Spaces:
Running
Running
Andrea Maldonado
commited on
Commit
·
e614e81
1
Parent(s):
4927cc1
Updates feature computation using compute_features_from_event_data
Browse files- gedi/features.py +59 -20
- gedi/run.py +3 -3
gedi/features.py
CHANGED
@@ -2,21 +2,57 @@ import json
|
|
2 |
import multiprocessing
|
3 |
import pandas as pd
|
4 |
import os
|
|
|
5 |
|
6 |
from datetime import datetime as dt
|
7 |
from functools import partial
|
|
|
|
|
|
|
|
|
8 |
from feeed.feature_extractor import extract_features
|
9 |
-
from
|
|
|
|
|
|
|
|
|
10 |
from gedi.utils.column_mappings import column_mappings
|
11 |
from gedi.utils.io_helpers import dump_features_json
|
12 |
from gedi.utils.param_keys import INPUT_PATH
|
13 |
from gedi.utils.param_keys.features import FEATURE_PARAMS, FEATURE_SET
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
class EventLogFile:
|
22 |
def __init__(self, filename, folder_path):
|
@@ -27,7 +63,7 @@ class EventLogFile:
|
|
27 |
def filepath(self) -> str:
|
28 |
return str(os.path.join(self.root_path, self.filename))
|
29 |
|
30 |
-
class
|
31 |
def __init__(self, filename=None, folder_path='data/event_log', params=None, logs=None, ft_params=None):
|
32 |
super().__init__(filename, folder_path)
|
33 |
if ft_params == None:
|
@@ -54,17 +90,18 @@ class EventLogFeatures(EventLogFile):
|
|
54 |
|
55 |
try:
|
56 |
start = dt.now()
|
57 |
-
print("===========================
|
58 |
|
59 |
print(f"INFO: Running with {ft_params}")
|
60 |
|
61 |
-
if str(self.filename).endswith('csv'): # Returns dataframe from loaded
|
62 |
self.feat = pd.read_csv(self.filepath)
|
63 |
columns_to_rename = {col: column_mappings()[col] for col in self.feat.columns if col in column_mappings()}
|
64 |
self.feat.rename(columns=columns_to_rename, inplace=True)
|
65 |
-
print(f"SUCCESS:
|
66 |
-
elif isinstance(self.filename, list): # Computes
|
67 |
combined_features=pd.DataFrame()
|
|
|
68 |
if self.filename[0].endswith(".json"):
|
69 |
self.filename = [ filename for filename in self.filename if filename.endswith(".json")]
|
70 |
dfs = []
|
@@ -80,8 +117,8 @@ class EventLogFeatures(EventLogFile):
|
|
80 |
self.filename = os.path.split(self.root_path)[-1] + '_feat.csv'
|
81 |
self.root_path=Path(os.path.split(self.root_path)[0])
|
82 |
combined_features.to_csv(self.filepath, index=False)
|
83 |
-
print(f"SUCCESS:
|
84 |
-
print("=========================== ~
|
85 |
return
|
86 |
else:
|
87 |
self.filename = [ filename for filename in self.filename if filename.endswith(".xes")]
|
@@ -94,7 +131,7 @@ class EventLogFeatures(EventLogFile):
|
|
94 |
with multiprocessing.Pool(num_cores) as p:
|
95 |
try:
|
96 |
print(
|
97 |
-
f"INFO:
|
98 |
result = p.map(partial(self.extract_features_wrapper, feature_set = self.params[FEATURE_SET])
|
99 |
, self.filename)
|
100 |
result = [i for i in result if i is not None]
|
@@ -114,7 +151,7 @@ class EventLogFeatures(EventLogFile):
|
|
114 |
|
115 |
except KeyError as error:
|
116 |
print("Ignoring KeyError", error)
|
117 |
-
# Aggregates
|
118 |
path_to_json = f"output/features/{str(self.root_path).split('/',1)[1]}"
|
119 |
df = pd.DataFrame()
|
120 |
# Iterate over the files in the directory
|
@@ -137,16 +174,19 @@ class EventLogFeatures(EventLogFile):
|
|
137 |
print(f"Cannot load {self.filepath}. Double check for file or change config 'load_results' to false")
|
138 |
else:
|
139 |
# -2 because of 'log' and 'similarity'
|
140 |
-
print(f"SUCCESS:
|
141 |
-
print("=========================== ~
|
142 |
|
143 |
#TODO: Implement optional trying to read already computed jsons first.
