Spaces:
Paused
Paused
Andrei-Iulian SĂCELEANU
commited on
Commit
•
1f3a9b6
1
Parent(s):
7d0a00c
added audio tab
Browse files- app.py +116 -31
- checkpoints/audio_fixmatch.data-00000-of-00001 +0 -0
- checkpoints/audio_fixmatch.index +0 -0
- checkpoints/audio_freematch.data-00000-of-00001 +0 -0
- checkpoints/audio_freematch.index +0 -0
- checkpoints/audio_mixmatch.data-00000-of-00001 +0 -0
- checkpoints/audio_mixmatch.index +0 -0
- models.py +72 -2
app.py
CHANGED
@@ -1,11 +1,14 @@
|
|
1 |
import re
|
2 |
import gradio as gr
|
3 |
-
|
|
|
|
|
4 |
from unidecode import unidecode
|
5 |
from models import *
|
6 |
|
7 |
|
8 |
tok = AutoTokenizer.from_pretrained("readerbench/RoBERT-base")
|
|
|
9 |
|
10 |
def preprocess(x):
|
11 |
"""Preprocess input string x"""
|
@@ -21,6 +24,7 @@ def preprocess(x):
|
|
21 |
return s
|
22 |
|
23 |
label_names = ["ABUSE", "INSULT", "OTHER", "PROFANITY"]
|
|
|
24 |
|
25 |
def ssl_predict(in_text, model_type):
|
26 |
"""main predict function"""
|
@@ -39,12 +43,12 @@ def ssl_predict(in_text, model_type):
|
|
39 |
model = FixMatchTune(encoder_name="readerbench/RoBERT-base")
|
40 |
model.load_weights("./checkpoints/fixmatch_tune")
|
41 |
preds, _ = model([toks["input_ids"],toks["attention_mask"]], training=False)
|
42 |
-
|
43 |
elif model_type == "freematch":
|
44 |
model = FixMatchTune(encoder_name="andrei-saceleanu/ro-offense-freematch")
|
45 |
model.cls_head.load_weights("./checkpoints/freematch_tune")
|
46 |
preds, _ = model([toks["input_ids"],toks["attention_mask"]], training=False)
|
47 |
-
|
48 |
elif model_type == "mixmatch":
|
49 |
model = MixMatch(bert_model="andrei-saceleanu/ro-offense-mixmatch")
|
50 |
model.cls_head.load_weights("./checkpoints/mixmatch")
|
@@ -68,37 +72,118 @@ def ssl_predict(in_text, model_type):
|
|
68 |
return d
|
69 |
|
70 |
|
|
|
|
|
|
|
|
|
71 |
|
|
|
|
|
|
|
|
|
|
|
72 |
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
choices=["fixmatch", "freematch", "mixmatch", "contrastive_reg", "label_propagation"],
|
79 |
-
max_choices=1,
|
80 |
-
label="Training method",
|
81 |
-
allow_custom_value=False,
|
82 |
-
info="Select trained model according to different SSL techniques from paper",
|
83 |
-
)
|
84 |
-
|
85 |
-
with gr.Row():
|
86 |
-
clear_btn = gr.Button(value="Clear")
|
87 |
-
submit_btn = gr.Button(value="Submit")
|
88 |
-
|
89 |
-
with gr.Column():
|
90 |
-
out_field = gr.Label(num_top_classes=4, label="Prediction")
|
91 |
-
|
92 |
-
submit_btn.click(
|
93 |
-
fn=ssl_predict,
|
94 |
-
inputs=[in_text, model_list],
|
95 |
-
outputs=[out_field]
|
96 |
-
)
|
97 |
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
|
|
102 |
)
|
103 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
ssl_interface.launch(server_name="0.0.0.0", server_port=7860)
|
|
|
1 |
import re
|
2 |
import gradio as gr
|
3 |
+
import librosa
|
4 |
+
import numpy as np
|
5 |
+
from transformers import AutoTokenizer,ViTImageProcessor
|
6 |
from unidecode import unidecode
|
7 |
from models import *
|
8 |
|
9 |
|
10 |
tok = AutoTokenizer.from_pretrained("readerbench/RoBERT-base")
|
11 |
+
processor = ViTImageProcessor.from_pretrained('google/vit-base-patch16-224')
|
12 |
|
13 |
def preprocess(x):
|
14 |
