Andrea Maldonado commited on
Commit
e3715c2
·
1 Parent(s): eff400b

Generates config files for grid experiments with real ranges

Browse files
notebooks/experiment_grid_2obj_configfiles_fabric.ipynb CHANGED
@@ -36,6 +36,7 @@
36
  "outputs": [],
37
  "source": [
38
  "#Features between 0 and 1: \n",
 
39
  "normalized_feature_names = ['ratio_variants_per_number_of_traces', 'trace_len_hist1', 'trace_len_hist2',\n",
40
  " 'trace_len_hist3', 'trace_len_hist4', 'trace_len_hist5', 'trace_len_hist7',\n",
41
  " 'trace_len_hist8', 'trace_len_hist9', 'ratio_most_common_variant', \n",
@@ -43,11 +44,10 @@
43
  " 'ratio_top_20_variants', 'ratio_top_50_variants', 'ratio_top_75_variants', \n",
44
  " 'epa_normalized_variant_entropy', 'epa_normalized_sequence_entropy', \n",
45
  " 'epa_normalized_sequence_entropy_linear_forgetting', 'epa_normalized_sequence_entropy_exponential_forgetting']\n",
46
- "\n",
47
  "normalized_feature_names = ['ratio_variants_per_number_of_traces', 'ratio_most_common_variant', \n",
48
  " 'ratio_top_10_variants', 'epa_normalized_variant_entropy', 'epa_normalized_sequence_entropy', \n",
49
  " 'epa_normalized_sequence_entropy_linear_forgetting', 'epa_normalized_sequence_entropy_exponential_forgetting']\n",
50
- "\n",
51
  "def abbrev_obj_keys(obj_keys):\n",
52
  " abbreviated_keys = []\n",
53
  " for obj_key in obj_keys:\n",
@@ -64,7 +64,7 @@
64
  },
65
  {
66
  "cell_type": "code",
67
- "execution_count": 3,
68
  "id": "2be119c8",
69
  "metadata": {},
70
  "outputs": [
@@ -72,50 +72,51 @@
72
  "name": "stdout",
73
  "output_type": "stream",
74
  "text": [
75
- "21 [('epa_normalized_sequence_entropy_linear_forgetting', 'ratio_top_10_variants'), ('epa_normalized_sequence_entropy_exponential_forgetting', 'epa_normalized_variant_entropy'), ('epa_normalized_variant_entropy', 'ratio_variants_per_number_of_traces'), ('epa_normalized_sequence_entropy_linear_forgetting', 'ratio_most_common_variant'), ('epa_normalized_sequence_entropy', 'ratio_variants_per_number_of_traces'), ('epa_normalized_sequence_entropy_exponential_forgetting', 'ratio_top_10_variants'), ('epa_normalized_sequence_entropy_exponential_forgetting', 'epa_normalized_sequence_entropy_linear_forgetting'), ('epa_normalized_sequence_entropy', 'epa_normalized_variant_entropy'), ('epa_normalized_sequence_entropy_exponential_forgetting', 'ratio_most_common_variant'), ('ratio_top_10_variants', 'ratio_variants_per_number_of_traces'), ('epa_normalized_sequence_entropy', 'ratio_top_10_variants'), ('epa_normalized_variant_entropy', 'ratio_top_10_variants'), ('epa_normalized_sequence_entropy', 'epa_normalized_sequence_entropy_linear_forgetting'), ('ratio_most_common_variant', 'ratio_variants_per_number_of_traces'), ('epa_normalized_variant_entropy', 'ratio_most_common_variant'), ('epa_normalized_sequence_entropy', 'ratio_most_common_variant'), ('epa_normalized_sequence_entropy_linear_forgetting', 'ratio_variants_per_number_of_traces'), ('epa_normalized_sequence_entropy', 'epa_normalized_sequence_entropy_exponential_forgetting'), ('epa_normalized_sequence_entropy_linear_forgetting', 'epa_normalized_variant_entropy'), ('epa_normalized_sequence_entropy_exponential_forgetting', 'ratio_variants_per_number_of_traces'), ('ratio_most_common_variant', 'ratio_top_10_variants')]\n",
76
- "121\n",
77
- "Saved experiment in ../data/grid_2obj/grid_2objectives_enself_rt10v.csv\n",
78
- "Saved experiment config in ../config_files/algorithm/grid_2obj/generator_grid_2objectives_enself_rt10v.json\n",
79
- "Saved experiment in ../data/grid_2obj/grid_2objectives_enseef_enve.csv\n",
80
- "Saved experiment config in ../config_files/algorithm/grid_2obj/generator_grid_2objectives_enseef_enve.json\n",
 