|
144 |
def extract_features_wrapper(self, file, feature_set=None):
|
145 |
try:
|
146 |
file_path = os.path.join(self.root_path, file)
|
147 |
print(f" INFO: Starting FEEED for {file_path} and {feature_set}")
|
148 |
-
features = extract_features(file_path, feature_set)
|
149 |
|
|
|
|
|
|
|
|
|
150 |
except Exception as e:
|
151 |
print("ERROR: for ",file.rsplit(".", 1)[0], feature_set, "skipping and continuing with next log.")
|
152 |
print(e)
|
@@ -156,4 +196,3 @@ class EventLogFeatures(EventLogFile):
|
|
156 |
print(f" DONE: {file_path}. FEEED computed {feature_set}")
|
157 |
dump_features_json(features, os.path.join(self.root_path,identifier))
|
158 |
return features
|
159 |
-
|
|
|
2 |
import multiprocessing
|
3 |
import pandas as pd
|
4 |
import os
|
5 |
+
import re
|
6 |
|
7 |
from datetime import datetime as dt
|
8 |
from functools import partial
|
9 |
+
from feeed.activities import Activities as activities
|
10 |
+
from feeed.end_activities import EndActivities as end_activities
|
11 |
+
from feeed.epa_based import Epa_based as epa_based
|
12 |
+
from feeed.eventropies import Eventropies as eventropies
|
13 |
from feeed.feature_extractor import extract_features
|
14 |
+
from feeed.feature_extractor import feature_type, read_pm4py_log
|
15 |
+
from feeed.simple_stats import SimpleStats as simple_stats
|
16 |
+
from feeed.start_activities import StartActivities as start_activities
|
17 |
+
from feeed.trace_length import TraceLength as trace_length
|
18 |
+
from feeed.trace_variant import TraceVariant as trace_variant
|
19 |
from gedi.utils.column_mappings import column_mappings
|
20 |
from gedi.utils.io_helpers import dump_features_json
|
21 |
from gedi.utils.param_keys import INPUT_PATH
|
22 |
from gedi.utils.param_keys.features import FEATURE_PARAMS, FEATURE_SET
|
23 |
+
from pathlib import Path
|
24 |
+
from pm4py.objects.log.obj import EventLog
|
25 |
+
|
26 |
+
def _is_feature_class(name: str) -> bool:
|
27 |
+
try:
|
28 |
+
if re.match(r'^[A-Z][a-z]*([A-Z][a-z]*)*$', name):
|
29 |
+
#print("PASCAL CASE", name)
|
30 |
+
snake_case_name = re.sub(r'(?<!^)(?=[A-Z])', '_', name).lower()
|
31 |
+
return hasattr(eval(snake_case_name+"()"), 'available_class_methods')
|
32 |
+
elif re.match(r'^[a-z]+(_[a-z]+)*$', name):
|
33 |
+
#print("SNAKE CASE", name)
|
34 |
+
return hasattr(eval(name+"()"), 'available_class_methods')
|
35 |
+
else:
|
36 |
+
return False
|
37 |
+
except NameError:
|
38 |
+
return False
|
39 |
+
|
40 |
+
def get_feature_type(ft_name):
|
41 |
+
ft_type = feature_type(ft_name)
|
42 |
+
return ft_type
|
43 |
+
|
44 |
+
def compute_features_from_event_data(feature_set, event_data: EventLog):
|
45 |
+
features_computation = {}
|
46 |
+
for ft_name in feature_set:
|
47 |
+
#print("FEATURE_SET", feature_set)
|
48 |
+
ft_type = get_feature_type(ft_name)
|
49 |
+
#print(f"INFO: Computing {ft_type}: {ft_name}")
|
50 |
+
computation_command = f"{ft_type}("
|
51 |
+
if ft_type != ft_name:
|
52 |
+
computation_command += f"feature_names=['{ft_name}'],"
|
53 |
+
computation_command += f").extract(event_data)"
|
54 |
+
features_computation.update(eval(computation_command))
|
55 |
+
return features_computation
|
56 |
|
57 |
class EventLogFile:
|
58 |
