import numpy as np def split_list_in_half(array): """ https://stackoverflow.com/questions/752308/split-list-into-smaller-lists-split-in-half :param array: array (list, ndarray) :return: tuple with the first and the second half of the list """ half = len(array) // 2 return array[:half], array[half:] def rescale_center(symmetrical_array, stat_func: callable = np.median): """ Rescales the data in the array center, and eliminates all the other values on the sides (setting to 0) :param symmetrical_array: (nd)array symmetrical :param stat_func: Some statistical function of an array: np.median (default), np.mean, ... :return: """ symmetrical_array = rescale_array(symmetrical_array, stat_func) return extinct_side_values(symmetrical_array) def rescale_array(array, stat_func: callable = np.median, interp_range=None, lower_bound=None): """ Rescale an array from a range, of its statistical value (mean, median, min, ...) to the maximum, into a new range `interp_range` (default: 0-1) :param array: :param stat_func: Some statistical function of an array: np.median (default), np.mean, ... :param interp_range: the new range for the interpolation :param lower_bound: :return: the new interpolated array """ if interp_range is None: interp_range = [0, 1] if lower_bound is None: lower_bound = stat_func(array) return np.interp(array, [lower_bound, array.max()], interp_range) def extinct_side_values(symmetrical_array, smaller_than=0): """ Takes an array and searches the first value from the center smaller than the given value. All the border values from that criteria are zeroed :param symmetrical_array: symmetrical (nd)array :param smaller_than: int Sets the criteria to find the index between the center and the border. :return: """ right_i = np.argmax(split_list_in_half(symmetrical_array)[1] <= smaller_than) center_i = len(symmetrical_array) // 2 new_y = np.zeros_like(symmetrical_array) new_y[center_i - right_i:center_i + right_i] = symmetrical_array[center_i - right_i:center_i + right_i] return new_y