Merge pull request #19 from jpdefrutos/clean_repo
Browse files
DeepDeformationMapRegistration/main.py
ADDED
|
@@ -0,0 +1,418 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import datetime
|
| 2 |
+
import os, sys
|
| 3 |
+
import shutil
|
| 4 |
+
import re
|
| 5 |
+
import argparse
|
| 6 |
+
import subprocess
|
| 7 |
+
import logging
|
| 8 |
+
import time
|
| 9 |
+
import warnings
|
| 10 |
+
|
| 11 |
+
# currentdir = os.path.dirname(os.path.realpath(__file__))
|
| 12 |
+
# parentdir = os.path.dirname(currentdir)
|
| 13 |
+
# sys.path.append(parentdir) # PYTHON > 3.3 does not allow relative referencing
|
| 14 |
+
|
| 15 |
+
import tensorflow as tf
|
| 16 |
+
|
| 17 |
+
import numpy as np
|
| 18 |
+
import nibabel as nib
|
| 19 |
+
from scipy.ndimage import gaussian_filter, zoom
|
| 20 |
+
from skimage.measure import regionprops
|
| 21 |
+
import SimpleITK as sitk
|
| 22 |
+
|
| 23 |
+
import voxelmorph as vxm
|
| 24 |
+
from voxelmorph.tf.layers import SpatialTransformer
|
| 25 |
+
|
| 26 |
+
import DeepDeformationMapRegistration.utils.constants as C
|
| 27 |
+
from DeepDeformationMapRegistration.utils.nifti_utils import save_nifti
|
| 28 |
+
from DeepDeformationMapRegistration.losses import StructuralSimilarity_simplified, NCC
|
| 29 |
+
from DeepDeformationMapRegistration.ms_ssim_tf import MultiScaleStructuralSimilarity
|
| 30 |
+
from DeepDeformationMapRegistration.utils.operators import min_max_norm
|
| 31 |
+
from DeepDeformationMapRegistration.utils.misc import resize_displacement_map
|
| 32 |
+
from DeepDeformationMapRegistration.utils.model_utils import get_models_path, load_model
|
| 33 |
+
from DeepDeformationMapRegistration.utils.logger import LOGGER
|
| 34 |
+
|
| 35 |
+
from importlib.util import find_spec
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
def rigidly_align_images(image_1: str, image_2: str) -> nib.Nifti1Image:
|
| 39 |
+
"""
|
| 40 |
+
Rigidly align the images and resample to the same array size, to the dense displacement map is correct
|
| 41 |
+
|
| 42 |
+
"""
|
| 43 |
+
def resample_to_isotropic(image: sitk.Image) -> sitk.Image:
|
| 44 |
+
spacing = image.GetSpacing()
|
| 45 |
+
spacing = min(spacing)
|
| 46 |
+
resamp_spacing = [spacing] * image.GetDimension()
|
| 47 |
+
resamp_size = [int(round(or_size*or_space/spacing)) for or_size, or_space in zip(image.GetSize(), image.GetSpacing())]
|
| 48 |
+
return sitk.Resample(image,
|
| 49 |
+
resamp_size, sitk.Transform(), sitk.sitkLinear,image.GetOrigin(),
|
| 50 |
+
resamp_spacing, image.GetDirection(), 0, image.GetPixelID())
|
| 51 |
+
|
| 52 |
+
image_1 = sitk.ReadImage(image_1, sitk.sitkFloat32)
|
| 53 |
+
image_2 = sitk.ReadImage(image_2, sitk.sitkFloat32)
|
| 54 |
+
|
| 55 |
+
image_1 = resample_to_isotropic(image_1)
|
| 56 |
+
image_2 = resample_to_isotropic(image_2)
|
| 57 |
+
|
| 58 |
+
rig_reg = sitk.ImageRegistrationMethod()
|
| 59 |
+
rig_reg.SetMetricAsMeanSquares()
|
| 60 |
+
rig_reg.SetOptimizerAsRegularStepGradientDescent(4.0, 0.01, 200)
|
| 61 |
+
rig_reg.SetInitialTransform(sitk.TranslationTransform(image_1.GetDimension()))
|
| 62 |
+
rig_reg.SetInterpolator(sitk.sitkLinear)
|
| 63 |
+
|
| 64 |
+
print('Running rigid registration...')
