Spaces:
Sleeping
Sleeping
Andrea Maldonado
commited on
Commit
·
e3715c2
1
Parent(s):
eff400b
Generates config files for grid experiments with real ranges
Browse files
notebooks/experiment_grid_2obj_configfiles_fabric.ipynb
CHANGED
@@ -36,6 +36,7 @@
|
|
36 |
"outputs": [],
|
37 |
"source": [
|
38 |
"#Features between 0 and 1: \n",
|
|
|
39 |
"normalized_feature_names = ['ratio_variants_per_number_of_traces', 'trace_len_hist1', 'trace_len_hist2',\n",
|
40 |
" 'trace_len_hist3', 'trace_len_hist4', 'trace_len_hist5', 'trace_len_hist7',\n",
|
41 |
" 'trace_len_hist8', 'trace_len_hist9', 'ratio_most_common_variant', \n",
|
@@ -43,11 +44,10 @@
|
|
43 |
" 'ratio_top_20_variants', 'ratio_top_50_variants', 'ratio_top_75_variants', \n",
|
44 |
" 'epa_normalized_variant_entropy', 'epa_normalized_sequence_entropy', \n",
|
45 |
" 'epa_normalized_sequence_entropy_linear_forgetting', 'epa_normalized_sequence_entropy_exponential_forgetting']\n",
|
46 |
-
"\n",
|
47 |
"normalized_feature_names = ['ratio_variants_per_number_of_traces', 'ratio_most_common_variant', \n",
|
48 |
" 'ratio_top_10_variants', 'epa_normalized_variant_entropy', 'epa_normalized_sequence_entropy', \n",
|
49 |
" 'epa_normalized_sequence_entropy_linear_forgetting', 'epa_normalized_sequence_entropy_exponential_forgetting']\n",
|
50 |
-
"\n",
|
51 |
"def abbrev_obj_keys(obj_keys):\n",
|
52 |
" abbreviated_keys = []\n",
|
53 |
" for obj_key in obj_keys:\n",
|
@@ -64,7 +64,7 @@
|
|
64 |
},
|
65 |
{
|
66 |
"cell_type": "code",
|
67 |
-
"execution_count":
|
68 |
"id": "2be119c8",
|
69 |
"metadata": {},
|
70 |
"outputs": [
|
@@ -72,50 +72,51 @@
|
|
72 |
"name": "stdout",
|
73 |
"output_type": "stream",
|
74 |
"text": [
|
75 |
-
"
|
76 |
-
"
|
77 |
-
"
|
78 |
-
"Saved experiment
|
79 |
-
"Saved experiment in ../
|
80 |
-
"Saved experiment
|
|
|
81 |
"Saved experiment in ../data/grid_2obj/grid_2objectives_enve_rvpnot.csv\n",
|
82 |
"Saved experiment config in ../config_files/algorithm/grid_2obj/generator_grid_2objectives_enve_rvpnot.json\n",
|
83 |
-
"Saved experiment in ../data/grid_2obj/
|
84 |
-
"Saved experiment config in ../config_files/algorithm/grid_2obj/
|
85 |
-
"Saved experiment in ../data/grid_2obj/
|
86 |
-
"Saved experiment config in ../config_files/algorithm/grid_2obj/
|
87 |
-
"Saved experiment in ../data/grid_2obj/
|
88 |
-
"Saved experiment config in ../config_files/algorithm/grid_2obj/
|
89 |
-
"Saved experiment in ../data/grid_2obj/
|
90 |
-
"Saved experiment config in ../config_files/algorithm/grid_2obj/
|
91 |
-
"Saved experiment in ../data/grid_2obj/
|
92 |
-
"Saved experiment config in ../config_files/algorithm/grid_2obj/
|
93 |
-
"Saved experiment in ../data/grid_2obj/
|
94 |
-
"Saved experiment config in ../config_files/algorithm/grid_2obj/
|
95 |
-
"Saved experiment in ../data/grid_2obj/
|
96 |
-
"Saved experiment config in ../config_files/algorithm/grid_2obj/
|
97 |
-
"Saved experiment in ../data/grid_2obj/
|
98 |
-
"Saved experiment config in ../config_files/algorithm/grid_2obj/
|
99 |
-
"Saved experiment in ../data/grid_2obj/
|
100 |
-
"Saved experiment config in ../config_files/algorithm/grid_2obj/
|
101 |
-
"Saved experiment in ../data/grid_2obj/
|
102 |
-
"Saved experiment config in ../config_files/algorithm/grid_2obj/
|
103 |
-
"Saved experiment in ../data/grid_2obj/
|
104 |
-
"Saved experiment config in ../config_files/algorithm/grid_2obj/
|
105 |
-
"Saved experiment in ../data/grid_2obj/
|
106 |
-
"Saved experiment config in ../config_files/algorithm/grid_2obj/
|
107 |
-
"Saved experiment in ../data/grid_2obj/
|
108 |
-
"Saved experiment config in ../config_files/algorithm/grid_2obj/
|
109 |
-
"Saved experiment in ../data/grid_2obj/
|
110 |
-
"Saved experiment config in ../config_files/algorithm/grid_2obj/
|
111 |
-
"Saved experiment in ../data/grid_2obj/
|
112 |
-
"Saved experiment config in ../config_files/algorithm/grid_2obj/
|
113 |
-
"Saved experiment in ../data/grid_2obj/
|
114 |
-
"Saved experiment config in ../config_files/algorithm/grid_2obj/
|
115 |
-
"Saved experiment in ../data/grid_2obj/
|
116 |
-
"Saved experiment config in ../config_files/algorithm/grid_2obj/
|
117 |
-
"Saved experiment in ../data/grid_2obj/
|
118 |
-
"Saved experiment config in ../config_files/algorithm/grid_2obj/
|
119 |
"None\n"
|
120 |
]
|
121 |
}
|
@@ -165,7 +166,7 @@
|
|
165 |
" ]\n",
|
166 |
"\n",
|
167 |
" #print(\"EXPERIMENT:\", experiment[1]['input_path'])\n",
|
168 |
-
" output_path = os.path.join('..', 'config_files','algorithm','
|
169 |
" os.makedirs(output_path, exist_ok=True)\n",
|
170 |
" output_path = os.path.join(output_path, f'generator_{os.path.split(experiment_path)[-1].split(\".\")[0]}.json') \n",
|
171 |
" with open(output_path, 'w') as f:\n",
|
@@ -176,31 +177,132 @@
|
|
176 |
"\n",
|
177 |
"def create_objectives_grid(objectives, n_para_obj=2):\n",
|
178 |
" parameters_o = \"objectives, \"\n",
|
179 |
-
" if n_para_obj==
|
180 |
-
" experiments = [
|
181 |
-
"
|
182 |
-
"
|
183 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
184 |
" print(len(experiments), experiments)\n",
|
185 |
-
"
|
186 |
-
" parameters = \"np.around(np.arange(0, 1.1,0.1),2), \"\n",
|
187 |
-
" tasks = eval(f\"list(itertools.product({(parameters*n_para_obj)[:-2]}))\")\n",
|
188 |
" tasks = [(f'task_{i+1}',)+task for i, task in enumerate(tasks)]\n",
|
189 |
" print(len(tasks))\n",
|
190 |
" for exp in experiments:\n",
|
191 |
" df = pd.DataFrame(data=tasks, columns=[\"task\", *exp])\n",
|
192 |
-
" experiment_path = os.path.join('..','data', '
|
193 |
" os.makedirs(experiment_path, exist_ok=True)\n",
|
194 |
" experiment_path = os.path.join(experiment_path, f\"grid_{len(df.columns)-1}objectives_{abbrev_obj_keys(exp)}.csv\") \n",
|
195 |
" df.to_csv(experiment_path, index=False)\n",
|
196 |
" print(f\"Saved experiment in {experiment_path}\")\n",
|
197 |
" write_generator_experiment(experiment_path, objectives=exp)\n",
|
198 |
" #df.to_csv(f\"../data/grid_{}objectives_{abbrev_obj_keys(objectives.tolist())}.csv\" ,index=False)\n",
|
199 |
-
"
|
200 |
"exp_test = create_objectives_grid(normalized_feature_names, n_para_obj=2) \n",
|
201 |
"print(exp_test)"
|
202 |
]
|
203 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
204 |
{
|
205 |
"cell_type": "markdown",
|
206 |
"id": "56ab613b",
|
@@ -211,7 +313,7 @@
|
|
211 |
},
|
212 |
{
|
213 |
"cell_type": "code",
|
214 |
-
"execution_count":
|
215 |
"id": "dfd1a302",
|
216 |
"metadata": {},
|
217 |
"outputs": [],
|
@@ -221,14 +323,23 @@
|
|
221 |
},
|
222 |
{
|
223 |
"cell_type": "code",
|
224 |
-
"execution_count":
|
225 |
"id": "218946b7",
|
226 |
"metadata": {},
|
227 |
-
"outputs": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
228 |
"source": [
|
229 |
"k=0\n",
|
230 |
-
"for i in np.arange(0, 1.1,0.