"""Preprocess input string x"""
|
|
|
24 |
return s
|
25 |
|
26 |
label_names = ["ABUSE", "INSULT", "OTHER", "PROFANITY"]
|
27 |
+
audio_label_names = ["Laughter", "Sigh", "Cough", "Throat clearing", "Sneeze", "Sniff"]
|
28 |
|
29 |
def ssl_predict(in_text, model_type):
|
30 |
"""main predict function"""
|
|
|
43 |
model = FixMatchTune(encoder_name="readerbench/RoBERT-base")
|
44 |
model.load_weights("./checkpoints/fixmatch_tune")
|
45 |
preds, _ = model([toks["input_ids"],toks["attention_mask"]], training=False)
|
46 |
+
|
47 |
elif model_type == "freematch":
|
48 |
model = FixMatchTune(encoder_name="andrei-saceleanu/ro-offense-freematch")
|
49 |
model.cls_head.load_weights("./checkpoints/freematch_tune")
|
50 |
preds, _ = model([toks["input_ids"],toks["attention_mask"]], training=False)
|
51 |
+
|
52 |
elif model_type == "mixmatch":
|
53 |
model = MixMatch(bert_model="andrei-saceleanu/ro-offense-mixmatch")
|
54 |
model.cls_head.load_weights("./checkpoints/mixmatch")
|
|
|
72 |
return d
|
73 |
|
74 |
|
75 |
+
def ssl_predict2(audio_file, model_type):
|
76 |
+
"""main predict function"""
|
77 |
+
|
78 |
+
signal, sr = librosa.load(audio_file.name, sr=16000)
|
79 |
|
80 |
+
length = 5 * 16000
|
81 |
+
if len(signal) < length:
|
82 |
+
signal = np.pad(signal,(0,length-len(signal)),'constant')
|
83 |
+
else:
|
84 |
+
signal = signal[:length]
|
85 |
|
86 |
+
spectrogram = librosa.feature.melspectrogram(y=signal, sr=sr, n_mels=128)
|
87 |
+
spectrogram = librosa.power_to_db(S=spectrogram, ref=np.max)
|
88 |
+
spectrogram_min, spectrogram_max = spectrogram.min(), spectrogram.max()
|
89 |
+
spectrogram = (spectrogram - spectrogram_min) / (spectrogram_max - spectrogram_min)
|
90 |
+
spectrogram = spectrogram.astype("float32")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
|
92 |
+
inputs = processor.preprocess(
|
93 |
+
np.repeat(spectrogram[:,:,:,np.newaxis],3,-1),
|
94 |
+
image_mean=(-3.05,-3.05,-3.05),
|
95 |
+
image_std=(2.33,2.33,2.33),
|
96 |
+
return_tensors="tf"
|
97 |
)
|
98 |
|
99 |
+
preds = None
|
100 |
+
if model_type == "fixmatch":
|
101 |
+
model = AudioFixMatch(encoder_name="andrei-saceleanu/vit-base-fixmatch")
|
102 |
+
model.cls_head.load_weights("./checkpoints/audio_fixmatch")
|
103 |
+
preds, _ = model(inputs["pixel_values"], training=False)
|
104 |
+
|
105 |
+
elif model_type == "freematch":
|
106 |
+
model = AudioFixMatch(encoder_name="andrei-saceleanu/vit-base-freematch")
|
107 |
+
model.cls_head.load_weights("./checkpoints/audio_freematch")
|
108 |
+
preds, _ = model(inputs["pixel_values"], training=False)
|
109 |
+
|
110 |
+
elif model_type == "mixmatch":
|
111 |
+
model = AudioMixMatch(bert_model="andrei-saceleanu/vit-base-mixmatch")
|
112 |
+
model.cls_head.load_weights("./checkpoints/audio_mixmatch")
|
113 |
+
preds = model(inputs["pixel_values"], training=False)
|
114 |
+
|
115 |
+
probs = list(preds[0].numpy())
|
116 |
+
|
117 |
+
d = {}
|
118 |
+
for k, v in zip(audio_label_names, probs):
|
119 |
+
d[k] = float(v)
|
120 |
+
return d
|
121 |
+
|
122 |
+
with gr.Blocks() as ssl_interface:
|
123 |
+
|
124 |
+
with gr.Tab("Text (RO-Offense)"):
|
125 |
+
with gr.Row():
|
126 |
+
with gr.Column():
|
127 |
+
in_text = gr.Textbox(label="Input text")
