QyxTL9vP8B5CbH19714XH3wTP+FMal4iIiIhIqixatIjzzz+f77//njPOOKPguYht24wYMYKXXnopzRGKiIiIlByBgA/bn4Hxl8Pyl8PyZxIM7lXtH5GkSvgqvP/++2nfvj0PPPAAkUiEe++9F4D/+7//Izc3l+eee45LL7006YGKyL4Jh0LYdphzT/Bxbls/lhV7GBuNeliECTthwqWwWoWIiEhJFo1EOOv4AGOeho1b99y+WkU49WhD2AmnPrgiNGrUKKpWrcrMmTMpV64czZo1A2Ds2LGEQiEmT55Mu3bt0htkGRLxbObMS+xz41vzYEg3m4hy9UVERESkBBo1ahTNmjVj2rRpADz55JMA3HLLLYRCIR5//HHOOeecdIYoIiIiUuwFAj48K8iKtTD9Tfh5BeBB/VqG3qcGqV8riHFDOE7pWiAsJUfCFagWLVrEeeedB4AxhVfDH3fccfzxxx/JiUxEksoYg89nE3Z9RKPgOC7hcATj5hPKd3CVPCUiIlLsRKMuNhEm9DcE91C8JzMIkwYajBcudf+uf/bZZ1xzzTVUqFBhhzlI165d+fnnn9MUWdlkWyauhL7tbckFTGLV1EREREREiouvv/6aSy65BJ/Pt8Oc5PTTT+e3335LT2AiIiIiJUQg4CMvksHVY6HjQHhyDsz7AeYtgmffg843wCUjYHN+kMCeboaLpEjCFajKly/P2rVrd3ruzz//pHz58vsclIgklz8YwFgBPvve45l34c+/IOAzHHawzcWn2lSrCETzCYe1ZZyIiEhxE3byOeqQTGbeYvOf6R7f/7pjm+YN4c7LoFHdCOFQqOiDLAI+386nLo7j7PAAQ1LLdSE7M7E+WQm2FxEREREpToLBIPn5O9/DeuPGjQQCgSKOSERERKTk8Pkswl6Q3nd5fLeT+9vbzFsE3f4Dzw8PkuF39exailzCCVTt27fnvvvu45BDDqFJkyZArLLNqlWrtHWGyB4Egz48bKKuwbY88KIpL0HoDwb5bbWPa8d5/Ppn4XNf/AiPvQ5nHQ/D+2Tg9yuJSkREpDgKh/JoXj/Ac3f6+Wk5vPoZbM2F8uXgzOOh4f5gvDBOqHTuj9ayZUsefvhh2rRpQzAYBGJzENd1efrppznyyCPTHGHZYpkIJx3p46sECn+1PRx9zhQRERGREuu4445j/PjxHHnkkey3335AbE6Sk5PDtGnTOPbYY9McoYiIiEjxZawAk2ex2+SpbZauhDHPeNzUMwDkpTo0kUISTqAaNGgQ33zzDRdeeCHVqlUDYODAgaxatYpatWoxcODApAcpUtIFggE84+eXlfDqp5Abggrl4OwTfOxfLYjxHJxQOAXv6+f3dX663eGxKWfnbVwXXvoINuXAxAEZWNHcUrftj4iISGkQS45yaFzHx8Hn27heLCHbIkoov3TvCT9o0CC6detGp06dOProozHGMHXqVJYsWcKyZct46qmn0h1imeJFw3Tv6OfBFz3i+QhrDFzeGWzCKIVKREREREqiIUOG0LVrV0499VQaN26MMYZ77rmHX3/9Fc/zGDduXLpDFCk2jIktJt9WLToaVQUREZGyzLIMWD6e/yD+58+z/wfDetrYtkU06qYwOpHCEk6gqlixIs899xyzZs3i888/Z+PGjZQvX55evXpx7rnnkpmpvRlEtucPZvLtbzbDZ3h8u6TwuYkvQutD4T+XBTmghk04tPMy0HvLMwFufXTXyVPbe28BvDUXTmvlJ1RKq1eIiIiUBqFQBIglTJWVqeMhhxzCCy+8wIQJE5g7dy62bfPpp5/SqlUrRo0aRaNGjdIdYpkSibiUC7r0O99w79N7bt+zE+xfFZxSnugnIiIiIqVXrVq1ePnll5k+fTqff/459erVIzc3ly5dunDppZdSvXr1dIcopYRlGfx+GwDPg0gkWmIWPFuWIeSA8ZXj2189VqyBgB8OP8hQKdvFJkwoBQvJk822zd9Vr70SM/YiIsWZ32/z5S8eazbE32dLLnz4tUfHI20lUEmRSjiBCiAQCHDhhRdy4YUXJjsekVLFF8zgi59srhi169X58xbBBbd5PHWbzUH7Bwg7yUleCgR8rFgL836Iv88Tc+CU1n5ACVQiIiJSvBx44IGMHTs23WHI36LhPC47vRxRFx54DnZ2H8MY6HUK3Ngj1l5EREREpCSrXLkyAwYMSHcYUkr5/Tau8YPx8c2vHlvzoFI2HHqgwYpGwHWIRIrvA2S/38azMpj6Ksyc47Fs1T/nbMvjhMMM150X4NB6PiJOHl4xy0uyLIM/4CeKn2jUkBfyKJdh8BkPGwfHieAVt6Cl2AkGfUS8ALZtsAyEo39X446EiUZ1/UjZZYzhr02J91uzwRRUMxQpKnuVQCUie2bbFhHXR9/79ry1ydY8uHosvH1/AMsKJ2dVg7F56ePEuiz4ETbnQPmgVawnYyIiIiKSXq7rEXFy6dMlk/PaWsx40+Pt+bFtobMyoO3hcFlnqFUlljyllWIiIiIiIiI7FwgG2BryM+klePljj/Vb/jlXq6rHBSfZ9OmSSTDoFMsKTj6fhWdn0H88vLsA3H9N/6IufPAVfPot3H+9RbvDMgmHis8im0DABjuDD76GGW/C5997eB5YlsdxzaD3qQGObxHAi+RrK0LZqW3X0I/L4bHX4ZtfYslTtarA+Sf56dwmgN8OE3ZC6Q5VJC08zyNrLzYxK1/OA5R8KEVLCVQiKWL7/Dz3fiwhKR5/rIMPv/I46XA/ofx9rwAVcQ0bt+y53b9tyoEKGcrmFREREZHdc10PNz+XyuVsrj/Pz6CudqzslOcRjsS2Z9C2fSIiIiIiIrsWCPpZvclPjzvhj7U7nv/zLxj/fCwxaeYtQcoFPUKh4jXP8qwg9/8X3p4PlrXrdk4EBoyHV0db1Kniw3HS///h99tEyKTvGI8Pvy58znXh44Wxr06t4L7rMvD7lUQlhQWDPvKjQa6/jx2uoRVrYP5iGP2Ux4MD/LRoYAiH8tMSp0g6RSIuRxxsKJfhkRvnj4DPhhNaoIIfUuR281FGRPaFZ/l44YPEsmKfeRfCbnLyGi3jUW4vsnnLZVBQijYY9GH5M7EC5WJf/kyCQeVdioiIiMg/wuEoESef/Nwc8nO2kp+bQ9TJKxY3w0VERERERIoryzJ4VpDLR+48eWp73/8K193v4Zpg0QQXJ9u2cD2bZ96Jr30oDFNfhSj+1AYWJ+PLYNDEHZOn/m3OfBj2MGBnFEVYUkLYtiFqglw5esfkqe39tQkuHeGxaLlNIBgosvhEioto1MVvR+ncJv4+Jx8J2ZmeklalyCmBSiRFbMuw8q/E+vz5V6xfMvgsl1NaJ9bnoNpQrWJs0uPPyOKXP4P8Z7pF77sMve8y3DHd4uc/g/gzsggElEglIiIiUtb5fBblygUIZgTIzAwo2V5ERERERCROfr+f9xd4LFkZX/v/fQtLV1Ks5l1+v4/Zn8LWBHbke/VTABsrSc9C9lYw6GPJH7HkqHjM/hRWrkPPRqSA7fPz8scwb9Ge2+Y58J9p4JnikTwoUtRswvQ7H6pW3HPb8uVg0EUGv1X8tq2V0k8JVCIpYoiVF0yE3wdukrZyDYXCNKsPjerF36dbB4NlXLaEglw6EroMhec/gK9+jn298AGcMRQuGQFbQkECAX3QExERESmLAgEfdqAcIbccz34QYOIsP1NeC7B0dSzZPqgVlSIiIiIiIrsVNX5mzkmsz2NvQNgrPvflw67F4mWJPdTYmgdrN3rYdnofUUY8P1Nfi7+958G014tP9SwpBiw/T74df/OFS4pfEqRIUXGcCNXKR5h5C9Sssut2VcrDY8Og7n4R8vOVQCVFb69/Q4dCIR544AHmzJnDunXrqFKlCh06dKBfv35kZ2cnM0aREskJuxx2kOHtOFcvADRvAJ6XnL1cPQ+IhrmpV4DL7/GI7KHC4aEHwIUngxOx6fYfj19W7LrtvEXQ/T/w3zuDZPhdlU8UERGRIvPhhx/y1ltvsW7dOqpWrUr79u3p0KFDusMqUwJBPzlOkLsf93jjc498Z9sZj3ufhsMPhiHdAhxxkE3EycNL0gIBEREREZF08zyPp556aofnIj169MDn0wNxSYzPNvz0e2zCZEysGpPrxe7tWwYwsYXa3naTqp+WgylOtRH+jncvuqWdz2fxxeLE+nyxGCzLQk9ExOez2LAltr1mImZ/CtefZwORlMQlUpw5oRD1a3i8fV+AV/4HT7/t8fOK2L8jB9aCru0N57WFoB3GCYXSHa6UUXv9iX7kyJH8+uuvDBo0iIoVK7JmzRoef/xxbrrpJsaPH5/MGEVKJL8VpvepQd6eH/9U4NLTwUcYZ89N4+I4Dq0a20wcYDFgAuTt4t+a5g1h6lDI8Ls8/6HhwJpQPhO+WQLuLvK5fvkDxj/vMfiiAJBAfV4RERGRvTR9+nQeffRROnbsyKGHHsratWsZNmwY3333Hf379093eGVCIOBjS36Arrd7/Prnztt8/TNcfLfHA9dbnHR4JuGQPiuKiIiISOlw//338+6773L22WcXPBeZMWMGS5Ys4c4770x3eFICeX9nSeWFYl/bL4QO+CEzCEG/KUiicl0w6d35rhCf7dKono9EUqLKZcB+lQxuNDmLyfeWZQxOOLFULicMVjHKX5P0McawJTfxfltyIOoWox9ikSLmhBxsO8K5x/s490R/QQIxeHjRMNFIGCeU3n8fpGyLK4Hqq6++4ogjjih07PPPP+ehhx6ifv36BceqVq3KwIEDkxuhSAkVCoVp2SjAUY1gwY97bt+pFdStDk5+crPOI6E8TmyRwScP+njqHY9ZH8Gf68Fvw2EHQe9T4fgWBst45DoWtfeDbh2h7n4QjsDzH3i88CFsztnxtWd9DIO72di2IRotDmtGREREpLTIyckhKyur0LEXXniBRx55hCZNmhQca9euHbfddpsSqIqIZwUZOJFdJk9tE4nCoInw7v02lcvZqlgqIiIiIiXOH3/8Qe3atQsde/vtt5kwYQINGzYsONasWTOGDBmiBCpJmOd61K1uWPonRHbyWMAJx74yAlA+y4DnUa8GuG7xuRcfCUc48/gAo56Mbc0Xj85twBBN+zOFiOtRvTKs3hB/n+qV2eNuH1I2eJ5H+XKJ98suB7blofQQKcuiUZdo1AGcv5OCTaFqiyLpFFee9IABA7j22mtZsmRJwbHDDz+c4cOH89Zbb/HZZ58xe/Zs7rvvPo466qiUBStSksS20AvxyBBD8wa7b3tMUxjT12Dc/JTEEQ7lk2HncvnpEV67F76aapg3xfDQIGh7mMcf6+CmRwwtL4fTBsOZQ6HlFXDro9DqUMMTtxoOqLnja2/cCp995+H3qzy1iIiIJFfHjh15/PHHCYf/2et+v/3246233mLDhg24rsvq1at55513qFGjRhojLTsCAR8r18H/vo2vfb4Dj7/l4Rl/agMTEREREUmBc889l5EjR7Jhwz/ZFfXr12fKlCl89913LF++nC+//JKZM2dy8MEHpzFSKYmMMViW4Yzjdp48tb18B7bmAsbQs1Ns94viIhp1sU2U89rF197vg8u7GHwm/f8Pxo1w1gmJVQI6+wSwSX/skn6RiEvl8tC0/p7bbu/M40CbQIr8w/NQ8pQUK3ElUL311lu0aNGC7t27c9NNN7F69WruuOMODj74YO655x6uuuoqxo0bx2GHHcaoUaNSHbNIieE4Ecr5Qzx9u+HWSwwHFV6wRLP6MPIqmHoj+MnHcVL3oSkScQmHQoRycwjlbSU/ZysGl/e/NnQZEqsytXW7/K1oFN6aBxfeFtuTefJgQ7WKO77uuk3Fq2SwiIiIlA5Tp07lww8/5JRTTuHll18G4I477uDjjz+mTZs2NG3alHbt2rFo0SLNQYpI1PMxc87fCwXi9MIH4PP79HlRREREREqc2bNnk5eXx6mnnsqkSZPIy8tj+PDhbN26la5du9KxY0d69uyJZVnce++96Q5XSphAwMcXP3p0PjZW1WhP8hxoVA+OPMTgOMUrgce4IW7oBm0P3307nw33XgP19osSCiV3J4694UbDnN8OsjPja18pG848zhDdU8ablB1umB4d42/eoiE02J9icf2LiMjOGS+BlL4NGzYwadIkZs2axYUXXshVV11FhQoVUhlfiRKNuqxfv5N9zmSf+HwWlStnsWFDDpFIySxqadsWts8Plo81GyAnH8qXg6oVwHix/VyLulxtMOhj6eog594cW8FijCEUhk1bd97+wYGxXcz/M61wnBMHQMcjHfLzi9ekLRGl4RqT4kvXl6SarjFJtT1dY1WqZGHbca3L2CuffvopY8aMIRKJMGjQINq2bcvy5ctZv349VapUoW7duil773QrbvML48tkwESLdxck1m/hdIOJ5iR9mwn9/it6GvOipzFPD4170dOYFz2NedHTmMcv1XOMRC1ZsoRx48bxzTffcM0119C1a1c8z2Pjxo1UrlwZ27ZT8r6u6zJx4kSee+45tmzZQqtWrbjtttv2eg5U3OYX6Zbun0lfRhZXj4GTjzIcWBO6/Qc27+avZ/9q8OpoOLCGS35ubtEFGqdAwMazMpn2uuHpt13+WPfPOWPg2GZw3XmGFg2iRJz8YlNtxB/M4MOFNtfdt/ut+fw+eOQGaN0oFn9RSfd1Wholc0xt22B85bhkBMxfvPu2mQF44nZoUjeME3L26X2LI12ryacxTT6NafKVlDFNZH6R0CykcuXK3Hzzzbz44ousWrWKjh07MmXKFByn9P2iF0mmaNTFCYUI5+dQLTufA/fLp0q5PML5OTghJy17fUe8AJNnxZKnIFYeMeDbdTWpCc/DKa0otKdzRgDaNDVEtOm3iIiIpMixxx7Liy++SJ8+fbjzzjvp1asX69ev57DDDivVyVPFkQfszXMsq/g8+xIRERERSVjDhg158MEHeeCBB5g9ezannXYac+bMoVq1ailLngKYNGkSTz31FMOHD+eZZ57BdV369Omj5zGlgDHgswwLfoS7Znis3wyv3AOnt4lVadpeRgAuOCl2ftFvUMyKTxVwnCiWl8fVZ8M79xtm3hrbfWNcX3jvAXhkCBzeIEQ4lFdskqcAIk4+bQ/zeHgI1K1e+JwxBoyhwf6Gx24yHNPEYFsulqUSyxITjXrYhJgyFE48bNftqlSAx24yHFrXLZXJUyIipYkv3oYbNmxg4cKFuK5Ls2bNGDt2LN999x1jxoxh5syZXHfddZx33nlYujsuskueR7FINvL5LPIjFm/N+9dExUDQ/09S1fYW/w7fLoXTj4Fn34sd69QKgn6XiFN8M0pFRESkZMvLyyMajXLmmWdy2mmn8cQTT3DVVVfRsmVLBg4cSIMGDdIdYpnhs1ya1reYMz/+PgfVBp/tEQoVnxvkIiIiIiLxikQiLFu2jGg0SvPmzXn66aeZM2cO48aN49FHH2Xw4MEce+yxSX9fx3GYNm0agwcPpl27dgDcd999nHDCCcyZM4cuXbok/T2lKBk8IByJVT0aPMmjR0e4/RLDnZfDe1/C1lyoVD52D37tRnjoJY8Va6H9UemOfdeiUY8KQQjl5dHqYMPRjQyeF6um5oSiFMdNyzwPIqFc2jQJMmecn7k/eLzxuWFLHmQGoWNLOOIQeHcBTJ7lcV5bP6e0DmB7DmElwgix7fiCAXh4SJCflsNjr8M3v0A4CvtXhfPbweltDBZhwqFQusMVEZE9iCuB6qOPPmLAgAFYloXP5yMvL4+77rqLLl26MH36dD766CPGjh3LtGnTGDhwIB07JrDhq4gUOcuyWLLcI/Sv1SoGyMoEJwLudjlRAX8ssWrRMrjiTEOD2vDBlx4Du4LPOKQ/JUxERERKm2XLljF06FC++eYbAA455BBGjRrFpZdeyvnnn8/DDz/M+eefT+fOnenbty81atRIc8RlgBuhWwcfE1+M3eiPx0UdDF60mC6RFhERERHZjYULF9K/f39WrlwJQLVq1bj33nvp1KkT7du357///S833HADBx98MIMHD6Zp06ZJe+/FixeTk5NDmzZtCo5VqFCBJk2aMH/+fCVQlXCe52EMVK8CK9bE7sXPfAuefNvjuGbQvCGUyzBs2OwxaCJ8+VOs36lHE8v4KeY8zyMUKjlPDTwPwqEQxjgc3yyDFg1tFv8O6zbCZ997DHsYNmyJtf1kIdSu5jFlqJ/6NQyOEmIEcJwIEKFRbR939Qlg2wbLxBIkLcJEI2HCadiJRkREEhdXuaiRI0fSu3dv5s+fz2effcaYMWMYPnx4wfkTTzyRWbNmceWVVzJy5MiUBSsiyWEMRHby0MvzPGwLKmXHtloJBmKlRbMzIeJCXgh+Xg4hBx4cZKheObY9oYiIiEiy3XLLLVSuXJkXX3yRV155hWOPPZb+/fsDUL58eQYPHszrr79OJBLh1FNPTW+wZUQkEiUrw+PcE+NrX7MKnN/Ow1UClYiIiIiUQHfccQfHHXcc8+bN48svv+Sqq65i6NChANi2Tbdu3ZgzZw5HHXUUF198cVLfe9WqVQDUqlWr0PHq1asXnJOSLRKOcPbxhY+5Lny8ECa9BGOf8Zj88j/JUwBd24PfKo51nEoHn89iQ47FmcM8uv/Ho98DHjPe+Cd5aps/1kHPO2HVBh/BYNwb/UgZEApFiDq5OHk55OfmEAnl4IQcokqeEhEpMeL6l/2vv/6iefPmBd83b96cLVu24DgOgUAAiO0FfM4559C5c+fURCoiSeO6HrX32/k5z/Pw2YZqFcH1YHPOP1v67V8N5i+Gaa/DI69Atw4w4MJM/CafcLjkrCgRERGR4u/777/nwQcf5NBDDwXgmmuuYfr06eTn55ORkQFAzZo1GTlyJJdeemk6Qy1boiFuuySDNRvh/S933axaRZg2zBC0HZyQEu5FREREpOT5/fffGTBgABUqVACgS5cu3H333YXmJOXKlaNv37507949qe+dl5cHUPD8ZZtgMMimTZv2+nV9vrjW1JcJtm0V+m9R81kRep7i45FXPJw4cqIOqAnHNDG4kWix/XtM95juMyvAgy/GqoLtyfotMPppGHNNAJ8vdXPeEj+mxZDGNDU0rsmnMU0+jWnylcYxjSuB6tRTT+XWW2/l008/JSMjgw8++ID27dvv8OEddvxALyLFTzgcZb9K0PpQmLdox/Oe5wGGjVv+LjFqoGpF6NQaut0BeB5b82DKbFi5Du69JgMrmovrKoteREREkuOwww7jgQceICcnh0AgwCuvvMIhhxxS8KBie4ccckgaIiybIpEofpPPgwMyeOkjw8w5HouX/XO+UjacfQJceaahclYYJ+SkL1gRERERkX1w7LHHcvfdd3PRRRcRDAZ58803adWq1U7nJFWqVEnqe297D8dxCr1fKBQiMzNzr17TsgyVK2clJb7SpEKFvRvPZLD8MPoaw+BJsepTu5KdCZMGQmYQAtnF/+8wnWO6LzZugVf+F9udIx7vfQl5DuxfLfV/JyV1TIszjWlqaFyTT2OafBrT5CtNYxpXAtVtt91Go0aN+OyzzwoqTfXs2TPVsYlIClmEufR0/04TqDCGrbng80F2ObAtuOpMMMCJh3ls2AybcmJNX/sM2h0BXY7x6wGZiIiIJM2oUaO46667uOmmmzDGcPjhhzNhwoR0hyXEkvFtN5dzT/Bzbls/y9fAX5sgIwAH1zXgRbFxcEKqUCoiIiIiJdeIESN48MEHefnllwvmJH379i2S9962dd+aNWuoV69ewfE1a9bQqFGjvXpN1/XYvDk3KfGVBrZtUaFCJps35xGNpqdqrjFwSqsMMgcY7n4cfl+9Y5vDD4YRV0L9mlFytjrkFH2YcSsOY7q3/H6br38Osn5z/IvEQw68u8Bw3gkOoVBqtlYsyWNaXGlMU0Pjmnwa0+TTmCZfSRnTChUy466SFVcClc/no0ePHvTo0WOfAhOR4sMJhWl7uJ9LToPpbxQ+Z4CsDIi4kJcPxzaHyzrDQ7PgmKaGq8+Gqa96PPpqrP3jb0HnNn5ACVQiIiKSHNWrV2f8+PHpDkN2IRr1iEYdjHGoU8WmXjWD53lEwi6u66HUKREREREp6bKzsxk6dGha3rtx48ZkZ2czd+7cggSqzZs388MPP+zT4vZIpPg+2EqXaNRN67iYSC4nNA/y1lg/8xZ5zJkPuflQuTyc1xbq1wLjhXHyS86993SP6d7w+Ww25Sa+w8bGreB5qf/ZKoljWtxpTFND45p8GtPk05gmX2ka07gSqLbZunUrc+fOZfny5eTl5ZGZmUnFihVp0qTJXq96EJH08DwPN5zHDd0zqVvDMPVVj5XrwBiD68U++GcE4ZLTYcCFMGACzP5frG+LhjDlBkOl8jDmaY9vl8Cq9VCzok04rMdlIiIiklqbNm1i2bJl1K5dm6pVq6Y7nDLN89DnPxEREREpk2bNmsVJJ51ExYoVk/7agUCAnj17MmbMGKpUqULt2rW59957qVmzJp06dUr6+0n6eB6EQyGMcTimsY+jDrZxvdiuELaJEMpPTWUjKczzPCrtxU58VSt4eF7iiVciIiJSPMWdQPXkk08yZswY8vLyALAsC8+LfTAwxlCvXj1uuukm2rZtm7JgRSS5olEXz8vlopOCdO/g4+Nv4OtfYEse1K0Opx8DC5fAJXfD5z/802/hEjjvFnjlHvjhN3j9M1i9HvavbNL2/yIiIiKlz8KFC3nmmWfYuHEjZ511FqeccgrTp09n3LhxhMNhLMuiZ8+eDBs2LN2hioiIiIhIGRKNRhk2bBgvvPBCShKoAPr160ckEuGWW24hPz+fVq1aMXXqVPx+f0reT9LL8zzy88NAGIDI319SNMLhKIcdZKhW0WPdpvj6ZATg5CONFhWJiIiUInElUL3++uuMGTOGwYMHc/TRR7Ns2TLGjh1L//79OfTQQ/n+++954oknuPbaa5kyZQpt2rRJddwikiSu6+E6+RhjOPnITCqVt/jmF1i5Ds66ERb/vvN+K9bCmGfg0tMNr3/mEQyglRYiIiKSNJ999hlXXHEF1apVo3z58vTv359+/frx4IMPcvHFF9OqVSsWLFjAY489xsEHH8z555+f7pBFRERERKQU6d279y7PbVtcfuutt5KVlYUxhhkzZiT1/W3bZsiQIQwZMiSprysiO3JdD8uNcG5bm0deia/PqUdDwOcScUrHlkUiIiISZwLVo48+yrXXXkuPHj0AOOigg6hYsSIDBw7kgw8+oG7dunTs2JF+/foxceJEJVCJlEDGgBOxuHZcbDu+9Zv33GfWx3BLbzimKRxcxxCNKoFKREREkuOBBx6gQ4cOjB07Ftu2mTZtGvfeey99+vRh0KBBALRr1w6IVctVApWIiIiIiCRTbm4u3333Hfvttx8HHnjgTttsS6TSwlKRks94Ya4+28d7X3r8smL3bWtUhiHdDT4TQvWnRERESg8rnkZLliyhadOmhY41btyYNWvW8NtvvwGx1RA9e/Zk0aJFSQ9SRFLP77dZuMRj7UYP2wZfHOmVufnw3pdw8algiBKNaqWFiIiIJMdPP/1E165dsW0bgAsuuADP8zjhhBMKtTvuuOMK5iQiIiIiIiLJ8uyzz9KvXz+2bNnCEUccwbRp05g5cyYzZ87kscceA2D48OEFx0SkZAuHo2TYIZ68FY48ZNftDqoDz/wHqmQ5hELaaFFERKQ0iSuBqnLlynz++eeFjn377bcYY6hUqVLBsaVLlxb6XkRKDmMMG7f+/WcgOyO+fhu2wPEtwP57b3YRERGRZKhUqRJLliwp+H7bn9esWVOo3apVq8jMzCzS2EREREREpPSzbZtrrrmGZ555hg8//JBzzjmH7777DojdSxWR0sdxwlTICPHkbfDccOjcBg6uE0ua6tASpt8Es+8x1Kzo4IScdIcrIiIiSRbXFn5nnHEGU6dOJSsri3bt2rFy5UqGDx9Oy5YtqVKlCitWrOC5557j8ccf55JLLklxyCKSCp7nkZ35z5/9fkOFLNicC+yiArVlQc2qUC7osnWLVlqIiIhI8pxyyimMHTuWDRs2kJWVxeOPP06TJk0YP348hx12GHXr1uW3337jwQcfpG3btukOV0RERERESqnGjRvz/PPPM3HiRLp3786ll17K1Vdfne6wRJLC57OwLIPngeu6RKPajtJxIhgTocWBfu75Pz+2FUuYjLoeAStMKD+ibTtFRERKqbgSqK677jqWLl3KuHHjuO+++/A8j7p16zJixAgAvvzyS5566il69+7Ntddem9KARSQ1IpEohx9kqJjlsSkH8DyCAUNVX2yrvnwHts0JLAsyg1AhCzocBaF8rbQQERGR5OrXrx9r165l8uTJuK7Lueeey4ABAzj//PPp1KkTVatWZf369dSuXZtBgwalO1wRERERESnF/H4/AwYMoH379gwbNoy3335bVaikxDLGEAj4iBJgcw6s3gABH9StYbDtKDZhHKdsL5j2PMjPDwNh3O2O56crIBERESkScSVQBQIBHnzwQRYtWsSSJUuoXLkyrVu3xu/3A7HV4V26dMGy4toRUESKoWjUw2dHOfN4i5lv/X3Q87AtQ3Y5yC63XQKViRWl6nCUR7mgR9iJpitsERERKaUyMzMZM2YMd999N+FwmOzsbABefPFF/vvf/7Jy5UoaNGjA+eefX3BOREREREQklVq0aMFLL73EfffdR35+PoFAIN0hiSTEti0sfyaffAePvQ6ffvfPff/y5TzOPN7iyjOC7FfRRzikdCEREREpW+JKoNrm0EMP5dBDD93heDAYTFpAIpI+Fg59z8vgvQXwx7rYse1L0W5bU+V5UCkbhnQDv+Wg9CkRERFJlWAwWGi+UaVKFS644AIqVqyIz5fQdEZERIoh27bw+X1EXQvw8FkejhPGdbUtioiIFC95eXls3boVy7IYMGAAQ4cOTXdIIgmxLIPlz2TMMzDttR3Pb8mFJ+fA7P/BlBt8NK+foSQqERERKVP0xEFECjhOlAoZYZ64zc/l98DSlTtvV6MyPHoj1KoSIT+/bJfyFRERkdS46667uOyyy9h///0Ljj333HOMHz+edevWYds2RxxxBDfccAPNmzdPY6QiIrI3fD4bzwoQ9WxmfQhLVnpYBpo1gE6tA1huBC/qEI26e34xERGRFFm+fDlTpkzhww8/ZM2aNYXO7b///hx//PH06dOHunXrpilCkfhZviBPvm2Y9truE9U358AVoz1eH+2jaraNox0oREREZC/5/XbB1teu6xKJFO/7PEqgEpFCnJBDzUrw6ugA7y/wmDkHfl4BngsH1ITuHeH0YwyGMOFQKN3hioiISCn15JNPcuaZZxYkUM2aNYtbb72VY489lj59+pCfn89bb71Fjx49mDFjBkcccUSaIxYRkXgFAj6iJsi9T8MLH3hszSt8vmpFj4tPtenTJRNj8or9zTURESmdFi5cyKWXXkrFihVp37499erVIysrC4CcnByWLVvGBx98wGuvvcZjjz2mhR1SrFmWwVg+psyOr8rn5hx49DWPwV39oD0oREREJAHGGAJBP1H8/LUZ/lgLtgUNahuCARefcQiFimeRlrgSqE4++eSCrLA9Mcbwzjvv7FNQIpJeTsjBssK0P8JPuyP8+HzbskI9jBcmrO0UREREJMW230YYYPLkyZxxxhnce++9BceuvPJKrrzySsaNG8fMmTOLOkQREdkLPp9F1AS5cjR8+t3O2/y1CcY9C7+vhuF9MrHcXM1BRUSkyI0aNYpmzZoxZcoUAoHATtsMGzaMPn36MHr0aM1JpFjz+32886XHmg3x93n5YxhykQ/LMvosJiIiInGxbQvLn8kn38HU1+Dz72Hbrf6g36NTa8NVZwZpUMtPxMnDK2YfMeJKoLr00ksZNWoU2dnZnHTSSamOSUSKAdf1CIUcwCGiQlMiIiKSZitWrODWW28tdMwYQ/fu3Rk4cGCaohIRkYRZAR58cdfJU9t7/gM4ugl0OcaPE3JSHpqIiMj2vv/+e+6///5dJk8BBAIBLrvsMgYMGFCEkYkkLurZLPgxsT4btsCq9R61Klm4rqpQiYiIyO5ZlsHyZzLhBXho1o7nQ2GY/T+YMw/u72fR9rBMwqG8HRumUVwJVL169aJKlSoMGjSI9u3b06FDh1THJSIiIiIiUqBOnTpEIjuW9c3LyyvYRkNERIo3yzJg+fjv+/EvL3z8Teh8rB9QApWIiBStSpUq8ccff+yx3W+//aY5iZQI0b3YFTmivCkRERGJk+0P8NLHhodm7f6+TygM/cfDi3dbNKzpK1bb+VnxNuzcuTMXXnghI0eOJBrVJyYREREREUmtG2+8kaFDhzJ9+nSaNGnCpEmTyM/PLzi/bNkyJkyYQMuWLdMYpYiIxCsQ8PHxNx5/bYq/z7dLYflqCATs1AUmIiKyE2effTZjxozh2Wef5a+//trh/IYNG3jmmWe477776NKlSxoiFImfbbnUqW4S6uOzYb9Kqdm+zxjIyPBj+csRyMwikJmFHShHRoYfYxKLU0RERNLPGIOx/DzySnyfG0JhePhliHi7rvaaDnFVoNqmf//+ZGRk8Pvvv1O/fv1UxSQiIiIiImXc8OHDWbx4MYsWLeKdd94hJycHYwxz586lbdu2zJo1ixtvvJH99tuPQYMGpTtcERGJg2UZlq40QGIP4f5YBwfspwdpIiJStK677jq2bt3K8OHDueOOO8jKyiI7OxuAnJwctm7diud5nHPOOZqTSLEXjUQ4r22Acc9AfpyFPU8+EgI+l6izF6WrdiMQ8IMdYP6PsWqjv/wBngcH1jL07BTg2GZBcEM4oXBS31dERERSJxj0MXexx7JV8feZMx/uuMwi6LOIRJL7eWNvJZRAVaVKFW666aZUxSIiIiIiIgLABRdcUOj733//nUWLFtG8eXMgtqXfddddx0UXXUTVqlXTEaKIiOwFf0J3ova+j4iIyL6ybZtbbrmFPn368Omnn7J06VK2bNmC53lkZ2dTv359jjvuOPbff/90hyqyR5GISzDgcnobw4sf7rm9MdCnC/itMMnckyYQDLA+J8BVoz2++7XwuV//hPe/hIPqeEwZEqBmZYMT0jbOIiIiJYIxLPgxsS75Dvz6p0eTuhZQAhOoRERERERE0qFevXrUq1ev4PuWLVtq6z4RkRImGnU5pkli1acCPmhUL9ZXREQkHWrWrMm5556b7jBE9pnlhbjtkgx+Xh7bJnl3+l8AzRp4hJJYBcrvt8lxAnT/z+6rU/yyArr9B168O0Dlci6OE0laDCIiIpIiHuzNrr/RZGZqJ4GVzBcLh8OsXLkymS8pIiIiIiKyS5qDiIiUHKFQhIPqQPOG8ffp0ArKBbxiU8pdRETk3zQnkZIiHI4StEI8cRt0PRnKZezY5oCaMOpqwxVnQNTJw9uLB6G74poAE1+Ib2ufVethzDMeUQLJC0D2yLYtAsEggcwsMrKyycjKxhfMIhj0Y4y21BYRkV0zxqNhgoVZjYHa+xm8ZH7g2EdJTaD64YcfaN++fTJfUkREREREZJc0BxERKVmMF+a6c2M3yfYkIwDXnB3bOkZERKS40pxEShLHieAnn9su9vjfJMOdl8eSpa45Bx6/Bd4cYzijTZiok4u7N2UkdsG2DRibWR/H3+eNzyEctfD5kvooU3bBHwziWuV49gM/F9wKR1/pcezVHv83Bj76LoA/I4tAwJ/uMEVEpJgKhSJ0bGmoUj7+Psc2g0rZHuFw8SlDldQt/GrWrMm1116bzJcUERERERHZJc1BRERKFifkcHwLH7dfajF8useudubLDMAD10ODWi75+UqgEhGR4ktzEilpYg8pcwn4LLq28xH1DAawjEsoP5KSKhA+n828Hz02bo2/T14IPvrG49SWtqqRppg/mMHCpT6uHuuxYUvhcx8vjH0deoDH1BuDVM4CJ4lbO4qISOnguh7Gi3DByTYPvxxfn8s7g41DcdqsN6lp2zVq1KBv377JfEkREREREZFd0hxERKRk8bzYdjAXtnN5fjh0bgOB7Zb3ZWfGtpSZPRqOb+4ScfLSF6yIiEgcNCeRkioSccnPdwiHQjihEPn54ZRtoWOM2SExJx7rNxttHZdiwaCfn/+wuXTkjslT21u0DHoN9whFAqoKJiIiO2Vch37nwQkt9tz22nPhmKax6pjFSVIrUImIiIiIiBSF+fPn07RpU8qVK5fuUEREJEGu6+GGcmlSz8eo/wswvI/Fmg0exkCtqgbLRPGZMKFQ8bqJJiIiIiJ7x/M8KmUn3q9yeS9lSV0SEyXAiJmxil97smQlPPYGXNklAOSnPDYRESlZIhGXgJXP5MEZTHgB/vserP9Xcm79WnDlmYazjvdww3nF7t95JVCJiIjITvn9Np7x43oWGIPneQTsCGEnjOsWrw80IlK2RKNRevfuzQsvvECTJk3SHY6IiOyl/PwIECFgW9SrFqss4Lou0ahHNL2hiYiIiEgSRSIuRzYyVMjy2JwTX5+MAJx4mCES0SfDVAkEfPzxF8xbFH+f596H/zvLh/n7frGIiMj2HCeKz5dH33MDXHeej3cWeCz5A2wLjmpkOKoR4IaJOE6xfNaoBCoREREpxLYtLF8GW/IMT74Nn/8A+SGoXtlwXls/bY8IYEfDhJ04liWJSMpZlsHzKHU3rYYNG7bb857nMWHCBCpVqoQxhhEjRhRRZCIikmzRqEtUz8VERERESq1o1MW2o5x5nMUTc+Lrc0prCPhcIo6b2uDKMNu2eGNuYolQK9fBr396HLifRTisD/EiIrKjSMQF8rEsw2mtfHgtDRjA8wjlhynOjzLiSqBq3Lhx3HsMG2P44Ycf9ikoERERSQ+fz8L4MhnzDMx8C8L/2jXlnS+gVlWP+/v5aV7fIhzKS0+gImWcz2eD5cfn8+F6YMzfCVRumGgkQjRa8m8uzp07lz///JPy5cuTnb1jnX9jDN999x1+vz/uuYqIiIiIiEi89FxEJLlsHPqdn8EHX8OKNbtvW60iDOlm8JmQKpOmUNQ15OQl/hR7ax66FyMiInvkuh55eeF0h5GQuBKoJk2axKBBgwgGg/Ts2TPVMYmIiEgaGAOWP5M7psGz7+263Z9/wcV3e8y8xaLpAQHCjlN0QYqUccaAL5DB1nybJ9+GFz70+GMtWAYa1YMeHQOceXyAgM/BCZXsn83Zs2czYsQI3nzzTa666iq6du1acC4SidCsWTMmT55M06ZN0xiliIiIiIiUVnouIpJcjhOlfEaYp27zc/k98POKnberVwOm3mioWj5MKBTZeSNJCtvyqFzeAIklUVXKLn2V0EVERCDOBKqTTz6ZyZMnc9lll1GjRg0uuOCCVMclIiIiRSwY9PPVL7tPntom34FhD8PsUX6McYp1uU2R0sQXyOSzHyz63Q85+f8cj3rww29w8xSPSbNg+rAAdapRopOosrKyuPvuu+nUqRO33norc+bM4e6776ZmzZpa5SgiIiIiIimn5yIiyeeEHPar4PHKPUE+/c7j8Tfhlz8AD+rvDz06QtsjDMYt+QvDSoJIJEqXY2H0UxBvMfOG+0Pd6hDOV20wEREpfax4Gx599NH06dOH+++/n1AolMqYREREJA3Crp/HXo+//S9/wFc/xxKvRCT1gsEA3y+zuWZs4eSpf/tjLfQc7rEpz08gYBddgCnStm1bZs+eTeXKlencuTP//e9/tcpRRERERESKhJ6LiCSfEwoTzs/h+KYODw7weO8BeG88TB7scdLhYaKhHCVPFZFwOErFbJe2R8Tf56IOBtyIFtSKiEipFFcFqm2uvPJKqlSpwpo1a6hbt26qYhIREZEiZlkGy7J4d0FiM99ZH0Pz+jZQsvYwFimJXOPn3qc8QnH8uK3eAJNfhsFd/UDJXxFYsWJFxowZw9tvv83tt9/Oa6+9pipUIiIiIiJSJPRcRCT5/H6LsGvjehByPAwefitMKF9b9hU1H2FuvTjA1z/D+s27b3vkIdCtg0c0onvBIiJSOsVdgQpi22hcfPHFmiSIiIiUMsYY8hyIJJhnsXELuJ6SGERSLRDw8cc6mLco/j4vfwwYH5ZVen5GO3bsyKuvvkrFihVVhUpERERERIqEnouIJI/fb+PLyGL15gzGPmtz1RhDn9GGO2dY/LQyiD8ji0BA1e6LUigUpkalCM/cYWiw/67btTsCpg0D2wsRjXe/PxERkRImoQpUIiIiUjp5nkfQD8aQUPnlzCAYQGkMIqll2xbvLUjsp23DFvhpucehdWwcp/Ss4KxSpQrjx49PdxgiIiIiIiIikoBg0IfjZjD0QY+35oG7XQ7OvB/guffhqEYwoX+QyllG2/gVoXAoRN1qHq+NDjD3B4+n3oYVa8G2ockBcOnphgNqehDNx3FKfqVzERGRXYk7geqLL77g0UcfZfny5Rx88MH06dOHZs2aFWqzaNEi+vbty7vvvpv0QEVERCR1XNfDZzxaHRq7YRGvjq0gYEcJlZ7cDJFiyQNy8hNPVcwNxRIjRUREREREJHF6LiKSHLZtESFIn1HebqtrL/gRLrzd44W7/FQIuqVqQVhx54QcjAlzTGMfRx3ix7IMngee58a2V8zT34WIiJR+cW3h99lnn9G7d2/++OMP6tevz2effcZFF13E008/Xaid4zisXLkyJYGKiIhIatlemN6nxN++emU4+UhDOKw970VSzQDVKyeeCVW1PNrqTkREREREZC/ouYhI8lg+P0/MMbtNntpmxRoYOROiBFIfmBTieR6hUBg3nEsklEPUycEN5xHS6lkRESkj4qpANWHCBDp06MD999+PZVls3ryZW265hTvvvBPP8+jevXuq4xQREZEUC4fDnHyUn9ZN9lyFyhi4sSd4bgTXVXKGSKqFwxFOOzrAXTMgP84K9gfVgQNrQTi/ZJZW79WrFybO8lnGGGbMmJHiiEREREREpCzRcxGR5DAGjOXn6Xfiv4f45ly47RKLoM8iEnH33EFEREQkCeKqQPXTTz9x4YUXYlmx5hUqVOCBBx7g9NNP5+6772bOnDkpDVJERERSz3U9TDTEI0Pg2Ga7buez4a4rDKe29oiGQ0UXoEgZFom4BP0up7SOv0+3DgbcCCW1AFXTpk2ZN28eixcvxvO83X65rm6mioiIiIhIcum5iEhy+P02S/7wWLYq/j75DrwxF/z+uOpAiIiIiCRFXJ88MjMzycnJKXTMGMOoUaNYu3YtQ4YMoVq1ati2nZIgRUREpGg4ToRgAKYNCzJ/sWHGGx7zF0EoDFUrwpnHQa9TDJWyXCKhPG0NJlKEbBxu7h1kwU+xcva706YZXHSyRzRScrfYvPHGG6levTrjxo3j+uuvp2XLlukOSUREREREyhA9FxFJDmMM6zcn3m/tRt13FBERkaIVVwWqI488kkmTJrF27dpCx30+Hw8++CD7778/V111FZ988klKghQREZGi4zgRnLwcWh8S4v5+HvOmGL5+zPD+A4a+50SplJlHOJSr5CmRIuY4EcpnhPnvfwytD915G9uKJTo+MsRgeSGi0ZJdmemyyy6jXbt23HnnnekORUREREREyhg9FxFJDs+DchmJ98vKMBjzz/fGGPx+m0DAh99vFzonIiIikgxxJVANGjSI9evXc/LJJzNu3LhC58qXL89jjz1GlSpVmDBhQkqCDIVC/Oc//6FNmzYcccQRBfHszpdffkmvXr046qijOOGEE7j55pvZuHFjwfnVq1fTqFGjHb5efPHFlPw/iIiIlCSeB/n5YaKhXPJztuLkbSUvZysRJ59wOJru8ETKLCfkULlciOk3wWuj4aL2cFxzOPEwuOos+GiiYeRVHraXh+NE0h1uUtx4443UrVuXX375Jd2hiIiIiIhIGZLu5yIipUUkEqXxAYZK2fH3MQbaH+URiUTx+Sz8wSD+jCxWrM9g0YogKzdm4M/IIhAMYttxPeoUERER2aO4tvCrV68es2fPZtasWdSoUWOH8zVr1uSFF15g/PjxvP3220kP8o477uCLL75gwoQJBAIBbr/9dvr168cTTzyx0/a//vorl19+Oeeddx533HEHGzZs4D//+Q/XX389M2bMAGDx4sUEg0HeeecdzHZp6uXLl096/CIiIiWdik2JFB+OEwbCNKzp4+ZePjws8MC2XIwXJhwqXUmOderU4cEHH0x3GCJJZ4whEPDhRH2xpwOeh992iUbCJb56nIiIiEhpkO7nIiKlhet62F6Us0+wmP5GfH3aNIUalQHPImICzHwDnn3XY/maf9ocVBsu6uDnovY+Anao1CwkExERkfSJK4EKoFKlSlxyySW7PJ+dnc1NN93ETTfdlIy4CqxevZpZs2YxefJkWrZsCcC4ceM49dRT+eqrrzjiiCN26DNr1iyqV6/OzTffXJAcdfvtt9OjRw+WL19O3bp1+emnnzjwwAOpXr16UuMVERERESkKoVAE+OfmoG4TipQc/kAQY/v5eKHHSx/Dhi2QGTSceJjNuSf68fmiuOF8XFcZzCIiIiLplK7nIiKljY3D1Wdn8OZcWLX7DWbIDMCQ7hD0RVm/NUDvu2Hxsh3b/fIH3DXD4/XPYNqwIMEASqISERGRfRJXXcsbbriBdevWJfTCq1atYtCgQXsV1PYWLFgAwDHHHFNwrH79+tSoUYP58+fvtM+ZZ57JqFGjClWW2vbnTZs2AfDjjz/SsGHDfY5PRERERESSL51zEJFU8gUzWfirnw4DPK4YDa9/Bp99B+8tgDumeRx7tceTb9vYgXJYltnzC4qIiIhISmhOIpI8jhOlQmaYJ2411NlNXYPsTHj4BkOjui4Rz0f/8fDLit2/9pc/wfUPAHYwqTGLiIhI2RNXAlXjxo3p3Lkzd911FwsXLtxt24ULF3LzzTdzxhlncOihh+5zgKtXr6Zy5coEg4U/+FSvXp1Vq1bttE/Dhg05/PDDCx2bMmUK++23H40aNQLgp59+Yv369fTo0YNjjz2Wbt268dFHH+1zvCIiIiIisu8aN25Mly5d0jIHEQkEbPzBIJY/A9ufQTDoL7RAZ2/5A0EWLrG5+G6PP9buvM3WPBgx0+OR2WAHMvf5PUVERERk76TzuYhIaeSEHGpXdXhzjOGeq6B5Qwj4wGdD/VowpLvho4mG1o2jgMHzYMIAw9xHDNNvNnQ5NtZ+Zz78GpauhGAw7o13RERERHYQ1yeJyy67jLZt2zJmzBi6du1K9erVad68OXXq1CEzM5MtW7bw559/8tVXX7FhwwbatWvHk08+ySGHHLLH116xYgXt27ff5fnrr7+eQCCww/FgMEgoFIonfEaNGsUHH3zAxIkT8fv9RCIRli5dykEHHcSNN95IdnY2r732GldeeSWPPfYYbdq0iet1d8bniysnTRJg21ah/4okm64xSSVdX5JqusYk1dJ1jaVyDiKyK4GAH9cE+HMDPPc+rN8MwQCcdITNMU2DeNEwkXAIby921jPGYGw/gx/0CIX33P6B56BzG0OdKj5tQyEiIiKSBpqTiCSfE3Kw7TBnHefnrBO2X6ji4bkRbMvmt9UW0143zPoI1m2CCllwamu4+DRD3/Ng0ESP73/d8bUfex1uv8QPaP4kIiIieyfuVOyGDRvy0EMP8dNPPzF79mzmzp3LggUL2LJlC5UrV6Z27dp069aNTp06FVR5ikeNGjV4/fXXd3n+ww8/xHGcHY6HQiEyM3e/GjccDnPbbbcxa9Yshg8fTocOHQDw+XzMnTsX27bJyMgAoFmzZvz8889MnTp1rxOoLMtQuXLWXvWVPatQQauvJbV0jUkq6fqSVNM1JqmWjmssVXMQkZ3xB4Os3uTj5kfg0+8olCT1+JtQt7rHkG4+OrS0iTp5uG5iWVSBgI+PvvH4I85dYDwPHnsNbuqlBwAi6WLbFp7nEY3uRdakiIiUCpqTiCRfNOoRjTqAU5BAZVkGy5/JyCdjiVDGxJKnXBfyQjDjzdhXny7w0GDDVaM9Fi0r/Lrf/QqWbeHGsWBFREREZGcSrmV5yCGHJHUPb7/fT8OGDXd5/scff2Tjxo04jlOoEtWaNWuoUaPGLvtt3bqVvn378sUXXzBu3DhOO+20QuezsnZMdDr44IP55JNP9uL/IsZ1PTZvzt3r/rJztm1RoUImmzfnEY266Q5HSiFdY5JKur4k1XSNSart6RqrUCEz5dWpkj0HEfm3QNDPqo0+Lrg1dpN+Z5avgevHw/A+FueekIkbSmzu50R9vPRxYnG9MRduv8zGDbNXVa9EJDHGQDDoJ+L52bgFtuZnEPBDIMPDeGGikbCSqUREyijNSURSw/t7omP5Mxn7bCx5ancefTW25d+Yaw1nDfOIRP85F4nCvm+8LiIiImVZsd8M+KijjsJ1XRYsWFBQGerXX39l9erVtGrVaqd9HMfhqquuYtGiRUydOpWjjz660Pmff/6Zrl278tBDDxU6991333HQQQftU7yRiB5cpko06mp8JaV0jUkq6fqSVNM1Jqmma0xKM88E6D9+18lTBe08uGOax7HNDLUq2ThOdPcdtmOM4a/NicW1YUtsxbUxpuDBgoikhm1bWP5MvvkVpr0G738FISf2c9e8IfTs5KfLsX6CPodQPPtwioiIiEhc/H6bvzYbpm+XPOUBthWbD/3bI7Oh96lw4uHw3oJ/jteuBtEEKwWLiIiIbC+1S8WToEaNGnTu3JlbbrmFuXPnsnDhQgYOHEjr1q05/PDDgVjC1Nq1awu2+nv44YdZsGABw4cPp0GDBqxdu7bgy3EcGjZsSIMGDbjzzjv54osvWLJkCSNHjuTrr7/m6quvTuP/rYiIiIiIiBSlYNDHzyvgm1/iax+Jwow3IEpgz42343mQmVgXgv5YRRwlT4mklm1bWIFMRj8FF94Gb86F8HY7Z367BIY+BF1vgy2hAIFAsV+PKCIiIlJieMbP42/C9kWvDZAR3Hl714Un5sAFJxWuN9W9A/iNEt1FRERk7xX7BCqA4cOH06ZNG/r27cvll19OgwYNGD9+fMH5r776iuOPP56vvvoKgFdffRXP8xg4cCDHH398oa+vvvoKy7KYPHkyLVq0oH///pxzzjl88803PPbYYxxyyCHp+t8UERERERGRIhZ2fTz9TmJ9Xv4E/D4bk8D+EH47ygmHJbahRJtmsepvyp8SSS3jCzJ5Fkx/Y/ftvvsVLrsHsDOwLG0QIyIiIpIMxrL58OvCxzzPIyMA1i6eYr67AJrV/+f7OtXhhMMN4e2z4EVEREQSVCKWzJUrV4677rqLu+66a6fnjz76aH788ceC79966609vma1/2fvvuPkqsrHj3/uvVN2k5CQUAIYQQhI74QQ6QQpoqBSlN5UUDEoiKgUQRBUBGlSBFRAFEQpfhFpoihKC+DPAoSuhJIAIQnJ7sytvz+WBGLabrKzbT7v12tfZO89Z+aZw92ZOfc+9znLL8/ZZ5/dbTFKkiRJkvqfogh5bVrX+kyfBfWka0vrZWnCPjuUOe8GaKt17nkO2x1KQYKXAKTGKZVC4jTiyts697f8z+fgnokFH968TL0WNzg6acGCACqVElHUcVU5zwvq9dSKhZKkfikKoa2+4H3DBnfMv977ERdFHfOxIa2w7JCOfZd/FchjcpfwkyRJS6FfJFBJkiRJktQIBQWVUtcryZQiyLLOt8+ynHIl44ufCDnnl4tvv/WGMHY9qNdMn5IaKYzK/Pqezic2Alx7J4zfvAyYQKWeFYYBpXIFwhKPPwP/eD6gyGGd1QrGrlelyFPytE6WLfricRgGlMsRAOVyRJ4XXnCWJPWaNIfhQ2Dy1P/ZURSUSgHDl4FZ7R2JVq1VCAMYtQKUSvCHCwICYHA1pdbudzNJkrR0Op1AFccxf/rTn/jvf//LWmutxfbbbz9fmylTpnDjjTdyzDHHdGuQkiRJkpqPcxD1hEqUs/naEXc90vkLxxuOhiDo+sXmPK1x+EcG0VaHH9208HZbbwiXHA9kNauJSA0WZyEP/rtrf2cTJ3UkoIRhYNKJekwUhYTlVm76S8BVtxU8/wrAu8ff+1YoOHjXEofsGhEE7aRpPt9jlMsReVAmCEr8/TmYXYdhgyuss1qVMEshjxfYT2pmzkmkxguKlF3Hlvjn8wvYWRSUooBlh0CSdiRS1RP47Mbwu7/BJbfAp3eC/Xcu0VKtENdNopIkSUuuUwlUb775JocddhjPPPMM0LFMwbrrrsuFF17IqFGj5rZ77bXX+NGPfuREQZIkSdJScQ6inpJnCfvtVOb8X0Fnb1g+6MMQFEnXnysvCJI2vviJVj72oYCf3g53PAQzZkOlBOM26Fi2b6v1gaxGHHehxJWkJRIQEHfxzznPIfXPUz0oDAPCcivn3gBXLWS5yZdfh+/+vOCp/8BZn2slKtrmqURVqVaYHVe49JaCm/9cMG0m7yQBwkojCvbbKeLIj7ZSqcTEXf2jkAYo5yRSzyiyhP3Hl7n4NwULWiG5AGa3v1sxtFqG/cfD1y8r+O9r8P1fwC/ugau/WWaVEZhEJUmSlljYmUY/+MEPmD17Nr/61a+YOHEiZ511Fq+++ioHHHAAL774YoNDlCRJktRsnIOop6RpTqWUc+junWu/5vvgox8KSJMlu7icZQVJrY0PrFjnlENzHv5xwBPXBvzj6oBLjisYt25MUmszeUrqIUFQsPyyXeuz7BAoR1ghTj2mXClz90S46rbFt73lL/CLewLCUmXutkq1zBtvV/jENwuuug2mzZy3z2vT4MJfw/6nweykSqXS6UULpAHNOYnUM9I0p6WSccqhC1haPQhor8+73PK3j4RX34RHnnp32+SpcOhZUM/KlEqduvQpSZI0n059i3jggQc49thj2WijjRgyZAif+MQnuOGGGwjDkCOOOILXX3+90XFKkiRJaiLOQdSTirTGhH1h3x0X3W6NVeBnJwWE1Oep6rEk6vWULG6n3j6LLJ5N3D6btN5GvZ6YlCH1oEqUst9OXeuzx4cgSTP8U1VPySl3KnlqjmvuKAjCMkHQsdQkYZXDzy54aeqi+z3xIhzzwwKi6lLFKw0UzkmknpPFNT6xXc5Zn4MhrfPum5M8NaQVzvkijN8cjrt4/i9ik6fCDX8ICKJyD0QsSZIGok4lUM2cOZMVVlhhnm2rrroqV111FbNnz+azn/0ss2fPbkiAkiRJkpqPcxD1pCzLKZJ2vn0kXHkibLcxhO+ZLX9gJfjGQQE3fQeWHxIT17tvaaOi6Fjaz6QpqXfU6wmbrAlrjVp8W+h4bzjiIxDhEmfqGZVKxEtT4R/Pdb7Pf6fAY08XVCoR5XKJP/+94NnJnev74L/h6ZegWrUKleScROo5RVGQ1tvZa5ucv10acPoRAVtvGLDOqjB+Czh/Ajzxc/joOLjxjwVvty34cX55z5wk4p6NX5IkDQydSqBaY401uPvuu+fbPnr0aC688EKeffZZvvCFL9DWtpBvLJIkSZLUBc5B1NPSNCeptbHN+jGXHg+P/DjgjxfAXy+B3/8g4OBdEsq0U6/HvR2qpG5UFFBkCedPgGUGLb791w8MWHlEQRynjQ9OAsIw5IVXu97v6ZcCwjAko8K1d3Wt789+D0lu9Q7JOYnUs+YkUYV5G/vtkHD5CfDrM+Cy42Gt98PFv+lYcnaHTQPuPC/g2H2gFM37GC++Bm+3FYShy/hJkqSu69Q3iCOPPJJf/vKXHH300dx7773z7Bs7dizf/e53mThxIl/+8pcbEaMkSZKkJuMcRL2hKArq9YS0Pptq2MbIYTWWbW0nqc0iqddJ07y3Q5TUAEkcs/pKGb86PWDDNRbcZvlhcNZRAQftUpAl7T0boJpaURRES3ANuOOCckG5FPDUf7rW9+mXIPDCs+ScROoleZ5TBBEPPQE7TYDRn4I9ToDv/wIuvQU+cgIccBpssW7A+RMCyv9TNDFJsQKVJElaIp2aCe++++6ce+65vPLKKzzyyCPz7f/oRz/KJZdcQrnsnUmSJEmSlp5zEPW2LMtJkow0zXF1PWngS+o1PjAy5oZvw61nBxy4C+y+FXxiO7jgWPjzxQF7fSglrbeR574pqOfkecEH39/1C8EbrlF0LBELdPWQzXLwurPknETqLVGllXsfCzjqB/DCawtu8/gzsPfJMLi1o0LoHNUyDB0c+H1NkiQtkU4vZr/HHnuwxx57UCzkzPH222/Pvffey2OPPdZtwUmSJElqXs5BJEk9Ka7HQMx6q1Y45dAqtXoBRU6llJPEiRfi1CuSJGP5YbD1hnD/PzrXZ70PwAdXhbiWUgoKVhsJ02Z2/jlXG4nHu/QO5yRSzyqVQtrjiBN+VJBlBa3VgLbagtvOboejz4H7LoYf/xamvAW7bAkBOZmfY5IkaQl0qRZzkiRMmzZtvu333HMPcRxTqVTYaqutui04SZIkSc2tt+YgeZ5z4YUXsu2227LJJpvw2c9+lpdeemmh7d966y2OP/54xowZw5Zbbsnpp59Oe7tLPPVnURRSqVaotA6mZfAQWgcPoVQdTLVaJnA9CGlAi+OUIa0QFTWKtEa9FptMol4VEXP0XgGdXVXvc3tCkCcUBQRFwqfHd+35DtwFKlHS9UClAcrrIlLPCaIyv7i7oD2GooAwhMoiirxNfh3+9Dh8cvuO34/4CJSCuGeClSRJA06nE6j+9re/MX78eK699tp5tr/55pscc8wx7LjjjkycOLHbA5QkSZLUnHpzDnLJJZfwi1/8gjPOOIPrr7+ePM/5zGc+Qxwv+ETshAkT+M9//sPPfvYzLrjgAu677z5OO+20hsSmxitXqxAN4ub7y3z6NBh3VMGHPl9w9A/gvn9WKLcMplJ1qRZJUs+I44TN1so57fDFJ1Eduy/sMgaSuCMBKksT9vhQwIrDO/dcH3w/jFknoF43gUoCr4tIPS2KSvz2/nd/D4ChgyFaxOffr+6FnTYPOHZfWHvVgjhOGx6nJEkamDqVQDVp0iQ+//nPs9xyy813J8WwYcO4+OKLWW655TjyyCN5/vnnGxKoJEmSpObRm3OQOI75yU9+woQJE9hhhx1YZ511+OEPf8hrr73GXXfdNV/7xx9/nIcffpjvfe97rL/++owbN45vf/vb3HrrrUyZMqVbY1PjlastPPlSiR0mFHzzx/D/noVpb8MbM+Av/4CjzoG9vlHw5qwqlWqlt8OVJDWBooAsaWef7XOuOyVg+03mvZAcBLDV+nDF1+CoPQvypG3ucmNZVhCScMXXOi5AL8rI4XD5CUBWZyGrlUlNxesiUs/qKPQb8Np7Cr4VRUEQwPChC69ENeUtWG0lOGpPyJN2P8MkSdIS61QC1Y9//GPWWmstrr/++vkmCqVSiZ133pnrr7+eUaNGcfnllzckUEmSJEnNozfnIE899RSzZ89m3Lhxc7cNHTqU9dZbj0ceeWS+9hMnTmSFFVZg9OjRc7dtueWWBEHAo48+2q2xqbGq1TL/mVLi0DM7EqYW5umX4KBvF7QnFcrlqOcClCQ1rTwvSOM2Nh1d55LjCv78o4BrToKffRP+eAFcdSJsu2FCWm8ny+a9cpzU66z1vozfnBGw8xZQ+p+PrmoZPrY13PSdgJWWTYhjq09J4HURqacVBRAsIFGqKAgDGDYElhsGg1qgpQqt1Y5tKwyHQVXI4rb5PgMlSZK6otSZRo899hjHHXcc1Wp1oW0GDRrEYYcdxmWXXdZtwUmSJElqTr05B3nttdcAWHnllefZvuKKK87d915TpkyZr22lUmHZZZfl1VdfXapYSqVOr7reJ4VhAHScCC+6+Tbg6J3SG9Gi1nLooiyo8N3rCma1L77ti6/BFf9X8KVPViiV6t0WQ1/WiDHXojnmvcNx73mOeedlWQZkLD8kZIV1A4LgneSqNCcDoiigY8GjeRVZzAdG5lwwocyM2QF/eBRmzIblhgZ8eAy0VnLKYUySZP3++0df5XHe/3hdROp5SZqz+doBd//PvUtz5pNRCINbA3hnehkEsNlaBRQZeW7ylCRJWjqdSqCaNm0aK6200mLbrbbaarzxxhtLHZQkSZKk5tabc5D29o7smUpl3uXZqtUqM2bMX5aovb19vrZz2tfrS55YE4YBw4cvZq2dPipNoa0OWQ5x2nE3MMAyg7r/uYYObe22x3r+FfjrvyDs5HXN39wHE/YNWXZop6bWA0Z3jrk6xzHvHY57z3PMG28wHcsgHfnRjgTnIJiTbBW986NG8zjvP7wuIvW8cpBwyK5V7n5kwclQHXlU7+4LAjhsd4hIyHomREmSNIB16izviiuuyOTJkxkzZswi273yyisst9xy3RKYJEmSpObVm3OQlpYWAOI4nvtvgHq9Tmvr/Be8WlpaiON4vu31ep1Bg5Y8YyjPC2bObFvi/j2pUokIgpCCkDCKuPcxuPDXBf98rmP/oBbYfSs44iOwxipAVlvqu4OjKGTo0FZmzmwny/Klfg0tLWXueKhMmnY+rqlvwVMvwvqrdVTsGOi6e8y1eI5573Dce55j3vMc857nmHfe0KGtfaJSl9dFll6pFBJGZTJKRCHkOVBkBEXSFN+f1XX1esIW61TYcl14+MnFt//EdrD8MIhrHk+SJGnpdSqBauutt+b666/n4x//+HvuSppXnufccMMNbLzxxt0aoCRJkqTm05tzkDnL8U2dOpVVV1117vapU6ey9tprz9d+pZVW4p577plnWxzHTJ8+nRVXXHGpYknTvntxLQigXKlQBGWe+C/c9/eAWgzLDoFdt4SvHxjwk98V/OFRaKvBb/4EN90HX9kPPvPRFvK0rVuWWMiyvFvGKc0K3m7rejxvt7+7dFKz6K4xV+c55r3Dce95jnnPc8x7nmPef3hdZMkFQUBUaSFOI359D9z+QMH0WdBahe02jjhktxLLDsnJk5oJhZpHUUCQ17nsqy0c+d2Cx59ZeNtdxsC3j4AirfVcgJIkaUDr1G0chx12GE8//TRf/vKXF1iK9s033+SrX/0q//znPzn00EO7PUhJkiRJzaU35yDrrLMOQ4YM4aGHHpq7bebMmTzxxBMLvPt8zJgxvPbaa/znP/+Zu+3hhx8GYPPNN+/W2PqKIAgoVQbx4JNlPvUt2OsbcN6v4DvXwFcugi0+C9fcAaccFnD4R97tVxRw3g1w4x8DwlK1917AAgTAckMXfGFsUZYdAkWx9IlgkiRJ6lu8LrJkgiCgVG3l9gdDtv5CwXeu6UiCeeFVeOJFuOxW2O6YgvNvDAgrfaPamPqWej2ltVTj56fC946GDUe/uy8IYNwGcNlX4YJjIchrpKnVpyRJUvfoVAWqD3zgA3zve9/jxBNPZIcddmD99ddn1KhRZFnGK6+8whNPPEGpVOLMM89kk002aXDImiOKAqJSmbQoEQYBeVEQkkOe+IVRkiRJ/VpvzkEqlQoHHXQQP/jBDxgxYgTve9/7OOecc1hppZXYZZddyLKMadOmscwyy9DS0sLGG2/MZpttxle+8hVOO+002traOPXUU/n4xz/OyJEjuzW2vqJUaeH3DwV87VLI8o6LJO0xzJmGtNXg53fBxKfg12cGvD694La/vdv/wt8U7LNjiTAMuqUKVXdI04xdxxaccTUkaef6jFoR1hoVkNS8a16SJGmg8brIkonK1blzhYXdZ5Bm8OPfdnzv/tr+rWTZ7J4NUn1eHKdEUcaeHyrzsa3LzK5BWx2WaQ2olguiICGpJ31mPilJkgaGTiVQAeyyyy6su+66XHPNNdx///3ce++9RFHEKquswiGHHMKBBx7I+973vkbGqncEAUTlFoqgxK1/K/i/v9JR/rYSsO3GEQd8OGJQtaBI28kyvzxKkiSpf+rNOciECRNI05STTz6ZWq3GmDFjuOqqqyiXy0yePJnx48dz9tln88lPfpIgCLj44os5/fTTOfTQQ6lWq+y222584xvfaEhsva1SKfHqWyFfv7wjeWqO9gWsmvDUf+Frl8LpRwb8/sFibvs3Z8CdDxV8ZMsy9XrcM4EvRpJkDK4WjN884I6HFt8eYL8docgTK1BJkiQNUF4X6ZooCikocfpPi4UmT73XT2+HT4+HVZcvEcedvItBTSPLCrIsBmJao5BBgzuS8tJ6jkeLJElqhE4nUAG8//3v56STTmpULOqEIIBSZRD3/SPgG5d1rBv+XhMnwY9ugqM/HvD5jw+CuN01xCVJktRv9dYcJIoiTjjhBE444YT59o0aNYpJkybNs2255Zbjwgsv7KnwelVGmZ/8bt4qTUXxbvWp/3XHQ3DqYbDtxvCnx9/d/pd/wM6b963lOkpBzEmHtPDopILXpy+67Yaj4fCPBBRZ0iOxSZIkqXd4XaTzolKJm+8vmNmFglI/+R2ccmgZTInRInidS5Ik9YQuna3+xz/+we9//3ueeOKJRsWjxYjKLfz5HwHHnMd8yVNzxClc+Gs4/1cd7SVJkqT+yjlI3xIEAVEU8du/zrt9UTeX5zlc/wfYbWwwz/Z6AhAssE9vqddTll8m4frTYM1RC2+3zUZw9TcDStRIU0/kS5IkDWTOSTovyUudruY6xx8ehXI5akxAkiRJUhd0qgLVzJkzOeqoo/j73/9OURQEQcCmm27Kueeey8orr9zoGPWOMAwgLHHSFQWdSba//Lew9w4B71/O8reSJEnqX5yD9E1hGDCrff47yoOg42dhy3T8dwpsv8m825YfBmFYsJDCVb0mrtdZZUTB/323wiNPFfz8TnhpKkQhrL0aHL47rLEKhEWNet15liRJ0kDlnKTrgiBgRheqTwHMnN0xjwiCwKWxJUmS1Ks6lUB1/vnn88QTT/ClL32JDTbYgOeff57LLruMU089lSuuuKLRMeod5XKZ2x8qeHNG5/v89HY46WDL30qSJKl/cQ7Sd4VhwIJqTlXLUIsX3CcKme8mkE/tBKUg7XMJVABxPSYIEsauXWLTNcuEUUBRQFHklIOEes35lSRJ0kDnnKTriqJgmUFdqzI7pHXOzRgmT0mSJKl3dSqB6o9//CPHHXcchx56KADbbbcdI0eO5Ktf/SptbW0MGjSooUGqQ5yX+L+/da3PXY/AaUdEZAu5kCFJkiT1Rc5B+qY8zxnUAqNWhMlT390eAK0tC0+g2mg0vPL6u79vshasvjJ9OhGpKApqtQRIyJN3t9d7LSJJkiT1JOckXVcOM8ZvXub+f3Q+GWqHzSBJXBZbkiRJvS/sTKPXX3+d9ddff55tY8eOJcsyXn311YYEpvkFAfMtlbE4M2a9W/5WkiRJ6i+cg/RNRQF5lrLvDv+7vaAUwaCW+fsMaoF9doBb/tJxEWX4MvCDLwQEuXd5SJIkqe9yTtJ1WZrwye07qkp11pF7QClwbiBJkqTe16kEqjRNqVQq82wbNmwYAPW699/2lKKAQdWu9RnU0pF4taAlNiRJkqS+yjlIH5bHHLRLwPLD/md7UTCk9d0lOOY4bHeY/Dr883nYcDT86tsBqyyXEMcJkiRJUl/lnKTrsiynFGaceGDnbujebydYYxWo1/tuZVpJkiQ1j04lUC2K61L3nHKYseNmXaskTzt+aAAAjBxJREFUtd3GHeVv/d8kSZKkgcI5SO9K05xBlYSffANGDJ13X1EUtLbA8svCMoNg3x3hhP3h8acLbj0bbjgdRo2ok3jBSZIkSf2Yc5KFy5Mae29f8K3DA8qlBbcJAvjUeDjtcMiT9p4NUJIkSVqIhXx97TyXhus5WZqw9w5lzr0eZtc61+ew3aEcxmSNDU2SJEnqMc5Bel9cr7PWKvDb75a5/NaCW+9/z3LjRcGGo+HgXQI+ujVQZByya0E5TKm3e2e5JEmS+j/nJAuX5wXEbXxqx1Y+Mi7gF3fB7Q/CW2/D4FbYZiM44iOw8nJQpO2kad7bIUuSJElAFxKoTjvtNIYMGTL39zl3WJxyyikMHjx47vYgCLj66qu7MUTNkWU5pVLGcZ+OOONni7/D5SPjYP3VoV7zIoUkSZL6H+cgfVtcr7Pc4JQTD6hw4gERz75cUE9ghWVhpREQFDFpPem4gAJYc0qSJEn9jXOSJZPnBXm9jWUqEZ/7WJnPfzwiDAPyoiBNcyISYq9bSJIkqY/pVALVmDFjgPnL0i5ou6VrGytPauw/fhBxEvCDXxZkC7k546Mfgu99Hoq05vJ9kiRJ6necg/QPcZwB7URRwNrvC4GAoihIatbAlSSprwoCCMNg7r8lLZhzkqWXJBmQ8b+pUs4WJEmS1Bd1KoHq2muvbXQc6qQ55W8P3bWVj34o4Jo74PcPwVszobX6TvnbPWCtUR3JUx0TFEmSJKl/cQ7Sv2RZQZY595AkqS8rlyOKoEwUlWirQ+0taK0MohSkBEXieUTpfzgnkSRJkppLp5fwU98xp/ztcoMjjt2nzAn7lyiKjjvG4iSnFMTU2y1/K0mSJEmSJAnK1RZmtEVccwf8+k8Fr0/vqEK1wrCCfXeMOGjXiKGtGUm91tuhSpIkSZLUK0yg6sfmlL9tjzuSp+ZUCfZeMUmSJEmSJEkA5WorDz8VcswPYVb7vPumvAUX3wRX3wGXHl9is7VaTKKSJEmSJDWlsLcDUPdwiXVJkiRJkiRJ79XSUua5V0M+/4P5k6fe6+02+Nw5BS9OiWhpKfdcgJIkSZIk9REmUEmSJEmSJEnSAJQUZc7/FbTHi2/bVoMLfw1JbgKV1NeceuqpfP3rX+/tMCRJkqQBzQQqSZIkSZIkSRpgyuWImbND7vt75/v84VGYXQsolaKGxSWp8/I857zzzuOGG27o7VAkSZKkAc8EKkmSJEmSJEkaYKIo5OEnC9Ks832SFB59GkolTxtLve25557jgAMO4MYbb2SVVVbp7XAkSZKkAc+ZsCRJkiSp21SrJQYNqtDSUqG1teIFWEmSekkQdCzL11Xt9e6PRVLXPfjgg4wePZrbbruNUaNG9XY4kiT1mkoloqWlTEtLmUrFSqmSGqfU2wFIkiRJkvq/akuFnDLPvQr3/T2gPS5YZbmA3cZWKFcyImLiuAslMCRJ0lIpioKVl+t6v5VGdPSV1LsOPPDA3g5BkqReEwRQqVTIgjKvToOn/gtFAaNXgVVHQkhCEifkud9bJXUfE6gkSZIkSUssCKBUHcTDk0LOu6Hg788AzDl5VXDG1bDHuJBvHNRKa6VOHCe9GK0kSc0jjjPGrhew/LCCN2Z0rs/Ky8GmHwxI6iY9S400efJkxo8fv9D9DzzwACNGjOj257U67LuiKJznv1p6jmn3c0y7n2PaGN09rmEYQFTlgScCLr0FHnmyI3lqjg1Hw2c+WuHDW5Qp5bUBmUTlsdr9HNPuNxDH1AQqSZIkSdISK1VauXtiwPEXF6QLuNbaVoMb/wiPP1Nw/WlVBlcK4jjt+UAlSWoyeV4Q5in77RRxyc2d67PfjlBk6YC8CCX1JSNHjuT2229f6P5hw4Z1+3OGYcDw4YO7/XH7u6FDW3s7hAHHMe1+jmn3c0wbo7vGdVY7XHMHnP3zjsSpIOj4mePfL8BXLoLPfDTg+E8PYtigbnnaPsljtfs5pt1vII2pCVSSJEmSpCVSqURMnRlywo9YYPLUez07GU64pODiL1cBE6gkSeoRecznPz6IB/9d8NjTi2665brw2Y919JHUWOVymdGjR/foc+Z5wcyZbT36nH1ZFIUMHdrKzJntZFne2+EMCI5p93NMu59j2hjdOa6VSpm/PVHiO9fMW3VqQX78Wxj9voC9tk7JkoH1HdZjtfs5pt2vv4zp0KGtna6SZQKVJEmSJGmJZJT56e3Q2YJS9/0dXp8BI4dGxLFLA0mS1GhpmlOp1PjpN6uccgXc/uD8Sc+lCD62NXz7yICIGnHad098L0ypFBJEZQhLlMKAvChI05xSkFCvm7gtzZH2w7/vRsuy3HHpZo5p93NMu59j2hjdMq6lEpffuvjkqTmu+L+CPbeOyLK80336E4/V7ueYdr+BNKYmUEmSJEmSuiwIAkqlErf+pfNnp/IcfnE3HLt3GTCBSpKknhDHKeVywdlHVfnGwQG/uBuefRmiEEa/Dw7YGYa0FgR5jTjpX5/PQQBRpZV6EnHDH+D/7i94Y0ZBtQxj1ws5Yo8qq69cpUhrJP3stUmSJDWbcjli6nR48N+d7/PsZPjX87DhB0omzktaaiZQSZIkSZK6LAwD2mrw1ttd6/ffKZDlQWOCkiRJC9SRPNTGsJaIz+9VIstDSqUQiowiS0jq/S+5KAigVBnEXRMDvnF5QXt93v0vTYVf/wn2GAff+3wL5bJJVJIkSX1ZGAY881Lnq0/N8a8XAjZeo3PLc0nSophAJUmSJElaAgXBEuRBhZ7PkiSp13QkEGWUSiHDhpR466243y61EJVb+NP/Czju4o4qlwvzuwcgSeGCY1sI0jaKgbi2iwa8a6+9trdDkCSpz/LrnaTu4qlrSZIkSVKX5XlBawXev2LX+q2/ekAp6p8XaiVJUt8QhgFBWOLbP1108tQcdz0CDz8JlYr3E0uSJPVVeV6wxipd77fOagV5Z74UStJimEAlSZIkSeqyooA8T/jU+M73aanAp3eCIksaF5gkSRrwypUy9/294LVpne/zs99DRrlxQUmSJGmpJEnGysvBmHU632f1lWHTtQLiOG1cYJKahglUkiRJkqQlUmQJB+wcsPywzrXfZweolvN+u1SQJElLIwgCqtUyYXkQpepgospgokqrVZGWQJxG/P7BrvX5898hCEPCcAnWIJYkSVKPCEn4zMc63/7Q3QOKPHEZP0ndwgQqSZIkSdISSdOc1nLCT74BI4Yuuu2Hx8A3DoIgr/VMcJIk9SHlSoVyy2D+/M8KX74oYJ9TYP9vw1k/D3l5WpVyy2DK5ai3w+xX3m7vWvssh3rckcgmSZKkvimuJ2y7UcGx+yy+7afGw347FmRJ3PjAJDUFb2+SJEmSJC2xuF5nrVXgt2eXufTWgt/eD2+3vbt/3dXg4F3h49sCWY3E6lOSpCZTrrbw/KsRnz+34KWp8+7753Pwy3tg1y3hnC+0UqnUXH6kk4YO6lr7UgTVCmR1yxNIkiT1VUVRkCftHLXXIFZfBa74P/j3C/O2Gb0KHPaRgL13KCiSdvLc73dSTwoCqFbLJHmJ6bMgC1ooVzPyNCHL+ve5XxOoJEmSJElLJa7XWW5IxjcOLPP1AyOefqmgFsMKy8L7VwTyhDROPKElSWo6lWqZ/75R4oBvF8ycveA2RQF3PAQzZxdceWKVMMz8zFyMSpSyx7gKt97f+T47bgZ5nju2kiRJfVyWFeR5G7tuUWbXLcs8Mxn+9TwURcBa7y/YcA06zjXVY7/bST2sXKkQRBUemVTw6z/BtLehUgrYesMyn9y+TKmUkSe1fvu3aQKVJEmSJGmpdVTLSImigPXeHxEEkOcFSS2j6J/zZUmSllpOhW9dtfDkqff627/g1vvh41uXiesuQ7IocZyy7cZV3rd8wctvdK7PobtBOUjIGhuaJEmSukFRFO98J4754Col1hnVsQxznhfEtdRzTVIvKFdbeObliOMuKnjulY5tYQh5DvdMLDj3ejj64yFH7jGILG7vl9Wowt4OQJIkSZI0cGRZQRyn1OspSWLylCSpeVUqJaa8BQ890fk+190FRVBuXFADRFEUFFnCtz/TsTTf4nxsa9h8bajXk8YHJ0mSpG5Vr6e0tye0tyfU6yZPSb2hXKnwzMsRB5zO3OSp/zWrHX7wS7jw1xCWW3o2wG5iApUkSZIkSZIkdbcw4ua/0KULPP96Ad6cCaXOZAU1uTSpM269gkuOg2UGLbhNEMB+O8H3joY8qXmxTZIkSZK6KAggiMoc/yOYXVt8+0tvgedeCahW+9+CeP0vYkmSJEmSJEnq4/I86NTSff/r7dmw3ODuj2egKQpI4za22bCFv11a4rf3wy1/KXh9OlQrMG59OHR3GDkcirSdNO1/y0dIkiRJUm+rVss89iw8O7nzfX7yOzjjyAqQNiyuRjCBSpIkSZIkSZK6WRgUDKp2vV9r/1zpoFcUBYSk5ATsuU3Ix7YJqJY7lvhL05yImLiW9XaYkiRJktRv1dOI3/ypa33ueBDOPiokTwKKflQK2AQqSZIkSZIkSepmARkfGVfi0ls632eNVWClEQGJST+LVamUKcIKz70K190NU6ZBuVSw+doB++wQUIkgy/rPiXpJkiRJ6ptC3pzZtR7tMdRiKIWQ9aPprQlUkiRJkiRJktTN6vWU0atU2XA0/PO5zvXZf+cA8oR+dINuryhXq0yZUeK4i+Cxp+fdd8dDBT/8FRy6W8iX9mklSFy+T5IkSZKWVEFBSyXoUp8ggEoJsrhBQTVI2NsBSJIkSZIkSdJAFBQJJx/Ssazc4qz3Afj0eMjSpOFx9WeVSpk3ZpbY95T5k6fmaKvBpbfA6T+BoNRKEHTtZL8kSZIkqUMlythu4671GbMOQEGe96+7g0ygkiRJkiRJkqQGiOsxG66ecfkJMKR14e02XhOuPglK1MkyqyUtSh5UOOnH8Pr0xbe94V548N9QrboQgyRJkiQtiSxN+NiHAoYN7nyfQ3aDsOh/NweZQCVJkiRJkiRJDZLU29lynYy//Cjg5EMD1l0Nlh0Cyw+DHTaFn30Trj8tYJlqnTjufyeYe1KlEjF1Otz/z873ufoOSItKw2KSJEmSpIEsywoCMo7dt3OVfTddC8ZvHpAk/W9+6603kiRJkiRJktRASb1GOQo5cHyZg3YpEQQBAZCkOaUgoV5LKYr+tbRBbyiCEjf+EboyVH/5B9STgEoUWt1LkiRJkpZAntb49PhBzGqHH/5q4XOyzT4IV54YQFbrd8v3gQlUkiRJkiRJkjopDAPKlTJxGkEQQFFQiTKSJOmXJ0d7UpblZFkdqM+zPe2dcPqlLA94c0bX+uQ5TJ9VsNKwgCxrTFySJEmSNJDleQFxG5/5aCu7bhnw09vhdw/A7BpEIYxZFw7dDXbYtCN5Ko7750zXBCpJkiRJkiRJixQEEJVbCMISdzxScMdDMHM2DGkN2G1syK5jK4R5SpbUulQdSOqKMIDqEqzGVy1jhS9JkiRJWgp5XpDX2lh1+RInH1Lm9CMj0gyiMCDLCqIgIan375urTKCSJEmSJEmStFBBAKXKIP7494BvXVXwxv9UALrrEVju2oJTDo3YZcwg0nq7ySpqiCjI2H6TiGvu6Hyf1VaCEUMDkprL90mSJEnS0uqoLpUSFiHDlx3M9OntpEk2IKorh70dgCRJkiRJkqS+Kyq3cPejAV86n/mSp+Z4cwZ85SK4/cGAqNLSo/GpecRxyoc2CBi1Yuf7fHp8QJEnVkaTJEmSpG40Z441kG6gMoFKkiRJkiRJ0gJFUUiSl/jm5ZAvpoBPUcApV0A9iSiVPO2o7lcUBUWe8NVPd1RGW5wPrAT771xQZEnjg5MkSZIk9WueyZAkSZIkSZK0QFGpzG/ug9m1zrVvj+GGeyGIyo0NTE0rjWN2GVPwrcMDokWc3V59Zbj6ZGiJEtLU5fskSZIkSYtmApUkSZIkSZKkBcop8X9/7Vo5/v/7awFBqUERqdkVRUEWt7PfDjl3nQcH7gLLDHp3/3ofgLM+B//33YCRQxPq9bjXYpUkSZIk9R+eyZAkSZIkSZK0QFEE02Z2rc+0mVCKAlw0TY2S5wV5vY1Vhpf4xoFlTjk0ohZDKYIoLCBPyNKUemblKUmSJElS55hAJUmSJEmSJGmB8hxaKl3r01KBvOha1SppScRxCqTkSUAphCKBOPfYkyRJkiR1Xb9Ywq9er3P66aczbtw4Nt10U44//nimTZu2yD6XXnopa6+99nw/73Xdddcxfvx4NtpoIw444ACeeOKJRr4MSZIkSZIkqV/J84wPbdC1Ph/aANLUyj/qOUVRkGUFuclTkiRJkqQl1C8SqE477TTuv/9+LrroIq6++mqef/55JkyYsMg+kyZNYq+99uL++++f52eOm2++me9///sce+yx3HTTTYwaNYrDDz98sYlZkiRJkiRJUrOISDhsdwi7cBbxiD06+kmSJEmSJPUXfT6BasqUKdxyyy2cfPLJbLHFFmy00Uacd955PPLIIzz++OML7ff000+z3nrrscIKK8zzM8dll13GQQcdxJ577smaa67JWWedRWtrKzfeeGNPvCxJkiRJkiSpz4vjjBWHw6d26lz7T24P71t+ztJqkiRJkiRJ/UOfT6B69NFHAdhqq63mblt99dUZOXIkjzzyyAL7xHHMiy++yBprrLHA/W+++SYvvvgi48aNm7utVCqxxRZbLPQxJUmSJEmSpGZUpO2ccijsvcOi231sazjzM5Cn7T0SlyRJkiRJUncp9XYAizNlyhSGDx9OtVqdZ/uKK67Ia6+9tsA+zz77LFmWceedd/Kd73yHer3OmDFjOOGEE+bpt/LKK8/3mE899dRSxVsq9fmctH4nisJ5/it1N48xNZLHlxrNY0yN5jEmSZLSNKdEO2d+ppX9x8PPfg9/mAjtMbRUYMfN4PCPwIZrQJ7USNO8t0OWJEmSJEnqkl5PoJo8eTLjx49f6P5jjz2WSqUy3/ZqtUq9Xl9gn6effhqA1tZWLrjgAt58803OO+88DjnkEG655Rba2zvugvvfx13UY3ZGGAYMHz54iftr0YYObe3tEDTAeYypkTy+1GgeY2o0jzFJkppbmuYE2Ww2WK3Ed4+qUPpiSJZDFHbsK4cJ9VpCUfR2pJIkSZIkSV3X6wlUI0eO5Pbbb1/o/vvuu484jufbXq/XaW1d8EWcj3/842y33XaMGDFi7ra11lqL7bbbjnvvvZdVV10VYL7HXdRjdkaeF8yc2bbE/bVgURQydGgrM2e2k2Xewaju5zGmRvL4UqN5jKnRFneMDR3aanUqSZKaRFFAvZ4CKXkCQRCQFVAUBVlvBydJkiRJkrQUej2BqlwuM3r06IXunzRpEtOnTyeO43kqRk2dOpWRI0cutN97k6egY3m+ZZddltdee42xY8fOfYz3PvfiHrMzLFHeOFmWO75qKI8xNZLHlxrNY0yN5jEmSZLeq3gncUqSJEmSJGkg6PO3im+++ebkec6jjz46d9sLL7zAlClTGDNmzAL7/PCHP2TXXXed5yTO5MmTeeutt1hzzTVZbrnlWH311XnooYfm7k/TlIkTJy70MSVJkiRJkiRJkiRJkiQNPH0+gWrkyJHssccenHzyyTz00EP84x//4LjjjmPLLbdkk002ATqW4nv99dfnLsn34Q9/mJdffpnTTjuNF154gUceeYQvfelLbLbZZmy77bYAHHHEEfz0pz/l5ptv5tlnn+Wb3/wmtVqNffbZp7deqiRJkiRJkiRJkiRJkqQe1utL+HXGGWecwVlnncUxxxwDwHbbbcfJJ588d//jjz/OIYccwjXXXMPYsWPZYIMNuOKKK7jgggv45Cc/SaVSYfz48Zx44okEQQDAfvvtx9tvv83555/P9OnT2WCDDfjpT38639J/kiRJkiRJkqTGKJcjoigkCDqWhozjlDx3eUhJkiRJUs/qFwlUgwYN4swzz+TMM89c4P6xY8cyadKkebaNGzeOcePGLfJxjzzySI488shui1OSJEmSJEmStHgtLWWSvMzM9oCHnoDZNVhpORi7XpUwTyFPSNOst8OUJEmSJDWJfpFAJUmSJEmSJEkaGMrVFp5/rcQPf1Vw72Pw3jyp5YYV7L19xDF7l6hUasRx2nuBSpIkSZKaRtjbAUiSJEmSJEmSmkO52sLfnyuxzykFdz0yb/IUwJsz4Me/hQO/XVDLWqhUot4JVJIkSZLUVEygkiRJkiRJkiQ1XKkUMbsecfQPCmbXFt32n8/BiZcW5EFLzwQnSZIkSWpqJlBJkiRJkuYRhgGlUkipFBKGQW+HI0mSBoqwzC/uhpmzO9f8nkfhzZlQLluFSpIkSZLUWCZQSZIkSZIAqFRKRJVWwvJgprW18lZbK2FlMKVKq8vnSJKkpRIEEJVK/OqPne+T53DtnVAE5cYFJkmSJEkSUOrtACRJkiRJvSsIoFRp5ZVpIVfeBv/314JZ7R37hi9TsNc2IUfs0cLyQzPSuEZR9G68kiSp/wmCgDSDl1/vWr/nX4E0tyKmJM1RLkdEpYgsCwhDoMiI49R5miRJ0lIygUqSJEmSmlyp0srdj4ac8COI03n3vfU2/Oz3cOMf4eLjIsau00pSb++dQCVJUtMJzJ2SJACq1RJpUWFme8Ctfw14fXpBSwV22qzEOqtVCfKEJI5NpJIkSVpCJlBJkiRJUhOrtlR4/NmI4y8uSLOFt5tdgy/8AG48I2StVcrUaknPBSlJkvq9oigoRzBqRZg8tfP9Rr8PSmFBuvimkjRgVaoV3mqrcNpPCv7wKKTZu1lSF/8G1vsAnLB/mbHrlkjjNpOoJEmSlkDY2wFIkiRJknpPVpS54NeLTp6aoz2Gi2+CJC83PjBJkjSgFAXkWcJ+O3a+TxTCQbtAUJi4Lal5VSplps2qsM/JBXc+zALnbk+8CJ/9Ptw1MaBUae3xGCVJkgYCE6gkSZIkqUlVKhFT3oKHnuh8nz88Cm31gFIpalxgkiRpQCqyhAM+HLDskM61//AYGLFMQZJ0ItNbkgaoIqzwlYsKXn5j0e3SDL52CUybFVEuO1+TJEnqKhOoJEmSJKlJRVHIg/+mS8s7JCn84zmIoqBxgUmSpAEpTXMGVRIuPyFgyGIKpGyyFnzvaAiLes8EJ0l9ULVa4sXX4OEnO9c+TuHq3xcUgVWDJUmSusoEKkmSJElqWgG1uOuJULUYgsAEKkmS1HVJvc6Gq6fc9J2Aj4yDSmne/SsOhy9+Eq49OaAS1oljq09Jal5JXuLnd3Wtz81/hlK5hFM2SZKkriktvokkSZIkaSAqioJVR3ah/NQ73rc85HnX+0mSJAEk9RqrLl/i+0dXaDs8YOIkaK93JE9t/sEA8pQij4nTvLdDlaReVRQhL7/etT5vzOioHBwEAUVXyg1LkiQ1OROoJEmSJKlJxXHKhzaosvywgjdmdK7PGqvAOqtBUksbG5wkSRrQ6vUUSBlcDhm/SQR0JHcncWaitiTNVVBaguXTwwCs3ydJktQ1LuEnSZIkSU0qzwuKPGXfHTvf54APv1MVwuuakiSpG6RpTq2WUKsl1OupyVOS9B5RmLPR6K71WWc1CILC91NJkqQuMoFKkiRJkppZHvPFTwZsue7im+60ORywc0GWJo2PS5KaQBAEBF0vKiFJDREEUCpFlMsRpZKXDqQ+IU/Zf2eoLGQ9mTDs+Hmvg3YJIHfOJkmS1FUu4SdJkiRJTSxNcyphjau+3sKZVxfcej/U4nnbDG6BfXeCE/YHshpZlvdKrJI0EJTLEUVQplQuURQQAGlWUApi6vWUwhJ/knpYqRQSRGWCsMyUtwpqdRg2GIYNgbBISJLESjZSL0nTjMEtBfvuFHDdXR3bVlke9t4e9vhQwArLdmx7fTrc9teCv/0L9toGstQl1yVJkrrKBCpJkiRJanJxnFIut3PKoVVOPDDkxj/Cc68UBMC6Hwj4+LZQCjNI6ySpyVOStCSCIKBUbWH6rIhr7yz47f0FU96ClgpsvjYculuFD21YhaxGve5FT0k9o1ItE+cVrr8r4Jf3FLz42rv7Nl0LDtmtzK5blomyGkmS9V6gUjPLanzzoFbeeAvWXR0+PT7gnonw5Qvh6Zc6mqy9KhyyW8C1p0A5ymiPnbdJkiR1lQlUkiRJkqR3Loi1US2FHLJLmTTvWFOqFOZkaUrmCXhJWmJBAKVqK7feH3DKlQXpe3IQZrXDfX/v+Nli7YIff62F1kqNODaJSlJjVSplprdVOfjMgmcnz19h6vFnOn7Gbw4XHttCqVQjTU2iknpamuaUgxoXfqWV516B3b4Kz7z07v4whFlt8MSLcPmtcOWJIe8bUSWu13stZkmSpP7Ihcyld0RRSGtrmZbWCq2tFarVEkHQ21FJkiRJPStNc+J6nTypkSc14nrskn2StJSicgt3PRLwzR/DonIPJk6CI79bUIRVwtCTEpIaJwwDiKoccXbBs5MX3fYPj8KpP4GgVO2Z4CTNJwgC3pgBh58F02fBcsNgxNCOn+WGwaBWCCh48dWCA0+HabPLVCrWUJAkSeoKE6jU9MrliKjSShEN4rcPVLjk1jJX/K7CEy9VKVUHU6lWTKSSJEmSJElLJAwDgqjE966DYv4CL/N5/Bm44yEoV8qND05S0ypXyvzxsYIn/9O59rf8Gd56O6RcjhobmKQFyqhw3g0FU6YVUBSEQUEpKojCjt/f+yVjyltwwY0FGX6XkCRJ6grTz9XUKpUSSdHCD35ZcPOfC95um7OnY7Kx/upwzN5ltt+4RBa3k+edONMpSZIkSZL0jnK5xJ/+XvDqm53vc82dsNvYMhA3LC5JzS2jzDV3dqF9DlffUTBh7zLgMn5STyqVQuIs5PYH5r0+sajE7N/9Db55cEQpCq0oLEmS1ElWoFLTKpcj4qLKwWcWXHMH70meete/X4AvnAu//lNIVGnt+SAlST0uDIOOKgFWH5QkSVI3SPKIeyZ2rc/fn4F6EhBFnrqT1P2CAEphwD+e61q///cs5IXvS1JPK5UiHvx3QXu9831m1+ChJwqrxkmSJHWBsx01rTyocvpPOyb+i1IUcPpPC55/JaBatWibJA1EYRhQbalQbh1MuWUwUWUw1UFDKFVaPNEkSZKkpVIUQZcueM5RjwuT+iU1SEABJGnXeqUZvi9JvSAIYMbsrvebMcu/WUmSpK4wgUpNqVQKqSUhv/tb59pnOVz1O0iLSmMDkyT1uEq1TFgZzO8eKnPA6bD+wQXrHVyw9ecLzv91xJuzWyhXWwk84yRJkqQlEAQFyy7TtT6lCAa3BuT5ItbmkaQlVBQdCZorL9e1fiuN6OgrqWcVBYzo4ncJgBFDF73MnyRJkuZlApWaUlgq8es/QT3pfJ87HuwoUR1FXkCXpIGiUi0zbVaVvb5RcPzFHUulZHnHvjdmwBX/BzsdC797MKRUafWuPUkDXqkUUqlWCUqtUGqlVGmhUrESnyQtjXKY8oltu9Zn+00gCHITqCQ1TJqkfGK7rvXZf2eoRl0sWyVpqSVJxrgNAoa0dr7P0MEwdr2AJMkaF5gkSdIA43pkakppFvLiqws+CRkEsNX6sNYoqJRh5mz4y/+DV9+EaTMLVlgmBJx0SFJ/VyqFxHmFQ84seO6VhbdLUjjxMhjSGrD9RlWSeAnWX5GkPq5UCinCFmpJyA13w79eKMhzeP+KcOAuESsMg7CoE8deMJOkrorjlPVXr7LuavDkfzrX57DdA8pB7NkHSY2TJxz44Ygf3wrt8eKbrzkKNl8b6rUu3JEqqVtkWU4UZey5dcgv7ulcnz23hoCMbM6dgpIkSVosE6jUlAIg/J/6a6Wo4y6qfXYIqFbg4SeglsCGa8Bxn4IH/g0t1QLw7k9JGgiCqMwv7gp47pXFv6/nOXz/F7DDpiWCoG75c0kDSrkcUYQtfO86+NW9xXxVWq/6HWy3Mfzgiy0MrtSJYy+aSVJXFAUUWcJ3jy6z/+nQVlt0+312gC3WKUxSkNRQaZoxuCXnB8eEHHsBpIvI2By+DPzouADy2Pmw1EsiYr7yqRb+8g94aeqi2646Er68X0CEydiSJEld4RJ+akqlKGfj0e/+3lqFi74SsPtWAWddC2M/B58/F75yIRxwOmzzBfh/z3ZUH4kilzCRpP4uCCAIy1x/T+fP/L7wKjw6KaBaLTcwMknqWWEYQNTCly+Ca+9c8BLXeQ5/ehw+fVpBe1p1ST9JWgJJHLPW+zKuOxVGrbjgNuUSHLY7fPtIyJN2kxQkNVwWt7PjJgVXnghrrzr//iCAD20AN54B718+Ia53olSVpIaI44wh1YTrTwvYYPWFt9twDfjlaQGDKzFxbPqUJElSV1iBSk0pTRL2+FCFs39eMGM2nH1UQJbBXt9Y8J2gr74JP7oJ/vU8/OTrVcrl3LXDJakfi6KQN2YU/Oe1rvX7w6MFm64ZAVYDkDQwlMplbv4L3P3I4ts+OxnOurbg9MOrQFvDY5OkgSap11j7fRXuPq/CX/9ZcOMf4fXpUCnD2HXhgF1gmZaCPKm53I6kHlEUkNTbGLtOhVvOKvOvF+Cuh6GtDsOHwCe3h5EjICxi4gVl2kvqUXE9ZsSQghvPqPD4M3DNHfDcyx3JjqPfB4fsBpusCWR1/2YlSZKWgAlUakpZVhBFGYfuFvLIU7DOarDDlxZeRj8IYFAVHp1UcMqV8J3PetFIkvqzIAioLcGNs7UYcisBSBogggAIy1x7Z+f7/O4BOOmQkEopJE29uC9JXZXEMUGQsO0GJbZct0wQdCQwREFOUCQkdW/WknpTpRJRBCXSLCAMoBRmJElKPsAngnE9JghiNvpAifVXi8jzgCgsoEiJa74vSX1JXE8IgoTN1yyz4efLRFEAdFzzqEQJ9VpiFUtJkqQlZAKVmldW56i9Wtl6o4Dr7oK3F5IPFQSw7BAIwo6Tmr97AL5xUMDQlsgqVJLUTxVFwbAhzL1g1VkjhkIpLHDRAkkDQakU8dJUePI/ne/TXofbH4R9tyuRpr4bStKSKIqCWi0BEuZ8FU17MyBJVCol8qDK6zPhhnth6lsd1eG22TBi+02rRHlKltQHdCJVUUCtljLnHcmznlLf1fH32vFdIn9PoamaRackSZKWiglUalpZlhOG7Ww0ehCf+z6US5C854xlEEC1AoNbIAyZe4U9zeCX98BRe5bwVIIk9U9pmjO4CmPXgwf/3bk+QQB7bw8UXt6SNDCEYcDr07ve77VphdX4JEnSgFGuVnhrdoVvXF7wl39A/p4im9fdBSuNKJiwT4mPbxtB3Dagk6gkSZIkqZmZQKWmludQq8GM2bDsMh2/zzlJUoqAAAI67g59r6cnQ5qFPR6vJKn7REHCobuVO51A9aENYORwiF1WRdIAURTQWu16v9ZKQORXYUmSNABUKiWmzaqw76kFr7yx4DavTYNv/rhg2ttwxEdayWsLKWMvSZIkSerXPO0t8U6CVFEQBgXlUkc1KujY9r/JU5KkgSGJE7bfBD629eLbLjcMzvwshIXLVUkaOLIsY61RAcsM6lq/7TcpyLJ88Q0lSZL6uDyo8rVLF5489V7nXg/PvhxQrXpPsiRJkiQNRCZQqanlec6glo6KInMUnUia+uAoKEVeNJKk/izPC4q0xveOhsN2h8pCzoFvsDr86nRYadmUOE56NkhJaqAsKwjI2HObzvfZZC1YfWWo113OVJIk9W+VSokpb8Hf/tW59kUBP/kdpEWlsYFJUg+oVkuUKi0EpRaicgstLWWCoLejkiRJ6l3eLqOmVhSQpSl77xBxyc2d61OKYP+dgdyLRpLU36VpRol2Tti/hS9+MuCX98BjT0OawUojOt7v1/sAkMXEdZOnJA08ETFf+Hgrv3+wYNrMRbctRXDcfgEhVuOTJEn9X06JX97TcX6ws+54CL7z2ZAwDMhzq9ZL6n8q1QpFUOaZV+Cm+2DGbBjcArtsWWKLtauQJyRxvUvvjZIkSQOFCVRqekGRcPCuEdfcAbPaF99+j3EwpLUgibPGBydJarg0zSFtY1Ap5DN7lEl3iyCAgIJymBDXUk8aSRqw4jhjxJCEq08qcfhZ8MaMBberlOCcL8IW6+TUayZQSZKk/i/LA6ZM61qfWgwz2wqGVk2gktT/lKstPPNKxElXwD+fm3fftXcWrLEKnHxoia3Wi0jrbZ4PkyRJTccl/NT0kiRj2KCMS44PGNSy6LZbrA1nfCYgLOo9E5wkqcekaU5Sr1OkbRRJG3nSTr1u8pSkgS+u11lz5ZS7zgs44YCAVUe+u2/4MnD4R+Du8+HDm+ek9bZei1OSJKl7FZSW4Pbicilwniip3ylXqjz1UsT+p82fPDXH86/A574Pf3wsIKq09mh8kiRJfYEVqCQgqdfY4oMt3PjtiAtuhHsf61i+aY6Rw2G/neCovQKiokZs9SlJkiQNIHG9TrWUcPiuZY7co0wthjyHQS2QpikRCXHd78CSJGngqJRyxq4bcdN9ne+z+sodS10ltbxxgUlSNwvDAKIyX/phwezaotumGXz1R3D/JREtpbCjcrskSVKTMIFKekdSr7HmymXOO6bM2+0BE5+Ctjqssjxs/sGAIk8hi4mdMEiSJGkA6jgxXidI6pTCAIKAuL2gKApMnZIkSQNNmiTs8aEKZ/+8YPqszvXZf+eAIk+sQCWpXylXyvzp7wUvv9G59u0x/OKegiM/UobU1TgkSVLzcAk/6T1qtYQsbmNYS41dNo/5xNYxY9aqk8WzSeOad1tIkiRpwCsKyLKCLMspvDooSZIGqCwrCIqMz+4ZdKr9qBVhv50KiixpcGSS1L2SrMSv/ti1Prf+BaLIGgySJKm5+O1HWoAkyUgS77OXJEmSJEmSBqo8rXH47oN4cwb85HcLbzdqRbj6m1CNEuK6N1hK6l/CMGDKtK71eW0aQEAQYNU9SZLUNEygkiRJkiRJkiQ1nTwvCJJ2vvrpVsZvHvCz3xf88TFI37mvctSK8Kmd4MAPB7SWY+J63LsBS9ISyIuCcqlz1fbmqJQBk6ckSVKTMYFKkiRJkiRJktSUsiwnz2ezxVplNl6zTJKGzJhVUCnD8GUCijyhyKw8Jan/CsjZ7IMRf3+m8302+yAkqe97kiSpuYS9HYA0EFUqJcrVKmG5hajSQktLmaBrN3hIkiRJkiRJ6gFFAbVaQlZvo0wbKyxTY1hLO0ltNkm9TmoSgaR+LCLhsN0h7MIVwUN3DygHSeOCkiRJ6oOsQCV1o0q1TBFUeOl1+M19MP1taK3CrltGbLJWhSJPSeO6ZW8lSZIkSZKkPijLTJZS3/Dqq69yzjnn8NBDDxHHMRtttBFf//rXWWuttXo7NPUzcZyx/DD4xHbwmz8tvv2W68IWaxfUayZQSZKk5mICldRNytUq/32jzClXFDz85Lz7fvZ7WPN98I2DS4xbLyKN20yikiRJkiRJkiTNJ45jPve5z7Hsssty2WWX0dLSwkUXXcShhx7KbbfdxogRI3o7RPUzRVrj20e08PZsuOuRhbfbZC247KsBQV7zGoYkSWo6LuEndYNytcKLU8rsd8r8yVNzPPsyHHUO3PNYQFRp7dkAJUmSJEmSJEn9wsSJE3n66af5wQ9+wIYbbshaa63FOeecQ1tbG/fee29vh6d+KE0zgrzG+cfCpcfDVutDELy7f8M14LtHwXWnwqByjXo97b1gJUmSeokVqKSlFAQBQVjhmB8WzJi96LZpBl+7BP58ccjgckSaZj0TpCRJkiRJkiSpX1hrrbX48Y9/zMiRI+duC8OO++FnzpzZW2Gpn0uSjDBrY8dNymy3cZl6EvB2W8GgFhjcCkGekCUJ9czSU5IkqTlZgUpaStVqiUeeKnj+lc61r8Vw3d1AVG5oXJIkSZIkSZKk/meFFVZg++23n2fbtddeS61WY+utt+6lqDQQ5HlBvRaT1mdTCdpYfkg7rVE7Sfts4npMZvKUJElqYlagkpZSPStx/R+61ufmP8MXPlEirTcmJkmSJEmSJElS3zR58mTGjx+/0P0PPPAAI0aMmPv73Xffzbnnnsthhx3G2muvvcTPWyp5T/0cURTO899mFgTdc2w4pt3PMe1+jmljOK7dzzHtfo5p9xuIY2oClbSUgiDgtTe71ue1N6EoOvoWhXd0SJIkSZIkSVKzGDlyJLfffvtC9w8bNmzuv3/5y19yxhlnsOeee/K1r31tiZ8zDAOGDx+8xP0HqqFDW3s7hAHHMe1+jmn3c0wbw3Htfo5p93NMu99AGlMTqKSlVBRQ6uJfUqUMQUfvBkQkSZIkSZIkSeqryuUyo0ePXmy7c845hyuvvJLDDz+cE088kSAIlvg587xg5sy2Je4/0ERRyNChrcyc2U6W5b0dzoDgmHY/x7T7OaaN4bh2P8e0+zmm3a+/jOnQoa2drpJlApW0lKIgZ/MPRjz8ROf7bLwmpHmBxackSZIkSZIkSf9rTvLUiSeeyBFHHNEtj5mmfffCVm/Jstxx6WaOafdzTLufY9oYjmv3c0y7n2Pa/QbSmA6cxQilXhIUCQftGlCKOt/nkN0gKuLGBSVJkiRJkiRJ6pceeughrrzySg4++GA+9rGP8frrr8/9mT17dm+HJ0mSJA1IJlBJSylJMpYdnLP3Dp1rv+Fo2G7jgCRJGxqXJEmSJEmSJKn/ue222wC49tpr2Wabbeb5+clPftLL0UmSJEkDk0v4Sd0hq3HqYa28NRPuemThzdZdDa46Ecjq5Lnr90mSJEmSJEmS5nXGGWdwxhln9HYYkiRJUlMxgUrqBmmaUw5qnH9sC/c+CtfcCQ8/8e7+NUfBgTsH7LMjlKgTx0nvBStJkiRJkiRJkiRJkqS5TKCSukmSZIRZGztvWmanzcrMqsHMWdBahRFDgTwhSxPiLO/tUCVJkiRJkiRJkiRJkvQOE6ikbpTnBfV6DMQMLoUMGR5QFAVJLadwxT5JkiRJkiRJkiRJkqQ+xwQqqUHS1EpTkiRJkiRJkiRJkiRJfV3Y2wFIkiRJkiRJkiRJkiRJUm8xgUqSJEmSJEmSJEmSJElS0zKBSpIkSZIkSZIkSZIkSVLTMoFKkiRJkiRJkiRJkiRJUtMygUqSJEmSJEmSJEmSJElS0zKBSpIkSZIkSZIkSZIkSVLTMoFKkiRJkiRJkiRJkiRJUtMygUqSJEmS/ke9Xuf0009n3LhxbLrpphx//PFMmzZtkX0ee+wxDj74YDbffHO23XZbTjrpJKZPn94zAUuSJEmSJEkaUMIwoFyOKJcjosjUDqnR/CuTJEmSpP9x2mmncf/993PRRRdx9dVX8/zzzzNhwoSFtn/hhRc48sgjWXvttfnVr37FD3/4Q/7xj39w7LHH9mDUjRGGAaVSSKkUEgRBb4cjSZIkSZIkDWjlcsSsNsiCVl55q4WX32ohDQYRVQZRrZZ6OzxpwPKvS5IkSZLeY8qUKdxyyy1cdtllbLHFFgCcd9557Lbbbjz++ONsuumm8/W55ZZbWHHFFTnppJPmJhl961vf4sADD+Sll17i/e9/f4++hu5QqZTIKBOEETNmFQQBLDskIM9SgiIhSbLeDlGSJEmSJEkaMIIASpVWJr8ZcdXv4Na/FMxq79jXUinYdcuAz3ysyuiVK6RxO0VR9G7A0gBjApUkSZIkvcejjz4KwFZbbTV32+qrr87IkSN55JFHFphAteeee7LjjjvOU6Fpzr9nzJjRrxKogiCgVGnh5WkhV90G//fXd0/ULD+sYO8dIg7drcSyg1OSeq13g5UkSZIkSZIGiFKllb/+K2TCBQX1JCDP391Xi+HW++F3D8DpR4Z8YttW0nob5lBJ3ccEKkmSJEl6jylTpjB8+HCq1eo821dccUVee+21BfYZPXr0fNuuuOIKVlhhBdZee+2GxNkIQQClait3PBxw4qWQpPPuf2MGXH4r/OLugh+fUGLj0S0mUUmSJEmSJElLqaWlzDOvhHzp/I5kqTBccLs0g1OuLFh5RMCH1q9Qr8U9Gqc0kPX5BKp6vc53v/td7rjjDmq1GjvttBMnnXQSI0aMWGD7r3/969x8880L3PelL32JY445BoBddtmF//znP/Ps/8QnPsF3v/vd7n0BkiRJkvqUyZMnM378+IXuP/bYY6lUKvNtr1ar1Ov1Tj3H9773Pf70pz9x8cUXUy6XlzjWUmkhZ0oapFwp8+CTIV+7pCBdxAp9b7fBZ79fcMvZJVZboUwc9/xyflEUzvNfNZ5j3vMc897huPc8x7znOeY9zzGXJEnSoiR5mR/d3JE8tTh5Dhf+BrZavwyYQCV1lz6fQHXaaacxceJELrroIiqVCt/61reYMGECP//5zxfY/qSTTuL444+fZ9vZZ5/Nww8/zL777gtAW1sbL730Epdffjnrr7/+3HYtLS2NeyGSJEmS+oSRI0dy++23L3T/fffdRxzPf+KhXq/T2tq6yMdOkoRTTz2VW265hTPOOIOdd955ieMMw4Dhwwcvcf8lMXM2XPhryItgoXe5zdFWh0tuhrOPamH48J6Jb0GGDl30/xN1P8e85znmvcNx73mOec9zzHueYy5JkqT/VSqFzK4H3DOx833+/gy88CqsMbJEHKeL7yBpsfp0AtWUKVO45ZZbuOyyy9hiiy0AOO+889htt914/PHH2XTTTefrs8wyy7DMMsvM/f3ee+/l9ttv5+qrr2bkyJEAPPvss+R5zqabbsqwYcN65sVIkiRJ6hPK5fICl9ybY9KkSUyfPp04juepRDV16tS5c4oFmTVrFscccwwTJ07kvPPOY/fdd1+qOPO8YObMtqV6jK4olyP+M6XKxKeKTvf5/QNw8iEBRVojy/IGRje/KAoZOrSVmTPbe/y5m5Vj3vMc897huPc8x7znOeY9zzHvvKFDW63UJUmSmkoUhTzxDCRdzIN65KmAtVbxe5PUXfp0AtWjjz4KwFZbbTV32+qrr87IkSN55JFHFphA9V71ep3vfOc77L333owdO3bu9kmTJrH88subPCVJkiRpPptvvjl5nvPoo48ybtw4AF544QWmTJnCmDFjFtgnjmOOOuoonnzySa666qp55h9LI0177uJauVzir//sWp/2GJ78T8Hma/ZsrO+VZXmvPXezcsx7nmPeOxz3nueY9zzHvOc55pIkSVqQriZPAdQTCILuj0VqVn06gWrKlCkMHz6carU6z/YVV1yR1157bbH9b7zxRt544w2+/OUvz7N90qRJDBo0iAkTJvDYY48xfPhw9t57bw455BDCxa1TsRilkhme3W3O3UbedaRG8RhTI3l8qdE8xtRozXiMjRw5kj322IOTTz6Zs846i9bWVr71rW+x5ZZbsskmmwAdCVMzZsxg2LBhVCoVLr/8ch599FHOPfdc1lhjDV5//fW5jzenTV8XBFCbf+XCxVqSPpIkSZIkSZI6FEXB+1boer8PrFSQ552vJi9p0Xo1gWry5MmMHz9+ofuPPfbYBV5oqFar1Ov1RT52nudcffXV7LvvvqywwrzvNs888wwzZ85k11135Ytf/CKPPvoo55xzDjNmzODYY49dshcDhGHA8OGDl7i/Fm3o0NbeDkEDnMeYGsnjS43mMaZGa7Zj7IwzzuCss87imGOOAWC77bbj5JNPnrv/8ccf55BDDuGaa65h7Nix3HbbbRRFwXHHHTffY81p09cVRcH7V+z6CZeVR3T0lSRJkiRJktR1SZKx+sqw7mrw5H8612f5YbDtRgFxvASlqyQtUK8mUI0cOZLbb799ofvvu+8+4nj+25nr9TqtrYu+gPPYY4/x3//+l/3333++fVdccQX1ep1lllkGgLXXXptZs2Zx6aWX8qUvfWmJq1DlecHMmW1L1FcLF0UhQ4e2MnNmO1lmeWt1P48xNZLHlxrNY0yNtrhjbOjQ1gFZnWrQoEGceeaZnHnmmQvcP3bsWCZNmjT39zvvvLOnQmuYOE7ZcbMqwwYXzJjduT5rrwqrrwJJLWtscJIkSZIkSdIAVRRAnnDwbhW+eXnnblTcd0co8tQKVFI36tUEqnK5zOjRoxe6f9KkSUyfPp04juepRDV16lRGjhy5yMe+++67WW+99Rb4+JVKZb7KVh/84Adpa2tjxowZDB8+vIuv5F2uX984WZY7vmoojzE1kseXGs1jTI3mMTbwZVlBFGV8YvuQny38Ppd5HLRLAHmCBagkSZIkSZKkJZcmCR/fpsyD/4Lf/nXRbcdtAF/8JJDNX4xG0pLr07eKb7755uR5zqOPPjp32wsvvMCUKVMYM2bMIvs+8sgjjBs3br7tRVGw8847c/HFF8+z/Z///CcrrLDCUiVPSZIkSVJ/FhYxx30qYOM1F9921y1h7+0LstQTNZIkSZIkSdLSyPOCIq3x3aPhS3vDskPmbzO4BQ7aBa74WkBU1L3hVepmvVqBanFGjhzJHnvswcknn8xZZ51Fa2sr3/rWt9hyyy3ZZJNNAIjjmBkzZjBs2LC5VaWyLOPpp5/msMMOm+8xgyDgwx/+MFdddRVrrLEGG2ywAQ888ABXXnklJ510Ug++OkmSJEnqW5Iko1Kpcc3JVU69Em5/EJJ03jaDW+BT4+H4TwNZjSyz/JQkSZIkSZK0tNI0Iyra+fxeVT7/iZDbHwj45/MFRQGjVwnYa1sohRlBFhOnWW+HKw04fTqBCuCMM87grLPO4phjjgFgu+224+STT567//HHH+eQQw7hmmuuYezYsQBMnz6dJElYdtllF/iYxx9/PEOGDOG8887jtddeY9SoUZx00knst99+DX89kiRJktSXxXFKuVxw1ueqnHRIwA33wguvQhTCeh8I+MR2HSdqSOsk3uUmSZIkSZIkdZssywmCOsOHltjrQwm7bRkQAKUwJ0lSstjzcVKj9PkEqkGDBnHmmWdy5plnLnD/2LFjmTRp0jzblltuufm2vVepVOKLX/wiX/ziF7s1VkmSJEkaCJIkA9oYXI74zEdKJFkAQDnKyVJP1EiSJEmSJEmNFscJ2Ts3MKaLaStp6fX5BCpJkiRJUu9I0wzeUw489kyNJEmSJEmSJGkACns7AEmSJEmSJEmSJEmSJEnqLSZQSZIkSZIkSZIkSZIkSWpaJlBJkiRJkiRJkiRJkiRJalomUEmSJEmSJEmSJEmSJElqWiZQSZIkSZIkSZIkSZIkSWpaJlBJkiRJkiRJkiRJkiRJalomUEmSJEmSJEmSJEmSJElqWiZQSZIkSZIkSZIkSZIkSWpaJlBJkiRJkiRJkiRJkiRJalomUEmSJEmSJEmSJEmSJElqWiZQSZIkSZIkSZIkSZIkSWpaJlBJkiRJkiRJkiRJkiRJalomUEmSJEmSJEmSJEmSJElqWiZQSZIkSZIkSZIkSZIkSWpaJlBJkiRJkiRJkiRJkiRJalomUEmSJEmSJEmSJEmSJElqWiZQSZIkSZIkSZIkSZIkSWpaJlBJkiRJkiRJkiRJkiRJalomUEmSJEmSJEmSJEmSJElqWiZQSZIkSZIkSZIkSZIkSWpaJlBJkiRJkiRJkiRJkiRJalomUEmSJEmSJEmSJEmSJElqWiZQSZIkSZIkSZIkSZIkSWpaJlBJkiRJkiRJkiRJkiRJalomUEmSJEmSJEmSJEmSJElqWiZQSZIkSZIkSZIkSZIkSWpaJlBJkiRJkiRJkiRJkiRJalomUEmSJEmSJEmSJEmSJElqWiZQSZIkSZIkSZIkSZIkSWpaJlBJkiRJkiRJkiRJkiRJalomUEmSJEmSJEmSJEmSJElqWiZQSZIkSZIkSZIkSZIkSWpaJlBJkiRJkiRJkiRJkiRJalomUEmSJEmSJEmSJEmSJElqWiZQSZIkSZIkSZIkSZIkSWpaJlBJkiRJkiRJkiRJkiRJalomUEmSJEmSJEmSJEmSJElqWiZQSZIkSZIkSZIkSZIkSWpaJlBJkiRJkiRJkiRJkiRJalql3g5AkiRJktQ8oigkDAMAsiwnz4tejkiSJEmSJEmS1OxMoJIkSZIkNVy1WiItKqR5yOtvFUQhrDQioKWUExQ5eZ5TFDn1ekphTpUkSZIkSZIkqQeZQCVJkiRJapgwDIgqrTw9OeDK2+CuRwrWXhWO3itgcCvc93jI5NdDyiUYs07BxmtWIU9Jk9jqVJIkSZIkSZKkHmEClSRJkiSpIYIAonIrN/055FtXFWQ5fHgMnHZ4wCW3wNE/gDdmdLQbNhjK5YA1Vyk4+uNlPrJViSBpI8tMopIkSZIkSZIkNZYJVJIkSZKkhihXKvz13wGnXlWQ57DJWh3JU0efC/c++m67ooAZs2H4MvDcKwFf/VHB5Nfhcx9rJc/bXNJPkiRJkiRJktRQYW8HIEmSJEkamIqgzAW/hjzv+P3zHw+4+KZ5k6fmti2grQZzcqXO/xVMnBRSrZZ7LF5JkiRJkiRJUnMygUqSJEmS1O2q1RLPvwL/fK7j9zVWgQ1Hw7V3LrxPPWGealNX3VaQFpXGBipJkiRJkiRJanomUEmSJEmSul0UhTzw72Du77uNhTsfgrfeXnifooAsgyDo6PeXf8DMNiiVnLpKkiRJkiRJkhrHs9CSJEmSpIZI0nf/vdzQgBdeXXyf91agynN49U0IQ6eukiRJkiRJkqTGKfV2AJIkSZKkvikMA0qliDDsSGxK05wsyzvVN88LVhv5bjZUlkPUiTyojjbv9guDeX+XJEmSJEmSJKm7mUAlSZIkSZpHqRRCWCGISjzxYsG0mdDaAhuPDoiijIiYOM4W+RhxnLLDZlVGLFMw7W14+Y2CjdcMFtmnVIIwercKVUsFVh0ZkGUmUEmSJEmSJEmSGscEKkmSJEnSXJVKiZQWrryt4MY/Frzyxrv7hg4u+NjWIcd8soVlB6XE9fpCHyfPC8I8ZZ8dI378W/jd3+ALH4fVVoL/vLbgPoOqEPBuvandt4JKKSeLO1f1SpIkSZIkSZKkJdGJBRQkSZIkSc2gUilRy1o44NsFF9zIPMlTADNnw3V3wce/AZPfLFOpVhb9gHnMhH0CtlwP3pgB9z4GX/zkgpu2VKBageKd8lMtFfjcngGlIO6GVyZJkiRJkiRJ0sKZQCVJkiRJAqAIq3zlooJ/PrfodlPegsPPLsipEIYLX5YvTXOiosZPTgw44MNw1e8Kdt0SjnlPElUYwuBWWGYwc9fuq5bh/Amw2ooZ9XraDa9MkiRJkiRJkqSFcwk/SVLTKZVCgqhMknXkEUdBQSlMvUArSWpqlUqJl16HPz3eufaTp8LtDxZ8bFyZem3+KlHv/bwNgpyTDgkICLhnIhy7L4zbAK6+A/7+7Dt5U0VBtQy7bgmf2xPWWDknjdu790VKkiRJkiT1E2EYUC6XiLMSBRAAlSgljtO5FbwlSd3HBCpJUtOIopCg1EKchvz6Hnh0UkGawcrLwYEfLrHqyIIgj4njpLdDlSSpx6VFiZ/d3rU+190Ne3yoDLybQFUqhRC2UE9DbrgH/t+zBVkOqywPB+0CO4+BiIzdxwbssmXI69MLXp4K5RKssUpAtZxTCmITmyVJkiRJUlMKAihVqgRhmfv+X8HtD8Db7bBMK+wxrsK2G1fJs4QsqWMelSR1HxOoJElNoVQKCUqtXHAjXHNnQXt93v3X3lmw5bpw3peqLDckIK7PX0lDkqSBLeTpl7rW4+mXIAoC0qCjilS5HEHUwvd/Adf/oeB/C1Nd/fuCcRvAecdEDGuNSeKYFYZEjBwaUBSQ5zlpnJN134uSJEmSJEnqNzqSpwbx138FfOsnBa+8Me/+W++H9y1fcNoRJbbeMCKtt5lEJUndJOztACRJarQgCAjKrZx0BVz+W+ZLnprj4Sdh31MKps2qUK2aYyxJajIBdPV8W5G/2ycMA4ha+Ool8LPfM1/y1BwP/Av2PbXg7VqZarVEkmTU6x3l59M0X5pXIEmSJA0Y//3vf/n85z/PFltswRZbbMFxxx3HlClTejssSVKDReUW/vj3gKN/wHzJU3O8/AYc/QO47+8BUbmlZwOUpAHMBCpJ0oBXqZa573G4+c+Lb/vqm3DKVQUplcYHJklSX1IUrDqya11WXQmgeKf6VJk7H4bbH1h8v8lT4bSfQlr4eStJkiT9rziOOeyww8jznF/84hdce+21TJ06laOPPprCMiOSNGBFUUiSl/jaJZAt5h6zLIcTLoG0KBFFXvKXpO7gu6kkacDLijJX39H59vc9DjNmhR3LEEmS1CTKYcLBu3atz6d2CiiyFIA8KHNNFz5v75kIbfWAUsnPW0mSJOm9Xn31VTbccEPOPvtsPvjBD7Luuuty2GGH8cQTT/DWW2/1dniSpAaJSmV+/SeYXetc+1ntcNN9Hf0kSUvPBCpJ0oBWKoXMaoeHnuh8nyyHX/+pIIhcxk+S1Dzq9ZR1V4NN1+pc+xHLwN47QJYmlMsRb86Ex5/p/PMlKdz8l4CSCcuSJEnSPFZbbTUuuOACRowYAcArr7zCL3/5S9Zff32GDx/ey9FJkholD0rcen/XKg3een9BjtcyJKk7+G4qSRrQgiDgrbehq9XN35gBWR40JihJkvqqLOZHx1X51LcKXpq68GZDWuHyE6ASJsRJThRFvDG960/3+vTCz1tJkiRpEY444gj++te/MmzYMK6++mqCYMm/P5dK3lM/x5zlrlz2qvs4pt3PMe1+fX1MS1HAtBldu5jxxgwolQLIeu819fVx7Y8c0+7nmHa/gTimJlBJkga0ooBqpev9qhUIKci6PyRJkvqsOE4YPjjgpu+U+d51cPuD0PaesvFRCNtvCid8OmC1kSlxvQ50fN62VLv+fC1lCM2fkiRJUpOZPHky48ePX+j+Bx54YG71qRNOOIFjjz2WH/3oRxx22GHccsstrLzyyl1+zjAMGD588BLHPFANHdra2yEMOI5p93NMu19fHdO326ClGhB2IRehtdpxXqYvvMf31XHtzxzT7ueYdr+BNKYmUEmSBrQsy1lpRMAqyxe88kbn+22/SUAU5iSNC02SpD4prscMqeScdniZkw6JuPfRgqnTA4YOhh02gWFDcspBTK327qdkluWsNjJg+WEFb8zo/HPtsClQmK4sSZKk5jJy5Ehuv/32he4fNmzY3H+vu+66AJx//vnsuOOO/OY3v+GYY47p8nPmecHMmW1dD3aAiqKQoUNbmTmznSzLezucAcEx7X6Oaffr82MaVdli7ZDnXu58lzFrd5yXeeuteuPiWow+P679kGPa/RzT7tdfxnTo0NZOV8kygUqSNKAVRUGepey7Y8QFN3auz+orwxZrF9Rrpk9JkppTHKdASqUU8rFxEUEQUBQFaZqT1LP5KjTmeUGYp+y9Q8Tlt3buOdZZDdZfHeJa2t3hS5IkSX1auVxm9OjRC93/6quv8v/+3/9jt912m7tt0KBBjBo1iqlTF7HW9mKkad+9sNVbsix3XLqZY9r9HNPu11fHtBImHLFHlRvu7XyfI/aAsEiI+8Dr6avj2p85pt3PMe1+A2lMB85ihJIkLUyecOhuAaNWXHzTIICv7g9FnlJ0balxSZIGnDTNaW9PaGuLaW9PSJKFV4sKioQj94CVRiz+caMQvvppIE/8vJUkSZL+x1NPPcWxxx7L888/P3fbzJkzeeGFFxaZeCVJ6t/iOOX9K8KeW3eu/V7bwPtWmHMjnCRpaZlAJUka8NI0o7Ucc81J8P5FJFGVIjjzswE7blqQxr1X7laSpP4oSTKWaUm45uSAVZZfeLtyCb73efjQ+gVJHPdcgJIkSVI/sfXWW7POOutw4okn8q9//Yt///vfTJgwgeHDh7P33nv3dniSpEbKapx9FOy65aKb7TYWzvoc5EmtZ+KSpCbgEn6SpKYQ12NWHg6/O6fCLX+G6+4umPTfjn1DB3fcqXH4R2ClETlpvd1qGJIkLYG4HvP+5eH355T59X0Bv7yn4NnJHfuGLwN7bQuH7QYrLpuTxjU/byVJkqQFqFQqXHHFFXzve9/jM5/5DHEcs8022/Dzn/+cIUOG9HZ4kqQGSpKMcrnG+RNaePhJ+Nnv4c9/hyzvqOi9/aZw2O4wZh0o0hpJuvBq4ZKkrjGBSpLUNOJ6TBSl7Lt9mX13LJFmAWkGrdWOKlURMXHNyYYkSUtjzuftATuVOWDnjs/bLIfWCiRpSkRCXPfzVpIkSVqUFVdckXPPPbe3w5Ak9YIkyQjSNrZap8QWa5cJgpBaDC0VyIuccpBQr6UU3pkmSd3KBCpJUlPJspwsqwN1wjCgHATE7QVFUeClXEmSusf/ft6WgoC6n7eSJEmSJEmdUhQFtVoCJIRhQCUIyOKCPPfciiQ1iglUkqSmlecF4B0akiQ1kp+3kiRJkiRJS85zK5LUM8LeDkCSJEmSJEmSJEmSJEmSeosJVJIkSZIkSZIkSZIkSZKaVr9LoDr11FP5+te/vth2kydP5qijjmKzzTZjm2224fzzzyfL5l0R9rrrrmP8+PFstNFGHHDAATzxxBONCluSJEmSJEmSJEmSJElSH9RvEqjyPOe8887jhhtuWGzbJEk48sgjAbj++us57bTT+OUvf8mPfvSjuW1uvvlmvv/973Psscdy0003MWrUKA4//HCmTZvWsNcgSZIkSZIkSZIkSZIkqW/pFwlUzz33HAcccAA33ngjq6yyymLb33nnnbzyyit8//vf54Mf/CA777wzxx13HFdffTVxHANw2WWXcdBBB7Hnnnuy5pprctZZZ9Ha2sqNN97Y6JcjSZIkSZIkSZIkSZIkqY/oFwlUDz74IKNHj+a2225j1KhRi20/ceJE1l9/fYYNGzZ321ZbbcWsWbN48sknefPNN3nxxRcZN27c3P2lUoktttiCRx55pCGvQZIkSZIkSZIkSZIkSVLfU+rtADrjwAMP7FL71157jZVWWmmebSuuuCIAr776KqVSx8teeeWV52vz1FNPLUWkkiRJkiRJkiRJkiRJkvqTXk+gmjx5MuPHj1/o/gceeIARI0Z06TFrtRpDhw6dZ1u1WgWgXq/T3t4OQKVSma9NvV7v0nP9r1KpXxT16leiKJznv1J38xhTI3l8qdE8xtRoHmOSJEmSJEmSJGmg6/UEqpEjR3L77bcvdP97l+HrrJaWFuI4nmfbnMSoQYMG0dLSArDANq2trV1+vjnCMGD48MFL3F+LNnTokv+/kTrDY0yN5PGlRvMYU6N5jEmSJEmSJEmSpIGq1xOoyuUyo0eP7tbHXGmllXj66afn2TZ16lSgI2FrztJ9U6dOnee5p06dysiRI5f4efO8YObMtiXurwWLopChQ1uZObOdLMt7OxwNQB5jaiSPLzWax5gabXHH2NChrVankiRJkiRJkiRJ/VqvJ1A1wpgxY7jllluYNWsWQ4YMAeDBBx9k8ODBrLPOOlQqFVZffXUeeughxo0bB0CapkycOJEDDjhgqZ47Tb1w2ShZlju+aiiPMTWSx5cazWNMjeYxJkmSJEmSJEmSBqoBcat4HMe8/vrrc5fk23nnnVlhhRX48pe/zFNPPcU999zDeeedxxFHHEGlUgHgiCOO4Kc//Sk333wzzz77LN/85jep1Wrss88+vflSJEmSJEmSJEmSJEmSJPWgAZFA9fjjj7PNNtvw+OOPA1CtVrnyyivJ85z99tuP008/nQMOOIAvfOELc/vst99+TJgwgfPPP5+9996bl19+mZ/+9KeMGDGit16GJEmSJEmSJEmSJEmSpB7W75bwu/baa+fbNnbsWCZNmjTPttVWW42f/OQni3ysI488kiOPPLJb45MkSZIkSZIkSZIkSZLUfwyIClSSJEmSJEmSJEmSJEmStCRMoJIkSZIkSZIkSZIkSZLUtEygkiRJkiRJkiRJkiRJktS0TKCSJEmSJEmSJEmSJEmS1LRMoJIkSZIkSZIkSZIkSZLUtEygkiRJkiRJkiRJkiRJktS0TKCSJEmSJEmSJEmSJEmS1LRMoJIkSZIkSZIkSZIkSZLUtIKiKIreDmKgKIqCPHc4GyGKQrIs7+0wNIB5jKmRPL7UaB5jarRFHWNhGBAEQQ9H1BycXyye7389zzHveY5573Dce55j3vMc857nmHeOc4zGcH4xP/8mu59j2v0c0+7nmDaG49r9HNPu55h2v/4wpl2ZX5hAJUmSJEmSJEmSJEmSJKlpuYSfJEmSJEmSJEmSJEmSpKZlApUkSZIkSZIkSZIkSZKkpmUClSRJkiRJkiRJkiRJkqSmZQKVJEmSJEmSJEmSJEmSpKZlApUkSZIkSZIkSZIkSZKkpmUClSRJkiRJkiRJkiRJkqSmZQKVJEmSJEmSJEmSJEmSpKZlApUkSZIkSZIkSZIkSZKkpmUClSRJkiRJkiRJkiRJkqSmZQKVJEmSJEmSJEmSJEmSpKZlApUkSZIkSZIkSZIkSZKkpmUClSRJkiRJkiRJkiRJkqSmZQKV+px6vc7pp5/OuHHj2HTTTTn++OOZNm3aIvtceumlrL322vP9SAB5nnPhhRey7bbbsskmm/DZz36Wl156aaHt33rrLY4//njGjBnDlltuyemnn057e3sPRqz+pKvH129/+9sFvl9Nnjy5B6NWf3X55Zdz8MEHL7KN72FaGp05xnwfU29ZknnCe82ZM6jzlmTMH3vsMQ4++GA233xztt12W0466SSmT5/eMwH3Q85VekdXx/2ZZ57hc5/7HGPHjmXcuHFMmDCBV155pQcj7v+6OubvNee7h981uqarY54kCeeee+7c9gcddBBPPvlkD0bc/3V1zN98802OP/54ttpqK8aOHctXvvIVpkyZ0oMRSwJ49dVXOe6449h6660ZM2YMRx55JM8880xvhzVgnHrqqXz961/v7TD6paX5/qTF68w5MC3e9OnTOfXUU9luu+3YbLPN2H///Zk4cWJvh9Wvvfnmm5xwwglstdVWbLrppnzuc5/jueee6+2wBowXXniBTTfdlJtuuqm3Q+nXpkyZssBrBANhXE2gUp9z2mmncf/993PRRRdx9dVX8/zzzzNhwoRF9pk0aRJ77bUX999//zw/EsAll1zCL37xC8444wyuv/568jznM5/5DHEcL7D9hAkT+M9//sPPfvYzLrjgAu677z5OO+20ng1a/UZXj69Jkyax5ZZbzvd+tfLKK/dw5OpvrrvuOs4///zFtvM9TEvq/7d35/FYpf//wF8ktChqStOuhTaKokSbKdM2lfnMTLsUk0qrhCaVFqpBCkVUlLRr2vd1mqYNTfsyoVWUpCJRnN8ffvf5dncjt4bb8no+Hh6fcd3nvs/7XJ3Pcd73ua7rXdhzjNcxUpSi5AkS165dQ0BAQDFHWP7I2+fx8fGwtbWFnp4etm/fDl9fX1y7dg3Tpk0rwajLFuYqiiFPv7969Qpjx46Furo6wsPDERISgpSUFNjZ2SEzM1MB0ZdN8p7rEk+fPsXChQtLKMryRd4+d3d3x65du+Dp6YnIyEjUqlULv/76K96+fVvCkZdd8vb59OnTkZCQgNDQUISGhiIhIQEODg4lHDVRxZaVlYXx48fjxYsXCAoKwubNm1GtWjWMGTNGrskaJCsnJwfLly/Htm3bFB1KmVXU+yf6ssJ+B0Zf5ujoiCtXrmD58uWIjIxE69atYWtri7i4OEWHVmY5ODjg4cOHCA4Oxs6dO6Gurg4bGxtOnvoPfPjwAU5OTnj37p2iQynz7ty5AzU1NZw9e1bqGUH//v0VHdrXE4hKkcTERKFVq1bC6dOnxba4uDhBV1dXiImJyfd9/fr1E0JDQ0sgQiprMjMzBUNDQyEiIkJse/36tWBgYCDs27dPZvuYmBhBV1dXuH//vth29uxZQU9PT0hMTCyRmKnskPf8EgRBsLOzExYtWlRSIVI5kJiYKNjb2wsdOnQQ+vbtK4waNSrfbXkNo6KQ5xwTBF7HSDGKmicIgiCkp6cLlpaWgrW1taCrq1vcoZYbRenz5cuXC5aWlkJOTo7YdvnyZUFXV1d49OhRscdc1jBXUQx5+3379u2CoaGhkJGRIbYlJCQIurq6wt9//10iMZd1RcmbBEEQsrOzheHDh4vX78ePH5dEuOWCvH3+6NEjQU9PTzh16pTU9r169eJ5Xkjy9vnr168FXV1d4cSJE2Lb8ePHBV1dXeHVq1clETIRCYJw7tw5QVdXV+pe6v3790L79u2FHTt2KDCysu3+/