Spaces:
Paused
Paused
Andrei-Iulian SĂCELEANU
commited on
Commit
•
02768a2
1
Parent(s):
de475ce
added freematch test
Browse files- app.py +77 -4
- checkpoints/freematch_tune.data-00000-of-00001 +0 -0
- checkpoints/freematch_tune.index +0 -0
- models.py +37 -0
app.py
CHANGED
@@ -1,7 +1,80 @@
|
|
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
2 |
|
3 |
-
def greet(name):
|
4 |
-
return "Hello " + name + "!!"
|
5 |
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
import gradio as gr
|
3 |
+
from transformers import AutoTokenizer
|
4 |
+
from unidecode import unidecode
|
5 |
+
from models import *
|
6 |
|
|
|
|
|
7 |
|
8 |
+
tok = AutoTokenizer.from_pretrained("readerbench/RoBERT-base")
|
9 |
+
|
10 |
+
def preprocess(x):
|
11 |
+
"""Preprocess input string x"""
|
12 |
+
|
13 |
+
s = unidecode(x)
|
14 |
+
s = str.lower(s)
|
15 |
+
s = re.sub(r"\[[a-z]+\]","", s)
|
16 |
+
s = re.sub(r"\*","", s)
|
17 |
+
s = re.sub(r"[^a-zA-Z0-9]+"," ",s)
|
18 |
+
s = re.sub(r" +"," ",s)
|
19 |
+
s = re.sub(r"(.)\1+",r"\1",s)
|
20 |
+
|
21 |
+
return s
|
22 |
+
|
23 |
+
label_names = ["ABUSE", "INSULT", "OTHER", "PROFANITY"]
|
24 |
+
|
25 |
+
def ssl_predict(in_text, model_type):
|
26 |
+
"""main predict function"""
|
27 |
+
|
28 |
+
preprocessed = preprocess(in_text)
|
29 |
+
toks = tok(
|
30 |
+
preprocessed,
|
31 |
+
padding="max_length",
|
32 |
+
max_length=96,
|
33 |
+
truncation=True,
|
34 |
+
return_tensors="tf"
|
35 |
+
)
|
36 |
+
if model_type == "freematch":
|
37 |
+
model = FixMatchTune(encoder_name="andrei-saceleanu/ro-offense-freematch")
|
38 |
+
model.cls_head.load_weights("./checkpoints/freematch_tune")
|
39 |
+
|
40 |
+
preds, _ = model([toks["input_ids"],toks["attention_mask"]], training=False)
|
41 |
+
|
42 |
+
probs = list(preds[0].numpy())
|
43 |
+
|
44 |
+
return {k:v for k, v in zip(label_names, probs)}
|
45 |
+
|
46 |
+
|
47 |
+
|
48 |
+
|
49 |
+
with gr.Blocks() as ssl_interface:
|
50 |
+
with gr.Row():
|
51 |
+
with gr.Column():
|
52 |
+
in_text = gr.Textbox(label="Input text")
|
53 |
+
model_list = gr.Dropdown(
|
54 |
+
choices=["fixmatch", "freematch", "mixmatch"],
|
55 |
+
max_choices=1,
|
56 |
+
label="Training method",
|
57 |
+
allow_custom_value=False,
|
58 |
+
info="Select trained model according to different SSL techniques from paper",
|
59 |
+
)
|
60 |
+
|
61 |
+
with gr.Row():
|
62 |
+
clear_btn = gr.Button(value="Clear")
|
63 |
+
submit_btn = gr.Button(value="Submit")
|
64 |
+
|
65 |
+
with gr.Column():
|
66 |
+
out_field = gr.Label(num_top_classes=4,label="Prediction")
|
67 |
+
|
68 |
+
submit_btn.click(
|
69 |
+
fn=ssl_predict,
|
70 |
+
inputs=[in_text, model_list],
|
71 |
+
outputs=[out_field]
|
72 |
+
)
|
73 |
+
|
74 |
+
clear_btn.click(
|
75 |
+
fn=lambda: [None for _ in range(2)],
|
76 |
+
inputs=None,
|
77 |
+
outputs=[in_text, out_field]
|
78 |
+
)
|
79 |
+
|
80 |
+
ssl_interface.launch(server_name="0.0.0.0", server_port=7860)
|
checkpoints/freematch_tune.data-00000-of-00001
ADDED
Binary file (855 kB). View file
|
|
checkpoints/freematch_tune.index
ADDED
Binary file (518 Bytes). View file
|
|
models.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import tensorflow as tf
|
2 |
+
from transformers import TFAutoModel
|
3 |
+
|
4 |
+
|
5 |
+
class FixMatchTune(tf.keras.Model):
|
6 |
+
def __init__(
|
7 |
+
self,
|
8 |
+
encoder_name="readerbench/RoBERT-base",
|
9 |
+
num_classes=4,
|
10 |
+
**kwargs
|
11 |
+
):
|
12 |
+
super(FixMatchTune,self).__init__(**kwargs)
|
13 |
+
|
14 |
+
self.bert = TFAutoModel.from_pretrained(encoder_name)
|
15 |
+
self.num_classes = num_classes
|
16 |
+
self.weak_augment = tf.keras.layers.GaussianNoise(stddev=0.5)
|
17 |
+
self.strong_augment = tf.keras.layers.GaussianNoise(stddev=5)
|
18 |
+
|
19 |
+
self.cls_head = tf.keras.Sequential([
|
20 |
+
tf.keras.layers.Dense(256,activation="relu"),
|
21 |
+
tf.keras.layers.Dropout(0.2),
|
22 |
+
tf.keras.layers.Dense(64,activation="relu"),
|
23 |
+
tf.keras.layers.Dense(self.num_classes, activation="softmax")
|
24 |
+
])
|
25 |
+
|
26 |
+
def call(self, inputs, training):
|
27 |
+
ids, mask = inputs
|
28 |
+
|
29 |
+
embeds = self.bert(input_ids=ids, attention_mask=mask,training=training).pooler_output
|
30 |
+
|
31 |
+
strongs = self.strong_augment(embeds,training=training)
|
32 |
+
weaks = self.weak_augment(embeds,training=training)
|
33 |
+
|
34 |
+
strong_preds = self.cls_head(strongs,training=training)
|
35 |
+
weak_preds = self.cls_head(weaks,training=training)
|
36 |
+
|
37 |
+
return weak_preds, strong_preds
|