|
| 65 |
+
rig_reg_trf = rig_reg.Execute(image_1, image_2)
|
| 66 |
+
print('Rigid registration completed\n----------------------------')
|
| 67 |
+
print('Optimizer stop condition: {}'.format(rig_reg.GetOptimizerStopConditionDescription()))
|
| 68 |
+
print('Iteration: {}'.format(rig_reg.GetOptimizerIteration()))
|
| 69 |
+
print('Metric value: {}'.format(rig_reg.GetMetricValue()))
|
| 70 |
+
|
| 71 |
+
resampler = sitk.ResampleImageFilter()
|
| 72 |
+
resampler.SetReferenceImage(image_1)
|
| 73 |
+
resampler.SetInterpolator(sitk.sitkLinear)
|
| 74 |
+
resampler.SetDefaultPixelValue(100)
|
| 75 |
+
resampler.SetTransform(rig_reg_trf)
|
| 76 |
+
|
| 77 |
+
image_2 = resampler.Execute(image_2)
|
| 78 |
+
|
| 79 |
+
# TODO: Build a common image to hold both image_1 and image_2
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
def pad_images(image_1: nib.Nifti1Image, image_2: nib.Nifti1Image):
|
| 83 |
+
"""
|
| 84 |
+
Align image_1 and image_2 by the top left corner and pad them to the largest dimensions along the three axes
|
| 85 |
+
"""
|
| 86 |
+
joint_image_shape = np.maximum(image_1.shape, image_2.shape)
|
| 87 |
+
pad_1 = [[0, p] for p in joint_image_shape - image_1.shape]
|
| 88 |
+
pad_2 = [[0, p] for p in joint_image_shape - image_2.shape]
|
| 89 |
+
image_1_padded = np.pad(image_1.dataobj, pad_1, mode='edge').astype(np.float32)
|
| 90 |
+
image_2_padded = np.pad(image_2.dataobj, pad_2, mode='edge').astype(np.float32)
|
| 91 |
+
|
| 92 |
+
return image_1_padded, image_2_padded
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
def pad_crop_to_original_shape(crop_image: np.asarray, output_shape: [tuple, np.asarray], top_left_corner: [tuple, np.asarray]):
|
| 96 |
+
"""
|
| 97 |
+
Pad crop_image so the output image has output_shape with the crop where it originally was found
|
| 98 |
+
"""
|
| 99 |
+
output_shape = np.asarray(output_shape)
|
| 100 |
+
top_left_corner = np.asarray(top_left_corner)
|
| 101 |
+
|
| 102 |
+
pad = [[c, o - (c + i)] for c, o, i in zip(top_left_corner[:3], output_shape[:3], crop_image.shape[:3])]
|
| 103 |
+
if len(crop_image.shape) == 4:
|
| 104 |
+
pad += [[0, 0]]
|
| 105 |
+
return np.pad(crop_image, pad, mode='constant', constant_values=np.min(crop_image)).astype(crop_image.dtype)
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
def pad_displacement_map(disp_map: np.ndarray, crop_min: np.ndarray, crop_max: np.ndarray, output_shape: (np.ndarray, list)) -> np.ndarray:
|
| 109 |
+
ret_val = disp_map
|
| 110 |
+
if np.all([d != i for d, i in zip(disp_map.shape[:3], output_shape)]):
|
| 111 |
+
padding = [[crop_min[i], max(0, output_shape[i] - crop_max[i])] for i in range(3)] + [[0, 0]]
|
| 112 |
+
ret_val = np.pad(disp_map, padding, mode='constant')
|
| 113 |
+
return ret_val
|
| 114 |
+
|
| 115 |
+
|
| 116 |
+
def run_livermask(input_image_path, outputdir, filename: str = 'segmentation') -> np.ndarray:
|
| 117 |
+
assert find_spec('livermask'), 'Livermask is not available'
|
| 118 |
+
LOGGER.info('Getting parenchyma segmentations...')
|
| 119 |
+
shutil.copy2(input_image_path, os.path.join(outputdir, f'{filename}.nii.gz'))
|
| 120 |
+
livermask_cmd = "{} -m livermask.livermask --input {} --output {}".format(sys.executable,
|
| 121 |
+
input_image_path,
|
| 122 |
+
os.path.join(outputdir,
|
| 123 |
+
f'{filename}.nii.gz'))
|
| 124 |
+
subprocess.run(livermask_cmd)
|
| 125 |
+
LOGGER.info('done!')