def __init__(self, filename, folder_path):
|
|
|
63 |
def filepath(self) -> str:
|
64 |
return str(os.path.join(self.root_path, self.filename))
|
65 |
|
66 |
+
class EventDataFeatures(EventLogFile):
|
67 |
def __init__(self, filename=None, folder_path='data/event_log', params=None, logs=None, ft_params=None):
|
68 |
super().__init__(filename, folder_path)
|
69 |
if ft_params == None:
|
|
|
90 |
|
91 |
try:
|
92 |
start = dt.now()
|
93 |
+
print("=========================== EventDataFeatures Computation===========================")
|
94 |
|
95 |
print(f"INFO: Running with {ft_params}")
|
96 |
|
97 |
+
if str(self.filename).endswith('csv'): # Returns dataframe from loaded features file
|
98 |
self.feat = pd.read_csv(self.filepath)
|
99 |
columns_to_rename = {col: column_mappings()[col] for col in self.feat.columns if col in column_mappings()}
|
100 |
self.feat.rename(columns=columns_to_rename, inplace=True)
|
101 |
+
print(f"SUCCESS: EventDataFeatures loaded features from {self.filepath}")
|
102 |
+
elif isinstance(self.filename, list): # Computes features for list of .xes files
|
103 |
combined_features=pd.DataFrame()
|
104 |
+
#TODO: Fix IndexError when running config_files/experiment_real_targets.json
|
105 |
if self.filename[0].endswith(".json"):
|
106 |
self.filename = [ filename for filename in self.filename if filename.endswith(".json")]
|
107 |
dfs = []
|
|
|
117 |
self.filename = os.path.split(self.root_path)[-1] + '_feat.csv'
|
118 |
self.root_path=Path(os.path.split(self.root_path)[0])
|
119 |
combined_features.to_csv(self.filepath, index=False)
|
120 |
+
print(f"SUCCESS: EventDataFeatures took {dt.now()-start} sec. Saved {len(self.feat.columns)} features for {len(self.feat)} in {self.filepath}")
|
121 |
+
print("=========================== ~ EventDataFeatures Computation=========================")
|
122 |
return
|
123 |
else:
|
124 |
self.filename = [ filename for filename in self.filename if filename.endswith(".xes")]
|
|
|
131 |
with multiprocessing.Pool(num_cores) as p:
|
132 |
try:
|
133 |
print(
|
134 |
+
f"INFO: EventDataFeatures starting at {start.strftime('%H:%M:%S')} using {num_cores} cores for {len(self.filename)} files, namely {self.filename}...")
|
135 |
result = p.map(partial(self.extract_features_wrapper, feature_set = self.params[FEATURE_SET])
|
136 |
, self.filename)
|
137 |
result = [i for i in result if i is not None]
|
|
|
151 |
|
152 |
except KeyError as error:
|
153 |
print("Ignoring KeyError", error)
|
154 |
+
# Aggregates features in saved Jsons into dataframe
|
155 |
path_to_json = f"output/features/{str(self.root_path).split('/',1)[1]}"
|
156 |
df = pd.DataFrame()
|
157 |
# Iterate over the files in the directory
|
|
|
174 |
print(f"Cannot load {self.filepath}. Double check for file or change config 'load_results' to false")
|
175 |
else:
|
176 |
# -2 because of 'log' and 'similarity'
|
177 |
+
print(f"SUCCESS: EventDataFeatures took {dt.now()-start} sec. Saved {len(self.feat.columns)-2} features for {len(self.feat)} in {self.filepath}")
|
178 |
+
print("=========================== ~ EventDataFeatures Computation=========================")
|
179 |
|
180 |
#TODO: Implement optional trying to read already computed jsons first.