81
  "Saved experiment in ../data/grid_2obj/grid_2objectives_enve_rvpnot.csv\n",
82
  "Saved experiment config in ../config_files/algorithm/grid_2obj/generator_grid_2objectives_enve_rvpnot.json\n",
83
- "Saved experiment in ../data/grid_2obj/grid_2objectives_enself_rmcv.csv\n",
84
- "Saved experiment config in ../config_files/algorithm/grid_2obj/generator_grid_2objectives_enself_rmcv.json\n",
85
- "Saved experiment in ../data/grid_2obj/grid_2objectives_ense_rvpnot.csv\n",
86
- "Saved experiment config in ../config_files/algorithm/grid_2obj/generator_grid_2objectives_ense_rvpnot.json\n",
87
- "Saved experiment in ../data/grid_2obj/grid_2objectives_enseef_rt10v.csv\n",
88
- "Saved experiment config in ../config_files/algorithm/grid_2obj/generator_grid_2objectives_enseef_rt10v.json\n",
89
- "Saved experiment in ../data/grid_2obj/grid_2objectives_enseef_enself.csv\n",
90
- "Saved experiment config in ../config_files/algorithm/grid_2obj/generator_grid_2objectives_enseef_enself.json\n",
91
- "Saved experiment in ../data/grid_2obj/grid_2objectives_ense_enve.csv\n",
92
- "Saved experiment config in ../config_files/algorithm/grid_2obj/generator_grid_2objectives_ense_enve.json\n",
93
- "Saved experiment in ../data/grid_2obj/grid_2objectives_enseef_rmcv.csv\n",
94
- "Saved experiment config in ../config_files/algorithm/grid_2obj/generator_grid_2objectives_enseef_rmcv.json\n",
95
- "Saved experiment in ../data/grid_2obj/grid_2objectives_rt10v_rvpnot.csv\n",
96
- "Saved experiment config in ../config_files/algorithm/grid_2obj/generator_grid_2objectives_rt10v_rvpnot.json\n",
97
- "Saved experiment in ../data/grid_2obj/grid_2objectives_ense_rt10v.csv\n",
98
- "Saved experiment config in ../config_files/algorithm/grid_2obj/generator_grid_2objectives_ense_rt10v.json\n",
99
- "Saved experiment in ../data/grid_2obj/grid_2objectives_enve_rt10v.csv\n",
100
- "Saved experiment config in ../config_files/algorithm/grid_2obj/generator_grid_2objectives_enve_rt10v.json\n",
101
- "Saved experiment in ../data/grid_2obj/grid_2objectives_ense_enself.csv\n",
102
- "Saved experiment config in ../config_files/algorithm/grid_2obj/generator_grid_2objectives_ense_enself.json\n",
103
- "Saved experiment in ../data/grid_2obj/grid_2objectives_rmcv_rvpnot.csv\n",
104
- "Saved experiment config in ../config_files/algorithm/grid_2obj/generator_grid_2objectives_rmcv_rvpnot.json\n",
105
- "Saved experiment in ../data/grid_2obj/grid_2objectives_enve_rmcv.csv\n",
106
- "Saved experiment config in ../config_files/algorithm/grid_2obj/generator_grid_2objectives_enve_rmcv.json\n",
107
- "Saved experiment in ../data/grid_2obj/grid_2objectives_ense_rmcv.csv\n",
108
- "Saved experiment config in ../config_files/algorithm/grid_2obj/generator_grid_2objectives_ense_rmcv.json\n",
109
- "Saved experiment in ../data/grid_2obj/grid_2objectives_enself_rvpnot.csv\n",
110
- "Saved experiment config in ../config_files/algorithm/grid_2obj/generator_grid_2objectives_enself_rvpnot.json\n",
111
- "Saved experiment in ../data/grid_2obj/grid_2objectives_ense_enseef.csv\n",
112
- "Saved experiment config in ../config_files/algorithm/grid_2obj/generator_grid_2objectives_ense_enseef.json\n",
113
- "Saved experiment in ../data/grid_2obj/grid_2objectives_enself_enve.csv\n",
114
- "Saved experiment config in ../config_files/algorithm/grid_2obj/generator_grid_2objectives_enself_enve.json\n",
115
- "Saved experiment in ../data/grid_2obj/grid_2objectives_enseef_rvpnot.csv\n",
116
- "Saved experiment config in ../config_files/algorithm/grid_2obj/generator_grid_2objectives_enseef_rvpnot.json\n",
117
- "Saved experiment in ../data/grid_2obj/grid_2objectives_rmcv_rt10v.csv\n",
118
- "Saved experiment config in ../config_files/algorithm/grid_2obj/generator_grid_2objectives_rmcv_rt10v.json\n",
119
  "None\n"
120
  ]
121
  }
@@ -165,7 +166,7 @@
165
  " ]\n",
166
  "\n",
167
  " #print(\"EXPERIMENT:\", experiment[1]['input_path'])\n",
168
- " output_path = os.path.join('..', 'config_files','algorithm','grid_2obj')\n",
169
  " os.makedirs(output_path, exist_ok=True)\n",
170
  " output_path = os.path.join(output_path, f'generator_{os.path.split(experiment_path)[-1].split(\".\")[0]}.json') \n",
171
  " with open(output_path, 'w') as f:\n",
@@ -176,31 +177,132 @@
176
  "\n",
177
  "def create_objectives_grid(objectives, n_para_obj=2):\n",
178
  " parameters_o = \"objectives, \"\n",
179
- " if n_para_obj==1:\n",
180
- " experiments = [[exp] for exp in objectives]\n",
181
- " else:\n",
182
- " experiments = eval(f\"[exp for exp in list(itertools.product({(parameters_o*n_para_obj)[:-2]})) if exp[0]!=exp[1]]\")\n",
183
- " experiments = list(set([tuple(sorted(exp)) for exp in experiments]))\n",
 
 
 
 
 
 
 
 
 
 
184
  " print(len(experiments), experiments)\n",
185
- " \n",
186
- " parameters = \"np.around(np.arange(0, 1.1,0.1),2), \"\n",
187
- " tasks = eval(f\"list(itertools.product({(parameters*n_para_obj)[:-2]}))\")\n",
188
  " tasks = [(f'task_{i+1}',)+task for i, task in enumerate(tasks)]\n",
189
  " print(len(tasks))\n",
190
  " for exp in experiments:\n",
191
  " df = pd.DataFrame(data=tasks, columns=[\"task\", *exp])\n",
192
- " experiment_path = os.path.join('..','data', 'grid_2obj')\n",
193
  " os.makedirs(experiment_path, exist_ok=True)\n",
194
  " experiment_path = os.path.join(experiment_path, f\"grid_{len(df.columns)-1}objectives_{abbrev_obj_keys(exp)}.csv\") \n",
195
  " df.to_csv(experiment_path, index=False)\n",
196
  " print(f\"Saved experiment in {experiment_path}\")\n",
197
  " write_generator_experiment(experiment_path, objectives=exp)\n",
198
  " #df.to_csv(f\"../data/grid_{}objectives_{abbrev_obj_keys(objectives.tolist())}.csv\" ,index=False)\n",
199
- " \n",
200
  "exp_test = create_objectives_grid(normalized_feature_names, n_para_obj=2) \n",
201
  "print(exp_test)"
202
  ]
203
  },
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
204
  {
205
  "cell_type": "markdown",
206
  "id": "56ab613b",
@@ -211,7 +313,7 @@
211
  },
212
  {
213
  "cell_type": "code",
214
- "execution_count": 4,
215
  "id": "dfd1a302",
216
  "metadata": {},
217
  "outputs": [],
@@ -221,14 +323,23 @@
221
  },
222
  {
223
  "cell_type": "code",
224
- "execution_count": 5,
225
  "id": "218946b7",
226
  "metadata": {},
227
- "outputs": [],
 
 
 
 
 
 
 
 
 