|
231 |
-
" for j in np.arange(0,0.55,0.
|
232 |
" k+=1\n",
|
233 |
" new_entry = pd.Series({'log':f\"objective_{k}\", \"ratio_top_20_variants\":round(i,1),\n",
|
234 |
" \"epa_normalized_sequence_entropy_linear_forgetting\":round(j,1)})\n",
|
@@ -241,7 +352,7 @@
|
|
241 |
},
|
242 |
{
|
243 |
"cell_type": "code",
|
244 |
-
"execution_count":
|
245 |
"id": "b1e3bb5a",
|
246 |
"metadata": {},
|
247 |
"outputs": [],
|
@@ -260,7 +371,7 @@
|
|
260 |
},
|
261 |
{
|
262 |
"cell_type": "code",
|
263 |
-
"execution_count":
|
264 |
"id": "39ac74bb",
|
265 |
"metadata": {},
|
266 |
"outputs": [
|
@@ -367,29 +478,29 @@
|
|
367 |
"</div>"
|
368 |
],
|
369 |
"text/plain": [
|
370 |
-
" log ratio_variants_per_number_of_traces
|
371 |
-
"0 BPIC16wm_p 0.002882
|
372 |
"1 BPIC15f5 0.997405 \n",
|
373 |
"2 BPIC15f1 0.975813 \n",
|
374 |
"3 BPIC19 0.047562 \n",
|
375 |
"4 BPIC14dia_p 0.496847 \n",
|
376 |
"\n",
|
377 |
-
" ratio_most_common_variant ratio_top_10_variants
|
378 |
-
"0 0.295803 0.714106
|
379 |
"1 0.001730 0.102076 \n",
|
380 |
"2 0.006672 0.121768 \n",
|
381 |
"3 0.199758 0.946368 \n",
|
382 |
"4 0.037455 0.552836 \n",
|
383 |
"\n",
|
384 |
-
" epa_normalized_variant_entropy epa_normalized_sequence_entropy
|
385 |
-
"0 0.000000 0.000000
|
386 |
"1 0.648702 0.603260 \n",
|
387 |
"2 0.652855 0.610294 \n",
|
388 |
"3 0.645530 0.328029 \n",
|
389 |
"4 0.774743 0.608350 \n",
|
390 |
"\n",
|
391 |
-
" epa_normalized_sequence_entropy_linear_forgetting
|
392 |
-
"0 0.000000
|
393 |
"1 0.342410 \n",
|
394 |
"2 0.270241 \n",
|
395 |
"3 0.320185 \n",
|
@@ -403,7 +514,7 @@
|
|
403 |
"4 0.377416 "
|
404 |
]
|
405 |
},
|
406 |
-
"execution_count":
|
407 |
"metadata": {},
|
408 |
"output_type": "execute_result"
|
409 |
}
|
@@ -425,7 +536,7 @@
|
|
425 |
},
|
426 |
{
|
427 |
"cell_type": "code",
|
428 |
-
"execution_count":
|
429 |
"id": "ef0df0b9",
|
430 |
"metadata": {},
|
431 |
"outputs": [
|
@@ -759,8 +870,8 @@
|
|
759 |
"</div>"
|
760 |
],
|
761 |
"text/plain": [
|
762 |
-
" log ratio_variants_per_number_of_traces
|
763 |
-
"0 BPIC16wm_p 0.002882
|
764 |
"1 BPIC15f5 0.997405 \n",
|
765 |
"2 BPIC15f1 0.975813 \n",
|
766 |
"3 BPIC19 0.047562 \n",
|
@@ -787,8 +898,8 @@
|
|
787 |
"24 HD 0.049345 \n",
|
788 |
"25 SEPSIS 0.805714 \n",
|
789 |
"\n",
|
790 |
-
" ratio_most_common_variant ratio_top_10_variants
|
791 |
-
"0 0.295803 0.714106
|
792 |
"1 0.001730 0.102076 \n",
|
793 |
"2 0.006672 0.121768 \n",
|
794 |
"3 0.199758 0.946368 \n",
|
@@ -815,8 +926,8 @@
|
|
815 |
"24 0.516594 0.906332 \n",
|
816 |
"25 0.033333 0.274286 \n",
|
817 |
"\n",
|
818 |
-
" epa_normalized_variant_entropy epa_normalized_sequence_entropy
|
819 |
-
"0 0.000000 0.000000
|
820 |
"1 0.648702 0.603260 \n",
|
821 |
"2 0.652855 0.610294 \n",
|
822 |
"3 0.645530 0.328029 \n",
|
@@ -843,8 +954,8 @@
|
|
843 |
"24 0.799120 0.254066 \n",
|
844 |
"25 0.695759 0.522343 \n",
|
845 |
"\n",
|
846 |
-
" epa_normalized_sequence_entropy_linear_forgetting
|
847 |
-
"0 0.000000
|
848 |
"1 0.342410 \n",
|
849 |
"2 0.270241 \n",
|
850 |
"3 0.320185 \n",
|
@@ -900,7 +1011,7 @@
|
|
900 |
"25 0.299505 "
|
901 |
]
|
902 |
},
|
903 |
-
"execution_count":
|
904 |
"metadata": {},
|
905 |
"output_type": "execute_result"
|
906 |
}
|
@@ -917,7 +1028,7 @@
|
|
917 |
},
|
918 |
{
|
919 |
"cell_type": "code",
|
920 |
-
"execution_count":
|
921 |
"id": "44909860",
|
922 |
"metadata": {},
|
923 |
"outputs": [
|
@@ -926,27 +1037,27 @@
|
|
926 |
"output_type": "stream",
|
927 |
"text": [
|
928 |
"21\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
929 |
"Saved experiment config in ../config_files/algorithm/BaselineED_feat/generator_2_enself_rt10v.json\n",
|
930 |
"Saved experiment config in ../config_files/algorithm/BaselineED_feat/generator_2_enseef_enve.json\n",
|
931 |
-
"Saved experiment config in ../config_files/algorithm/BaselineED_feat/
|
932 |
-
"Saved experiment config in ../config_files/algorithm/BaselineED_feat/
|
933 |