|
| 126 |
+
segmentation_path = os.path.join(outputdir, f'{filename}.nii.gz')
|
| 127 |
+
return np.asarray(nib.load(segmentation_path).dataobj, dtype=int)
|
| 128 |
+
|
| 129 |
+
|
| 130 |
+
def debug_save_image(image: (np.ndarray, nib.Nifti1Image), filename: str, outputdir: str, debug: bool = True):
|
| 131 |
+
def disp_map_modulus(disp_map, scale: float = None):
|
| 132 |
+
disp_map_mod = np.sqrt(np.sum(np.power(disp_map, 2), -1))
|
| 133 |
+
if scale:
|
| 134 |
+
min_disp = np.min(disp_map_mod)
|
| 135 |
+
max_disp = np.max(disp_map_mod)
|
| 136 |
+
disp_map_mod = disp_map_mod - min_disp / (max_disp - min_disp)
|
| 137 |
+
disp_map_mod *= scale
|
| 138 |
+
LOGGER.debug('Scaled displacement map to [0., 1.] range')
|
| 139 |
+
return disp_map_mod
|
| 140 |
+
|
| 141 |
+
if debug:
|
| 142 |
+
os.makedirs(os.path.join(outputdir, 'debug'), exist_ok=True)
|
| 143 |
+
if image.shape[-1] > 1:
|
| 144 |
+
image = disp_map_modulus(image, 1.)
|
| 145 |
+
save_nifti(image, os.path.join(outputdir, 'debug', filename+'.nii.gz'), verbose=False)
|
| 146 |
+
LOGGER.debug(f'Saved {filename} at {os.path.join(outputdir, filename + ".nii.gz")}')
|
| 147 |
+
|
| 148 |
+
|
| 149 |
+
def get_roi(image_filepath: str,
|
| 150 |
+
compute_segmentation: bool,
|
| 151 |
+
outputdir: str,
|
| 152 |
+
filename_filepath: str = 'segmentation',
|
| 153 |
+
segmentation_file: str = None,
|
| 154 |
+
debug: bool = False) -> list:
|
| 155 |
+
segm = None
|
| 156 |
+
if segmentation_file is None and compute_segmentation:
|
| 157 |
+
LOGGER.info(f'Computing segmentation using livermask. Only for liver in abdominal CTs')
|
| 158 |
+
try:
|
| 159 |
+
segm = run_livermask(image_filepath, outputdir, filename_filepath)
|
| 160 |
+
LOGGER.info(f'Loaded segmentation using livermask from {os.path.join(outputdir, filename_filepath)}')
|
| 161 |
+
except (AssertionError, FileNotFoundError) as er:
|
| 162 |
+
LOGGER.warning(er)
|
| 163 |
+
LOGGER.warning('No segmentation provided! Using the full volume')
|
| 164 |
+
pass
|
| 165 |
+
elif segmentation_file is not None:
|
| 166 |
+
segm = np.asarray(nib.load(segmentation_file).dataobj, dtype=int)
|
| 167 |
+
LOGGER.info(f'Loaded fixed segmentation from {segmentation_file}')
|
| 168 |
+
else:
|
| 169 |
+
LOGGER.warning('No segmentation provided! Using the full volume')
|
| 170 |
+
if segm is not None:
|
| 171 |
+
segm[segm > 0] = 1
|
| 172 |
+
ret_val = regionprops(segm)[0].bbox
|
| 173 |
+
debug_save_image(segm, f'img_1_{filename_filepath}', outputdir, debug)
|
| 174 |
+
else:
|
| 175 |
+
ret_val = [0, 0, 0] + list(nib.load(image_filepath).shape[:3])
|
| 176 |
+
LOGGER.debug(f'ROI found at coordinates {ret_val}')
|
| 177 |
+
return ret_val
|
| 178 |
+
|
| 179 |
+
|
| 180 |
+
def main():
|
| 181 |
+
parser = argparse.ArgumentParser()
|
| 182 |
+
parser.add_argument('-f', '--fixed', type=str, help='Path to fixed image file (NIfTI)')
|
| 183 |
+
parser.add_argument('-m', '--moving', type=str, help='Path to moving segmentation image file (NIfTI)', default=None)
|
| 184 |
+
parser.add_argument('-F', '--fixedsegm', type=str, help='Path to fixed image segmentation file(NIfTI)',
|
| 185 |
+
default=None)
|
| 186 |
+
parser.add_argument('-M', '--movingsegm', type=str, help='Path to moving image file (NIfTI)')
|
| 187 |
+
parser.add_argument('-o', '--outputdir', type=str, help='Output directory', default='./Registration_output')
|
| 188 |
+