fvC0KFDhS5dugg9e/YUXFxcFB1SmVPU+ycqmLzfgVHBHjx4IOjq6gpRUVFiW05OjtC7d29hxYoVCoys7EpNTRUcHR2Fu3fvim23b98WdHV1hatXryowsvLBx8dHzC8jIyMVHU6ZFhwcLPzwww+KDqNYcAUqKlWio6MBAF26dBHbdHR0oK2tjcuXL+f5nqysLDx48ADNmjUrkRipbLlz5w7S09NhamoqttWoUQNt2rTJ85yKiopCnTp10Lx5c7HNxMQESkpK4vlJJCHv+QXkrtzy6flF9CU3b95E5cqVsXfvXrRv377AbXkNo6KQ5xwDeB0jxShKniDh4eEBXV1dDB48uFhjLG+K0ueDBg3CsmXLoKSkJLZJ/vv169fFGG3ZxFxFMeTtd1NTU6xevRrq6upim7Jy7tdpb968Kf6Ay4Gi5E0AEBQUhA8fPsDe3r4kwixX5O3zc+fOQUNDA927d5fa/uTJk1KfQfmTt8/V1dVRrVo17N69G2lpaUhLS8OePXugo6ODGjVqlGToRBVay5YtERwcDG1tbbGNf+e/3oULF9C8eXPs378fDRs2VHQ4ZVJR75+oYPJ+B0YF09LSQnBwMPT19cU2JSUlKCkp8RpaRDVr1oSPjw90dXUBACkpKQgLC0O9evXQokULBUdXtl2+fBnbtm3D0qVLFR1KuVCenxGoKDoAok8lJSVBS0sLampqUu1169ZFYmJinu+5f/8+srOzceTIEXh4eCAzMxPGxsaYNWsW6tatWxJhUykmOW8+LyuU3zmVlJQks62qqio0NTXx7Nmz4guUyiR5z6/Xr18jKSkJUVFR2Lx5M169egUDAwPMmjULOjo6JRIzlT0WFhawsLAo1La8hlFRyHOO8TpGilKUPAEAjh49ijNnzmDfvn04depUcYdZrhSlz/P64iQkJAR16tSBnp5escRZljFXUQx5+71hw4YyD/6Cg4Ohrq4OY2Pj4gu0HJG3z4Hc0qvr16/Hzp07kZSUVOwxljfy9nl8fDwaNWqEo0ePIjg4GElJSWjTpg1cXV3L7Zfi/zV5+1xVVRVLly7FvHnz0KlTJygpKaFu3brYtGmTOHiDiIpfnTp10KNHD6m28PBwvH//HmZmZgqKquwbOXKkokMo84py/0RfJs93YPRlNWrUkLmGHjlyBA8fPsRvv/2moKjKj7lz52L79u1QVVVFYGAgqlatquiQyqw3b97A2dkZbm5uMtdVKpp79+5BS0sLI0eORHx8PJo0aYKJEydKTcopq5iNUYl68uQJ9PT08v3JyMiAqqqqzPvU1NSQmZmZ52feu3cPAFClShWsXLkSHh4eiIuLg7W1Nd6/f1+sx0Oln6Qm8OfnVX7nVFHOQaq45D2//v33XwCAIAhYsmQJVqxYgczMTIwYMQLJycnFHzCVe7yGUXHjdYyKS3HkCUlJSZg3bx48PT2hpaVV3IdQ5hRHn39u2bJlOH36NNzd3VG5cuX/+hDKPOYqiiFvv38uPDwcmzZtgpOTE2rVqlUsMZY38vb5u3fv4OTkBCcnJzRt2rQkQix35O3ztLQ0PHz4EKtXr4ajoyMCAwOhoqKCESNG4OXLlyUSc1knb58LgoDbt2/D0NAQERER2LBhA+rXr49JkyYhLS2tRGImqgi+dM+bkpIitf2xY8fg4+MDGxsbTgDIh7x9SkXztfesRIoQExOD2bNnw9LSEj179lR0OGXemDFjEBkZiYEDB8LBwQE3b95UdEhllru7OwwNDfHDDz8oOpRy4ePHj4iLi8Pr168xZcoUBAcHo0OHDhg/fjzOnz+v6PC+GlegohKlra2NgwcP5vv6mTNnkJWVJdOemZmJKlWq5PmeIUOGoHv37lJfXLZs2RLdu3fHyZMn0b9//68PnMosSZmFrKwsqZIL+Z1T6urq+Z6DHN1Nn5P3/OrUqRPOnz8PLS0tsZxNQEAAevbsiV27dmH8+PElEziVW7yGUXHjdYyKy3+dJwiCAFdXV/Tr169czHwqDsWRm0l8+PAB8+bNw+7du7Fo0SL07t37q+Mtj5irKIa8/S4hCAJWrlyJwMBATJw4EaNHjy72WMsLeft88eLF0NHRwbBhw0osxvJG3j5XUVFBWloafH19xRWnfH190aNHD/zxxx+ws7MrmcDLMHn7/NChQ9i0aRNOnTqF6tWrA8gtW9mrVy/s3LkTNjY2JRI3UXn3pXvemjVriv+9ZcsWLFq0CIMGDYKzs3NJhFcmydOnVHRFvWclUpTjx4/DyckJRkZG8Pb2VnQ45YKkZJ+HhweuXr2KTZs2YcmSJQqOquzZvXs3oqKisG/fPkWHUm6oqKjg4sWLqFSpkvg3ql27dvj333+xbt26Ml8GngOoqERVrly5wKW/7969i9TUVGRlZUmNrH/+/LlUHfLPfT7rs27dutDU1ORSpiQuxfj8+XM0btxYbH/+/Hmes4jq1auH48ePS7VlZWUhNTWVJSFJhrznFyB7vapSpQoaNmzIshT0n+A1jEoCr2NUHP7rPCEhIQF///03YmJisHv3bgC5s6MAwNDQEAsWLMCgQYP+24MoY4orN0tLS8PkyZMRFRWF5cuXo1+/fv9p3OUJcxXFKMo9/IcPHzB79mzs378fs2fP5sAGOcnb55GRkVBVVYWhoSEAIDs7GwAwcOBATJgwARMmTCiBqMu2olxfVFRUpP4uqKuro1GjRnjy5EnxB1wOyNvnUVFR0NHREQdPAbmDDnR0dPDw4cPiD5iogvjSPa+El5cX1q5di7Fjx8LFxUWcMESyCtun9HWKcs9KpCibNm2Ch4cH+vbti2XLluW5cjIVTkpKCs6fP4/vv/8eKiq5wziUlZXRokULPH/+XMHRlU2RkZF4+fKlzKpo8+fPx8GDB7F27VrFBFbGVatWTaatZcuW+OuvvxQQzX+LJfyoVOnYsSNycnIQHR0ttsXHxyMpKQnGxsZ5vsfX1xfff/89BEEQ2548eYJXr16Jo3Op4mrVqhWqV6+Oixcvim1v3rzBrVu38jynjI2NkZiYKPVl1aVLlwDknp9En5L3/Nq2bRs6d+6Md+/eiW1paWl48OABr1f0n+A1jIobr2OkKPLmCdra2jh69Cj27t2L3bt3Y/fu3Zg6dSqA3JlnFhYWJRZ7WVWU3CwrKwv29va4du0a1q1bx8FTX8BcRTHk7XcAcHZ2xuHDh8WSPiQfefv86NGj2L9/v3j9Xrx4MQAgODiYq1IVUlGuLx8/fsT169fFtvfv3+Px48do0qRJicRc1snb5/Xq1cPDhw+lyjC9e/cOT548YelKohImGTzl4uICV1dXDp6iUqEo96xEirB582YsWrQII0eOxPLlyzl46islJyfD0dFRqgzahw8fcOvWLQ5eLSJvb28cPHhQzC8lEy2nTp0KDw8PxQZXRv37778wMjKS+hsFADdu3CgXzwg4gIpKFW1tbQwYMABubm64ePEirl27BkdHR5iYmKBDhw4Acr+Uf/HihVi6oE+fPnj69Cnc3d0RHx+Py5cvY8qUKTAyMkK3bt0UeDRUGqiqqmLUqFHw9vbGiRMncOfOHcyYMQP16tWDpaUlsrOz8eLFC7x//x4A0L59exgZGWHGjBm4du0aLly4gHnz5mHIkCEFzrSnikne86t79+7IycmBs7Mz/v33X1y/fh1TpkxBrVq18OOPPyr4aKgs4jWMihuvY1RayJsnqKiooEmTJlI/tWvXBgA0adJEarUHyltRcrM1a9YgOjoaixYtQrNmzfDixQvxJ6/ScxUdcxXFkLffd+3ahYMHD2LGjBkwMTGROq8l21DB5O3zz6/fkvO7fv360NTUVOCRlB3y9nmnTp3QtWtXuLi4ICoqCvfv34ezszMqVaqEwYMHK/hoygZ5+3zIkCEAgOnTp+POnTu4c+cOHB0doaamxvtqohJ08eJFrF27FqNHj8YPP/wg9Xc+PT1d0eFRBfalvytEpUF8fDw8PT3Rp08f2NvbIzk5WbyGvn37VtHhlUm6urro3r07Fi9ejMuXL+PevXtwdXXFmzdvOJmniLS1tWVyTACoXbs2v0spoubNm6NZs2ZYuHAhoqKiEBsbiyVLluCff/7BxIkTFR3eV+MAKip1Fi1aBFNTU0yePBm2trZo1qwZ/Pz8xNevXLkCc3NzXLlyBUBuTc2QkBDcvXsXP/74IyZPnozWrVsjKCiIs0UIQO4o4p9++glubm4YPnw4KlWqhHXr1qFy5cp49uwZzM3NxbrtSkpKCAgIQMOGDTFmzBhMnz4d3bt3h7u7u2IPgkotec6vb7/9FmFhYXj37h2GDx8OGxsbaGhoYOPGjVBTU1PwkVBZxGsYFTdex6g0kTdPoK8nb5/v378fgiDA0dER5ubmUj/8d8kbcxXFkKff9+/fDwD4/fffZc5ryTb0ZfL0Of035O1zf39/mJiYYPLkyfjpp5+QlpaGjRs3ypRvpvzJ0+d169bF5s2bIQgCxowZg7Fjx6Jy5crYvHkzNDQ0FHwkRBWH5O98eHi4zN/59evXKzg6qugK+rtCVBocOXIEHz58wLFjx2SuoVzZp+iWL18OU1NTzJgxAz///DNSU1MRERGB+vXrKzo0IgC5ZSWDgoJgYGCA6dOnw8rKClevXkVoaCh0dXUVHd5XUxI+rXtGRERERERERERERERERERERERUgXAFKiIiIiIiIiIiIiIiIiIiIiIiqrA4gIqIiIiIiIiIiIiIiIiIiIiIiCosDqAiIiIiIiIiIiIiIiIiIiIiIqIKiwOoiIiIiIiIiIiIiIiIiIiIiIiowuIAKiIiIiIiIiIiIiIiIiIiIiIiqrA4gIqIiIiIiIiIiIiIiIiIiIiIiCosDqAiIiIiIiIiIiIiIiIiIiIiIqIKiwOoiIiIiIiIiIiIiIiIiIiIiIiowuIAKiIq10aPHg09PT2pn3bt2qFnz55YsGABXr9+LfOe+Ph4uLu7o3fv3jAwMEDPnj3h6OiIO3fu5LuftLQ0WFhYYNeuXYWObf369XBychJ/v3//Puzt7WFsbIzOnTvDxcUFL168kHpPSkoK3Nzc0K1bN3Tq1Ak2Nja4devWF/eVnp6OBQsWwMzMDIaGhvj1118RFxeX7/YnT56Enp6eTHtSUhLGjh0LQ0NDjBw5Eg8ePJB6/fbt2zA1NUVaWtoXYypJo0ePxujRo4v9PV9DT08P/v7+Jba/T128eBF6enq4ePGiQvb/JTt37sT48eMVHQYRERFRmcovnj59imnTpsHU1BSdO3fGpEmT8OjRo3zfn18O8DlXV1eZPvj05+nTp9i1a1eB2/zxxx/icU6dOhUdO3aElZUVrl27JrWv58+fw8TEBI8fPy50P5QEV1dXWFhYFPt7voaFhQVcXV1LbH+fevLkCfT09OQ6f0vS+fPnMXjwYHz48EHRoRARERGVqRyjMM8wkpKSMHPmTJiYmMDIyAi2tra4fv16ofcJAOHh4XneO2dlZSEoKAh9+/ZFhw4d8P333yMgIABZWVlSx8kco3gwx8gfcwyi8kNF0QEQERW3Nm3aYP78+eLvHz58wM2bN7F8+XLcvn0bW7ZsgZKSEgDg6NGjcHZ2RsuWLTFx4kQ0bNgQiYmJ2LBhA3755RcEBgbCzMxM6vNfv36NSZMm4enTp4WOKTY2FmvWrMHevXsB5CYV1tbWaNy4Mby8vJCRkQFfX1+MHTsWf/zxBypXrgxBEDBlyhTExsbCyckJdevWxdq1azFq1Cjs2bMHjRo1ynd/M2fOxNWrVzFr1ixUr14dAQEBsLa2xoEDB1CzZk2pbS9evIiZM2fm+TkeHh549+4dAgICEB4eDhcXF2zbtk183dvbG/b29qhevXqh+6K0+vScKe/atm2Lbdu2oUWLFooOJU//+9//EBERgZ07d+Knn35SdDhERERUwZWF/OL9+/cYN24cPn78iLlz50JNTQ1+fn4YPXo09u3bhxo1aki9v6Ac4HOTJk3CsGHDZGKeNm0aTExMUL9+ffTs2VMqT5Bwc3NDWloaevToAQBYtWoV7t69i+XLl+PYsWOYNm0ajhw5AlVVVQBAQEAABg0aVGCuU1ZMmjQJ1tbWig6jRNStWxfbtm1D48aNFR1KnkxNTdGgQQOsXr0a06ZNU3Q4RERERGUixyjMM4y3b99i+PDhyMjIwLRp09C0aVMcOXIEo0aNQnh4OAwMDL643wMHDmDp0qXQ1taWeW3x4sXYu3cvJk2aBH19fVy/fh2rVq1CQkICPD09ATDHKK+YYxBRSeEAKiIq96pXr44OHTpItRkbGyM9PR1+fn64evUqOnTogEePHsHFxQXdunXDihUrUKlSJXF7S0tLDB8+HC4uLjh58qR4s33ixAl4eHggPT1drpi8vLwwcOBAMQnYsWMH3r59i8DAQGhpaQEAatWqBWtra1y4cAHdunXDgwcPEBUVhcWLF4uDSIyMjNClSxfs2bMHkydPznNfV65cwalTpxAcHCw+qOjUqRO+++47bN68GRMnTgSQOzMjJCQEISEh0NDQwLt372Q+6/z581i8eDHMzMygpaUFKysrpKeno1q1avj7778RFxeHwMBAufqitCqtg4mKQ17/HylNlJSUYG9vj4ULF2LgwIFQV1dXdEhERERUgZWF/CIqKgoPHjxAWFgYTE1NAQA6Ojro168fTpw4ASsrKwCFywE+17hxY5kvradMmYKaNWvC29sbSkpKqFWrFmrVqiW1zcaNGxEbG4utW7eKr50/fx5Dhw5Fjx490KFDB+zYsQMPHz5Ey5YtERsbi8OHD+Pw4cNy9UVpVVq/6C8OqqqqpTq/AICJEydixIgRGD58OOrWravocIiIiKiCKws5RmGeYURGRuLp06fYvHkzOnbsCAAwMzNDamoqPD09sXXr1nz39/LlS6xcuRLbtm2DpqamzOuvXr3C9u3b4eTkBDs7OwAQcx0fHx84OTmhVq1azDHKKeYYRFRSWMKPiCqsdu3aAQASEhIA5C4Lm5WVBTc3N6nEAwCqVKkCFxcX/O9//xOXzH3z5g0mT54MY2NjrF27ttD7vXfvHk6fPo2BAweKbSNGjMDmzZvFxAMAKleuDADIzMyU+t9PV3eqWrUq1NTUkJqamu/+/vrrL1StWhXm5uZiW61atWBsbIwzZ86IbTt37sT27dsxb948jBo1Ks/PUlJSEgevSOLLycmBIAjw8vLC1KlTxcSsMO7duwd7e3sYGRnByMgIDg4OUkvnTp48Gfr6+lLlBv39/dG6dWtcunQJQO6ysb6+vvD09BSXDnZ2di6wT1JSUrBgwQL06tUL7dq1g4mJCRwcHPDkyRNxm89L+Onp6SEiIgJz5syBiYkJDA0NMW3aNCQnJ0t99vHjx/Hjjz9CX18fZmZmWLx4scyDqEuXLmHo0KFo3749vv/+e/z9998F9lNMTAz09PRw6tQpqfbbt29DT08Px44dA5C7jK2zszPMzc3Rtm1bmJqawtnZGa9evRLfY2FhAU9PT4wZMwYGBgaYM2dOniX8jh8/jhEjRsDQ0BDt2rVD3759ERERIb4uec/58+cxbtw4tG/fHmZmZvDy8kJ2dra4XVZWFlasWIHvvvsOBgYGGDhwoFiyRZ4+69WrFzIzMxEZGVlgXxEREREpSmnKLyS5Q7Vq1cQ2yUOIT++TC5MDfMmZM2dw9OhRzJ49W2ZlK4nk5GSsWLECw4cPR/v27cV2JSUlqKmpAfi//EJyL+nj4wNra2uZgVgFSUhIgKOjI0xMTNC+fXuMGTNGquT5kiVLoKenhwsXLohtknKDu3fvBpCbB7i6uiIoKAhdu3ZFx44dvzhb//379/Dx8YGlpSXatWsHIyMjjB07Frdv3xa3+by8hoWFBfz8/LBs2TJ07doVBgYGsLW1lSmTHhUVhVGjRqF9+/YwMTGBi4sLUlJSpLa5c+eOWGq9V69e4ioB+UlMTETr1q2xadMmqfaUlBS0bdsWYWFh4u+FyZucnJwwdepUdOjQAWPHjs2zvMbly5dha2sLY2NjtGvXDhYWFvD390dOTg6A/yvJcejQIUydOhWGhoYwMTGBm5ubVG4gCALCwsLQr18/GBgYoE+fPli3bh0EQZCrz/T19VG/fn2EhoYW2FdEREREilSacozCPMOIjY1FzZo1xcFTEp07d8aVK1fyLEcoERQUhL/++gv+/v7o1auXzOtpaWkYNmyYTMm6Zs2aAYD4XIE5BnMM5hhE9DU4gIqIKqz4+HgAEJdqPXv2LNq0aZPn0rBA7myGGTNmoE6dOgAAdXV1HDhwAMuWLZNKGr5k3759qFOnjtRo+Vq1akFfXx9AbrLxzz//YOHChWjcuLE48KlVq1bo0qULVq9ejXv37iE1NRVLly7F+/fv0b9//3z3Fxsbi4YNG8okVI0bNxb7AMi9uT558qRMOY5PdejQAXv37sWbN2+wa9cu6OrqQkNDA/v27cPHjx8xePDgQvdDfHw8hg0bhpcvX2LZsmXw8PDA48ePMXz4cLx8+RIA4O7ujqpVq4rLF9+4cQNBQUEYN24cTExMxM/avHkzYmJisGTJEsycORNnzpyBvb291A2uhCAIsLe3x7lz5+Dk5IR169Zh8uTJOH/+/BfL9vn6+iInJwfLly+Hs7MzTp06JS4NDOT+2zo4OKBZs2ZYtWoVJk+eLC4pLInl5s2bGDduHDQ0NODn5wdra2s4OjoWuF8jIyM0btwYBw4ckGrfv38/NDU10aNHD2RkZMDa2hqxsbGYP38+1q1bJ5Zp9PX1lXpfREQE9PX1sXr16jxL4p0+fRoODg5o27YtVq9eDX9/fzRq1AgLFy7E1atXpbZ1cnJCx44dERQUhIEDB2Lt2rXYsWOH1OuhoaH4+eefsWbNGpibm8PV1RX79+8vdJ8BgJqaGnr16oV9+/YV2FdEREREilKa8gtzc3M0b94cXl5eePz4MV68eIFFixahatWq6N27t7hdYXKAggiCgGXLlsHExAR9+/bNdzs/Pz8oKytj+vTpUu0dOnTA4cOHkZKSgsjISNSuXRs6OjqIjo7G1atXMXbs2ELHkpKSgmHDhuHmzZuYO3cufHx8kJOTg5EjRyI2NhYAMGPGDDRt2hTz589HVlYWEhIS4OHhgX79+mHIkCHiZ504cQK7du2Cm5sbFixYgNu3b2P06NHIyMjIc9/Ozs6IjIzE+PHjsX79esyePRv//vsvZs6cmWdOIrFx40bExcVhyZIlWLx4MW7cuAEXFxfx9cuXL8PGxgbq6upYsWIFfvvtN1y6dAnW1tZ4//49gNxSKqNGjcLbt2/h5eWFadOmwdvbG0lJSfnut169ejAxMZHJLw4fPgxBEDBgwAC58qZDhw6hWrVqCAwMFFcD+NSdO3dgY2MDTU1N+Pr6IjAwEJ06dUJAQAAOHTokte38+fPF0he2trbYuXOn1CrHv//+O37//XdYWFggKCgIP/30E7y9vREcHFzoPpPo27evmJcQERERlUalKccozDMMLS0tpKenywyUevToEQBIDZL53LBhw3DkyBFYWlrm+XqjRo3g7u4uDpiSOHHiBCpXroymTZsCYI7BHIM5BhF9HZbwI6JyTxAEfPz4Ufz99evXuHTpEgIDA8XVdYD/GyFfWKqqqjI364Vx4cIF6OvrizXLPzdo0CA8ePAA6urqCAgIkCpX5u7uDjs7O/zwww8AcmdTLFmyBEZGRvnu7+3bt1KrVklUq1ZNatnewiz3OmfOHEyZMgXGxsZo2rQpfH19xRWG5s6di8ePH8Pd3R0vXrzATz/9BBsbm3w/KyAgAFWqVEFYWJgYn6mpKXr37o21a9fCxcUF33zzDebPn48ZM2Zgx44d2LBhA3R1dWVqSCsrKyM0NBQaGhoAcpM5BwcHnD17Ft27d5fa9vnz5+JsnE6dOgHInQHz6NEjbNu2rcDj19XVxZIlS8Tfr127Ji73KwgCvL290a1bN3h7e4vbNG3aFDY2Njhz5gx69uyJNWvWoHbt2ggMDBRnwGhpaWHGjBkF7nvQoEFYv3493r9/D3V1dQiCgIMHD6Jv375QVVXF7du3Ua9ePSxbtkxMqLt06YKrV6+Kq3VJ1K9fH05OTuLvn648BQD379+HlZUV5syZI7YZGhqic+fOuHjxotSqAT///DMcHBwA5P77HT9+HKdPn8awYcNw7949HDlyBL/99hvGjBkjbvP06VNcvHgRAwYMKFSfSejr6+PgwYNIS0vL85wmIiIiKgllIb9QU1ODh4cHJkyYIA6YUlVVRVBQkHivCHx9yYeTJ08iNjYWbm5u+W7z8uVL7N69G2PHjpVZoWrKlCmYNm0aTE1NUadOHXh5eUFNTQ1eXl6YOHEiMjMz4ezsjLi4OPTp0wfTpk2TmRgisWHDBqSmpmLLli1o0KABAKB79+7o378/Vq5cCT8/P6irq2Pp0qUYMWIEgoODERMTg+rVq2PBggVSn5WRkYFdu3aJfdWsWTNYWVlh9+7dGD58uNS2WVlZSE9Ph5ubmzixxcTEBGlpaVi6dCmSk5PFB1ifq1GjBlavXi0e06NHj+Dv749Xr15BS0sLPj4+0NHRwZo1a8Rt2rdvjwEDBiAyMhIjR45EWFgYsrOzERwcLM6k19HRwS+//JLvvwkADB48GL/99hsSEhJQv359AMCBAwfQtWtX1KlTB0lJSYXOmypXrowFCxaIqxF//mDszp076Nq1K7y8vKCsnDuX08zMDCdPnhTzAokePXqID3hMTU1x7tw5nD59GjNnzsSbN2+wceNGjBo1CrNmzQIAdO3aFS9evMDly5dhb29fqD6T0NfXR1BQEGJjY9G8efMC+4uIiIioOJWFHONT+T3DkHyHPXXqVLi5uUFbWxunT58WVw3Kb7AQgCLdjx07dgx//PEHRo0ahZo1awJgjsEcgzkGEX0dDqAionLv8uXLaNu2rVSbsrIyunbtioULF4pJQKVKlaRKjxWXx48fw9DQMN/X58+fj5ycHGzatAkTJkxAUFAQunXrhtjYWAwfPhwNGjSAn58fNDQ0cOjQIbi5uUFdXR39+vXL8/MKmo2QXwKUnyZNmmDv3r149+4dqlatCgAIDQ3Ft99+i169esHKygpmZmbo27cv7O3t0aRJkzyX2wVykzATExOoq6uLyWH16tXRqVMnqZJ2/fv3x+HDhzFv3jyoqqpi165dMmUCLSwsxMFTkt9VVFRw+fJlmQFU2tra2LhxIwRBwJMnT/Dw4UPExcUhJiYGWVlZBR7/5zW269WrJyZ9cXFxSExMhL29vVSya2xsjOrVq+PcuXPo2bMnoqOj0atXL3HwFJBbnz6/JE1i0KBBCAgIwKlTp9CvXz/ExMQgISFBXPWrdevW2Lx5M3JycvDgwQM8fPgQ9+/fR1xcnFQ8km0LIpnRkZ6ejvj4eDx69AjXr18HAJk++vxcrlevnrj8bXR0tHh8n/L39weQuzpaYfpMokGDBsjOzkZiYiJatGhR4DEQERERFZeykF9cunQJtra2YpkHZWVlbNu2DZMnT0ZISIj4ZfXXioiIQOvWrdG1a9d8t9mxYwdycnLEAfWfqlWrFsLDw6Xyi6NHjyI5ORlDhw7FjBkzUK1aNfj5+WH69OmoW7duvqUGz58/j9atW0NbW1u8t1RWVkb37t2lyk0YGhrCxsYGq1atgiAICA0NFR+2SBgZGUkNNGvTpg0aNWqEy5cvyzzcUFVVxbp16wDkztSOj4/HgwcPxPLbBeUY+vr6UnlAvXr1AOQ+XFFXV8fVq1dha2sr9UCtUaNGaN68Oc6dO4eRI0ciOjoaHTp0kCpD0r59e/GBRX4sLS2xYMECHDx4EHZ2dnj27Bmio6Ph5eUFQL68qVmzZgWWch8yZAiGDBmCzMxMxMfH4+HDh7h9+zays7Px4cMHqW3zyrkkpU3++ecffPz4USa/kAzgy8jIKFSfSTRs2BBA7sMYPtwgIiIiRSoLOcan8nuG0aJFCwQFBWHevHli+b+2bdti6tSpWLx4sdRk8a919OhRzJw5Ex07dhQHvgDMMZhjMMcgoq/DAVREVO61bdtWHO0vqX/97bffyqxgU79+fbGWeF4+fPiA169f45tvvvmqeNLS0lClSpV8X5c8fOjSpQsGDBiAkJAQdOvWTRz1v379enG53a5du+LNmzdYuHAh+vbtm+eAqOrVqyM5OVmmPT09XWrQkTwkicebN28QFBSEwMBAPH78GLdu3cLatWtRu3Zt9OnTB0ePHs13AFVqaioOHjyIgwcPyrz2eQ1yKysrHDlyBE2bNoWOjo7M9p8vWaysrAwtLa18a6rv3bsXy5cvx7Nnz6CpqYnWrVsXKnn7/N9NWVlZHKCWmpoKAFiwYIHM7BIgd+UrIHf20OfLJauoqHxxCeUmTZrA0NAQBw4cQL9+/XDgwAE0btxYavWx0NBQBAUFITU1Fd988w3atWuHKlWq4O3bt1KfJfn3y09KSgrmz5+P48ePQ0lJCU2aNBEfsn0+IO/zfsurT2rXrp3nfgrbZ5/H/fnxEBEREZWkspBfBAUFQVtbGyEhIeKXzubm5hg2bBg8PT3FGeBfIzU1FRcvXvxiOeojR47AzMxM5h7/U5L7vI8fP8LHx0cs9Xfy5Els3boVLVu2xJAhQ3DkyJF8H26kpqbi4cOHMg+eJDIyMsR+srKywvr161GnTh2p1VUl8iqJUrt27Xzzi7Nnz8LT0xNxcXGoVq0aWrVqJR5TQRNa8sovACAnJwdv3rxBTk4OQkJCEBISIvNeNTU1ALn5heRL+k/lNyNdonr16ujduzcOHDgAOzs7HDx4EFWqVJEq8VjYvKlatWoF7uv9+/dYtGgR9uzZg48fP6Jhw4YwNDSEioqKTP8UJufK71wqbJ99vi/mF0RERKRoZSHH+FR+zzCA3LzjxIkT4opBjRo1ws6dOwFAZlBRUYWFhYmlxFetWiVznwcwx5BgjsEcg4jkwwFURFTuVatWTazNXRBzc3Ns2LABL168yPNG8MyZM3BwcEBAQAD69OlT5Hg0NTVlbp4uXLiAzMxM9OjRQ2xTUVGBnp4e7t27BwBISEhAs2bNZAbaGBsb4/Dhw3j58mWeiZGOjg7++usv5OTkiDfLAPDw4cOvHgEfHByMjh07wsjICP/88w+A/0uCatasiZs3b+b7Xg0NDXTt2jXPmuMqKv/35ykjIwNLliyBrq4u7t27h/Xr18vUvH716pXU79nZ2Xj16lWeN71RUVFwcXHB6NGjYWtrKyYuv//+u7hiUlFIypE4OzvDxMRE5nVJv2hqasoMaBMEId9E6VODBg3CkiVL8PbtWxw+fFhqZsq+ffuwdOlSzJo1Cz/++KN47NOmTRNXjyosJycnxMXFISwsDIaGhlBVVUVGRga2b98u1+dI+iQlJUWc6QLkrjyVmppa6D6TkPTRlwabERERERWnspBfPH36FO3atZOasausrIyOHTsiIiKiyPv61NmzZ/Hx40f07ds3322SkpJw69atPFefysuOHTtQpUoVDBgwAMnJycjOzpbKL/KaGCKhoaEBExMTODs75/m6pC9ycnLg7u6Oxo0bIzk5GV5eXpg/f77Utp/nFwCQnJycZ8nDR48ewcHBAb1798aaNWvQqFEjKCkpISIiAmfPni3UceelWrVqUFJSgo2NjVT5CQnJF/NaWlp59ovkQUBBBg0ahPHjx+Phw4c4cOAAvv/+e/Fz/8u8ycPDA0eOHMGKFSvQtWtX8cGPqampXJ/zaX7xaSmahIQEPHr0CO3atStUn0kwvyAiIqLSoizkGIV9hnHu3DkMHjxYarWlW7duQVNTM89BOfIQBAEeHh4IDw/HwIEDsWTJkgJXKQKYY3yKOYYs5hhE9DnlL29CRFQxjBw5EpUrV4aHh4fMMrjv3r2Dn58ftLS0ZErCyatBgwZ49uyZVNuePXvg7OyMtLQ0sS0tLQ1XrlyBnp4egNyBUPfv35e5SY2JiYGGhgY0NTXz3J+5uTnS09OlbqxTUlIQFRUFMzOzIh9HYmIiIiIixBnnklWGJDfWz58/z3flISC3Zvf9+/fRunVr6OvrQ19fH+3atUNYWBiOHTsmbufj44PExET4+/tj1KhR8PPzQ2xsrNRn/fnnn1JLvJ44cQIfP37M82b5ypUryMnJwZQpU8Qb9OzsbLFsYE5OTlG6A82aNUPt2rXx5MkT8Xj09fWhra0NHx8f3Lp1C0DuDfyff/4pVe/97NmzMsvK5qV///4QBAErV67Ey5cvMWjQIPG16Oho1KhRA3Z2duLgqfT0dERHR8t9TNHR0bC0tETnzp3FJPDPP/8EIF//dOzYEUDurJ5PeXt7w8PDo9B9JpGUlIRKlSrlOVuHiIiIqLRRZH7RrFkzXLt2TeoeWRAEXLlyRepBxte4evUq6tWrhwYNGhS4DQCpVVPzk56ejlWrVmHmzJlQUlKClpYWlJWV8eLFCwCFyy/i4+Oho6MjdW+5Z88e7Ny5UyxjsWHDBsTExMDT0xPTpk3Dli1bcP78eanPio6OlnrAcePGDTx58iTP/OLGjRvIzMzE+PHj0bhxY3FVYEn+VdDs8IJUr14dbdq0QVxcnNTxtGzZEv7+/rh48SKA3Fn/V65cQVJSkvje+/fv4/Hjx1/ch7m5Ob755hts3LgRN2/eFMuDA/9t3hQdHY3OnTujd+/e4oONGzduICUlRa7PMTAwQOXKlcXSJRLr16+Ho6MjqlatWqg+k5D02ZdKkRARERGVFqX9GcbLly/h5uYmdd/14sULHDhwABYWFnlW0JDH8uXLER4ejrFjx8Lb2/uLg6eYY0hjjiGLOQYRfY4rUBER/X8NGzaEu7s75syZg5EjR2LYsGH49ttv8ejRI4SGhuLx48dYt25dnsvBysPMzAybN2+GIAjija+dnR0OHz6MiRMnwtbWFllZWQgJCUF6ejqmTJkCABg7diz27dsHGxsb2NvbQ0NDA0ePHsWBAwcwe/ZscdWmR48eISUlRazrbGxsDBMTE8yaNQuzZs2CpqYm/P39oaGhIVNbWx4rV65Ev3790KJFCwC5/deiRQv4+PigT58+OHbsGDw9PfN9/6RJkzBs2DDY29tj+PDhUFNTw7Zt23D8+HH4+fkBAC5duoRNmzZhxowZaNq0KaZPn45jx47B1dUVW7duFROUZ8+eYeLEibC2tsazZ8+wfPlydOvWDZ07d5bZr4GBAQBg4cKF+N///ofXr18jIiICd+7cAZCbaH6+NHJhVKpUCTNmzMC8efNQqVIl9OrVC2/evMHq1auRlJQkLvPr4OCA48ePw9bWFnZ2dkhJScGKFStQuXLlL+5DU1MTPXr0wObNm2FoaIgmTZpIHdeWLVuwdOlS9OrVC8+fP8e6deuQnJws99LIBgYG2LdvH9q2bYt69eohJiYGwcHBUFJSkhr49SWtWrVC37594eXlhffv36N169b4888/cerUKQQEBBS6zySio6PRqVOnApePJiIiIiotFJlfTJo0CSNGjICdnR3GjBkDFRUVREZG4p9//hHvtQsrMTERiYmJaNOmjdQDirt374q5QH7u3bsHVVXVPGdVfy40NBTNmzcXS3+oqKjA3NwcgYGBGD16NCIjI2FtbZ3v+21sbLBnzx7Y2Nhg3Lhx0NLSwsGDB7F9+3bMnj0bABAfH48VK1bgl19+gbGxMYyMjLBv3z7MmTMH+/btE8tEZGRkwM7ODhMnTkR6ejp8fX2hq6uLgQMHyuy3bdu2UFFRgZeXF8aNG4esrCzs2rULp0+fBpCbXxSVo6Mjxo8fj5kzZ2LQoEFiSferV69i0qRJAIAxY8Zg586dsLW1xZQpU5CdnQ1fX99C5ReVKlXCgAEDsGnTJmhra0vlT/9l3mRgYIBDhw5hy5YtaN68Oe7cuYPAwEC584tatWrB2toaYWFhUFVVhYmJCa5evYotW7bA2dkZysrKheoziejoaDRs2DDPMvFEREREpVFpf4bRrl07GBkZwd3dHc7OzqhUqRJWrFiBSpUqidsA+ecYBbl9+zZCQkKgr6+Pvn37ipM1JFq0aCFzf8ocQxZzDGnMMYjoc1yBiojoE1ZWVuKN3YoVK2BnZ4fAwEC0adMGu3fvzrPMmLwsLS3x6tUrXLt2TWxr3rw5IiIioKqqCmdnZ7i6uqJ27drYunWr+FCiQYMG2LJlCxo2bIi5c+di6tSpuHPnDvz9/WFjYyN+1urVqzF06FCpfQYEBOC7777D77//DldXV2hrayMsLKzINcfv3r2LQ4cOSSU9SkpK8Pb2xt27dzF37lyMGDGiwGWCW7VqhYiICCgpKcHZ2RlTp07FixcvsGrVKlhaWuLdu3eYPXs2dHV1YWtrCyB3idl58+bh2rVrWLt2rfhZAwYMQOPGjTF9+nT4+/vDysoKAQEBee63c+fOmDdvHq5cuYJff/0VS5cuRf369cXtv6aM388//wwfHx/ExMRgwoQJcHd3R8OGDREeHi7O9G/atCk2bdokDh5avXo1XFxcCv1vMXjwYGRnZ+OHH36QareysoKDgwMOHTqEX3/9FX5+fujUqRMWLlyI1NRUmVW7CrJ06VK0b98eixYtgoODA06cOIEFCxbA3NwcUVFRhe8QAF5eXhg9ejQ2bNgAe3t7XLhwAX5+fmLd88L0GQBkZmbi4sWLBZaIISIiIiptFJVf6OvrY9OmTVBRUYGTkxNmzZqFV69eYePGjbC0tJTr83fs2IGhQ4fi+fPnUu0vX74Uyx3kJzk5+YvbSD5r/fr1mDlzplS7u7s7MjIy4OTkBDMzM4wcOTLfz9DW1sbWrVvRoEEDuLu7Y8KECbh27Ro8PDxgY2ODnJwczJ49GxoaGpg1axaA3C/3Fy1ahMTERCxbtkz8rE6dOqFXr16YM2cOPD09YWpqio0bN+b5cKdJkybw8fFBUlISJk6ciHnz5gEAwsPDoaSkJPf986fMzc2xbt06JCYmYurUqeJDqNDQUHHCjJaWlpgnurq6wtPTEyNHjkSrVq0KtQ9JfjFw4ECpku//Zd7k6uqK3r17Y8WKFbC3t8eOHTswceJE/PLLL7hy5YrM6gkFmTVrFhwdHbF//36MHz8ee/bswdy5c8UykYXpM4mzZ88yvyAiIqIypzQ/w1BSUoK/vz86dOiAefPmYc6cOWjWrBkiIiKkVuTJL8coyNGjRyEIAq5fv46hQ4fK/Ny8eVNqe+YYeWOOIYs5BhF9Skko6jp/RERUZBMmTICWlhaWLFmi6FDKPAsLC5iYmGDp0qWKDoWK0e7du+Ht7Y3jx49DXV1d0eEQERERlSrML/47o0ePBpD7cILKr6ioKIwbNw7Hjx9H3bp1FR0OERERUanDHOO/wxyjYmCOQVQ+cAUqIiIFmDFjBo4ePYqEhARFh0JU6uXk5GD9+vWYPHkyB08RERER5YH5BZF81q5dizFjxvDBBhEREVE+mGMQyYc5BlH5wAFUREQKoKenB3t7e3h7eys6FKJSLzIyEnXq1MGwYcMUHQoRERFRqcT8gqjwzp8/j4SEBKmS9EREREQkjTkGUeExxyAqP1jCj4iIiIiIiIiIiIiIiIiIiIiIKiyuQEVERERERERERERERERERERERBUWB1AREREREREREREREREREREREVGFxQFURERERERERERERERERERERERUYXEAFRERERERERERERERERERERERVVgcQEVERERERERERERERERERERERBUWB1AREREREREREREREREREREREVGFxQFURERERERERERERERERERERERUYXEAFRERERERERERERERERERERERVVgcQEVERERERERERERERERERERERBXW/wOkGKKtzeJ2YQAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "import numpy as np\n", - "from sklearn.preprocessing import Normalizer\n", - "from sklearn.preprocessing import StandardScaler\n", - "from sklearn.decomposition import PCA\n", - "import matplotlib.pyplot as plt\n", - "import seaborn as sns\n", - "\n", - "pca = PCA(n_components=2)\n", - "\n", - "# Normalizer: By default, L2 normalization is applied to each observation so the that the values in a row have a unit norm. \n", - " # Unit norm with L2 means that if each element were squared and summed, the total would equal 1. \n", - " #Normalizer does transform all the features to values between -1 and 1. \n", - "#norm_data = Normalizer(norm=\"l2\").fit_transform(df.drop([\"log\"], axis=1))\n", - "norm_data = Normalizer(norm=\"l2\").fit_transform(X)\n", - "\n", - "#StandardScaler standardizes a feature by subtracting the mean and then scaling to unit variance. \n", - " #Unit variance means dividing all the values by the standard deviation.\n", - "scaler = StandardScaler()\n", - "sca_data = scaler.fit_transform(X)\n", - "#norm_data = Normalizer(norm=\"l2\").fit_transform(norm_data)\n", - "\n", - "sns.set_theme()\n", - "fig, (ax1, ax2, ax3) = plt.subplots(1,3,figsize=(24, 8))\n", - "\n", - "#X_new = pca.fit_transform(X)\n", - "X_new = pca.fit_transform(minmaxscaled_X)\n", - "df_pca = pd.DataFrame(X_new, columns=[\"PC1\", \"PC2\"])\n", - "sns.scatterplot(ax=ax1, data=df_pca, x=\"PC1\", y=\"PC2\", palette=\"bright\", hue=[0]*len(df_pca), alpha=0.9, s=100)\n", - "ax1.set_xlabel(f\"PC1 ({np.round(pca.explained_variance_ratio_[0]*100, 2)}% explained variance)\")\n", - "ax1.set_ylabel(f\"PC2 ({np.round(pca.explained_variance_ratio_[1]*100, 2)}% explained variance)\")\n", - "\n", - "X_new_norm = pca.fit_transform(norm_data)\n", - "df_pca_norm = pd.DataFrame(X_new_norm, columns=[\"PC1\", \"PC2\"])\n", - "sns.scatterplot(ax=ax2, data=df_pca_norm, x=\"PC1\", y=\"PC2\", palette=\"bright\", hue=[0]*len(df_pca), alpha=0.9, s=100)\n", - "ax2.set_xlabel(f\"PC1 ({np.round(pca.explained_variance_ratio_[0]*100, 2)}% explained variance)\")\n", - "ax2.set_ylabel(f\"PC2 ({np.round(pca.explained_variance_ratio_[1]*100, 2)}% explained variance)\")\n", - "\n", - "X_new_sca = pca.fit_transform(sca_data)\n", - "df_pca_sca = pd.DataFrame(X_new_sca, columns=[\"PC1\", \"PC2\"])\n", - "sns.scatterplot(ax=ax3, data=df_pca_sca, x=\"PC1\", y=\"PC2\", palette=\"bright\", hue=[0]*len(df_pca), alpha=0.9, s=100)\n", - "ax3.set_xlabel(f\"PC1 ({np.round(pca.explained_variance_ratio_[0]*100, 2)}% explained variance)\")\n", - "ax3.set_ylabel(f\"PC2 ({np.round(pca.explained_variance_ratio_[1]*100, 2)}% explained variance)\")\n", - "plt.tight_layout()\n", - "# plt.show()\n", - "# plt.close()\n", - "\n", - "#ratio number of activities and traces... " - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "id": "2d77ab0d", - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "0.936564226105012\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABNUAAANFCAYAAABcF8rfAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/P9b71AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOz9eZgc133fC3+rqpfp2WcwGCwECBAgCICkxAWiFmqxLNGyHcuO6ThxSFtJ7o1jW5GtG8UPnTc3efRcJ3qubFrXsRTTtJXX27VN+lWcMJZt2ZGpSJZliqIELhKJlQtAgABmAMw+013d1VXvH13nVHVPd3Ut51Sd6vl9/pE4mOnuqq46dc7vfH/fr+Y4jgOCIAiCIAiCIAiCIAiCIEKjZ/0BCIIgCIIgCIIgCIIgCCJvUFGNIAiCIAiCIAiCIAiCICJCRTWCIAiCIAiCIAiCIAiCiAgV1QiCIAiCIAiCIAiCIAgiIlRUIwiCIAiCIAiCIAiCIIiIUFGNIAiCIAiCIAiCIAiCICJCRTWCIAiCIAiCIAiCIAiCiAgV1QiCIAiCIAiCIAiCIAgiIoWsP4AKOI4D23YyeW9d1zJ7b5nQceULOq58QceVL+i48gUdV76g48oPg3hMAB1X3qDjyhd0XESW6LoGTdP6/h4V1QDYtoOFhfXU37dQ0DE1NYKVlQ1Ylp36+8uCjitf0HHlCzqufEHHlS/ouPIFHVd+GMRjAui48gYdV76g4yKyZnp6BIbRv6hG7Z8EQRAEQRAEQRAEQRAEEREqqhEEQRAEQRAEQRAEQRBERKioRhAEQRAEQRAEQRAEQRARoaIaQRAEQRAEQRAEQRAEQUSEimoEQRAEQRAEQRAEQRAEEREqqhEEQRAEQRAEQRAEQRBERKioRhAEQRAEQRAEQRAEQRARoaIaQRAEQRAEQRAEQRAEQUSEimoEQRAEQRAEQRAEQRAEEREqqhEEQRAEQRAEQRAEQRBERKioRhAEQRAEQRAEQRAEQRARoaIaQRAEQRAEQRAEQRAEQUSEimoEQRAEQRAEQRAEQRAEEREqqhEEQRAEQRAEQRAEQRBERKioRhAEQRAEQRAEQRAEQRARoaIaQRAEQRAEQRAEQRAEQUSEimoEQRAEQRAEQRAEQRAEEREqqhEEQRAEQRAEQRAEQRBERKioRhAEQRAEQRAEQRAEQRARoaIaQRAEQRAEQRAEQRAEQUSEimoEQRAEQRAEQRAEQRAEEREqqhEEQRAEQRAEQRAEQRBERKioRhAEQRAEQRAEQRAEQRARoaIaQRAEQRAEQRAEQRAEQUSEimoEQRAEQRAEQRAEQRAEEREqqhEEQRAEQRAEQRAEQRBERKioRhAEQRAEQRAEQRAEQRARoaIaQRAEQRAEQRAEQRAEQUREqaLab/3Wb+FDH/pQ4O8sLi7i53/+53HPPffgrW99K37xF38R1Wo1pU84WNi2g1PnF/H0iSs4dX4Rtu0I+V2CIAiCIAiCIAiCIIhBp5D1B2D80R/9EX7t134Nb3nLWwJ/76Mf/Siq1Sp+7/d+DysrK/h3/+7fYWNjA7/8y7+c0icdDI6fnsdjT57F4qrJfzY1VsaD9x3CscOzsX+XIAiCIAiCIAiCIAhiK5C5Um1ubg4/8zM/g0996lPYv39/4O8+99xzeOaZZ/DLv/zLuO222/COd7wD/+E//Af86Z/+Kebm5tL5wAPA8dPzeOSJF9uKZACwuGrikSdexPHT87F+lyAIgiAIgiAIgiAIYquQeVHtpZdeQrFYxOc//3nccccdgb/7rW99C9u3b8fBgwf5z9761rdC0zQcP35c9kcdCGzbwWNPng38ncefPAvbdiL9LkEQBEEQBEEQBEEQxFYi8/bP973vfXjf+94X6nfn5uawa9eutp+VSiVMTk7i8uXLiT5HoZB+fdEw9Lb/TYOT5xY2qc46WVg18ck/PA5d10L97iuXlnF0/zT/WRbHlQZ0XPmCjitf0HHlCzqufEHHlS8G8bgG8ZgAOq68QceVL+i4iLyQeVEtCtVqFaVSadPPy+UyTDO4+BOErmuYmhpJ8tESMT5eSe29Gq8thvq9Vy6thH9Np/v5S/O40oSOK1/QceULOq58QceVL+i48sUgHtcgHhNAx5U36LjyBR0XoTq5KqoNDQ2hXq9v+rlpmhgeHo79urbtYGVlI8lHi4Vh6Bgfr2BlpYpm007lPYtauFbNv/f2fbAdB3/1jddDvebi4jr/7yyOKw3ouPIFHVe+oOPKF3Rc+YKOK18M4nEN4jEBdFx5g44rX9BxEVkzPl4JpSjMVVFt586dePLJJ9t+Vq/XsbS0hNnZZCmUlpXdBd1s2qm9/8HdE5gcLWFpbXNxkjE9VsaPvOcAAOAbJ+YCW0Cnx8o4uHui6+dP87jShI4rX9Bx5Qs6rnxBx5Uv6LjyxSAe1yAeE0DHlTfouPIFHRehOrlq5L3nnntw5coVnD9/nv/smWeeAQAcO3Ysq4+VK3Rdw8zEUODvPHDfIei6Bl3X8OB9h0L9LkEQBEEQBEEQBEEQxFZC6aJas9nE1atXUavVAAB33HEH7r77bnzsYx/Dt7/9bTz99NP4+Mc/jh/+4R/Gjh07Mv60+eCZk3N4+Y0VaADGhott/zY9VsZH7r8dxw57qr9jh2fxkftvx8hQoe/vEgRBEARBEARBEARBbBWUbv+8fPky3v/+9+OTn/wkfuRHfgSapuHXf/3X8Yu/+Iv4p//0n6JcLuP7vu/78G//7b/N+qPmguU1E3/4xTMAgA/eux9//1034cyFJSytm5gcKeOWvZNdVWfHDs+i0bTx2c+fwO5tw/iJDxzu+bsEQRAEQRAEQRAEQRBbAaWKar/0S7/U9t979uzB6dOn2362bds2fOYzn0nzYw0EjuPg9/7yFNaqDdy4YxQ/+M790HUNR/ZNhfr7gt4SNY5WiqH/hiAIgiAIgiAIgiAIYlBRuv2TEMfXvnMZL7xyHQVDw09+8FYUQqRY+DGMliqtaYdLDyUIgiAIgiAIgiAIghhkqKi2Bbi2XMXjT54FANz/7gPYs3008msYbqunRUU1giAIgiAIgiAIgiAIKqoNOrbj4He/cAq1ehM33zCB733rjbFex3DbP20qqhEEQRAEQRAEQRAEQVBRbdD5X8cv4uT5RZSKOv75B4/GDhdgf0ftnwRBEARBEARBEARBEIoFFRDJsW2HJ3ratoP/+uWXAQD/8L03Y8fUcOzXNaioRhAEQRAEQRAEQRAEwaGi2gBx/PQ8HnvyLBZXzbaf79k+gu+++4ZEr82Lak070esQBEEQBEEQBEEQBEEMAtT+OSAcPz2PR554cVNBDQAuXl3Hc2euJnp9lv5pO6RUIwiCIAiCIAiCIAiCoKLaAGDbDh5z0z178fiTZxOFDOgaU6pRUY0gCIIgCIIgCIIgCIKKagPAmQtLXRVqfhZWTZy5sBT7PQyjdamQpxpBEARBEARBEARBEAQV1QaCpfXgglrU3+tGgYIKCIIgCIIgCIIgCIIgOFRUGwAmR8pCf68bultUS9JCShAEQRAEQRAEQRAEMShQUW0AuGXvJKbGggtm02Nl3LJ3MvZ78PRPm9I/CYIgCIIgCIIgCIIgqKg2AOi6hgfvOxT4Ow/cd4irzeJgUPsnQRAEQRAEQRAEQRAEh4pqA8Kxw7P4yP23b1KsTY+V8ZH7b8exw7OJXp8FFTgOYDtUWCMIgiAIgiAIgiAIYmtTyPoDEOI4dngWdx3ajjMXlrC0bmJypNXymUShxtA17zVs24FuJH9NgiAIgiAIgiAIgiCIvEJFtQFD1zUc2Tcl/HUNXxGt2XRQMIS/BUEQBEEQBEEQBEEQRG6g9k8iFIZP7UZhBQRBEARBEARBEARBbHWoqEaEQm8rqpGnGkEQBEEQBEEQBEEQWxsqqhGh0DUNzFaNimoEQRAEQRAEQRAEQWx1qKhGhMbQW5eLTUU1giAIgiAIgiAIgiC2OBRUQITG0DVYTcCiohpBEAOEbTtSUpMJgiAIgiAIghhsqKhGhIaFFZBSjSCIQeH46Xk89uRZLK6a/GdTY2U8eN8hHDs8m+EnI0RABVOCIAAaCwiCIAh5UFGNCI1htCYfzSalfxIEkX+On57HI0+8uOnni6smHnniRXzk/tupsJZjqGBKEARAYwEhFyrYEgRBRTUiNOwBQUEFBEHkHdt28NiTZwN/5/Enz+KuQ9tpcpxDqGBKEARAYwEhFyrYEgQBUFABEYGC4KKabTs4dX4RT5+4glPnF6mtlCCI1DhzYaltEtyNhVUTZy4spfOBCGGELZjSM4cgBhsaCwiZsIJt51yCFWyPn57f9De09iGIwYSUakRodIGearSzQxBEliytBxfUov4eoQ5RCqZH9k2l9KmIrQy1h2UDjQXxsG0HJ88toPHaIoqag4O7J+h67SCO2p3WPgQxuFBRjQiNobeEjUmVaiTFJwgiayZHykJ/j1AHKpgSKkEL6eygsSA6dL2GI2rBltY+BDHYUPsnERpDQPsnSfEJglCBW/ZOYmosuGA2PdZSlBD5ggqmhCrEaQ8jxEFjQTToeg1P2ELs7/7lKfzmn76I3/6Lk4G/R2sfgsg3VFQjQuMV1eKnf8b1MSIPAoIgRKLrGh6871Dg7zxw3yFqeckhVDAlVIA2EbOHxoLw0PUajbCF2KtLVTxzch61ejPw98jDlSDyDRXViNDw9M9m/Adq2J2dc1dW+P8/fnoeDz36FB5+/Dl89vMn8PDjz+GhR5+iHTOCIBJx7PAsPnL/7ZgYKbX9fHqsTK0YOYYKpoQKUBhK9tBYEB66XqMRpmA7PlLCh3/4Nrzt1nBzCWpDJoj8QkU1IjSGkTyoIOzOzue+/Ao+/tvP4Dc//xJJ0QmCkMaxw7P4l/ffzv97ZnwID3/4Xiqo5Zxjh2cxMz606edUMCXSgvy81IBtnlTKRtvPaSxoh67XaIQp2H7oA7fgniM78F133BDqNakNmSDyCwUVEKExtOSeamxnJ2g3rGjoaNo2Ll5dw8Wra4Gv15msQxAEEZW1jQb//3WrSePJAPDGtXVcW6lB14Cb90zgzIVlvPP2nfjf/t5R+n6JVCA/L3U4dngWF+fX8Kd/dw4A8NADd+Lw3ikaC3zQ9RodVrD97OdPoNH0rHGmx8p4wBfsEGbtQ23IBJFvSKlGhMYwkqd/htnZ+akfuhW/9tF34/veurfv65EUnSCIpCyt1/n/X6tasB3yjMk7T790BQDw5oMzuGXvFACgVDJoEU2kBvl5qUXdV/Q4tGeSxoIO6HqNx7HDs9i5rQIA+L637cUvPHDXJrU7tSETxOBDRTUiNLqAoALA29npfHj7pfijlSJu3DkW6vVIik4QRBKW17wxxHYcbNSs1D8DhbGIw3YcfOPEHADg7bftwPhwEQCw6iueEoRsaCGtFvWGN3dtWMnmsYMIXa/xWV5vqd3ffutOHNnXXQEZZu1DEER+ofZPIjRe+mfyxd6xw7O469B2/NSnvgLbdvDTP3Qr7jmyo+1BRFJ0giDSYLmj2LK6UcdopZja+x8/PY/Hnjzb1hoyNVbGg772ESI8L19cxrXlGoZKBu68eQbPv3wNALDia/MliDRgC+n/75+fgNno3R5GyKdheemLjaaNSoafRVXY9fro/3gR/qk+Xa+9sZo237CZHA1ej7C1z7dOz+M3//QlAMD/9b/dg9HhUuDfEQShPqRUI0IjsqgGtHbFHLfN6pYu3hYkRScIIg2W1zqLaukVX46fnqcwFsE87arUjt2yHaWigTF3wbK6QUo1In3YQprx0AN3UhhKBviVahYp1Xpy857JtoLau+/YRddrACvrdThorZFGh/tvxum6hrce3YEd08MAgLNvLEv+hARBpAEV1YjQsKKaqLYk23HArItYsqifMFL0H3znTSRFJ5SE2vnyw3JHC3laxRfbdvDYk2cDf+fxJ8/StRMBq2njmydZ6+dOAODtnyvU/klkhNnwVFI33zBB85YM8H8H1P7Zm1cvtRd5JkfLdL0GsORuyo2PlKBr4c/T0X0tr8+T5xelfC6CINKF2j+J0PCggqagoppvoWj0eGAzKXpna5Sha2jaDr7+0hW86807YehUHybUgdr58gVr/5wYKWF5vZ6aUu3MhaXANDDAC2M54k7AiWBefHUB6zULEyMlvmgZG2kp1dZrFqymjYJBzwsiXWp1r6BjNmwUC0aGn2ZrUvcV0vxJjUQ7r15aaftvKkAGs+R6svZr/ezk6L4pfOW5N3CKimoEMRBQUY0IDduBEdX+6S/O9SqqAV7rxJkLS1haNzE5UsbESAn/4f/9Fs5cWMLnv3YO97/ngJDPRBBJYe18nbB2PjKkVQvHcXj7557ZUSy/tpCaUi1syAqFsYTn6ROt1M+33ep5dI4OFaFpgOMAa9VG5MVPWti20/acu2UvJRQOCrW6F35SbzSBFD0biRZ1UqqFghXVJkZLWF6r07nqwzIvqkXzRTt84yQA4OLVdays1zE+Qr5qBJFnqKhGhIa1aCZN/2T4X6ef0kzXtU1KjX/6fYfx2c+fwJ8/dQ6Hb5zErfunhXwugohL2Ha+uw5tp8WyIqzXLL5RcMPMCF56bSE1pRqFsYilalp47mwrlODtt+3gP9d1DWOVIlY2GljdULOoRurWwcavVKMiRTb4lWoWKdW6YtsOXrvcKqodvnEKz5yYo3PVh0V3U26yjwd0J+PDJeydHcWF+TWcen0Rbz26o/8fEQShLNQDQYRGtKea5W//7OKp1o+337oT77ljFxwAn/2zE5sS/AgibaK08xFqwHaZR4YKPBhltZpOUY3CWMTy7JmraFg2dk4PY9+OsbZ/Yy2gKwqGFVBYxeBTNT2lmt/bi0gPUqr15/L1ddTqTZSLBm7a2RpD6VwFE7f9EyBfNYIYJKioRoRGdPona//UNEQy9/TzwH234IbtI1hZr+O//NlLsB0y9Cayg9r58seSW4yfHC1jzDW0T6v9M0wYywP3HSJVY0iefqnV+vn223ZA63imjLMEUMU2XyisYmvgV6rVqUiRCf70TyoUdecVt/Vz/84xlEst3z86V8EsxWz/BMA7cE6eo6IaQeQdKqoRodEFF9XYIiHIT60f5aKBn/n7t6NU1HHi3CK+8PXzlLpIZAa18+WPFV9y1xgrvKTU/gl4YSxDpXbj8umxMvnvRWBpzcQJd7f/7bdubqNhBdOVFL/bMJC6dfCxHae9qEZKtUyoW955p5bG7jA/tQO7x1EstJaIVAQOZmm1NYeYiqFUO7x3ErqmYX6pimvLVdEfjSCIFCFPNSI0Bdf3TJhSzfVUS5rcecPMCH7iew7jd75wEv/9q6/ir791oW1RTL40RFqwdr6gRTK186kFUw1OjpZSV6oxjh2exZkLS/jrb10EAPzj992M+96ylxRqEXjmxBwcBzi4exyzU8Ob/t0rmKqlVCN16+Bj1tuLaH7FVBIo2CIapFTrj1dUm+BzdCpABsOUahMximqVcgE37RrDK5dWcOr8Et715oroj0cQREqQUo0IDVeqNUUV1ZIr1RjvevMuHHYLFZ0qE/KlIdKC2vnyB0v+nBgpY7TCimoNOCm3kjd84+rkWJmukYh8/cQcAODtt+3s+u/jTKmmWPsnqVsHn1pnUc1KrlQ7fnoeDz36FB5+/Dl89vMn8PDjz+GhR5+ieU4PHMdp91SjQtEmanULb1xbA9CuVKMCZG+spo0114M1Tvsn4GsBJV81gsg1VFQjQiM6qIAV5+KEFHRi2w7mFjcCf4d8aYg0YO18hY7rmtr51IQFnPjbP5u2g6qZbotWw7fgS7P9dBC4fH0d56+sQtc03HO0+/3FggpUO7d5Dasgm4Xw1OpW238nVapRsEV0rKYD/xVqUaFoE+cur8JxWt0dU2NlFAvkqdYPtiln6BrflIuKF1awkPpmHkEQ4qD2TyI0XlCBmAesSKXamQtLWFoLViAwXxq2K0QQsjh2eBY3zJzD+bk17Nsxhh97383UmqMoyz6T4XLRQKmoo96wsVqtY3govUek37dGNTWV6jz9UkuldvuBaR5I0An7uWrpn0zd+sgTL/b8HdXUrcdPz+OxJ8+2FXXIZqE3IpVqYYMt7jq0XalrJms6zzkVijbz6mXPTw2AT6lGHoC98Cd/dobjhOXmGyZQMHQsrdVxZWEDu7aNiPyIBEGkBCnViNAwRZk4TzVWVEt+GZIvDaEarEgyWingyL6pLbfAyYuShSnVJlwl01glG0WTf5Gnmu+XyjiOg6dPuKmfXQIKGLyopmDB8tjhWdx+0/Smn6uobiWVVHSqpjilGgVbxKPznFP752aYn9rB3RMAgIJB7Z/94EW1sXitnwBQKhq4+YZWIfMUtYASRG4hpRoRGtHpn15QQfJiA/nSEKrB1AkNQR6EeSJPShbuqeaaDI8NF3F9pYa11ItqnhpAtYRKlXnl0gquLtVQLhq469D2nr83NuL55amG7Ti4cHWt7Wf/6LsP4gP33KhUMZ5UUvHYpFRLkP5JG4jx6DznVChqx3EcvHJpGUAXpRoVIHvCOmQmY4QU+Dm6bwqnXl/CyfOL+O6794j4aARBpAwp1YjQMEWZip5qefWlIQYXtpDaaslZeVKyNKwmNlwVyYRrMpxVSmRb+ycp1ULz9Estldpdt8ygXDJ6/h5TqpmN5qY0xqx59dIKltfqqJQN7Nneav3ZtW1EucIUqaTisclTLUFBhzYQ42F2FNWsLbjZFcTiqonltTp0TcO+nWMAgBIFFfTF3/6ZhKP7W0rlU68vwSZfNYLIJVRUI0LDFGWW8PbP5AsHSl0kVMJxHL5w30qGyGGVLKq0gjKVWsHQMVxuCbfH3JTI1Wq6iib/QntVwRZFFbGaNp452SrSvqNH6idjqGTwdibV2mufPX0VAHDHwRmUi63CoChFuEhIJRWPztCTJEo12kCMR2chkwpF7bDWzz2zI3wMovTP/iytep6sSdi/cwzlkoG1agMX59f6/wFBEMpBRTUiNMLTP3n7p5jLkKUudk44VfSlIQYbq2nz3cat1DqRNyWL30+NmQzzolrKhRerTammXouiSjC/vv/+1VewVm1grFLArfuDA2g0TcO42wKq0vl1HAffctWbd9+yHYZb+FNR4UoqqXhsVqrFL6rRBmI8Gp3tnwreX1nCimoHXD81gIpqYRClVCsYOg67hfCT5KtGELmEimpEaHj6p6DJiMj2T8axw7P4lQ/fi5mJIQDAP/zug3j4w/dSQY1IFb+HjoqLY1nkTcni+aF4u8xe+2faSjXvmqmaFi1kenD89DweevQpPPz4c/irb1wAANQtB8+fvdb3b8cUTAC9ML+Ga8s1FAs63nRgmy9lWz2lGqmk4rHZUy3Zvd1rA1HTgH/5w7SB2A2zYzzdSgryMHA/tV3j/GdM2du0HWpJ7MHSuhhPNQA4cmNrY4iKagSRT6ioRoSGBxUIeriyRYPoHVVd17BjehhAy0eHdmyJtPEvorZScSRvSpYVt7g3PuIrqlWyMbTvbE9aS7n9NA/08uszG81Qfn3MV02l9trjbuvn7TdNo+xrUW0q6PlEKql41Nz2z1F3bEniqcY4dngWv/wz7+D/rQFwHGBmcijxaw8im4IKttBmVz+spo3zV1YBeCEFgKdUA6gI2QtR7Z8AuNr69IWlLbUZSxCDAhXViNAwRZmoyT4rqhUkTMDZ4mlFocUTsXUw25Rq6i2OZZE3JctSR/InkF1QQaNDvUJjVzsi/PrGh1n7pzrn9tkzraLaW1x1keddquai6tjhWfzT7zuy6edks9Ab1v454Rbvk3iq+fGrGW+9qWV0HkaxuRXpVAdSkcjjjavrqFs2KuUCdm4b5j/3F9WoCLmZhtXEeq11b0/2mfeEYc/sKEaGCjDrTZxzi5wEQeQHKqoRoRGe/sk91cQX1ViS3zItTIkMqPkWTVtpMpo3JQsbHyb9SrXhbJRq7DphgQmqmelnjQi/vrGRbFp7e3H5+jreuLYOQ9dwx83bAAAFwZtXMigW2u/f7777BrJZCKDqbrKMCy6q+RMt33qkde6pqNadTh+7rfRc7serl10/tV1j0DXv3jZ0DexRvZUU92Fhm3LFghd0lARd03BkH7WAEkReoaIaERrRXi+ep5r4y5DtCJPag8iCNqXaFpuM5ikwhI0P46NdimrV9MYOx3H4omV6vNW+pZKaSgVE+PWNZ6RC7AVTqR3dN4XhodZ1Z/D2T3XHjc4F37bxIWUK5SrClGqsqNbp7xUXVpwrFnTccWgGmga8Pr+GhZWakNcfJJhSjRWNqEjk8eobLT+1m3whBUAr3KVQaCWB0vnajBdS4AUdJeWoW1Q7RUU1JWChSE+fuIJT5xeVSa4n1CR5aZ3YMnBPNUFtKaw4J0WpNkJKNSI7/J5qzORXFzTpygPHDs/i1n3T+MivfRUAcN+xPfjH71dHocbgk+KRze2f9YYNs9FEuWhI/xz+Bcu28TIuXl3DyroaaipVEOHXNzasVvonK6rdfXg7/1lB4aACoFUAZkW1mYkhXFuubbmNg6iw58H4sGilWuu8lwo6xodLOHjDBF6+uIznX76G9929R8h7DApMqTZSKWB1o0FKNR9MqXbQ56fGKBV01BtN8vjqghd0JM4jlhXVzl5cRr3RRCmF+QfRneOn5/HYk2fbFPJTY2U8eN8hpTaHCXUgpRoRGtGTfZlFtXEqqhEZwpQJjK246Gz4iu9T42XlCmqANz5M+JRqQyWDt+ClpWjyG5dvc5OLVVFTqYIIv74xhYIKri/X8NrlVWgA7jrkFdWYd6mqi9j5pSoWVkwUDI0vAKlAEUzVZEq1VlFXlOqHFefKpdbC+66bZwBQC2g3mFKNKUJJedVio9bA5esbAICbuhXViq1lIp2vzbCQggmBRbWd08OYHC3Batp4xVUQEunTKxRpcdUMFYqUFaSsyxZSqhGh0SUV1WQstrlSbS1cyxAhFtt2cObCEpbWTUyOtBa6KhZVZGF2KBGspr3ldhz9agwVJ+S24/D2zwmfp5qmaRgbLmFx1cTqRgMzExXpn4WdH13TeOGI2j/bYX59jzzxYs/f6efXx4oaKpzbZ8+2VGqH9ky0XX/Mu1RVpdrJcy2V2sHdExhxCxSqFgBVgSnVJlwVpSilGnudktuid+ehGfzXr7yCU68vompaqAjweRoU2LkaGWqdE7pmW7x2uWWIv31yiCsp/RSp/bMn/vZPUWhaa7Pi6y/N4eTrizi6f1rYaxPhCBuKdNeh7Uqta0hZlz30xCVCwxRl4oMKJHiquTtH6zULVtNGQYJvG9EdGtjbPdUAoKGw6bgsTF/amooT8vVqgxcuxkfaJ8VjlSIvqqVBw21NKhZ1X/qoGi2KKsH8+jrHl+mxMh4IMb6M+86t4zjCfHDi8Oxp1vrZ/pl5yraiRbUTbuvn0X1TPKHUstT8rKogy1ONjbGsRX3n9DB2TFUwt1jFS68t4C1HtsbzNgy8/ZOUam28cqmlhjrQ4afGIKVab1j755RApRoAHN033Sqqka9aJkQJRWLBEjIJI1JgyrpOmLJONT/jQYWKakRo+A66oAKBF1QgfmEzPFSAoWto2i01CjP/JuRCA3uLWkdRbSu2f6quVFt2J8SjleKmoruXAJpu+2fR0Hnhh0JWunPs8CyO7pvCz/7a3wIAPvYP78BtN02H2jFm32vTdrBhWnyBnTYr63WcubgEALj7lpm2fyu4z1kVlTS243AD7aP7p/iij9o/e+M4jk+p5nmqiSjqcqWaW/jQNA133DyDL37zAp5/+RoV1Xyw9k+mVFPxmZQFr15ykz+7tH4CQNFoFWxVHI+yxlOqiS2qHdk3CQB47dIqKU4zQEQokijCiBTyqqwbREi+Q4RG9A46e52ChJtc1zTyVUuZsAP7Vujx79b+udVQvqjWxU+NkbZajJ2fUlHH2Ei6Bb08YvnGkNsOhCuoAa1Wpkq5tUjMsmj53NmrcBxg386xTe3F/DmroLr14vwa1qoNlIsGbto1jqKhbgFQFeoNG477VbI5ieMAloDv1+RFNc9a4K5DrSLtt1+5LixUahBgGxfUsuzhOE7/ohop1Xoio/0TAGYmKpidrMB2WgolIl1EhCKJIIyvm9W08TcvvBFaWUfIhcrfRGgM4emf8to/gdYEdnHVVLqoNkjeY6pJprOkM6hgK05I/eb7rPVGJdiEeGJk84R4lCnVqikp1dzFcbFgeEo1BVoUVYUpPwuGFjlVd2y4hKpZxepGA7u2yfh0/Tnupn4eu2X7pn9jz1lLwc0HplK7Ze8kCobOFZ5UoOhN1X0WaFpLFctoWE0UC8nmPjyowFdUu3nPBEaGClirNvDKGyuBwR1bCXauhgdQqRZ3Hnl1uYa1agMFQ8ONs2Ndf4f59ZEadTM8/bNPgE4cjuybwvxSFSfPL+KOm2f6/wEhDBaKFLSe6ReKlJQwIoXf+vxL0DSgEdJ+IQ1l3VaHimpEaHThnmry2j8Bb7GsahvVoHmPxZVMD1JhkdHZ/rkVJ6SqK9W8kILNE+LUlWru9VEqeO2fDctGrd6k1o8u8HbZGEWJ8eES5hermT0XNmoNbvZ/7PDmohorVDUVHDP8fmoAUCiQiqUf7FkwVCrwIrDtODAbNoYTulIwTzXW/gm0NinfdHAbnn5pDs+/fI2Kai6DGlSQZB75qpsueeOOsZ5jKSnVumPWmzzVV3T7JwDcun8KX33hEt/IINJDRChSUsKIFJjauVzU2zyMeyFbWUdQ+ycRAUN0+mdTXvon4EsAVbColte45iDCDth13+B//PQ8Hnr0KTz8+HP47OdP4OHHn8NDjz6Vy+P30xlUMCgT+CjUFQ8qYLvM3ds/W4qStbSKag2vSFQuGXyRvFqlsIJuNHhRLXqibtp+eZ288Mp1NG0Hu7YNY9e2kU3/zjaZRLQHisRq2jjtto/wopqin1UlmGp5qGRA0zR+b4tQ77LXKHckS9/pKlueP3st8XsMCiwcYqTC2j8d2E6+r9uk80je+rmre+snAN7ivRU3BoNgm8PlooGhkvhk98M3tsbY1+fXyAoiA1go0lQPFWKpKP479xNWpPAP33sQ//lfvafn52TIVtYRLaioRoRGeFGNKdUkFdWYf8nKmloPpEH1HmOS6X783l+ewq88/hz+5CuvDFxhkbHJU03BopJsTEttpdqyO2mZ7NL+OVZhSrV0gwpKrlqAp1QquCGgAqyYUIyR6syfCxmlq7LUz24qNcAXCKSYH9a5K6sw602MVorYu2MUAMhTLQRVkynVWoswthirh1AW9IN7qnUUl2+/aRsMXcOVhQ1cvr6e+H0Ggc72TyDfz2UR88hXLwf7qQHe9ariMzxLltx568RoSYpFw8RICbtnhgEAf/7UOZw6v5i7NUHeOXZ4Fr/y4Xsx4wbd/dj7bsb3vGUPAOCPvniGp7bLIKxI4aZd4ygYOh6871Dg78lW1hEtqKhGhMab7OejqOYp1dTqI4/iPZYnmGQ6iIM3jEPXNJw8v4gvPH0+8HfzWFhkbG7/zOdxJKFeV7uoxtr/xgOUamm1f/Iikbs4HuO+alRU60ajS9tbWLI8t2ajie+8eh0AcOyW7q1ZBcGBQKI4eW4BAHDkxknuY1cgFUtfmFKNtXGzwnm9IUCp5t4H5VL7fTA8VMCRGycBAC+8fD3x+wwCXvqn52uX52Jw0nlkw7Lx+twqgOCiGmsLFVWAtO1WgvDTJ67kulDEOmBktH4CLRXi9eXW9/vX37o4MF0ceUPXNV6MOrh7Aj/87gOYHC1hfqmKLzz9urT3DSNS8KvPmLJuuMMuZHqsjI/cf3suLYXyCJm1EKER7qnmTmiMGGqDMEy4DzvVPNVUimsWDRvYf+8vT2G95pn1T4+V8YDr8bGwUsPnvvwynjkZPDnIc6hBZ1Etz5P3uJhtQQXqHT83Ge7qqZZuUIG1SamWblEvb7AiTjxPNffcZvBcePHVBdQtGzMTQ7jRVXt1whXhihXiT3b4qQGep1qeFT+yqfVSqgk4Z72UagBwx80zeOncIp5/+Rq+7203Jn6vvMNUJf5Fp4qbPWFJOo98fX4VVtPBaKWI7ZOVrr8DiFWqDZKPMFOqiU7+BLy23k5YFwcVSdLFP9+olAv4x+8/hN/805fwF18/j3fctgOzU8PC3zOOr9uxw7PYMC387hdOYc/2ETx43y0D4VGdJ0ipRoTG8O2gOwK8KFhxrrDFPNVUiWuWxbHDs/jR9x4EAOydHcUvPHAXHv7wvXwSMD0+hDsPhUszymNhEfAWO5Xy1m2dUD2ogI0L3T3VWj+rms1UPnun8T5XUyk2dqlCvZGgqJZh++ezZ1obCXffsr1nyxBP1FSo/bPeaOJl19T86P5p/nNq/+yP56kmQ6nW3VMN8HzVzl5cwhp5M/JNnlLJ4ONGnhWWSeeR3E9t93hg+2JJ0LkaNB9hviknWKk2qPYweabhSxsHgHuOzOK2/VOwmjb+6K/PClkPd+OuQ9vb2tUZQeoz9iwYGSriyL4pKqilDBXViND42zRFtKaw15B1048rWlQLI+stFXTsne2uZMgD7Ludnax0HdgHvbDIlGqj3BQ5v5P3uLQHFcjznohDveEld3VL/xweKvAWtzQWpJuKaiOt64baP7vDrqduCp1+eMmu6Z5bq2njebcVr5efGqCmUu3sG8uwmg6mxsrYMeWpWtgiYyu2t4eFPQsqEpRq9YA26JnJCvZsH4XjAN9+ZWsHFjiOwwuQpYLume8ruNkTlqjtYZ28dqm/nxrgPZOSnKu4hSKVW0WX1phSTewcdVDtYfJMpzJe0zT8+AcOo2Bo+M6r1/HsGTnj64lzC9ioWRguG/jX/+gO/NQP3bpJpNDJIGwY5BkqqhGh8RfVRDzcrJQ81Wr15ibj+CwJ4z1Wt2x84g+O48L8Gv+ZyhOMTiwrWEmSdEKoMo7j8PRPVlTbig84f7qdasfPCu0tOf/mwoyuaRhNMSWys0jEgwqo/bMrjT7jSxBpt9aycft//O2rqJoWxoeLOHjDRM/fZ0q1pkL3zClf66df1ULtn/2pdirViuKUamaAUg0AV4Q/v8V91aymAyYmKRUMft3muagWZh55x6GZnpvWr1xqKU8P7u49FgGez2eSZ3icQpHqyfC8qDYmtv1zkO1h8oq3nvHG2Z3Tw/i+t+0DADz+pTNckSySv3vxCgDg7bftxO0HtuHtt+7sqz4T7YFIRIOKakRohCvVJHuqDZUMLl1XrY2KeY91Luinx8r4ke86gKmxMuYWNvCJ//db+NtvX1J+gtEJm4AVeny3YSaEeU2rsZo2bHcGP8KUalvwAady++ey27oxMdI7uSvNsAJeJCq2p3+qNm6pQqeyLwpj7mbLWrUhPWHTP24zU2Oz0cRzZ672/Bv2nLUU2jQ5cW6znxqQn/bPLDekuKea+6xnhXOR7Z+lXkU1twX0xVevKzcGp4l/g6dU1H3XrTr3WByOHZ7lyYR+yq4q8ivPvYFvnto8R1zZqOPqUg0AcNOuscD3YEXgJNdP2ALQc2evwqw3c9EquujOIaYEK9UGvYsjb9iOw9e7TJnN+IF37MPMxBAWVkz82d+dE/q+GzULz7rzhHe+aVfovytSeFCmUFABERqW/gmIbf+UpVTTNA3jIyVcW65heb0eaMaaBccOz+LclRX8xddfx203TeMH3r6Pm0p+1x278V/+/ARefHUBv/uFU13/XmXTUjZZLQQsellhsdO4FgD27hjF3bf0bpFSmaovpGB0iLV/5nvyHgd/+6dqQQUsEbibnxpjrJKeUo0XiYz29s+0WxTzQqMj2CEKo0NFaBrgOMDaRoMH2oiml9m02bADx23uXarImLFRa+DclVarWGdRrZCDolrW5uis/dMLKnCVakKCCtz0zx5Ftf27xjAxUsLyeh2nLyzi9pu2JX7PPMKeRYauoWDoPqWaOh0McZhfquLaSg0agJ/9B2+C2WhicqSMQ3sm8AdfPI2vvnAZn/38SygXdbz5oOdjy1o/d20bxrAvDbUbTJ2TZGMwbAHor791EV957g0gwOMNaLWK3nVoe6abrrLaP1kXR5CyL69dHHnEf913buKViwYe/J5b8Jk/+Ta++M0LuPdNu3DDzIiQ9/3mqTk0LBu7Z0awf2dw4dvPIKhw8wwp1YjQ+J9zeSiqAb6wgjU1F6cb7i72gV3jbbLeseES/tU/vAM//O6b+r6GiqalncaevTh2eBa/8uF78QsP3IWf+qFb8c9/4CgMXcOFuTV87duX0/iowmGtn6Wi7tvlzffkPQ6m75hVU+otcaVa7wnxWIotmI0ObySuVKP2z66w+6kYw1NN1zVeMJV1fpOYTTPltmwVXVhOX1iC4wA7pocx3aGKKSju36KC4mVT+6cUpVoPRbim4Q5Xrfb82a3rq8aUauw8DYpS7dnTLSXLkX1TuOvQdt4eZhg6/sn3HsFbj86iaTt45IkXcfr1Ra7Y/NsXLgEAbgqxWBfh0RTG7mOoZGDbeBmNptO3IJC1p1jVtPg8L2hjLg6D3MWRR/zXfbfOmztvnsGdN8+gaTv4g786hZPnF4Qoolnr5ztv3xkYJNLJIPhF5hkqqhGh0TSNF8BEFHHYaxh9Ci9J4ElvivoPbNRaE+6RLgkvuqbhlj2TfV8j6wlGN5hyoRiitVfXNRzZN4W337oT73zTLvyD72olh/7x/zqLhZWa1M8pAzbZGioa/CG8FY286z7FXtN2lCkSAMHJnwze/llNQ6nWXiTym+nbkpKl8kyS9k/Al64qSQmYxGyapWGrsuA/2aP1E/AVJyw1PqsfVVL0eFBBWYJSLURgB2sBfeHla9JS6lTHSws23P8djIXns2dbRbVuqn5d1/CTH7wVdxzchoZl41c/9wI+9utfw8OPP4dn3QLr8y9f71tYLgk4V2EKRf/8B47i4Q/fix95z4FQr5mlpxibPwyVDF4sFwnr4ugsRE6MlJTsTBlk2HWvab0FIA/edwgFXcOZi8v4lcefT2zRM7ewgZcvLkPTWn5qUeCeaopudA06VFQjIuElkyW/Ybmnmi7vMmStPaolgDLWay2lRC8Jfl5NSzvTcqLwgXv24uDucVTNJn7vL0/lbiFQa7B2n0Iu2qNkYXZMwlVawLAiO1OydiNVpVpHOyMr6DkOsJ5C+mjeSNL+CfgKppKeC0nGbdWUaifdkIJbuxTVmBLZdhzl1NKqpOjVzHalGmvVFBGexJRqzEOrG0f3T6FU0HF9xWwLPtpK+JM/AaDIU2vVuMfisLRm4pWLrbCBXlYZBUPHh3/4dtwwM4yGZW96lm2YVl/FZtG9XpM+v1mhqHMDeXqszAtFmqbh5oAQFz9Zeootrcpp/fTj7+Jgvnk/8YFbqKCWMv7QtV6KsfNzq109UOMqoplK7babpvsqPDshpVq2UFGNiAT3exFQ6Eiz/VNVw+8gpRqQX9NSi7d/Rh9idF3D//4DR1EwdLz42kLu2kCZUq1cMrZ0Ek9ne5NKvmqs/TNoUpxJUIF7vRQMnY8J1AK6mSTpn4BPwSzp3CYZtw2FlGrL63W8cW0dQKvFrBP/+K5agUKVDSmuVCu1q6T8npNxYa8RVFwuFw3cun8aAPD8y1uzBbTekZI6CM/l585egwPgwO7xwIV3wdCxXgtOJgxSbJYEtngfOzyLH3aVaPt2juEXHrgLD3/43rZCUR6S4T0/NbGtn52wLo6b97YKjVcWNqS+H7GZRp+uG9GKaNtx8PUXW2ued94ePqCA4Vfh5k2QMAhQUY2IBFOViTBRtlIoqrHFk6pKNVZUG+5RVMvDBKMbVp/0z37s2jbC2wDy1gbKorXLJSM36Xgy6Fw0qrSAYePBeCilWopBBb7FMXv/NQor2ITXLpus/VPWd5tk3C5wpVr2E+KT5xcAADfOjmK0sllN7T//qo1xqmxIsefBULndUy2pz6bVtPk1EqRUA4A7D7VaQL/+4pVMElCzhqmmWettYQAS8lgy4LE+gU5nLizxTaReBCk2S4KUagy2dtg5PdzmI8zIg6cY35SLqCKKy65tLfP7y9epqJY23B+6x1xDtCL69OtLuL5iolIu4K5DM/3/oAP2THagxhxiq0FFNSISukBPNfZwlempNqF8Ua2llBjp0f6ZhwlGN5IqSYD8toHW/J5qA+LdEod6x6JRpXOwHGKn2Uv/TEOpttkbaXxYrpl+nvHaP6MHFQC+cyvpuZBk3BZpsZCUU27r59H9m1VqQPuGmEpFc0CdDamq2Z7+WS6KUar5lcD97gP2Lc0tVhP7/eSRzvEi755q67UGvzf7paQnVWyK3hhshNgQYa2inYV8f6tolshK/uzFrulhAMDl6+upvB/h0U+pJloR/XffaanU3np0lhe0o+C/r/I6vuUZKqoRkeATfhFBBQ5Tqkn0VFO4/dNxHC7L76VUA3qblqoywegGa11KUlTrbAP96guXcOr8ovI77abP52YQdsTj0rloVKX903YcrKy3ClXB6Z+sqCZ/7OBFaF+K35jCY1fWdDtfUWDnVmbBlI3bnWN7v3Gb+ZR182hJmxMBIQVAK7xI1TFOhQ0px3G8TRaW/sk81RIq1Ux3fNU1LTBl+/jpefzuX57a9PM0E1CzxktJbZ37vG92vfDyNTRtBzdsH8EOt+DSi6SKzWJR7LnyQiOCx+5jh2fxkz9wFACwbbzctVU0K1Ivqs14SrW8bC4PClYfgYBIRXStbuG4m+gbp/UTUNuSYSsgPraEGGhEFtW8oIJ0lGqO40SKJpZNveG1bwQV1YDWBOOuQ9vxf/3uM7h4dR0/eO9+/P133aScQo3R4O2fyT4fawP93Jdfxu//1em2f5saK+PB+w4pMcnyw9M/SwY3RFbBHylNHMfhC5mCocNq2sosYNY2GrAdBxq8wlk3WIvges1C07alFv/rXYz3x1NsP80bvF02Znv5uOT0T8axw7N45Y1l/NUzF3Db/mn8wDv24Za9k4HjtmexkO39cnWpimvLNRi6FqjmKhY0WE01xzhW2HzsybNtLTppPTvqls03D5lSjRV2RCnVSsXeBtph/X7uOrRd2bmECDYHFeTbloEtvPu1fgKeYjOoRS1Isem1K4tSqoUPmWH3SqlodPV0zAovqECupxpjx1QFuqahVm9iaa0e2byeiE+jj5VN0vvLz/HTV2E2mtgxVcHBG8ZjfV7N3WSxmo5y6vGtACnViEh4RTUB6Z8peqo1LJu3YagCS/40dI0b6Aah6xr2zo4BaKmgVJ4EJwkq6GTbxFDXn6u6017l7Z9bN/2zYdlgS+zRSsH9mRr3H2sFHx0uBl6fo5Uib5taqwYbPSelW7v0GLV/9qTRoTyJCi+qpaACnFusAmj5WnXzEOqEhwFlXKRiqZ837R7nKqtu8DFO0Qk8S9Gb8i2A/8+fOJbKZgxTqQGe75kXVJBUqdZuvt8NVRJQs4ap+pinWp7bP816Ey+91vI67Nf6CSRXbApXqvH2z/5jt6rf09J6/6AjkRQMHbNTFQDAJWoBTZV+VjZh7q/733Mg1HqNtX7e+6ZdiQQgqt43WwEqqhGR0HVxE35eVJPoqVYqGqiUWw/vZckpX1HxhxSEHUBZgenastrG/f18CMJi2w7++EviknXSwJ/+mfc2k7j4Wz2ZL4oq54D5qU0EhBQArbFupJJOCyhbYPsXGtxMn9o/N8HHl7hBBSPp+eWxotqO6Uqo32dFKgdivEvjwopqR28MVoio2v7pR9c1wPeM7VdoEgUPKSgZ0N33Lwt6JtQ7CkXdUCUBNWtYIYe3f+bgmu3Fi69dR92yMTMxhL2zo6H+JomFCE9KFXSuuqmye6Hi9+Q4Tmrpn352bXN91a5RUS1NuJVNwFqm1/3F1ssvvHytb9vutaUqTr2+BA3AvbftTPSZiwreN1sFav8kIsFbUwT09Xvtn3Jru+MjZVTNDays13mKjgpsmKyo1rsFrZMZt6h2XfGiGleqJfBUA6LttKvSHmA2Nqd/brWHm9f6qXGFhiqeakypNhFil3lsuIi1akN68YVdH23tnyPptCjmkW5pqVFgSjWz0YRZb/ZNT4yLbTuYX2wltu2cCvY+YrSZ/zdtlHQ5ny0Ix3F4Ue3WHiEFjLy00vmLWNeWq7h5z4T096x1hBQAPk+1pEo1q79STZUE1KzpFVSgqroyiOMs9fPw9khqFmYhcubCEpbWTUyOlPu2ogPi2z+tCEU1Fb+nqtnkBe0wcwhR7No2gufOXqME0JRhHRb91jLd7q9SUccn//BZfOv0VTz90hzecXvvYtlTL10BABzZN9WzOycspFTLDiqqEZEwZCjVJLcxToyUMLewoVwC6DpP/gx/G7LB9vqK2kU1UUq1PO60d0v/VGlSmAZmw0uz5IVFRc4BL6r1UaoBrQTQy5CrVHMcB41Gl6IatX/2pNv5isKQGyJiNW2sbtRRLoVTkUXl2koNVtNBwdAxHXKi7PehFOFdGodL19axsl5HqaDjwO7g4lNexjj/+JPW85Mp1Spl7xnPPdWSKtXq/VugRfr95BnT5z8H5FfJYTVtvPDydQDhWj870XUt8uYjW6A3bQe27SS2HeEbIiFa97nSX6HvianUhsuFULYtouBKNWr/TJUwSjVGt/vrB9+5H//jb1/DH/71Gdyyd7JrwcxxHDz1nVZR7Z1vSqZSA3wKT8WfyYMItX8SkWCtmiLaUtJo/wQ8xYdqRTXe/lkOX1SbGfeUaiqnADHVQlKlWh532tuDCvKh4hCNvzWpKHinOylsUjwRonWDt2BKLGxZTYf7z7V7qlH7Zy88ZV+8RY2maRgfkV+0vOKqCnZMV3j7Xz/8yu20xw3bdnDq/CK+8I3XAQA33zDeVw3IioANBYMK/LQr1dIpqlXr3ZRqgjzVQijVVEhAVQHveZRvpdqp84uomhYmRko4eIN8pSXQXrQVUdzinmohihR8/mSpM7bw1s+UwwJ2+xJAifRoJOy6+YF37MOB3eOomhZ++y9O8OAaP2cuLGN+qYpyycCxW5J7fRYVLEZvFaioRkRClxFUIDmRkylS0jCljsK6z1MtLNPjrQe52WhiraqugiXK7k4QbKc9CNV22mt+T7WcLDhF4/ewKXEpuhpBBStcqRau/ROQq1Tznxe/pxrbDNgwrS1XlO0Hby9OULQfSyFddW7Bbf2cDtf6CbSeseyRmKZS7fjpeTz06FN4+PHn8PUXW7vmr11Z7RsEk4eNA6tpty1m0iqq1UzmqeZTqhVEpX+GU2sm8dMaFPjzyD1XKiqgwsBaP++6ZXvoIn1S/NeXiI2xRggvQAYrDtiOI2TNIYIs/NQA7xmyvF7HRk3duf+gwYMKYq5lDF3Hv/jgrSgVdZx6fQlPfuvipt/52rcvAQDuOTwrxIoir5sGgwAV1YhIFHhRTYSnGlOqyb0MJ5RVqrH2z/CeasWCwY9H5RZQvruTUIWYx532WsNTJ+SlNUo03oLPUM7fYWmNJXf1nxSPssKLxAI2Oy8a2u+X4aECXzilYajPVEpPn7iCU+cXlQr/6KQRwZenFzwBVGJR7cpi9KIa4KnV0ipUHT89j0eeeHFTm2DVbPZNWM5DwnHn2JNaUS1AqWY7TqJzxtM/QyzCWALqB+7ZCwA4uHscD3/43i1RUAO6KNVy2B5l2w6eO3sNAHD3LTOpva9h6LzIL+Iej+KH6S9kqKJW8+YP6SrVKuUCL4xfIrVaaiQNRQKAHdPD+LHvvhkA8CdfeQVv+MImanULz5ycAyCm9RPI5/g2KFBRjYiELqio5jgO3zlOw1MNGAylGpCPsAIRDyJG3nbaefpncSu3f7JzoPNrQLmggjCeasPyUyI9jxm9zXha1zT+/rLHLr9K6bOfP4GHH38ODz36VF+VUhY4jiOoqCb/u+XtnyFDChjMEiENpZptO3jsyfgJy3lIOO78bNeXa13bcERTrfdWqgHJ1Gp1n29lGHRdw1HX76fRtJXaiJKNd65cT7UcKtVefmMZK+t1DJcLONInkVc0IjfGGlb467ZQ8K5RVb6rKPYRoqEE0PRJqlRjvPeuG3D7gWlYTRv/5c9eQr3RxMlzC/jdPz+BqtnEtvEyDgnquMmrEncQoKIaEQm2g55UxeBfLKTmqbamVlGNeapFUaoBvrAChYtqPP1TkAqR7bS/7+4bAABHbpxUdqfd5Eq1gnIqrbTwjKHVU6otu5Pi8ZBBBQCwJlHNVA+YtPEWxaq89++lUlpcNfuqlLKglwddVMZS2GyZY0q1bdGKagWBgUD9iJKw3I08bBywscdwW2utpp3KJhtL/6yUvQJCwfDae+sJWuLNCG10DLYxtdTn+x402BjL/Oe4ulKRZ1IYnnVbP++4eUbYvCosIn1RGxGUaoauc7W2KvOHrJRqQCsBFAAuL5BSLS0sQQIBTdPwv/+9oxgZKuD1uTX8q//8NXzyD5/FF/7uNQAtkcVz7j2eFFKqZQcV1YhIGIKUav7FgnSl2ihr/1RrIsnaP6Mq1ba5YQVptbBEpeV/0fp+kwYV+NF1Dft2jAFoFWtU3Wn3t/zkoTVKBv5FDNuRVmHXzKw3+fcTZlKcRlBBw+qd4sfM9FfX5bx/UpVSFvTyoIuKbL88s9HEwkrrmRO5/TPFcSNpwjJrWbYU9o30ezxOu4WlNDalvGeB94zXNM1LAE0QVuCpgcPfA8xcfWWjsaWeSfXO9M+cKTkcx+FFtTipn0kpCdwYY3ODsMVg1b4rplSbyqCotpuUaqnjBRUkX29MjpbxrjfvAuA9Gxi1en+rhbCotpG9laCiGhEJYUU1O8WimmtIvrrRSKXlIyzrZvT0T8CnVFPUU63pm/wklUx3MuSeK7Ouhul9J47joOa2/JR9RTVVJoRpYfoWMVyKntCYWwSssF4q6G0+R73ghZcUPNW67YTK9v1KqlLKgl4edFHxzq2c75aFFIwMFTBaiaZGLqTY/pk0YTlP7Z+lgo5tExUA6WxKee2f7WMNK1IIaf+MUFQbqxT5tcWKA1sBz8erPf1T5WvWz+tza7i2XEOpoOP2A9Opv7/IzcGo7XQ87EmR74qpPLNQqu3cRgmgaSOq/RNobWI+czK4aCZiE5MHFWyxdYcKUFGNiAT3ekl4s/qTfFhLqSzYwrhpO1hXKDHTa/8cLE81/+RHdJsC25Xv3OVRhYZlg9Vty77WR8cRk5ibF/x+P95Oc/bfGfdTGy21+Zf1ginV1iQW5OsB/mBjkotqSVVKWeA3ug7zHfaCqxAltQHOLVYBRG/9BHybVymov5ImLOdBjesvXLPn57XlqvT3Zc+pSsfGGU8ATVAoYO2fUZRqmqbxYsDSqlp2GDLpVKoVctYexVI/33RgW6TvWxQii5BMNVoMeRyikwxt28HJcwv4m2cv4uS5hUgFDMdxIgUdiYYp1a4uV5VJUx90vPbP5PddWpuYeRvfBoloq3liy8Na7kR5qmm+15RFwdAxWilirdrA8nqdL6ayZp23f0b0VBtXW6nW8C0Ek6Z/dsJ2/GsJ2mZk4v9c5ZLRps6yLAeGGpeedOo+vx+uylDgAc98FSdCqnOYwsh2HGzUrMiKozCwa6SrUk1y+2dSlVIWREmPC4KdW1kFyyvXWy06OyOGFADepDiNQjxLWH7kiRd7/k5QwnKePNX8RbVU2j/NHkq1IlOqJW//jOKpBrRaQK8t17C4lZRqrFW2Q6mm8jXr57kMWz8BcS2YjuPw513YkBmRav/jp+fx2JNn2wobU2NlPHjfoVD+vOs1i18zExko1cZHShguF7BhWriyUMXe2dHUP8NWg7d/CljLpLWJmTcl7iBBSjUiEqI91WSHFDBY0t+yQgmgcZVqrP1zvWah6k7aVcIfUpBESdINtktr1tU7bqA9+VPXNCXTq9LA72Gk0gPer1QLQ7Ggc5NxWd5bfOe+y06obKVaUpVSFliiimo+vzxHggrxykJLCbUjop8a4D1n0/IpYwnLTNXNCJOwnIcWd38hdttEep6kfn9NP9xTLUlQgRXdUw3wvKD6KSYGCbPDxytPRt6Xr6/jjWvrMHQNd9y8LZPPIOoZ7g+ZCVtUE6VUExHIw1qmRytFIcn2UdE0DbtmXF+16+SrlgaiggqA9DYxVfMh3EpQUY2IBJ/sJ1aqsTSudC7B8RSS3qLQsJp8ghJVqTZUKvBCnIotoN5DSHzBlC1OTEWVaryo5n5OQ9d50lseJvCiqPt2o9UqqrUmxRMhkj8ZYxW5YQWNgPZPr/AjZ9xiKqUgglRKWcALtgnbMfy2ABsSNid48mesolp6SjXGscOz+LH33QwA2DU9jF944K5QCcts48Cy1PEr7cS7xwzMpBj0w/w1hzraP8siPNXq0T3VgK2XANqmjmLpn1yppu41y2ABBUf3TUWeK4pCVBHS//dh2+mKAor2ogJ5ljNs/WTsIl+1VGn4RAJJSWsTU3TLNBEeKqoRkWCTfVHtn7JDChg8AXRNjaIaU6lpAIbK0ReHM8xsWcEWUJEPoU54+2e9KUVdkhSuTPAtdPLQHiUaVvQsl9RSqjE/lCitG15KpNyiWred0DHWoiip/RPwVErjHSqlkaFCX5VSFnDVUcS2t06KBYOrEEVvtjiOgyvX4xfVeFBByov+a0ut58nBPRM4sm8qVDE1D+Nbg6tBdWybbD07r6/UpD9DqmZ3pRrzk0qyOcTUV+Wo7Z9MqbZF2j+btsP9MEs5CiqwbQenzi/iqy9cBgDceWgms88iql2W3YdRQmZEFAhEeVkxpVoWrZ+MXdtIqZYmQfOzqKS1iZkH9figQkU1IhI6b/9MGlTgtL2ebHjSmyJKtXW3qDY8VIAeo0Vym8JhBWwgl1FUYwowx1HDo6uTWsNL/mTkwchbNG1BBUbrXKiwgGH3fySlGlOLVWW1fwYU1XxKNZkFgGOHZ/HTP3Rb289uu2lauYIaIDaNa2xYjgpxtdrAhmlBAzA7VYn896IU4VFh4Qo7InzmPEzg/Quj6bEyNK31M1nJrwymVKuUOoMKkhd1/GNsFJhSYqu0f/p96/LS/nn89DweevQpPPz4c7i61Lon/+ypc6FaFGUgqggZJ2RGRCubKC8rVlRTQal26Rop1TphheinT1zBqfOLicUfgNj2T8DbxOxUrIWxWghLHjYNBhUKKiAikVtPNaZUUyTFbsNXVIsDDytQsKgm+iHkx9/qYtabmSRhBdHZ/gm458HcWg84nmhZ1D1TbgXSqvhOc4Si2qh0pVrvxTFTj9UtG2ajiaGSvEd23acwtZo2vvPqAqymLaU4noSgdtmojA+XML9YFb7ZMrfQWvBMjw9Fbs8DAIMFFaRcqJpfan3u2QjhCnnYNGj4nkkFQ8fUWBkLKyauLVcjjQVRcBynp6cae26JCCool6JdX6wgsFXaP1lKqq5pfP7K5ia246Bp26nZkISBeX91srxWxyNPvJiJelhUETJOyIyIJENRXlYsMXcyQ6UaSwC9srAB23aUsmbIkqQhFL0QuYnHOHZ4Fncd2o5XLi2j4Wgoag4O7p4Q9l2qvmkwyKjzJCFyAS+qJWxLYUW5Qlrtn4p5qsVN/mRws2UF2z8tCQ8hhq5pfEGiYgJot0VUHpQcouELvqKh1AOeBRVEmRR77Z9yxo5GQDtjuWjw4pF8VU3rOzuwexxjw0VUTQtnLy5Lfc848FY+AQV1Wd+t1/oZXaUGeJtNaXs+XXWVarOT4T93Hvxb6h2JgzMpbEpZTZvPczqL4WyjwUxwzsyIKYoMrlRbM5W0UBCNF5rjqaP8rYcqeQGK8v4SjSjj84YV3QdQxHuL8rLylGrZFdVmJip840vF+X8WiAih6EVDkkhA1zUc3T+N77p7D47unxZaHM1buvEgQUU1IhJssp/cUy3doIIJdwdKlfTPuMmfjBml2z/dgqkkhQvbmWeqMJVgHjl+T7VCDhadovEWfAYvFokqqsWV+Nu2w4vq4zGCCtYkFbXqAcorTdO8FkXJYxe7dofLBbz5YCtl7vmz16S+ZxzqAov2PMBG8Hd7hYcUjMT6+0IGQQVV0+LnIUrLaiGjAmAUOhdG25gnqcTnZ9X3fNqU/lkQqFSLWFxmBYGGZXMbikGmM6QAaF8gq7TZJcr7SzSi5jCsuJ22Uk2Ul5UKRTVd1/hmzeVr5KsmuxAt0yNaFtT+mR35uUoIJWD+X3lr/2SLJ1WKaomVamynXcGdKv4QkpD+CfgSQBUsqtW6tX/mYNEpGr86QKRSze8189nPn8DDjz+Hhx59KtRO5Gq1AcdpmSSPj4S/76Qr1fosNNhnldV+yqiZnh/gnTe3TLFfePmacmoWb5EszlNtRZJSbUeOlGrzrkptbLiISjn8Zk8elLheUEFrXOZKb4lFNX4/FY1Ni3W20RA3/dN2HF+LfbSiWqlo8M28rdACavL2em+8MHSdz2VVWniK8v4SjTClWjO6ulKU6qaXl1WxoIduqeVFtbHsPNUASgD1I7sQLUupJhMRhWgiHvm5Sggl4F4vSYtqTsrpnyOe2iTN3f9ebLgT7uEIixc/bFGwsl5PtNstA+6pJmlnh6nAmAm0Snjpn973modFp2i4iXbR4Iu+pMESSSX+y+6EeGy4GEkhK8vMnlHvWPD3en/RhZ9OWDv1UMnAbTdNo2BomF+qKjdxFznJHZfkl8cM/+MkfwLemJH0ORsFZogeNVghD+2fnQluaSi9+bOgS7p3ucDCW+I9uxu+YlwcX1F/C+igU++iVAO8TT+VnsuivL9EI0r54m0ghb9mRRYIjh2exSd+8m1tPzN04I6b+yerOo7D08OnMlSqAV4C6CVKAJVeiLZi+ABmjagiOBGd/FwlhBIURKV/NtNN/xytFKFrGhzIV3yEIWn758hQgauhVFOrsaJaQdJDiB13TUGlWreggq3Y/un3MBKhVBMh8Wcq1YmIE2KuVKtKCiros3s/7ksAlYnfD3CoVMCRfVMAgOdfVqsFlBVsoyzMesEUzCJba23bwTxv/4xXVDMEPWejMOd+5ih+akA+ggo6W4ZnuFKtKu09vftp8zOeFXjMmEo101eM6+bF2I/JLZQA6qWktp8ndi2o9FwW5f0lGnFBBWzsTl+pxvBvVIxWiqjV7VDeoWvVBv/bKPYRMtg901KqXVFswysLZBei2fwsj+2fKo1tW4X8XCWEErAiWN481XRdw5jbRrW8ln0LqNf+Ga+opmmat9uuWFGtIVmpxj3VFFPoAYDZaBVLh9raP7NZdMqIFw+L6Uum80+K47YSipD4s/s+atqfv/1TRitko4/hOBu3VtbTCSpgype73N171YpqItM/ZagAr63UYDUdFAwd026bflRYUS2L9s8oyZ9APpS4/JopblaqyWpvrpqbnwWMpInI9bpXnGBtjFFgSput0P7Zq022oKDvkCjvL9EIU6rFGLtFBx2x19F1DXcd8mwO+sFUamPDxcwLLGyz5vL1deXsGdJGdiGaBZnkSqmWg2fyoJKfq4RQAm8HPV+eagAwMayOr5qnVIvnqQb4fNUUCyuQbezptX+qV1Tr6qmWweQ9ifdYUhzH8SnVjHZT6JjnQITEf9n9t4nRqEW11u9bTUfKNVe3gpWdaSnVzDorArQK/awl5pWLy9JbT6PQ2cqXBBntn3MLnp9a3MUvb/9McVLsFdVitn8q7BnZ6FCqTY8PQUPr3pOlXGdjRaVbUY0HFcRVqrX+Lk7rJ7DV2j89f08/WW129YN5f3V2MUyPlUN7f4lGlFqsHmPs9pT+YsYXvzL8TlZUe+V6379TIaSAsXN6GBqA9ZolPRVcdWQWopu2DduRG7wmAxU3DLYK+blKCCUQVlRz/76Q4o7b+CgrqmU/kWSpW3GVakA6ZstxsCTLpVVWqnmear72z5Qn7zLjxcPQtB0+ESkXdSFJayIk/p5SLdqkuFw0+IJMRmGrwY20uy+Qx9PyVPO1fwKtwsONs6NwAHwnxKIjLeIszHrBCqat1h4x9+cVt6i2M6Liy4+o52wU5uN6qinYRtcJL6q543LB0HkLpKznZ7WjSO2HK9ViPsN6FYrCwo59KynVyh3jq8oJeccOz+LH3n8zAGDP9hH8wgN34eEP35tJQQ3wWu2Te6p5Xquh39tg3ndi5nvepoyB2w9sg6FrmFvY4ON2L9i9okJRrVQ0MDPZmv9TAqhXiO5UQCYtRPuv91wq1RQc2wad/FwlhBLwoIKEu9KsFS2toALAa/taUUKp1tpdSqJUm1E0AVS2sSdbpKgYVNDVU41PCuUvkGXHi4fBv1AsFQ0UDK9FKa4yQ4TEf2k9XvsnAIxV5IUV9GuJSbv909+uxnbyVWoB7VeEjMJopQj2BFoT9N1e4Uq1+EW1gqDnbFjqjSYvwkf2VFPQ8L0T7uXk2+jZJtlXrWb2DirgSrWYix42xsZWqo2SUk31FqmGq8yanRrGkX1Tqbd8+hF1ruKEzHgFPTFjoeVrBa+UC3zO8O0+zzhPqZatnxrDSwCNXlTL0hpEFscOz+LA7nH+3z//Y3ckLkT71dey7GxkoPKGwaCTn6uEUAK2OLYT9vFbNvM1SO8SZAoVJdo/TXFKNeXaP90HkbT0T4WDCvwJiow020xkx4uHgZlv65rGi+ZJ04hESPxX1uK1fwJ+XzXxhS2uvOqhOkk7qMBfEGYtoC++tqDMBE1k+6euaxh1v1tRbTSs/TNuSAHg2SKkpW5lyZ+VcgGjlWgbPXkIKvAvpBmyPUnZpk8lSKkW01PNbCQrLE9tJaVaj2AT1c28k6oRRSJqkV7v4x8a+N6CxhdvE6t1PbBnXL8WUOappoJSDQB286JatLCCLK1BZONf2x3YPZG4EM2uFUPXMi1qR0V0uAcRnuxHayJXsMl+Uq+XZgZKtXGFlGoi2z+VU6rx9E853y3bnTcVLKqZXRLf0py8y44XDwNbKJaKOjSto6iW4BwwiX+l3H7PjFaKoST+iZRqEgtbncmEvd+7kXgzI4hal3a1fTvHMDFagllv4vTri9LeOwoi2z8B8e21V0QU1VJu//S3fmoRje9V9aby0+0em5Fsn9BN+clg7W/x2z+Zp1qy9s+VjYbS35sI6l0KqoD6ARtmQjWiSAqCCltxNkSY0l/U/Ikpndkm1h03bwPQ2pBkXsfd4Eq1Por5tNi5zQsrCEvW1iCy8a/tRGwC8uTPHLV+Au3tn1s9yCJt8nWlEJmT66ACdzGddfqn1bR58UVE++fiqqnUxFh2UIHKnmrdJsJpTt5lx4uHge9GF7uFNST7zo4dnsX3v21v28/edGA6lMSf7WLG2WnmSrWqjPbPYJ8Z9t624wRO+pNidlFZ6pqGO92d/OcUaQEVmf4J+L5bAZstZqOJhZXWgmXHdLQ2Sj9GyoUqHlIQsfUT8I1vgtqzZNDoogadmWgdqyylNy9Sl7so1QrMUy1mUEEMbyo/Y5UiL1YsDXgLaK/ilOotUv6wn6wpiVKqWd1Vg0EIV6o1258fO6aGsXN6GE3bwYlzCz3/zlOqqdH+yZRql0Iq1VSwBpFJw2pysQIQXwXc/prBG56qwu4ZB+n6shJUVCMiIjqoIBNPtYyT7FjrJwAMd5lwh2VspISCocNx0LflL02sGL4ZUVA7/ZOpfXxFtRQn77LjxcPgLWK871/kAqbuLt5vnB0F0PL76lesq9UtXsgej6VUY+2fMoIKgu+XgqHzcUKmypZ7QHUoa3h7zMvXlNj19BtNi4ArmAW0f7Li1MhQgSsM41BIW6kWM/kT8KXzNdXdFe+mVJMd9BNKqRZz4ZfUU03TNL65sLSavXJfJr1aDkUXa0TDn6Ol7JdposJI6jE2RAqCTde7PT+YWu2FgI0jldI/AWDXTEuptrhqomr232xTwRpEJp1iCRHXi2x/aFm0hYMpumkwqOTrSiEyRxdWVGO96il6qo2qoVRjapNK2UjUp69rGraNtx7wKvmqWZJ3d9jOv2pFNcdxuvpSpek5JDNePCz1LioKrswQUVRzX//Wm6YxNVZG1WzixVd77zADnkqtXDQ2tY+Gwd+CKZowC42xEbm+ao7j+JRq7efn1n1TKBV0LKyYuDC/JuX9o+CpHUQp1cSdWxGtn4AvECi1olrrc8cpqhV9anNVd8WtLmpQpvS+tlyVUgys9ihSAyKUat1bGqPA2tiShhWobnreSwksulgjGpXaP0VtisVRGYv2h2KfwX9e7zjY2jj69qvXu16/tuPwdYMqRbWRoSLfEOqXXAqoYQ0ik06vbJHtn3lTqvm7hFTdNBhU8nWlEJnDimBJJ888/TPF9k/2ANowrcRtaElYd5M/h8vxWz8Zss2W48B9CGS1fyrqqdbyL2j9f/+ErZiy6TjzHuv060saLx6Wbm0rYpVqrdcYKhp4i3ssz5wK9gJhE+I4fmpAq10KkJT+2eivvBoXbKbfidW0+ZjeuYgrFQ3cun8agBopoKLbP/m5FaACFFZU09MdM5in2o6p6J+7bQKvaIGim1Jt2i2q1Ru2lLbu4KCC1j3WtJ1Y33FSpRrgSwBNoHLPg+l5NzsCQH0z73rCMAqRCPdUi3DdFmUp1XwF6Zv3TKBSLmB1o4HXLq9s+hvmZ6oBGB9JPm8Xxa7p8L5qKliDyGSpQywhYgOXW9nkTKmmaZpwL0IiHPm6UojM4e2fTUGeaim2fw6XC3ygyTIBtCogpIChYgKo7AcRT/9UzFPN/3n8SjXRkfBhOHZ4Fj94737+3x+5//bE8eJhYUqi9vZPdg7EKdVKRQNvPdo6nufPXgv02GP3e5zkT0BeUIHVtHn4QJDySnYCaNVXoO6mrLnzkNcCmjXdFkVJ8FSAyQsrLPlzR8KiWsEQ85wNg9W0eQvk9jiear7rVtUCRbdrpljQuT+SjOcnV6qVN99P/rExzpho9vFhDEPSBNC8mJ7zc9UxvqquVONhFF3G47QRlv7Z47sI897ClGrNzZt+BUPH7Te1No5eeGXzM47dI+MjpVS7a/qxayZ8AqgK1iAyWe5Q2Alp/8ypUg1Q3zNyUMnflUJkCiuCJU2hszLwVNM0zfNVW5ej+AgDM9McEVFUG5frCxMHy10IFiSpED2lmjzT9jjw1s+iAd2XoMfOQ9oybP9O3b6dY6lFgncz0RYVVAD4i2o6Duwex7bxIZiNJr7zyvWef7PstjjFVqoNy1Gq+Sc8Ydo/ZXmqMdVnqah3vU7uONjynHnt8mrm/o390lKjIjL9U5xSzV1I2vLHjOvLNThO6/qLY8Kta5pPWadW6x+jl+G0zLCCIKVawdDB7rI4CaD1enf1VRRYG1uc9s88mZ7nVanGn6MKqGSKgsKWPFW2Ap5qHZsynq/a5nmEan5qjF1uAuila/2VaipYg8hks6eauKCCQiF/50S0wpMIR/ajNZErDL6DnuxGzcJTDQDGXWlz565Gmmyw9s8EyZ+MbQq2f0oPKlA0/dPs4qcG+Iy8U364+RdraT5YuxlDi3zAm772Uk3TcM/R/i2gXKkWs7XBS/8UW9Tyn49gpZq89lPAZ6reY5E+MVrGTbvGAQDf7rKTnyb90lKjwotqCQuWjuPgynUxRbU0lWqs9XN2qgJNi7d4SDPhOCq27fDW5s5rZkZiWEFQUIGmaXxRbyZQqpUTqDWZaiVOkTxPpuf1HsUp1RedIlp8RVEUNIfhGyIxlGrC0j8tb/7g500HtkEDcGF+DQsd82mvqKZG8ieDJYCGUaoBwNTYUNefp2UNIhMZSrW8pn8C6gexDCr5u1KITBEWVNBM31MN8JQqWbZ/rgts/5S50x4X2eaevP2z3lQqbc7sUZgophhU0O3zACkX1boUPZihtsigAvaarAX02y9f4+qQTrinWsL2z3rDFlrMZeeqYOiBBY0xgWqqbvBrt4uqhnFnwE5+moj2VBsbEVOwXK02eLJzHMN/PzyoIIUxgyV/xmn9ZKjs39JWuO54JnkJoFXh7+slQXe/p9iivhFHqdZFDRwVViCI0/6ZJ9NzPl50BhUo3h7FlWoKtX82bSeR+pBviETwiSsISh71PkP358fYcAkHb5gAAHy7Q/XOQwr6tE+mDVOqzS9WQ80vv3T8IgDgniPb+c8++g/enJo1iExkeKp5AoHs78GoqN7ePqhQUY2IREF0UEHKUmMWVrCSYQLohoT2z+srtcQtuaJgkx9pQQXuJNNxxDw4RVFrtL7XTUq1rIpqvsVamuepW7tNUeDEuLNot2/HGGYnK6hbds+CD1vcxW3/HCoZvHAg0tcsbIGIjVurkjYDWAEgyL/nzkOtifhL5xYyU4natuO1lwsLKmidW7PRTHRczE9t23g5sYrOELR5FYY5N/kzTkgBo6BwK13d1wbUqZDZJkmpZjVtfp1WuniqAZ7KLM7YzP22BHiqLa6ZkTen8mR6bnZswjBUb//k37ECC3r/fZNE+aKEUo0VSrrcO14LaLsaW9X2z6mxMsolA7bj8M2RXqys1/HNU3MAgO996z7+8wM3jOe25dMPK3yyZ6dIpZosKxuZkFItG6ioRkSCDb5JvTKaGRXVuFJNkuIjDOsC2z8nx0rQNQ1N29nkKZAVPP1TUvunf8GqUgKo2aPdJ6vWKH+BII4aIun7tgUVuN+ZGKUaW2y0Xr+tBfTkXNe/WeFKtXiTYk3TfGEF4low2bH0M92Xnf4Z1KrG2LN9BNvGy2hYNk6eW5TyOfoR1oMuCq2Caeu1khRMRfmpAT7lVwpFtauLXvtnXER5LsmAXTOGrm1aPM5ICvqp+Z5LvQrV7DkWx1NNhN8WKxA0LJur58OSJ9Pzeo92P9XbP3sVA7OgraiW4Hx5qsEYRTXLFtKZELSR9eaDrUCeE+cX2+ZPSwmV7rLQNC10AujfvHAJVtPBTbvGcWD3uLDQOVVg7Z/T4964lpSGZCsbmVBQQTbk70ohMkXUDrrnqZZyUW1UAaWa2yI0XE6uVDN0nU9uVWkBZWokWe2fuqbxHXqVEkBrPTzVsnq4tbV/prjY9TxsNivVxHiqbW59euvRHQCA77y6gKq5eYG4xD3V4k+Kxyrifc28JLLge0VW+iijFqL9U9M03HlzS632/MtXpXyOfvivY1ETXU3TMC6gBfSKoORPwPMaTaX9cyl5UU10i5ZIghbyzD7h2kpNqJUAG4NKBb2nbywbH5lHZBRE+G2VigZXy0dtAc2T6XmnXQDDU3KoWVQwFfJUM3Sdhy+JKKpFaadjY4vjiFHuBqVH79k+gml34+jUeW/jaFFRpRoA7HJ91S4F+KpZTRtfee4NAMB9x/YAyK6DQga27fDwOWZjUBcQVCB7LSMTkd0hRHjyd6UQmSKsqMY91VIOKhjO3lNNZPsn4DNbXhHvCxMH2UEFgFe4Ukmp1svsvWhkk4zX1v4ZY+EWF6/90/v+PU81AemfXTxy9mwfwa5tw7CaNp47217wsW2HF6OSGA17CaAC2z/d76jfIoO1f67XLCmT4DDtnwBwxyHPVy2LdnO2QDZ0TWjIzZiAsIK5hdb4K6KoxoMKJCvVbNvBVVZUS+SpxhZo6hUogsymt7mqBrPejKzWCoI/CwI2ztiiPk5KXbeNhTj4W0CjcuzwLH70vQc3/Vwl03PHcXzBOZ0KcnV9ANs+twJFNUBMOxl7/sdp/wTEFIB6BRUArQ2WO1y12gs+XzXW/jmlZFGtv1Lt+bPXsLhqYny4iLccad2X/PofgKLaarUB23GgwbPEERpUkGel2gB8v3kif1cKkSleUS1p+mdG7Z+jrKiWnYGuyPZPwJcAqohSje38yvJUA/xhBeIWQknhO8uKpH+aWaV/dgkqEOqp1qW9VNM03HOEtYC2p4CubtThOICmecWTOEhp/ww5aRseKnClgIwEUHatBLV/AsDhvVMolwwsr9fx2qUV4Z+jH7ImueMCgiCYp9ougUo12QuehdUarKYDQ9cwPd49GS4MxYKrYlFwAh90jxULBp8TiAwrYEq1oPuJta/H2fAQ4akGeMbrcRJAgfZNCl0DfuGBu5QyPW/aDi/+dyalegpydTbmGFbT/7nVKKqxIkzcuYTjOGh0SQbvh78YLrKlr9dnYL5q337lGhzHQdO2+WaLaumfgKdUC0oAfdINKHjPnTfw694Lw1FvIyQqy27Rc2y4yOffIq8VWVY2MqGggmxQ4kqxbRuf+cxn8O53vxt33nkn/sW/+Be4cOFCz98/d+4cfuqnfgpvectb8J73vAef+cxnYFnqLK4HGV1QH76VsacakwpngWilGg8rUKWoloK5J1ODKalU62ihy85TzXu/dNs/Ny/4RLXABu3g3+O2gL702gIvXAOeH8r4cClRO9IoU6pV0w8q0DVNilKO0Utl2UmxoONNN00DAP76mxfwN89exMlzC4k9NsMiq6jmndt4zwXbdjC3KE6pZqSkVLvqS/5Mcm+o3f4ZrAblSu8lcc9Pdj9VAtqp2fhlJlKqJbsPmPImTgIo0L6Qtx3g5j0TSrR8MvwFy87nBbseVGz/9Cu6VfBUA3zBDjHvcavpgJ3pKEU1Xdf4OkGEEparw3s8647cOIVSQcfCiomLV9exst6A47BnsHpFtd0zrefNlesbXdXjF+bXcObCEnRNw3vv3M1/7vl2qjdmR4V1Ho2PlLkCUUR3RpDKWXXIUy0blLhSfuM3fgOPPfYY/uN//I/44z/+Y9i2jZ/8yZ9Evb558bC8vIwf//EfR7Vaxe///u/jV3/1V/GXf/mX+PjHP57BJ996sN2NpIsonv6ZdvvniJf0lpXKibWZDIsqqvH2TzWKarz9U+J3W+ZKNXWKar2CCopZpX/W/e2f6QcV+CfO7AGfNKjArzzobN+4YWYEN2wfQdN28OxprwV0WYCfGiBHqRa2qOZ//yRqql547Wr9VRHsPD714hV86o+O45N/+CweevQpHD893+cvk1OPcL6iMJ6w/fP6Sg1W00bB0PkmRxJELiKDmBPgpwao7c/TrxDLvi+RCaBsbhGkVPOCCmIo1SwxfltJ2j+BzeqYrFKBe8HOk65pmzZwkyqvZMKe3YauSVX8RyFpO1mjLYU32nXrqW6SX1/9lGqlooFb97c2jl54+RrvapkYTbYpJ4vtkxUYugaz0cTCyub7+EuuSu3uw9vb1MgFroZWr6gcFS+dtSS07TENKxtZUFEtGzK/Uur1On7nd34HH/3oR/He974XR44cwX/6T/8JV65cwRe/+MVNv//EE09gY2MDn/70p3HbbbfhLW95Cz7xiU/gv/23/4aLFy9mcARbCzYxcZCssMYMmNNWqg2VCnwimoWvmm07vDVkRFD7p6wEszg4juOZe6bhqabQJJ77Um3aEc+oqKZS+6egB7y/ONhtB/+trAX0lFfgYa0B4wlbN5iaaU1o+2c4TzX/+69KUNn2unY7OX56Hl969o1NP19cNfHIEy9KL6z1Ux3FZWwkmQqQhxRMJVN8MQq8NUfufTu/mNxPDVDbv6Vf4ZqFFYh8foZJ0y3x9s9ozzDHcWDWxfhtsfbP+Eq1dh+nmqnO8xjwzm2xqEPT2u/LrJ7LYVAppIDBlX0xn+Hs7zRE72IQGSrhBRX0PrdvPuh6h75yDUur6rZ+Aq1nBdsUuXSt/X5crzXw9EtXAADvv/uGtn/jamgFr/+oLPvSWdm4KiLx3uu6ybxUEpmsxjfbdnDq/CKePnEFp84vptbFoApipDIJOHXqFNbX1/GOd7yD/2x8fBy33norvvnNb+KDH/xg2++fP38eBw4cwPT0NP/ZrbfeCgD41re+hT179qTzwbco/iJY03ZiLyCy8lQDWkqL+aUqltfq2DGVvFUnClWfOk60Uu26m2DWOXlMk6btSfxl+hCwNjWllGq9PNUy8jbIqqjGFnz+BUGJT8iTfV+spbXXDv5bj+7AE3/7Gk6eW8TKRh3jwyVePJ8cSWYyPFYRn8AZ1lMN8FS2Uts/A9rVbNvBY0+eDXydx588i7sObZe2oy/fUy1ewVJk8ieQfvunOKWaehPofvfYjO/5KYqau3FWCQgq4G1KEcfmIJ+wqLD2zzhKNatp86KshtZGq0pp3IDPiqCbn57CnkPdwn6yJun54vdhlwJnP0SGSoRRh7Oi2qtvrODC/CoANZM/Gbu2jeDy9Y1NRbWvffsy6paNPdtHccveybZ/U3nMjorXjVAWusHTyLFSLYt1x/HT83jsybNtHp1TY2U8eN8hZXw2ZZN5Ue3KlVYVfdeuXW0/n52d5f/W+fP5+Xk0m00YRmtS8sYbrZ3z69evb/r9sGRhRMhaH9NugUxCyfEWypre/byFOS42KSwWjdTP/cRoq6i2XmtEem8R35ffCyUoGSwKs25hsN6wUa03+eI7LCKvQ78/w1C5IO27rbgFybpl93yPtO8vVvAZHmo/btZSZzUdGIaWuOgZ6v6ynbaHqWU7qd1nrHBW8Z2Hsu8cJPm+eOtnUe/6OjfMjmLfzjGcv7KK589ew/uO7eHtklNj5UTngKk6Vqvixg1WNCmX+o+DzFB9rWYJ/y7ZIm6k0vuePXluoa+h+cKqiVcuLePo/unA34tLk3//Yp8b/LvdqMcaN1iC5u6ZESGfixWkmwH3S1S6Hde8+7l3JfzcbIFqO+mNM4x+35fd55qZdQuh11dqwj676Y69laHe95P3XOj+DOt1XH4PtuFKMZGKYsZVKC6t1SMf+/xSFU3bQbloYLRS9FqgA14n7Wdy0HjB5l/9PnMYRB+XxZ8L8uZQYfAfF0urdRDvHudz/kL0sZsVoO2Y7+3H4u2fRs/va3Z6GDfuGMXrc2v42nda69Ck8weZ3LB9BM+euco3dwxDh207+LKrKv+ee/ZuUuaxQpED9Y34+91fbI43PV72eSUmv6+jzM/iIHM8ZJv7zZSeyd88NY9Hnnhx089ZF8PP/eibeZjYIJN5Ua1abU3qSqX2QkC5XMby8vKm3//+7/9+/MZv/AY++clP4l//63+NjY0NfOITn0ChUECjEW+XWdc1TE2NxPpbEYyPJ9slThO/lHRsfBijld4tjEHHpbn9/BPjQ6mf++3Twzh7cRkNG7HeO8n3dX2tdY2ODZeEHvf0eBkLKybqTrxjAsRch8u+He/tM2PSlIgTYy11gWbofY83rfuLTeBnpkfaPlNxyBvbxsYrwlrXgo5ro9Y+FuohzpMoWIuG/zxMTbYWrjb6X59Bx7VUZV5FhZ6v895je/H7f3ECz569hn9w32FUXeXcrtmxROdgj1t4Wqs2hI0bBfdaGBsp933NHdtGAbQW7KK/S7aI2zY10vO1G68thnqthiPveVostZ43I5Wi0PfYs7N1v6xVLf49RRk3ri23xr2DeyeFfC7H3TBs2uK/a3ZcjuPwotqh/dsSvc+wq/QrFnvfl7Lp9X0VXPXlSI9n7sEbW/f1teUaJieHhSi9Hfc1psYrPc8Hf4bpwWNz53HZbkqpoWvYPjOW6HPqxda5WVmvY3SsEkmRceriCgBgz45RWJaN6ys1FEvh7su0nskl1/OtMrT5c21znyVN2xF2zYo6rtJ8S3E0PJTd/eRnfLzC0+pL5XhjL5v7DpWMyH9fdgugQ5Xk82YmzCoW9cDv6x1v2o3X587wDRPd0DE+MZxJd00/Du2bBv7uHA/LGR+v4JsnrmB+qYqRShF/790HNqnQyyV2TsU+S2XS6/tac+/lG3aO881kBwLmIe44PhEwjotAxng4Ntp6vqQx92/aDh776zOBv/P4k2fx/rftV/L+EUnmRbWhodYXX6/X+f8HANM0UalsvtD279+PT3/60/j4xz+OP/qjP8Lw8DB+7ud+Di+//DLGxuJNMGzbwcpK7zhiWRhGa1BfWanmpq/d8aXLXL++hkYXVVSY4zLdNshatY7FxfWuvyOLirtjc+nqWqT3FvF9XZ5vTUQrJUPocU+PD2FhxcRrFxYxE9H7QeR1uOC20Bi6hpVlefeU5hYBllaqPc9j2vfXmrtbZtWtts/k98y5em0tsCUoDGGOq9MjZ3XdTO0+Y/5cZs27t+tuka9aayT6vq5eXwPQakXp9Tpv3j8FAPjOK9dw7sIC5hdav1fSkegcOK5CZKNmYf7qaugFaNBxLa+17he72ez72Vgn0NXFDeHfJbt2mw2r52sXtXBtIkXNkXatLbkFBTiC36PZ+m6X10wsL29gYmI40rhxYa7VIjQ2VBDyudj3YTut56yIdtrO63Bp1YRZb0LTgFLC78xxz9PKWi3153m/cWN5xb1m7O7HWHQNC6qmhYuXlwM3CsOyzFpJHbvn+Wi619zKWvexuddxzbtqlFKx9xgYFsdxUDA0WE0H5y4scOVaGM6eb3WG7Jis8MX81YU1LC72boFO+5m8sNg6VwVd23SuNlwDerPRf+zth+jjuu4+s7p97jTxHxfcuf/Scu85VxDXEhwTG/4Wl5I/+0y3NbtUMAK/L6fZ3sr85Dcv4NlT8/jx7z2snOJmotKaU1640lpfrKxU8cSXXwYAvOeOXaium6iud6jME36fadLv/rruzgsKANZNd65Z7T3XDEu12nqthpn8tbohczxsNlrX+fq6/DX2yXMLfT1Jry1V8Y0XLkrrYpDN+HgllKIw86Iaa/ucn5/HjTfeyH8+Pz+Pw4cPd/2b973vfXjf+96H+fl5TE5OwrIs/NIv/RL27t0b+3NkGQXfbNpKRtH3Qtc02I6DeqMZ+LmDjov93HHSP/fM8HtptRbrvZN8Xyw5cLhcEHrc02770vxiNfbrirgOmTdTwdClfq+soFGtWX3fJ637q+qaNBcDjr1qWsJSUYOOa71DqWbWg+9VkbAioqFp/D3ZpLhu9f8ugo6r6ibnFou9z/HUWBk37RrHa5dX8PRLc9zEdrRSTHQOSgWdj31LqyZPzgtLt+MyzfD3y4jb8ry8Vhf+XbLwlKDPcXD3BKbGyoEtoNNjZRzcPSHtWmMF26B7LA7DZaYMc7C6XsfExHDocaPeaHI/ru0TQ2I+l69+adYtocEM7LiY/8628SEg4XOYFf36zQlk0uv7Yub5hqF1/Xdd0zA+UsLKeh1z1zcwtDOZ+gvwxt9Sweh5Plj6nlkPfoZ1HteGu9ArFXu/dhQmR8u4tlzDtaVaJN+oi66aasf0ME/f2wjxPAb6P5Nt28GZC0tYWjcxOVLGLXsnYxWW+fOiy3fPnsJWiGdSWETNNdjnLhXkzqPC0nSTjYHWHC/OZ+Jjd4xjYp5qNTP5+OL3duv1fR0/PY/PffmVTT9fWDXxn//k2/jI/bcr5RG13fWFXNloYGW9jovzq/jOq9ehAfiuO2/oPu4pMGZHpdv35TgOH39GKwW+IWUKOC42l9W17s8OUchYo7DvV8R56EdYP9LrK/HW3Hki80bqI0eOYHR0FN/4xjf4z1ZWVnDixAncc889m37/W9/6Fj70oQ/BsizMzs6iVCrhi1/8IiqVCu6+++40P/qWxUuNSZD+6SqNChkFFQDAioQUvX6wyfawoORPBgsruJZxAigbMKOmO0VFxfRPs0eCoq5pXPKc1gPF7AhwSMustGnb3Pi21DWoIOkkx/NDCeKtR1sT3m+enPNMbBOmd+mahlGWwCkoLCBSUMFwGkEFvc+rrmt48L5Dga/zwH2HpIUUAP7kNrFTl2LBQMUtrK1EPL9MpTMyVBCicgLaA3xkGUnPCwopADwTc8tSz/Q6jDH5DH9+VoW8J7ufKmHSPyOOiZ75vphCK/MTjBpWcMVVHu2aHuatZSKCg46fnsdDjz6Fhx9/Dp/9/Ak8/PhzeOjRp2IlC3setpvPFfMZalh2WweGCphdErSzhs3pYqd/NtizLvoxiQyVYObzveYQYQN5VEo1HCoVMD3euo8vzK3iS9+6CKAVuNAr2ZmtvfIeVFCrN/mYODlS9tI/BQYVqO451400g1jChoAlDQvLA5lfKaVSCT/xEz+BT33qU/jSl76EU6dO4WMf+xh27tyJD3zgA2g2m7h69SpqtVax4MCBAzh9+jR++Zd/GRcuXMCTTz6JT3ziE/jpn/5pjI6OZnw0WwO2aGommIhkm/7ZurGXO+XQKcB2IEUlfzJmxt0Es4yLajyCWvJDiC3+VUz/7FaYKAh80Ef5LIy0impscgO0L2L9C5hEr+8uNvql3rH2jDMXl/m5mFvYSDwRHuNFNTEFeW/B33+hMcY2AyQU1YKuXT/HDs/iI/ffvkmlNz1WTmX3nhchJRj7jrEE0PWIRTW3HW/ntBg/LgBt5vOyEkDnl1qfe1ZAAnah4C64FbSxCJMYyxNABT0/eZE6KP3TLZjUI24M+cOORMATQPuEkPhxHAeXXb+yXTMjfCOpczMnKsdPt8yuOz8LM7uOWlhj40W34pTfqF12ym5U6nX2nFOnqMbOlxXzHmfP7qDidi8KCd/bj8Wvie6f48yFpVCBPGcuLCX+LCLZ6Qau/NXXz+Erz7cCCt5/bE/P32fPmLxYD/WCqdSGSgbKJcMLKmgIKKpZLFwj81JJZIqC5txhuGXvZN/Ojemx8qYE2kFEiSvlox/9KH70R38U//7f/3s88MADMAwDv/3bv41isYjLly/jXe96F77whS8AAKanp/Gbv/mbeOGFF/DBD34Qv/RLv4Sf/dmfxc/8zM9kfBRbB7bDkWQwZn+bRfIpS8dcjrh4EsG6pKIaU6qFleHKgk16ZCx6/YjcGReB4ziBah9PyZFNUa1upXOe2CJGQ/tExFNlJPscQcoDP9PjQ9i5rb1Y8Gv/9duxFQ+MsYpYpRpLSg2nVGu9d71hJ168+mnaNp94dZoZd+PY4Vn8yofvxXfduRsAcNv+KTz84XtTaYdp8IWZ+MXmeMyi2mW3qLZjOnlxiqHrGlh5TtaihyvVIvho9YIt0EQsekXjFdV6XzOild41kwWqBCjVinGVamILLmwx1OnDGcTiqolavQld07BjquLb5LJifw4ZCqF6QAHSP0dJa9MpLGafwk8WFBOqzcMUt3u+tyDVTdO2eQG113