"Saved experiment config in ../config_files/algorithm/BaselineED_feat/generator_2_ense_rvpnot.json\n",
|
934 |
-
"Saved experiment config in ../config_files/algorithm/BaselineED_feat/
|
|
|
|
|
|
|
|
|
935 |
"Saved experiment config in ../config_files/algorithm/BaselineED_feat/generator_2_enseef_enself.json\n",
|
936 |
"Saved experiment config in ../config_files/algorithm/BaselineED_feat/generator_2_ense_enve.json\n",
|
937 |
-
"Saved experiment config in ../config_files/algorithm/BaselineED_feat/generator_2_enseef_rmcv.json\n",
|
938 |
"Saved experiment config in ../config_files/algorithm/BaselineED_feat/generator_2_rt10v_rvpnot.json\n",
|
939 |
-
"Saved experiment config in ../config_files/algorithm/BaselineED_feat/generator_2_ense_rt10v.json\n",
|
940 |
-
"Saved experiment config in ../config_files/algorithm/BaselineED_feat/generator_2_enve_rt10v.json\n",
|
941 |
-
"Saved experiment config in ../config_files/algorithm/BaselineED_feat/generator_2_ense_enself.json\n",
|
942 |
-
"Saved experiment config in ../config_files/algorithm/BaselineED_feat/generator_2_rmcv_rvpnot.json\n",
|
943 |
-
"Saved experiment config in ../config_files/algorithm/BaselineED_feat/generator_2_enve_rmcv.json\n",
|
944 |
"Saved experiment config in ../config_files/algorithm/BaselineED_feat/generator_2_ense_rmcv.json\n",
|
945 |
-
"Saved experiment config in ../config_files/algorithm/BaselineED_feat/generator_2_enself_rvpnot.json\n",
|
946 |
-
"Saved experiment config in ../config_files/algorithm/BaselineED_feat/generator_2_ense_enseef.json\n",
|
947 |
-
"Saved experiment config in ../config_files/algorithm/BaselineED_feat/generator_2_enself_enve.json\n",
|
948 |
"Saved experiment config in ../config_files/algorithm/BaselineED_feat/generator_2_enseef_rvpnot.json\n",
|
949 |
-
"Saved experiment config in ../config_files/algorithm/BaselineED_feat/generator_2_rmcv_rt10v.json\n",
|
950 |
"None\n"
|
951 |
]
|
952 |
}
|
@@ -1041,7 +1152,7 @@
|
|
1041 |
},
|
1042 |
{
|
1043 |
"cell_type": "code",
|
1044 |
-
"execution_count":
|
1045 |
"id": "d759a677",
|
1046 |
"metadata": {},
|
1047 |
"outputs": [
|
@@ -1049,20 +1160,20 @@
|
|
1049 |
"name": "stdout",
|
1050 |
"output_type": "stream",
|
1051 |
"text": [
|
1052 |
-
"7 experiments: [('
|
1053 |
"11\n",
|
1054 |
-
"Saved experiment in ../data/grid_experiments/
|
1055 |
-
"Saved experiment config in ../config_files/algorithm/grid_experiments/
|
1056 |
-
"Saved experiment in ../data/grid_experiments/grid_1objectives_rvpnot.csv\n",
|
1057 |
-
"Saved experiment config in ../config_files/algorithm/grid_experiments/generator_grid_1objectives_rvpnot.json\n",
|
1058 |
"Saved experiment in ../data/grid_experiments/grid_1objectives_rmcv.csv\n",
|
1059 |
"Saved experiment config in ../config_files/algorithm/grid_experiments/generator_grid_1objectives_rmcv.json\n",
|
|
|
|
|
1060 |
"Saved experiment in ../data/grid_experiments/grid_1objectives_ense.csv\n",
|
1061 |
"Saved experiment config in ../config_files/algorithm/grid_experiments/generator_grid_1objectives_ense.json\n",
|
1062 |
"Saved experiment in ../data/grid_experiments/grid_1objectives_rt10v.csv\n",
|
1063 |
"Saved experiment config in ../config_files/algorithm/grid_experiments/generator_grid_1objectives_rt10v.json\n",
|
1064 |
-
"Saved experiment in ../data/grid_experiments/
|
1065 |
-
"Saved experiment config in ../config_files/algorithm/grid_experiments/
|
1066 |
"Saved experiment in ../data/grid_experiments/grid_1objectives_enve.csv\n",
|
1067 |
"Saved experiment config in ../config_files/algorithm/grid_experiments/generator_grid_1objectives_enve.json\n",
|
1068 |
"None\n"
|
@@ -1162,9 +1273,9 @@
|
|
1162 |
],
|
1163 |
"metadata": {
|
1164 |
"kernelspec": {
|
1165 |
-
"display_name": "
|
1166 |
"language": "python",
|
1167 |
-
"name": "
|
1168 |
},
|
1169 |
"language_info": {
|
1170 |
"codemirror_mode": {
|
@@ -1176,7 +1287,7 @@
|
|
1176 |
"name": "python",
|
1177 |
"nbconvert_exporter": "python",
|
1178 |
"pygments_lexer": "ipython3",
|
1179 |
-
"version": "3.9.