parser.add_argument('-a', '--anatomy', type=str, help='Anatomical structure: liver (L) (Default) or brain (B)',
|
| 189 |
+
default='L')
|
| 190 |
+
parser.add_argument('-s', '--make-segmentation', action='store_true', help='Try to create a segmentation for liver in CT images', default=False)
|
| 191 |
+
parser.add_argument('--gpu', type=int,
|
| 192 |
+
help='In case of multi-GPU systems, limits the execution to the defined GPU number',
|
| 193 |
+
default=None)
|
| 194 |
+
parser.add_argument('--model', type=str, help='Which model to use: BL-N, BL-S, SG-ND, SG-NSD, UW-NSD, UW-NSDH',
|
| 195 |
+
default='UW-NSD')
|
| 196 |
+
parser.add_argument('-d', '--debug', action='store_true', help='Produce additional debug information', default=False)
|
| 197 |
+
parser.add_argument('-c', '--clear-outputdir', action='store_true', help='Clear output folder if this has content', default=False)
|
| 198 |
+
parser.add_argument('--original-resolution', action='store_true',
|
| 199 |
+
help='Re-scale the displacement map to the originla resolution and apply it to the original moving image. WARNING: longer processing time.',
|
| 200 |
+
default=False)
|
| 201 |
+
parser.add_argument('--save-displacement-map', action='store_true', help='Save the displacement map. An NPZ file will be created.',
|
| 202 |
+
default=False)
|
| 203 |
+
args = parser.parse_args()
|
| 204 |
+
|
| 205 |
+
assert os.path.exists(args.fixed), 'Fixed image not found'
|
| 206 |
+
assert os.path.exists(args.moving), 'Moving image not found'
|
| 207 |
+
assert args.model in C.MODEL_TYPES.keys(), 'Invalid model type'
|
| 208 |
+
assert args.anatomy in C.ANATOMIES.keys(), 'Invalid anatomy option'
|
| 209 |
+
if os.path.exists(args.outputdir) and len(os.listdir(args.outputdir)):
|
| 210 |
+
if args.clear_outputdir:
|
| 211 |
+
erase = 'y'
|
| 212 |
+
else:
|
| 213 |
+
erase = input('Output directory is not empty, erase content? (y/n)')
|
| 214 |
+
if erase.lower() in ['y', 'yes']:
|
| 215 |
+
shutil.rmtree(args.outputdir, ignore_errors=True)
|
| 216 |
+
print('Erased directory: ' + args.outputdir)
|
| 217 |
+
elif erase.lower() in ['n', 'no']:
|
| 218 |
+
args.outputdir = os.path.join(args.outputdir, datetime.datetime.now().strftime('%H%M%S_%Y%m%d'))
|
| 219 |
+
print('New output directory: ' + args.outputdir)
|
| 220 |
+
os.makedirs(args.outputdir, exist_ok=True)
|
| 221 |
+
|
| 222 |
+
log_format = '%(asctime)s [%(levelname)s]:\t%(message)s'
|
| 223 |
+
logging.basicConfig(filename=os.path.join(args.outputdir, 'log.log'), filemode='w',
|
| 224 |
+
format=log_format, datefmt='%Y-%m-%d %H:%M:%S')
|
| 225 |
+
|
| 226 |
+
stdout_handler = logging.StreamHandler(sys.stdout)
|
| 227 |
+
stdout_handler.setFormatter(logging.Formatter(log_format, datefmt='%Y-%m-%d %H:%M:%S'))
|
| 228 |
+
LOGGER.addHandler(stdout_handler)
|
| 229 |
+
if isinstance(args.gpu, int):
|
| 230 |
+
os.environ['CUDA_DEVICE_ORDER'] = 'PCI_BUS_ID'
|
| 231 |
+
os.environ['CUDA_VISIBLE_DEVICES'] = str(args.gpu) # Check availability before running using 'nvidia-smi'
|
| 232 |
+
LOGGER.setLevel('INFO')
|
| 233 |
+
if args.debug:
|
| 234 |
+
LOGGER.setLevel('DEBUG')
|
| 235 |
+
LOGGER.debug('DEBUG MODE ENABLED')
|
| 236 |
+
|
| 237 |
+
if args.original_resolution:
|
| 238 |
+
LOGGER.info('The results will be rescaled back to the original image resolution. '
|
| 239 |
+
'Expect longer post-processing times.')
|
| 240 |
+
else:
|
| 241 |
+
LOGGER.info(f'The results will NOT be rescaled. Output shape will be {C.IMG_SHAPE[:3]}.')