228
  "source": [
229
  "k=0\n",
230
- "for i in np.arange(0, 1.1,0.2):\n",
231
- " for j in np.arange(0,0.55,0.1):\n",
232
  " k+=1\n",
233
  " new_entry = pd.Series({'log':f\"objective_{k}\", \"ratio_top_20_variants\":round(i,1),\n",
234
  " \"epa_normalized_sequence_entropy_linear_forgetting\":round(j,1)})\n",
@@ -241,7 +352,7 @@
241
  },
242
  {
243
  "cell_type": "code",
244
- "execution_count": 6,
245
  "id": "b1e3bb5a",
246
  "metadata": {},
247
  "outputs": [],
@@ -260,7 +371,7 @@
260
  },
261
  {
262
  "cell_type": "code",
263
- "execution_count": 7,
264
  "id": "39ac74bb",
265
  "metadata": {},
266
  "outputs": [
@@ -367,29 +478,29 @@
367
  "</div>"
368
  ],
369
  "text/plain": [
370
- " log ratio_variants_per_number_of_traces \n",
371
- "0 BPIC16wm_p 0.002882 \\\n",
372
  "1 BPIC15f5 0.997405 \n",
373
  "2 BPIC15f1 0.975813 \n",
374
  "3 BPIC19 0.047562 \n",
375
  "4 BPIC14dia_p 0.496847 \n",
376
  "\n",
377
- " ratio_most_common_variant ratio_top_10_variants \n",
378
- "0 0.295803 0.714106 \\\n",
379
  "1 0.001730 0.102076 \n",
380
  "2 0.006672 0.121768 \n",
381
  "3 0.199758 0.946368 \n",
382
  "4 0.037455 0.552836 \n",
383
  "\n",
384
- " epa_normalized_variant_entropy epa_normalized_sequence_entropy \n",
385
- "0 0.000000 0.000000 \\\n",
386
  "1 0.648702 0.603260 \n",
387
  "2 0.652855 0.610294 \n",
388
  "3 0.645530 0.328029 \n",
389
  "4 0.774743 0.608350 \n",
390
  "\n",
391
- " epa_normalized_sequence_entropy_linear_forgetting \n",
392
- "0 0.000000 \\\n",
393
  "1 0.342410 \n",
394
  "2 0.270241 \n",
395
  "3 0.320185 \n",
@@ -403,7 +514,7 @@
403
  "4 0.377416 "
404
  ]
405
  },
406
- "execution_count": 7,
407
  "metadata": {},
408
  "output_type": "execute_result"
409
  }
@@ -425,7 +536,7 @@
425
  },
426
  {
427
  "cell_type": "code",
428
- "execution_count": 8,
429
  "id": "ef0df0b9",
430
  "metadata": {},
431
  "outputs": [
@@ -759,8 +870,8 @@
759
  "</div>"
760
  ],
761
  "text/plain": [
762
- " log ratio_variants_per_number_of_traces \n",
763
- "0 BPIC16wm_p 0.002882 \\\n",
764
  "1 BPIC15f5 0.997405 \n",
765
  "2 BPIC15f1 0.975813 \n",
766
  "3 BPIC19 0.047562 \n",
@@ -787,8 +898,8 @@
787
  "24 HD 0.049345 \n",
788
  "25 SEPSIS 0.805714 \n",
789
  "\n",
790
- " ratio_most_common_variant ratio_top_10_variants \n",
791
- "0 0.295803 0.714106 \\\n",
792
  "1 0.001730 0.102076 \n",
793
  "2 0.006672 0.121768 \n",
794
  "3 0.199758 0.946368 \n",
@@ -815,8 +926,8 @@
815
  "24 0.516594 0.906332 \n",
816
  "25 0.033333 0.274286 \n",
817
  "\n",
818
- " epa_normalized_variant_entropy epa_normalized_sequence_entropy \n",
819
- "0 0.000000 0.000000 \\\n",
820
  "1 0.648702 0.603260 \n",
821
  "2 0.652855 0.610294 \n",
822
  "3 0.645530 0.328029 \n",
@@ -843,8 +954,8 @@
843
  "24 0.799120 0.254066 \n",
844
  "25 0.695759 0.522343 \n",
845
  "\n",
846
- " epa_normalized_sequence_entropy_linear_forgetting \n",
847
- "0 0.000000 \\\n",
848
  "1 0.342410 \n",
849
  "2 0.270241 \n",
850
  "3 0.320185 \n",
@@ -900,7 +1011,7 @@
900
  "25 0.299505 "
901
  ]
902
  },
903
- "execution_count": 8,
904
  "metadata": {},
905
  "output_type": "execute_result"
906
  }
@@ -917,7 +1028,7 @@
917
  },
918
  {
919
  "cell_type": "code",
920
- "execution_count": 9,
921
  "id": "44909860",
922
  "metadata": {},
923
  "outputs": [
@@ -926,27 +1037,27 @@
926
  "output_type": "stream",
927
  "text": [
928
  "21\n",
 
 
 
 
 
 
929
  "Saved experiment config in ../config_files/algorithm/BaselineED_feat/generator_2_enself_rt10v.json\n",
930
  "Saved experiment config in ../config_files/algorithm/BaselineED_feat/generator_2_enseef_enve.json\n",
931
- "Saved experiment config in ../config_files/algorithm/BaselineED_feat/generator_2_enve_rvpnot.json\n",
932
- "Saved experiment config in ../config_files/algorithm/BaselineED_feat/generator_2_enself_rmcv.json\n",
933
  "Saved experiment config in ../config_files/algorithm/BaselineED_feat/generator_2_ense_rvpnot.json\n",
934
- "Saved experiment config in ../config_files/algorithm/BaselineED_feat/generator_2_enseef_rt10v.json\n",
 
 
 
 
935
  "Saved experiment config in ../config_files/algorithm/BaselineED_feat/generator_2_enseef_enself.json\n",
936
  "Saved experiment config in ../config_files/algorithm/BaselineED_feat/generator_2_ense_enve.json\n",
937
- "Saved experiment config in ../config_files/algorithm/BaselineED_feat/generator_2_enseef_rmcv.json\n",
938
  "Saved experiment config in ../config_files/algorithm/BaselineED_feat/generator_2_rt10v_rvpnot.json\n",
939
- "Saved experiment config in ../config_files/algorithm/BaselineED_feat/generator_2_ense_rt10v.json\n",
940
- "Saved experiment config in ../config_files/algorithm/BaselineED_feat/generator_2_enve_rt10v.json\n",
941
- "Saved experiment config in ../config_files/algorithm/BaselineED_feat/generator_2_ense_enself.json\n",
942
- "Saved experiment config in ../config_files/algorithm/BaselineED_feat/generator_2_rmcv_rvpnot.json\n",
943
- "Saved experiment config in ../config_files/algorithm/BaselineED_feat/generator_2_enve_rmcv.json\n",
944
  "Saved experiment config in ../config_files/algorithm/BaselineED_feat/generator_2_ense_rmcv.json\n",
945
- "Saved experiment config in ../config_files/algorithm/BaselineED_feat/generator_2_enself_rvpnot.json\n",
946
- "Saved experiment config in ../config_files/algorithm/BaselineED_feat/generator_2_ense_enseef.json\n",
947
- "Saved experiment config in ../config_files/algorithm/BaselineED_feat/generator_2_enself_enve.json\n",
948
  "Saved experiment config in ../config_files/algorithm/BaselineED_feat/generator_2_enseef_rvpnot.json\n",
949
- "Saved experiment config in ../config_files/algorithm/BaselineED_feat/generator_2_rmcv_rt10v.json\n",
950
  "None\n"
951
  ]
952
  }
@@ -1041,7 +1152,7 @@
1041
  },
1042
  {
1043
  "cell_type": "code",
1044
- "execution_count": 10,
1045
  "id": "d759a677",
1046
  "metadata": {},
1047
  "outputs": [
@@ -1049,20 +1160,20 @@
1049
  "name": "stdout",
1050
  "output_type": "stream",
1051
  "text": [
1052
- "7 experiments: [('epa_normalized_sequence_entropy_exponential_forgetting',), ('ratio_variants_per_number_of_traces',), ('ratio_most_common_variant',), ('epa_normalized_sequence_entropy',), ('ratio_top_10_variants',), ('epa_normalized_sequence_entropy_linear_forgetting',), ('epa_normalized_variant_entropy',)]\n",
1053
  "11\n",
1054
- "Saved experiment in ../data/grid_experiments/grid_1objectives_enseef.csv\n",
1055
- "Saved experiment config in ../config_files/algorithm/grid_experiments/generator_grid_1objectives_enseef.json\n",
1056
- "Saved experiment in ../data/grid_experiments/grid_1objectives_rvpnot.csv\n",
1057
- "Saved experiment config in ../config_files/algorithm/grid_experiments/generator_grid_1objectives_rvpnot.json\n",
1058
  "Saved experiment in ../data/grid_experiments/grid_1objectives_rmcv.csv\n",
1059
  "Saved experiment config in ../config_files/algorithm/grid_experiments/generator_grid_1objectives_rmcv.json\n",
 