|
128 |
+
model_list = gr.Dropdown(
|
129 |
+
choices=["fixmatch", "freematch", "mixmatch", "contrastive_reg", "label_propagation"],
|
130 |
+
max_choices=1,
|
131 |
+
label="Training method",
|
132 |
+
allow_custom_value=False,
|
133 |
+
info="Select trained model according to different SSL techniques from paper",
|
134 |
+
)
|
135 |
+
|
136 |
+
with gr.Row():
|
137 |
+
clear_btn = gr.Button(value="Clear")
|
138 |
+
submit_btn = gr.Button(value="Submit")
|
139 |
+
|
140 |
+
with gr.Column():
|
141 |
+
out_field = gr.Label(num_top_classes=4, label="Prediction")
|
142 |
+
|
143 |
+
submit_btn.click(
|
144 |
+
fn=ssl_predict,
|
145 |
+
inputs=[in_text, model_list],
|
146 |
+
outputs=[out_field]
|
147 |
+
)
|
148 |
+
|
149 |
+
clear_btn.click(
|
150 |
+
fn=lambda: [None for _ in range(2)],
|
151 |
+
inputs=None,
|
152 |
+
outputs=[in_text, out_field]
|
153 |
+
)
|
154 |
+
with gr.Tab("Audio (VocalSound)"):
|
155 |
+
with gr.Row():
|
156 |
+
with gr.Column():
|
157 |
+
audio_file = gr.File(
|
158 |
+
label="Input audio",
|
159 |
+
file_count="single",
|
160 |
+
file_types=["audio"]
|
161 |
+
)
|
162 |
+
model_list2 = gr.Dropdown(
|
163 |
+
choices=["fixmatch", "freematch", "mixmatch"],
|
164 |
+
max_choices=1,
|
165 |
+
label="Training method",
|
166 |
+
allow_custom_value=False,
|
167 |
+
info="Select trained model according to different SSL techniques from paper",
|
168 |
+
)
|
169 |
+
|
170 |
+
with gr.Row():
|
171 |
+
clear_btn2 = gr.Button(value="Clear")
|
172 |
+
submit_btn2 = gr.Button(value="Submit")
|
173 |
+
|
174 |
+
with gr.Column():
|
175 |
+
out_field2 = gr.Label(num_top_classes=6, label="Prediction")
|
176 |
+
|
177 |
+
submit_btn2.click(
|
178 |
+
fn=ssl_predict2,
|
179 |
+
inputs=[audio_file, model_list2],
|
180 |
+
outputs=[out_field2]
|
181 |
+
)
|
182 |
+
|
183 |
+
clear_btn2.click(
|
184 |
+
fn=lambda: [None for _ in range(2)],
|
185 |
+
inputs=None,
|
186 |
+
outputs=[audio_file, out_field2]
|
187 |
+
)
|
188 |
+
|
189 |
ssl_interface.launch(server_name="0.0.0.0", server_port=7860)
|
checkpoints/audio_fixmatch.data-00000-of-00001
ADDED
Binary file (856 kB). View file
|
|
checkpoints/audio_fixmatch.index
ADDED
Binary file (518 Bytes). View file
|
|
checkpoints/audio_freematch.data-00000-of-00001
ADDED
Binary file (856 kB). View file
|
|
checkpoints/audio_freematch.index
ADDED
Binary file (518 Bytes). View file
|
|
checkpoints/audio_mixmatch.data-00000-of-00001
ADDED
Binary file (856 kB). View file
|
|
checkpoints/audio_mixmatch.index
ADDED
Binary file (518 Bytes). View file
|
|
models.py
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
"""Model definitions"""
|
2 |
import tensorflow as tf
|
3 |
-
from transformers import TFAutoModel
|
|
|
4 |
|
5 |
|
6 |
class FixMatchTune(tf.keras.Model):
|
@@ -82,4 +83,73 @@ class LPModel(tf.keras.Model):
|
|
82 |
|
83 |
embeds = self.bert(input_ids=ids, attention_mask=mask,training=training).pooler_output
|
84 |
|
85 |
-
return self.cls_head(embeds, training=training)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
"""Model definitions"""
|
2 |
import tensorflow as tf
|
3 |
+
from transformers import TFAutoModel, TFViTModel
|
4 |
+
from kapre.augmentation import SpecAugment