|
1180 |
}
|
1181 |
},
|
1182 |
"nbformat": 4,
|
|
|
36 |
"outputs": [],
|
37 |
"source": [
|
38 |
"#Features between 0 and 1: \n",
|
39 |
+
"\"\"\"\n",
|
40 |
"normalized_feature_names = ['ratio_variants_per_number_of_traces', 'trace_len_hist1', 'trace_len_hist2',\n",
|
41 |
" 'trace_len_hist3', 'trace_len_hist4', 'trace_len_hist5', 'trace_len_hist7',\n",
|
42 |
" 'trace_len_hist8', 'trace_len_hist9', 'ratio_most_common_variant', \n",
|
|
|
44 |
" 'ratio_top_20_variants', 'ratio_top_50_variants', 'ratio_top_75_variants', \n",
|
45 |
" 'epa_normalized_variant_entropy', 'epa_normalized_sequence_entropy', \n",
|
46 |
" 'epa_normalized_sequence_entropy_linear_forgetting', 'epa_normalized_sequence_entropy_exponential_forgetting']\n",
|
47 |
+
"\"\"\"\n",
|
48 |
"normalized_feature_names = ['ratio_variants_per_number_of_traces', 'ratio_most_common_variant', \n",
|
49 |
" 'ratio_top_10_variants', 'epa_normalized_variant_entropy', 'epa_normalized_sequence_entropy', \n",
|
50 |
" 'epa_normalized_sequence_entropy_linear_forgetting', 'epa_normalized_sequence_entropy_exponential_forgetting']\n",
|
|
|
51 |
"def abbrev_obj_keys(obj_keys):\n",
|
52 |
" abbreviated_keys = []\n",
|
53 |
" for obj_key in obj_keys:\n",
|
|
|
64 |
},
|
65 |
{
|
66 |
"cell_type": "code",
|
67 |
+
"execution_count": 16,
|
68 |
"id": "2be119c8",
|
69 |
"metadata": {},
|
70 |
"outputs": [
|
|
|
72 |
"name": "stdout",
|
73 |
"output_type": "stream",
|
74 |
"text": [
|
75 |
+
"TASKS <class 'str'> <class 'int'> np.around(np.arange(0.0, 1.5,0.5),2), np.around(np.arange(0.0, 1.5,0.5),2), \n",
|
76 |
+
"21 [('mean_variant_occurrence', 'trace_len_coefficient_variation'), ('activities_std', 'eventropy_trace'), ('epa_normalized_variant_entropy', 'ratio_variants_per_number_of_traces'), ('activities_std', 'epa_normalized_variant_entropy'), ('eventropy_trace', 'trace_len_coefficient_variation'), ('ratio_variants_per_number_of_traces', 'trace_len_coefficient_variation'), ('activities_std', 'trace_len_coefficient_variation'), ('eventropy_trace', 'mean_variant_occurrence'), ('activities_std', 'mean_variant_occurrence'), ('epa_normalized_variant_entropy', 'eventropy_trace'), ('mean_variant_occurrence', 'start_activities_median'), ('ratio_variants_per_number_of_traces', 'start_activities_median'), ('eventropy_trace', 'start_activities_median'), ('activities_std', 'start_activities_median'), ('epa_normalized_variant_entropy', 'trace_len_coefficient_variation'), ('epa_normalized_variant_entropy', 'mean_variant_occurrence'), ('mean_variant_occurrence', 'ratio_variants_per_number_of_traces'), ('eventropy_trace', 'ratio_variants_per_number_of_traces'), ('start_activities_median', 'trace_len_coefficient_variation'), ('activities_std', 'ratio_variants_per_number_of_traces'), ('epa_normalized_variant_entropy', 'start_activities_median')]\n",
|
77 |
+
"9\n",
|
78 |
+
"Saved experiment in ../data/grid_2obj/grid_2objectives_mvo_tlcv.csv\n",
|
79 |
+
"Saved experiment config in ../config_files/algorithm/grid_2obj/generator_grid_2objectives_mvo_tlcv.json\n",
|
80 |
+
"Saved experiment in ../data/grid_2obj/grid_2objectives_as_et.csv\n",
|
81 |
+
"Saved experiment config in ../config_files/algorithm/grid_2obj/generator_grid_2objectives_as_et.json\n",
|
82 |
"Saved experiment in ../data/grid_2obj/grid_2objectives_enve_rvpnot.csv\n",
|
83 |
"Saved experiment config in ../config_files/algorithm/grid_2obj/generator_grid_2objectives_enve_rvpnot.json\n",
|
84 |
+
"Saved experiment in ../data/grid_2obj/grid_2objectives_as_enve.csv\n",
|
85 |
+
"Saved experiment config in ../config_files/algorithm/grid_2obj/generator_grid_2objectives_as_enve.json\n",
|
86 |
+
"Saved experiment in ../data/grid_2obj/grid_2objectives_et_tlcv.csv\n",
|
87 |
+
"Saved experiment config in ../config_files/algorithm/grid_2obj/generator_grid_2objectives_et_tlcv.json\n",
|
88 |
+
"Saved experiment in ../data/grid_2obj/grid_2objectives_rvpnot_tlcv.csv\n",
|
89 |
+
"Saved experiment config in ../config_files/algorithm/grid_2obj/generator_grid_2objectives_rvpnot_tlcv.json\n",
|
90 |
+
"Saved experiment in ../data/grid_2obj/grid_2objectives_as_tlcv.csv\n",
|
91 |
+
"Saved experiment config in ../config_files/algorithm/grid_2obj/generator_grid_2objectives_as_tlcv.json\n",
|
92 |
+
"Saved experiment in ../data/grid_2obj/grid_2objectives_et_mvo.csv\n",
|
93 |
+
"Saved experiment config in ../config_files/algorithm/grid_2obj/generator_grid_2objectives_et_mvo.json\n",
|
94 |
+
"Saved experiment in ../data/grid_2obj/grid_2objectives_as_mvo.csv\n",
|
95 |
+
"Saved experiment config in ../config_files/algorithm/grid_2obj/generator_grid_2objectives_as_mvo.json\n",
|
96 |
+
"Saved experiment in ../data/grid_2obj/grid_2objectives_enve_et.csv\n",
|
97 |
+
"Saved experiment config in ../config_files/algorithm/grid_2obj/generator_grid_2objectives_enve_et.json\n",
|
98 |
+
"Saved experiment in ../data/grid_2obj/grid_2objectives_mvo_sam.csv\n",
|
99 |
+