 
1060
  "Saved experiment in ../data/grid_experiments/grid_1objectives_ense.csv\n",
1061
  "Saved experiment config in ../config_files/algorithm/grid_experiments/generator_grid_1objectives_ense.json\n",
1062
  "Saved experiment in ../data/grid_experiments/grid_1objectives_rt10v.csv\n",
1063
  "Saved experiment config in ../config_files/algorithm/grid_experiments/generator_grid_1objectives_rt10v.json\n",
1064
- "Saved experiment in ../data/grid_experiments/grid_1objectives_enself.csv\n",
1065
- "Saved experiment config in ../config_files/algorithm/grid_experiments/generator_grid_1objectives_enself.json\n",
1066
  "Saved experiment in ../data/grid_experiments/grid_1objectives_enve.csv\n",
1067
  "Saved experiment config in ../config_files/algorithm/grid_experiments/generator_grid_1objectives_enve.json\n",
1068
  "None\n"
@@ -1162,9 +1273,9 @@
1162
  ],
1163
  "metadata": {
1164
  "kernelspec": {
1165
- "display_name": "Python 3 (ipykernel)",
1166
  "language": "python",
1167
- "name": "python3"
1168
  },
1169
  "language_info": {
1170
  "codemirror_mode": {
@@ -1176,7 +1287,7 @@
1176
  "name": "python",
1177
  "nbconvert_exporter": "python",
1178
  "pygments_lexer": "ipython3",
1179
- "version": "3.9.12"
1180
  }
1181
  },
1182
  "nbformat": 4,
 
36
  "outputs": [],
37
  "source": [
38
  "#Features between 0 and 1: \n",
39
+ "\"\"\"\n",
40
  "normalized_feature_names = ['ratio_variants_per_number_of_traces', 'trace_len_hist1', 'trace_len_hist2',\n",
41
  " 'trace_len_hist3', 'trace_len_hist4', 'trace_len_hist5', 'trace_len_hist7',\n",
42
  " 'trace_len_hist8', 'trace_len_hist9', 'ratio_most_common_variant', \n",
 
44
  " 'ratio_top_20_variants', 'ratio_top_50_variants', 'ratio_top_75_variants', \n",
45
  " 'epa_normalized_variant_entropy', 'epa_normalized_sequence_entropy', \n",
46
  " 'epa_normalized_sequence_entropy_linear_forgetting', 'epa_normalized_sequence_entropy_exponential_forgetting']\n",
47
+ "\"\"\"\n",
48
  "normalized_feature_names = ['ratio_variants_per_number_of_traces', 'ratio_most_common_variant', \n",
49
  " 'ratio_top_10_variants', 'epa_normalized_variant_entropy', 'epa_normalized_sequence_entropy', \n",
50
  " 'epa_normalized_sequence_entropy_linear_forgetting', 'epa_normalized_sequence_entropy_exponential_forgetting']\n",
 
51
  "def abbrev_obj_keys(obj_keys):\n",
52
  " abbreviated_keys = []\n",
53
  " for obj_key in obj_keys:\n",
 
64
  },
65
  {
66
  "cell_type": "code",
67
+ "execution_count": 16,
68
  "id": "2be119c8",
69
  "metadata": {},
70
  "outputs": [
 