|
| 242 |
+
|
| 243 |
+
# Load the file and preprocess it
|
| 244 |
+
LOGGER.info('Loading image files')
|
| 245 |
+
fixed_image_or = nib.load(args.fixed)
|
| 246 |
+
moving_image_or = nib.load(args.moving)
|
| 247 |
+
moving_image_header = moving_image_or.header.copy()
|
| 248 |
+
image_shape_or = np.asarray(fixed_image_or.shape)
|
| 249 |
+
fixed_image_or, moving_image_or = pad_images(fixed_image_or, moving_image_or)
|
| 250 |
+
fixed_image_or = fixed_image_or[..., np.newaxis] # add channel dim
|
| 251 |
+
moving_image_or = moving_image_or[..., np.newaxis] # add channel dim
|
| 252 |
+
debug_save_image(fixed_image_or, 'img_0_loaded_fix_image', args.outputdir, args.debug)
|
| 253 |
+
debug_save_image(moving_image_or, 'img_0_loaded_moving_image', args.outputdir, args.debug)
|
| 254 |
+
|
| 255 |
+
# TF stuff
|
| 256 |
+
LOGGER.info('Setting up configuration')
|
| 257 |
+
config = tf.compat.v1.ConfigProto() # device_count={'GPU':0})
|
| 258 |
+
config.gpu_options.allow_growth = True
|
| 259 |
+
config.log_device_placement = False ## to log device placement (on which device the operation ran)
|
| 260 |
+
config.allow_soft_placement = True
|
| 261 |
+
|
| 262 |
+
sess = tf.compat.v1.Session(config=config)
|
| 263 |
+
tf.compat.v1.keras.backend.set_session(sess)
|
| 264 |
+
|
| 265 |
+
# Preprocess data
|
| 266 |
+
# 1. Run Livermask to get the mask around the liver in both the fixed and moving image
|
| 267 |
+
LOGGER.info('Getting ROI')
|
| 268 |
+
fixed_segm_bbox = get_roi(args.fixed, args.make_segmentation, args.outputdir,
|
| 269 |
+
'fixed_segmentation', args.fixedsegm, args.debug)
|
| 270 |
+
moving_segm_bbox = get_roi(args.moving, args.make_segmentation, args.outputdir,
|
| 271 |
+
'moving_segmentation', args.movingsegm, args.debug)
|
| 272 |
+
|
| 273 |
+
crop_min = np.amin(np.vstack([fixed_segm_bbox[:3], moving_segm_bbox[:3]]), axis=0)
|
| 274 |
+
crop_max = np.amax(np.vstack([fixed_segm_bbox[3:], moving_segm_bbox[3:]]), axis=0)
|
| 275 |
+
|
| 276 |
+
# 2.2 Crop the fixed and moving images using such boxes
|
| 277 |
+
fixed_image = fixed_image_or[crop_min[0]: crop_max[0],
|
| 278 |
+
crop_min[1]: crop_max[1],
|
| 279 |
+
crop_min[2]: crop_max[2], ...]
|
| 280 |
+
debug_save_image(fixed_image, 'img_2_cropped_fixed_image', args.outputdir, args.debug)
|
| 281 |
+
|
| 282 |
+
moving_image = moving_image_or[crop_min[0]: crop_max[0],
|
| 283 |
+
crop_min[1]: crop_max[1],
|
| 284 |
+
crop_min[2]: crop_max[2], ...]
