import glob import json import os import pandas as pd import re import shutil import numpy as np from collections import defaultdict from gedi.utils.param_keys.features import bpic_feature_values from pathlib import PurePath from scipy.spatial.distance import euclidean def select_instance(source_dir, log_path, destination=os.path.join("output","generated","instance_selection")): os.makedirs(destination, exist_ok=True) try: source_path=glob.glob(os.path.join(source_dir, log_path))[0] destination_path = os.path.join(destination, "_".join(source_path.rsplit("/")[-2:])) shutil.copyfile(source_path, destination_path) except IndexError: print(f"ERROR: No files found for {source_dir}{log_path}. Continuing.") return destination, len(os.listdir(destination)) def read_csvs(input_path, ref_feature): f_dict = defaultdict(pd.DataFrame) ref_short_name = get_keys_abbreviation([ref_feature]) for file in glob.glob(f'{input_path}*.csv'): if ref_short_name in file[:-4].split(os.sep)[-1].split("_"): c_file = pd.read_csv(file, delimiter=",") if c_file.columns[0] == 'task': c_file = c_file.reindex(columns=[c_file.columns[1], c_file.columns[2], c_file.columns[0]]) c_file.rename(columns={"task":"log"}, inplace=True) f_dict[c_file.columns[0] if c_file.columns[0]!=ref_feature else c_file.columns[1]] = c_file return f_dict def sort_files(data): """ Returns a alphanumeric sortered list """ convert = lambda text: int(text) if text.isdigit() else text.lower() alphanum_key = lambda key: [convert(c) for c in re.split("([0-9]+)", key)] return sorted(data, key=alphanum_key) def get_keys_abbreviation(obj_keys): abbreviated_keys = [] for obj_key in obj_keys: key_slices = obj_key.split("_") chars = [] for key_slice in key_slices: for idx, single_char in enumerate(key_slice): if idx == 0 or single_char.isdigit(): chars.append(single_char) abbreviated_key = ''.join(chars) abbreviated_keys.append(abbreviated_key) return '_'.join(abbreviated_keys) def get_output_key_value_location(obj, output_path, identifier, obj_keys=None): obj_sorted = dict(sorted(obj.items())) if obj_keys is None: obj_keys = [*obj_sorted.keys()] obj_values = [round(x, 4) for x in [*obj_sorted.values()]] if len(obj_keys) > 10: folder_path = os.path.join(output_path, f"{len(obj_keys)}_features") generated_file_name = f"{identifier}" else: folder_path = os.path.join(output_path, f"{len(obj_keys)}_{get_keys_abbreviation(obj_keys)}") obj_values_joined = '_'.join(map(str, obj_values)).replace('.', '') generated_file_name = f"{identifier}_{obj_values_joined}" os.makedirs(folder_path, exist_ok=True) save_path = os.path.join(folder_path, generated_file_name) return save_path def dump_features_json(features: dict, output_path, content_type="features"): output_parts = PurePath(output_path.split(".xes")[0]).parts features_path = os.path.join(output_parts[0], content_type, *output_parts[1:]) json_path = features_path+'.json' os.makedirs(os.path.split(json_path)[0], exist_ok=True) with open(json_path, 'w') as fp: json.dump(features, fp, default=int) print(f"SUCCESS: Saved {len(features)-1} {content_type} in {json_path}")#-1 because 'log' is not a feature def normalize_value(value, min_val, max_val): return (value - min_val) / (max_val - min_val) if max_val != min_val else 0.0 def compute_similarity(v1, v2): feature_ranges = bpic_feature_values() # Convert all values to float except for the "log" key v1 = {k: (float(v) if k != "log" else v) for k, v in v1.items()} v2 = {k: (float(v) if k != "log" else v) for k, v in v2.items()} # Identify common numeric keys common_keys = set(v1.keys()).intersection(set(v2.keys()), set(feature_ranges.keys())) numeric_keys = [k for k in common_keys if isinstance(v1[k], (int, float)) and isinstance(v2[k], (int, float))] if not numeric_keys: print("[ERROR]: No common numeric keys found for similarity calculation.") return None # Normalize values and compute differences differences = [] for key in numeric_keys: min_val, max_val = feature_ranges[key] norm_v1 = normalize_value(v1[key], min_val, max_val) norm_v2 = normalize_value(v2[key], min_val, max_val) differences.append(abs(norm_v1 - norm_v2)) # Compute average difference as similarity metric target_similarity = 1 - np.mean(differences) return target_similarity