"Saved experiment config in ../config_files/algorithm/grid_2obj/generator_grid_2objectives_mvo_sam.json\n",
|
100 |
+
"Saved experiment in ../data/grid_2obj/grid_2objectives_rvpnot_sam.csv\n",
|
101 |
+
"Saved experiment config in ../config_files/algorithm/grid_2obj/generator_grid_2objectives_rvpnot_sam.json\n",
|
102 |
+
"Saved experiment in ../data/grid_2obj/grid_2objectives_et_sam.csv\n",
|
103 |
+
"Saved experiment config in ../config_files/algorithm/grid_2obj/generator_grid_2objectives_et_sam.json\n",
|
104 |
+
"Saved experiment in ../data/grid_2obj/grid_2objectives_as_sam.csv\n",
|
105 |
+
"Saved experiment config in ../config_files/algorithm/grid_2obj/generator_grid_2objectives_as_sam.json\n",
|
106 |
+
"Saved experiment in ../data/grid_2obj/grid_2objectives_enve_tlcv.csv\n",
|
107 |
+
"Saved experiment config in ../config_files/algorithm/grid_2obj/generator_grid_2objectives_enve_tlcv.json\n",
|
108 |
+
"Saved experiment in ../data/grid_2obj/grid_2objectives_enve_mvo.csv\n",
|
109 |
+
"Saved experiment config in ../config_files/algorithm/grid_2obj/generator_grid_2objectives_enve_mvo.json\n",
|
110 |
+
"Saved experiment in ../data/grid_2obj/grid_2objectives_mvo_rvpnot.csv\n",
|
111 |
+
"Saved experiment config in ../config_files/algorithm/grid_2obj/generator_grid_2objectives_mvo_rvpnot.json\n",
|
112 |
+
"Saved experiment in ../data/grid_2obj/grid_2objectives_et_rvpnot.csv\n",
|
113 |
+
"Saved experiment config in ../config_files/algorithm/grid_2obj/generator_grid_2objectives_et_rvpnot.json\n",
|
114 |
+
"Saved experiment in ../data/grid_2obj/grid_2objectives_sam_tlcv.csv\n",
|
115 |
+
"Saved experiment config in ../config_files/algorithm/grid_2obj/generator_grid_2objectives_sam_tlcv.json\n",
|
116 |
+
"Saved experiment in ../data/grid_2obj/grid_2objectives_as_rvpnot.csv\n",
|
117 |
+
"Saved experiment config in ../config_files/algorithm/grid_2obj/generator_grid_2objectives_as_rvpnot.json\n",
|
118 |
+
"Saved experiment in ../data/grid_2obj/grid_2objectives_enve_sam.csv\n",
|
119 |
+
"Saved experiment config in ../config_files/algorithm/grid_2obj/generator_grid_2objectives_enve_sam.json\n",
|
120 |
"None\n"
|
121 |
]
|
122 |
}
|
|
|
166 |
" ]\n",
|
167 |
"\n",
|
168 |
" #print(\"EXPERIMENT:\", experiment[1]['input_path'])\n",
|
169 |
+
" output_path = os.path.join('..', 'config_files','algorithm',f'grid_{len(objectives)}obj')\n",
|
170 |
" os.makedirs(output_path, exist_ok=True)\n",
|
171 |
" output_path = os.path.join(output_path, f'generator_{os.path.split(experiment_path)[-1].split(\".\")[0]}.json') \n",
|
172 |
" with open(output_path, 'w') as f:\n",
|
|
|
177 |
"\n",
|
178 |
"def create_objectives_grid(objectives, n_para_obj=2):\n",
|
179 |
" parameters_o = \"objectives, \"\n",
|
180 |
+
" if n_para_obj==len(objectives):\n",
|
181 |
+
" experiments = [tuple(sorted(objectives))]\n",
|
182 |
+
" print(len(experiments), experiments)\n",
|
183 |
+
" parameters = get_ranges_from_data(sorted(objectives))\n",
|
184 |
+
" tasks = eval(f\"list(itertools.product({parameters}))\")\n",
|
185 |
+
" #tasks = eval(f\"list(itertools.product({(parameters*n_para_obj)[:-2]}))\")\n",
|
186 |
+
" else: \n",
|
187 |
+
" if n_para_obj==1:\n",
|
188 |
+
" experiments = [[exp] for exp in objectives]\n",
|
189 |
+
" else:\n",
|
190 |
+
" experiments = eval(f\"[exp for exp in list(itertools.product({(parameters_o*n_para_obj)[:-2]})) if exp[0]!=exp[1]]\")\n",
|
191 |
+
" experiments = list(set([tuple(sorted(exp)) for exp in experiments]))\n",
|
192 |
+
" parameters = \"np.around(np.arange(0.0, 1.5,0.5),2), \"\n",
|
193 |
+
" tasks = eval(f\"list(itertools.product({(parameters*n_para_obj)[:-2]}))\")\n",
|
194 |
+
" print(\"TASKS\", type(parameters), type(n_para_obj), parameters*n_para_obj)\n",
|
195 |
" print(len(experiments), experiments)\n",
|
196 |
+
"\n",
|
|
|
|
|
197 |
" tasks = [(f'task_{i+1}',)+task for i, task in enumerate(tasks)]\n",
|
198 |
" print(len(tasks))\n",
|
199 |
" for exp in experiments:\n",
|
200 |
" df = pd.DataFrame(data=tasks, columns=[\"task\", *exp])\n",
|
201 |
+
" experiment_path = os.path.join('..','data', f'grid_{n_para_obj}obj')\n",
|
202 |
" os.makedirs(experiment_path, exist_ok=True)\n",
|
203 |
" experiment_path = os.path.join(experiment_path, f\"grid_{len(df.columns)-1}objectives_{abbrev_obj_keys(exp)}.csv\") \n",
|
204 |
" df.to_csv(experiment_path, index=False)\n",
|
205 |
" print(f\"Saved experiment in {experiment_path}\")\n",
|
206 |
" write_generator_experiment(experiment_path, objectives=exp)\n",
|
207 |
" #df.to_csv(f\"../data/grid_{}objectives_{abbrev_obj_keys(objectives.tolist())}.csv\" ,index=False)\n",
|
208 |
+
"\n",
|
209 |
"exp_test = create_objectives_grid(normalized_feature_names, n_para_obj=2) \n",
|
210 |
"print(exp_test)"
|
211 |
]
|
212 |
},
|
213 |
+
{
|
214 |
+
"cell_type": "markdown",
|
215 |
+
"id": "9cc84ef2",
|
216 |
+
"metadata": {},
|
217 |
+
"source": [
|
218 |
+
"## Grid Objectives\n",
|
219 |
+
"Based on real ED ranges."