|
181 |
def extract_features_wrapper(self, file, feature_set=None):
|
182 |
try:
|
183 |
file_path = os.path.join(self.root_path, file)
|
184 |
print(f" INFO: Starting FEEED for {file_path} and {feature_set}")
|
|
|
185 |
|
186 |
+
#NOTE: Current implementation saves features in "_feat.csv" within feeed in extract_features()
|
187 |
+
#log = read_pm4py_log(file_path)
|
188 |
+
#features = compute_features_from_event_data(feature_set, log)
|
189 |
+
features = extract_features(file_path, feature_set)
|
190 |
except Exception as e:
|
191 |
print("ERROR: for ",file.rsplit(".", 1)[0], feature_set, "skipping and continuing with next log.")
|
192 |
print(e)
|
|
|
196 |
print(f" DONE: {file_path}. FEEED computed {feature_set}")
|
197 |
dump_features_json(features, os.path.join(self.root_path,identifier))
|
198 |
return features
|
|
gedi/run.py
CHANGED
@@ -4,7 +4,7 @@ from datetime import datetime as dt
|
|
4 |
from gedi.augmentation import InstanceAugmentator
|
5 |
from gedi.benchmark import BenchmarkTest
|
6 |
from gedi.config import get_model_params_list
|
7 |
-
from gedi.features import
|
8 |
from gedi.generator import GenerateEventLogs
|
9 |
from gedi.plotter import BenchmarkPlotter, FeaturesPlotter, AugmentationPlotter, GenerationPlotter
|
10 |
from gedi.utils.default_argparse import ArgParser
|
@@ -22,7 +22,7 @@ def run(kwargs:dict, model_params_list: list, filename_list:list):
|
|
22 |
@return:
|
23 |
"""
|
24 |
params = kwargs[PARAMS]
|
25 |
-
ft =
|
26 |
augmented_ft = InstanceAugmentator()
|
27 |
gen = pd.DataFrame(columns=['metafeatures'])
|
28 |
|
@@ -38,7 +38,7 @@ def run(kwargs:dict, model_params_list: list, filename_list:list):
|
|
38 |
benchmark = BenchmarkTest(model_params)#, event_logs=gen['log'])
|
39 |
# BenchmarkPlotter(benchmark.features, output_path="output/plots")
|
40 |
elif model_params.get(PIPELINE_STEP) == 'feature_extraction':
|
41 |
-
ft =
|
42 |
FeaturesPlotter(ft.feat, model_params)
|
43 |
elif model_params.get(PIPELINE_STEP) == "evaluation_plotter":
|
44 |
GenerationPlotter(gen, model_params, output_path=model_params['output_path'], input_path=model_params['input_path'])
|
|
|
4 |
from gedi.augmentation import InstanceAugmentator
|
5 |
from gedi.benchmark import BenchmarkTest
|
6 |
from gedi.config import get_model_params_list
|
7 |
+
from gedi.features import EventDataFeatures
|
8 |
from gedi.generator import GenerateEventLogs
|
9 |
from gedi.plotter import BenchmarkPlotter, FeaturesPlotter, AugmentationPlotter, GenerationPlotter
|
10 |
from gedi.utils.default_argparse import ArgParser
|
|
|
22 |
@return:
|
23 |
"""
|
24 |
params = kwargs[PARAMS]
|
25 |
+
ft = EventDataFeatures(None)
|
26 |
augmented_ft = InstanceAugmentator()
|
27 |
gen = pd.DataFrame(columns=['metafeatures'])
|
28 |
|
|
|
38 |
benchmark = BenchmarkTest(model_params)#, event_logs=gen['log'])
|
39 |
# BenchmarkPlotter(benchmark.features, output_path="output/plots")
|
40 |
elif model_params.get(PIPELINE_STEP) == 'feature_extraction':
|
41 |
+
ft = EventDataFeatures(**kwargs, ft_params=model_params)
|
42 |
FeaturesPlotter(ft.feat, model_params)
|
43 |
elif model_params.get(PIPELINE_STEP) == "evaluation_plotter":
|
44 |
GenerationPlotter(gen, model_params, output_path=model_params['output_path'], input_path=model_params['input_path'])
|