|
5 |
|
6 |
|
7 |
class FixMatchTune(tf.keras.Model):
|
|
|
83 |
|
84 |
embeds = self.bert(input_ids=ids, attention_mask=mask,training=training).pooler_output
|
85 |
|
86 |
+
return self.cls_head(embeds, training=training)
|
87 |
+
|
88 |
+
class AudioFixMatch(tf.keras.Model):
|
89 |
+
def __init__(self, encoder_name='google/vit-base-patch16-224', num_classes=6, **kwargs):
|
90 |
+
super(AudioFixMatch, self).__init__(**kwargs)
|
91 |
+
self.vit = TFViTModel.from_pretrained(encoder_name)
|
92 |
+
self.num_classes = num_classes
|
93 |
+
self.cls_head = tf.keras.Sequential([
|
94 |
+
tf.keras.layers.Dense(256,activation="relu"),
|
95 |
+
tf.keras.layers.Dropout(0.2),
|
96 |
+
tf.keras.layers.Dense(64,activation="relu"),
|
97 |
+
tf.keras.layers.Dense(self.num_classes, activation="softmax")
|
98 |
+
])
|
99 |
+
self.strong_augment = SpecAugment(
|
100 |
+
freq_mask_param=8,
|
101 |
+
time_mask_param=8,
|
102 |
+
n_freq_masks=2,
|
103 |
+
n_time_masks=2,
|
104 |
+
mask_value=0.0,
|
105 |
+
data_format="channels_first"
|
106 |
+
)
|
107 |
+
self.weak_augment = SpecAugment(
|
108 |
+
freq_mask_param=2,
|
109 |
+
time_mask_param=2,
|
110 |
+
n_freq_masks=2,
|
111 |
+
n_time_masks=2,
|
112 |
+
mask_value=0.0,
|
113 |
+
data_format="channels_first"
|
114 |
+
)
|
115 |
+
|
116 |
+
def call(self, inputs, training):
|
117 |
+
|
118 |
+
strong = self.strong_augment(inputs[:,0,:,:][:,tf.newaxis,:,:],training=training)
|
119 |
+
weak = self.weak_augment(inputs[:,0,:,:][:,tf.newaxis,:,:],training=training)
|
120 |
+
embeds_strong = self.vit(pixel_values=tf.repeat(strong,3,axis=1),training=training).pooler_output
|
121 |
+
embeds_weak = self.vit(pixel_values=tf.repeat(weak,3,axis=1),training=training).pooler_output
|
122 |
+
|
123 |
+
return self.cls_head(embeds_weak), self.cls_head(embeds_strong)
|
124 |
+
|
125 |
+
class AudioMixMatch(tf.keras.Model):
|
126 |
+
def __init__(self, encoder_name='google/vit-base-patch16-224', num_classes=6, **kwargs):
|
127 |
+
super(AudioMixMatch, self).__init__(**kwargs)
|
128 |
+
self.vit = TFViTModel.from_pretrained(encoder_name)
|
129 |
+
self.num_classes = num_classes
|
130 |
+
self.cls_head = tf.keras.Sequential([
|
131 |
+
tf.keras.layers.Dense(256,activation="relu"),
|
132 |
+
tf.keras.layers.Dropout(0.2),
|
133 |
+
tf.keras.layers.Dense(64,activation="relu"),
|
134 |
+
tf.keras.layers.Dense(self.num_classes, activation="softmax")
|
135 |
+
])
|
136 |
+
self.augment = SpecAugment(
|
137 |
+
freq_mask_param=3,
|
138 |
+
time_mask_param=3,
|
139 |
+
n_freq_masks=2,
|
140 |
+
n_time_masks=2,
|
141 |
+
mask_value=0.0,
|
142 |
+
data_format="channels_first"
|
143 |
+
)
|
144 |
+
|
145 |
+
def aug_features(self, inputs, training):
|
146 |
+
aug = self.augment(inputs[:,0,:,:][:,tf.newaxis,:,:],training=training)
|
147 |
+
embeds = self.vit(pixel_values=tf.repeat(aug,3,axis=1),training=training).pooler_output
|
148 |
+
return embeds
|
149 |
+
|
150 |
+
def call(self, inputs, training):
|
151 |
+
|
152 |
+
aug = self.augment(inputs[:,0,:,:][:,tf.newaxis,:,:],training=training)
|
153 |
+
embeds = self.vit(pixel_values=tf.repeat(aug,3,axis=1),training=training).pooler_output
|
154 |
+
|
155 |
+
return self.cls_head(embeds)
|