72
  "name": "stdout",
73
  "output_type": "stream",
74
  "text": [
75
+ "TASKS <class 'str'> <class 'int'> np.around(np.arange(0.0, 1.5,0.5),2), np.around(np.arange(0.0, 1.5,0.5),2), \n",
76
+ "21 [('mean_variant_occurrence', 'trace_len_coefficient_variation'), ('activities_std', 'eventropy_trace'), ('epa_normalized_variant_entropy', 'ratio_variants_per_number_of_traces'), ('activities_std', 'epa_normalized_variant_entropy'), ('eventropy_trace', 'trace_len_coefficient_variation'), ('ratio_variants_per_number_of_traces', 'trace_len_coefficient_variation'), ('activities_std', 'trace_len_coefficient_variation'), ('eventropy_trace', 'mean_variant_occurrence'), ('activities_std', 'mean_variant_occurrence'), ('epa_normalized_variant_entropy', 'eventropy_trace'), ('mean_variant_occurrence', 'start_activities_median'), ('ratio_variants_per_number_of_traces', 'start_activities_median'), ('eventropy_trace', 'start_activities_median'), ('activities_std', 'start_activities_median'), ('epa_normalized_variant_entropy', 'trace_len_coefficient_variation'), ('epa_normalized_variant_entropy', 'mean_variant_occurrence'), ('mean_variant_occurrence', 'ratio_variants_per_number_of_traces'), ('eventropy_trace', 'ratio_variants_per_number_of_traces'), ('start_activities_median', 'trace_len_coefficient_variation'), ('activities_std', 'ratio_variants_per_number_of_traces'), ('epa_normalized_variant_entropy', 'start_activities_median')]\n",
77
+ "9\n",
78
+ "Saved experiment in ../data/grid_2obj/grid_2objectives_mvo_tlcv.csv\n",
79
+ "Saved experiment config in ../config_files/algorithm/grid_2obj/generator_grid_2objectives_mvo_tlcv.json\n",
80
+ "Saved experiment in ../data/grid_2obj/grid_2objectives_as_et.csv\n",
81
+ "Saved experiment config in ../config_files/algorithm/grid_2obj/generator_grid_2objectives_as_et.json\n",
82
  "Saved experiment in ../data/grid_2obj/grid_2objectives_enve_rvpnot.csv\n",
83
  "Saved experiment config in ../config_files/algorithm/grid_2obj/generator_grid_2objectives_enve_rvpnot.json\n",
84
+ "Saved experiment in ../data/grid_2obj/grid_2objectives_as_enve.csv\n",
85
+ "Saved experiment config in ../config_files/algorithm/grid_2obj/generator_grid_2objectives_as_enve.json\n",
86
+ "Saved experiment in ../data/grid_2obj/grid_2objectives_et_tlcv.csv\n",
87
+ "Saved experiment config in ../config_files/algorithm/grid_2obj/generator_grid_2objectives_et_tlcv.json\n",
88
+ "Saved experiment in ../data/grid_2obj/grid_2objectives_rvpnot_tlcv.csv\n",
89
+ "Saved experiment config in ../config_files/algorithm/grid_2obj/generator_grid_2objectives_rvpnot_tlcv.json\n",
90
+ "Saved experiment in ../data/grid_2obj/grid_2objectives_as_tlcv.csv\n",
91
+ "Saved experiment config in ../config_files/algorithm/grid_2obj/generator_grid_2objectives_as_tlcv.json\n",
92
+ "Saved experiment in ../data/grid_2obj/grid_2objectives_et_mvo.csv\n",
93
+ "Saved experiment config in ../config_files/algorithm/grid_2obj/generator_grid_2objectives_et_mvo.json\n",
94
+ "Saved experiment in ../data/grid_2obj/grid_2objectives_as_mvo.csv\n",
95
+ "Saved experiment config in ../config_files/algorithm/grid_2obj/generator_grid_2objectives_as_mvo.json\n",
96
+ "Saved experiment in ../data/grid_2obj/grid_2objectives_enve_et.csv\n",
97
+ "Saved experiment config in ../config_files/algorithm/grid_2obj/generator_grid_2objectives_enve_et.json\n",
98
+ "Saved experiment in ../data/grid_2obj/grid_2objectives_mvo_sam.csv\n",
99
+ "Saved experiment config in ../config_files/algorithm/grid_2obj/generator_grid_2objectives_mvo_sam.json\n",
100
+ "Saved experiment in ../data/grid_2obj/grid_2objectives_rvpnot_sam.csv\n",
101
+ "Saved experiment config in ../config_files/algorithm/grid_2obj/generator_grid_2objectives_rvpnot_sam.json\n",
102
+ "Saved experiment in ../data/grid_2obj/grid_2objectives_et_sam.csv\n",
103
+ "Saved experiment config in ../config_files/algorithm/grid_2obj/generator_grid_2objectives_et_sam.json\n",
104
+ "Saved experiment in ../data/grid_2obj/grid_2objectives_as_sam.csv\n",
105
+ "Saved experiment config in ../config_files/algorithm/grid_2obj/generator_grid_2objectives_as_sam.json\n",
106
+ "Saved experiment in ../data/grid_2obj/grid_2objectives_enve_tlcv.csv\n",
107
+ "Saved experiment config in ../config_files/algorithm/grid_2obj/generator_grid_2objectives_enve_tlcv.json\n",
108
+ "Saved experiment in ../data/grid_2obj/grid_2objectives_enve_mvo.csv\n",
109
+ "Saved experiment config in ../config_files/algorithm/grid_2obj/generator_grid_2objectives_enve_mvo.json\n",
110
+ "Saved experiment in ../data/grid_2obj/grid_2objectives_mvo_rvpnot.csv\n",
111
+ "Saved experiment config in ../config_files/algorithm/grid_2obj/generator_grid_2objectives_mvo_rvpnot.json\n",
112
+ "Saved experiment in ../data/grid_2obj/grid_2objectives_et_rvpnot.csv\n",
113
+ "Saved experiment config in ../config_files/algorithm/grid_2obj/generator_grid_2objectives_et_rvpnot.json\n",
114
+ "Saved experiment in ../data/grid_2obj/grid_2objectives_sam_tlcv.csv\n",
115
+ "Saved experiment config in ../config_files/algorithm/grid_2obj/generator_grid_2objectives_sam_tlcv.json\n",
116
+ "Saved experiment in ../data/grid_2obj/grid_2objectives_as_rvpnot.csv\n",
117
+ "Saved experiment config in ../config_files/algorithm/grid_2obj/generator_grid_2objectives_as_rvpnot.json\n",
118
+ "Saved experiment in ../data/grid_2obj/grid_2objectives_enve_sam.csv\n",
119
+ "Saved experiment config in ../config_files/algorithm/grid_2obj/generator_grid_2objectives_enve_sam.json\n",
120
  "None\n"
121
  ]
122
  }
 
166
  " ]\n",
167
  "\n",
168
  " #print(\"EXPERIMENT:\", experiment[1]['input_path'])\n",
169
+ " output_path = os.path.join('..', 'config_files','algorithm',f'grid_{len(objectives)}obj')\n",
170
  " os.makedirs(output_path, exist_ok=True)\n",
171
  " output_path = os.path.join(output_path, f'generator_{os.path.split(experiment_path)[-1].split(\".\")[0]}.json') \n",
172
  " with open(output_path, 'w') as f:\n",
 
177
  "\n",
178
  "def create_objectives_grid(objectives, n_para_obj=2):\n",
179
  " parameters_o = \"objectives, \"\n",
180
+ " if n_para_obj==len(objectives):\n",
181
+ " experiments = [tuple(sorted(objectives))]\n",
182
+ " print(len(experiments), experiments)\n",
183
+ " parameters = get_ranges_from_data(sorted(objectives))\n",
184
+ " tasks = eval(f\"list(itertools.product({parameters}))\")\n",
185
+ " #tasks = eval(f\"list(itertools.product({(parameters*n_para_obj)[:-2]}))\")\n",
186
+ " else: \n",
187
+ " if n_para_obj==1:\n",
188
+ " experiments = [[exp] for exp in objectives]\n",
189
+ " else:\n",
190
+ " experiments = eval(f\"[exp for exp in list(itertools.product({(parameters_o*n_para_obj)[:-2]})) if exp[0]!=exp[1]]\")\n",
191
+ " experiments = list(set([tuple(sorted(exp)) for exp in experiments]))\n",
192
+ " parameters = \"np.around(np.arange(0.0, 1.5,0.5),2), \"\n",
193
+ " tasks = eval(f\"list(itertools.product({(parameters*n_para_obj)[:-2]}))\")\n",
194
+ " print(\"TASKS\", type(parameters), type(n_para_obj), parameters*n_para_obj)\n",
195
  " print(len(experiments), experiments)\n",
196
+ "\n",
 