|
220 |
+
]
|
221 |
+
},
|
222 |
+
{
|
223 |
+
"cell_type": "code",
|
224 |
+
"execution_count": 17,
|
225 |
+
"id": "ae86005f",
|
226 |
+
"metadata": {},
|
227 |
+
"outputs": [
|
228 |
+
{
|
229 |
+
"name": "stdout",
|
230 |
+
"output_type": "stream",
|
231 |
+
"text": [
|
232 |
+
"['ratio_variants_per_number_of_traces', 'trace_len_coefficient_variation', 'mean_variant_occurrence', 'activities_std', 'start_activities_median', 'eventropy_trace', 'epa_normalized_variant_entropy']\n",
|
233 |
+
"ratio_variants_per_number_of_traces (4.081521591249218e-05, 0.4659094439111451, 0....\n",
|
234 |
+
"trace_len_coefficient_variation (0.0, 0.6838390025070027, 4.744080106525514)\n",
|
235 |
+
"mean_variant_occurrence (1.001552795031056, 838.6048767068644, 24500.6...\n",
|
236 |
+
"activities_std (0.0, 12982.056069959535, 120522.24741658216)\n",
|
237 |
+
"start_activities_median (1.0, 7975.705882352941, 150370.0)\n",
|
238 |
+
"eventropy_trace (0.0, 6.2416470588235295, 13.362)\n",
|
239 |
+
"epa_normalized_variant_entropy (0.0, 0.6773545645863115, 0.899497456838069)\n",
|
240 |
+
"Name: range, dtype: object\n"
|
241 |
+
]
|
242 |
+
},
|
243 |
+
{
|
244 |
+
"data": {
|
245 |
+
"text/plain": [
|
246 |
+
"'np.around((4.081521591249218e-05, 0.4659094439111451, 0.9984496124031008), 2), np.around((0.0, 0.6838390025070027, 4.744080106525514), 2), np.around((1.001552795031056, 838.6048767068644, 24500.666666666668), 2), np.around((0.0, 12982.056069959535, 120522.24741658216), 2), np.around((1.0, 7975.705882352941, 150370.0), 2), np.around((0.0, 6.2416470588235295, 13.362), 2), np.around((0.0, 0.6773545645863115, 0.899497456838069), 2)'"
|
247 |
+
]
|
248 |
+
},
|
249 |
+
"execution_count": 17,
|
250 |
+
"metadata": {},
|
251 |
+
"output_type": "execute_result"
|
252 |
+
}
|
253 |
+
],
|
254 |
+
"source": [
|
255 |
+
"DF_PATH = \"../../shampu/data/bench_baseline_feat.csv\"\n",
|
256 |
+
"def get_ranges_from_data(objectives, df_path = DF_PATH):\n",
|
257 |
+
" #print(objectives)\n",
|
258 |
+
" dmf = pd.read_csv(DF_PATH, index_col=None)\n",
|
259 |
+
" dmf = dmf[objectives].describe()\n",
|
260 |
+
" dmf = dmf.transpose()[['min', 'mean','max']]\n",
|
261 |
+
" dmf['range'] = dmf.apply(lambda x: tuple([x['min'], x['mean'], x['max']]), axis=1)\n",
|
262 |
+
" print(dmf['range'])\n",
|
263 |
+
" #tasks = eval(f\"list(itertools.product({(parameters*n_para_obj)[:-2]}))\")\n",
|
264 |
+
" result = [f\"np.around({x}, 2)\" for x in dmf['range']]\n",
|
265 |
+
" result = \", \".join(result)\n",
|
266 |
+
" return result\n",
|
267 |
+
"\n",
|
268 |
+
"print(normalized_feature_names)\n",
|
269 |
+
"get_ranges_from_data(normalized_feature_names)"
|
270 |
+
]
|
271 |
+
},
|
272 |
+
{
|
273 |
+
"cell_type": "code",
|
274 |
+
"execution_count": 18,
|
275 |
+
"id": "a7a4c864",
|
276 |
+
"metadata": {},
|
277 |
+
"outputs": [
|
278 |
+
{
|
279 |
+
"name": "stdout",
|
280 |
+
"output_type": "stream",
|
281 |
+
"text": [
|
282 |
+
"1 [('activities_std', 'epa_normalized_variant_entropy', 'eventropy_trace', 'mean_variant_occurrence', 'ratio_variants_per_number_of_traces', 'start_activities_median', 'trace_len_coefficient_variation')]\n",
|
283 |
+
"activities_std (0.0, 12982.056069959535, 120522.24741658216)\n",
|
284 |
+
"epa_normalized_variant_entropy (0.0, 0.6773545645863115, 0.899497456838069)\n",
|
285 |
+
"eventropy_trace (0.0, 6.2416470588235295, 13.362)\n",
|
286 |
+
"mean_variant_occurrence (1.001552795031056, 838.6048767068644, 24500.6...\n",
|
287 |
+
"ratio_variants_per_number_of_traces (4.081521591249218e-05, 0.4659094439111451, 0....\n",
|
288 |
+
"start_activities_median (1.0, 7975.705882352941, 150370.0)\n",
|
289 |
+
"trace_len_coefficient_variation (0.0, 0.6838390025070027, 4.744080106525514)\n",
|
290 |
+
"Name: range, dtype: object\n",
|
291 |
+
"TASKS <class 'str'> <class 'int'> np.around((0.0, 12982.056069959535, 120522.24741658216), 2), np.around((0.0, 0.6773545645863115, 0.899497456838069), 2), np.around((0.0, 6.2416470588235295, 13.362), 2), np.around((1.001552795031056, 838.6048767068644, 24500.666666666668), 2), np.around((4.081521591249218e-05, 0.4659094439111451, 0.9984496124031008), 2), np.around((1.0, 7975.705882352941, 150370.0), 2), np.around((0.0, 0.6838390025070027, 4.744080106525514), 2)np.around((0.0, 12982.056069959535, 120522.24741658216), 2), np.around((0.0, 0.6773545645863115, 0.899497456838069), 2), np.around((0.0, 6.2416470588235295, 13.362), 2), np.around((1.001552795031056, 838.6048767068644, 24500.666666666668), 2), np.around((4.081521591249218e-05, 0.4659094439111451, 0.9984496124031008), 2), np.around((1.0, 7975.705882352941, 150370.0), 2), np.around((0.0, 0.6838390025070027, 4.744080106525514), 2)np.around((0.0, 12982.056069959535, 120522.24741658216), 2), np.around((0.0, 0.6773545645863115, 0.899497456838069), 2), np.around((0.0, 6.2416470588235295, 13.362), 2), np.around((1.001552795031056, 838.6048767068644, 24500.666666666668), 2), np.around((4.081521591249218e-05, 0.4659094439111451, 0.9984496124031008), 2), np.around((1.0, 7975.705882352941, 150370.0), 2), np.around((0.0, 0.6838390025070027, 4.744080106525514), 2)np.around((0.0, 12982.056069959535, 120522.24741658216), 2), np.around((0.0, 0.6773545645863115, 0.899497456838069), 2), np.around((0.0, 6.2416470588235295, 13.362), 2), np.around((1.001552795031056, 838.6048767068644, 24500.666666666668), 2), np.around((4.081521591249218e-05, 0.4659094439111451, 0.9984496124031008), 2), np.around((1.0, 7975.705882352941, 150370.0), 2), np.around((0.0, 0.6838390025070027, 4.744080106525514), 2)np.around((0.0, 12982.056069959535, 120522.24741658216), 2), np.around((0.0, 0.6773545645863115, 0.899497456838069), 2), np.around((0.0, 6.2416470588235295, 13.362), 