iwFHKzPezvpcHx0/N45Y2Wn9pXnr2IesOGrmmoBswTWMeRpVhBOSrsec06kIqC5pqAt0kkez0jg6RF8Cio0MWgCpl7qgGAYRh46KGH8NBDD236tz179uD06dNtP7v77rvxuc99Lq2PR3TAbowkqo9slWre4slxHGHqgjCwVMYR4e2frYVR1ko1XlSTvLMjamdcFK0Wktb/L3dTqhnpSu3NevuDNK1Fg7/o5b+vih2tNnHvOd7+2WdBefz0PK5c3xyUwRQPcVVVY7wFU4xSLUr7Z7looFTQUbdsrGzUsb0kJjHKfw/1U6oxdF3Dmw5uw988fwm1hp3aZElW+yfgqRBXIn63cxKKaoDrAdZ0pLd/7hDa/qlWcQIAGs3+hesZ9/kprKjG2z9lKtUEtX+ORm//ZIXk7VMVFAxdiHI8ikLoyL6pUK9ZD1AC+9X0jaaNdPJIw1EX/B2LIGlhK8qzbtN7C1L6+9vTSwUd1S77J3lrZWPqzk5sx8Gj/+NF6D3mOp5SLd9FtaU1Zu/R+j5EKrSsBNds1hRSbP8EWputP/1Dt+K3Pn+i7efTY2U8cN8hpTwIZaJEUY3IF6wQlkQyz4tqkr23usGUalbTwYZpCS9wBSFLqcbaPzdMCxs1S/jrh4V7EEhXqrmTeEU81fyLiaBWk/TaP9sVA1HVEHHppQzgrTZO696P67nH2z8DJjlhFQ93HdoeuRjEPdW6zcZjEMbviaFpGsaGS7i+UmsV1QQojADv2jV0LdJ9u8NtG5xfTC85W2b7J3surMZs/9wlvKimw2o20bTF37uO43AvuO0Cimp8Aq+gUq0e4h6bEaxUq9b7K9WYJ1o9YpsSOx7RSrUo7Z+X3ZCL3a4aWITHqQyFUJBSjXmdNm1HuWKwqXD7Z3xPtfiFwoKgor1/fCoWDXRzUGStbP0CeVRoZUsy1/E2etW69qOy7G4GTLqeuSWBRbW01jMySHvNAXhWEpWygQ994DAmR+OHzOSV/F0pROaILKrpKarEGMWC3paklyaeUk1s0atcMrhJdpYtoGwnUPZDyFOqxW83EUnN15LT7ZpOe9fIdBdqFdfTJ21PtU5lgH9Bm+SzhFGqyfREYe2fa4I91cKaN4+PuEU9gSEr1RAhBd1gBverGw0+rsmmwb9/iZ5qEVp7HcfBFUlKNZlG0us1iye+iijOep5H6qkewrSdbWOepCtigwqGyr3vqbhtSqzgIuoeYIvRKO2fTKm2a9sIAGBIgHJchkKoX7BN2l6nYakrHFQQtwjTSNDFIKpAwMYCQ9d6dsnkqZUtyVzHULhlPwo8iGpks1ItaQBJkpblrEnTU41x/soqgFZS/Ntv24kj+6aUuE/SJH9XCpE5hhsFn6iolqGnGpCdr5qnVBOvjtumQFiB50EgdyBlixVVPNX4znKPwkQx5QkM+zyspa2RlqdaD2VAQZB/TZDygCHTE0V8+2d4TzX/+4sMKzB5US1aob9SLvDkwPklMcWIfngLMxmeam77Z4Rnwlq1wcd0ESmaftizUYaJOmv9nBorC1HDqKx6CFVUc5VqVbOZuEBsNcN5FHJPtchKNbEFlylf+mfYRShTqu1ylWoskCHJ81iG2bV3rrp/96q2LbNNsUFSqnkFzhhBBYI2JcN6mGYdyBOWJHOdgoB1nAp47Z/MU611zzhIvsmTlke0DNJecwDA+blWUW3fzrHU3lM1qP2TiIwuIqjAHcgLGVWxJ0ZKuHx9I/UE0A1XHTAckAoWl5mJIZyfW81YqZbOzo5/ZzxtX7xumH3UPlzJkbK32WiliPnFanrtnz0WfJqmoVjQ0bDsRAay/ZQHgFxPFC/9M/32T8Az0xf1/oBnLh5VqQa0lCpLqybmFqrYv3Nc2GfqBSuqyhhfxkeiBxXMLbSKU9vGxRSn/Bi6vEIVa9kV1UIsykhcBmGKauWigfHhIlY2Gri2XMONCTa9aiE9Ctn1ElmpxlTRggrLzFOtYdlYr1lc8R4ET/50lWrsWJIEFTCFUDd/KEZUhRDfhOlxrrJokQqDaDWiCHhQQVylWoSk683vLaZAEEV5dOzwLO46tB1nLixhad3E5Ih6rWxJ5joqb4REga3hmFe2/55pWM3YcwXHcfj1UsihUq2QoVJt346tW1TL35VCZA7zQctrUAHgX0Cl07bE2HBVDaLbPwF/glk6qpFupOVBwBRhDtLzCwui5nqYDfVYWKftOeQvqgFi4sXDwIpe3TzPRCy8zT7KA0BuvDdXqlUFKdUa0Yz3vaKeuHGrX0E4iF0zrUV1Wr5qUYuQUWCtvVGCCi4vtBQ7ols/AW/RI1OpJkpdp3L6Zz1kYuw2QWEFrLBULOiBz0G28WA1nUi+eXxjoSTmHigVDT4fCdMCulFrcIX/zmlxnmqApxBiLamMuAoh/jzqo1RTrRjMvUMHSanmHlOcAoWo7ylqC6quaziybwpvv1XNVrYkcx2v/TPfSjU2FrHNAcOXnJ3kevE/d/OsVEtrbLOaNi5eXQMA3LiFlWr5u1KIzDE0AZ5qTRZUkM0lyPrv01SqOY7Di2qD2v7JFlWyd3b8SigVEkBrZr/2z3R3Bdnihrd/pvy+XcMaiskf8mFS0WR6ooguarHvJezuvYz2z1qf1uUgdvOiWkrtnxKVsGMJlGo7JRTVuM2CDKXakrjkT8DvqaZWcQIIf82ICitgz4J+RWp/YThKC2hdsFINaG8B7QdTqU2OlnggUkVA+ifj2OFZ/LsPvYX/912HZvDwh++N1XLHQyp6PC+KKSvIw2I21CuqsSJ/0vTPWO2fwpVq6pzXJCSZ6/BNGwXH7CgwX2ymVNM0jc81k2y4+6/zYkGtYmoY0vZUu3RtHVbTQaVcwHb3WboVoaIaERkj4Q664ziwnayVaq4qIcWgglq9yY9bplIty/ZPPmmRXCzVNc1rOVEgAZRPgnsV1QqeKiGVz1PvUKoJMG0NQz1gMSBi56we0mtGlicKK2qtVxuJlLqMsB4vDC+oQGBRrRHPUw0Ads+MAgDmUvJUq0ssqrHW2rVqI/RCQ1ZIAeA9Zy2pSjUxn9u7t9VTPYR9Js0IUnqzwlKlz/3kv4ajjIlBGxdxmYyQAHrpOvNTG+E/KwssqgHtLbHlkhFbIdSvXVzV1Nq6xECWuCRtwUyiMhamVJOodM6KuHOdwgAo1aymjTW3a2DCp24Vcb34/zbP6Z9pbXS9PtdSqe3bMZq5HU+WkKcaERk9Yfqn/++yklNzpZpAxUc/1l0D5IKhS0l1YosCJZRqKTyEhkoGzEYTNTP7BFCe9taz/TPZLm9UOts/2XvLThMzAxYDInbO+IIyI0+U0UrrkemgVXxhbeRxiWrePM6VauLaP1m7WhxVxK7UlWrhWvniMFopQkPruw2jVrNtB6+7HiINy4ZtO0KfZ9xIWsKih7XrzgryVFPZn4cX1foUKLYJen6G9SjUNA2lgo66ZfPiTxj6tTTGYcptnQrT/nmF+6l5BdmygPRPP1XTex2m7o9Dv1AH75mkVmFBRaVa0XA91WI+v737ML6nmqiiWh7THINgc51XLi2j4Wgoag4O7p4IfB7xdOkIreeqwVRqhq61zXVLRQPrNSvR9eKtZbRcFom4B6K7oS77GFhIwY1b2E8NoKIaEQPWlhJXqeEvqmWlVGO7Gmkq1bzWTzm3HVsUrGw0YDaamUzI0py0lEsGsJ7cx0UEZh+1T9qmoV77p1f0aTTlF9WCFjGsEJJEkh81+Y55oojC0HWMDBWwXrOwulFPVFSzbYePhVmmf/J2tXL0a2OnW1RbWa+jalqoSAhg8SNzfNF1DaPDRaxuNLC0ZmKy0vtYjp+ex2NPnuXKnj/5yiv40vGLePC+Q8KS4QxJ7TlV0+JFWVFBBSq3f9YjKtWSFtWqETwKS0UDdcuGmbFSLU77p1+pxp57NUHBQf7Ag0RFtQCPT8AfVJD9HMKP2SdgIQtEearFUqoVxKiq0uqkyAJd13B0/zSmpkawuLjet6V5EDzVmJ/axGipbcxh10uSUKy8F2CZ5YyD1pqbbXzJgpI/W+TzaiEyxUi4w+HfeZd9o/eC9d8vC2yj6ofMkAKglSjKJvILGbWAsgd0Kko1wbvjSeBqn17pnykbebNzMlwuQHcnG1F8e+ISlM4pYrdZhbYYHlaQUC3mPw9hF0+siLe20eCt5EnxCsLRF3CjlSL3mbuaQguozPZPwFMCLgcUF46fnscjT7y4qVVucdXEI0+8iOOn54V8lkJCRXgvmKpwbLgobIOnqGgbHeBr+epThBIWVOAqp4dCFJjZOBZNqSZexcTaP8Mo1S677Z+7fUo1NnbYjiPkGdemVEugRO9XgCyoGlTAioExxmRZJE1KZWFJccZuT+mfbK4XNahgkBkETzX2nJ7o2NwUMdfk10pOC7Bx7QXiYNsOLvD2TyqqEUQkWFEtvlLNu8GZ6i1tePrnRl2IN1IY1iUr1TRNE9bCEhcvqEB+sVS0j0sSan3UCcW0i2q+xYQ3wZB/nrwggaD2z/ifo67ADj4PK0iYAOrfRQ2vVGu9d9N2Eik4/PB2tZiLdObLlUYLqGxPHHZ+l3oomG3bwWNPng18jcefPCvkmWJIGjPmBLd+Ar5NA8WKE4DPt7CfUs0N+tkwLWzU4t/b/Z4Ffrh6N0JRzWuxF6hUGw2nVGtYNg+52On3VPN9FhHP43alWvzvInRQgWJqHRmF06QUE97jSTZEeCubKKUaFdUGwlNtiSnVRtr95EpcqZbcU0126Jos/MIG2UW1ucUNmI0mSkVdSmhTnsjn1UJkCiuqxfV6YQsODdl5qo0Nu/45DrjRpWzY5HBEQvIngy0MrmWkVEtTXs+Kakq0f9aDJ8FJd3kjfx534TVUMoT5kYQhqD1TiFLNChdUIBNPqZZM5crOg6FrocfBgqFj2FXAJH1/hlcEiFfsZwmSrFgjE9mLIlZUe/bUHE6eW9hUHDtzYamvmfvCqokzF5YSf5akgUC9YImls4KSPwF/+6daC7SWcsptse6jbi2XDP79J1GrVbmnWgilWowxkY2xQj3VQirV5hY34DhApWxg0mcMrusa30gRU1QTo1TjHow9zlXaXqdhsJo2v+dVDCqIrVRL4Icp6nuiopqHobAPZliYUs0/FgHJC8BA/luFNU1LrUPmvOstu3d2NLM1vSrk82ohMoUHFcRsP2IThixvPkPX+QQ6rRZQ2Uo1QJzZclzSlNf7fVyypl/6Z9ptJv6d7pKAePHw79vbw0ZEYTFICZcWXKmWsP3TU1FEO5YxprIVNG6x+yduqxFLvpyTrFRzHIcXFIoSlIrHT8/j268sAAC+fPwiPvmHz+KhR5/C8dPzqDeaePbMVTzxt6+Eeq2l9f5tdP1gQQWiJ8Q8pEBQ8ieQvhI3LP7xNsziSISvGk//DOFRyDYfzAit+TLTP1c2GoHf4RWfn1qnb5pIOwa/Uq3esGNfV0F2BED6CXlh8KsWVVKqJfWFTaZUE/M9UVHNwwvCUefajwpbu3V627IwjCSeal7XTX6vlWIhnU0D7qe2xVs/AQoqIGLA2lLiKtUst6hmZOSnxhgfKWNlo4HldRN7MSr9/TZMV6lWlqdUy7qolmr6Z5G1fyqU/tmzqMZ2BdNRcrDPUyrqwuLow8AXfF3OA5fkJ/B2M3nynQLtn4KUalELROPDRcwtJC/qMaK0q3WDFdVkt382bQdsH0d0UZX5pHXCfNIKhh5pQTfZ0Y4SB1lKNfY9CVWq+T6r7TjcxzFr2nwLQ1wz28aH8Nrl1URKNe6pFkapxjc8oqd/iiyqjVWKKBgarKaDpTUTMxPdr41Lrp/ari4tPuWSAWw0UBOgHO/cKNuoWZFDYcIovvwJearAnnG6pmUW5NWNpErzRsxNJADC5jANiZsyeYOrmFKyv5EBS/+cHJXX/plXpRrQ+uxVNKWPb6+Tnxonv1cLkRmJPdWarO0p28tvYsRVqqWUAMqUahWZSrWM2z+Z3DqNoppK7Z/9Wuj4TmvKSrWhUiHVhQNXyAUFFcTcGbVtzwRbdoppEGMVMUEF9ZBeT52MC04ANQW1f85Lbv+MqjoKSxifNKtpY2qshPuO7eFF1V5Mj5Vxy97JxJ8rqc1CL+YW5HmqAWr5qrFrplWgCKNUa52T6wmen1ypJs1TjY2x4u4BTdP4wnRptfe4wpM/Z0Y2/ZunHE++yVXtaPmM0wLq37zppVRTsf2TP0NLeuIUVZEkLWzF3UQCxKULU1CBR2EA2j+XWFBBZ/unAKsRawCulTRsZxzH4e2fWz35E6CiGhEDI2EqGfu7rHfhxkdYy0M6RbWq5PRPwLcoyKr9M0V5/ZBCQQX9PNXSTP/079CXi3osNURczIDdaK+4F+9z+D+/LKP6MAhTqsVMMhXf/smUNcmUaktrdalJvP5dZ5HjSxifNAD4yQ/eige/5xb8k+89HPh7D9x3SIi1ASsCxU3Z7obZaGLBPVaRSjX/96HSIo0rU0LeY0zpnUipxorUkdI/w50z23E8xY/gZEjWAhoUVsCSP3dt66FUg6j2z81Ktaiw54Wm9U6ZV7H9U0Z7rwjYubIdpy1sLCzcbzVO+6cwpVr+CyWiSNpxpAKs/bNTqSYk/TNFgYAsCilsqF9brmHDtFAwNOzustmy1cjv1UJkBvdUiznZZ4N41u2fbHcjbaVaGp5qS6tmJhNFr/0zhfRPgR4uSak1glvo0gwq8C9ISkUj1fbPesCCIOlEx7/wzHJSzIJG5harOHV+MbZiN67HzLig9FFGv2u3H6OVIt8ouLokrwW00WCtO2IVHGH9z9gE/tjhWXzk/tu5uTtjeqyMj9x/O44dnhXyuXhLpcBFz5xbFKmUCxitiLMh8G+QJU3oE0nUFp4ZXlSLfx1XzfBFaq5UC7nR0Oa3JbiFjSeA9igw247T5qnWiWfHkPx5vFmpFn2s8yd/9hov0nw2hsUMUHtnSbFNjRrtHncch28iJfFUE1ZUy3GhRBRszFapoBwF23H4xuJEp6eagGLSIBRgi0yJK/E7Ziq1G2ZGc12AFAV5qhGRKSRUqtmuMU4hY6XahGDFRz/SSP8cHy6iWNDRsGwsrJpCW3zCwBZUaXhWqKVUC15IpRlUwBZeBaOV/sNUGum8NzOG3vxwTepzYfpCCrJqizl+eh5/8D9PA2gtPh9+/DlMjZXx4H2HIhdTuOIk4r3C00cVCSoAWqqn1y6vYm6xij2zcvwpeeuO4IlbWP8z/+8dOzyLuw5tx5kLS1haNzE50mr5FBm+Y0hQt16+1iqqzU5WhN5DLGnMatpKtX9GDQMRGVQQyVMtpFKtbWNBsK9gvwTQhZUa6paNgqFh++TQpn8X+TwWolQL0Sabdip3GGR45omgUPAXzm2UEf7zWU0HbLWQRKlGQQXi8Lon1NkEicJatcHXoJ1+i95cM3lQQZ4LsKKK0UHwkIKd8n3J80B+rxYiM/SEXi/s77KO3mUDcdrpnzLbPzVNw/R4dmEFqSrVFPJU65f+mWY6nulL/gT8aogUimqWTKUaax/JZrHBzOxXOrzUmJn98dPzkV7PM02O2P7pKtU6P0ccbMdJ7KkGeEmSMn3V2GJTdDHhlr2Tm1RnnXTzSdN1DUf2TeHtt+7EkX1Twp9nSTevusHa90S2fjJY0phKyoeoyhSm9F6vWbEKOQBQjdBOXYqYUueNgbrwMAjWQtWr/ZP5qe2YGu7qTyfyecxa0pmaJl5Rrb+HFy8sKFQINn2eaiph6Dr/PqI+w/2WD0k81RqWDceJPx6Sp5qHFy6jzrUfhRW3w2i0UtykkOJzzQShWINQgC2mML5R8mc7+b1aiMxgEyo75sONDeLZBxVko1QblqhUA8TstsfFSlFe7xkjZ1tUcxzHUyf08lRLMajAS/5sfRZvgiH/PAXtsid9wLOiYFlwUSUMYczsH3/ybKRW0PjtnywoIfm45W8ni9v+CXim93MSE0A9ZZ/Y71/XNTx436HA3xHlkxYFQ0L7J1eqSSiqcTWuikW1kAv5oZLXFhs3rCBKmm7URGSZflussNyr/ZNdOzu7+KkBwFBR3POYvQb7TPGCCjxlcy/SUHJEJevNoyDi3uPs/GqIt+HKvicHyTYZBqFQIgoj50o1ZtswObo5FViEApX9bSHH14psJa7jOHjdbf+8kUIKAFBRjYhB0lQyFuGcuadaiko1x3E8T7UQBsZJ4AmgCXxh4sIfRGmkfyriqVa3bLD6ci+lGk8ZS2ECU+9QqqXZ4hLUclMsJlPMBfm1ySaMmf3CqokzF5ZCv2bcIpHIoAK2eNW0ZMWqHdPyE0A9ZZ/47z8tn7QocBWNQCVBGkU1JZVqEa7tbQk3pZjKqhLiOc/G6LDpnzI3FtjitFf75+WF3n5qADBUZu2f4tI/meo+SVBB0POiqGAhuFNprhJxi5B8AymmdYN/PrnVfbJEkXelGvPC7vRTA/ypygKulRy3f8q2nVlaq2NlowFd07B3O7V/AuSpRsSA76DHTf9sqpH+OeG2O6xVG7CattRCUL3hJTLKDCoAfIuCmDvtScgk/TPj9k+zIxigG5m0f5ZY+2c0NURcbMfxPIy6FBeTmkKb3K8t/cVGWDP7sL8HRFfRMFhQwXrNSjxumT5VTRKPLd7+KTGoIK6yLyzMJ+2VS8toOBqKmoODuycysylImrLdDd7+KcFr01OiqqN8iJM4ODMxhPNXVmNtSjVtm4+zYZRqRe79E1KpVk9BqbZmwnGcTeMBK8ju7qFUE7nJxYr90+NJlGpuATLguy8oqFQzY6ZCp0ExpuKezwtiPrvbQhKSqI9iPnMHkQJLl86rUs1tU58Y3WzdIFKplucCrGwlLmv93LVtWDkPyKzI79VCZIaRMP2TtUhl3f45PFTgxyK7BZRNCnVNS9RmFYYZJTzVUiyqCdgZT0LNV8Tq5XOTZpsJN57vVKpJfm+/f0W35LISD0yIt+gK084jizhm9v3wlBTRjsevgHn+7LXY6aPA5mslLkz5tLBihlbdREVW+6cfXddwdP80vuvuPTi6fzpT309PES7mvrWaNubd9lxWBBVJIUVFbFjibPJ4CaDRn5/+glK4oIKoSjV5RTXmqdawbK6q93MpIPkTEOepZvvsFLZxpVqc9M/wSjWV1JWdSnOViLsxFtc/lKHrWmw/t7bPMQCFElEwpZpK134UWIfRRFD7Z4KxiG0O5TnRUvbcn7d+kp8aJ79XC5EZbKERdzHneaplq1TTNY2bfj/14mWcOr+YaIEaxDr3UytITy7MUqnGdr3S8CHgk/iM2z/NPn5qQLqtUZ3tIyLixUO9r9+MuEuhKKlSjS2SslhsxDWzDyJOe8Hx0/P4N7/5df7fv/E/XsRDjz4VOSSBUeOm6snUs2OVIipu+9dVScX8rda6w8YMUZ5q15drsG0HpYLe1YcmKSou0uJcM6zl8OyFpchzAlYMKhhaqPfk6Z9hlWpMfSVhDCwVDR6i1NkCurpRx1q1NYfZOd3DU01Q+qf/eZ6o/bPR/7tXU6mmblHNO1/RvuMw30XY9xahVJO5MZMXmKea48Rfy2WJ1/65eV6WNGkeGIwCbFHAPROEl/xJRTVGfq8WIjNYMcyKXVRTo/3z+Ol5rLoJev/9q6/h4cefS7RADWIjheRPxrS7+L+2XMOJcwupPjC9QoH873bI126SJBEqKaww0ctPDUjXxJu3vXS2fyaIFw/3vt5udDfFXtRWp82v3zsEQTYyzOyjplmy9NFOb7e46aNANFP1IDRNw+yk3ARQr5VPvcWmDJI+ZzuZc7+X2amKlI2dNJLGohK1qHb89Dz+7O/OAQBeu7IaeU7AvMDCFqnLhYhKNclqXX8LqB+W/LltfKjnc05UcBD7e13TMOn6JSUJKggqTqXpNxqWLJ9z/fA86KKNSSKKWUk35YB0g7RUxx8YodJGSFiW1+QGFVgDsIkn21PNS/4kPzVGfq8WIjN4+mdST7UMgwrYArXTrybJAjWI9ZSSP4+fnscn/+hZAK0dqE/98fPSCoXdSLP9k03uHSTbkUpKKKVaqumfbpHPXXil1f7JFwM9JiFJP0eW7Z+AeDN7NuELUySSkT4KiCuqAV4L6LykBFDZnmqqYXClmpj7dm6h9b3s6KE0SoqK6Z/1CG1nbE7AFFmMKHOCqPcTK5yYEdM/ZamYJnskgF7hIQW9rx1Rnmqeetbg/rNxlGomK+QEpX8qWAj2vmP1xrm4z3ARXmae6kZA+qeC5zZtCm0+dTlUqq33Dirg3RlJggpSXMvIQuamwepGHQsrrecEtX965PdqITIjqYGyxds/s7n8ZC1Qg2CTQpkhBTKULFGwHYdfE2ksfP07uVm2gHJfqoCFVJG3RsmfvHS2CJXSKqr18bBJ2obKF0kZKpWOHZ7Fr3z4Xrz54DYAwLvetBMPf/jeWOmQzO8jzO69jPRRwFvAJW3/BLyi2pykotog7BxHwRA8ZsxzpZqkoprkVpM4NEKOGaLmBNWI7dTFiO10dclhLVOur1pn++clN6Sgl58aIC44iD1PK2WDb0ImUaoFnSs1lWrZpVz3wztfEds/YwSGbHpvAaqbQWjpE4W/U0hkwnRaLLlFtUlZQQUDMN+QuaH++twaAGDHVCVU0vVWIb9XC5EZesKiWtbtn7IWqEGsS27/zKJQ2Il/tzeN3R1d03ghK8uwgjCFCVZQSmPBWe9I/2TvLVvN169tpRRxAbn59bNVqjF0XeOKjdHhUmwze/Z9hPEflJE+CgA1s3/rclg8pZqs9s+t5YfD0tlEpH/atoOX31h2/78t5Tngmb6ro3oIuzASNSeomV5BKAxs4yO8p5pcFVO/9s8gpZqo4CB/C+1wmSnVGpEtHsK0UaqtVFO4qBZXqZbguo3r59b1c2wRC4EgNE3zheGoM2aHoVa3+Eb6eBelmpd4nyCogCvVsrUpSoKIQnQvWOsnqdTa2RqzU0IobAc9blsKT//MaLCStUANYkNy+2cWhcJO/AWjtHZ3WMtlUh+XJIRRqrEHc9N2pHvcbQ4qSD4ZDUO9z4Iv6e5hXaJJd1QqbgG1GkNBwYjiMyMjfRTwVCUi2j93TDFPNTlKta22IOLP2YQqguOn5/HQo0/hlTdWAAD/85kLUiwB2Binkul72KKaqDmB1/4ZbvOMBxVE9lST2/7ZqVS7fJ0p1QLaPwUFB/FzWPbaP62mEztxMmgTRsXEWpXTPwsxC+e8dT/BZmtcPzc//Jmb45Y+kaQZoCUS1vpZLhpdVVIiFFqDoVSTt5l//gqFFHQjv1cLkRmGllCp1sxWqSZrgRqE7KCCLAqFnfgfYGl9t3win7DlJAncAyZE+icgfwLPFjVpt3+afRZ8PKggps+FGaFdUjZDZRFFtfDG+zLSRwFfQVjAAm6Hq1S7vlKTcq1F8ccaBOIuYP2kaQmgYvtnWB8+UXOCqs8PLAzs3o/qqSarqMbaP/1KtXqjietuou+umYD2T0HBQX6l2lDJAMvUiNoCaoZolZWp5IhLGC+4rIitVBNw3RYKyYv2g1AoEYmKic1h4MmfPVKshRTVWKuwoV5xOywyN7q8kAIqqvmhkYWIDNtBjx1UkHH7p6wFahDrkj3VsigUduL3q5CRLteNIUHmyEkwG/2Vav5JnOwJTOfnSZq6GRauJOsTVBBXrdfPsy1NWHtXEoVkFON9GemjgNiggvGREspFA44DXFsWr1YTkSCXJzzv0viK8DQtAVRUPYT1VBM1J/D7gYWBFU6sZriWXE+tK7f9069Uu7KwAQetDcGxSm+lPVPnOYi/cQK0j0mapvlaQKMV1eohlGp+8/ssE8T91AVudIjGK0JG9VRLXswqJhxfmrYN20nP8zcPeGE4alz7YVlyi/7dQgoAb7xPMuf1CrA5bv+UtKG+UbN4R8KNlPzZBo0sRGSSe6plG1Qga4EaBGv/HJHU/plFobATpqhIMy3H81TLvv0zqDDRZgqbkmKss/1TdlHN7BtUkEytF8YjJy1EtH9GXWiITh8FADOisXoQmqZJTQDdasltbMyIq1RL2xJARdVPI6S6UdScoBbxfvIX+8KcN9kbC6z9c2WjwYsX3E9tZiRws6xY1MH+NUlYATuHbIzlCaARx9owoQ7tCYhqXLey1YhJSOqplmRDpJCwQOD/OyqqteBKtZwFFXhKte5rnqJPNR23WM6DkXLcKiwriOXCfEultm28jLHh7oXNrUp+rxYiM5IaKPP2zwwNINkCtbMdM8kCNYh1d0I4LCklJYtCYSfeQyi975UtXrIsqpkhimqapqWWNLap/dP9X0u6p1pw0autqBZjYlxXqP2zwts/k5smRzkelj76oe+9BQAwWinGTh8FxCrVAEgtqonw5ckThYQqgrQtAUS0q4omSruXiKI1CyoIez/5C8RmiPG5c2wXzVilyBfaTA3C/NR2B/ipAa3goBL3VYu/2dA5Jg2X3QRQd2MyLGGCbdqfSWpct2ycU1GpVjDizWHCKkaDSKpU8885woQDbQXYWk6lMTsMzFNtsodSLelcE/Cu8TxfK9xTTfBG13k3+ZNCCjZDOahEZPSEbSlZt38yjh2eRdN28Jt/+hJ2TlfwT773CG7ZOyml8LQhuf0T8BYFjz15tk2hMD1WxgP3HRJeKOwki4eQCp5qYdO6CoaOhmWn5m3G2z+NtNo/g4tehq7D0DU07eim0/7XV2GxMcTbP5N7qhUjHo+ua7j9pm0AWsqVJONVnopqInx58kTS9s+0LQGY55Eqih+g3ZIgDMcOz+KuQ9vx0msL+E//9QUAwMf/2T1dE+a6EVWpprubLQ3LDhVWwBNwJak1NU3D5GgZ15ZrWFqtY2aiwpVqO6d7+6kxhkoGzHoz0SYX91QrdyjVIrd/9lc2+5P9VAkrYIVTlT3VrIgFSBF+mElb2djfFQwNekr2JKqTNHQuLrbt4MyFJSytm5gcKUdedy2z9s8enmr+e6du2bHmDIPgv8c91QR/vzykgIpqm6CiGhEZNtlP6qkmUzUVFrZAr5QLOLJvStr7yG7/ZLBFwee+/DK++M0LuPmGcfx/fvxYKufam7Sk9xDy0j/jFzeSEib9E2gp+KqQvyu4qf2zmFJRLURrUrGgo1lv8t+NghlikZQWIts/4yjv2DhSb9hoWM3YiZhhr92wsATQucUNIa/nJ2qBJO8kVaoxS4CgFlCRlgDFmCoWmcS5x3Rdw5sObuPn7upSNXRRjSlXh0J6qrHP1iqq9T9vYTdwkjA51iqqLXYq1WaClWpA63m8jGTKce5Lx5Rqcds/rf7KZk3TUDB0WE1bejp2WNL4juMSV22vgqfaVnt+hCELdfHx0/ObNv6nxsp4MMLG/5KrVJvosSFk6Dp0TYPtxNvABbzrLM/KeFmeaq+7IQU3UvLnJvJ7tRCZwXfQYw7EbOe9kJGnmh9Zg04naSjVGLquYe9syzxyqFRIrXhpZTBpUUGp5ql9gr/btNLxNqd/ypGAd+KZaPcPbEimVMt+3GDtn7UESXeNRvz7pVI2+G77WjVJq5U4TzXASwCl9s/kGAn9btK2BOALNKU81eLfYzunW0WkKwvhC8SdfmBhYJsEYTYa6imoNXkC6KoJ23ZwZaF1L+/a1l+pJuJ5zJ+nTKkWN6gg5LnyhxVkjdW0+aazCptHnXjP72jfrwhPNVFKta3y/AhD2umfotKomafaZA+lGuBtJsctlnORQI6LsDJ8Ts1GE5fcjRZSqm0mv1cLkRm8qBZzMamCpxojjaJaw7L5grDTw00W3kQ9vQUOezCnqlRTIKggrM9NISUjb7MjIc6fuhm3lSzc+4b3sIlXVFNHqcauu7itrECy3XtN0zBSaY0l69VoXkN+2Hcmrv2zVYi4tlwTPlFv8O9/a0xbkm5eAZ4lQOf3K8M7VOX0zzhKzh3T0VWXcdqpWaFBFaWaPwH02nIVVtNGsaBj2/hQ378V4XHK2z+TKtUa4Qo5zANWhYAN/zWgwuZRJ3HnMKzAGdXqoOt7J/RUI6Wah5GiUk1kGvXyOmv/7G1dkLSgNAhFWO6pJvCZfHF+DY7TSnsPKmpuVaj9k4hM0hhmVTzVAHnpKH5Y66cGb/dVNlkksTGj3zQfQioU1WohCxPFFJRqtuN4ii53geOfRNYbNiplOd+P56kWpFRr/VusolqIdp60KJcMaAAcANV6M3Khz3Ecfh3ENW8erRSxutHAekQDbz9RjdX7MTFaQqmgo27ZuL5S4+2gIvDad7IvqqYBf87GtFlgHDs8i9cur+ALT7+Ouw/P4nvv2YODuyeEK5i9Z2n2ih9G2PTPbux0VZdXrocvqlXjFNUiKdWSK376McmUamsmLnE/teFQ14v3PE4eVMDTP7lSLWJQgRWuAJnGczks7DNrWrqbk2GJq+prNJNft8I81bbI8yMMhYS+nVGIkkYdZMVjNW2sbrTGgomAtvxSUQeq8YQFtuPw526elWoFCRsG51nr547RwDTorUp+rxYiM/TEnmqtG1yJoloKxad1t22hUi6kZpCaVPoch0az9V6FFBWIbMJsZllUq7fvrPciDaVao2GD3ZWdSjVAbvG43qGQ60aS+00lpZquaV5YQQxfNf/xx905Z75qazGVao7j+JRqYor9uqZhu6QWUK52yPEkNwpswSNisc8WCPt3jePo/mkplgC8lUgBxQ8jiW/hzm2s/TP8dczbPyNsnjHlZSSlmqAieDeYUm1x1eR+arv6JH8yRDyPO5+nw0Ms/TOmUk0RBXkY/EpEFRescZ/fSawOGMKUagoWK7PCSFFdLCqNesX1UzN0DaPDvT2qk2zg+p9heb5eZHRiMT81av3sTn6vFiIzkqaScaWaAoNVGu2fafqpMXhLSZrtn0ypluJOoAqeambooAL5Exj/eWCLCV3TvB2rEAu32O8dIqiALyAjFnsdnwJPhaIa4BWiqjFUGXUBRbXRSmtCuR5xscnw+/eIbCebnZRTVBPhy5MneDJbQqUa4BubJbaUqdj+aSVo+WLtn/OLG7BDWl3EUX4ypWq/9M/WGJhM3RoG1tKztGry5M8wfmqAGOU4V6p1pn9G2Lxo9ybr0/6ZQrdCWLzkTzWecZ3E9VTzitvxj8tLHqX2T1EUBFgMhEVUGvWyW1QbHykFihSSbOD6n2F5vl5kjG3nr6wBoKJaL/J7tRCZ4RXVEqZ/KrATl2Q3IywbZjrJn37SCmDw43mqpfe9ivBwSYLjOHwiPNR3R1xOvLUfv6+Z//5i13mc1M2whFEGxJ3oWE1PgadKUYUt+ljiXxTY8etu+lwcmD9jXKVa1XfPiGr/BOQlgG61RZGhiytSpZF8p1IbHSOJb+HMxBAMXUPdsrG40l9lYfuVnxGUauWQ/qdW0+HFPZl+W1ypthZDqSZgk2uTp1qMoAL/86Wvp1oGc6VesGtART81IP4iPUkbNiOxUo3SPzfBN0IEbNz0g6VRBxEmjZqFFAS1fgLxN3ABbyzQoEZHVVyKvpCyuIFafqymjYtX3aIaJX92hUYXIjKJi2oKBhU0bSd2O2s/1jNQqqVRLOwki0lL1u2fdcvXbtmv/ZPvtMqbwPQysi6lsHDwPNUC2j+L8T6H6VPYqWJUX2GqjFjtn8y4Of6xjDClWsyimqeK0IW2A87Kav/cYkU1VoR3nPhWCwyv9UmeAibpolc0juP4CrHRj9vQdX4tXwlRIPY/gyoRitTseu6nVPMvDmUqmZinWsOyuSphd0pKNdu/SZUgqICdSw39vclUSq01FVNjdxI7qEDA2J1cqba17APCYKSY/ikqjZq1h/YrqiVRqvnXMiq2YYeFhbA4EKN4f+PqOpq2g+FyATMT/YNrtiI0uhCR0RNKhrkBpAI7AP5+eVmLAbbDmlbyJ+Bv/0yv2JRt+md8Y+QksAWAhv4T4VTaP3skkaaxG89bPCQo1dgiqWBoXMGTNUyNEjWVDkjm9cRgRbW4SrVaSIVlVHa4hYg5gUU1W0CwQ97wX+dJjaStFDY8vOKEGkEFbS08MZ9JXHW50L+oxhRWhh5NfeopKoK/Yza2R339qJSKBp+rWE0bmgbsmK6E+ltPOR7veWzWm3yTaoi3f0b3VDN9z6J+i2KV2j/rKaS7JiF2UAH/PrIPKsizR5Zo2DiSRvsn4KVRdyrWyiUjdBr1ClOqBSR/AvE3cP1/o2JYSBTa/JQFzP1ZSMG+nWO5LjbKJN9XDJEJPJUsppy06U5eVPBUKxS8gUFWwYGl8w1n1P4pQvYbhiweRLyolpGnGls8lEpG33bmNCbvvYysuRoiBaVa0IIg7ucwQySLpg1r/4yjyhDRyjjqLnzjeqp5ihCxxf5ZtxBxbakqLFWszTh4iygN/G30URexnfCCpESVZzFF1UMY2loAYx73TtdXLUwCaM2nsIqy4ODpn32VaukFtfgXvdsnKqGVfkmV4+wcapq34eBv/ww7l6n7bBD6oWpQgYrE9VRLohjl751wU3Kr2QeEoZDBmH3s8Cx+5cP3Ysh3b86MD4UqqAHAkuupxrwfe8G9KhMU1fJ+rfjXYiKLajfuGE38WoNKvq8YIhMMTYxSTYVedUPX+eeQNanKMqjAccTIfsOQhhqiE+7hklH7ZxS1TxptJr3bP+W3A5shFjLe54hodNyQXxSICmvxqsZRqvEky/iLjORKtdbnFp0kODVeRsHQ0bQdLITwogqDiGCHvOG3R0g6hqfRml9QSPEDeNdMEl8cngAaov2zFrNIXeZBBcHnLUqhKCkTvgXr2HAxdPtx0k0unp5aKvDCJJs3+T3r+uGFmvQf21TyAvSCKNQc42IrzVmIkYD2z9hKNfJU20Sa6Z9+dF1rVc5d3ri2zlM9+7G8FrL9M8H1wjax8n6taD7PXhFzf0r+7E++rxgiE9hkP67Pi0pFNUD+YoAp1dJs/xQt+w0DT5hLU6nm2xlPS5Hnp5cyrBtpeA71b//MOKgg5kSnHiJZNG14UEGMVicRSZbcU62WsP1TcFFN1zRsn2z5bYjyVRMR7JA3/MrXZsIxg6dgpuCppkJxAvCpDYrxfXF4K3OY9k93HBgqRzvHrEhm9hmb01IxHT89j7MXl/l/v3JpBQ89+hSOn57v+7dJPdX4mOQ7h6WCt/EZtgU0SgFSpaCCKPOJLCjEOFeO4/DU8STPO2/+FG+eNyjqI5EUdM9TOm3Ye7J10anXF0P93VLY9s8Ec172N4Mw1ygWxKgRbdvBhTkKKehH/q8YInWYp5rtOLEKGTz9U5GiWhJDyzB4SrX02j8Lhg52dmW2/PlhxSJ/S61s2OTTQXrH6afTVDmIVDzVeiy8ZC8cHMfx2j+DggriFtUaLBVNncUGX0AmSP9MssgYHRLjqSZjAce8qOYFJYBuRZPp1i5zslAghjc2y2z/VMfwHfCZoydYGLH2z2vLtb5jFhsHKhGVanxM7KtUk+8pePz0PB554sVNqrnFVROPPPFi38JaUuU4U/36z6GmaZHDCswI50ql9s+64kEFcTzVrKbDffJEBBWQp5o4smj/ZLD3vO2maQDAyfPhimorLKigT/snKdVaiFjf2raDp168grplo2jo2D4RzmNzK5L/K4ZIHX/AQJzJPvPZUcVwPGmqUD+yCCrQNM03WU+nNTILT7VS0eDFw7i740mI1P7Jdoykpn+6xaeOQokXXCHnGreaXgqqFKVaiq1PYUmiVBORhjZScT3VquG9hvywVivRnmqAlwAqKqxgqyV/MtgzMumih6uIU2n/VCSoQIAH2fhICUMlA44DzC8FX8ve/RRVqca8f0Iq1UpyvkPbdvDYk2cDf+fxJ88GdigMFVtjSVJPtc5zGDWsII5STQWFJX9+K+Qd6ifOAt2vFEpid8AKQHGV/qRU24zX/pnumN0SZLT+/5sObAMAnDzXv6jmOA6WmafaSLBSLcmcd1CCCoDkXs7HT8/joUefwu984SR/nX/zW18PpVzeiuT/iiFSR09aVHMHcL9nTJbIVvGsZ+CpBqSfapWFp5quaSjx3fH0E0A9tU//7zaVoALmk9WxmJB9jZs+ZUPQ9x93omNyTxZ1Fhs8qCCGUq3OlVfxj2fUbf+0mnZfP6ZusEW66PZPwCuqiW7/VKmomgailGppBBVkqXroBr/HEiyMNE3jarV+LaBe62JETzUeVBDSU03SGHjmwhIWV4M9EBdWTZy5sNTz35OmcfPCZMc59IcVhCGKXYDsToUo8O9YUuE0KezZbjtO6BAadl41tIevRH/v1ncZd/ObPNU2w58vKY/Zfj/uo/umoGsa5pequLYcPF9YqzZ4AXC8r6ea698bY240SNdKIYGfMlMudz4XwiqXtyL5v2KI1PErzOL4qrEFQkGV9k/JflMbJvNUS6/9E/AlLcZ4qMSBLabS3t1hKrEslGqxPNWkhgWwNsn2RUlRclABWwwYerDnVdzPoXL7Z5ygAhHtn+Wiwb2G4viqRVFZRoUX1fqoe8KyVVt32PebVEngnT9594+//TMLf8tO/J5qSeAJoH2LajGVau4Y0M+EX7an2tJ6uFCRoN8rJwwqqJq9lGqs/TPcOBfF8D/tzccg+Hes0OaRnzhevXXffRjX2xAgpZoMChkp1fwF2dFKETftbnl09VOrMZXayFCh7/fo3dfRxyJrgK6VYkwvZxHK5a1I/q8YInWSppLZigUVxB10wsKVahF3sJOStgFvVgtf7uOSUpurH76QirAjnoqnWsdON1Oo9GsxigubOPdb8MVdwAxa+6eIBb+maVytFsdXrZspuCg8T7UqbAEFFhHKvjzC2nPCqkJ6kWb6p4NsjK87EeGpBgA7QhbVehWE+sHUVP2e07ITkPu1U4X5PfYsrjfsWIstf/qnn+hKtfCbMCp5ASrvqWbEL6olVVgmtWnxCiVqntssYMIGK+HzJSr+Ip5haDi6z/VV6xNWsOQqpib7hBQACds/m4OziceCCqKuA0Uol7ci+b9iiNTRNY37WMWZPFuqBRVILD5ZTZv7i6Td/lniqqB0ik3sQZmVUi2uj0sSorTQpZGO1zP9U7JKjr1vvwVfXJ8/URNzkbCFX7z2TzGTNp4AGquoxlqFxZ/T6fEyDF2D1bSxuBJOARNEQ3JBQVXYxlMzoZIgjdZ8/7ivQguoJUANCiBC+2f3glA/+OIvY6XaLXsnMTUWvFidHivjlr2TPf+94nsOxtnk6u2pFi2ogJ3LMNd7nERLWfTyRFUFXdciq2dFhcwk3fwmpdpmsvJU868bdU3D0X1TAFpKtSCV87Kb/Nmv9RNItq7jnmoDcK3E3TQQoVzeiuT/iiEywUjQi8/+xlBkF0BmUc3fGpaVp1pq6Z8shjrF9E/A7+OSXVBBqPbPFCbvZo+dbqaIktb+GdLDZpCUakzhFU+pJsYfadQdU9ZCKjj8eAtY8eOSoeuYmWS+askTQAdp5zgKogrxvKgm8f4pthXVsleqiVpEh23/5Eq1iMpPNmaa/ZRqEXzC4qDrGh6871Dg7zxw36HAzdCCoUN3W/ziPI9r/Bx2KNWGUvBUU6AQzJ/fCi/mvXlMuO+XKSwTF9V8SrU47eVb9RkSRHaeaswqRoOmabj5hnEUCzqW1+u4dL33OMsKOJN9kj8BMUW1oiK+30mIex5EKJe3IjS6ELFgE6sknmrKtX9KKDiwSeBQyUg97TTt9k8eQy3Rt6cbLCQg0/TPEEW1Ygq7glw517GYYMUbWQVWz8Mm+DzEDipQsC2GKVKqcZRqDTFFjiRKNTPCtRuHHSwBVICvmqjzlTcMQUEFDUv+2KzrGi+oqKD6EdUyzPwBVzcagd6FsZVqrDW/n1KtLt9X8tjhWXzk/ts3Kdamx8r4yP2349jh2cC/1zQtkR1DlZ/DDqVa1PbPCMpWlZRqdclqRBFEnS+L8A8FvPls3PZyUqptJitPNYuvAVvvXywYOLRnAgBw8txCz79bcpVqE6HaP1krevRxaJCCCriPccTCqQjl8lYkXekMMTC0BkM7XvqnakU1iUa1zE9tJGWVGuBNYlLzVOMPonS/1yw91Xq1W3ajwL0N5H1Os4dyLm7bZVi8xUDI9s+YQQUq7eBXXEWK1bTRsOxIEzB2ryQ9nhERnmqSimqzk+ISQEUp+/KGiKACx3Ha2j8dic+DQkFDveEo0f4pahFdKRcwOVrC0lodcwtVHNjdPXAo7v0UdvHnqa/kjoHHDs/irkPbcebCEpbWTUyOtBZOYe06hkoGqqYVKwG0d/tn65xHbf8MY/ifxmZXWFTcPOok6nzZuw+THVOhw88tqs0IFdU2Y2SU2My7lXxjytF9UzhxbhEnzy/ivrfs7fp3y8xTLUr7Z4xj4/57KQsEZMADPiI+95ly+ZEnXuz5O/2Uy1sRGl2IWPDJfpyi2hZq/9xwd7aHU07+BLxJjCxz+k6yT/+MPolPSpT0zzSVapvaPyUnnJlh2z9jqkJV3MH3t01GbQFtCGqJGXXHlUTpnxLaPwFfAqiQotrWXBAVBAQV+Mcb2ecvjTCWsIhSyADhfNW89M94SrV+Y6LXGih/DNR1DUf2TeHtt+7EkX1TkRZOrCAWx+OU2WVsav/kSrVw45zJlWpqbHaFxUu5Vnec8zyaws1jeDE44X3o97eKM4/Zqs+QIAquUiz19k+b+S/7i2qtsIJTry/17IBaWmsV1cZDtH9yUUEjflBB2lY2MkiyvmXK5fHh9vVrWOXyVoSUakQsjATtnywNrqBIhVtmUS2r5E8gu/TPtItq2aZ/tt4zTMtPIQXvlt7tn6zFSHb7Zx+lGk+6i/ZdMb8hlXbwdb3V6mTWm6iZFsaH+0/0GKJa00YqrqdakqACWUo1ngCa3FOtvkUXRCKCCvwFrmJBRz3xp+pNQXIgShRELqJ3TA/j1OtLuBxYVHOfBVE91Xyt+bbj8BbaTuqKm9gzynyTS0JQQcj2z0YEVR9To6jkqabyd+zNK8N9vyKSroGWob2ha2jaTqwEUPJU2wxv/0w5rZk9z/zCiv07x1ApF1A1LZyfW8VNu8Y3/d3yeuvpFcbHS4hSbQDmG0k31I8dnsXIUBEPP/4cxkeK+Jkfuj2Scnmrkf8rhsgEdkPF2UFnA6oqNyWfVElVqg1++2caCXPd4EEFMbytktKr3bIbbKdVpoqj3mNSHnUiLOp9O0mqVFOp/RPwvH+i+qqJUtF4nmriWq1EsWPaU6rFMZb2UxeoOsoT3qIn/pjR6CiqySQrj55u1AW1nQHAjqkwSrV4yk9/4SdoXFR1DOwkSXBQL1+6yOmfERbFngG+AtdsimrEuBQiLtJFJncnKRCISiEdJAoZtX+y55m//VPXNRy5cRIAcKKHrxpTqk2ECipgbfUJlGoDUIBl69s4hWgGOx+To+XIyuWtRv6vGCIT+A46eaoFwiaBI5m0f6ZcVLOy2Qnkk/hMlGqu2idCyliSh1v/z9O9DZNNaOWlf4YMKoiZQhq2aJc2lTILyYjY/iloJ5S1f67FaP/kqkZJ53Tb+BB0TUPdsrnBcFwGaec4CkKUalxB3Epak0kaGwdhEalU27mtf1GNty7G9FQDgn3VTAVb4LvBiopxlOO8MNmh9oseVBD+XLGEPzWUavLDKJISdV7JfFxF3IdJlLDU/rkZEc+XOHRTqgEtXzUAOHl+cdPf1OoW37ycDBVUEH8jeZCuFd7enmB846FWCo9LqkDtn2gZ+dqmmfr72k0dzZoB2zRhK9AuEYWyY6FoN9Cs1mCbQ23/FnRcjuNAt+rQAehWA7aZfWGtyI6lVgu8DuJ8X9W1DRTtBkYLdurXWBlNFO0GGhKOqxtOo46ibcGwG6ke6xA7zo1q2/umcX9ZtRqKdgNlWH2PuWA3ULQbcOp6ovMTdFy2aaJo2yjb7Z+n6L530zSlfDf19SqKdgNDWvB5KFjsHDQ3/V7QcTVNE0W7gZLd/zynyYjhoGg3UF3dgG0Od/2dbsfFjqfoJDueEcNG0W7AXNuI9DpN2wbqJooASs7m7yIM/e4vHcDOUQNXl6uYn1vERGkq8nswrFrr+or7WaOg0nO57LTGNjvBfVuvts5duWDwZ5ys4xpC61naqFZhmxUp79FJr++r6V4z5YT3GADsGDVQtBu4dn0ZVq22qUXTdhzYtRqKaD13o75fRWvCatow16oYMZyux9WsuWOggOORSUVvXbPmejXSGA+w+7yJoY5zWNFa45xVbXQ9/5tfJ/zzomC3rlkkuMdEjBm27UBrtMbkgq3G3LjbcfH5VjV4XsloVMPPkfpR0Zow+fgSbaPaqZso2pZ7bk1lxniRRL0OjWZrPoZGPdUxpek+k4Y6xrIju4ZRtBt47fVrMNervKhlN3UsVN05U0F3x8DgYhmfbzeir71ss5bKfDONuUYp5Po2iJo7v6/o6a9jVcFxus/vO9GcpH0ZA0DtyhyO//S/zPpjEARBEARBEARBEARBEBlz7Ld+A0M7d/T9vfxrGwmCIAiCIAiCIAiCIAgiZUipBsCymrh+ZXMPt2wKBR2Tk8NYWtqQ6rMkg//7D4/jwtwqPnL/m3D7gW1t/xZ0XFXTwr/+9a8BAD790Xcrkeb3lefewP/vf53FXbdsx0/94G09fy/O9/Vr//UFnH59Ef/s7x3F2472r3KL5IvffB1PfPVVvO3WHfhn33+05++JuA6tpo2f+7WvAgD+n4+8E8Mpesi99Np1/Pp//w72zI7i333oLfznsu8vs9HEv/rM3wIAfu3n3t3X7+v6UhX//re/gUJBx3/+P94T+317HdfSqol/+9mvQ9c0/PrH3tPmn/T63Co++YfHMTFSwi/9zL2x37sXv/+XJ/H0iTnc/+4D+MBbb+z5ew3Lxkc/3f06Cfq+/s1vPoWV9Tr+zw8dw97ZMeGfPy6//1cn8fRLc/jhdx/A9/Y47m7H9fHf/gauLlXx8//4Ttx8w2Ts9683mvg/3GvwV3/2XdzjrR+Xrq/jP/7eNzE8VMD/85F3xXrvMPfXl45fxJ985WXcdWg7fuqHeo+t/fitP30Jz798FQ+8/xDec+cNsV8nDCo9l3/3CyfxzMk5/Mh7DuJ77tkb6zVeubSMTz3+HLZPVvAb/+b9Uo+LPe/+tx84irceSed51+v7evSJF/HtV6/hx7/nFrzrzbsTv89v/Pfv4DuvXe96DV5ZWMcv/u43USkX8Ks/G/1+6jYedB7Xzz/yNWzULHz8n92DXdtGEh+PLP7s717DF54+j/fcuRsPvP+Wtn8LurfY80vTgEc+9l2b/P+iPAOi/O7VpQ18/LefQalk4NM/9+4IRxruuMLCP0fRwKc/Gu9ziKbbcf3OX5zAN0/N40e/6yDe/5b+Y9Iff+kM/ub5S/j+t+3DD73rpkSf5//+g+O4ML+Kj9x/O24/MBP67zrnp+OjZWXGeJFEvQ7ZPGCkUsSn/uU7U/iELZ47cxWf/bOXcOCGCTz0j+9q+7e/+85l/OEXT+Om3eP4hQfuBtA6rqdemsfv/vmLuPPQdvx0iLmEWW/iX/3n8PNzP//pc8/jzIUl/PMP3oq3HJ6NcGTRSGOu8eVnL+JzX34Zd9+yHf8iYH0bxJ9+7TX81TfO47133oAfe/8hwZ8wH2zbOYVCiLAV8lQDoGka9HJ/40PR6AUdxtAQ9HITupGvgV0rltDQi2gWipvOXdBxObaOht5aSBeHh6Dr2YslC5UhNPQi6igEXgdxvq+VBtDQixgZG079GisMtY6rJuG4OmmaFv9eS8MV6CkWS8sjw2joRWw09bbjlH1/1a06GnoRGoDyaKWvz0txpHUtWDaglUqxTcN7HVdjvYmGXkSlbMAYavc5LA23vp+qY0i5DqsooKEXURyuBL5+qeTA0otwADSNYujva8M20NCLGBpJ/z4KojzsXnu23vNzdTuuqtM6nlKf89WPoTKAUhkNy0bV1jES8rXqMNHQiygMlWO/f5j7a/vsBBp6EVdWrUTHWUPrfBUqyc5XGFR6LmvlMhp6EQ09eAwPwtKLrXGqVJZ+XFqp9XktbfO8QBa9vq8adPeaGRLyWWZmJ9A4v4LLq81Nr2e699NYJd79pJeH0NAtNHznrfO4WmOghvKI/HsgCaWRivs83vysCbq3zLXWM2q4XNj0/AJa84pG1UHV7v8MY8+LcojnRbHioKEXYdvx1wEixoyG1nCf3+ndO/3odlyta7WIesgxqcbnBsnvQ71cRkOvoaGXIr2Wf37aun+KyozxIol6HRYrrTmjCTnzwl40C+4zqbj5ezx68w40nnwVL8/VYMJApVyAXtCxaNpo6EWMT4yG+qzlosO/c8sooFLunxjKqLnzs+KQmGdHL9KYa7D1rdlnHRgEPx8J56t5Jux6LfuKBpFLWKSuHTH9s+lLIOlXhEgLL81IfHokS6tKU7nFYCrANHbi/GlvLAEuLbJK/zTdxMdSyQh1LbPrzEG81Nx+9Er+BPxJSJLSP91zX+rz3WuaFiuVlr++AspWP0Ms/bOPaW4ndZ6Ilvx4RiutsWU9ZDIe4KWVsqQ+WeyYapnVzy1VkUQUz8bmQUjjigJLu0syXrCxOY1xueAmKaqU/tkvkTgsPAF0cXMCaM1N/qzEvJ/Kbipyr/RP23b48aicDAnET//slfzJGB5yE0DN/uNc2OcR4I0pTduJPJ8VianoM66TyOmfAlPh+Xs3o11b/s9aSDmdXmUKOktrzij9U988b56ZrGD75BBsx8GZC0v854srLYP8idFwxTFd1/jrR533NlJ8ZsrGu2cSpH82WmNuFLXfViX/VwyRCTyKOWpRzfYG07hKHdEUE8R094MV1UaG0heFssG0LqFY2Ak7d4aupV4sZQM9i31Oi1rEmGn/ZE7GtcYm5d0WXUX3Z3XLTlTc6AVbxIR56HrXZbhzYDVtPm6Uimo9siruArBaD1/QAvwL/uTHw8aWtWoj9N/wiHTJk6SZiQp/v688fwmnzi/GWrjWBZ6vPOE9Z+OPF2xTJY3FpIgJvCjYNSNqYbRzqlVUu3J9c1GtmvB+KvnG5274n+GqF13Y89CMOCaywmSvQv9wubV5sNFn86D9eRGiXcf/XM7wuq0HPL9VIuo9zjeQBBwX+64sK9ozpOEbA1VZd6hAVpsg7P2MHs+ko/umAQAnz3u2TAurNQDhi2qAN1+MXFQTWAjOGrZxm2TNEXWts5Wh9k8iFnGLahYrqhnqPNhkLQRsx0HVzE6pJrNY2EmaaohOvEl8E47jpDZpYkWssAsp/wNaxiSGTV67Pfg631uEQsqP2QivCom6011veL8nSnUiCqZMqYZQTzAcxxFaVPOUauGLamySJHvn8duvXIOuAbYD/MH/PA0AmBor48H7DuFYBK8SPsndYkU1b9GTQOXXTK8gyRe9ChTVRB/3julWUe3qchVW024rxnDlZ0hPw074RkMPdZfZNgaqfQ+UYyrHWWGy0mNMYpsHG33GOf9zpRxiE8Y/pjQsO7OiFn+GKr5wjaxUE3gfxp2rs9/fas+PfrCiluO01LB6F+WYDPziim7cun8KX33hEk6c84pqS0ypNhK+/bBo6KiiGXkNZA3Q9SKicGqmNF8cBPJ/xRCZwAbjZsTJvs0HU3UuvTjtaGGomhbY2RmOOdlOAtulCasISkLDvQ6y2NlhO9sO2gswson6oNF9Kj4Zcnve/tnl8/gVXjKKrExJEUZJFrmo5r62pnkTBFVgrUq1CCpJq+nwcUHEpG3ELdhHUarVeEFY3rh0/PQ8HnniRXTuuyyumnjkiRdx/PR86Neqb9GiGntORn3O+mmkqFTzlCQKFNUaYq+ZydESyiUDjgNcXaq2/VtNtlKt4Y2vqittuB1DROW415Le/RxWQrZ/snOoIdw13+qaaP3/LIvBntJc7TGuGPEeF3kf8gJBXOXRFnt+9MM/n0rz2udFtR7355EbpwAAF6+uYWWjDsBTqk1GUKqxzeOoa6A0n5myEbG+jSog2Mrk/4ohMoEVB+yIrWTMU63XDkUWyCqqMY+jUkHP5GEuQvYbFq/FKP3vtVjUwd41TV+1OJLoQsH1eJAwgQlq//QvHGQUWaN4npX4dRnuu/K/tmoLSqZUC+Pzw/AftwjF4AhTqkUpqrkLWFmqDNt28NiTZwN/5/Enz4ZuBW1Y4a+vQYI9J60k7Z9cRSz/3uHq6JQ9errhKWTEXDOapvVsAa2awQWhfpT7KtXy0RoIxLdjqJrMU61X+ydTqvUpqvF2w3AFSE3TUlX190JV39BOCpE3xcTdh7GVagPUzieSQlsHQ3pjNlsH9lovjI+UsGd7K+H41PlFNG0by2vMUy28Us1r/4znwTcIRVgRYxvvbFB8bFKB/F8xRCaw9s1mxIdbP9lvFshq/2RtCsMZ+KkBcgMYOuELtwwmLbqmcXVWVB+XJHgtdOG/36i7vFEIav/0BwTIKaqFb/EoRLzf2GuXFZzgVHhQQfjrrl1JkXwcHKkwT7UIQQV8AStnknTmwhIWV83A31lYNduMiIPYqouiAn/OJgkqSE9FzAp3SrR/CvZUA4Ad0y2PwCsdYQU13roY71nPCim9zP3rEdrrs4Y9f0Qr1cIGFXghBeHPFXs2qqBUU72o5hXOwwYVeEVOYe8dWXm0NYNu+uFfhyXZuImKFWId6PdVW1lvwHFa3QpjlfBWOnGvF/bMHIygguTiClKqhSf/VwyRCd4OesygAoXauGTtUnohBen7qQFegSOV9s+Md3biTuSTYEYw52dE3eWN9nmCPVlKEpWLrEUzzE4Wvy5DtuqaCquUWFGtGuG64/eKoFauOJ5qsidJS+vBBbWov1f3nbOthGezEP+eTXNsVqn9k7ekCzzuna6v2txC96Ja3CJ1P0Ntf/un6rCW8uhFteDCZGilGk9JDX+uCgoo1XLT/hlTqSaiqF+IWfwkT7XuaJqXkJlk4yYqXsdS7+/j6P5WC+jJc4ueSm2kFMn3rRjTAmeQNvFEbBhwaxkF5+Cqkf8rhsgENhBHTXILilLOClntn2zyl7lSLQWfMW7smdFDiLecpNr+Gb3lpyjRyJu39PX4PDKVi/UIJsvR08PYIkm9Bzoz1Y6jVBN1r8TyVGPXrqRzOhnSTDjs7zVypNQRSSFmIJCfRooqYpnjWxT8YSAiF9KsqNbZ/tkvubIf3Punx7M6j+2fVtOOdB30U8+yca5fUEGcNkpZc8AoqPyc8xP1+c1DeTJVqlFRrRdZhMuw51mQUv/w3knomob5pSpeubQCAJiM0PoJxLtemrbNbY0G4Xph5zjJ2FYnpVpo8n/FEJmgx5zsN+3+OxRpI8t7jClHslKqyWpr7QZfuGWlVItpjpyEWJ5qEicwbFLe6/MUIyrEwmI1bT4OhNllj6qYU1mlwfx/6lb4BaRof7Ak6Z+yggpu2TuJqbHgCfD0WBm37J3s+1qDNsmNgiFgvLDSVKql+MwJomk7YHavIpVqLAH0ymL3oIJeyZX9YOOm2WPDg/tSKV5wAdoXXr084rrBCv29lGphgwqiJFEzqP0zPFHVqF5BK3tPNdWTc7NARDpkVKxm/8C6SrmAm3aNAQCe+s5lANH81AB/AEyEICnLW9MOklItyTOZPNXCk/8rhsgEnkoWt/1TQaVa03YiK++CYEq1SgbJn0B78cKJGCgRFe5BkNFDiBWSopojJyFOzHQhoh9JpM/Tp/hUkrTg9S+cwiwIsjQ6Fo1/ARm2oFsXnEo4MhTDU01yRLqua3jwvkOBv/PAfYdCtXL4i8Bbr6iWXKmWpt+lt2mQbVCBf2yRoVRbWa+3tSFW68mUaiWuVOsRVJCjRU3B0PlCPcomV7VPgipv/+xTVIvj4aVC+6fXtqr2dxxZaS6wDTvu9yTDX3FQ8CwGUmz/ZOKKPjZArAX07MVlANGSP4F4ClT/dZ1GuI9signXgf5Nc1Kq9YdGGCIWXh/+AAQV+BYbIgsO69xTLdv2T0D+LhSfyGbklVeO6eOShFoMSTTfEbfET2D6FUr4w1WwUo0pA3SfP0cQ7H4Lu3uocipawdD5YiFsC6iXSiioqBYr/VO+nP/Y4Vl85P7bMTHSPhGeHivjI/ffjmOHZ0O9jqwCSR4wBLZ/prHrzsb/rD3V/B46IouJlXKBX89zvrACUZ5qvVTEvDChoFq3G+UYHqe8Jb1X+udQ2PTP6ME2aar6e5GXwmmUQoXjOL7WfQHtn0k91QZAeSQarlRLMaig2ezf/gl4YQWMhmVHEj7EKqpZ/vls/q8X/zUfZx7hH8NVnIOrRjarfSL3cE+1iJVv7qmmUFCBfzeiYdnCJjWqpH8CrUWGCPl9L3jCXEZqoiw81eJMgtmiU8bkPSj9E/C1fwr2VPMv+MIY7/cz5d70+gq3fwKtRWDdqocOK2gIVqr52z9tx4Ee4jswJbd/Mo4dnsWRG6fwc5/+WwDAx/7RHbht/3Qks2GuMjC0UMc2SIhoF/fG5vSUalm3f/rT/kSEgfjZMT2M5fU6rixs4KZd4wCSt1OzxUovv8s8eaoBrWL9es2K9DyumuGUarV6E03b7rngjRNso4RSTfHnHCOKT5XVdMBWCELbP8lTTRgFPX11sZf+Gfx9rHQEGT314hWcPL+IB+87FGpTLk5Y26CFWhQ71rdRN5nYXLGlQB6McyITOkNELHhbSsSBWEVPNUPXeZFQ5KSKtSlk5alWMHS+CBXto9WJf+GbBV76Z/gWuKR4CYrhF1I8vUpK+mfwYqIUc0LajyghBUB089g4HjlpwnyUqiGVanW+4BdzPGx8cZzwark4IRtxGR4qgNU19s6ORiqoAeLPV54QkczGCjVptD7FTecTjUwPpZ3TFQDtCaBVM9n9xD6n2TP9Mz+eaoAvATRCgEutTwutf3OSFeC6EedcqRBUYEZI0M6SKOfKXyQWUaSImy6cpq9k3vDWcmkq1dg6sPdc4PjpefzW509s+vniqolHnngRx0/P932fohHdL3vQrhV/ISzO+BanI2crMxhXDZE68YMK1Gv/BOQYLK9nnP4JpNfWwH17tlJQQYyFlEwlR62PmkHWwoHvsIf87osxlWphQhCyYIgrKEK2fwpe8BcLOv/OwyaApjlR0jSNq0zW+7RudWMrm0yzzackrTlp+l0WYy56RSPTQ2nn9AgA4MrC5vbPuP6p3FC7l6ea4mNgJ0w5XosUVMDOYfcxydB1/rpBCaBRn0eAGqm19bq6Ngd+osxhmEJIg5gN16RBBVtxY6YfWfhg8nVgj2vCth089uTZwNd4/MmzfVtBvblm+HEoa4GAaDRNS6TEzUtbuirk4wlNKEfioALFBqy4Ud1BbGSc/gn4JiGS2yLTNMPuBm//zMBTLYrZu8zJe72PT1YxhhQ+1PtGbE2KrFQTnJYpGk+pFrL9U8JO6EglWtFKdlBBJ2xjoZqgqDYoO8dRKMRUhPtJNf2TL7izDSqoSyzE7nCVaqyo5jhOYuUnb1Pq5anGC0VqjoGdlGMEB/VTqgHhwgriJKVGDc+RAVMpql44LUZQ2/OxO6Q1RN/3jhtUQJ5qPWECh3TTP931Qo+OpTMXlrC4anb9N8bCqokzF5YCf4faP1skSTc2U+xqGAQG56ohUoV7qkUtqrmT7agtQLKJMlEIi0pKNdGFlE745Cmr9M8YO+NJibODk237Z7BvT+z35YuYkEq1iN5uXjuPmo8rpk6phlSq1SUUOUbdwn0YpZrtOKl5qjGGy63Pt2GGD1NgyDhfeYFtPiVREaS5oGT+pKq0f8pQprAE0LmFKhzHQb1hg1nLVhJ6qvUaE80YGzhZElU57jgOau6mRCXgGMOEFSRTqmVXDI66OZUVUdRiopO747aXb+WNmX6oqFRbWg8uqIX9vTjdGRZXqg3OtcK9nBO0f+bl2ZM1FFTw/2fv38PkuMpzb/iu6uruOWikmbEtywfhg5AlG8VgC7MhYA7fdmAnIRubEIIdPiCEkxHxhiTOhrwE2CSB7AAxGIxJsjEvh20IhxhCMIEYCA44MUaAbWFbVgwYGVmWLc1ImlN31+H9o3utqq7u6lpVtapqrernd11cWKPRTFV39To8637um0iFn0qWNP1z9AlFWeTRGreiQFEtLx+tMGWf7qQ5Gc9KqvTPCrd/im4GGoGI7yQ/X1WVhu8fJKpUk38/SRJAgy1mRZ0+iib3DSOP10sXLK4IT/+ZzbMVMowKbXRAMI1a/j2fNDsJ0zDQ6jhYXGqDnQ8aRvrCf7xSTa8W6KRFtVbH4Yb2Qkq1UUW1FEo1ZuYt+8ApCXGHYqoQXEd4njdSgRYMDJHyu9Mq1aioFglXQ5eQ/hllAzQ73RT6OXHfV0+41gTK38vkQRYbIGr/TEZ1nhqiUGoV81TzFwpyFlWe5/GFX7ntn8knlTTYdnG+PcMoM/0zkadajkXOdsyJUl6qxaSbgaTFvTZvi1FzUmceQMJBBSz9U6LyjhXVRJRqbKNrGMVt0llRLYunWpUWuaJwE+mE82wQmyvV8p9zVUhRDP5+mZ8xhlUzceLsBIBuC+hqYB5I2+IWp1TTRcXEaPYKY6LzMWudjytMsrXUyPbPFCma3NC8TE81TcIo2Gfc8+LHJdnFYL84kGw8HOc5JI5a7/3MYjGQFOYRGrVfOGfzLOZmRhfM5meaOGfz7MjvyaJUq9KzYmXYB+qWPF021XlqiEJJXVRzFPdUk7SoWms7cHs9ISq0f+ZeVOOeauW8r5Mp0say4AVa6JpJ0j8ltHNFX8/o4lMjYUCAKEkXzomLaik2SUXC2z8Fnz02xsgsaK1LULRqSSgCJEXECymKcW7/tPiGJ0tQQXFKNUsRpRp/ZnI65PFbQFeEvMDi8IMKuuqfMLqomBi+Ui1pGrE1ckyaFFGqpVA2+/Yf5bV/8s2r4uNccByO+5zLLmb56Z/JDk/JUy0aqwRPtTilmmkauOKSrSN/xuWXbI21EfI91RIEFVTwWcniGZ5GPDDOVOepIQqFp38mLA6or1STM7GwRZ9VM0pt2UgzqaSh7JPANGljWWh3XL9dJUmbSU6bTttxeRE3sv2TT6xyX6N2wiCB9EU1NSf1pJ5qnY78z0oapVqRJ49MYZIlqECX1jeZcBPpDEq1Tq9QUIynWvneVED+z8zJc92i2sEjK7ztO8umI3idw8ZFv6VRj8/AREI7hrjkTwZvIx/hzZjmtbKs9J5DMnA9z39mFd+8BseRuNerzds/5dxTWqUaW0OM48FMHLxQmWGOSYrvqRb9fuzcthG7LtsxoFibn2li12U7sHPbxtjf4we1JWj/LNAuoSh4e3uKfQd5qiWDPNWIVLDBMHFQQU/2q2pQgaxF1XIv+XNqol6YGmQYRSvVyjrdKdpTjU00BhIu3nPyVGsFFg3NxvDrYQtb+emfydpWGgmvgwchKOqpxYy1RT3VZG80AL9oxcadUchQ1iRlkivpkgcVlF2wL5NaysOrIHaBHjHcELl0T7V873nTCX5RbVWKUs2/zrbtDoylurXgJD3kYgrzuNdQyFMtjVItR69TEYI+l6q/x6ZpoGYacFwvdl0pu7iddj1bRZ8sWfhhOAUq1bi39ui90c5tG3HB1pPwwIGj6HgG6oaHLaduEN4/pvESq7JSLU1AGnmqJYOKakQqsnuqqTVgZZHHDoOHFDTL/YgVVVTrFNhiNIyi0z9ZzHQzYQtdHimz3evp3rdVMyM/W/m1fyZLW0urVGsqqtKYSKpUy0FFsy6NUq3Ak8ds7Z/yi5C6wNs/ZQQVFKFUy7B4l0me6Z8AsGluEgBr/xRTWY2iZpq8UNHuOMBkvw+r6mrdMBMJDxr4axgzJvlKNZGggiRKtXK9AIOHYjoUfuqWCaftxBYrZHsbWikLQFX0yZKFVYanWgIbINM0cO6Z85ibm8bCwnKiuYUf4KZQqlXpWcmyD0wTyDbOVOepIQqlcp5qGdJRhrHMQwrKLar5Bsh5BxWUG0PNgwqKUqqlLEzkp1SLLzzJLhwzkirVkoaCqG7gzPz8VoXTP+UX1aYne0qw1fiilegGViaZ0j87yTfJVYG3f2qiVGPFCcf1eDt6GbQlpw6GObnnqfbo4hovZGdVfo6aq1nRRRe1QNLgIF/tJ1hUE1GqKWDLIErQN9QssbNBFNFAkrZklXkweGuY92AUvFBSIfWRLNIWKrPge6rl+36k2deV3XWTB/xzkyX9k4pqQlTnqSEKhXuqJTxBHx9PNb/9s0zy8tEKU/ZExDY0rbaTaLGVFlaYSOKnBuSoVBPwPWCnxW3Jar6WnUxJlnSh43u2qTldMYWKqCl3OwcVDVOqLQso1Vr85LG4gv+0gMIkiiq2Y4giI5nND5Epov3T/x1ZwhWykren2txME426Cdfz8NChJQDZi9SNEeOz6mEtYSbqveCghJ5q8e2fvfTPkUW1XgEyRVBBeUq15C2rZcLXMXFKtYQq9tjfGziMT3KgX0X1kSxqJRSUeftnzuKKpAe43e+tnqcae50zBRVocqBTNtV5aohCYUWxtJ5qlmrtn9I91dRQqtVzavkLU/ZExAZ8D8mk3mkRKWINI6/0TxHfg0aG06pRJFUGJP2ssXtTdcMx0UiY/pmDiiaRp1rLb10uCn8znNxTjX2eZbUQ6QRTdLteeuVXkX5CVp+JeXlKtbw30YZhYFMvrOBnB48DyF6kbka0Knmep52nWtL0TzZ2TggHFUT/3FaKQ5i8FOSi6Pb+is7hbcnrwuDnOcmaljzVomF7saRdR1koWqmWqv2zQod4Mto/SakmRnWeGqJQ0qaS+akviinVar6sXAZs0TdVdvsnT//M21OtuIS5YdTrJtgTVYSvWtrTm/zbP0co1VIkIYnQTtialPSZVD35jinVVgVVGe0cVDRMqbayZscedJThkTGZpf3TVruomifBw6e0arUiNwlB5UFZrXRAMcoU1gL6i0eXAcQXhOJg41srpKqwHQ+snqrLZyBp+6e4Uo2NIyPSP1PYBeSlIBeFz6GabFyTFtVkzXW1WsqiWgXVR7Iopf2zJ67Iex/YyND+WaVnJYu9kX9gTxb8IlTnqSEKhZ0wJFeqdb9fNd8I2Z5qyrR/Fpz+yaLpi8Y0DB5F3xI8Hc8C3wQkDKLIvf1zpFItnwJrK3FQQfcaRV4D1/MTxlT1VGPPQKvtCI2Hss2bAb947yG+xXKthDSnYPtn0vbscW7dqfW1OyX/3DquywsyRWwSDMMoZZMWpohnZlOvqMYUhFmL1Nz3JnToESxMqXqwEGYioccpCzSIC3sQUar5RXjx16rs9M+kc2jZiHqq2byoJmeuMVOOL1VUH8nCb/8sMKigIBugqDF1FFV8VrKIRnz/6Oq8HnlCrxKRCrbYT3p6rmpQgcz0J9f18PDhFQDA0ko7ceFRJr6xa7U91QBfNSbq45KFtO0aeS3eRcxEgya/MvE9z5K1fzquF1soCC6GknjkFMlkQF0h8uzJNm8GupsctiGNSwD1VSHFp396XvLPZ3uci2pmUPmVfB6xAy2YRY3NZbfSAYExKccxgxXVGJnbP5mnWmiuZu31NdMoLQgoKey1WBP0OF3jQQWjX0NWnG933KFFFcd1+edEL6Wanu2fcYWtPAJDRAt6Qcb5YCYOi+/lSggqyHk8Y++368WvNRlFBvsUhejndRitTm9sJqWaENV5aohCMdOmfzLZb0WDCnbvPYSrr78N9z64AAD41x8dwNXX34bdew9lvsY0sI1U7u2fJad/AkEfl/yLamwTkNhTrUSlWhrTVhHaCdMZk/iiBFuhVPXUqlsmX5iKeAjl4akGBHzVYopqLcENrEyCr1HSFtC8TedVJjhPpvG8CRa2ilIRszmgrAIFUGz7JyNOZRUHKwKFWyZ189sC/Gt1XE+oGLwqmEg80bS4zcOwcSTonZRkvCi7ENxKkVhaJqJJ4nlYN6TpKiFPtWisEpRqvrd2Me2fgLivmgp7GdmwuT9VUIFmrellU52nhigUK3P6p1qPnugiYRS79x7CdTftwcLxVt/XF463cN1Ne0oprDWKCiooMGEuiqQ+LllIm/5ZpqdaXu2f7YTJZcGFbdy1tANtMaq1jAdJElbAjfdlF9V6vmoqKtUMw/D9kBImgOZVhNQBwzB4YS2NkoCN+6ZhFDbn+qfi1Q0qAIBN85N9f85apObjc0T7py6tn0B/q5DIfCyqVDMNg7fbDxtHgvNJkve+7PRP35dUj/dY9PXyP4dyVdkiv5vhBSwkZF5HVbC4P3YZSrV813RWggPc8PdVab2RZX8r0gVD+FTnqSEKxUyb/qlo+2dWTzXX9XDjLftGfs+nb9lXeCtoYZ5qCkxErMAl6uOShbQTTZ2fCuZUVBvZ/pnPs8A2MqJKij5flNiimtp+aowkYQVsjJGtvFrXa42KSwAto6gG+P6SSRNA82iX1QmuJEgxd5Thdck+22W2fxaxMZqaqGP9lO+ZmvXzxMa4wfbPZOOrCtRMk49vawJFdN+jNP4e/bCCYUo1vwBpJDiEke2pmxRd2z/jXi92XzI/h0lb2YLF/Sr5ZMmiFE+1gtI/u2vNZOtedm2VKqqltH5xA8nTSQUE40p1nhqiUGopY5hZUSlv2W9Ssnpq3L9/cUChFubI8Rbu37+Y6uenpbiggt77WuJE1Az4uORN2gRFtrmVvYBpteM3XkEvM5nF3XYKJYV4epgeKo3JBEq1TiefU3NfqSYYVFB4US1dAui4J7dlUaqV4XWpQvtnUYXYjXO+Wu2RhZVM4ypPqgsr1dp6tQYy2PgiksbNxk0RtR8PPRlSnE/7vpf9zOra/hn3euVxgJR0TdtJqV4cF4r2VPM8j4e7FCGu8Ds0xPYFXBlfoQJsWk+1dmDsJqWaGNV5aohCqaX2VOulfypaVEvrN7W4PLqglvT7ZMEWl6ITSlpUCCoosv2zxdU+CdM/JbQZD72enpnoqPaR4EZD5u9P4/lT58+loFJNcZXSZFOsqGY7Ll9Q5tX+GeepJtpqJZv07Z/j66kGBDc9KTzVSvCHyUuNm4QilGq79x7Czw8t8T9/8mv3Z/JP5Z5qYaWarZeKidFMoBxnhX4RX7pRCaBpDngAFZRqeqkRLcHXq5OD1YGVcHxh12jAH0sJn6I91YJ7xiLEFYmLsBVUqnH1eMJ1Pxu7DYzv+isp9CoRqUhbVLN5UIFaj17WYsfsdFPq98miHnH6LRPX9fhzUOaixQ8qSLZpTwNX+yT1VMtp8d4SWJT3e5nJKTymTlsTNTrWxE+IFdXiVJLB+5Xf/tlTqsW0V7ZSqiyzklapVkSSo8qw9pw0QQVltLLkNcYlIW8fPuafGvY/y+Kfysa4AU+1th5jYJgkwUFJCv2TIu2fKZVqHdsVSiuVjW6+eeJKc/mHYsmVav5YkKQleFxgarGiDkGCvyfv9E8gvbKxSkEFaQ8N1gK2MvTZEaM6Tw1RKGbKlpSqeqqds3kWczOjC2bzM02cs3k21c9PS6OADU7wZ6vgqVZE+6efoJjSU022Uk2gpc80fdNzWUq1tGlrosrQliaeaswLKE6plmcrirBSrVWup1qc51uYKhoHJ4F9ZtNsetjnq8gNQhlpcmHyTPvLyz+Vq8oH0j/1UOuGmRC0Y/A8L9GYNFKpljJtkj0nnpeueJ0V3RJeRQ/FeEFLZvpnwrCncZ8/4rCYlU9BRbXg56tWoFJNNKCris9LWk81CilITnWeGqJQWFHMTXiq56d/qllUS5uMaJoGrrhk68jvufySrYW3vfI2uxyVasHNnhLpnwV6qiWdbKyA6iTpZ2cUooty2WmwadPWGsIn3b37UnyBI+qp1s7x1HzdZC+oYERRzQsaz2rW/lmlRW4SZCjVim3/FAshyZO8EnaB/PxT/aCC4emfum1sfDuG0Z/3VscBe7InBcakqSYLPBnV/pnwsCvwnJTRtpz2ussiuVKtfE+1cfXkjIMr1QoqJgdtDIrYBzYSFpR4uI9iwo8spO3E4gEymoxLKkCjDJGKmpHO58XlRTW1Hj0Zhv47t23Erst2YMN0o+/r8zNN7LpsB3Zu25jpGtOQ1StOBLZ5MlBusXQigTFyVlopExSDm1uZJ4OiRTVRLzNRsqatxV2HLgbOTKkm2v6Zh/fgNG//jN7E2o7LizNFqyKYwmQ1cfvnmHuqZVGqccVWkemfCrR/5pSwC+Tnn8oNtUPzl9/SqNfzL6ocZ39vGGIKs5FBBcwGIeFrFRyP8w51GoavyNbjPRb1TczjQCRpqERHAb9fleEHvQUpi9kzUzONQloK6/VkeyD/mVV7zZkEPyAtoVJN0wOdMin2qJqoDGlPzx3XH1BVQlZK5s5tG7Fpfgp/+tHvoVk38T9e9EScs3m2tGCGQto/AyeBZfbdJzFGzkpaT7Xg4rJje6hLGoFFJz+2sJTlqZbWw0b4pFuT9k9hpRpT0OSweVon0P65GvhslOaplkCp5nkeKdVq6fxLAX/jWWj6Z8qkMZnklbAL5Oefyj3VopRqio+BYSYElePB5E+R9cPkyPZPpgRO9loxawTH9UppW25r9h6Lzt95FCh8qxax98ke8/kjDn5o4xbb/lmUBVBSlZado3VAWaRVqrVS7nPGmeo8NUShmIGggiTGrsp6qklMZWSLsqmJOrafMVdq0ilXBOXY/tnhculyhxNRDxcZrKU0ew9KymUWOkUnP7Zxk9WaxTaAyYuLYpJ8XVQaPP0zTqmWo4KGe6qN8CzjpueWWfi4xNo/lxMo1ew+v8bxXNgxVXcWpVqRrU95+UaK4rj5JewC+fmnRnmq6dYayGgKBhWsJVR9T40MKkiv+PLDCvJfP4TRrXAqGkbih8zIVKoxX9ikyiO11xBlUSvYA9MpuFupIdgVwfCDCtTao2YhtacaKdUSQ6MMkYqg0iyJNZTqnmoyCh0thQoB7L4c10tsnCxKGQlzw/BPxvNN/3Q9D21u4JlMamYYBp+sZW46xds/s3kHDvzelMl0vqfa6IUxX5QrvtngrcdxQQUplX0isLao1ZYTWYBJuoGVSZr0z+BzqktrlGzYeJGmPce2iz/wKLv9M3iAlMeclJd/KvdUC6d/8mRnvZ5/4aJab8xkBxNxjA4qSD9fyOpWSIMuNgcMkdfK8zyuGJXrqdZ9jUSLQFRUG43f/lmQUq1gz7LEHnxVVKqlTf8kT7XEVOepIQolWBRzEsiGbWWLar2JWsKCSqVCQHDzntdikculSz7ZaRbkqdbpuNxYOc1kYwn6kSRBuP1TsnIx7bOevP1T7anKV6rFBRXkpxxinmpAdOHK9wIs3vmBXd9qSzz9kz0fZfs1lknNzND+WYKfkN/+WU76ZxFp1Mw/NaxYy+Kf2uTtn9VQqrExJi6oQKZSjRcgUxxa1Et8brkXnCbvsUgCp+14fJ0ktf0zYVcJeaqNhh/yFlRUY5+voubzJCotz/NKsUzIm7QH+aRUSw55qhGp6C+qeaiP+N4g7JSiptiAFVR0Oa6bSZqsUiEguKlo204ug2OnBDXEMIryVGNFOwNZ2kwcaUoO1/OEF+U8CcmR5amWzhjaElTM6eI1M8mVamJBBXmoWE3TwFTTwkrLxtJqB+tDgSkAsNYr+pWxSEqT/smej3rCIIwqkaUIz3yHimz/LHqTFsYOtO+YOT4zO7dtxAVbT8L9+xexuNzC7HQzk39qVFK3bq2BDNGgAnYQMSk4JrHi/PCggnTKaSDYVlimUq38NaMIvAA54rUKqtBl3ldS0/UqGs/LpPLtnxGHFcNw3GAhWI/PogjZlWpUKhKFXikiFUFPtCQn6MzrRDXVQfBUwrY91Ab3o8KkNW/Pg6ABb16LxTJ8e4ZRVPpnsDCRZqPvn4jLTeAExNs/O5KUamnbVhqCSjWeiqbAZ2kUE8JKtXxbw9dN1rHSsiN91cps/5wMtKe6ridUfMizXVYXdFOqyfQnTUO7wE20aRrYfsaclJ8VtfnTreDCSO6plrz90/O8vjmYJwWnav9kB07FP7e6HB4xRD7j7ZxUxomVatT+ORJuL1BYUEHB7Z8Jnpfg91TpeQmq9cJj5ii4VzMp1YSpzlNDFErwBDjJYt8pWPorCjv9ArIvqtKat+dFo57vJkcVufSE4CI+K1knGtmbTlZ4MhCfKinbUy3tJkb05IxtMFX3E+Ltn4JKtbw2/NOT3etYikgAXStxkTQV8EwSVatV0d8kKbUMnjfBZOaiyKO9PQm6bqKjPNV0aw1kiKZ/8qJaU+z+2FhrO4MHhZ0MfrZlKdVcz1NuzRiHiH1DJyeVcVLVTVvT8aAoLB6EU4xSjbd/FrRfqCfY/wSfKdW6qbLQJxpJ8D6z1n0qqolTnaeGKBTDMPwT9AQfUlWDCmqmya8p66JKtZPlvJUDtiJKNRYa0G47XBGZB1nNOy2B1okkBNVice1OogoxUdK22/CTsxjFnN9KrfakPhkIKhj17OW9wOcJoKvDi1ZMZVmGp5pVM/mmUbSoxt7/cd4Q8XbKDEq1IpPMLMlK3KTkrQbNC9ZC3+44fYnqupnYM0SV46utZGPSRKMGNs2Fx5FWJqVaOQrL4ByoypoxDpEwEn7gJvkAKWm6MGtDLfvQV1WKbtdnSrXCPNVq4gfJRVkHFE09IBpJ8j5TUEFyaJQhUsPad5KkSvIBVcEJjseEZ4xUV6n9Ewh4teTc/ln2ooUN/B7ktTcOg21y0hYm+Im4pJNBrpwTWJD7MnBZnmrp2lb80+aY9E9NNpRMPeFhtDIjT081AFjX8xuKUqr5z245r6efACoWVpD366UDaQ6vGJ0SVMT+IU45QQW2psqURmD+Cm58dGsNZIh6nCZtSTcMIzKsoJ1BqVYvSWHZ6vMe0+M9FlOqOX3fKwsroVJNV+VqUbC9mOcl28ulhc1jRR30sM+UyJqXW9kouD/NQvB+khwaUPtncqr15BCF4nu9iH9IVW3/BOQpulQKKgCC7Z/5tEWqElRQr5tgT1Wevmqy2j9lLd6TKBlya/9MWEAWPT3URXVSt3yl66j2Y7bpq+e0eeJKtThPtZI2b6OS+4ZBG6JA+2cKzxu7hPbZsoMKdG336g8V8l87Nt+osp4QhR06rcX4TK711GaTTfFDKj+sIKKoliaVuySlWrvtF590UceItGDydbDkz2Hq9E/NxoOiCBa3ihiz/fTPgto/E3yuq7reMAzDV5cmKaqVfAirI9V6cohCSWOgrGr7J5A+ISUMLwQocuqYf/tnsSdPUZiGgQb3cRFPGEzKKm+hS9n+mVNRTeR6ZLd/pt3wifr86dL+aRgGf/1XR7Q2srElryLhdE8JthzjqSbqXyQbX6km2P7J1Q5qv/95YklQqhV54FF2+6euGyOr5hfmg75qrKVRN6Ua91SLOeBKE54yycMK+sc53+NTI6WahkpEsfTPfPxDkxY/dR0PisJK6beVlsLbPxM8L2UcQhVFmv3tWlutvawOVO/JIQojaVHN8zw9imqylGqKDMx1niqWc1CBAvdbRFiB326ZUqmWU2FL5Hpk/+60BWTRQq9q/oSjmBRIAO3k7BG2rqdUW4ooWvHk2rKVaqJBBdT+yZVqdgalWpFFtbqA31Ke+OpW/TYCPAE0UIhiSibd7ieY/umN8Jlk4+VkAjuF6PbP9D5eZXmq+SEF+oxxIqqXdk7tn0mLn6oEaalKcC+WZo5JCt8DFtX+maA7Q5WumzwQKYSH4Qf2VFQTpnpPDlEYZsIT9KCBt4qeavKKamqdPPqtdvkUmmxFPNUAf/DPtajWydb+KWLym+Z6krV/yvJU620IEi6cRROZ+GdJgw0lb3cakQBaXFBBjFKthKACILlSjVQGGT3Vev+m2PZPuUEsSdH5mWHFIDamO67nq1s1KroA/gGX543e0KZRqvFxJFSc9w950ivVii4GtzRUgwRVL1EF07wOREipJpe0oXNpKfqgxw/FEvBUq/CzUudezsmLauSpJk71nhyiMFhPvGjSYnDAVlKpJqlNMksCVR74Rp35BhWUnf4J+IN/XMtJFtJsAoLklf4p1v4p91lIm0xXr4ldh/9ZKv/ZimOyKdD+mbOKZl1MUa2V8dnNyhTzQmqJBRXo6o8lkxr3KEuR/hlIMysKv729nKACnTdG4bb4oI2BKod0ogTnhFFhBTz9M4GnWnxQQXqlWtHFYNXsQkRgr5XnRXeq8M+h5Lmbv0+iQQUKrU9VRbYlySiK7lZK0vZYhrK7KKwUa/+y14s6Ur0nhyiMpKcbwclXyaKaZKWaKi1Lebc1qCSZnhBMHMtC1ommnmGTPIx2kvZPQYWY8O9OWfTibU4jFHOe52mT/gkItn/mrVRj6Z9xQQVlFdUSBxXo2fomE8tMH1RQhkl33Up+Ii4TrYtqLKm7N+6xQwsD+t2PaRh8ThoVHJRmTIoOKkh/CCNbQS5KK6Xau0yCXQlRa4m0IUaiv5uUavIoMlym6LC6NO2fVXxW0ohG1jJa3Ywj1XtyiMJgJ+iii/2+olrJpvbDkBZUoFghIO+imkrmnk2eOJa/Ui3tRCN78b6WpP1TMHVTlLStziITvO14YCJYHYoq3M+vxPbPdZMsqCDKU43aP3VDjlKthPbPstM/FTjkSQorBrW4Us0f2w1NkiGD+GNi9Oed+TwmSf+MDipIPzeX5anG32ON1CBB1VfUOqaT0+FyYqWaxuNBUfCE6SKCCgpv/xT/XHcUsrKRTdL9re24fM9OSjVxqvfkEIWRNKgg+H0qRofLav/MkkCVB0lOatJg2yz9s/z79YMK8kv/XOtkK0zIbjNJ1P4puRU4bTqnyEInqGJT5bM0iiRKtdzSP3vtn62OM/S15UEFZSvVBIMKqP3TH1fTKNXK8LtUxVNNh0J8mAGlWsp0ZVWIs2PwPC+dp9oQxavrerzwnOZAsyylWpZCYFmYAR+uqM95XmM3KdXkw5VqRQYVFKZUE1/zVvlZ4R0ygp+boDBBFYGIDlTvySEKgwUVuKJFtd5ipWYaSp66Sm//VGQg8v2r8lFv+ac75b+nRXiqZU3/lL14b7fFC1v+My7n9WmlPI0WKqp1/PFChYJtHJNCQQUsES2fsWGyaYENrctDWkBLb/+MaNuKopOhnasqJD28ClKGn1BSJYlsOjmlDhYBG8PZ2Fd2Wm9W4uwY2h2Xq5ETpX8OCSoIHsKkee9LU6pl8IErkzjlS15FNR5UIKiqKqMFXjeYxUARPph2wemfSYItqpwUm3R8Y2O2VTO1WH+rAr1SRGpYUIGdUKmmop8aEEiJyVxUYx4ZaiySZPtohbEVMoItJP2zt9FJ7akmWam21mEbr/jXvy5ZtZjWZFnkOlQrTscxwYIKRJRqORWJTMPwfdWGhBWUHZEeldoXRcfpFUjGeFGXxfif/ZsylGpFFycYOqsN/KCCfk81XcbAML5yfPh8zMZKw0g2Jk4PaSNn6y4gW1Gt6GIwXy9q1mIVt0m3c1KMklJNPtzKpxBPtd5haUFzkt+pI5D+2ZsvVdjLyIbvbwXf47UEHTCET/WeHKIwakmVagWfUCRFlqdaK0Osex7k3f6pUlABV6rl6amWcbKR7TnEjI5F2lEbkk/j07Z/ikjy/Q1l+c+VCExpMTr9M/+T0OmIBFDHdfnvT5K0JxPWtjVMRTcMX+0wvgs7PxAoRVBBby4qcpPAWolElSSy0bllmI3PbEz3VdH63QsQ73EaVM4m6V6Yag4qXoMBUWnsRcoqBqdVe5dNXFGtnZNi1AoUPz0vfozRuR28KGoFKtWKb//sPaed+OeFq5wV2MvIJoliD8jekTOuVO/JIQojsacab/9U87GT1/6ZrtCQF/XApJIHKgUV8JPxHNs/eVBB6qKa3HS8doLik+wWFx5UkLL9c9TCmG2OVVF8xsGVaqPaP3ufwXqOm+R1PRXHUiisIFhoLuv0kSlMVhO2f6owtpSFHwikh1KtXnJQga+Q0e+Z4e2fvc0dm2t0LQjE2TGwA4ik/qSTQxSvLTvbuku2glyUVsqwn7KJK0Lm5S0cHMtEikCkVIvHShg6lwUWhmAVtA9k77uH+DmUz5cVfFaYPY94US1bR864Ur0nhygM00yX/qlu+6ecRVVbsZPHpLLfpKiUmDNRQPpn1hMc9n7IOhVMkkZaDxlhZ8H1vMDCOV37JzBiUa6ZUm1KKKgg/00yV6qF1GDsOSnTo461f7ZtV2hxx8YWVcbSMmCbj3RKNaYiLm7OtQLzqIiSRDY6b6L9oIKQUk3TjU1ccFBaj8dgUAF7xrLOF/Wyggo6er7Hce2ynZxUxnXLH8vGPdFRFlksBpLCwhCK6lgKPn/tGGGBSl03sknaidVSTByiC9V7cojC8Pvwk7V/mqoW1STI/4MxxKoMRrz9Myf1lq3QRNSMMUaWQdb2z6QnRnEkSv+U1OIM9F9/0o1MX1EtyuhYs0mdtVSujWr/LKBIxDzVwu2fqyWHFADd14iN/iK+amzMylPZpzpsnk3nqVa83yWbB0SUAXmgc8swG0f99M/uZ0TXonKcxykbKycTtqOz4rzreXz+42NFyve9vKACPQ8O4tbLeR0uW31KtfFOdJQFT/8sxFOtWHGFVTP4miNu3VvlZ8UPrBP1VCOlWhpKf3Jc18W1116Liy++GE960pPw6le/Gvv374/8/sOHD+MP//AP8dSnPhX/5b/8F7zpTW/CI488UuAVE4yakbD9UxOlGjPHTkNwwFLFB0WWV1wUPGFOgaLaBPdUE2svS4rreWjz4kQ6XyrZnmrtBO0jwVbgrCqSYJE2aeGrmwDMfs7w10E3rxnfU02g/TPHe1rXU6othZRqLQWKaqZh8OLjioCvmu9BN74LO2aXkCr9s4Q0s3rCTa9sKpH+2XvfdG0NZMR5nKZVqjUskxcCmK8ae9aTWhEwrBjlVV4kmb9VIq4ImVeBwjCMRP53VS6UyIKFBogKJLLgcKVaMe+HYRiBde/ovR0/hFLU9zsLSTuxyFMtHaWPMh/+8Idx44034s/+7M/wmc98Bq7r4lWvehXa7fbQ73/jG9+IAwcO4GMf+xg+9rGP4cCBA9i1a1fBV00A/qAoHFRQcOpLUmScVLIFkgE1ikxAAZ5qtjo+BM2cPdU6HRfsaU/tqSb5RJz77ghMfqxA5SG71D9YIEpqDG0Yhh9WEKlU0yv5brI5utXJdT1eGMnzszI92QsDCHmqrbXT+RfJZjpBAmjeaak6UEvpd+N6/vNWqFIt0J5VRDtRGN+YXL9nJpxUl2RsVxHR9M/JhGOSYRh9LaBA9nYlGZ0KadC9/TNq/s6zmMVaQOMKoJ7nKZVOryqWWbxSrcjClWjqfZULsGxeFm7/VOAQVkdKfXLa7TZuuOEGXHXVVXj2s5+N7du345prrsHBgwfx9a9/feD7jx07hu9973t49atfjXPPPRfnnXceXvOa1+Duu+/G4uJi8Tcw5phJgwrYAl91pVqGRVXQLDdJmlWeiE4oaeFBBQqc7uTd/hlU1/zkwFHhgnIQ2UbeyZRq/vdk3TxkVZLFp4dp1v4ZUKoNUwEGI93z9FRbF5H+qcoiiXvPCYQVtDUukMjCStn+GfRgK1KpVjNNrkItukAR/J06boy4Ui3kqaZrUZl7nEYccqVVqgHAZK/NnRXn2xlT1/0iUbGFYH8e1WOeYwgHFeRwX6IFULukMVA3ePdEAe36Nu9YKlA9Lbi3syvsv5f00GBN02J/2ZR6ZH3fffdheXkZT3va0/jX1q9fj/POOw933HEHnv/85/d9/8TEBKanp/HFL34RT3nKUwAAX/rSl3DWWWdh/fr1ma6ljFMMpthSVbkVRz3gnRJ8/SLvy2B/byh5asQGD9v1hl6fyPvlcj81U5l7ZH4ltuOmvq9RsImo2bRKv+d1U92F9lrHkf75uuO+Q/jEV+/jf37Pp3+E+Zkmfud523DR9o3CP6fZUzQ5Ec9ZHOH7Yovy6cl67M+r9fwlPAAu0v1+htMrHDXrtVQ/hxVKXK97HeH7Ys/VRCPdzy+amenus+d6Hlz4bUhc0RtYr05OWLl5S66fbgDobjaDr1ubvZ6SPqdpP18sSGGt48Rehy35mkVQbV5mhRY34XgRPESZaFqF3le9ZvLfn/f7Fr6vTgnPjCyY2rVju6jVTK4undTwXoBAMEnvsx41d00JzF1hmOK11fvZrOjcTDlf8PWfPXydNIosny32OZmaUO89HnVf7BCPzd9h/LFb/vzNfp6L0eNLK3CQNTlh8eKRamO8LNLeF0/IjHgvZeJ6yfdIWd+vRsyzymAhCkXtZYp8Dpu9Aw7HFRvfWPFN17mnLEotqh08eBAAcMopp/R9fePGjfzvgjQaDfzlX/4l3va2t+HJT34yDMPAxo0b8alPfQpmhqq3aRqYm5tO/e+zsn79ZGm/OwuTvc1Rs2kNff3C9zU5dbz7/Y3h3182sxumev81+nkY9X49erzbtjwZ8ZqUwfzcGoBuESftfY2CHezOz02Vfs9rvTVUu+Pw+5Hx+brtrgP44OfvGvj6keMtfPDzd+EtL78Iv3z+qUI/a27DMoBukSXL67V+/SRsx+WbiZM3zmBmqhH77+r1GtodB5NTzUy//8BC97manEj3rDebFnC8hYnJRt+/Z++X2TvhnlmX7TqLwvM8GAbgeUBzooG59RN9f99odt8bq2bghBPW5XYdm06aAdANJgi+brXe67le8uuZ9PM1y14X04y9DvZsnzA/XfgzoMq8PLfY/Zy5SDZeGMdb/L9POnEdV04XcV/1eg1t28XkdHGfXXZfTBFfxjOTlfnZ7vW66N4PKzptWD+p3b0A3fcA6B5UDhvjvd4zObt+IvH9bVjX7P5HrYa5uWlYvY3zTMp57YReu3zcOmkUaT5bTBl3wgnqPq/D7mu6t9aoR6zn7Rw/h10F5ODaYYBj3bHTNIATT1g30D2iyhgvm6T3NcXfy3ruzyDbq6+fSf6ZT/t+MR/XZtzzYnSvLc14lIUinsMNCdZdQHBs1nPuKYtSi2qrq6sAusWyIM1mE0ePHh34fs/zcO+99+KCCy7Aq171KjiOg2uuuQavf/3r8elPfxrr1qXbqLiuh2PHVlL92yzUaibWr5/EsWOrfa0auuD0ToGWlltYWFjmX4+6r6NHu++353l9368K7Va3XWplrTP0+kTer8cOLwHoyqlVuce11W6hb61lp76vUbBQgNWVdun33FrtbiTXWg4Wj65gdsNU5s+X63r4m38YLKgF+Zub7sK209YLqY/i3o84gu/XsWV/47y63ILdijd/r1sm2h0Hjx1ZRjPDAdRjR7rXXjONdPfRe6kOH1nGwuzEwHN49Hh3QQxXzfFiGJMNCystGw8fOgb0Ak/YfR1Z7N5D3cp3bPB6v/foUv+4fHixO8eZkPN6ph032KHno0dWYq+DKXXWVosbW1Sbl1d6n/FOx0n0Gjx2tPv5qddMLC6uFHpfzOLhyMIy1jXyV6oF74u1FBb5zMii0+6tQVY7OHZsld+Layd771XB7n1+l3prg4Exvlf0MFKsCZnS+dEjS1hYWMZi72d5npvqtVpd6X7O2gk/Z0C2MWO1ZynRjlh3lsmo+/J6qp6jx9aGXjdLdm3l8Dlky6yFxRUsLExEft+ji909h2V1x0CGamO8LNLeF9vLHV8a/l7KhD3vrQTPe9b3i4XqHVkYveZY6VlmtFKuzRNfV4HPYbv3eVwR/Dwe7R3Kea6ec49s1q+fFFIUllpUm5joDobtdpv/NwC0Wi1MTg5Wbr/61a/iU5/6FL71rW/xAtpHPvIRPOc5z8HnP/95vOIVr0h9LaKJGHngOG6pvz8tPKa4M/z6w/fFvJ9Mw1Dyftkmv91xRl7fqPdrtTdw1S1TmXvk92WPfs7SPodM5m+i3M8RAFim35K8tmYDG7J/vu57cAFHAqqPYRw51sI9Pz2C7WfMxf68oN9QlutyHBcrvdP1mtmVSIn8POZ9t7ZmZ/r9zBOrYdVS/RzWcrDW7v+8sfeLLcrrNTXHi2FMNGtYadlYWunA3tB/zfx+Ur5eokz2FBtLq52+38OelUZd7u9P+vlipuRLK+3Yf8daEMoYW5SZl3tK4E7C62n1njfLMoZ+vvKE+cCttUbPpTJh98XSP1WYj5LCAl9aHQeO43JPNcvUZwwMwueaiDF+hc8hyddLk712zaXlTmi+SLf2YuvZuHXSKNJ8tph/Xk3h93jYfbEDxFZ7+Gech3blsN5nbZxrrdFrmLhnQpkxXjJJ74u9l3F7HxkEfe6S/q607xcfh2KeF+bLWDOKnTuKeA5ZPagdsV8Pwz47jZTj6bhSaqMsa/s8dOhQ39cPHTqEk08+eeD7v//97+Oss87qU6Rt2LABZ511Fh588MF8L5YYgBlNJg0qqKkaVBDyZEkDWyCljXXPAxkBDKPo2CzNp/x7btRNvjiOSmFMyuLy6IJa0u+TGVTQCiRkigZjMOPgoHF+Gti/b6Y1ho4zOs6Y5lYGrGC0NiTZsqhUQuZZ1rFdvrEB/GdFlaCCuPTPotJSVYcVqJyEBupsHitjXLYkjnFJCaYS6wYz2WefW1ZU09UsmgcVRAQHraVM/wS6tgPAsKCClOmfvXnRdtyhQTN54HmeHzSk2fMat45h408e851ogrrOY0GRWAn3cllg81iR+0DhoAK7vDkzb9j4RkEF+VLqk7N9+3asW7cOt99+O//asWPHcM899+Ciiy4a+P5NmzbhwQcfRKvlb15XVlbw0EMP4cwzzyzikokANbbYFy2qscFUgZTIYSQddIYRLHKogoz7ikK1yHLDMPgkELWQT4ol6Nc4O90U+3kyi2rt5IWtel1OkbWd8Vmv19lzOfx94pskBZ4rUSZ6RuOrQ5499nrlvcCfaNT4gnUpkADKNrATJY9NzLx8JSb9s6i0VNVhLQeOm+zzapdZVLOyH1ClQfdCbJMdeLCiWsdXA+sIm4uj0rhXM6R/8uJ8bxzhhzBp06gD69KkSbtp6dguE6IqtWYUYVShwvM8dDK+HyN/t+Aaio0/Oo4FReInTOc/XrMwgCLnpbrgQXKVn5ek6Z/+3kKvcalsSn1yGo0GXvrSl+K9730vvvGNb+C+++7Dm970JmzatAnPfe5z4TgOHn30Uaytdb0S43G2SQAA1cdJREFULr30UgDAG9/4Rtx3332477778Ad/8AdoNpt44QtfWOKdjCdMMuwKFtVY6otokaJoZCi6eIy4QgMRO/12AwUwWQQXn3VFiqUyi2q79x7Cx//5vtjvm59p4pzNs0I/U6ZysMVPk8RP+tnk2s74+1sZlWRVVqqtDlFhsdc77wWbYRg8GW85ULha4xvYUl0f/KJajFIt+FxUcZErCvMnS6xUK+h5GwY/OCi4bST4zOhYiGJzdat3H2kOTVSCFfBbHYev/4KsZSmqTXQVuVyp1sm2CQx+TopSWLYCSmLdNq/1EYVz2/F4sbCew+dQdA3lj4F6vbZF4yeuk1It+P1Vgt2T6NjWIqVaKkp/cq666iq86EUvwlvf+lZcfvnlqNVq+OhHP4p6vY6HH34Yz3jGM3DzzTcD6KaC3njjjfA8Dy9/+cvxu7/7u6jX67jxxhsxMzNT8p2MH2xQtAVP0JkRo6rtn6KS8lH46p3SP1qceuBESLZaLThAqzIRsYW8aFHNdT3c9+AC/uOeg7jvwQW4roeVNRsf/ad7cN1Ne7C8ZuPEDdFmuABw+SVbhUIKAH/DKUPFwSe+BM9bQ1JRjz/rKd933uoUcR0tBT9LcbCUqWHPHi+4F7DAZy2g/Uo1NRZJU83eZnhtdKgGez5rpiH82aoivlIt2YaHbxBKUKrJbHFPQnBMtSz9nhl2gNDpdFsQ2WdWp4OFIMGxZphajR0+sHEzCdNc8dozF894oFnLcZ0UBZvjrJqp3Rg3qlARVJ/nMX8LK9VKHAN1wrcYyP+55zZABR7Ci655y7RMyBv2HidVqk3Uyz2E1Y3SX61arYarr74aV1999cDfnX766di7d2/f17Zs2YKPfOQjRV0eMYJaQqUai9hWdfEw6uRNFL/QoM4iOFjs6tguJsW6FIUIvlYiyShFwFtOOvGearv3HsKNt+zDQiCIYGaqDs/rFiQMA/i1p56BFzzjLNz5n48NfO/8TBOXX7IVO7dtFL4+9n54Xrelq5ZBuZlGoh3XdilKZg+bGDUL92xT6LMUBzPPHqbCKlI5xIpqy0OKaqV7qgm3f7JNshrjSlkEbRY8zxP2Tuw45Xld8gV8wUU1Nv/WTCPTuFoWbPPnet021lZG9VXZNCwTRjdDB62Og/DRdyalWqj9s5Oxvd40DFg1A7bjFVZU4x68Go5x1gilORu7DSOfQ/TkSjX9Xt8isQpUqnFbggLHZ7bmjevOqPLzQp5qxVB6UY3QFzZZVsZTTULLioobQcMwULfMrnF5xkJKGDuoJhHc7OWNqFJt995DuO6mPQNfP77SLUSsn6pj1wt/CVtPnwUA7Ny2ERdsPQn371/E4nILs9Pdls+kRWIr6N1ie6g1Ev3zPtJItGW1f/rtmSk9bKwYpVpbw/bP5oiggoI81QBgXa81aimgBmtp2v457ioDKzC+OK7XN36Mwve6LH5cZqpv2y7Gm4qhuydOcKxrdRy02iyxV8/7MQwDE40aVlvOgFKtq8TrBRWkUKoNBhVkX3vVLRO24xTe/qnTHMcY1U4WtDoQPQRIgqjav+MUN+fqjJWw6ygLZSjVRP3E2LNcxTVHUtGI7iE5ZUFFNSI1ZkKvF2a0rGr7Jxt0HNdLrSBS9WS5XusW1fJq/1QhpIDBW/Ba0UU11/Vw4y37Rv6cmmliy6kb+r5mmga2nzGX6fqCypGO46KJ9M9KmueNbTqYkXBa/NSybGlrkZ5qXAmnzrMVB9scDg0qKCj9EwCmJ3ueasOCCspWqgUUJqOUV+z9H3c/nOA8ZDuusPKszA1Cae2fmqf9scMp1/PQajuVMItu1rtFtfAhV7vjgtmsyQkqyK5s7n62nAKVavq+v6MKFX7SdT73RUo1uZTjqVbce+JbjcQEFVT4eUni5ex6vkq67GAr3ajek0MURi1hDDM/oVC0LaPPqDblCXvWBKq8kJX4GEZFNQlboK6NaP+8f/9iXxvnMBaWWrh//6LMSwPQ3TixOkLWTWeq9k9JyXyZgwqs0QsdFVup42Dtn8OUakUWiaYnWPtnIKigk77VSiZMqea4Hh8vh9HJqISsCsET/SS+amxsLuPAQ6ZvZBLY71Nt/hXFMAz+vK+0bLC3W0clE4MpY1lRn7Ha+7OBdEUlFlSw2rJ7m8DsymZZc6MoLY3HOBFPtbyKE6LtimX6SupEsZ5qzLeseKXaqC4kz/P486SSSEAWSRJe28EAFVKqJaJ6Tw5RGH77p9hA7JYg+01CPaQgSkNWn6m8kNXyF4ZNQiqd7HBPtRHtn4vLowtqSb8vCYZhJI63jiJV+yeLF+9kawXmnmcpNwQNa/RCJ2t7aRkwleSw9M9Oga3h6yYH2z9VCSpo1mt87hjVAtqpcCtGEoLK7iRKgjJfP6skpRob0yyNCvFh2NphaaUT+Jq+nwHf47R/vuF+as1aqhZBplTz0D3EkKFsHuUTlgeVUKoNa//M+XCZlGpyKdZTrYT0z5hQLCAUulbBNUewM8QbksQchO2dDOh7QFUW9GoRqWHFMdGgAq5UU8R7K4xpGnygT7uoaks4Lc0DniomW6nmFH/qFIeIp9rstFhag+j3JUXWpjNV+6e09E85SrW49k+dNhyj2j95a1oBC7ZwUAFrJwPK91QzDIO/TqMSQNnzVde4oCADw/DnpSRKAlasLiOooN7zccviT5oG3ZVqgH/tx1baALpzq6rqfhGi5mOe/JlyPKpbJn+tVtZsKcrm4pVq+s1xjPqIQzG/mJXPfYmqbjoK2pOoSC2Biikrvqdage2f7CB5xHwUXIdWsQgbXHfGFU+DIQV5eCJWmeo9OURhmBULKgCCG/10Kh5/YafWRyvrfUVR5sYtChGl2jmbZzE3M7pgNj/TDSLIA0tSYStT+6cklVzaopplRZ8eOq7LJ37VCtSjEGr/LFCpxopqQVWiCh4ZrAV0eUQCKBurdGr/zYtgAqgoZaqI/fbPgoMKKqBMCSvVdBr/hsHazcNFNRlpxMGwAhlKYBlhVUloVyCoYKhSLWc/VFKqycVKaOWTBd7+WaRSLaYrAuifq1T1/c5C8DMQ97mhkIL00EhDpCZp+qfNgwrUfeyyFhxUlfNz/6qM5vRhVGzRYov01Xb0ht00DVxxydaRP+fyS7YmTvYUpc5PBrMtYtKcdMelboqStYA8SjEXfE7TtpeWAW//HPLs+UEFRXiqda9jqVe0YhtYw1CjlWxaIAGUNkQ+bNOTREnAipJlHHiU1f7pG6Tr+8yElWqqrSWSEnXIlSX5kxEMK+D+ZFmCCiQdOInCrlmnOY4x6rXK22t3VOtpkddRFWpFeqo5xSvV4vx7gX4fwCqqs4LdRHHzMj/w0HzuKQMaaYjUJC2q+UEF6g5YWeX/rQJ9k5LQyKmtwVZw48vaSUYp1QBg57aNuPCckwa+Pj/TxK7LdmDnto25XB/ge/5kb//sLcoTnCg1uLdCVk81We2f0UmZBtRSQcbBlGqrQ5Jni9zwh5VqrYAqRIUFI9sMr45QqrUVHFvKIo1SjZ28l5L+KaAMyIMywxlkUV2lWv9nnaVzZ1GqMcXr0mqHz6VSlGoFFYO1VqoJpH/mpcoWHV/oYEaMojzVPM8rZR8o4mFslzhfFoFhGMKekaqKQ3SgXHMVQmuY4kzYU02H9s+MRrWqJhY2AiaVMvE91dSZiJoCnmqMQwurAIBff+oZOG3jNGanuy2feSnUGEypJi2oIMHiVVb7p78hSKtUi34mg5sNFYpAojDVRXgDCfhFoiI2/Cz9c2m1A8/z/JACRRZJkyyddISnWhVUR7Jg46uTYNNjcz+h4j8/pQUVFKgGzQs2nh7vFdV0VDEF4emfA0EF2TzVAH+cW1zyA4WkpH8WplRTa1xOwqjXKu/PoWi6cBU8FouAtWLagqFzaQkeChXpw9wQCCqowoFMHHXLhO24sZ8bVUKtdISKakRqkponuzop1SoWVJBXW4OtoBHshICnGgAcObaGhx5dggHguU/ZjJmpRgFX10V0URhHFk81We2fzZQLZ2uEejJrwa4s2AbRdjx0bLffx6JAv0WmVHNcD62OI2UDKxPetjWy/dNvxxh3aik2PWX6XbINU1GG74wqKFNYIeL4akXaP+vD52MW5jKZRanWG0cWl9r8a1nee9G2Qlmoul4UYZSqL++5Lrmnmn6vb5HUClKqOX2+ZUW2f8aLCsahVbhumVhtCXiqdaiolpbqPj1E7vCiWkw8L8MZB0+1nA1a09LghRTJQQUKSqbZRBA+GQ9z1wOHAQBnn7a+0IIa4BeUsrZHpZn8ZKV/8lbnlBNvY0RxT1fFSbCVKeyrVuQ9NeomL2wsrXaUO3nknmpC7Z9qXHOZ+AdYSdo/yysw1QvapIWpQiGWrR2WuFJN7+c/Oqgge6GfBRUc7SnV6pYJM4Oyuei25TRKc1UIrpW90B4g79Z9UZuWKhTZi8BXQuetVPN/fpEdSyJBbSoKBGRTF0x5JU+19FT36SFyxze3rJCnWub2TzVPHvmkIjuogKsh1HlPJ0YkMAZhRbXzt5yY+zWFkeXdki6oIHsrsOd5AaVaumlkZPuIpko10zT8om7o+StygW8YBqa5r5rNF0lZVCEymUoQVECtO+k2PXaJJ++yDg2SUoVNNCu6s6AC1dYSSYlSjjPfyYmmDKVat6iWdayQpSAXJWuCdpmwz5iHQa/Hoto/yVNNDpZgsSUrtltOwuaoA1zGOCjVLMG1PynV0lPdp4fIHeY7VSlPtQyG/jIKDXmRNYAhChUXLdxTbYRSrWM7uOfBIwCAJ245oZDrCqJG+2d61aLtuGCH09mDCgZfA503G1FhBe2CVTTrmK/aWoe/nsq1f45Qqqk4tpRF0lAgoFy/y6KLE4x2BQqxVVOqRSnHfaVa+vvzPdXkFCCL9lTT2RA8OK6EX6+8A6yElWoKptOrSNHtnzXTKNQrV0SBWqayuyhERSO+Uk2N9aJOVPfpIXKHtXFWK/0zvYrHdlywV0K1YgA7MWxLVqrZJW7cohDxVLvv54tod1zMzTSxeeO6oi6NI6vNpKz2z1bgOUq7CBn1WWPPqWrFaRFYWMFqWKnWKXbDPx1IAGWqOVVOHqd6m+GVEUEFRRchVSbNpod9bxntLEWnKDKqUIhlBRY/XVnfewGAZn14eAtL/2TjZRqY4nXheE+plnHdVZ5STb/3ODiuhF+vvMduUqrJxeLp0jm3fzrMAqjYPaCIj7Cv7FZ3f5oV0UODlmJ2ITqReqRxHH/Dura2huPHj0u5IEIfkp6e+0U1dSe4LIb+MgoNeSHiKZAGFX0Imj01TqvtRKoo7/rPbuvnL519Qinpkr6Rd/qTQc/z0rV/1rMX1dgJe800UhdURynmtFaqsaJahKdavaB7Yr5ly6sdrhLJogqRSZL2T/JUC1gtJAkqKFGlUV77J9vM6/vMhNcOum9sWHtn+JBLhlItHHiS9RCmcKVa7/foqFQzDcNvG7TDRbV8C8JJPdVUWp+qiGUWpFRzy+lWCibNh/3/GONQgBX1VGt11DqE1YnET0+n08Hb3/52vPjFL+Zf+8EPfoCnPe1p+N//+3/DzbnSTaiDX1QTe8/9oAJ1TwKyeKrJKDTkhSxz+jAq+hAwc00P/nsSxPM83PnAYwDKaf0E5Cg5uguE7n8nKqrVsqd/+ovm9JNu8JmMMjrWsqjGPdX6nz224S9KqcYSQJfWfE81VTZvSdo/dW7lk4XF0j+TBBXwDaWehwZpUHE+SkrYhypturIqsPk4HFTgp39mDypg1DMWcbiCvKDnVufDIyC6CJn3gYjoOn0cCiUyKMxTjSvVin0/gu9/1D2WaZdQFKKHBhRUkJ7ET88HP/hB/OM//iOe//zn86+dd955+KM/+iN89rOfxf/5P/9H6gUS6mImVapV3FNN5UKAJSB/ToOKPgSNugn2hIVb8ADg4cMreOzoGqyagXPPnCv24nrIUHK0AgXDJMUS9nzKUKplOYnmRsfeEKNjjVPRJuKUamW0f7YVVaoJpX/q9wzIhrV/JlGqleknVFb7ZxVaJsNjnu5qAXb9rQFPtexj0lSodTSrMT4vBktW9EeRxhNVJaKKW3x9kLOnWtz4Qp5qYrD5xfPEPbLTUJZSLbiGiNoDjUMBlluuxCnVqP0zNYmfni9/+cv4n//zf+J3f/d3+ddmZ2fxile8Am9605vw+c9/XuoFEuqSvv1Tg6JaBqWaigv6vJRq3LdHoUWLYfgJjOHCBuCnfm573Fxpxu0yvFvYxFe3TF7gFsF/FtJvHLjnWYbNQH2E0XFb4xN8pryI8lQrLKggUFRr8VYrNYxnmafaasuGG9WO0SFPNUYthVKNFezLDCoozVNNofkoKeExT8X1RBJ4GndU+2cGT7XpkFIta3GKbTqLUqrp3P4JBOxSQp/zvAsUlqBSzSZfTiGsQJErzzGb7QGtgveA3WCE7n9HPTO2ggIB2YjaG6WxlSG6JH56FhYWsHnz5qF/d/bZZ+PgwYOZL4rQA15UE1yA+O2f6g5aWQzkfXN19QYi31NAsqca37ipVShtRrTgAcBdvdbP80tq/QTET1pHsZZy4rMCLS5pTyVbvJUxQ1HNGlFU461/6n2W4mAeQsFNpOt6fONR1D2xDeeSikq1pt+iPewzCqDw10tlLK5USxJUUJ6fUBZv0ixUQW0QLqrpvrFhhfyO7fYpLVk6cialWq84z8hagKxzpRoFFYgQpVTL+3MYbNON8sgq4jqqQvDgJc+Cst+tVOz7YRiGH9YWo1RTSSAgG9G26TQBaESXxE/P2Wefja997WtD/+6b3/wmzjjjjMwXRegBGxhFN+ZatH9m8FTjhQYFF0gi6TdpKNMMexTMCyCsFlpZs7HvoaMAyvNTA8RPWkfht44ke+2DLRlplXIy2jMNw/ceDIcV6LzZGKZUC77OhSvVAp5qqhTV6laNvw5RCaB+sIN+z4Bs/AOsBO2fJaq2yk//VOM5T0N4fNBRrRskWBRstbvvj+d5gaCCDJ5qzZCqL2v7Z4HFYM/zAvOonu9xlF1K3odiIh5Zweugotpogt1Ddo6+6L6nWvF7QP6sDvFZBsajAFu3mNcpearlReLZ7GUvexne/OY3Y3FxEZdccglOOOEEHDlyBN/61rfw1a9+Fe9+97vzuE5CQRJ7qnkatX86yRVdKres5ZVqpWq6Eleqhdo/f/yzI3BcD5vmp7BxbqqMSwMgnsIzCv80KdkwHlaIpVnQyzJYblgmbMcd0v6prj9hHDz9M6DACgZmFOap1lNxLK12+DWpdPI4NWHh6FI7MgGUt8sqVrAvA99IOrlSrYxNQprrlUG7Au1e4QRLHcfAIHXLRM004Lh+Ia3d8UN2woWxJNRME81GjR8wZVaqSVCQi2I7/mugqxo3Oqig9znM6UDE6rOO8FCPWAJVoR28CAzD4J9R0c6jNPgWQCUc9MT4ZdvjEFRQE/NTJqVaehIX1S699FIsLy/jwx/+ML7+9a/zr8/NzeFP//RPcemll8q8PkJhrLRBBToU1TK0f6qYVpdb+qeqSrUIX6u7/rP81k8geCKefgHTSqkWq5n+JqfdcYDJevw/CiHrWa9bJtAa1v7ZuzcFP0tx+O2f/rPHimqmUVwysK9U63A/EVU81YCuyfjRpXZkWAFv/ySlGt+EJAsqKM/vMsprKW+qkBhbtfZPoKuQDSpmmdepgez3N9W0/KJaxuJUlk6FpLQ6/u9oNvR8Xrl3YqR9Q15FNX8PETXGuK7H9yY6F9mLwqqZcFwnZ0+18uxi2LPY7gy/v/FQqonZG7UU62zQiVQr7N/5nd/BFVdcgZ/+9KdYXFzE+vXrcfbZZ8NU2CuLkI8fVCA2COvkqZYtqEC9gajO/QQke6qV6NszCm6OHCiquZ6Hu3/SDSkos/UTkGPknSU5rG6ZcNpO5vbPrM961OdNa6XakIIuK4AW2crop3/a/HlTaZHEEkCXI4pqbR5UoM41lwXbhCRREZTpd1mP2GznTRU2RoNFNX3vhdEMF9VaLKSgBsPI9nxOT1hYON4CIE+pVkQxmI1vVs1Qek08iqjXq5Nz+yezjrAdN3KMKcNyQWesmoFWJ1+Vpl2iBZCoUq3Kz4poe/ua5qnEZZL62NowDJx99tkyr4XQDNb+6XndgoUZszgqK045CVlOKvnpnIIDUV7tn7ai8vom91Tzi4g/e/g4jq10MNGoYevm2ZKurIuMNpMsRbWGZWKt7fAWu6T4z7qkTUzoudTaU63Jkmf9Z69TgoqVBRW4nodjy20AihXVmt2i30pruKdaZwwWuaKwTbedIqignPZPP1hBZG0gi2oU1fqvvQobm65CtsXVu77HY3bl7FQgPTTr2itKeZUHfI7T+NAgar3cLiC5uc6sIyLWUMFr0nk8KArmkV3d9s9e62OcUk2xvYxMeBDLiH2H7bj8fVJpvagLQjPaueeei7//+7/H+eefj+3bt488WTIMA/fcc4+0CyTUJTgwuq4HM6ZYplX7Z4piBzedVXACz81TTVEfgmGeaiz18wlnzZd+vTLaTLL4HmQNrpCtVAtfR1vjDQfbKK4NUaoVWVRr1GtoWCbadnCRpE77Jyv6rQ5RqnmeV0ohUlVqtWRBBZ7nlbpJCI6vjuPCLOhzXImiWui1UvGQLimsMNgKK9UkbNqCCaBS7AhQVPun/r5FkZ5qBRT06zUDq4gugLJrMg19lYBFwn0wcwwqcPh+ocT2z4hunY6iXTcy4YXFEeNbMLW+CnNP0QitsHft2oWTTz6Z/3dWuTZRDYLFMcf1ELdu9k8p1H1+siyqZJm350Funmq2mp4Vw9I/73yg2/pZtp8aIKf9c62d/nnzJ9d07cCsPTOriqIRMclr3f7ZHGz/5K0+BRcJpyfraPdaowC1VC+TvaLasKAC2/HAzsupqBYoqon6l7r+61fGJoGljAGjjcRlk3fqYBFUU6nGDrmcvv+XUeSflKhUK7b9U/9Dg2Hr5aIOROLeK1I6J8NiaugclWq8/bPMoIKYImyllWoC4xs7+LBqZuniAx0RmtHe8IY38P/+/d///ZHfe/DgwWxXRGhDsI3TcTwgxu+cbQjMihbVZLXE5UG9zjzVXHieJ60wbpd48jQKZhbPChuLSy08ePA4AOD8s9UpqmVZvLMibprY66xF1pYtR3nlf976i3s8qEDBz1Icw9o/y9pATU/Uud8QoJacn7VtDfNUo9adfnj7p+B4Efy+MhbGtcDvLCJJEehu5qvgizOoVNP3XhgTIeU4m5ezJH8ymDcjkP21sgoNKtDft2jYOiZ4IJKnH2bce1UF1WqRJFVDp8H31S7RUy3Gg6/Kz4tIUMEa21cotFbUicRPz7nnnou77rpr6N99//vfx6/+6q9mvihCD4LFMdeLP93gA6rC1e96hmKHyi1r9Zw2OaoGFbCF6lrPU+3unkrtzE0z2LCuWdp1MZiSw5aR/llG+6ckI9PooAJ1VZ9xMOVEx3b556MtqQiZlHWTgQ2nZSp1oDHda9salv7JiqwG1GstLwMroVItqDYo4+S923LVG+MKKqpVpRBr1QwEz7x0bg9kNHNUqk0Hi2pZ0z8leJ2Kwuc4jd/fYZv04AFZngXhWON5KqolIo1vZ1LY/FVKeE5MUW0cnhdLwFMti1czIahUu+GGG7CysgKgexr4uc99DrfeeuvA9/3whz9Eo9GQe4WEsphGd/HneWKnG8xTzVJoYxdGpOc8Cr9lTb1BOXhNHduVdoLIT3cU2/iyxfpq72T8LoVaP4FAOp6EoIJ07Z9ZlWpy2jOjFsYtjds/gyd8a20HE02rEOPmYbAE0PB1qQBTmKwOaf9sBxa4ZDcRSNoWbM1hn+uaaZRWSLUyJgwnpSpFNcMw0KjX0Go7MIzuXJGneXgRTER4qk3K8FRrylOqyfA6FaWlsAevKMPmbzZ2G0a+iiRhpZpia1NVsQpQqvnpn8W/J6zgHuupVuHnRWR/WwWvxzIRKqq1Wi186EMfAtCd8D/3uc8NfI9pmpiZmcGVV14p9woJpamZBmzHiz1B9zyv8p5qXI2iYCGgZhowAHjoLnqmJP1cdrqj2kTkK9Vs2I6LH//sCADgiY8/sczL4ohGW4+CbVBStX/WRy8w4mhLMt7n5rGhRCbe/qnhhqNmmmjUTbQ7LlZbNmZnmoGiWsGeahPBopo6IQVAsP1zMP2TWnf64R6MgibSKmwQ6jUTLTiFJCkC/mbeNAzl5qOkNCwTrbaDiUatV1TWvKjGD7l6SjUeVCDBU02iUo3Ny0Wk1up8cMQYtl4O+hrmeSAS18rGFHM0h4jh+/zmqVRTuP1zDNYcIocGpFTLhtCMduWVV/Ji2fbt2/H3f//3eOITn5jrhRF6UDNN2I4TW1QLtoeq3P6Zpdghy7w9DwzDQL230Zd5CquqD0HQGHnvzxex1nawfrqBMzbNlHxlXWR6qqVq/8x4Ii87/TP4Oniep3VQAQBMNiy0O22uyGiV5Km2LqBUU+3kcVRQwTgscJOQVKnmH3aUd4DF0+QKUllVaRPdLQ510Cwq4SFn2NjT6inHefunBE+1YGHu4ceW8fjTNqRWZ/bZZNhurvNPu0qean3tn8WM3aJBBapZk6iKP17nmf5ZnrAitv2TdVIpvD/NiohoZK0jL5l5HEn89Nx3330DBTXbtrG4uCjrmgiNYIuX2KJa4O+1UKqlmFhaktQ7eeHLnyV6qtlqTkRsQlhds/Gj/3wMAPBLZ8/nevKcBBntn376Z/LXvl7PWFSTFMpRrw2mkAavScVWahEmeios9h5xpVrB9zMd8FRTbZHEvJCGear5HnRqXXNZJE0LVsHrUsbBQRLaFSrEsnFPtUJ4WrhyPNT+mXVM2r33ED75tb38zx//2l5cff1t2L33UKqfF3x28n5uVU6LF2WYB11RxW0+JsYoj1Rdj6sGEzvk2Wpul6igZmNq1P6nSocyUYgUTkmplo3ET4/jOPjQhz6EL3/5ywCA22+/HU9/+tPxtKc9DS9/+ctx9OhR6RdJqEtNsKgWPK1WySw7TD1moh6Fyu2fQHTSYloc1+UKRNUmIrYZWW3buKtXVHviFjVaPwF/s5vJU42nfyZXM7DnPHVQgaRT9mHFPXZfgL5FFeYVxDaPpQUVTKirVGPtn6RUi0d0nmWo4CckkjQmkyo9M2wNodpnNi0TOQQV7N57CNfdtAdLq/3t4wvHW7jupj2pCmvMJgPI/7lVubNBlGGK96KSrmOVahUaD4rAKiBYpkwLoLjuDLZHrbIHn5CnGh+b9R2XyiTx0/OBD3wA119/PY4dOwYA+PM//3PMzs7iLW95C37+85/jfe97n/SLJNTFb0sZPRA7minVHNfj/f+iqBxUAGQ3pw8TTK4ss81oGGyh+ujCCh4+vIKaaeC8M+dLviofnsIjI/0zxfPWsAYVYkmQ1Z45rLjHfrZVUyutMgksAZQFZbB7Ysq8ougPKlCrlWyqV/BrtZ2BhXyVVEcyqCU0kbYVaMtPqq7LSlGb+SJgXpI6F1yChItqPKggZfun63q48ZZ9I7/n07fs6+uQEMEwDCl+pyL4SjV9n9dha0q/mJXvsxt3AK7CwYJO+L6d+ad/1kpJ/xy95mXPS5XbhUU6sdYoqCATiZ+er3zlK/iDP/gD/M7v/A4eeOAB7Nu3D1deeSVe9rKX4U1vehO++c1v5nGdhKKwwTHomTYM3YpqQH/RSATfvF3NwYibwktaLAYHZtU2v2wRz06ftp6+gacNqgCb4G3HhRfz2YmCp3+m8VTL2P7ZkqS8agy5Dh5SoPFmg28iW+W2f65TOP0zuKEOJ4BS604/bMMjrFRTIKig6PbPKrXvsI3dWsvBvT87krg4pBrcU63n17OaUal2//5FLBxvjfyeI8dbuH//YuKfXS/ouW1VwFNtePpnMcVCK06ppsDBgk7UCvBUK7P9sx6z/xkHZaOIsILaP7OR+Ok5dOgQ91T713/9V5imiWc+85kAgE2bNuH48eNyr5BQGlEDZXbCXjONXBOBshI81Uq6qGKDtaqDER9QO3ImTTZBdqPT1ZqIwqekO84+oaQrGU49cFKX1sg7y6JcmfbPIafNvFio6OdIhLBSrSy/xelAITlNSmye1EyTF/rCLaBVKpDIgM2zoioCFbwu64UHFVRjU7R77yHse6hro7L/0HG8+1M/yOQTpgIT9f5DBpb+OZmy0L+4PLqglvT7ghSlVJMV9lMmo4IKcm//jGnnq8p4UBRWAZ5qZbZ/NmI+11zdXWFlo4inGlOqqXYIqwuJn56NGzfioYceAgB885vfxLnnnov5+W5b1Q9/+ENs2rRJ7hUSSmOaYifobomDaRJM0+DXmHRR1VZczs/lz5JOomxF5fW79x7Cn338jr6vff2O/UptSoKb3bQng9z7IMWinCvEUhZYpbV/Djk9LCspUyaTPQXGam8TyV7nohf4zLcMAJbWOsopXqYiwgraBbUQ6YJvIp2w/bPM9M/SPNX0fWaYT1h47ZHFJ0wFwsEt7LBhoplOqTY73ZT6fUGKUqr5nmr6znPDgwqKaaMjTzW5VD79c0R3hut6fA9b5ecl6KkW1SHDlWpUVEtF4qfn+c9/Pt797nfj937v97B792785m/+JgDgL/7iL/DBD34Qv/EbvyH9Igl1sQQNlMvspU9KWkN/vxig5mDECxiddD5aYVRoMQrDNiWLS+2+rx9bbiu1KQkuONMs3h3X8xM407R/Ziiw2o7LP8+Z0z+HGKdW4QR/osmUGcxTjSmvirun3XsP4c8/sZv/+T9+/IhyipepZrc9NVxU6yjuT1k0lqAinKHChrL49E+91Y15+YSpAE//7DClWjY1xDmbZzE3M7pgNj/TxDmbZxP/7KICNirV/tln31DMOniYSi6I76mm7+tbJLUCPDCZT3Up7Z+1wbUmo8/KRqH9jGzqfYf5o4tqqnU26ELip+eNb3wjXvnKV8IwDPzhH/4hrrjiCgDA3XffjVe+8pW48sorpV8koS7MSDxuocfaVkyFWz8ZaQz9Xdfjk5GqG8FGzMleUlQz9tRpU2IaviIyzeK91faLEKnaPzMUWNsBdVvWhfOwAnZRnix5Unb7JysuLyz1tz+ppnjhSrVw++cYtGIkoZbQRFqFA496wUEFuvvw5ekTVja+x6QNz/N8pVpKTzXTNHDFJVtHfs/ll2xNFXRTVDG4CodHw1owOwXNdb5KbviYSJ5qybAEu46yUKZSja0n20PEEsHn17LU36OmJfhZiNrftiowLpVJ4hnNMAy89rWvxWtf+9q+r3/mM5+RdlGEPnBPtZikTO6ppsEmSSQhJUxwoFZ1MJLvqaZWBHWSTcn2M+YKuqpoLMuEMyT5UAR2mmQg3eI1zl9iFOxZN4zsqa/DrkN1xacIvKgWDiooYIEvWly+YOtJpaersvbUlbVO39f9YAd9nwGZiKZsM7ghdJlKtYLbP3VPjM3TJ6xsWFHNcT0sr3bAOo/Spn8CwM5tG7Hrsh248ZZ9ffP+/EwTl1+yFTu3bUz1c2WnpEdRBaXaMP+5oj6HcR0lqh36qk4R7Z8271gqQ6kW/blmX+sedlf3eQmu16P2t+Splg2hotoXv/hFPOtZz8Lc3By++MUvxn7/pZdemvGyCF2oJW3/VNxTDYg3QB1GUL2j6qLe96+S0/6pwsYtiG6bknrNRAtOqsX7WiD5M03wR5aNQzCkIGvoyDBPNVkhCGXCDLhZqiVviSngnnQqLkd5qvmtO2qMLWVTS2j6r4LfJVvAF5f+qXdRLU+fsLIJjntHjq0B6B4IZR3jd27biAu2noT79y9icbmF2eluy2eWw4KiAjZ8TzV957lhatSi2z8jlWqajwdFU4t5PWXgiyvU8lTz9zLq70+zYBgGrJoJ23EjD7vIUy0bQkW1N7/5zfjsZz+Lubk5vPnNbx75vYZhUFFtjBBO/9SpqJai4NAOSN5VbXFtDPGvykJHATPsILptSqwMi/e1XvtM2gV5XLz4KGSFFASvY7inmr6LYd+YO+SpVkCRQ6ficmT7Jy9C6vsMyMRvzRH7vHYUOPCoF7BJC6J7UAHzCRtVEE/rE1Y2Vs3kmzlWVGumPBAKY5qG1MOBtJ66SWlVYJ4bNn/z5Oac7ytunU4HM8lg61FRNXQayk3/7M4Lw9a84/Ss1K3uOBx12OV7qqVrzR93hF61b3zjGzjppJP4fxMEwxRUqrklyn6Tkqao1ipQiZIW2W0NXF6vyHuq26Yki3cLN3pO+bz5BdbkGweZ/mDDggpaEot2ZeEr1ULtnwVsoHQqLvvtn1Hpn2qMLWXDTvZF/W5U2CRYBXuqcS9GTZ8Z5hN23U17Ir8nrU+YCkw0alha9YtqkymTP/OGzUl5F4Or0P45zCqlqLEnrl2RPNWSEaf8kwEr2FkltFiO2v/YY/Ss1C0Tq63ofSBr/ySlWjqEnqDTTjsNjUYDAHDHHXdgamoKp5122sD/Go0Gbr755lwvmFALViSLM3/nsl8NFoTp2j/VP3XMok4ahq3YxjdP8+I8yJIyxhRQaQtPsto/szI0qID9fE0VJ8BgUAFX9xXwWckzGU82UxPd9M/lkKdaR/MkR9kk3fCw7yvzwGOY31KeVKHdi/mEhT+/8zNN7LpsR2qfMBVgHj1HjrX6/qwavG05x+fW8zypiu+yCK6VvZ5RXrsglXGsUq1AH9MqwBKmbUE1dBq4Uq2E7pbGCAWqagKBPInb31L7ZzYSHxW95S1vwd///d9jbm5Qbn3vvffi2muvxatf/WopF0eoT01wINay/TNJUAFX76g7EGUxpx+GrUDCXJi8zIvzIEs6Hm//bKR77bMUWFsSF83DEmmrkP7J2z+ZUs0ubnzQSfEyHdf+qfB4WiSigUAMFTxiilaqsQAe3TfRzCfsgQNH0fEM1A0PW07doMTnNQtNXlTrKtXSJn/mTRFBBbbjwe0VoZoaz3PBz5rteKhbRmFt2PUYpT8p1ZJRhKeazdM/i39PeHCO48F1vb7xtAoHMqL4r8Pg58b1PK6gTdsFM+4IzWqvec1r8MADDwDonrDs2rWLK9eCHD58GI973OPkXiGhNGyxH6dUs7UqqiX3HivqdC4L9Qwtf8NQddGiy6Yki5JjrZ21/TO7Uk1GwYMX9wJBH1Vq/2x1HLiux1+zojyudCkus/bPVWr/HAkrUMV5lzJ8v8syPdXyT5MLUqVnxjQNnHvmPObmprGwsFxYgmqecKXa0bW+P6tGFlsGUXRIixehv6jmom6Zff7CRfxu8lSTQzGeauUFFQSfx47jomn6nztbgfmyKEYp1dhnFyClWlqEimqve93r8LnPfQ4AcNNNN+G8887D/Px83/eYpon169fjhS98ofyrJJRF1FONbQbKGEyTkqbY4bd/qjsQyT6BVaHFKAodNiWZPNXa2Z63ej19aEUeQQWO6/HCvA6t1HEEVRirbdsvFBa44c8jGU82cUEFVSiQyCCYsu15XqzBuwqvnz+PFhVUoL5afJxhB0Dqe6rlr1RjLVY101By/SRK8No7tovJZnFjD1fCxhXVaA4Rgh/cCPp2poHtA60S1iDB56Bju332JeP0rIwa39i4ZEBfb9KyEZrVLrzwQlx44YX8z69//euxefPm3C6K0IeaaFCBV57sNynpPNV68egKD0RskJTlqeb7EKizSdeJLEqOtRZr/0xZVKuxZ8ER2qQHYafsMtpW6qHTQyAYhKDv5rhu+Wl3q2t2Yaf3YWQn48mGbayX16LaP9UdT4skOMY6rhc75qrQml94++cYbYx0pNk7aDh8TG2lGvc6zfG5bWlwCCuCYRh8nmOfP79rI+f2zxibFlU7KVSFW/nk+NzbJQbW1UwTNdOA43oDe7uOAvNlUYz63ARDCmQkM48jiZ+gd7/73ZEFtZWVFdx6662ZL4rQB15Ui2lL0SqoIIWnWstWf5EkX6lGi5YsZElbytz+2SuIeV6yk0nX9fDQoSUAwGrLjm37jiP47LDCUxWUagAw2ey+N8dXfRP+vH1mdGO6F1QwmP7JTKbp9QL6D6NEWkBtu/xNQhbPyDRUqf2zirAi2gJTqinqqWalOFRNiq/21v9Zrfd8G9l6ubj0T8H2TxoPhCgy/bOsfaDvJdxvgTNOzwo/zB+hVKPWz/QkntUOHDiAt7/97fje976Hdrs99HvuvffezBdG6AFb7DMlWhRaBhWkUKqpXVRL3/I3DLugxVNVyeKp1sqY/tkISeFFNt+79x7q8+j68c8WcPX1t+GKDB5dw04PuepT4c+SCJMNC8dXOji27M+T47BoSwJr/+wqHZyBMYpery61PqWaC2D0Z4NtjEpt/yzAmyoIeSipDduosfdpoqnm+F6kUk33OQ7oft5W4fD1IE9uLij9M+p9ojkkGbVCPNXKtQGqWybW2g4PtWGMk6qRr7GGvM9VGpfKIvET9K53vQs/+MEP8Fu/9Vs499xzceGFF+KVr3wltm3bBsMw8KEPfSiP6yQURXQg1rGolsSHq6z2riREndKkZZwk03mQRTnIlGppJ7/geybSDrx77yFcd9OePtN7AFg43sJ1N+3B7r2HUl0HMFhcrEL7J+BvGo8udYtqBqhVOky3zaD730G1GrV/9hOcN0WUBHxjW2b7pxV9Ip4HVUgNrjJhVbWy7Z9FKNXs6mxew50d7YLGbgoqkEsRSjVuS1CSDdCwtHlADWV3UYw6zG9l7IAhUhTV7rjjDrzpTW/CW9/6VrzwhS9Es9nE1VdfjS984Qu46KKL8I1vfCOP6yQURTyogKW+qD9opfJU06D9M0vi4zC4pxptfFORxXNoNaOnmmEY/qK0M7rI6roebrxl38jv+fQt+1K3goafy3ZHnmdbmbD2pqM9pVq9bpJPRQjTMHgCaNBXjVr5+jEMQ9i/FAA6zBC6xNevXsAmLQhtotUmXESbULX9s5Cgguq0f1ohdbF/IJKzp1rM+mmc1EcyYOEBtltlpVr3mWyH1rzj9KyM2t+uUftnZhI/QcvLy9i2bRsA4Oyzz8Y999wDAKjVarjiiivwH//xH3KvkFAa0YW+raFSreOIK7p08Mhgcnzpnmq0iUlFFs+hVkalGhB9ahfm/v2LAwq1MEeOt3D//sVU1xFWUOrQSi0CM+E/ttx97XRX3uXFsARQrrQag0WuKLUEwSZ+UEF5823h7Z+9caOu+bhRVZqhIpqySrUC2j/bFWqzYh5N4UOx3NM/Lb9oP8x+htuT0LwrRK0QT7Vy94FRftnjpFQLeyAGaXWoqJaVxE/Qxo0b8dhjjwEAzjjjDBw9ehSPPvooAGB2dhaHDx+We4WE0rDBMU6l4pZ8QpGEdJ5qvcFI4QncT3yUW1QjpVo6smw613qealkW5ex9a3dG//7F5dEFtaTfFybso6VD6IcILKiAK9XoczKUqeZgWEFRagedYP6lIko1FfwurQKKE0E6dMijNOEiGjt0UI0i2j/5HFeB8S28Xi6qdT/4OQ/bzziuy8dJmnfFYOvRIjzVyipe8YPkcfZUq0V7a2cNQCNSFNWe9axn4f3vfz9++MMf4rTTTsOmTZtwww03YGlpCV/4whdw8skn53GdhKKILvS57FeD9qc0RbWWBuoadm3y2j97ixbaxKTC9xxKn/6Z5URJtB14drop9PNEvy9MeBNTlfTPCa5U6xbVyB9sOFypttZNSXVdzzfa1/wZkImVQKmmwiaBK3GL8lQrSCFDpGOw/VPNtVIhSrUKtVkFFfee5wcO5f05DP788BomuKai9akYSeaXtLCfXbZSLSwsGKdQi1Ge4aRUy07iJ+iqq67C+vXr8YEPfAAA8KY3vQkf//jHcdFFF+HLX/4yfvd3f1f6RRLqwj3VYiTDvqeaBkW1TJ5q6g7KfhFFTlCBCi1GOpOl/VOGUq3BFWKjn4dzNs9ibmZ0wWx+polzNs+muo7wQoe3f2p+ih/2VFO54F4m4fbP4LhLGyKfmuBcCwT8LstUqmUY39JA4RZqE56rVFWqWYUo1VjCtf7PavAQ2nY8ePzr+c53wcJMJzQmBtX/41AokUHe7Z+e5wU81cp5T8JdEQxWhB2H9s9RnpG+Uk3NsVkHEr9yc3Nz+NznPodDh7ppb//9v/93nHrqqfjRj36E888/H095ylOkXyShLszc0hniaRDET/9Uf9CK6rsfhQ6FgD4PCtfjBdG0UFBBNjKlf7aym/lbEad2YUzTwBWXbMV1N+2J/J7LL9ma+nlq9C3K/bYN3TccrP3zGLV/joQFFbD2z+C4q/IhRdGwuVPESNo/8CizqMa8W/IPKvA8j8ItFEc3pVqu6Z8VSbgGAoUKx+07oMt77GZhSx3bHTgYZO9dzTQyr3PHBTZeOzkFFQR978o6iI8SFjD/7HGYO7gH4hDP8FaFFLRlkfgJ+tCHPoRHHnkEGzdu5F978pOfjFe96lU49dRT8c53vlPqBRJq4yvVRg/Ejo5BBSk81VTeBAZP8GWYR1NQQTayKDm4Uq2A9k8A2LltI3ZdtgMbpht9X5+faWLXZTuwc9vGiH8ZD1eqdRw+qQP6K7tYut3SSretcRwWbGkIK9XYWFozDS0OYYqCb3oEilS2CumfI9pMZGP3KVP0HjeqSjjtU9X0z3oBARtV2rxagaACVtg2jGLW+lGqQgq6SY5l+ofueRD8uWW3fw4+L+NjZeOr9Qbf51Yn+75i3Ek8q1133XV45jOfOdQ77c4778TnPvc5vO1tb5NycUXheR7cVjqT7Sy4jglnrQa31YJbkO+IbCy3g7rbAdot/hoOuy+v1ULd7aDudUp5rZNQ792T22r1Xeuo98tpraHudtDwbGXvr+a63fcKQGt5FfXJrkF42ufQa7P3VM17Vv3zVXdt1N0OnNBzFofrmLDXsj9vk4aDuttBZ3VN6GdccOYGrPvVx+OvP3sn1k3V8epfPw+PP30Wpmlkev8n0L0Oe3UNq8eXUXc7MA0DRqcN11a/CB/FpOnwzxsATMJV8nOSFlmfr+mah7rbwdrSMtxWC+3V1e6zbdVoXg7Q7H1OnLX4z6vXaaHuOrCcNtxWd5lX9H3V7N7aoOPk+j66jolV+HNbzenAbcmxOCgTVZ/DtDRg942H3bmrxAuKoNZb/3kJ5uWk75W91h3jmoqunRgi99Xsva/26lp3Xel20KjX4LXbyFujOmk4sPkaxt/Otle61zFpYujrW7XPFiPLfdXsNupuB0Zn+GuWlc6a//k3Oh24nvgYLev9Ys9qeM1b1v6tjOew4bF9x+A6orPafR0mke+crSOeNyX0fYbnxfTtAXjJS16CO++8s/eDPRgjzOZ/6Zd+CZ/97GcFL1MN1g4+gt2vfX3Zl0EQBEEQBEEQBEEQBEGUzM6/+TAmNsUHcQop1f78z/8c//zP/wzP83DdddfhN3/zN7Fp06a+7zFNE+vXr8dzn/vcdFdMEARBEARBEARBEARBEJogpFQL8qEPfQi/9Vu/NbT9U1ds28HhgwuF/17LMjE7O4XFxZXCYudlc+udB/DpW+7Hkx5/El77gicAGH5f//df9uI7dz2M5z/tTPz6L59Z4hXH8/NHjuPdn9qN2XVNvPu1T+NfH/V+/fH1t+H4Shv/z8uejNNPWlf0JQtz9fXfxdJKB2992ZNxWu860z6H7/x/78DDh5fxxt96IrY9bi6vS06N6p+v3Xsfxf/5px/j8adtwB++5ALhf9fqOHjjtf8GAPjgG5+Z2oz841+9F/9xzyO47OKz8dynPE7o3/zDtx/Av3x/P/7rztPxomc/PtXvDfPpW+7HrXcewPN/+Uw87Ymn4f+5/rs4Yf0E/vzVT5Xy88viwUeO4S8/9QP+51/+pU34/z93e4lXJBdZn6+7H3gMH/7iHmw+eQZ/8tKd2Ld/AX/92TuxcW4K/+uVxQcfqTpuvOczP8RPfnEUr/mNJ+CCc06K/L52x8H/6I0Pf/2GZ/CUxaLva61t400f/A4A4P2/f3FuPi2WZWKp7eJN1/wrpiYsvG/XM3L5PUWj6nOYFtf1sOuabwPAwNpKJR5dXMXbPno76nUT1171TKF/k/S9+sDn78R9Dy7gFb96Lv7LeerupUTu6wvf/k/c8v2H8CtP3ozzt5yA9/39j7BxdhL/6/f+S+7X92cf/z4OPLaEq37zfJx75jz/+n0PHsEHPn8XTj1xGn/68osG/l3VPluMLPdlOy5+//23AgDet+sZ3OtUFoePruKt/+d2WJaJD/4Psc8VQ9b79Y/f+Sm+evuDeNaTTsVL/us5/Ovv+/sf4T8fWsSrnv8E7NwWPbfKpoznkO87Tp/FH/72k/r+7i//7248ePA4rrx0B87fcmIh16MLJ2yagyXg15r4U/OGN7wBS0tLeOSRR3DyySej0+ngk5/8JA4cOIDnPe95uOiiwQFMdQzDgNlsFv57TctEbWICZtOBWdNzYDebTXTMOjqmxV/DYffVMeromHWYE81SXusk1KdsdMw6Vr1a37WOer9WXBMds47m9KTS92c2muisAXatPvL9EmHNq6Fj1lGfVPOeVf98WZPdz84arESvX8dpo2PWUTMNNKYmU//+2sQEOmYdLUP89x9Z89Ax61g/OyPtPWfX0TYstA2re28TE0o+U0mYWjeNjlnnf7Ym1PycpEXW52t6/Tp0zDqWOkZgPumOTzQv+xj1BjpmHY5VH/m6uF6HP3fN6UmYvaJ70ffVsOr8OrrXXI/5F+kwLRO23b1no9GozGdM1ecwLSYAo9lEu+PCmlR3fG9Mofs5c8X3BUnfK7ZebEypPSeI3BdfR8DiY7fRLOb9NZvdMbFT6x8T4+aQqn22GFnuq+55fLx263WYzUbMv0iGW3fQMeuw6rXEz4as98ua9J/V4DW00N3LWJPFrjnKeA7rvddgzRt8H5ad7rg0MT2l9LhUBqNsz4IkljjceeedeM5znoNPfepTALqtoX/1V3+Ff/zHf8TLX/5yfOMb30j6IwmNYSkudkwMM4tp1iHNLWn6p+d5aHe636t6RDqrtLOEvSywdCzL0tdMvkzqKdM/1yQlh/kpQOK/f+F417x0dkbegiv4eWvxFF21P0ciTDT7z6xUTgYuk8lw+qfNxlJ6vYLwuTZmvGCfZwPlpm3XTAPst6dJOE6CLvPvuDPZS/ycbKqZ/An485HreXzdOgrX9XDvz47g2z94CPf+7AhcN775hz2vzQrMCcG01LbN5u9i7ouvoQbSHCmZPimGYfD5QiRhOiks/bPMPWBU4j1/XsZgzTFqf8vW35T+mZ7EM9v73/9+bNmyBS9+8YuxurqKL33pS7jiiivwtre9DW9729vwkY98BP/1v/7XPK6VUBA2CMctJByXDajqF2DqETHdUTiuB7fXRa36IilqUkkD2yilbT8cd6yURTU28U1kLDyxhS9bCIuwuNQtqs2tk3eKxSb5tu2ixQqGin+ORJgMLUzqtOEfylRvg72yZsPzvLFa4Cah1hsv4jY8/mGHKXy6mgeGYcCyTHRsN/fWFjaG0TOjNs1GDVgGJhoKF9UC6xnb9lAbcX60e+8h3HjLPn7YBABzM01ccclW7Ny2MfLfVenwKHg41yn4QMSy/IJeEPZnGg+SYdVMOK6TyyGI4zBhRXlzUnCtGWScirD1iM8MAL7+nqCiWmpSKdWuvPJKbN68Gd/97nfRarXwghe8AADwa7/2a9i3b5/0iyTURXShz4pqpg5FtYQnlUHVl+qLJJlFtXGaiPIgqSKS0ZKlVEtYPPY8DwusqDYjr6jW4Ityh9+b6p8jEeqW2beAJOXVcKZ7SjXX87DWdgIFEv2fAZlwFUHMARZTBKhw2GHVohfwMmFzMG2i1aV78Np9Nm3HEVJ0lUFQeT/qud299xCuu2lPX0EN6Kq5r7tpD3bvPRT5b7kipCLzHNB9rfwDkWLuK2oNU/R1VAWrJqaGTgMXVtTKLKoN786wAwdRVceKUHcCgS6YCoxLZZH4CTJNE81er+2//du/Yf369Tj//PMBAEtLS5iYmJB7hYTSmL2TcCcm74IV3cocUEUJLsxFCg6tnpTfDMinVSXqpCYNNp0GZiLthlPWgrxeT1ZUW23ZvG1lNgelWl/7ZwWeKcMw+tqc6HMynLpl8sX8assuXO2gC6LKVpsfdpQ/F9X5Ji3fAkqb1I1Ks3vvIVx9/W04tLAGALh//1Fcff1tIwtPZVEzTb6ujZobXdfDjbeMFhB8+pZ9kYVD3q5cAUU2L8TYbuGfQ1YECY+J7H0bhyKJTERFEmlgP9Mqs/2Tr3n7uzPGSSAQpVSzHZcXPkmplp7ET9COHTvwuc99Dj/60Y/wz//8z3j2s58NwzBw+PBh/N3f/R127NiRx3USisKKZKJKNdWLTkD/wCpScAj6SJTZbiNCGh+tYXiep5QiQkf4gjCtUi1r+yfz1xP8/QtLbQBdZZFMJdmw9s8qKNWA/sVJVe5JNoZh9LWAUvvncPhcG6Pw6Sh06h616ZVNu0LF+KqRRdFVFkytFnXgdf/+xYH7CXPkeAv3718c+nftqirVCv4cRqn9x6lIIhNRNXQauK92mUq1CGXjOAkEoj4zTKUG0Fo1C4mfoKuvvhq33XYbXvKSl6BWq+HKK68EADz/+c/Hz372M7zxjW+UfY2Ewoh7qvUW+hoEFZimrzgTKqrxU0f1ByK//TNbUEFQeUBFtXSkVXHIMhPlk6tgaMUiCymQqFLru46KBRUA/YbctOGPZnKimzq2vNYh1VEEbO4UDSpQYUNpJWwxTwubg6ndSy2yKrrKIs4aYXF5dEFt1PcFFSFVMAQPHtQWrlSLbP+kdvA05Nn+aSsgrKjX/QPcICrNmXkTNbaxA22rZtKeLgOJ3UKf8IQn4F/+5V/wwAMPYOvWrZiamgIAvOMd78CFF16Ik046SfpFEurin2zEpH9q1P4JdCdjp+0ItebpdEouq/0zOOnWKf0zFVmDCqQV1QR/PwspmJXopwb4k3y746DV7iZA6vBZEiEYVkAL/GimAwmgtCEajqhSTSV/mLQJx0khTzU1SaLo2n7GXEFXFU89RkU+Oy02Bw77vj4P3goUgYObdD+5uSBPtaj2zzFSHskk7ZpUBB5UUGLBhq81A5/rcQtHCqrHPc/j3VU8AK0Chf4ySRXBs27dOjzxiU/s+9rznvc8KRdE6IWoXJh5runQ/gl0B9e1tiOoVNNHyp/WHD9M8N/TqUY62OTmuB5c1xMO8ZBlJtpIWGBd4Eq1EXFoaa6j7hf3qqZUmyBPNSGGtX9WYcMpE1+pJlhUU2BcznOTFoQKsWqSRdFVJnF+p+dsnsXcTHNkwXB+polzNs8OfD3owWtpcsg8Ct4qa7v+57Agr7j4oAIaD5JQY3NMHu2f3FOtvGeerSvtQKeO43pgd6vCQVTe9KUbOx4XRfhezdV/DfKEXj0iE2wQji2qOfqkfwLJik8ttgnUYDCSrVSzaobyPnKq0ufdl2DTKSv22m//TKZUk5n8CQQWxh034Ben/mdJhP72TyoSRTEVUKpR++dwfKVaXPtnd65VoZXF33Dn297HChVVUbhWhSyKrjKJW/+ZpoErLtk68mdcfsnWoetd3tmggQevCPVAAbLokJkotf04tfPJxOIe2Tmmf5bZ/jlk/xP8jI/D8xIVxMcP6xuptFZEj+o/QUSusEVDfFBBT/qrgacaEO+pEcRv/1R/09zg/hfZPNU6CqkhdCU4uSVRckhL/2TPguDvXsjLU63ue7LwoAINPksiTPYFFdBnJYqpnqfayprNi7xUVOunJjjXdhx1VFtFtX+y+WwclAY6wRRdo4hSdJWJyHO7c9tG7Lpsx9CN+ONPW4+d2zYO/Xey5m9VYOuIMtI/+ftESjUp+Mpi+YcgNg8qKLH9c0ixPPgZH4f5I6iODa79ZQWgjTvVf4KIXOFBBZ5g+qcmcvckflM6BRXIav9kixgqqqUneGKXJAFUXvqn72UmwmIv/XNOdlEtcNLdCpziVwFq/xSjr/3TIdXRMNhmJK6oZtvqpDIX1f7ZIk81Jcmi6CoT0XXSheechIlG93uveN42vPLXzwUAPPCLYzjw2PLQf8PWi1XZvPalf/JiVjH3ZkUp1chTLRV5BhWo4KvdCIRqMNh/10wDZgWUo3EYhuHPy0GlWqfrZ0yeatmgEYfIhH96LhZUUGY/fRKSFJ/atj6FAFntn7RoyU5wckvU/ik7qEDwWcgtqCBQ3ONKtYpsOPqUahVR3+WB3/7Z8U3nK/IMyMISDAUKtuaXTZrxLQ0d3v5Jz4xqMEVXWLE2P9PErst2RCq6yiTKAD/Mo0fXcHzVRs008JvP2YpnX3AaLth6IjwAX/n3nw39N1U7OAquI4oO7SJPNbmIHtykgQkrrBK7ldjz4Lgen0fHcS8zTDRCSjU5pGqe3b9/P9rtNrZs2YLjx4/j/e9/P37xi1/gv/23/4ZLL71U8iUSKiOaSObyfno9Bq4oWfkw2hot6NliJ4kyahi2Qr49OlO3DNhOMrm9vPZP8aKa63o42lOqyW7/bASuo2qtMaRUE2NYUAGNLf3UuIogrv1TnU2CJWm+iaNNQQVKs3PbRlyw9SQ8cOAoOp6BuuFhy6kblFOoMSxB+4+f/OIoAOCMTTNo1GtYBvAbTz8TP9z3GP7jnkfw359+Fk6en+r7N1Wb41jxvhtUUOzY4ycZ9o+JNIekgx3c5Jv+Wb6nGtB9RmoNcyy7buqWidVW//gmy6t53En8FH3729/Gr/7qr+Lzn/88AOBtb3sbPvOZz+CRRx7BW97yFnzuc5+TfpGEuginf7rlD6hJSKRU0yg1hak/ZCnVxsGDIE+SFG8ZvqGonKKayLNwbKUN1/NgGMD66Xqm3zvqOtbaXQl6VU7xgxunBx85zg8XiH64Ui2Y/lmRZ0AWfihQjFJNoU1CXbAQmJU2+fApj2kaOPfMeTzrwtNx7pnzyhbUAPH13wMHjgEAHn/6Bv61Mzetx/lbToDnAV/59wcH/k27YgnX3FPNcQu/N1KqyYW3BeawTmFzgApBBYC/7lXpEKoohn1u1iR1wIw7iZ+i66+/Hs94xjOwa9cuHDt2DP/yL/+C17zmNbjpppvwmte8Bp/4xCfyuE5CUdjCKG6zyAZpXXrWk5i4t2x9FklsMG1nDCpQqcVIZ6I8QaJwXY8HBjy2uJqpSNMILIbjPBHZ79ww3ZCuNg36ryyvdvquTWd27z2Ez33rP/mfP/SFu3H19bdh995DJV6VmlD6ZzyWjkq1gto/2+SpRkhE9Ll9oKdUe/xpG/q+/htPPxMAcNueg3h0cbXv76qmVAuqwVbbxX4O/XTh/vWsSmOgTtTy9FRToFvJNAx/Hu2tM8ax64bvOwKfG2r/lEPip+i+++7Dy1/+cqxbtw633norHMfB8573PADA05/+dDz44ODJDFFd/NPzGKWaAiaVSbASKdX0UVawa8ze/knyehmItpkA3SLN1dffxg2Qv/Dtn2Qq0vSlj8b8fu6nJrn1M3wdx1e6Laa6T+y79x7CdTftwfKa3ff1heMtXHfTHiqshZhqBtI/qZVvKNzvJu4AS6Fk5sLaPwv2ciKqTV3guW13HOw/tAQA2BIqqm05dQOecNY8XM/Dzf/RvydqabReFCE4Tq+sdQa+luvvrrGDwYj2TxoPEmHl6qmmxkE8O8TlSrUxXG/46cb++8yUatT+mY3ET1Gz2YRtdzcK3/nOd3DCCSdg+/btAIDHHnsM69evl3uFhNIE2z+9EWoX/5RCj6JalKx8GP6CXv3ByFeqUVCBCtQF0/FYkYYpxhhZijTDpPBRLPZ+b9hsWgZWzQAbFVZb+ps4u66HG2/ZN/J7Pn3LPmoFDTAdCCrg7Z8ajKdFIhoKpNLJu+j4lhVf3UjPDJEdkfT3Bx85Dsf1sGG6gRM3TAz8/W/88pkAgO/c9TCOHFvjX69a+2ewSMIOkQoLKrB8P7cgNo0Hqcgz/ZO3f5Y8LwWDsYDxtLIZ1t7elmQrM+4kfoouvPBC3HDDDfjKV76Cr33ta3juc58LANizZw8+9KEP4cILL5R+kYS6BJVno1rIfE81PQau+hB5bBRt7gGk/mBUrydLfIyio5Bvj85YApvOvIo0Vs3k7dhxz8MCCynIoahmGMZAcVbngsr9+xcHip9hjhxv4f79i8VckAZM9opqqy2Hn5hSwb4fvuGJ+Zz7m4TyD7Co/ZPQEREF+QO/6PqpnX3qehhDbE3O2TyL7Y+bheP2q9Wq1v4ZTDFnfq9Fzd9RRXtSqqWjluMhCN8DliysaIQK5h2FDqGKYtihwVrFxqWySPwU/cmf/AkOHjyIP/zDP8Rpp52GK6+8EgDw2te+Fu12G3/0R38k/SIJdQl6pI3a1Ls8Trn8hb4IIieVjLZGEekNS05QgUotRjrjF2+jPzt5Fmn8Iuvo4jFTquXR/gkMLn51+CxFsbg8+r1K+n3jwFQgJXVppdgWIl3gVgsxc5JKyXeiPnBZoU00IRORoIIHDgz3UwvyG08/CwBw650P8zlcJ7sQUcKfu8LaP5n3cTiowFFnDNQJS9DOJw2OAkEFQOCz3WFBBeN3IDNMNEKeanKw4r+ln82bN+Pmm2/G4cOHceKJJ/KvX3fddTjvvPPQaDSkXiChNkHpt+14qEc8UWxAVTnxKUiq9E8N1DVJFHijYJukcZJM5wGPo3ei3488izT1mokWnPj2z56n2lxhRTX1P0tRzE6LvUai3zcOWDUTjbqJdsflC3ryx+pHVKlmK9TOIuJNJYMWeaoREhFRkP/kgK9Ui2L742ax9fQN2PfQUfzz7T/H5ZdsrZxSDeh+zlcDy4+iPoc8qICUalIoov2z7IP4sGCC2SWUfV1FQp5q+ZHqKTIMo6+gBgBPetKTqKA2hgSLZFGnG67rgf1N2acUoiTxVGvZ+pw8JikWjsJXQ+jxfqqKb+QdvVHOs0jTEGwHXmBBBTP5jPFlnXTnwTmbZ2O95+Znmjhn82wxF6QJ0xP1vj+TH04/vlJNo6CCgjzVOtT+SUgkbp105NgaFo63YBoGztwUXVQzDIMngX77R7/A0eW2fwhbpaJaaKypF3RvUet0Kqqlozak2CILddo/e906XKk2fs/KsCC+FnmqSSGxUu3IkSP4i7/4C/zrv/4rVldXB8zpDcPAPffcI+0CCbURaf9kgylQbpxyEtIo1XRQ13CTTgoqUAIRI29WpBnVApq2SBPVPhGGBxXkpFQLerA0LLNvXNEN0zRwxSVbcd1NeyK/5/JLtmqj2i2KqabV94zT2NIPUxHo1f5ZjKcaS1SkQiwhg7h5+YGeSm3zxnWxm9AnnDmPs09dj58cOIavfe/nvqpSg/WiKGFVbFFjDz+UJKWaFETnmDTwsLrS0z/7u3XG8VkZVoxmRbWJqHYzQojEr9473/lOfOtb38Kv//qvY9OmTTA1KZIQ+WAYBmqmAcf1IpVqwVOPsgdUUZJ5qrG0OvU/C6x4wfwE0mJTUIEURDadeRZp/DTY6PbTdsfhqV55BBUA/YvyKmw2dm7biF2X7cCNt+zrKxTNzzRx+SVbsXPbxhKvTk1YWAFDh/G0SIJJ26PoKKRUK6r9k22QxmljRORH3KHqA7/o+qmdfVq0So1hGAZ+45fPxAc+fxe+ufshrmI+fHQVrutV4nAlXEQrqmtjWHHAcV0emkbjQTKsHJVqqiiow59t/7r0/xyKMswGiAcVkFItE4mLarfeeiv+5E/+BL/927+dx/UQGuIX1YYvQIKpoGVLf0VJpFSz9Tl5ZPflet33K61yUJUJUndE26NYkeZvv3xP3zOZtUjD2z9HFFkXl7vJnw3L7DOUl0m9r6hWjWdq57aNuGDrSXjgwFF0PAN1w8OWUzdUYhOVB9OhZ4s2RP3w1pw4TzWFTt7z9OhheJ7nq8UVuGdCf3gxOKK4wEIKtozwUwty/pYTcNKGCTx6dA2PLKwCAG7+j5/j33/8CK6owCFLcKwxjOLW+ewwznE9uJ4H0zD61kcqqHV1ggXJ2RF7uSxwpVrp7Z/93Tq+Uk39/ZsseDE6ML5R+6ccEu+Q6vU6Nm/enMe1EJpixpygBz1gyh5QRUniqeanOak/GAUXP+2Oi8lmukUHtX/KIUnxdue2jTj5Oz/FQ48u44XP3oJtp2/IXKQJx4sPI5j8aeTUlhncDFfJa8Y0DZx75jzm5qaxsLCcu2JHZ6YCSjWrZub2rOlKTbA1RxVD6OA1dHJM/+xuqLv/TfMRIQMeIDREwd2xXTx4cAkAsGVE8meQH9z/KB49ujbw9YXjLVx30x7sumyH1oW1vkMxq1bY2B0smtm2i0a91reWUiGsRSfYwU2cb2calEv/JKUaX4+6nsfb0icqtP4ug8Qjzq/8yq/gn/7pn/K4FkJT2CAZ7anWS/40DG02SunSP9WfwIOLnyw+N7ZCvj06I+KpxnA9D4d6p9zPe+qZOPfM+cyqJ7bobI9SqvGQgvzSKoPPUZWKaoQ4U00/qIAUR4NYpq/KGIV/4FH+XJtkfEtLcI6m54aQwSiv0f2HlmA7LtZN1rFxdjL2Z7muhxtv2Tfyez59y77I9bMOBAOriixsD1vPdmy/SKKzN2sZ1HJUFrN5q+zDHv+zPb6eauGgAraHBUiplpXESrXzzjsP73//+7F//3488YlPxMTERN/fG4aBXbt2SbtAQn2410vE6QY7WdfFTw0Q91RzPY/LiHVQqpmGAatmwnbcTL5q3LdnjCaiPGCR8KPSPxkLx1po2y5qpoGT56dw7Nhq5t/fCC0whv5erlTLL905mBamw+eIkE/QU61ekRZgmYhueFRqzbdCJ+J50KdMUeCeCf0Z1h7FYH5qW05dL3RIfP/+xZEhQwBw5HgL9+9fxPYz5lJcbfkEW+eKtG+omQYMAB78MYa6KNIjenCTBjYvqaJUa4eflzGaO/z9bXfdz4J+DNDBVFZSBRUAwB133IE77rhj4O+pqDZ+cMlwjFKt7ME0CaJKtb5Tck02gnWrW1QbZU4fh0otRjqTJB3v4JEVAMDGuUn+mctKQ+A5ZxuCuYKUarp8jgi5TAeLajSuDBB3eMVQ6eS9iPRPdspet6hlmJADO+waNi8yP7WzBVs/F5dHF9SSfp+KBA9Xixy7DcNA3TLRtl3+XrHDYppDkpOnB6Yq6Z/hNa9K82VR+PZG3fek1e4GkTUbxbVuV5XERbX77rsvj+sgNCYulczWsahWEzthD8pmG5oYXTYsE6stsdbWKPz2T33eUxVJ0h7FimqnnDAt7fdboVO7YfD2z3U5FtUq6qlGiBMMwSC14iA81CTGRFolpVoh7Z+kTCEkM+q5feAXxwCIhxTMTovNm6LfpyLBAlbRhu9WrVdUc0iplpU80z8dRealAU+1MbSyCXdirbGQAlp3ZWZ8niIiN8wYTzWXn1Do87iN8tQIwryorJqpTapfEr+4KDqKTJC6EzYMHYVfVJuS9vvDSUjDWCxAqRaUnOtSnCbkEgwqoA3RIKJKNZU2Cby9PcegAjYH0zNDyCLsOcRYXGrh8LE1GADOOkWsqHbO5tnYuXN+polzNs+muVQlKDO9O7ye5Z5qtI5IjGgYThpUEVcMPC9jaGUT3newkALyU8uOkFLtZS97Gd7+9rdjy5YteNnLXjbyew3DwMc//nEpF0foga9UGz4Qs6+XPZgmQdRTjbVQNjVqWQt7CqRhHCXTeZCm/XPTvMyiWncSHVXUW1xqAyhOqUbtn+PJ1IQfVEDjyiBWwGbB87zINg3mA6XCJiFJinZa2M+mYjwhi3rEvPyTA12V2mknTWOyKdboY5oGrrhkK667aU/k91x+yVZtDmWH0WffUPC4E1ZXdRQ6VNCNfJVqrKhW7vvC5ol2OKhgjJ4Xf17ueaq1KflTFkJPked5ff896n9uTGsCUT3i2j9ViVJOQtRJZRh2Sq5Tu1JDUIU3CpVajHRG9DkDgIOHe0W1XNo/h/vreZ6HhSLSP6n9c+zpa/9UoCCkGkEvmlFG0sH0u7LhQQW5pn/6nmoEIYMoBTkLKTj7VDE/NcbObRux67IdA4q1+Zkmdl22Azu3bcxwteUT/OwV3f7pK4/GN81RFlZvjxZnMZAGJq4oe14aaP8cw3bh8L6Dt3+SUi0zQkctn/zkJ4f+N0EA/snDOAYVMNmsTpvA8CIkDfYYSqbzwDeGHX0y2O44OHJsDUCx7Z8rLZt/BubyTP/sU6rRxD6OTFFQwUiC86fjehi2d/U8L7BJKP9zVISnGk/fprmIkESUUu2BnlJty2lirZ9Bdm7biAu2noT79y9icbmF2eluy6fOCjVGcB1YulJtDIsksqgVolRTq6jmH0KNz/MSTjem9k95JH6Kbrvttsi/e+ihh/DKV74y0wUR+mHGeL2w/nytPNUE21aYwkenQoAUT7VeagxtfrMhuul8ZGEVHroJiTNT9ZHfm4RGxIk8gyV/Tk9YuW7Sg61b1P45nvSlf2o0nhZFcNEf5XkTPNhSIUQmuOENdjzIhJQphGyCSjX23Dqui589zEIKkinVGKZpYPsZc3jqeZuw/Yy5ShTUgLBSrWxPNVKupoVbDOTpqVbynoHt1dqhoto4PS/hz8watX9KI/FT9PrXvx7f/e53+77meR5uuOEGPP/5z8fdd98t7eIIPeDmlhVUqrmeF+kVBwTbP/UZkKV4qjlqSLl1R9S775Gen9rJ81NSI6/jngWW/JlnSEHwOgBq/xxXJpoW2JNNqqNBgvOnHTHXBg9KVDh5D15DXmEFbVsdZR5RDZjyyoO/fn3o0DLatouppoVNEtXiVaA//bPgohpX+4eKJAqMf7phhV5LmfjiipKVaiHBxDh23YT3HaRUk0fip+hXf/VX8frXvx633norAOC+++7Di170IvzVX/0Vnv3sZ+MrX/mK9Isk1KZmxAUV6FtUA0Yrutq8/VOfwaghQalm00ZGCpagIvLhHEIKAP/9i/JUY0q1PEMKutdBRbWxxwPqvcOJ5dVOZJr0uGIYRmwCaHAzpMImoW4FCoE5tYCSMoWQTbAgw+bmBw4wP7X1MCUebFWBPvuG0jzVxld5JItc2z9787lVclABW2MMePCNURGWK8h7r4GvVBMLXyGiSfwKvvvd78bU1BTe8IY34Nd//dfx5S9/GZs2bcLf/u3f4pnPfGYe10goDjt5iNoEaVlUCy2qJiLspNgpuU6FgLrUoAJ93lMVETXy5iEFkotqTGEZ1f7Jkz8LVKrppPok5LB77yHceMs+rvy984HDuPr623DFJVu1N/GWSc004LheZHsOG9NrpqHExj/Y6tNxXEwK/BvX9RL5TvH0Txo3CEkEC9LsuX3gF93Wz7NPTe6nVnX62j8L/hyGE9TJUy09Vm20QCILXKlWtqdarb87YxyDCnylWndv3ialmjRSlSX/9E//FFNTU/i7v/s7XHzxxbjuuuvQaORnYk2ojRmX/qlhUc00Db6BGVV84kEFGi3o/Za/7EEF4zQR5QH3VIspcB7MS6kWWmCEWSxBqaaTPyGRnd17D+G6m/YMfH3heAvX3bSnEul4sqjVTMB2I9s/VWtlMQ1/Ho0b4wC/uMoUskC39XxUcXUclQZEvgx7bplS7fGnpfNTqzLBz17RrfukVJMHU5HlqVQru/2zUY94XsZo/ojyVKOiWnaEimpf/OIXB762ZcsW7NixA//+7/+OT3ziEzjxxBP531166aWyro/QACsu/VPDoAKgO/A4bWek39W4tn+OY2JOHlgCQQWe5/lFNcleLuxUmSmEwhTlqRb8/Oik+iSy4boebrxl38jv+fQt+3DB1pMqY+qdBb/9M0Kp5qgXIGP15tE4NW7a4iqfg2ncICQSXP8dX2nj0MIqAOAsUqoNoFZQwfgVSWSRp6caK9SVvQ8Md+qMo7Ix7CvHPdVoDs2MUFHtzW9+88i/f+9738v/2zAMKqqNGVVUqgHdQXat7cR4qunXelKvSyiqjeFElAdhGfYwjq90sNqyYQDYOCvSQCUOK2ZFFY59T7V8lcj9niz0TI0L9+9f7FMlDePI8Rbu37+I7WfMFXRV6hIXCmTzww515tp6zUQLzsgxLktxlZQpRB50D7y667+fHO62fp5ywhSmJ+Slb1cFqy+ooNiNefhgksaD9LCCl+d1x2SZB1mspdQqu/1zoAjb83oboyJsPWA743keWsxTjZRqmREqqn3jG9/I+zoIjWHFsip5qgGDg+8wWAulTqfkcS1/cTiui17K/FhNRHnANr+jnjGmUjthw4T058x/xiOCCgpSqgXHhgOPLWPLqRtImTQGLC6PLqgl/b6qE9eeo+JhB1c/jBjjshRX2TxGxXhCJsH1H2v93HIqtX4Oo8xDsYEiiYJjoC4ED2Nsx0XDlLPe9DyPh+uUvQ9kz2fbduB53lha2YRTudfaNgBSqslAqKh22mmnDf16u93GsWPHsGHDBtTrdHozrvDT8wi1Cyuq6bZJFjH050o1jQZkVpiJKqTEYdv+ho4k9tmoC7R/5uWnBgT89Ya0fzqui2PLvaCCHD3Vdu89hE9+/X7+54//817843d/Rib1Y8DstNhzJfp9VacWYyRtK9iWL9LinqW4SsoUIg+CczMPKTiNWj+HUWb7JynV5BEutjQkbetdzwPbNZTf/umr8ZiXWPDr40DwXju267d/klItM6meoltvvRUveclL8KQnPQkXX3wxLrjgArz85S/HD37wA9nXR2hArZcy5ngV81QLpQoNo61hL3q4nz4pwdfDsvQqlKoGT/+0uzLsYeSV/AkE/PWGPOPHljvwvK5p8/qpfNo/mY8SK94xmI/S7r2Hcvm9hBqcs3k2VgU5P9NNgCSCG8jRQQUqHXYEW02iyFJcZWrxotvOiGoTPHD66cPdotrjSak2lDKDhsJKNZsX1Wg8SEpQRWZLTAB1AvOVKko1AFht2fy/VTqIypugIrHjuLy4OKHRPlZVEj9FX/va1/Da174WrVYLb3jDG/COd7wDr3vd67C4uIiXvexl+P73v5/HdRIK4yvVRrd/lt1LnxSR9s8Waz3RaDCKM6ePg70ehgHUzPGZiPKATeQeon2SmFLt5FyUaj3V4pBngYUUbFjXyEVlKuqjFNVWTuiPaRq44pKtI7/n8ku2aqdyzgseVBCx4ekolv4J+GPcqMOpLMVVUqYQecA+Qw8+chxrbQfNRg2nnjhd8lWpSb+nWsHtn6RUk4bRS70FovdzaQiubcv2+ww+qytrwaLa+KwxDMPos34hpZo8Eo861113HZ73vOfhpptuwutf/3r89m//Nt7whjfgS1/6Ep7znOfgfe97Xx7XSSiM2SusVNVTbZQXjJ/+qc8EPkqdJMI4ehDkRb1Pbj/8/cgr+RPw30PX8wY26n5IQT6td0l8lIjqsnPbRuy6bMdAUWV+phmZ+Diu+OlsEZ5qKrd/2tGbtCzF1Q55qhE5wObm+36+AAA4+5T1VNyPQElPNYXGQJ0QaddPSrCoVvZBfLCgtNJTqlk1E4YxXp/toOqdggrkIeSpFuTBBx/EH//xHw/9uxe/+MX4/d///cwXRegFK5bZUUU13v6p16AlFFTQ0TCogKuTUnqq0aJFGsH22Y7tYiLUZWk7Lh5dXAUAnJJj+yfQVS5ONv0/L+YcUkAm9QRj57aNuGDrSbh//yIWl1uYne6qkmgT2w/bkESpCFQ88KjzQuDoTdrObRtx5aU7cP0X9/R93aoZeO1/f0JkcZWUKUQesOdp30O9kALyU4ukFihIHHhsGdsfN1fY2B1WwtJ4kA2rZqDVie6cSAMb+w1DDW/thmWiY7tcqTaOz0rdMrHa6n5eWPunTjZGqpL4SdqyZQvuvvvuoX/305/+FKeffnrmiyL0Qjz9U6+BS8hTjbd/6nNv9YxKNRXVELpSM02YRrT65LGja3BcD426idkcilvBNrFw8dhXquXjp0Ym9UQQ0zSw/Yw5PPW8Tdh+RnGbMp2Ia/9kY4hKBx5WgvnmrFNmAACmAfz2/+/xALr3tPnkmch/ww62xnFjROQHW98wFcfZ5Kc2lN17D+Hd/3c3//ONt+zD1dffVpgf6oBSjYpqmeAiCZlKNUetPSCbk5bXOgD8g59xgq0RVls236OTUi07iZ/wd7zjHfjkJz+Jj3zkIzh48CBc18WRI0fw2c9+Ftdeey1e97rX4cCBA/x/RPWJW+jrm/5ZTaWaHymdLaiAimpyYGq1YZtOHlIwN8WLbzIxDcM/6Q09D3kr1cikniCSYcX4l/oHHurMtX77Z/x88zAb706YxvOe8jg84ax5AMC/3Rm9lmTjpk5zMKE+4aLM2aeSUi0MCxpaXCovaCh8SExFtWywQDm5nmpqzUuNUPvnOD4r7J6XVzv8azSHZidx++eLX/xiAMD73/9+fOADH+BfZ8l1V199dd/333vvvVmuj9AAM8bYUndPtdFFte7fNTVKGuL3lTKowKZFi1TqNRPtjjt005lnSAGjYZmwHZen6DEWc/ZUYz5K1920J/J7yKSeIHzYhicqmc1WMKggbCQ+iocfWwYAnNLzj3z2k07Fj396BP9218N4wTPOGnqQwzfRdMhDSCS4vtk4N5lbArauiAYNXbD1pFzn8HDRnjzVsmEJtusnwXbU2gMyC5zVXvunpdH+TRbsc3O8V1SzaiYJJSSQuKj2rne9a+wM/YjRcKWaF+Wp1htQFTmlECWYjhJFy2ZKNX0GowbzVEsdVNBLc6UBWAqjjGF5SEGORbW6ZQKtYUq17ulzHm2nDGZSf+Mt+/pCC+Znmrj8kq1kUk8QAeKS2VQsMPntn/HKh4d7490pJ3RTFp/4+BOxYbqBo8tt/GjfY3jy9sHxgB1s6TQHE+oT/AiduGECruvRAU+AJEFD28+Yy+06BpVq1A6ehTyDCmqKzEvhoIKxbP8MKdWaNH9KIXFR7YUvfGEe10FoTNxCn0l/VemnF0XIU62jX+sJ2+S0UwYV8JNAa/wmojwY5XGXZ/LnwO+P9FTL19OMmdQ/cOAoOp6BuuFhy6kbaANDECF4a06Ef6mKSrUkyoewUs2qmXjG+afgK//+IL79o18MLapRuxchm917D2H33kf5n+/52QKuvv42XEEHPRxVgobC6cI0HmSD7dOigufSoGz755gHFQC+Uo381OSQuKgGAEeOHMENN9yA733vezh27Bjm5ubw5Cc/Ga94xStwwgknyL5GQnHYQj8qqIB93dJsk5zIU02jQbkhcF+jsCmoQCqjPIeKUKqxgnDQY6/Vcfgp3lzORTWg2wp67pnzmJubxsLCspD/EkGMG3EFKhVbn+oJPNUO9DzVTu0p1QDgmU88FTf/+4P48c8WcGhhBRvn+sdC1rbeGMMWHkI+zCcsDPMJ23XZDiqsQZ2gIfJUk4vv21nl9s/+oIJx3Muw12BppadUa6QqBxEhEj9JBw8exGWXXYaPf/zjaDabOO+882BZFj72sY/h0ksvxSOPPJLHdRIKwwzUIxPJXN3bP6P9a5hiQCelWrCo5kW07I6CggrkEo6EZ6ys2Ti23G3BzLX9kwcV+MpFFlLQqJuYbOrzbBNElfFDgSKUarZ6rflR41uY4yttLPVOzYPj3Umzkzyw4NtDAgtoE03IQtQnLOoAeZxQJWgoXLRXsQVeJ/z2T4lKNUetbiV2ALM6zkEFvfd5ibd/0jpfBomfpPe85z2wLAs333wzPvnJT+Kv//qv8clPfhJf/epXMTExgWuuuSaP6yQUhhXLohb6rC1Ut3auuKJa8Os69aOz+/KQbuKkoAK5sDZatiFmPLLQVW1smG5gspnfKVK9Pvics5CCuXVN8tAkCEVgG54oFYF/4KHOZ5a1osa1f7LkzxPWN9EMtaI860mnAQC+e9fDAz+HimqELJL4hI07LGhoFEUEDQWVap7n0XiQkTyCChzFhBVWuP1zDAuw7DVYovZPqSR+kr7zne/gqquuwubNm/u+vnnzZuzatQu33nqrtIsj9MCKOT2vqqcaa/00oJYyII56oE0mTQuorWCLkc5EGcMePJx/6yfgKxeD7Z8LS8X4qREEIQ5TqkUdhqh44BH2PIri4cPMT2164O+e+PgTsGG6gWMrHfxw32P8647rq8VVumdCT1TxCdMFFjQUVqzNzzQLa5NlRaCO3R0L2ChD40E6uG+nRKUaDzdTZA/IPdVaLP1TjesqErZ/O05KNakklj84joO5ueFJLvPz81haWsp8UYResJOoKEk8P6WomFKtZfshBTqpeayaAQNdpdqoZNMoWIrbOE5EeRAVVPBwASEFQLD9M6hU67adxrV3EARRHOxgKi6oQKUDD5asFtf+yZRqw4pqVs3ExU88Bf90Wzew4KJeYEFwzNLJgoFQE1V8wnSCBQ3dv38Ri8stzE53Wz6L6kwJrp+C4wEV1dJhmXko1XrCCkWUahRUEPRU6671Sakmh8RP0rZt2/DlL3956N996UtfwjnnnJP5ogi9iFvosxMPVQZUUayYohoPKdCo9RMADMPgA2o7hVKNFeJUajHSGWtIUQsoJqQAAOq9zWhfUY2UagShHKJBBSodeCRt/zwl4hDhmeefCgPdJEbWGk+baEImqviE6YZpGth+xhyeet4mbD9jrlCrl2DQU3A80Kl7RCX46ykz/VOxoAI2JzFPtXF8VtjBGysshi0XiHQkVqq9/vWvx+/93u/h6NGj+LVf+zWcdNJJePTRR/GVr3wF3/nOd3DttdfmcZ2EwsSZJ7ueWgOqKHFKtXanp1TTMHWsbplohxYhojApd13D+1aRekz758mFtX/6qkXmKzNLSjWCUIY4/1IVk5mj2tvD+O2fw8e7E2cn8YSz57HnJ0dw648O4Lee83g+f1k1E6ZhwAUZyBPpYT5hw9I/GUX4hBHisHW643poddiBr6lV94hK1HLwVLNdteYltmcb51bhoLc2QO2fskhcVHv605+Ov/zLv8R73/vePv+0E088Ee9617vwK7/yK1IvkFCfWkwEs5/8otckV6/1FDwxnmq6KdWA+ILhKGwFzbB1his5Au+F63k41FNjnJK3Uo09C51BpRq1fxKEOjBPmrigApU2CcPay8O0Og4OH10DAJxy4mD7J+PZTzoNe35yBN+5+2Fc9syz+c/UcQ4m1IT5hN14y76+0IL5mSYuv2RrIT5hhDjBsW6c0xxlYeXgqaaaUi38fKhkl1AUYTU7tX/KIVWk3KWXXooXvOAF+MlPfoKjR49iw4YNOPvss+lkYEwxDVFPNb0Grlilms2KavoNRuykpp3GU40iy6ViDfEcWjjWQtt2UTMNnDg7kevvH+bpxpVq6xq5/m6CIMThKoIYpZpKY7OvVIvepD1yZAUegOkJCzOT9cjve+LjT8CGdQ0cXWrjB/c/yv3XdJyDCXUp2yeMECeofqKiWnZyTf9U5PPTCBfVxvB5Cd8zKdXkkPpJWllZwfT0NDZt2oTJyUk8/PDDOHDgAA4cOJDo57iui2uvvRYXX3wxnvSkJ+HVr3419u/fP/R7P/jBD2Lbtm1D//eWt7wl7a0QGYltSVFsQBWlPkRBFIS1fzY1HJDrdRlKNf3uW0XqQzadzE9t49xk7sVo7q/Xe549z8PiUi+ogDzVCEIZarFKtV6IjEJjs2XFb9IOsNbPE6dHHs7WTBMXn38qAODbPzrgK9U0nIMJtSnTJ4wQp2YaYEMGN55XaPzTjZpgu34S2N5QlXmJlGqD90yeanJIrFT7+c9/jj/4gz/Aj3/848jvuffee4V/3oc//GHceOON+Mu//Ets2rQJ73nPe/CqV70KX/7yl9Fo9KskXvnKV+IlL3lJ39c+9rGP4dOf/jRe8YpXJLoPQh6sWBZ1eq5rUEFs+mdHX6UaG1DTBRWoZ4atM8MCMYoKKQB81SILoFhes/mCagMV1QhCGWIPsHhQgTpzLW//HLFJY/6RpwokHT/ziafgK7f9DPc+uICHHu2mzes4BxMEkR3DMFCvdT2CV0iplhkrJnguDWxeUmUPGH4+xnEvQ0q1fEhcVPtf/+t/Yf/+/Xjd616H008/HWYGFUW73cYNN9yAP/qjP8Kzn/1sAMA111yDiy++GF//+tfx/Oc/v+/7p6enMT3t+23cc889+MQnPoE/+7M/w7Zt21JfB5ENdnoe1f7p6tr+GbMZaHM/F/0Go0aMCm8UbIIcx9OdPBgWVMCKanmHFAD+s8CKeou91s91k3VanBKEQlgsFCiilVLF1vxgOl8UBw6zQ4RoPzXGiRsmsePsE3D3Tw7jlu8/BEDPsCCCIOTAgreoqJadXNo/FfNUC88XKs2XRRH+jJCnmhwSF9V+8IMf4O1vfzsuvfTSzL/8vvvuw/LyMp72tKfxr61fvx7nnXce7rjjjoGiWph3vvOdePKTn4zLLrss87UQ6TFj0j8dV61TClHi0z/1DypI5anG0z/1u28VsYYUb4tUqllWv2pxYYn5qZFKjSBUIq41x1eqqTM28yCWEZs0lvx56oli492zn3Qq7v7JYa5UW2vbuPdnR7Dl1A3UpkcQYwZbQ5GnWnZqAh6YSfH3gGq8LwPtn2P4vFD7Zz4kLqpNT0/jpJNOkvLLDx48CAA45ZRT+r6+ceNG/ndRfOtb38IPf/hDfPGLX5RyLWUsQtkAo8pAkxam1HJdD5ZlDtwXK7Y1LFOpxX4ck83ux6Nju0Pvi20SJhqWVvcFAI3eAOq4XuLnkE2QjXpN6fvW5fPFJjP2+QG6xt0AcNpJ6wZeY9n3NdHoPue2033Ojy13/dTm1zcLfX91eb+SQvelFyrfFzvAcb3ha5ZRc1JZ98VOwG3HG3rNruvx8e70jYPj3TAu3H4SpicsLPc8lA48tox3f+oHmJ9p4neetw0Xbdc/oVHl5zAtVbwngO6rbFhRZK3dPSRuxqxNdbmvpMi4L3+OGT5ep8Hr1efqKfeA0te8zf7SR7NRzl6mzOew2ewvok1P1JXez+lC4qLaC17wAnziE5/AU5/6VNRq2Sqbq6urADDgndZsNnH06NGR//ZjH/sYnvOc5+Dcc8/NdA1AV2k1NxffdpAX69dPlva7ZTB7rKts8YC+19G/r+7J8ezsVKmvc1K83vPdcdyh92X2JMTr1zW1ui8AWDfVVSFZDYvfj/hz2Hs/N0xocd+qf75m1nXTPY2aibm5abQ6Dg4fWwMAnLvlxEhfM1n3NTfb/Tme0R0H13onlCefMF3K+6v6+5UWui+9UPG+NvSuyYhYs7ADrBPmoz+7Rd/X/PFukd71vKHXdOCxJdiOh4Zl4vFnnijUInTbXQd4QS3IkeMtfPDzd+EtL78Iv9wLNNAdFZ/DrFTxngC6r7Jo9g4GmbhqcrIutHZR/b7SkuW+2HrUsmrS1n/13vszPdnI9DNlvV/zcyt9f57dMDl2NYC5Df2q8JNOXKfFfk51hIpqwWRN27bxb//2b/iVX/kVnH/++Zic7H8YDMPAu971LqFfPjHR/fC2223+3wDQarUGfm6QAwcO4Pbbb8ff/u3fCv2eOFzXw7FjK/HfKJlazcT69ZM4dmw1Ms1LB1aWu0W1ju1gYWF54L5Ym+TKcgsLC8tlXmoiVlY7ALrPx2OHj6NRt/ru6+jxbuHDc1yt7gsAvJ7a7OixNRw7tproOVxd674u7Zat9H3r8vmyO93N4cpKGwsLy/j5I8fhecD0hAWn3cHCQv/mUfZ9tVvd93NltYOFhWUcOHQcADDdrBX6/uryfiWF7ksvVL6vtdVugWotYuxt8bl2DQsLg0q1Mu5rdaXFr23YNd/3wGMAgE0nTOHY0fh1mOt6+Jt/uGvk9/zNTXdh22nrtW4FVfk5TEsV7wmg+yobJvRZ7B1GGp43cu2iy30lRcZ9ddrd9eBybz0qg6XeHGDbw+eAOGS/X63ePMr/vNYpZS9T5nPYWut/Ddpr8t7vKrJ+/aSQolCoqHb77bf3/XnTpk0AgLvuGlzYjIpDD8PaPg8dOoTHPe5x/OuHDh0aGTxwyy23YH5+Hk9/+tOFf1ccaQzbZeE4bqm/PzO90yHH8frug92X3SvgwCv3dU5K8EleXbN50AK7r7VWdwNj1Qyt7gvwPShabYcP5qLPIfOYM6HH+6n654vt+9qd7nUeeLQ7sZ08P9UzeI1K1ZVzX7XemN3qOLBtFws95en6qUYpr5vq71da6L70QsX7MnqzUscefm227fHvi7r2ou+LzaN2xDUzX7RN81NC13Xfgws40gtTieLIsRbu+ekRbD9jLvH1qoaKz2FWqnhPAN1XWbD17FLvILxmiq3JVb+vtGS5r7g5Jg2dTvfnGEa2PYOs98sM1SlMo9w9XBnPYfg1sEyzkp+FohEqqn3zm9/M5Zdv374d69atw+23386LaseOHcM999yDl770pZH/7vvf/z6e8pSnwLISd68SORAXVMDTPzULKgj2lw8LK2Am/zqmfzKTynRBBeqZYetMOKjg4QJDCoDBJNiF3oZ1doaCCghCJdgcynwtg7iuB9dTL0RmWBBLkIcf6453p5wg1nqyuDy6oJb0+wiC0BsKKpBHLdf0TzXeFwoqGLxnCiqQQ6lVqUajgZe+9KV473vfi/n5eZx22ml4z3veg02bNuG5z30uHMfBkSNHMDMz09cees899+A3f/M3S7xyIogVl/6pWJyyKKZhdFVojje8qNbxDft1g5mRshOkJLBUIKsEc80qUg8VtQ4eLraoVu95A7IC62Iv/XOO0j8JQilqI+baYNHKUugAi80TTEUXhiV/nnKC2Hg3Oy02Lol+H0EQesPWUCu8qKbfmlwVLNaRE7GfSwM7BFJlXmqEi2pjuJcJ7t8MDL4mRDpKfxWvuuoqvOhFL8Jb3/pWXH755ajVavjoRz+Ker2Ohx9+GM94xjNw88039/2bRx99FLOzs+VcMDEAU6q5UUU1V8+iGuBP1sNO2ZlXnI6D0aj7iqPTK76M40SUB3zT2XsvDhasVGPPQtt2YTsuT/8kpRpBqIU/VgzOtXZfUU2dsZmNL67nDawRPM/Dw4eTKdXO2TyLuZixaX6miXM2zya/WIIgtKMeVqopNP7phpWDUs1WTFhRDwkhxl2p1mjUEll3EdGU3j9Zq9Vw9dVX4+qrrx74u9NPPx179+4d+Pqdd95ZxKURgvin5xEeLr2vqyL9TUK9ZmIVToRSzY/v1g1eSMmgVBvHiSgPggVOz/MKL6ox1aJtdwtqHrqf6ZmpeiG/nyAIMfhcO2TDw+YoA+psXoB+dULHcdE0/fny2HIbKy0bhgFsmhdLQDNNA1dcshXX3bQn8nsuv2Sr1iEFBEGIw6xIVtao/TMrow5u0qLaHjBcdFVFQVckwddgQsM9rKqo8YQTWjOqJQUItH9qOHDxgseQolrLZu2f+n2MGj15fCeNp5qtlpRbd7jnkO3i+EoHqy0bBoCNc8XEbPv+ei4Weq2fG9Y1BoxMCYIoFzZWDJtrWft43TKVOnUOqubC6ocDPZXaSRsmE7Vs7dy2Ebsu2zGgWJufaWLXZTuwc9vGDFdMEIRO1Gv9exAqqqWH+3bK9FRTzFc7vGcbx+cleM/kpyaP0pVqhP6wmFnPAzdKZriex7MLVTo9F8XixadR7Z/6DUijioVx2BRUIJV6oP2TqdRO2DBRmFcfk8J3bBeLx8lPjSBUZaRSjY3LirU+1cxunpyHweS3gz0/tU2CfmpBdm7biAu2noQHDhxFxzNQNzxsOXUDKdQIYswg43l55KFUU82HOTgnAePpwWeRUi0XqKhGZCaoaHEcDwh0jTmBgVkV6W8S6iOSy3QOKgj6aCWFFeLIt0IOlsU8LIpv/QT6PQEfXVwDAMxSUY0glMNPZhvmqdbbuCi2oTQMA5ZlomO7A/MoU6qdKuinFsY0DZx75jzm5qaxsLA8ULQjCKL6hIs1tDZNDwuesyPsfNLADoFUEVYYhoF63eR7uHHsuiGlWj7QyENkJijpDRsRB33WVBlQkzBK0cXSEvVs/0wXVOB6Hpdyq7Z505Vg+2fRyZ9A/+R6aHEVAIUUEISK1Ea0f/qHHerNs1Hqh6TJnwRBEGFIqSaPWi6eamoFFQD9HUbj+LwEC4lUVJPH+D1JhHSCA2U4rCC4+Felnz4JbLAddgJeBaVaJ2FQQbDtiE4D5TCs/fPkAotqNdMAE5s+utD9/bPrGoX9foIgxLBGhAL5bfnqzUes0BeeR5MmfxIEQYQZUKqNYZFEFty3U2r6p3rWBMFnRKXrKgrDMPhrQO2f8hi/J4mQjtlXVAsp1fraP/UtqoWVap7n+emfGk7gzEOgnTCooGP77+c4TkR5EHzGePtngcoNwzD4qd0jC12lWtgAnCCI8gmqCLyQfylTHSupVBuijF5t2VjoeTieciIp1QiCSAcp1eRhcYuBHIIKFNoDsmfEMNS6riJhezhSqsmDRh4iM6bhK10Gimq9P3e/R7+BK8pTzXZcbnKpo1KtkTKoIDjRjqMPQR4EE/0e7bVfnlKgUg3wFxhHjnU3ueSpRhDqEVz8h0OBbFs9NQDDCqhxGewAYf10A9MT9aH/jiAIIo6BopqCY6Au5Nr+qdCegT0zqqVlF4mvVCN7fVnQyENIgYUQRHmqqTSYJiFKqdYKtE3qeCqWNv2zY/vGnuM6EckmuAl2XA+Nulm4pxl7HthGnZRqBKEewYOM8KZH5VRm3uIemG+4n1rBBwgEQVQLav+UB5tjhlkMpMVRLP0T8IUF41qAdV0P6K33l1Y7A3t3Ih1UniSkUDMN2A5gRynVNJXXRhWfWOtnzTSUmihESZv+yTZutGiRR93q/2ycPDfVl6hbBI3Q+0lKNYJQj2CCdjhpW+VUZh7GEigEcj+1E8lPjSCI9FD7pzwsU75SjSWJqtRmySxwVDyEypvdew/hxlv24dhKBwBw+72P4P6HFnHFJVuxc9vGkq9Ob8bvaSJygQ2WA0o1dkKh0GCaBL+o1u89xopROrZ+An7yTWKlmoKGo7pTC72WRSZ/MsLx2pNNOm8hCNUIKr7tkJKgo/CBh2UN+vQceIySPwmCyE74IGEcCyWyyMVTzVHXU03FQ6g82b33EK67aQ/3M2UsHG/hupv2YPfeQyVdWTUYr6eJyA222A8nxqhoUJmEKE81plRr1PX8CPFUU8cd8OYZhYopPrpjGkZfW1c5RTW/OEwqNYJQE9MwuIrVGWj/VK/FhlEf4alGRTWCILJAnmryYIe8njcokkgLayVVaW5qBDzVxgXX9XDjLftGfs+nb9lHraAZGJ+nicgV1t45GFTAPNX0fNSi2z+7f25aeirVghOJnUCtZvfSP2nRIpfgYqPI5E9GsP1zbl2j8N9PEIQYUZ43dsDvUjV4+2fvGm3HxaFe0vCpJ1D7J0EQ6SFPNXn0+3bKUauxAx+VvLXHUal2//7FAYVamCPHW7h//2IxF1RBxudpInLFiiqqKSj7TUJkUIFdDaUakMxXjbXB0qJFLn1FtZLbPymkgCDUxVeF98+1vP1TwU1COP3z0MIqHNdDs16j8YYgiEyQp5o8gmtRWb5qfseSOu8LKx6utR3c9+DCWKizFpdHF9SSfh8xCBnnEFIwozzVdG//jAkq0NVTzaqZMA0DrufxexGho3CLka6EPzMbZycLv4bgIpTaPwlCXbobE2cgFIgp1VTcUFrcbqB7zSykYNMJU5QiTRBEJgaVanquy1UguFeTlQDqOGqpqHfvPYTdex8FABxaXMVfffqHmJtpVt6of3ZabG0v+n3EIOqtvggtYScQg+2fmqd/Rnqq9YIKFNzAiFKvDy8YjoJ7qll6vp+qsXvvIVx9/W1YWu3wr73thu8VbhYaLA7PknKEIJQlyr9U5RCZeu+a2Vzz8OFuSMGp5KdGEERGyFNNHoZh8MKaLKWarZC4ghn1tzr98+c4GPWfs3k2Vhk+P9PEOZtni7mgCkIjDyEFNlgOBhWwKGU9H7WqKtWAQMEwRVGNFi3ZUSmFJ/h+zpFSjSCUJcpqwT/wUG9sDrd/sqLaJvJTIwgiI+H1qK62LKrAxuvwfi4tvg1Que/LuBv1m6aBKy7ZOvJ7Lr9kq7YiGBWgkYeQAi+qeRGeaorIfpNiRRXVen/WuajGFh5tO0H7p62uGkInVJvc64FFKCnVCEJdakOSNAG1x2bLChfVuu2fpFQjCCIrwYMEA2ooonSGK9Ukp3+WvQ8ko35g57aN2HXZjgHF2vxME7su21Hp9tciIE81Qgo8/dMZ3v5paTrJxSnVmgqqAkRJo1TjZtga37cKJJnct58xl/v11AOLncNHV3H2KevptIogFKQWMdfaCo/NQRsFz/Pw8JFuUe0UUqoRBJGR4JhXt0zyacwI8z6Tkf7puh6Y1qLsAx8y6u+yc9tGXLD1JNy/fxGLyy3MTndbPmnNnx0qqhFSYCcQYWWNq1AvfRrqta4SLeyp1qpC+2fPzLXdSdD+qbAaQidUmtx37z2EW+98mP/5b/7xHnz2Ww9U3rSVIHSEt1K6YaVad65VsTWfX7PtYeF4C622A9MwsHGu+FAWgiCqRXDMU/FQQTdqvP0zu1ItGHZQ9j6QjPp9TNMo5MB+3KDRh5BCzYjweeGyXz0ftUilGm//1PO+AP/awwXDUdiU/ikFVSZ35uu21u5vAR4H01aC0JE4pZoqCWtBgsoH1vq5cW6S5hGCIDITLKSp6CmpGzKVasGwg7KLamTUT+QNjT6EFPjJRjj909E8/ZN5wUQFFWgc3c1O99i9iOC3f+r5fqqCCpO7ar5uBEHEw9M/NQoq4IdTjosDvZCCU8hPjSAICQQPElRU6upGOFgmC8F5quxDFDLqJ/KGRh9CCtxTLdSS4uje/hnpqaa/Uo2Z0yfyVLNZ+qe+xUQVUGFyJ9NWgtAPyxwdVKDipjK4SWNKNfJTIwhCBmFPNSIbLKVTRlABSxA1oIa4goz6iTwhTzVCCrwlJaxU072oVhveIskSM3X2VGMquyRFNV8Noef7qRJscr/xln19xa35mSYuL8DPTCVfN4IgxIhTqqm4qfQ91VwcPE5KNYIg5FEzTRgG4Hlqjn+6wZR/jkSlWtnJn0HIqJ/ICyqqEVKILKo5FfVU6ynVmhoX1di9sQKhCBRUIJcyJ3dVfN0IghAnqjWn46g7NnMbBcfDgZ5S7dQTSalGEIQc6paJdselopoE/Dkmu1LN5kU1td4XMuon8oCKaoQUWFEtKv3T0vQEIKqoxtM/NZ7Ao+5tFFwNodgEqTNlTe7M121UCyiZthKEWkQdYNm2uiEyTPlwdLmNY8ttAMCmeVKqEQQhh3qtV1RTcPzTDZlBBUxYoesekCCSQKMPIYWoCGa28NdVVhud/ql/+ydXqnWSe6qpaIZNJEMFXzeCIJIRNdfyEBmF2mwYrND3i0eXAABzM01MNulMlyAIObA1aV3j8DBViJpj0sB+hq4WQASRBNoZE1IwjYjTc9091XoTtet5fSEMVQgqaPD2zwRFNVKqVQoybSUIvWAn/mG/G9aar+KmkidN966R/NQIgpAJG2Oo/TM7bI6Rmf6pWvsnQeQBHRUSUvDNk0Ppn7p7qgWuO6joavP2T/U2MKLUeVBBAk+13qkTKdWqA5m2EoQ+RAUVdBQOkQnPF6fMk58aQRDyqFtUVJMF91STkP7JCnO6CisIIglUVCOkEOWppnv6Z3AzEGwBZSfuVQgqSJX+qWCLEZEeMm0lCD2omcODCmyFgwrC