 
197
  " tasks = [(f'task_{i+1}',)+task for i, task in enumerate(tasks)]\n",
198
  " print(len(tasks))\n",
199
  " for exp in experiments:\n",
200
  " df = pd.DataFrame(data=tasks, columns=[\"task\", *exp])\n",
201
+ " experiment_path = os.path.join('..','data', f'grid_{n_para_obj}obj')\n",
202
  " os.makedirs(experiment_path, exist_ok=True)\n",
203
  " experiment_path = os.path.join(experiment_path, f\"grid_{len(df.columns)-1}objectives_{abbrev_obj_keys(exp)}.csv\") \n",
204
  " df.to_csv(experiment_path, index=False)\n",
205
  " print(f\"Saved experiment in {experiment_path}\")\n",
206
  " write_generator_experiment(experiment_path, objectives=exp)\n",
207
  " #df.to_csv(f\"../data/grid_{}objectives_{abbrev_obj_keys(objectives.tolist())}.csv\" ,index=False)\n",
208
+ "\n",
209
  "exp_test = create_objectives_grid(normalized_feature_names, n_para_obj=2) \n",
210
  "print(exp_test)"
211
  ]
212
  },
213
+ {
214
+ "cell_type": "markdown",
215
+ "id": "9cc84ef2",
216
+ "metadata": {},
217
+ "source": [
218
+ "## Grid Objectives\n",
219
+ "Based on real ED ranges."
220
+ ]
221
+ },
222
+ {
223
+ "cell_type": "code",
224
+ "execution_count": 17,
225
+ "id": "ae86005f",
226
+ "metadata": {},
227
+ "outputs": [
228
+ {
229
+ "name": "stdout",
230
+ "output_type": "stream",
231
+ "text": [
232
+ "['ratio_variants_per_number_of_traces', 'trace_len_coefficient_variation', 'mean_variant_occurrence', 'activities_std', 'start_activities_median', 'eventropy_trace', 'epa_normalized_variant_entropy']\n",
233
+ "ratio_variants_per_number_of_traces (4.081521591249218e-05, 0.4659094439111451, 0....\n",
234
+ "trace_len_coefficient_variation (0.0, 0.6838390025070027, 4.744080106525514)\n",
235
+ "mean_variant_occurrence (1.001552795031056, 838.6048767068644, 24500.6...\n",
236
+ "activities_std (0.0, 12982.056069959535, 120522.24741658216)\n",
237
+ "start_activities_median (1.0, 7975.705882352941, 150370.0)\n",
238
+ "eventropy_trace (0.0, 6.2416470588235295, 13.362)\n",
239
+ "epa_normalized_variant_entropy (0.0, 0.6773545645863115, 0.899497456838069)\n",
240
+ "Name: range, dtype: object\n"
241
+ ]
242
+ },
243
+ {
244
+ "data": {
245
+ "text/plain": [
246
+ "'np.around((4.081521591249218e-05, 0.4659094439111451, 0.9984496124031008), 2), np.around((0.0, 0.6838390025070027, 4.744080106525514), 2), np.around((1.001552795031056, 838.6048767068644, 24500.666666666668), 2), np.around((0.0, 12982.056069959535, 120522.24741658216), 2), np.around((1.0, 7975.705882352941, 150370.0), 2), np.around((0.0, 6.2416470588235295, 13.362), 2), np.around((0.0, 0.6773545645863115, 0.899497456838069), 2)'"
247
+ ]
248
+ },
249
+ "execution_count": 17,
250
+ "metadata": {},
251
+ "output_type": "execute_result"
252
+ }
253
+ ],
254
+ "source": [
255
+ "DF_PATH = \"../../shampu/data/bench_baseline_feat.csv\"\n",
256
+ "def get_ranges_from_data(objectives, df_path = DF_PATH):\n",
257
+ " #print(objectives)\n",
258
+ " dmf = pd.read_csv(DF_PATH, index_col=None)\n",
259
+ " dmf = dmf[objectives].describe()\n",
260
+ " dmf = dmf.transpose()[['min', 'mean','max']]\n",
261
+ " dmf['range'] = dmf.apply(lambda x: tuple([x['min'], x['mean'], x['max']]), axis=1)\n",
262
+ " print(dmf['range'])\n",
263
+ " #tasks = eval(f\"list(itertools.product({(parameters*n_para_obj)[:-2]}))\")\n",
264
+ " result = [f\"np.around({x}, 2)\" for x in dmf['range']]\n",
265
+ " result = \", \".join(result)\n",
266
+ " return result\n",
267
+ "\n",
268
+ "print(normalized_feature_names)\n",
269
+ "get_ranges_from_data(normalized_feature_names)"
270
+ ]
271
+ },
272
+ {
273
+ "cell_type": "code",
274
+ "execution_count": 18,
275
+ "id": "a7a4c864",
276
+ "metadata": {},
277
+ "outputs": [
278
+ {
279
+ "name": "stdout",
280
+ "output_type": "stream",
281
+ "text": [
282
+ "1 [('activities_std', 'epa_normalized_variant_entropy', 'eventropy_trace', 'mean_variant_occurrence', 'ratio_variants_per_number_of_traces', 'start_activities_median', 'trace_len_coefficient_variation')]\n",
283
+ "activities_std (0.0, 12982.056069959535, 120522.24741658216)\n",
284
+ "epa_normalized_variant_entropy (0.0, 0.6773545645863115, 0.899497456838069)\n",
285
+ "eventropy_trace (0.0, 6.2416470588235295, 13.362)\n",
286
+ "mean_variant_occurrence (1.001552795031056, 838.6048767068644, 24500.6...\n",
287
+ "ratio_variants_per_number_of_traces (4.081521591249218e-05, 0.4659094439111451, 0....\n",
288
+ "start_activities_median (1.0, 7975.705882352941, 150370.0)\n",
289
+ "trace_len_coefficient_variation (0.0, 0.6838390025070027, 4.744080106525514)\n",
290
+ "Name: range, dtype: object\n",
291
+ "TASKS <class 'str'> <class 'int'> np.around((0.0, 12982.056069959535, 120522.24741658216), 2), np.around((0.0, 0.6773545645863115, 0.899497456838069), 2), np.around((0.0, 6.2416470588235295, 13.362), 2), np.around((1.001552795031056, 838.6048767068644, 24500.666666666668), 2), np.around((4.081521591249218e-05, 0.4659094439111451, 0.9984496124031008), 2), np.around((1.0, 7975.705882352941, 150370.0), 2), np.around((0.0, 0.6838390025070027, 4.744080106525514), 2)np.around((0.0, 12982.056069959535, 120522.24741658216), 2), np.around((0.0, 0.6773545645863115, 0.899497456838069), 2), np.around((0.0, 6.2416470588235295, 13.362), 2), np.around((1.001552795031056, 838.6048767068644, 24500.666666666668), 2), np.around((4.081521591249218e-05, 0.4659094439111451, 0.9984496124031008), 2), np.around((1.0, 7975.705882352941, 150370.0), 2), np.around((0.0, 0.6838390025070027, 4.744080106525514), 2)np.around((0.0, 12982.056069959535, 120522.24741658216), 2), np.around((0.0, 0.6773545645863115, 0.899497456838069), 2), np.around((0.0, 6.2416470588235295, 13.362), 2), np.around((1.001552795031056, 838.6048767068644, 24500.666666666668), 2), np.around((4.081521591249218e-05, 0.4659094439111451, 0.9984496124031008), 2), np.around((1.0, 7975.705882352941, 150370.0), 2), np.around((0.0, 0.6838390025070027, 4.744080106525514), 2)np.around((0.0, 12982.056069959535, 120522.24741658216), 2), np.around((0.0, 0.6773545645863115, 0.899497456838069), 2), np.around((0.0, 6.2416470588235295, 13.362), 2), np.around((1.001552795031056, 838.6048767068644, 24500.666666666668), 2), np.around((4.081521591249218e-05, 0.4659094439111451, 0.9984496124031008), 2), np.around((1.0, 7975.705882352941, 150370.0), 2), np.around((0.0, 0.6838390025070027, 4.744080106525514), 2)np.around((0.0, 12982.056069959535, 120522.24741658216), 2), np.around((0.0, 0.6773545645863115, 0.899497456838069), 2), np.around((0.0, 6.2416470588235295, 13.362), 2), np.around((1.001552795031056, 838.6048767068644, 24500.666666666668), 2), np.around((4.081521591249218e-05, 0.4659094439111451, 0.9984496124031008), 2), np.around((1.0, 7975.705882352941, 150370.0), 2), np.around((0.0, 0.6838390025070027, 4.744080106525514), 2)np.around((0.0, 12982.056069959535, 120522.24741658216), 2), np.around((0.0, 0.6773545645863115, 0.899497456838069), 2), np.around((0.0, 6.2416470588235295, 13.362), 2), np.around((1.001552795031056, 838.6048767068644, 24500.666666666668), 2), np.around((4.081521591249218e-05, 0.4659094439111451, 0.9984496124031008), 2), np.around((1.0, 7975.705882352941, 150370.0), 2), np.around((0.0, 0.6838390025070027, 4.744080106525514), 2)np.around((0.0, 12982.056069959535, 120522.24741658216), 2), np.around((0.0, 0.6773545645863115, 0.899497456838069), 2), np.around((0.0, 6.2416470588235295, 13.362), 2), np.around((1.001552795031056, 838.6048767068644, 24500.666666666668), 2), np.around((4.081521591249218e-05, 0.4659094439111451, 0.9984496124031008), 2), np.around((1.0, 7975.705882352941, 150370.0), 2), np.around((0.0, 0.6838390025070027, 4.744080106525514), 2)\n",
292
+ "1 [('activities_std', 'epa_normalized_variant_entropy', 'eventropy_trace', 'mean_variant_occurrence', 'ratio_variants_per_number_of_traces', 'start_activities_median', 'trace_len_coefficient_variation')]\n",
293
+ "2187\n",
294
+ "Saved experiment in ../data/grid_7obj/grid_7objectives_as_enve_et_mvo_rvpnot_sam_tlcv.csv\n",
295
+ "Saved experiment config in ../config_files/algorithm/grid_7obj/generator_grid_7objectives_as_enve_et_mvo_rvpnot_sam_tlcv.json\n",
296
+ "None\n"
297
+ ]
298
+ }
299
+ ],
300
+ "source": [
301
+ "normalized_feature_names = ['ratio_variants_per_number_of_traces', 'trace_len_coefficient_variation', 'mean_variant_occurrence', 'activities_std', 'start_activities_median', 'eventropy_trace', 'epa_normalized_variant_entropy']\n",
302
+ "exp_test = create_objectives_grid(normalized_feature_names, n_para_obj=len(normalized_feature_names)) \n",
303
+ "print(exp_test)"
304
+ ]
305
+ },
306
  {
307
  "cell_type": "markdown",
308
  "id": "56ab613b",
 