2), np.around((1.001552795031056, 838.6048767068644, 24500.666666666668), 2), np.around((4.081521591249218e-05, 0.4659094439111451, 0.9984496124031008), 2), np.around((1.0, 7975.705882352941, 150370.0), 2), np.around((0.0, 0.6838390025070027, 4.744080106525514), 2)np.around((0.0, 12982.056069959535, 120522.24741658216), 2), np.around((0.0, 0.6773545645863115, 0.899497456838069), 2), np.around((0.0, 6.2416470588235295, 13.362), 2), np.around((1.001552795031056, 838.6048767068644, 24500.666666666668), 2), np.around((4.081521591249218e-05, 0.4659094439111451, 0.9984496124031008), 2), np.around((1.0, 7975.705882352941, 150370.0), 2), np.around((0.0, 0.6838390025070027, 4.744080106525514), 2)np.around((0.0, 12982.056069959535, 120522.24741658216), 2), np.around((0.0, 0.6773545645863115, 0.899497456838069), 2), np.around((0.0, 6.2416470588235295, 13.362), 2), np.around((1.001552795031056, 838.6048767068644, 24500.666666666668), 2), np.around((4.081521591249218e-05, 0.4659094439111451, 0.9984496124031008), 2), np.around((1.0, 7975.705882352941, 150370.0), 2), np.around((0.0, 0.6838390025070027, 4.744080106525514), 2)\n",
|
292 |
+
"1 [('activities_std', 'epa_normalized_variant_entropy', 'eventropy_trace', 'mean_variant_occurrence', 'ratio_variants_per_number_of_traces', 'start_activities_median', 'trace_len_coefficient_variation')]\n",
|
293 |
+
"2187\n",
|
294 |
+
"Saved experiment in ../data/grid_7obj/grid_7objectives_as_enve_et_mvo_rvpnot_sam_tlcv.csv\n",
|
295 |
+
"Saved experiment config in ../config_files/algorithm/grid_7obj/generator_grid_7objectives_as_enve_et_mvo_rvpnot_sam_tlcv.json\n",
|
296 |
+
"None\n"
|
297 |
+
]
|
298 |
+
}
|
299 |
+
],
|
300 |
+
"source": [
|
301 |
+
"normalized_feature_names = ['ratio_variants_per_number_of_traces', 'trace_len_coefficient_variation', 'mean_variant_occurrence', 'activities_std', 'start_activities_median', 'eventropy_trace', 'epa_normalized_variant_entropy']\n",
|
302 |
+
"exp_test = create_objectives_grid(normalized_feature_names, n_para_obj=len(normalized_feature_names)) \n",
|
303 |
+
"print(exp_test)"
|
304 |
+
]
|
305 |
+
},
|
306 |
{
|
307 |
"cell_type": "markdown",
|
308 |
"id": "56ab613b",
|
|
|
313 |
},
|
314 |
{
|
315 |
"cell_type": "code",
|
316 |
+
"execution_count": 6,
|
317 |
"id": "dfd1a302",
|
318 |
"metadata": {},
|
319 |
"outputs": [],
|
|
|
323 |
},
|
324 |
{
|
325 |
"cell_type": "code",
|
326 |
+
"execution_count": 7,
|
327 |
"id": "218946b7",
|
328 |
"metadata": {},
|
329 |
+
"outputs": [
|
330 |
+
{
|
331 |
+
"name": "stderr",
|
332 |
+
"output_type": "stream",
|
333 |
+
"text": [
|
334 |
+
"/var/folders/d0/btmbyskx4t106_l2zghzln2w0000gn/T/ipykernel_12596/3751377549.py:7: FutureWarning: The behavior of DataFrame concatenation with empty or all-NA entries is deprecated. In a future version, this will no longer exclude empty or all-NA columns when determining the result dtypes. To retain the old behavior, exclude the relevant entries before the concat operation.\n",
|
335 |
+
" df = pd.concat([\n"
|
336 |
+
]
|
337 |
+
}
|
338 |
+
],
|
339 |
"source": [
|
340 |
"k=0\n",
|
341 |
+
"for i in np.arange(0, 1.1,0.5):\n",
|
342 |
+
" for j in np.arange(0,0.55,0.5):\n",
|
343 |
" k+=1\n",
|
344 |
" new_entry = pd.Series({'log':f\"objective_{k}\", \"ratio_top_20_variants\":round(i,1),\n",
|
345 |
" \"epa_normalized_sequence_entropy_linear_forgetting\":round(j,1)})\n",
|
|
|
352 |
},
|
353 |
{
|
354 |
"cell_type": "code",
|
355 |
+
"execution_count": 8,
|
356 |
"id": "b1e3bb5a",
|
357 |
"metadata": {},
|
358 |
"outputs": [],
|
|
|
371 |
},
|
372 |
{
|
373 |
"cell_type": "code",
|
374 |
+
"execution_count": 9,
|
375 |
"id": "39ac74bb",
|
376 |
"metadata": {},
|
377 |
"outputs": [
|
|
|
478 |
"</div>"
|
479 |
],
|
480 |
"text/plain": [
|
481 |
+
" log ratio_variants_per_number_of_traces \\\n",
|
482 |
+
"0 BPIC16wm_p 0.002882 \n",
|
483 |
"1 BPIC15f5 0.997405 \n",
|
484 |
"2 BPIC15f1 0.975813 \n",
|
485 |
"3 BPIC19 0.047562 \n",
|
486 |
"4 BPIC14dia_p 0.496847 \n",
|
487 |
"\n",
|
488 |
+
" ratio_most_common_variant ratio_top_10_variants \\\n",
|
489 |
+
"0 0.295803 0.714106 \n",
|
490 |
"1 0.001730 0.102076 \n",
|
491 |
"2 0.006672 0.121768 \n",
|
492 |
"3 0.199758 0.946368 \n",
|
493 |
"4 0.037455 0.552836 \n",
|
494 |
"\n",
|
495 |
+
" epa_normalized_variant_entropy epa_normalized_sequence_entropy \\\n",
|
496 |
+
"0 0.000000 0.000000 \n",
|
497 |
"1 0.648702 0.603260 \n",
|
498 |
"2 0.652855 0.610294 \n",
|
499 |
"3 0.645530 0.328029 \n",
|
500 |
"4 0.774743 0.608350 \n",
|
501 |
"\n",
|
502 |
+
" epa_normalized_sequence_entropy_linear_forgetting \\\n",
|
503 |
+
"0 0.000000 \n",
|
504 |
"1 0.342410 \n",
|
505 |
"2 0.270241 \n",
|
506 |
"3 0.320185 \n",
|
|
|
514 |
"4 0.377416 "
|
515 |
]
|
516 |
},
|
517 |
+
"execution_count": 9,
|
518 |
"metadata": {},
|
519 |
"output_type": "execute_result"
|
520 |
}
|
|
|
536 |
},
|
537 |
{
|
538 |
"cell_type": "code",
|
539 |
+
"execution_count": 10,
|
540 |
"id": "ef0df0b9",
|
541 |
"metadata": {},
|
542 |
"outputs": [
|
|
|
870 |
"</div>"
|
871 |
],
|
872 |
"text/plain": [
|
873 |
+
" log ratio_variants_per_number_of_traces \\\n",
|
874 |
+
"0 BPIC16wm_p 0.002882 \n",
|
875 |
"1 BPIC15f5 0.997405 \n",
|
876 |
"2 BPIC15f1 0.975813 \n",
|
877 |
"3 BPIC19 0.047562 \n",
|
|
|
898 |
"24 HD 0.049345 \n",
|
899 |
"25 SEPSIS 0.805714 \n",
|
900 |
"\n",
|
901 |
+
" ratio_most_common_variant ratio_top_10_variants \\\n",
|
902 |
+
"0 0.295803 0.714106 \n",
|
903 |
"1 0.001730 0.102076 \n",
|
904 |
"2 0.006672 0.121768 \n",
|
905 |
"3 0.199758 0.946368 \n",
|
|
|
926 |
"24 0.516594 0.906332 \n",
|
927 |
"25 0.033333 0.274286 \n",
|
928 |
"\n",
|
929 |
+
" epa_normalized_variant_entropy epa_normalized_sequence_entropy \\\n",
|
930 |
+
"0 0.000000 0.000000 \n",
|
931 |
"1 0.648702 0.603260 \n",
|
932 |
"2 0.652855 0.610294 \n",
|
933 |
"3 0.645530 0.328029 \n",
|
|
|
954 |
"24 0.799120 0.254066 \n",
|
955 |
"25 0.695759 0.522343 \n",
|
956 |
"\n",
|
957 |
+
" epa_normalized_sequence_entropy_linear_forgetting \\\n",
|
958 |
+
"0 0.000000 \n",
|
959 |
"1 0.342410 \n",
|
960 |
"2 0.270241 \n",
|
961 |
"3 0.320185 \n",
|
|
|
1011 |
"25 0.299505 "
|
1012 |
]
|
1013 |
},
|
1014 |
+
"execution_count": 10,
|
1015 |
"metadata": {},
|
1016 |
"output_type": "execute_result"
|
1017 |
}
|
|
|
1028 |
},
|
1029 |
{
|
1030 |
"cell_type": "code",
|
1031 |
+
"execution_count": 11,
|
1032 |
"id": "44909860",
|
1033 |
"metadata": {},
|
1034 |
"outputs": [
|
|
|
1037 |
"output_type": "stream",
|
1038 |
"text": [
|
1039 |
"21\n",
|
1040 |
+
"Saved experiment config in ../config_files/algorithm/BaselineED_feat/generator_2_enself_rvpnot.json\n",
|
1041 |
+
"Saved experiment config in ../config_files/algorithm/BaselineED_feat/generator_2_rmcv_rvpnot.json\n",
|
1042 |
+
"Saved experiment config in ../config_files/algorithm/BaselineED_feat/generator_2_ense_enself.json\n",
|
1043 |
+
"Saved experiment config in ../config_files/algorithm/BaselineED_feat/generator_2_ense_enseef.json\n",
|
1044 |
+
"Saved experiment config in ../config_files/algorithm/BaselineED_feat/generator_2_enve_rvpnot.json\n",
|
1045 |
+
"Saved experiment config in ../config_files/algorithm/BaselineED_feat/generator_2_enseef_rt10v.json\n",
|
1046 |
"Saved experiment config in ../config_files/algorithm/BaselineED_feat/generator_2_enself_rt10v.json\n",
|
1047 |
"Saved experiment config in ../config_files/algorithm/BaselineED_feat/generator_2_enseef_enve.json\n",
|
1048 |
+
"Saved experiment config in ../config_files/algorithm/BaselineED_feat/generator_2_rmcv_rt10v.json\n",
|
1049 |
+
"Saved experiment config in ../config_files/algorithm/BaselineED_feat/generator_2_enself_enve.json\n",
|
1050 |
"Saved experiment config in ../config_files/algorithm/BaselineED_feat/generator_2_ense_rvpnot.json\n",
|
1051 |
+
"Saved experiment config in ../config_files/algorithm/BaselineED_feat/generator_2_enve_rt10v.json\n",
|
1052 |
+
"Saved experiment config in ../config_files/algorithm/BaselineED_feat/generator_2_enseef_rmcv.json\n",
|
1053 |
+
"Saved experiment config in ../config_files/algorithm/BaselineED_feat/generator_2_enself_rmcv.json\n",
|
1054 |
+
"Saved experiment config in ../config_files/algorithm/BaselineED_feat/generator_2_enve_rmcv.json\n",
|
1055 |
+
"Saved experiment config in ../config_files/algorithm/BaselineED_feat/generator_2_ense_rt10v.json\n",
|
1056 |
"Saved experiment config in ../config_files/algorithm/BaselineED_feat/generator_2_enseef_enself.json\n",
|
1057 |
"Saved experiment config in ../config_files/algorithm/BaselineED_feat/generator_2_ense_enve.json\n",
|
|
|
1058 |
"Saved experiment config in ../config_files/algorithm/BaselineED_feat/generator_2_rt10v_rvpnot.json\n",
|
|
|
|
|
|
|
|
|
|
|
1059 |
"Saved experiment config in ../config_files/algorithm/BaselineED_feat/generator_2_ense_rmcv.json\n",
|
|
|
|
|
|
|
1060 |
"Saved experiment config in ../config_files/algorithm/BaselineED_feat/generator_2_enseef_rvpnot.json\n",
|
|
|
1061 |
"None\n"
|
1062 |
]
|
1063 |
}
|
|
|
1152 |
},
|
1153 |
{
|
1154 |
"cell_type": "code",
|
1155 |
+
"execution_count": 12,
|
1156 |
"id": "d759a677",
|
1157 |
"metadata": {},
|
1158 |
"outputs": [
|
|
|
1160 |
"name": "stdout",
|
1161 |
"output_type": "stream",
|
1162 |
"text": [
|
1163 |
+
"7 experiments: [('epa_normalized_sequence_entropy_linear_forgetting',), ('ratio_most_common_variant',), ('epa_normalized_sequence_entropy_exponential_forgetting',), ('epa_normalized_sequence_entropy',), ('ratio_top_10_variants',), ('ratio_variants_per_number_of_traces',), ('epa_normalized_variant_entropy',)]\n",
|
1164 |
"11\n",
|
1165 |
+
"Saved experiment in ../data/grid_experiments/grid_1objectives_enself.csv\n",
|
1166 |
+
"Saved experiment config in ../config_files/algorithm/grid_experiments/generator_grid_1objectives_enself.json\n",
|
|
|
|
|
1167 |
"Saved experiment in ../data/grid_experiments/grid_1objectives_rmcv.csv\n",
|
1168 |
"Saved experiment config in ../config_files/algorithm/grid_experiments/generator_grid_1objectives_rmcv.json\n",
|
1169 |
+
"Saved experiment in ../data/grid_experiments/grid_1objectives_enseef.csv\n",
|
1170 |
+
"Saved experiment config in ../config_files/algorithm/grid_experiments/generator_grid_1objectives_enseef.json\n",
|
1171 |
"Saved experiment in ../data/grid_experiments/grid_1objectives_ense.csv\n",
|
1172 |
"Saved experiment config in ../config_files/algorithm/grid_experiments/generator_grid_1objectives_ense.json\n",
|
1173 |
"Saved experiment in ../data/grid_experiments/grid_1objectives_rt10v.csv\n",
|
1174 |
"Saved experiment config in ../config_files/algorithm/grid_experiments/generator_grid_1objectives_rt10v.json\n",
|
1175 |
+
"Saved experiment in ../data/grid_experiments/grid_1objectives_rvpnot.csv\n",
|
1176 |
+
"Saved experiment config in ../config_files/algorithm/grid_experiments/generator_grid_1objectives_rvpnot.json\n",
|
1177 |
"Saved experiment in ../data/grid_experiments/grid_1objectives_enve.csv\n",
|
1178 |
"Saved experiment config in ../config_files/algorithm/grid_experiments/generator_grid_1objectives_enve.json\n",
|
1179 |
"None\n"
|
|
|
1273 |
],
|
1274 |
"metadata": {
|
1275 |
"kernelspec": {
|
1276 |
+
"display_name": "shampu",
|
1277 |
"language": "python",
|
1278 |
+
"name": "shampu"
|
1279 |
},
|
1280 |
"language_info": {
|
1281 |
"codemirror_mode": {
|
|
|
1287 |
"name": "python",
|
1288 |
"nbconvert_exporter": "python",
|
1289 |
"pygments_lexer": "ipython3",
|
1290 |
+
"version": "3.9.19"
|
1291 |
}
|
1292 |
},
|
1293 |
"nbformat": 4,
|