13TKiaRUIwhCHlyppuD4pxs1mZ5qpFQjxgh6ygkpRJknu5oX1UzD4AWkvqIaU6pVof0zhacaLVwIgiCKJ0qppnKITPiaTqGQAoIgJOG6HlfqLq12Bg73iWRYUj3V6CCeGB/UW30RWmJGFNX8Uwp9B1Su6Aqc2rSYp5rW7Z/svsTbP7mnGknsCYIgCsfiSrVQ+6etsFIt1JJ6yonU/kkQRHZ27z2Eq6+/DQ8fXgEA/Og/H8PV19+G3XsPlXxl+iIz/VN3X22CSIJ6qy9CS9hCf6CoVoHkF3bKzjYtruvxyUZnpVqa9E9b4Y0bQRBE1RnmX+p5Hi+yqXjgEZwvJpsWNkw3SrwagiCqwO69h3DdTXuwcLzV9/WF4y1cd9MeKqylhLVqSmn/5HtA9eYlgpANPeWEFLhSzQkr1ZhJpb6Pmu891lV0tQPG/g2NPdUaPKgghaeaghs3giCIquOrCPy5NvjfKh541Az/UG12XQMedWcRBJEB1/Vw4y37Rn7Pp2/ZR62gKYgSSaSB7QGp/ZMYB9RbfRFaEhVUUAXprxUqPgWVXSqqAkThSrUERbUOU0MouHEjCIKoOrUhG56goqCuWPrn7r2H8Fef/iH/88OHV6g9iyCITNy/f3FAoRbmyPEW7t+/WMwFVQip7Z8V6FYiCFFoZ0xIwQ8q6B+EufRX41OKcPtni4UUWCZMQ9/7aoQUeCLYve9VUQ1BEARRddiGxwlseIJqY5VS1lh71tHldt/XqT2LIIgsLC6PLqgl/T7CpyYzqIB1Kyk0LxFEXtBTTkghKpHM9fTvp/fbP5lSjSV/6tv6CQzeVxyu62G13b33hx5dIlk9QRBEwdSGBBXYgYQ1VQ56qD2LIIi8mJ1uSv0+wocr1WS0f5JSjRgj9K10EEoxrCUF8E/TdR5Qw8UnnvypcUgBANR7ba0iQQUsYWllzQYA/L9fvY9aeAiCIApmmCq846gXIEPtWQRB5MU5m2cxNzO6YDY/08Q5m2eLuaAKYUkMKmCFOZXmJoLIC3rKCSmYEZ5qTgU81SKVapbeSrUG91Qb3f5JCUsEQRBq4Ld/BpRqCqYyU3sWQRB5YZoGrrhk68jvufySrXxvQojDD26kpH/qL6wgCFHUWYERWsMGzLBcuBJFtVq/oT8rQumvVItv/6QWHoIgCHXgfjeBMZcp1VQKzqH2LIIg8mTnto3YddmOAcXa/EwTuy7bgZ3bNpZ0ZXrjK9VkeKrp76tNEKJYZV8AUQ2i0j/5KYXGAyovPjndYprf/qm3Uk2kqJakhWf7GXNSr48gCILohx9gBVQEts1abNSZZ1l71qj5g9qzCILIws5tG3HB1pNw//5FLC63MDvdHVNIoZaemtT0z56KWmNfbYIQhZ5yQgpRcmFfqabvoxbV/tlUSBWQBlYUdFwvUuZNLTwEQRDqMCwUyFeqqXPQQ+1ZBEEUgWka2H7GHJ563iZsP2OOxpSMWBEe2WkgpRoxTuhdFSCUgU1ijlfB9s+qpn8G/HfaEWo1auEhCIJQB77hCSrVAumfKkHtWQRBEHphSVSqUfonMU5Q+ychhdoQ82SgIkW1WlT6p+ZFtYAnHCsUhqEWHoIgCHXgrTnuYFBBXaGgAga1ZxEEQehDHp5qKoXoEERe0FNOSKEWIRfmpxSKnaAnITr9U++Pj2kY/ESq3Rl+IkUtPARBEOrA51pnsP1T1Y0LtWcRBEHogS+SkOepprOwgiBEUXMFRmhHZFCBywZUfR+1qrZ/Av69sUTTYezcthHPueC0ga9TCw9BEESx8NYc19/wsLlJpfRPgiAIQj8o/ZMg0kHtn4QUuKeaGxVUoO+AGi6qtWzW/qn/BqZu1bDactDuOJiyooeD4yttAMDTd2zCE86epxYegiCIEvBDgQLtn4or1QiCIAg9sMzBg5u08PZPjYUVBCEKFdUIKVjmYCJZ8M86n1KEPdX89M8KKNV699buOMDk8OHAcV38+GcLAIBnX3gatpy6obDrIwiCIHx8FUEwqKC3cSGlGkEQBJGBmkSlGm//1HgPSBCi0AqMkIIZVVTrDco6K5q4Us3pFtOq1P7J1HZRnmoA8MAvjmG1ZWPdZB1nbVpf1KURBEEQIbjfTWCu5e2ftHEhCIIgMsAObmR4qvnpn1RuIKoPPeWEFOI81XSW/loDnmpVav+M91Tb89PDAIAnnDWvdXGUIAhCdyxzcMOjelABQRAEoQfct1NGUc0lpRoxPtAKjJDCsEQyoKKeajz9U3+lGi+qdaKLanf/5AgAYMdZ84VcE0EQBDGcYUo1m4IKCIIgCAnIbP9ke0JL4z0gQYhCKzBCCsMW+kBA+qvxKUW91i2eDaZ/6v/xYYXBVkT759HlNh48eBwAsOPsEwq7LoIgCGIQvuFxKaiAIAiCkItVGx48lwbfV5vmJqL60FNOSKEWlf7pVU+p1ubpn9VRqnUilGo/7rV+nnHyDDZMNwq7LoIgCGIQHgo0pP2TlGoEQRBEFpjFgJSgAtb+qfEekCBEoRUYIQUzylOtAiaVUe2fzQpsYOLaP/ew1s+zqfWTIAiibPgBluPB6x1asfZPUqoRBEEQWZDqqVaBbiWCEIVWYIQUalHpn71TCp0N7geUap3qKNUaPKhgcPJ0XQ97ftotqv0StX4SBEGUDmuj8QC4vaIaKdUIgiAIGfA5xhsUSiSFKap1DqsjCFHoKSekMKyo5noeemt+rU8p6r0Jhm1cfE81/Ytqo5RqPzt4HEurHUw2LWw5bX3Rl0YQBEGECLbRMBUAa9MhpRpBEASRBSuwX8vqq1aFsDqCEIVWYIQUePpnoKgWTALVOfmlHlJztSoUVFDnQQWDRbU9P+n6qZ135pzW7bsEQRBVIVg4Y8U0nv6p8eEVQRAEUT7D5pi02A4FFRDjAz3lhBTMgM8LI3jCoXNRxm//dOB5nt/+aemvVGuEWluD3N0LKaDWT4IgCDWoDVERdCj9kyAIgpBAUFWW1VeNzVE6dysRhCi0AiOkwAbMbstnt7AWVK3pPKAGPdVsx+U+Ns1KKNW69xBWqi2tdvCTA8cAADvOopACgiAIFTANA6bRb7fADkUs8lQjCIIgMmAYBi+sZVWqsTlK524lghCFVmCEFPp8XnqDaFC1VoWgAs8DVtZs/vUqe6rd87Mj8DzgtJOmMb9+ooxLIwiCIIZQC6Wzsf+vk1KNIAiCyAibY5ysSjVq/yTGCHrKCSkEi2osLYYV1wwD/GRdR4IbleMrbQDd+6mC8SbzVOt0+ifOu3t+ar90FrV+EgRBqEQ4GIgV1UipRhAEQWSFpXXaGdM/bdb+WYH9EkHEQSswQgrDlWpsMNX7MQtuVJZWOgC6IQWGxoVCRmNI+6fredjzkyMAgB1nU+snQRCESjDvNNaa07G7/09KNYIgCCIrVkgNnRauVKOiGjEG0AqMkEKwcOaElGo6+6kBXVUam2CYUq0KrZ9Av18c46FDSzi63EazXsPW02dLujKCIAhiGFyp5oSDCvSeawmCIIjyYe2ajixPNTrwIcYAesoJKQRFW2yhb1fIoJIVn44zpVpF2myGBRWw1s9zz5jjf08QBEGoASue8fbP3qFIvQKJ1ARBEES5yFKqsX+vu7iCIESgHTMhhWBaDFvoM2+1Ksh+WVvNUk+p1qyIUq3R24S1+4pq1PpJEAShKkwZzlQENinVCIIgCEn4FgMZ2z8rtA8kiDioqEZIoxY6PWeKNZ2TPxkDSrV6NT464fbPlTUbD/ziKABgx9kUUkAQBKEa/lwbSv8kZTFBEASRkZqkoAJ28EPtn8Q4QE85IQ12EhFO/9Q9qAAArJ6iiynVGhVpswm3f9774AIc18PJ81PYODtZ5qURBEEQQ+AbHh5UwJRq+s+1BEEQRLlwi4EMSjXX8+B6pFQjxgdagRHSCJ9ssAV/FXrpWfunr1SrRlGNKe5Y++een3b91H7pLGr9JAiCUBErpFTzgwpoSUcQBEFkI5wwnYZgyEEVxBUEEQc95YQ0zAGlWs+gsgInFLz9c5Wlf1bjo8OKhe2OC8/zeEgBtX4SBEGoSY2bSHtwXBc9MQC1fxIEQRCZkRFUwPaAwZ9HEFWGVmCENHhQQW8QdivU/sk2K5Vr/+wp7tq2gwOPLePIsRasmoltj5st98IIgiCIofCgAteDbftqgDop1QiCIIiM1Gr9YThpCKrcqtCxRBBx0AqMkEY4/ZN7qlVgMA0HFTQrolRrsKCCjoO7Huiq1LY/brYy6aYEQRBVI6gi6ASUBJal/1xLEARBlItlylCq+UU106C5iag+1agMEEoQLqqxwbgS7Z+1kFKtIkUnVix0PeCH9z8KgFo/CYIgVIYr1RyPhxQYRjVU4QRBEES5cE+1DOmfTmAPaFBRjRgDaAVGSMMMtX/66Z/6D6a8/XOVBRVU46PTCHjw7N2/CAD4pbMppIAgCEJVgkEF7PCK/NQIgiAIGdQkeKqxghwF6BDjAj3phDSCPi+A34tfpaIaM4SuiqdacLLzPODEDRPYND9V4hURBEEQo6iZflABL6rRxoUgCIKQgCXBU82pULcSQYhAqzBCGoOear0BtQKL/bAKoCrtn57XP+E94ax5kmkTBEEoDN/wuH77J6kBCIIgCBnISf+sjq82QYhAqzBCGmzgdMNBBRU4pQirAKrQ/rl77yFcff1tfWaiu/c+it17D5V4VQRBEMQogknbLKiAimoEQRCEDJgYIlNRzaH2T2K8oCedkAbzVLMr3P7JaGre/rl77yFcd9MeLBxv9X19abWD627aQ4U1giAIReF+N64H2yZPNYIgCEIeVsjOJw22S+2fxHhBqzBCGiyCuZJKtYH2T30/Oq7r4cZb9o38nk/fso+/jwRBEIQ61LjfjQub1AAEQRCERHgYTiZPtersAQlCBFqFEdKoDaR/kqeaity/f3FAoRbmyPEW7u+lgRIEQRDqEPQv7fD0T9q4EARBENmR0v5J6Z/EmEFPOiENs8rpn2FPNY1bbRaXRxfUkn4fQRAEURxWYMNjU1ABQRAEIRErZOeTBkr/JMYNWoUR0hhM/6xQUa1CSrXZ6abU7yMIgiCKw1eFexRUQBAEQUilJiH906b0T2LMoFUYIY1alKdaBRb7VoWKaudsnsXczOiC2fxME+dsni3mggiCIAhhWAHNoaACgiAIQjJWwLczLbxbqQJ7QIIQgZ50Qhp+IlnPU41Jfw39TykG0z/1/eiYpoErLtk68nsuv2QrT3MlCIIg1IEdYNmOy5UEYYsCgiAIgkiDbzGQof2ztxe0aC9BjAm0CiOkYUYq1fQfUOu1fmWazko1ANi5bSN2XbZjQLE2P9PErst2YOe2jSVdGUEQBDEKNqd2gwp6ZtAaH/QQBEEQ6iCj/bNKvtoEIYJV9gUQ1SHo8wIE+ukrMKAOeqrpv4HZuW0jLth6Eh44cBQdz0Dd8LDl1A2kUCMIglAYy/SDCjq20/1aBQ6vCIIgiPKxQsFzaWBdS9T+SYwLVFQjpDEQVMDaPyuw2B8oqll6K9UYpmng3DPnMTc3jYWFZe7PQxAEQahJUKnG2nPqFZmTCIIgiHKxSKlGEImh8jEhjVroZMPlSjX9H7NgUa1eM0nNRRAEQZSCbyLt8U0PKdUIgiAIGcjxVKOgAmK8oCedkIbJ2z97QQW9AbUKBaigCXQVWj8JgiAIPeFBBa6Ljk1BBQRBEIQ8uBo6k1KNggqI8YJWYYQ0ePun1/NUYwbKFRhQg0o13UMKCIIgCH3xNzweOlypRss5giAIIjsylGp2hcLqCEIEWoUR0ggHFbA45Sr001NRjSAIglABbiLtuNwHk9I/CYIgCBlYATV0WrivdgUsgAhCBHrSCWmw0wjmpValfvpgUa1J7Z8EQRBESfQHFVD7J0EQBCGPmlRPNf2FFQQhAq3CCGmw0wh7IKhA/wG1QUo1giAIQgH4XOt46PD0T1rOEQRBENnxw3DSK9V8CyCam4jxgJ50QhoskIAV0+wKxSn3tX9aVFQjCIIgysFXqgXaP0kNQBAEQUiAzSd2lqACZgFEcxMxJlBRjZCGNZD+2f3/KqR/Bk2gqf2TIAiCKAvud0NBBQRBEIRkpLR/VkhYQRAi0CqMkAYrnrE+ej6gVuCUwjAM7llD7Z8EQRBEWbANT1CpRu2fBEEQhAysgBo6LWwvSAc+xLhATzohjVq4qOZWq5+ebVoapFQjCIIgSsKioAKCIAgiJywzu1LN5umf+gsrCEIEWoUR0qiZ4fTPag2orKjWJKUaQRAEURL9QQW99k9SqhEEQRAS4Ac3lP5JEMLQKoyQBu/Bd5mnWnUGVNf14KF7P8dXOrxwSBAEQRBF4m94XHRs8lQjCIIg5MH2c67npd7vVK1biSDisMq+AKI6mEb/yQb7f92DCnbvPYQbb9mHY8sdAMDt9zyC+/cv4opLtmLnto0lXx1BEAQxTjD1t03tnwRBEIRkgmnSjuvCNJN36PD2zwoIKwhCBFqFEdJgA6cb8lSraXxKsXvvIVx30x4sHG/1fX3heAvX3bQHu/ceKunKCIIgiHGEzamO43HPGwoqIAiCIGQQVD6n9VWj9E9i3KBVGCGNgaACzU0qXdfDjbfsG/k9n75lH7WCEgRBEIUxvP1Tz3mWIAiCUIvgvo0pzpJC6Z/EuEFPOiGNqPRPXaW/9+9fHFCohTlyvIX79y8Wc0EEQRDE2MP8bjwAbdsBQEEFBEEQhBwMw/BtBlIq1Sj9kxg3aBVGSMPkRbX+oAJdTSoXl0cX1JJ+H0EQBEFkJbhJaXfIU40gCIKQSy2giE6DL6yguYkYD+hJJ6TBfV4GPNX0PKWYnW5K/T6CIAiCyMqwVk9SqhEEQRCyYIIIO3X6Z8+aQNM9IEEkhVZhhDR4+6fT76mma/rnOZtnMTczumA2P9PEOZtni7kggiAIYuwZFv5DSjWCIAhCFuzwJq2nGmsb1dUCiCCSQqswQhqsqDaQ/qnpgGqaBq64ZOvI77n8kq3aFg0JgiAI/TBNA0Zo2iEzaIIgCEIWrG3TyZz+SXMTMR7Qk05IgxXPbJ7+qXf7JwDs3LYRuy7bMaBYm59pYtdlO7Bz28aSrowgCIIYV8IbFUr/JAiCIGSRVanG2j913gMSRBKssi+AqA5mSKlm8wFV79rtzm0bccHWk/DAgaPoeAbqhoctp24ghRpBEARRClbNQC/4E1bNgBGWrhEEQRBESpj6OXVRrSesIBU1MS5QUY2QBjO1dBwXruvB6ymGdW3/DGKaBs49cx5zc9NYWFiGbaebZAiCIAgiK8HT/zqFFBAEQRASqUkKKqjCHpAgRKCVGCENptxyPI/7qQGU/EIQBEEQMgme/pMSgCAIgpAJa/900gYVuPpbABFEEmglRkgjmP4ZHISpTZIgCIIg5BE8/aeiGkEQBCETv/0zY1ABzU/EmEBPOiENXlRz3T65sO6eagRBEAShElZgXq3TpoUgCIKQiKygAupWIsYFWokR0vCLav1KNeqnJwiCIAh5BOdV8lQjCIIgZMIUZk5WpRoV1YgxgVZihDTMQPsnO9kwDMCkVDKCIAiCkEZQAU7tnwRBEIRMmMIsvVKN2j+J8YKedEIabOB0XT+ogFo/CYIgCEIufZ5qFh1cEQRBEPLgnmop0j+9QGAddSsR4wJVPAhpMImvB8C23b6vEQRBEAQhh6BPDXmqEQRBEDKpZfBUcwKFOPJUI8YFWokR0ggW0FodZ+BrBEEQBEFkJ9hSQ+2fBEEQhEysDJ5qwX9D7Z/EuEBPOiENc1hRjWS/BEEQBCGV4IEVBRUQBEEQMmHpnyzFMwl24N+QuIIYF2glRkijT6nWJqUaQRAEQeSBRUo1giAIIieYwszOqlSjfSAxJtBKjJBGcOBs8/ZPesQIgiAIQibB+ZaKagRBEIRMLJMV1dJ7qtVMA4ZBRTViPKCVGCENwzBg9gbPdqcXVEDtnwRBEAQhFasWbP+keZYgCIKQB2//TKFUY4U42gMS4wQV1QipsAGUggoIgiAIIh+C5s/1Wq3EKyEIgiCqhoz0T+pWIsYJetoJqbCwAiqqEQRBEEQ+9LV/klKNIAiCkAhv/3TTeKr1lGq0ByTGCCqqEVKxTNb+SZ5qBEEQBJEHwfZP8lQjCIIgZJJFqcbCDSxq/yTGCFqJEVLhSjWW/kkDKkEQBEFIJXhgVaeiGkEQBCERdljjUPsnQQhR+tPuui6uvfZaXHzxxXjSk56EV7/61di/f3/k93c6Hbzvfe/j3//Sl74U9957b4FXTIyiNqBUo6IaQRAEQcik1hdUUPpSjiAIgqgQrKhmpwgqcFwKKiDGj9JXYh/+8Idx44034s/+7M/wmc98Bq7r4lWvehXa7fbQ73/HO96Bf/iHf8C73vUufOELX8D8/Dxe/epX4/jx4wVfOTGMGnmqEQRBEESuWAEFALV/EgRBEDKR0/5JcxMxPpT6tLfbbdxwww246qqr8OxnPxvbt2/HNddcg4MHD+LrX//6wPfv378fX/jCF/AXf/EXuPjii7Flyxb8+Z//ORqNBvbs2VPCHRBhmNSXimoEQRAEkQ9BBYBFSjWCIAhCIuzgxkkTVOBSUAExfpS6ErvvvvuwvLyMpz3tafxr69evx3nnnYc77rhj4Pu/+93vYmZmBs985jP7vv+b3/xm388gysMMt3/SKQVBEARBSKUv/ZNabAiCIAiJWBmUao7DPNVobiLGB6vMX37w4EEAwCmnnNL39Y0bN/K/C/LTn/4Umzdvxte//nX87d/+LR555BGcd955ePOb34wtW7ZkupYyTnpZwalKhSc2CLOgAqtmVuYUvYrvF0D3pRt0X3pB96UXutxXo17j/91sWLHzrC73lRS6L32o4j0BdF+6QfclRqPRnWMc10u+j+vV0upW9j0gvV+ELpRaVFtdXQUANBqNvq83m00cPXp04PuXlpbw4IMP4sMf/jD++I//GOvXr8f111+PK664AjfffDNOOOGEVNdhmgbm5qZT/VsZrF8/Wdrvlk2j3n2k2p3uycbkRL3U1zYPqvR+BaH70gu6L72g+9IL1e9rZl2T//fchknheVb1+0oL3Zc+VPGeALov3aD7Gs0s+zlG8j1yc6K7r282LWl7QHq/CNUptag2MTEBoOutxv4bAFqtFiYnBx8yy7KwtLSEa665hivTrrnmGjzrWc/CTTfdhFe96lWprsN1PRw7tpLq32ahVjOxfv0kjh1bTRVZrCZdyS9r/3QcBwsLy2VekDSq+X7RfekG3Zde0H3phS731WrZ/n+vdWLnWV3uKyl0X/pQxXsC6L50g+5LjLW1bmBgq2Un3scdO9YVzXiul3kPSO8XUTbr108KKQpLLaqxts9Dhw7hcY97HP/6oUOHsG3btoHv37RpEyzL6mv1nJiYwObNm/HQQw9luhbbLu+Bdhy31N8vE9PoT/80YFTm3hhVer+C0H3pBd2XXtB96YXq9xW0qjEM8TWM6veVFrovfajiPQF0X7pB9zUao5dP0Enx81i3Us2Utwek94tQnVIbebdv345169bh9ttv5187duwY7rnnHlx00UUD33/RRRfBtm3cfffd/Gtra2vYv38/zjjjjEKumRgNCyrg6Z9koEwQBEEQUgkaQNfJk4UgCIKQCFPm2E7y9E+b0j+JMaRUpVqj0cBLX/pSvPe978X8/DxOO+00vOc978GmTZvw3Oc+F47j4MiRI5iZmcHExASe/OQn45d/+ZfxP//n/8Q73/lOzM7O4tprr0WtVsMLXvCCMm+F6FELpX9aNKASBEEQhFSsQCGtXpEwIIIgCEIN2ByTpjWR0j+JcaT0ldhVV12FF73oRXjrW9+Kyy+/HLVaDR/96EdRr9fx8MMP4xnPeAZuvvlm/v0f/OAH8ZSnPAVveMMb8KIXvQhLS0v4xCc+gfn5+RLvgmDUwko1s/RHjCAIgiAqRXCzYpFSjSAIgpCI1es0stMU1Vyv9zNobiLGh1KVagBQq9Vw9dVX4+qrrx74u9NPPx179+7t+9q6devwjne8A+94xzsKukIiCWGlGrV/EgRBEIRcgpsVi+ZZgiAIQiJZ2j+Zuo2UasQ4QSVkQipmqKhm0oBKEARBEFIhTzWCIAgiL9hhDVOdJcHu/RsSVhDjBK3ECKmwk41Wh04pCIIgCCIPgpsVizzVCIIgCIlYZhZPtd4ekA58iDGCnnZCKqyI5rpkUkkQBEEQeVCjoAKCIAgiJ3xPtRTtn7QHJMYQWokRUgkPoHRKQRAEQRByCc6sPzlwjB9kEQRBEERW2P7N9bzE8wtL/7QorI4YI0oPKiCqRdhDzaJTCoIgCIKQxu69h/CJr/khTtd89k7MzTRxxSVbsXPbxhKvjCAIgqgCwQAcx3VhmjXhf2u7rP2T9oDE+EAlZEIq4SIaSX8JgiAIQg679x7CdTftwfGVTt/XF463cN1Ne7B776GSrowgCIKoCrWAyixpCyhTqtEekBgnqKhGSCWsVKP0T4IgCILIjut6uPH/a+/eo6Oqz/2Pf2aSECA3QInSo1YrJFySQLhEkHvkINLYo6BFLlYBBSUHT0EucrRitYhYBbkjinIUqSxFObV4jkqtVguEi5WDAgkpF8GfEIGEEAIJyXx/f4QZMiSZC5kybPb7tVbWSvbsyXyffPfsmXnyfPezbrfPff6wbjdLQQEA9VK9yqwiyGYFlS4aFcB+ONoRUhHnrZ/nhAoAQP3lHShS4Ykyn/scO1GmvANFF2dAAIDLktPh8FSaXWilGpcAgp2Q8UBI1WhUwAkVAIB6KzrpO6EW7H4AANTFXa1WGWSlWoW7+yeFFbARjnaE1PkXpSSpBgBA/TWJiQ7pfgAA1MXdvbMi6O6fZ5d/8hkQNkJSDSFVo1KNzi8AANRb0rVN1DTOd8KsWVy0kq5tcnEGBAC4bLk7gAZ/TTV3pRqfAWEfJNUQUuc3Joh0cogBAFBfTqdDw/q18rnP0H6taBAEAKg39/LNymCvqeZyX1ONz4CwD452hNT5lWq8uQcAIDQ6JScq+86UGhVrzeKilX1nijolJ4ZpZACAy8mFVqq596dSDXYSGe4B4PJSo/snSTUAAEKmU3Ki0ls1V96BIhWdLFOTmKoln/wTCwAQKpFnK9WCXv55trKNz4CwE5JqCCmuqQYAwD+X0+lQ6582DfcwAACXqYgLbVTgXv5J90/YCEc7Qur8/5SfX7kGAAAAALh0uZd/Vl7o8k8q1WAjZDwQUudXpnFCBQAAAADrOLf888Iq1VitBDshqYaQinCQVAMAAAAAq7rQRgV0/4QdcbQjpGpUqvFfCgAAAACwjIizlWqVQVaq0f0TdkRSDSHFNdUAAAAAwLoinRdYqebp/slnQNgHRztC6vxSX5Z/AgAAAIB1eK6pFnT3TxoVwH5IqiGkalSqUfoLAAAAAJYRccHdP89eU43PgLARkmoIqfP/K8F/KQAAAADAOurf/ZM0A+yDox0hVaNRAevpAQAAAMAy3JVm7uWcgWL5J+yIjAdCKsJBpRoAAAAAWFXEhVaqeZZ/kmaAfXC0I6TOL/XlmmoAAAAAYB3u5nPBdP80xpxb/klhBWyEpBpCqkajAk6oAAAAAGAZ5xoVBF6pVlmtUyiFFbATkmoIqZqNCjjEAAAAAMAq3NdUC6ZSrXpSLZLPgLARjnaEFN0/AQAAAMC6PMs/XUFUqlVLwFGpBjshqYaQqp5Ec6jmclAAAAAAwKXLXWj2w5GT2rW/UK4AkmvVE3AUVsBOIsM9AFxeqifR+A8FAAAAAFjH1twC/U/Od5Kk3ANFev4Pf1fTuGgN69dKnZIT67yf+/prEU6HHA4+B8I+qFRDSFXv/sn11AAAAADAGrbmFmjh+9/oVFml1/bCE2Va+P432ppbUOd93cs/qVKD3ZD1QEhFOKhUAwAAAAArcbmMVq7b7XOfP6zbXedSUHejAj4Dwm5IqiGkqp9E+S8FAAAAAFz68g4UqfBEmc99jp0oU96Bolpvc19TjdVKsBuOeISU1zXVSKoBAAAAwCWv6KTvhJq//TzLP6lUg82QVENIRXol1Ti8AAAAAOBS1yQmul77uZd/RlJYAZsh64GQqp5I478UAAAAAHDpS7q2iZrG+U6sNYuLVtK1TWq9zdP9M4IUA+yFIx4hxfJPAAAAALAWp9OhYf1a+dxnaL9WXp/3qqug+ydsiqQaQqp6dVok/6UAAAAAAEvolJyo7DtTalSsNYuLVvadKeqUnFjnfStpVACbigz3AHB5cTocckgyUp3/xQAAAAAAXHo6JScqvVVzTVmyXseKyzQks6X+tfO1fj/bVbpoVAB7Io2MkHOfSCn9BQAAAABrcTodSmzSSJKUENsgoGKJirPXVIskqQabIamGkHOfdEmqAQAAAID1xMc0kCQVl5QHtD/LP2FXHPEIucizJ1KuqQYAAAAA1pMQU3VdteOlASbVaFQAmyLrgZCjUg0AAAAArCshNrhKtXPLP0kxwF444hFynmuqsZ4eAAAAACwnvnFVUu34yUCXf1KpBnsiqYaQi3BUnUjp/gkAAAAA1uOpVAs4qXb2mmoUVsBmSKoh5CLOlvxGcpFKAAAAALCchJggK9VY/gmb4ohHyHFNNQAAAACwLk/3z9Jyuc5WoflSwfJP2BRJNYRcpJNrqgEAAACAVcU1jpJDkjFSyakzfvd3V6qRVIPdkFRDyHkaFbD8EwAAAAAsJ8LpVFzjKEmBLQF1X1ON5Z+wG454hJyTSjUAAAAAsLR4z3XVyvzuW1HJ8k/YE0k1hJy7Qo0TKgAAAABYk7tZQSAdQOn+CbsiqYaQi6BRAQAAAABYWnxMtKQAl3/S/RM2xRGPkPMk1TihAgAAAIAluSvVjpf4T6rR/RN2RdYDIeVyGZ0qq5AkFZ44HVD7ZQAAAADApcV9TbXi0sAr1UiqwW4iwz0AXD625hZo5brdKjxRdSHLDd8c1q79RRrWr5U6JSeGeXQAAAAAgEAlxAZeqVbprlRjtRJshiMeIbE1t0AL3//Gk1BzKzxRpoXvf6OtuQVhGhkAAAAAIFjxwTQqcF9TjUo12AxJNdSby2W0ct1un/v8Yd1uloICAAAAgEV4rqkWQFKtwtP9kxQD7IUjHvWWd6CoRoXa+Y6dKFPegaKLMyAAAAAAQL24k2olp86ootLlc9/KShoVwJ5IqqHeik76TqgFux8AAAAAILxiGkV5kmQnSs/43LfSU6lGUg32QlIN9dYkJjqk+wEAAAAAwsvpcCiucZQk6bifAgl3pVqkkxQD7IUjHvWWdG0TNY3znTBrFhetpGubXJwBAQAAAADqLeFsYYS/ZgVUqsGuSKqh3pxOh4b1a+Vzn6H9WsnJ+noAAAAAsIyE2LPNCkp8J9U8jQqoVIPNcMQjJDolJyr7zpQaFWvN4qKVfWeKOiUnhmlkAAAAAIALEd84sA6gnkYFVKrBZiLDPQBcPjolJyq9VXP94/8d1xnjUJTD6MafJFChBgAAAAAW5K5U87v8s7KqUi2Sz36wGZJqCCmn06E21zdT06YxKiw8qYoK362XAQAAAACXpviYACvVPNdUYzEc7IUjHgAAAAAA1JAQYFKtwr38k0o12AxJNQAAAAAAUIM7qUb3T6B2JNUAAAAAAEANwS7/jKT7J2yGIx4AAAAAANTgrlQ7VVahMxWVde5XQfdP2BRJNQAAAAAAUEOj6EhFnm0+4Ktazd39k2uqwW5IqgEAAAAAgBocDkdAzQo8yz/p/gmb4YgHAAAAAAC1cl9Xrbik7qQa3T9hVyTVAAAAAABArTyVaqW1J9WMMdW6f5JigL1wxAMAAAAAgFolxPquVHMZ4/meSjXYDUk1AAAAAABQq/jGvq+pVlF5LqkWSfdP2AxJNQAAAAAAUCt3pVpdSbXKyuqVaqQYYC8c8QAAAAAAoFbua6oV15VUc7k830dQqQabIakGAAAAAABq5e7+efxkWa23u5d/Oh0OOR0k1WAvJNUAAAAAAECtPN0//VSqUaUGOyKpBgAAAAAAauWuVCs/49Lp8ooat1e6qirV6PwJOyKpBgAAAAAAatWwQaSioyIk1V6t5m5UEBlBegH2w1EPAAAAAADq5FkCWlIzqVZReXb5J5VqsCGSagAAAAAAoE7xsXV3APUs/+SaarAhkmoAAAAAAKBOCY3rblbgTqpFOkkvwH446gEAAAAAQJ3clWq1X1ON7p+wL5JqAAAAAACgTu5rqtW2/LOC7p+wMZJqAAAAAACgTvE+kmru7p8RdP+EDXHUAwAAAACAOnm6f54sq3Gbe/lnJJVqsCGSagAAAAAAoE4JMdGS/HT/JKkGGyKpBgAAAAAA6hQfEyWpqlGBMcbrtgqXu1EB6QXYD0c9AAAAAACok3v5Z0WlUWlZhddt566pRqUa7IekGgAAAAAAqFNUZIQaR0dKko6XeC8BdS//jHSSXoD9cNQDAAAAAACf6uoA6m5UwDXVYEck1QAAAAAAgE/nOoB6J9UqWP4JGyOpBgAAAAAAfEqIrT2pdq77J+kF2A9HPQAAAAAA8Cm+cR3LPz3dP6lUg/2QVAMAAAAAAD6dq1Qr89ru7v4ZGUF6AfbDUQ8AAAAAAHyKr+uaai4aFcC+SKoBAAAAAACfEmKiJdXW/dN9TTWSarAfkmoAAAAAAMCnurp/uhsVsPwTdsRRDwAAAAAAfHIv/zxx8oxcxni2V1Sy/BP2RVINAAAAAAD4FNc4Sg5JLmNUcuqMZ7u7Uo3un7AjkmoAAAAAAMCnyAinYhpFSZKKS84tAaX7J+yMox4AAAAAAPiVEFvzump0/4SdkVQDAAAAAAB+uZsVVO8ASvdP2BlJNQAAAAAA4Fd8LR1A6f4JO+OoBwAAAAAAfiV4kmplnm10/4SdkVQDAAAAAAB+JcRESzpv+SfdP2FjJNUAAAAAAIBf8TFV3T+9ln96KtVIL8B+OOoBAAAAAIBf7ko17+6f7muqUakG+yGpBgAAAAAA/PJcU62ktu6fpBdgPxz1AAAAAADAL3f3z5OnzngaFFS6zi7/pFINNkRSDQAAAAAA+BXbKEpOh0NG0onSM5LOVapF0v0TNkRSDQAAAAAA+OV0OhR3tlmBuwNohaf7J+kF2A9HPQAAAAAACEhC47PXVTubVDvX/ZNKNdgPSTUAAAAAABCQ+Fh3Uq1MklTp6f5JegH2w1EPAAAAAAAC4u4AWkylGkBSDQAAAAAABMbdAdSz/NNzTTWSarAfkmoAAAAAACAgCTHRkmhUAEgk1QAAAAAAQIDcyz+Pl3gv/4xk+SdsiKQaAAAAAAAIiHv5Z3GpO6l2tlKNpBpsiKQaAAAAAAAISPVKNZfLyJzdzvJP2BFHPQAAAAAACEhCbFVSrbSsQqfLKzzbqVSDHYU9qeZyuTRv3jz17NlTHTp00IMPPqgDBw7Uuf8f//hHJScn1/g6ePDgRRw1AAAAAAD20zg6UpFnO30eO1Hm2R5J90/YUNiTaosWLdLKlSv1zDPP6O2335bL5dIDDzyg8vLyWvfPzc1VRkaGvvzyS6+vFi1aXOSRAwAAAABgLw6Hw3NdtWPF55JqEc6wpxeAiy6sR315eblee+01PfLII+rTp49at26tOXPm6NChQ/r4449rvU9eXp6Sk5PVvHlzr6+IiIiLPHoAAAAAAOwnwZNUOy1JcjgkJ8s/YUOR4XzwXbt26eTJk+rWrZtnW3x8vNq2bavNmzcrKyurxn1yc3OVmZkZ8rFERl78/KL7Qo6X2wUdictaiMtaiMtaiMtaiMtaiMs6LseYJOKyGuIKrYTYaEknVHSyaoVZpNMZ0s/UzBesIqxJtUOHDklSjaWbiYmJntuqO378uA4fPqwtW7Zo5cqVKiwsVFpamiZPnqwbbrjhgsfhdDrUtGnMBd+/vuLjG4Xtsf+ZiMtaiMtaiMtaiMtaiMtaiMs6LseYJOKyGuIKjcRmMZKOqOR0VaOCyMh/zmdq5guXurAm1U6dOiVJatCggdf26OhoHT9+vMb+u3fvliQZYzRz5kydPn1aixcv1rBhw/TBBx/oyiuvvKBxuFxGxcWlF3Tf+oiIcCo+vpGKi0+pstJ10R//n4W4rIW4rIW4rIW4rIW4rIW4rONyjEkiLqshrtBqGFVVafXDjyWSJKfTqcLCkyH7/cwXwi0+vlFAFYVhTao1bNhQUtW11dzfS1JZWZkaNaqZue3cubM2bNigpk2byuGoWq+9YMEC9enTR++9957GjBlzwWOpqAjfAV1Z6Qrr4/+zEJe1EJe1EJe1EJe1EJe1EJd1XI4xScRlNcQVGnGNoiSdu6ZahNPxT3l85guXurAu5HUv+ywoKPDaXlBQoKuuuqrW+zRr1syTUJOkRo0a6ZprrtHhw4f/eQMFAAAAAACSqjUqOFHV/TOCJgWwqbAm1Vq3bq3Y2Fjl5OR4thUXF2vHjh3q0qVLjf1XrVqlm266SaWl55ZqlpSUaN++fWrZsuVFGTMAAAAAAHYWfzapduZstVVkBEk12FNYk2oNGjTQiBEj9MILL+jPf/6zdu3apQkTJujqq69W//79VVlZqR9//FGnT1eVlPbq1Usul0tTpkzR7t27tX37do0fP17NmjXToEGDwhkKAAAAAAC24K5Uc4tw0s0S9hT2I/+RRx7RXXfdpSeeeEJDhw5VRESEli1bpqioKP3www/q0aOHPvzwQ0lVy0WXL1+u0tJSDR06VPfff7/i4uL0xhtvKDo6OsyRAAAAAABw+Ys/P6lGpRpsKqyNCiQpIiJCkydP1uTJk2vcds011yg3N9drW7t27fTaa69drOEBAAAAAIBqGjaIUIMop8rPnF3+SaUabIojHwAAAAAABMzhcCi+8blqNSrVYFck1QAAAAAAQFASYqsl1ej+CZsiqQYAAAAAAIKSEHPuuuaREaQWYE8c+QAAAAAAICjVO4BSqQa7IqkGAAAAAACCEk9SDSCpBgAAAAAAglO9Uo3ln7ArjnwAAAAAABAUr+WfdP+ETZFUAwAAAAAAQWH5J0BSDQAAAAAABMm7UQGpBdgTRz4AAAAAAAhKbKMoz/cnSsvlcpkwjgYID5JqAAAAAAAgYFtzC/T4qzmen7f946gmL16vrbkFYRwVcPGRVAMAAAAAAAHZmlughe9/o8ITZV7bC0+UaeH735BYg62QVAMAAAAAAH65XEYr1+32uc8f1u1mKShsg6QaAAAAAADwK+9AUY0KtfMdO1GmvANFF2dAQJiRVAMAAAAAAH4VnfSdUAt2P8DqSKoBAAAAAAC/msREh3Q/wOpIqgEAAAAAAL+Srm2ipnG+E2bN4qKVdG2TizMgIMxIqgEAAAAAAL+cToeG9Wvlc5+h/VrJ6XRcpBEB4UVSDQAAAAAABKRTcqKy70ypUbHWLC5a2XemqFNyYphGBlx8keEeAAAAAAAAsI5OyYlKb9VceQeKVHSyTE1iqpZ8UqEGuyGpBgAAAAAAguJ0OtT6p03DPQwgrFj+CQAAAAAAAASJpBoAAAAAAAAQJJJqAAAAAAAAQJBIqgEAAAAAAABBIqkGAAAAAAAABImkGgAAAAAAABAkkmoAAAAAAABAkEiqAQAAAAAAAEEiqQYAAAAAAAAEiaQaAAAAAAAAECSSagAAAAAAAECQSKoBAAAAAAAAQSKpBgAAAAAAAASJpBoAAAAAAAAQJJJqAAAAAAAAQJBIqgEAAAAAAABBIqkGAAAAAAAABImkGgAAAAAAABAkkmoAAAAAAABAkEiqAQAAAAAAAEEiqQYAAAAAAAAEiaQaAAAAAAAAECSSagAAAAAAAECQSKoBAAAAAAAAQSKpBgAAAAAAAASJpBoAAAAAAAAQJJJqAAAAAAAAQJAcxhgT7kGEmzFGLld4/gwREU5VVrrC8tj/TMRlLcRlLcRlLcRlLcRlLcRlHZdjTBJxWQ1xWQtxIZycToccDoff/UiqAQAAAAAAAEFi+ScAAAAAAAAQJJJqAAAAAAAAQJBIqgEAAAAAAABBIqkGAAAAAAAABImkGgAAAAAAABAkkmoAAAAAAABAkEiqAQAAAAAAAEEiqQYAAAAAAAAEiaQaAAAAAAAAECSSagAAAAAAAECQSKoBAAAAAAAAQSKpBgAAAAAAAASJpBoAAAAAAAAQJJJqYeJyuTRv3jz17NlTHTp00IMPPqgDBw6Ee1j1dvjwYSUnJ9f4eu+998I9tAv28ssv69577/XatnPnTo0YMUIdOnRQZmam3njjjTCN7sLUFtMTTzxRY94yMzPDNMLAFRUV6cknn1SvXr3UsWNHDR06VFu2bPHcvmHDBg0aNEjt27fXgAEDtHbt2jCONnD+4ho5cmSN+Tp/Ti9FR48e1eTJk9W1a1elp6drzJgx+sc//uG53arPLX9xWfX5Vd3evXuVnp7udT636ny51RaTlefK32uwVefLX1xWnrM1a9Zo4MCBSk1N1c9//nP9z//8j+e2gwcPauzYserYsaN69Oihl156SZWVlWEcbWB8xbR48eJa5/JSl5OTU+u4k5OTdcstt0iy3nwFEpNV56uiokJz585V3759lZ6eruHDh+vrr7/23G7Vc6G/uKx6LiwpKdH06dPVo0cPZWRkaNKkSTp69Kjndqu+l/cXl1Xfy6MWBmExf/58c9NNN5m//OUvZufOnWbUqFGmf//+pqysLNxDq5fPPvvMpKammsOHD5uCggLP16lTp8I9tAuyYsUK07p1azNixAjPtmPHjpmbbrrJTJs2zeTn55t3333XpKammnfffTeMIw1cbTEZY8xdd91lZs+e7TVvR48eDdMoAzdy5EiTlZVlNm/ebPbs2WN++9vfmrS0NPOPf/zD5Ofnm9TUVDN79myTn59vXn31VdO2bVuzfv36cA/bL19xGWNMt27dzMqVK73mq7CwMLyDDsCQIUPM3XffbbZt22by8/PN+PHjTY8ePUxpaamln1u+4jLGus8vt/LycjNo0CCTlJRkVq9ebYyx/rmwtpiMsfZc+XoNtvJ8+XtvYdU5W7NmjWnbtq1ZsWKF2b9/v1m0aJFp3bq1+eqrr0x5ebnp37+/GTNmjMnNzTWffPKJycjIMHPnzg33sH3yFZMxxvzHf/yHmTx5stdcFRQUhHnU/pWVldUY88cff2ySk5PNu+++a8n58heTMdadr3nz5pnu3bubL774wuzbt888/vjjplOnTubw4cOWPhf6issY654LR40aZXr37m0+++wzk5eXZ8aNG2cGDhxoysrKLP1e3ldcxlj3vTxqIqkWBmVlZSY9Pd289dZbnm3Hjx83aWlp5oMPPgjjyOpv6dKl5vbbbw/3MOrt0KFDZuzYsaZDhw5mwIABXgmoJUuWmB49epgzZ854tr344oumf//+4RhqwHzF5HK5TIcOHczHH38cxhEGb9++fSYpKcls2bLFs83lcpl+/fqZl156yfzmN78xd911l9d9Jk6caEaNGnWxhxoUf3EdOXLEJCUlmW+//TaMowxeUVGRmThxosnNzfVs27lzp0lKSjLbtm2z7HPLX1xWfX5V9+KLL5pf/epXXgkoq86XW20xWX2ufL0GW3m+fMVl1TlzuVymb9++5rnnnvPaPmrUKLNkyRLzwQcfmJSUFFNUVOS57e233zYdO3a8ZP8B6y8mY4y57bbbzOuvvx6G0YXWyZMnTd++fc1jjz1mjDGWnK/znR+TMdadr1/84hdm5syZnp9PnDhhkpKSzEcffWTpc6GvuKx6LtyxY4dJSkoyn3/+uWdbSUmJ6dy5s3nvvfcs+17eX1xWfS+P2rH8Mwx27dqlkydPqlu3bp5t8fHxatu2rTZv3hzGkdVfbm6ubrzxxnAPo96+/fZbRUVF6Y9//KPat2/vdduWLVuUkZGhyMhIz7auXbtq3759OnLkyMUeasB8xfTdd9+ptLRUP/vZz8I0ugvTtGlTLV26VKmpqZ5tDodDDodDxcXF2rJli9fzTKqaq61bt8oYc7GHGzB/ceXm5srhcOiGG24I4yiDl5CQoBdffFFJSUmSpGPHjmn58uW6+uqr1bJlS8s+t/zFZdXnl9vmzZu1atUqPffcc17brTpfUt0xWX2ufL0GW3m+fMVl1Tnbu3evvv/+e91+++1e25ctW6axY8dqy5YtateunRISEjy3de3aVSUlJdq5c+fFHm5A/MVUXl6uffv2WW6uarNkyRKdOnVKU6dOlSRLztf5zo/JyvN1xRVX6C9/+YsOHjyoyspKrVq1Sg0aNFDr1q0tfS70FZdVz4X79u2TJHXu3NmzLSYmRj/96U+1adMmy76X9xeXVd/Lo3Yk1cLg0KFDkqQWLVp4bU9MTPTcZlV5eXk6duyYhg8frptvvllDhw7VX//613APK2iZmZmaP3++rr322hq3HTp0SFdffbXXtsTEREnSDz/8cFHGdyF8xZSXlydJevPNN5WZmal+/frp6aef1okTJy72MIMSHx+v3r17q0GDBp5tH330kfbv36+ePXvWOVenTp1SYWHhxR5uwPzFlZeXp7i4OD399NPq1auXBgwYoJdeeknl5eVhHHVwfvOb36hbt25au3atZsyYocaNG1v2uVVdbXFZ9fklScXFxZoyZYqeeOKJGq9ZVp0vXzFZea4k36/BVp0vyXdcVp2zvXv3SpJKS0s1evRodevWTXfffbc+/fRTSdacL38x5efnq7KyUh999JFuvfVW9enTR5MnT1ZBQUE4hx009z9OHnroITVp0kSSNeerutpisvJ8Pf7444qKitItt9yi1NRUzZkzR/PmzdN1111n6bnyFZdVz4W1/e0rKyt16NAhHTt2zLLv5f3FdTm8l8c5JNXC4NSpU5Lk9YFZkqKjo1VWVhaOIYVERUWF9uzZo+PHj2v8+PFaunSpOnTooDFjxmjDhg3hHl7InD59uta5k2TZ+cvLy5PT6VRiYqKWLFmixx57TF9++aXGjRsnl8sV7uEF7KuvvtK0adPUv39/9enTp9a5cv9spRet8+PKy8tTWVmZ0tLS9Oqrr+rhhx/WO++8oyeeeCLcQw3Yfffdp9WrVysrK0vZ2dn69ttvL4vnVm1xWfn59dRTTyk9Pb1G5Ylk3XOhr5isPFf+XoOtOl/+4rLqnJWUlEiSpk6dqqysLL322mvq3r27xo0bZ9n58heT+0N/o0aNNHfuXM2YMUN79uzRr371K50+fTqcQw/KypUrFRcXpyFDhni2WXG+qqstJivPV35+vuLi4rRw4UKtWrVKgwYN0qRJk7Rz505Lz5WvuKx6LkxNTdXPfvYzTZ8+XYcPH9bp06f14osvqrCwUGfOnLHse3l/cV0O7+VxTqT/XRBqDRs2lFR1InB/L1WdyBs1ahSuYdVbZGSkcnJyFBER4YkrJSVFu3fv1rJly2qU7lpVw4YNa5zE3S/CjRs3DseQ6u3hhx/WsGHD1LRpU0lSUlKSmjdvrl/+8pfavn17jeWil6J169Zp0qRJ6tixo1544QVJVW+Szp8r989Wea7VFtfTTz+tqVOnepaZJCUlKSoqShMmTNCUKVN05ZVXhnPIAWnZsqUkacaMGdq2bZtWrFhxWTy3aotrxowZlnx+rVmzRlu2bNEHH3xQ6+1WnC9/MVn5XOjvNdiK8yX5j2vp0qWWnLOoqChJ0ujRo3XnnXdKktq0aaMdO3bo9ddft+R8+Ytp6dKl6tWrl5o1a+a5T6tWrdSrVy99+umnGjhwYFjGHaw1a9bojjvu8HoPb8X5qq62mO644w5LztcPP/ygRx99VMuXL/csvUtNTVV+fr7mz59v2bnyF9eCBQsseS5s0KCBFixYoClTpqhXr16KiorS7bffrr59+8rpdFr2vby/uC6H9/I4h0q1MHAvNzm/fLqgoEBXXXVVOIYUMjExMV4vyFLVC/Dhw4fDNKLQu/rqq2udO0mWnT+n0+l5EXZr1aqVJFliSfKKFSs0fvx49e3bV0uWLPH8x7FFixa1zlXjxo0VFxcXjqEGpa64IiMjva7bIlljvo4dO6a1a9eqoqLCs83pdKply5YqKCiw7HPLX1xWfX6tXr1aR48eVZ8+fZSenq709HRJ0vTp0/XAAw9Ycr78xWTVuXLz9Rpsxfly8xWXVefM/Td3X4vRrWXLljp48KAl58tfTJK8EjRS1RKpJk2aXNJzVd2uXbt04MCBGpWuVpwvt7pikqw5X9u2bdOZM2e8rksrSe3bt9f+/fstO1f+4rLquVCSbrzxRq1evVo5OTnauHGjZs6cqUOHDum6666z9Ht5X3FZ9b08akdSLQxat26t2NhY5eTkeLYVFxdrx44d6tKlSxhHVj+7d+9Wx44dveKSpG+++cZTvXE56NKli7Zu3arKykrPto0bN+qGG27QFVdcEcaRXbgpU6bo/vvv99q2fft2Sbrk527lypV65plnNHz4cM2ePdurRLxz587atGmT1/4bN25Ux44d5XRe2qc/X3Hde++9mjZtmtf+27dvV1RUlK6//vqLPNLAHTlyRBMnTvRaDn7mzBnt2LFDN954o2WfW/7isurz64UXXtCHH36oNWvWeL4k6ZFHHtGMGTMsOV/+YrLqXEn+X4OtOF+S/7isOmft2rVTTEyMtm3b5rU9Ly9P1113nbp06aIdO3Z4llRKVfMVExOj1q1bX+zhBsRfTHPmzNGtt97qdXHxgwcPqrCw8JKeq+q2bNmiK664osYcWHG+3OqKyarz5b7+Vm5urtf2vLw8XX/99ZY9F/qLy6rnwpKSEo0YMUK7du1SkyZNFBsbq4MHD2rHjh3q3r27Zd/L+4vLqu/lUYfwNh+1r9mzZ5uMjAyzbt06s3PnTjNq1CjTv39/U15eHu6hXbDKykozePBgM3DgQLN582aTn59vnn32WZOSkmJyc3PDPbwLNnXqVDNixAjPz0eOHDFdunQxU6dONbt37zarV682qamp5r333gvjKINzfkzr1q0zSUlJZv78+Wb//v3ms88+M5mZmWbixIlhHKV/e/bsMe3atTPZ2dmmoKDA66u4uNjk5eWZdu3amd///vcmPz/fLFu2zLRt29asX78+3EP3yV9cb775pmnTpo1ZuXKl+e6778zatWvNTTfdZGbPnh3uofv1wAMPmP79+5tNmzaZ3NxcM3HiRNOlSxfz/fffW/q55Ssuqz6/apOUlGRWr15tjLk8zoXGeMdk5bny9xps1fnyF5eV52zhwoUmPT3dfPDBB2b//v1m0aJFpnXr1mbjxo3m9OnTpl+/fmb06NFm586d5pNPPjEZGRlm/vz54R62T75i2r59u2nXrp158sknzZ49e8ymTZvMHXfcYe655x7jcrnCPfSATJs2zdx///01tlt1voypOyarzldlZaUZOnSoGTBggNmwYYPZu3evmTNnjmnTpo35+uuvLX0u9BWXlc+Fw4YNMyNGjDB5eXnm//7v/0xWVpYZOXKkMcZY9r28Mb7jsvJ7edREUi1MKioqzPPPP2+6du1qOnToYB588EFz4MCBcA+r3n788Ufz2GOPme7du5vU1FQzZMgQs3nz5nAPq17OT0AZY8y2bdvML3/5S5OSkmL69u1r3nzzzTCN7sLUFtOHH35o7rjjDpOWlma6d+9unnvuOXP69OkwjTAwixcvNklJSbV+TZ061RhjzOeff26ysrJMSkqKGTBggFm7dm2YR+1fIHGtWLHC3HbbbZ5jcPHixaaysjLMI/evuLjYTJ8+3XTv3t2kpaWZUaNGmby8PM/tVn1u+YvLis+v2lRPQBlj3fmq7vyYrDxX/l6DrTpf/uKy8py99tprJjMz07Rr18784he/MJ988onntn379pmRI0ea1NRU06NHD/PSSy9Z4jzvK6b169ebIUOGmA4dOpiMjAwzbdo0U1RUFMbRBueBBx4wv/71r2u9zarz5Ssmq85XUVGReeqpp0yfPn1Menq6GTJkiMnJyfHcbtVzob+4rHouPHTokMnOzjadOnUy3bp1M9OnTzclJSWe2634Xt4Y/3FZ9b08anIYU62mFwAAAAAAAIBfl+5CZAAAAAAAAOASRVINAAAAAAAACBJJNQAAAAAAACBIJNUAAAAAAACAIJFUAwAAAAAAAIJEUg0AAAAAAAAIEkk1AAAAAAAAIEgk1QAAAHBJMsaEewgAAAB1IqkGAAAQJu+9956Sk5N18ODBcA+lhuXLl6t79+5KS0vTokWLat1n48aNuvXWW5WSkqIHHnggpI//zjvvaNasWSH9nQAAAKEUGe4BAAAA4NJSUlKiWbNmqU+fPho1apSuueaaWvd7/vnn5XK5tHTpUl1xxRUhHcPixYuVkZER0t8JAAAQSiTVAAAA4OX48eNyuVzq16+funTpUud+RUVF6tKli26++eaLODoAAIBLA8s/AQCAbWVmZmrevHmaNWuWbr75ZqWlpWn06NHat2+fZ597771X9957r9f9cnJylJycrJycHElVyzhTU1O1ZcsWDR48WKmpqbr11lv16aefas+ePbrvvvvUvn17/eu//qvWrl1bYxxfffWV7rjjDqWkpCgrK0sffvih1+1lZWV6/vnn1bt3b6WkpOj222+vsU9mZqaeffZZ3XfffUpLS9Pjjz9eZ9x/+9vfNGzYMHXq1Ek33XSTHn30Uf3www+eWDIzMyVJ//mf/6nk5OQa9z948KCSk5P1/fffa82aNV5/i7y8PI0dO1YdO3ZUx44dlZ2drQMHDnjdf9euXfr3f/93de3aVe3atVPPnj31u9/9TqdPn/bE8v333+v999/3LI+dP39+rWNJTk7W/Pnzvcb1+uuva8CAAWrfvr1Wr14d8Lj+67/+SwMGDFBqaqp69uypp556SiUlJXX+HQEAgL2RVAMAALb2xhtvaM+ePZo5c6Z+97vf6ZtvvtHUqVOD/j0VFRV69NFHdc8992jx4sVq1KiRJk2apIceekh9+vTRkiVLlJiYqKlTp+rQoUNe933yySd12223adGiRWrVqpUmTJigdevWSaq6WH92drbefvttjRw5UosXL1Z6eromTJigNWvWeP2et956S6mpqVq0aJHuuuuuWse5Zs0ajRo1Si1atNDs2bM1bdo0/f3vf9eQIUN09OhR9enTRwsWLJAkPfzww1q1alWN35GYmKhVq1apefPm6t27t1atWqV27dpp7969uueee3T06FHNmjVLM2bM0IEDBzR06FAdPXpUklRQUKDhw4fr1KlTeu655/TKK6/o5z//ud5880298cYbkqQFCxZ4/e7ExMSg5mL+/Pl68MEH9fzzz6t79+4BjetPf/qTfv/732v48OFatmyZsrOz9d///d965plngnpsAABgHyz/BAAAthYfH69FixYpIiJCkvTdd99p/vz5KiwsVNOmTQP+PS6XSw899JDuvvtuSVJxcbEmTJig++67TyNHjpQkxcXFafDgwfrmm2909dVXe+47fvx4jR49WpLUq1cv7du3T4sWLVK/fv20fv16ffHFF5ozZ44GDhwoSerZs6dOnTqlF154QVlZWYqMrHpL95Of/ESTJk3yOcYXXnhBPXr00IsvvujZ3rFjRw0cOFDLli3TlClT1KZNG0nSddddpw4dOtT4PQ0aNFCHDh3UoEEDNWvWzLPP9OnT1ahRIy1fvlyxsbGSpG7duqlfv3569dVXNXXqVOXl5alNmzaaO3euZ5+bb75Zf/vb35STk6MxY8aobdu2NX53MG677TYNHjzY8/Ojjz7qd1ybNm3SNddco+HDh8vpdCojI0ONGzfW8ePHg358AABgD1SqAQAAW0tNTfUk1CR5kl2nTp0K+nelp6d7vndfuL99+/aebU2aNJFUlXCrzp0sc+vXr5927NihkydPasOGDXI4HOrdu7cqKio8X5mZmfrxxx+1e/duz/3cybC67N27Vz/++KOysrK8tl933XVKT0/Xpk2bAg+2Fhs3blRGRoYaNmzoGWdsbKw6d+6s9evXS5J69OihFStWKDo6Wvn5+frzn/+sxYsX69ixYyovL6/X47ud/3cIZFxdu3bV3r17NWjQIC1YsEDbt2/X7bffXmPpLwAAgBuVagAAwNYaNWrk9bPTWfU/R5fLFfTvcldB+fr9tbnyyiu9fr7iiitkjFFJSYmKiopkjFHHjh1rvW9BQYEnidS4cWOfj1NUVFTr47m37dixw+9Y/f3+Dz/8sMb13iSpWbNmkqr+rrNnz9Zbb72l0tJStWjRQmlpaYqOjq7XY1d3/t8hkHENHDhQLpdLK1eu1KJFizR//nz9y7/8iyZNmlQj6QkAACCRVAMAAPCrsrLS6+fS0tKQ/v7jx497JbqOHDmiiIgIJSQkKC4uTo0bN/Zcb+x8P/3pTwN+HHel3JEjR2rc9uOPPwa13LU2cXFxuvnmmz3LXatzL1FdunSpli9frt/+9rfq37+/4uLiJKnOa8C5ORwOSVVz4a4sPHnyZMjGJUlZWVnKysrSiRMn9OWXX+qVV17R5MmT1alTJ1111VUBPRYAALAPln8CAAD4EBsbW6OxwNatW0P6GJ999pnne5fLpf/93/9V+/bt1bBhQ2VkZKi0tFTGGKWmpnq+8vLytHDhQlVUVAT8ODfccIOaN2+uP/3pT17bDxw4oK+//rrOarhAZWRkKD8/X23atPGMMyUlRcuXL9cnn3wiqepv17JlSw0ePNiTUDt8+LDy8vK8qgPdFYNu7irA6nMR6DwEMq5f//rXys7OllSVhLvttts0btw4VVRUqKCg4AL/IgAA4HJGUg0AAMCHvn376vvvv9fMmTOVk5OjhQsX1ui6WV8vvfSSVq1apb/+9a/Kzs7W3r17NWHCBElS79691aVLF40bN04rV65UTk6OXnnlFT311FNyOp2e5YuBcDqdmjhxor788ks9+uij+vzzz7VmzRqNHDlSCQkJtVZyBWPcuHH67rvvNHbsWK1bt05ffPGFxo8fr7Vr16p169aSpLS0NOXm5mrp0qXatGmT3nnnHQ0fPlzl5eVe17GLj4/Xjh07tGnTJp0+fVq9e/eWVNUpdf369Vq9erWeeuopxcTEhGRcXbt21bp16zRr1ixt2LBBH330kebOnavrr7/esw8AAEB1LP8EAADwYfDgwfruu+/0/vvv6+2331aXLl00b948DR06NGSPMXPmTD333HPav3+/kpKS9MorrygjI0NSVSJs6dKlmjt3rl5++WUdPXpUV111lUaOHOmprArGoEGDFBMTo5dfflnZ2dmKjY1Vz549NXHiRDVv3rxecbRu3VpvvfWW5syZoylTpsgYo6SkJC1cuFC33HKLJGns2LEqLCzUG2+8oYULF6pFixb6t3/7NzkcDr388ssqLi5WfHy8Ro0apWeffVajR4/W66+/rs6dO2vWrFlavHixxowZoxtvvFHPPPOMnnnmmZCM65577tGZM2f09ttva+XKlWrYsKG6deumyZMnKyoqql5/FwAAcHlyGGNMuAcBAAAAAAAAWAnLPwEAAAAAAIAgkVQDAAAAAAAAgkRSDQAAAAAAAAgSSTUAAAAAAAAgSCTVAAAAAAAAgCCRVAMAAAAAAACCRFINAAAAAAAACBJJNQAAAAAAACBIJNUAAAAAAACAIJFUAwAAAAAAAIJEUg0AAAAAAAAI0v8He6WewFm1VrYAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "import numpy as np\n", - "from sklearn.neighbors import NearestNeighbors\n", - "import pandas as pd\n", - "import matplotlib.pyplot as plt\n", - "from random import sample\n", - "from numpy.random import uniform\n", - "from sklearn.impute import SimpleImputer\n", - "\n", - "# Clustering tendencies\n", - "# function to compute hopkins's statistic for the dataframe X\n", - "def hopkins_statistic(X):\n", - " #X=X.values #convert dataframe to a numpy array\n", - " sample_size = int(X.shape[0]*0.05) #0.05 (5%) based on paper by Lawson and Jures\n", - " \n", - " #a uniform random sample in the original data space\n", - " X_uniform_random_sample = uniform(X.min(axis=0), X.max(axis=0) ,(sample_size , X.shape[1]))\n", - " \n", - " #a random sample of size sample_size from the original data X\n", - " random_indices=sample(range(0, X.shape[0], 1), sample_size)\n", - " X_sample = X[random_indices]\n", - " #initialise unsupervised learner for implementing neighbor searches\n", - " neigh = NearestNeighbors(n_neighbors=2)\n", - " nbrs=neigh.fit(X)\n", - " #u_distances = nearest neighbour distances from uniform random sample\n", - " u_distances , u_indices = nbrs.kneighbors(X_uniform_random_sample , n_neighbors=2)\n", - " u_distances = u_distances[: , 0] #distance to the first (nearest) neighbour\n", - " \n", - " #w_distances = nearest neighbour distances from a sample of points from original data X\n", - " w_distances , w_indices = nbrs.kneighbors(X_sample , n_neighbors=2)\n", - " #distance to the second nearest neighbour (as the first neighbour will be the point itself, with distance = 0)\n", - " w_distances = w_distances[: , 1]\n", - " u_sum = np.sum(u_distances)\n", - " w_sum = np.sum(w_distances)\n", - " \n", - " #compute and return hopkins' statistic\n", - " H = u_sum/ (u_sum + w_sum)\n", - " return H\n", - "\n", - "#https://github.com/prathmachowksey/Hopkins-Statistic-Clustering-Tendency\n", - "def hopkins_wrapper(dmf, k):\n", - " selection = feature_metrics.sort_values([\"score\"], ascending=False).head(k).index\n", - " selected_df= dmf.loc[:,dmf.columns.isin(selection)]\n", - "\n", - " imp_mean = SimpleImputer(missing_values=np.nan, strategy='mean')\n", - " imp_mean.fit(selected_df)\n", - "\n", - " selected_df = imp_mean.transform(selected_df)\n", - "\n", - " selected_df = Normalizer(norm=\"l2\").fit_transform(selected_df)\n", - " return hopkins_statistic(selected_df)\n", - "\n", - "print(hopkins_statistic(norm_data))\n", - "\n", - "hopkins_stats = []\n", - "for k in range(99):\n", - " hopkins_stats.append(hopkins_wrapper(dmf, k+2))\n", - "\n", - "fig, ax = plt.subplots(figsize=(15, 10))\n", - "plt.xlabel(\"number of features\")\n", - "plt.ylabel(\"hopkins statistic\")\n", - "plt.xticks(np.arange(0, 100, 5))\n", - "#ax = plt.axes()\n", - "\n", - "plt.plot(np.arange(2, 101),hopkins_stats, marker='o')\n", - "plt.axhline(y=0.75, color='r', linestyle='-')\n", - "plt.axhline(y=0.85, color='r', linestyle='-')\n", - "\n", - "plt.show()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "id": "25abbd0a", - "metadata": {}, - "outputs": [], - "source": [] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.9.12" - } - }, - "nbformat": 4, - "nbformat_minor": 5 -}