313
  },
314
  {
315
  "cell_type": "code",
316
+ "execution_count": 6,
317
  "id": "dfd1a302",
318
  "metadata": {},
319
  "outputs": [],
 
323
  },
324
  {
325
  "cell_type": "code",
326
+ "execution_count": 7,
327
  "id": "218946b7",
328
  "metadata": {},
329
+ "outputs": [
330
+ {
331
+ "name": "stderr",
332
+ "output_type": "stream",
333
+ "text": [
334
+ "/var/folders/d0/btmbyskx4t106_l2zghzln2w0000gn/T/ipykernel_12596/3751377549.py:7: FutureWarning: The behavior of DataFrame concatenation with empty or all-NA entries is deprecated. In a future version, this will no longer exclude empty or all-NA columns when determining the result dtypes. To retain the old behavior, exclude the relevant entries before the concat operation.\n",
335
+ " df = pd.concat([\n"
336
+ ]
337
+ }
338
+ ],
339
  "source": [
340
  "k=0\n",
341
+ "for i in np.arange(0, 1.1,0.5):\n",
342
+ " for j in np.arange(0,0.55,0.5):\n",
343
  " k+=1\n",
344
  " new_entry = pd.Series({'log':f\"objective_{k}\", \"ratio_top_20_variants\":round(i,1),\n",
345
  " \"epa_normalized_sequence_entropy_linear_forgetting\":round(j,1)})\n",
 
352
  },
353
  {
354
  "cell_type": "code",
355
+ "execution_count": 8,
356
  "id": "b1e3bb5a",
357
  "metadata": {},
358
  "outputs": [],
 
371
  },
372
  {
373
  "cell_type": "code",
374
+ "execution_count": 9,
375
  "id": "39ac74bb",
376
  "metadata": {},
377
  "outputs": [
 
478
  "</div>"
479
  ],
480
  "text/plain": [
481
+ " log ratio_variants_per_number_of_traces \\\n",
482
+ "0 BPIC16wm_p 0.002882 \n",
483
  "1 BPIC15f5 0.997405 \n",
484
  "2 BPIC15f1 0.975813 \n",
485
  "3 BPIC19 0.047562 \n",
486
  "4 BPIC14dia_p 0.496847 \n",
487
  "\n",
488
+ " ratio_most_common_variant ratio_top_10_variants \\\n",
489
+ "0 0.295803 0.714106 \n",
490
  "1 0.001730 0.102076 \n",
491
  "2 0.006672 0.121768 \n",
492
  "3 0.199758 0.946368 \n",
493
  "4 0.037455 0.552836 \n",
494
  "\n",
495
+ " epa_normalized_variant_entropy epa_normalized_sequence_entropy \\\n",
496
+ "0 0.000000 0.000000 \n",
497
  "1 0.648702 0.603260 \n",
498
  "2 0.652855 0.610294 \n",
499
  "3 0.645530 0.328029 \n",
500
  "4 0.774743 0.608350 \n",
501
  "\n",
502
+ " epa_normalized_sequence_entropy_linear_forgetting \\\n",
503
+ "0 0.000000 \n",
504
  "1 0.342410 \n",
505
  "2 0.270241 \n",
506
  "3 0.320185 \n",
 
514
  "4 0.377416 "
515
  ]
516
  },
517
+ "execution_count": 9,
518
  "metadata": {},
519
  "output_type": "execute_result"
520
  }
 
536
  },
537
  {
538
  "cell_type": "code",
539
+ "execution_count": 10,
540
  "id": "ef0df0b9",
541
  "metadata": {},
542
  "outputs": [
 
870
  "</div>"
871
  ],
872
  "text/plain": [
873
+ " log ratio_variants_per_number_of_traces \\\n",
874
+ "0 BPIC16wm_p 0.002882 \n",
875
  "1 BPIC15f5 0.997405 \n",
876
  "2 BPIC15f1 0.975813 \n",
877
  "3 BPIC19 0.047562 \n",
 
898
  "24 HD 0.049345 \n",
899
  "25 SEPSIS 0.805714 \n",
900
  "\n",
901
+ " ratio_most_common_variant ratio_top_10_variants \\\n",
902
+ "0 0.295803 0.714106 \n",
903
  "1 0.001730 0.102076 \n",
904
  "2 0.006672 0.121768 \n",
905
  "3 0.199758 0.946368 \n",
 
