Andrea Maldonado commited on
Commit
e1801b6
·
1 Parent(s): ddfaf7c

Deactivates Evaluation plotter

Browse files
Files changed (2) hide show
  1. gedi/plotter.py +2 -0
  2. gedi/run.py +1 -1
gedi/plotter.py CHANGED
@@ -635,6 +635,8 @@ class GenerationPlotter(object):
635
  self.output_path = output_path
636
  self.input_path = input_path
637
  self.model_params = model_params
 
 
638
  if "metafeatures" in gen_cfg.columns:
639
  self.gen = gen_cfg.metafeatures
640
  self.gen=pd.concat([pd.DataFrame.from_dict(entry, orient="Index").T for entry in self.gen]).reset_index(drop=True)
 
635
  self.output_path = output_path
636
  self.input_path = input_path
637
  self.model_params = model_params
638
+ if gen_cfg.empty: # Deactivated for tests
639
+ return
640
  if "metafeatures" in gen_cfg.columns:
641
  self.gen = gen_cfg.metafeatures
642
  self.gen=pd.concat([pd.DataFrame.from_dict(entry, orient="Index").T for entry in self.gen]).reset_index(drop=True)
gedi/run.py CHANGED
@@ -31,7 +31,7 @@ def run(kwargs:dict, model_params_list: list, filename_list:list):
31
  augmented_ft = InstanceAugmentator(aug_params=model_params, samples=ft.feat)
32
  AugmentationPlotter(augmented_ft, model_params)
33
  elif model_params.get(PIPELINE_STEP) == 'event_logs_generation':
34
- gen = pd.DataFrame(GenerateEventLogs(model_params).generation_features)
35
  #gen = pd.read_csv("output/features/generated/grid_2objectives_enseef_enve/2_enseef_enve_feat.csv")
36
  #GenerationPlotter(gen, model_params, output_path="output/plots")
37
  elif model_params.get(PIPELINE_STEP) == 'benchmark_test':
 
31
  augmented_ft = InstanceAugmentator(aug_params=model_params, samples=ft.feat)
32
  AugmentationPlotter(augmented_ft, model_params)
33
  elif model_params.get(PIPELINE_STEP) == 'event_logs_generation':
34
+ gen = pd.DataFrame(GenerateEventLogs(model_params).generated_features)
35
  #gen = pd.read_csv("output/features/generated/grid_2objectives_enseef_enve/2_enseef_enve_feat.csv")
36
  #GenerationPlotter(gen, model_params, output_path="output/plots")
37
  elif model_params.get(PIPELINE_STEP) == 'benchmark_test':