926
  "24 0.516594 0.906332 \n",
927
  "25 0.033333 0.274286 \n",
928
  "\n",
929
+ " epa_normalized_variant_entropy epa_normalized_sequence_entropy \\\n",
930
+ "0 0.000000 0.000000 \n",
931
  "1 0.648702 0.603260 \n",
932
  "2 0.652855 0.610294 \n",
933
  "3 0.645530 0.328029 \n",
 
954
  "24 0.799120 0.254066 \n",
955
  "25 0.695759 0.522343 \n",
956
  "\n",
957
+ " epa_normalized_sequence_entropy_linear_forgetting \\\n",
958
+ "0 0.000000 \n",
959
  "1 0.342410 \n",
960
  "2 0.270241 \n",
961
  "3 0.320185 \n",
 
1011
  "25 0.299505 "
1012
  ]
1013
  },
1014
+ "execution_count": 10,
1015
  "metadata": {},
1016
  "output_type": "execute_result"
1017
  }
 
1028
  },
1029
  {
1030
  "cell_type": "code",
1031
+ "execution_count": 11,
1032
  "id": "44909860",
1033
  "metadata": {},
1034
  "outputs": [
 
1037
  "output_type": "stream",
1038
  "text": [
1039
  "21\n",
1040
+ "Saved experiment config in ../config_files/algorithm/BaselineED_feat/generator_2_enself_rvpnot.json\n",
1041
+ "Saved experiment config in ../config_files/algorithm/BaselineED_feat/generator_2_rmcv_rvpnot.json\n",
1042
+ "Saved experiment config in ../config_files/algorithm/BaselineED_feat/generator_2_ense_enself.json\n",
1043
+ "Saved experiment config in ../config_files/algorithm/BaselineED_feat/generator_2_ense_enseef.json\n",
1044
+ "Saved experiment config in ../config_files/algorithm/BaselineED_feat/generator_2_enve_rvpnot.json\n",
1045
+ "Saved experiment config in ../config_files/algorithm/BaselineED_feat/generator_2_enseef_rt10v.json\n",
1046
  "Saved experiment config in ../config_files/algorithm/BaselineED_feat/generator_2_enself_rt10v.json\n",
1047
  "Saved experiment config in ../config_files/algorithm/BaselineED_feat/generator_2_enseef_enve.json\n",
1048
+ "Saved experiment config in ../config_files/algorithm/BaselineED_feat/generator_2_rmcv_rt10v.json\n",
1049
+ "Saved experiment config in ../config_files/algorithm/BaselineED_feat/generator_2_enself_enve.json\n",
1050
  "Saved experiment config in ../config_files/algorithm/BaselineED_feat/generator_2_ense_rvpnot.json\n",
1051
+ "Saved experiment config in ../config_files/algorithm/BaselineED_feat/generator_2_enve_rt10v.json\n",
1052
+ "Saved experiment config in ../config_files/algorithm/BaselineED_feat/generator_2_enseef_rmcv.json\n",
1053
+ "Saved experiment config in ../config_files/algorithm/BaselineED_feat/generator_2_enself_rmcv.json\n",
1054
+ "Saved experiment config in ../config_files/algorithm/BaselineED_feat/generator_2_enve_rmcv.json\n",
1055
+ "Saved experiment config in ../config_files/algorithm/BaselineED_feat/generator_2_ense_rt10v.json\n",
1056
  "Saved experiment config in ../config_files/algorithm/BaselineED_feat/generator_2_enseef_enself.json\n",
1057
  "Saved experiment config in ../config_files/algorithm/BaselineED_feat/generator_2_ense_enve.json\n",
 
1058
  "Saved experiment config in ../config_files/algorithm/BaselineED_feat/generator_2_rt10v_rvpnot.json\n",
 
 
 
 
 
1059
  "Saved experiment config in ../config_files/algorithm/BaselineED_feat/generator_2_ense_rmcv.json\n",
 
 
 
1060
  "Saved experiment config in ../config_files/algorithm/BaselineED_feat/generator_2_enseef_rvpnot.json\n",
 
1061
  "None\n"
1062
  ]
1063
  }
 
1152
  },
1153
  {
1154
  "cell_type": "code",
1155
+ "execution_count": 12,
1156
  "id": "d759a677",
1157
  "metadata": {},
1158
  "outputs": [
 
1160
  "name": "stdout",
1161
  "output_type": "stream",
1162
  "text": [
1163
+ "7 experiments: [('epa_normalized_sequence_entropy_linear_forgetting',), ('ratio_most_common_variant',), ('epa_normalized_sequence_entropy_exponential_forgetting',), ('epa_normalized_sequence_entropy',), ('ratio_top_10_variants',), ('ratio_variants_per_number_of_traces',), ('epa_normalized_variant_entropy',)]\n",
1164
  "11\n",
1165
+ "Saved experiment in ../data/grid_experiments/grid_1objectives_enself.csv\n",
1166
+ "Saved experiment config in ../config_files/algorithm/grid_experiments/generator_grid_1objectives_enself.json\n",
 
 
1167
  "Saved experiment in ../data/grid_experiments/grid_1objectives_rmcv.csv\n",
1168
  "Saved experiment config in ../config_files/algorithm/grid_experiments/generator_grid_1objectives_rmcv.json\n",
1169
+ "Saved experiment in ../data/grid_experiments/grid_1objectives_enseef.csv\n",
1170
+ "Saved experiment config in ../config_files/algorithm/grid_experiments/generator_grid_1objectives_enseef.json\n",
1171
  "Saved experiment in ../data/grid_experiments/grid_1objectives_ense.csv\n",
1172
  "Saved experiment config in ../config_files/algorithm/grid_experiments/generator_grid_1objectives_ense.json\n",
1173
  "Saved experiment in ../data/grid_experiments/grid_1objectives_rt10v.csv\n",
1174
  "Saved experiment config in ../config_files/algorithm/grid_experiments/generator_grid_1objectives_rt10v.json\n",
1175
+ "Saved experiment in ../data/grid_experiments/grid_1objectives_rvpnot.csv\n",
1176
+ "Saved experiment config in ../config_files/algorithm/grid_experiments/generator_grid_1objectives_rvpnot.json\n",
1177
  "Saved experiment in ../data/grid_experiments/grid_1objectives_enve.csv\n",
1178
  "Saved experiment config in ../config_files/algorithm/grid_experiments/generator_grid_1objectives_enve.json\n",
1179
  "None\n"
 
1273
  ],
1274
  "metadata": {
1275
  "kernelspec": {
1276
+ "display_name": "shampu",
1277
  "language": "python",
1278
+ "name": "shampu"
1279
  },
1280
  "language_info": {
1281
  "codemirror_mode": {
 
1287
  "name": "python",
1288
  "nbconvert_exporter": "python",
1289
  "pygments_lexer": "ipython3",
1290
+ "version": "3.9.19"
1291
  }
1292
  },
1293
  "nbformat": 4,