|
| 285 |
+
debug_save_image(moving_image, 'img_2_cropped_moving_image', args.outputdir, args.debug)
|
| 286 |
+
|
| 287 |
+
image_shape_crop = fixed_image.shape
|
| 288 |
+
# 2.3 Resize the images to the expected input size
|
| 289 |
+
zoom_factors = np.asarray(C.IMG_SHAPE) / np.asarray(image_shape_crop)
|
| 290 |
+
fixed_image = zoom(fixed_image, zoom_factors)
|
| 291 |
+
moving_image = zoom(moving_image, zoom_factors)
|
| 292 |
+
fixed_image = min_max_norm(fixed_image)
|
| 293 |
+
moving_image = min_max_norm(moving_image)
|
| 294 |
+
debug_save_image(fixed_image, 'img_3_preproc_fixed_image', args.outputdir, args.debug)
|
| 295 |
+
debug_save_image(moving_image, 'img_3_preproc_moving_image', args.outputdir, args.debug)
|
| 296 |
+
|
| 297 |
+
# 3. Build the whole graph
|
| 298 |
+
LOGGER.info('Building TF graph')
|
| 299 |
+
### METRICS GRAPH ###
|
| 300 |
+
fix_img_ph = tf.compat.v1.placeholder(tf.float32, (1, None, None, None, 1), name='fix_img')
|
| 301 |
+
pred_img_ph = tf.compat.v1.placeholder(tf.float32, (1, None, None, None, 1), name='pred_img')
|
| 302 |
+
|
| 303 |
+
ssim_tf = StructuralSimilarity_simplified(patch_size=2, dim=3, dynamic_range=1.).metric(fix_img_ph, pred_img_ph)
|
| 304 |
+
ncc_tf = NCC(image_shape_or).metric(fix_img_ph, pred_img_ph)
|
| 305 |
+
mse_tf = vxm.losses.MSE().loss(fix_img_ph, pred_img_ph)
|
| 306 |
+
ms_ssim_tf = MultiScaleStructuralSimilarity(max_val=1., filter_size=3).metric(fix_img_ph, pred_img_ph)
|
| 307 |
+
|
| 308 |
+
LOGGER.info(f'Getting model: {"Brain" if args.anatomy == "B" else "Liver"} -> {args.model}')
|
| 309 |
+
MODEL_FILE = get_models_path(args.anatomy, args.model, os.getcwd()) # MODELS_FILE[args.anatomy][args.model]
|
| 310 |
+
|
| 311 |
+
network, registration_model = load_model(MODEL_FILE, False, True)
|
| 312 |
+
deb_model = network.apply_transform
|
| 313 |
+
|
| 314 |
+
LOGGER.info('Computing registration')
|
| 315 |
+
with sess.as_default():
|
| 316 |
+
if args.debug:
|
| 317 |
+
registration_model.summary(line_length=C.SUMMARY_LINE_LENGTH)
|
| 318 |
+
LOGGER.info('Computing displacement map...')
|
| 319 |
+
time_disp_map_start = time.time()
|
| 320 |
+
# disp_map = registration_model.predict([moving_image[np.newaxis, ...], fixed_image[np.newaxis, ...]])
|
| 321 |
+
p, disp_map = network.predict([moving_image[np.newaxis, ...], fixed_image[np.newaxis, ...]])
|
| 322 |
+
time_disp_map_end = time.time()
|
| 323 |
+
LOGGER.info(f'\t... done ({time_disp_map_end - time_disp_map_start})')
|
| 324 |
+
disp_map = np.squeeze(disp_map)
|
| 325 |
+
debug_save_image(np.squeeze(disp_map), 'disp_map_0_raw', args.outputdir, args.debug)
|
| 326 |
+
debug_save_image(p[0, ...], 'img_4_net_pred_image', args.outputdir, args.debug)
|
| 327 |
+
# pred_image = min_max_norm(pred_image)
|
| 328 |
+
# pred_image_isot = zoom(pred_image[0, ...], zoom_factors, order=3)[np.newaxis, ...]
|
| 329 |
+
# fixed_image_isot = zoom(fixed_image[0, ...], zoom_factors, order=3)[np.newaxis, ...]
|
| 330 |
+
|
| 331 |
+
LOGGER.info('Applying displacement map...')
|
| 332 |
+
time_pred_img_start = time.time()
|
| 333 |
+
pred_image = SpatialTransformer(interp_method='linear', indexing='ij', single_transform=False)([moving_image[np.newaxis, ...], disp_map[np.newaxis, ...]]).eval()
|
| 334 |
+
time_pred_img_end = time.time()
|
| 335 |
+
LOGGER.info(f'\t... done ({time_pred_img_end - time_pred_img_start} s)')
|
| 336 |
+
pred_image = pred_image[0, ...]
|
| 337 |
+
|
| 338 |
+
if args.original_resolution:
|
| 339 |
+
LOGGER.info('Scaling predicted image...')
|
| 340 |
+
moving_image = moving_image_or
|
| 341 |
+
fixed_image = fixed_image_or
|
| 342 |
+
# disp_map = disp_map_or
|
| 343 |
+
pred_image = zoom(pred_image, 1/zoom_factors)
|
| 344 |
+
pred_image = pad_crop_to_original_shape(pred_image, fixed_image_or.shape, crop_min)
|
| 345 |
+
LOGGER.info('Done...')
|
| 346 |
+
|
| 347 |
+
LOGGER.info('Computing metrics...')
|
| 348 |
+
if args.original_resolution:
|
| 349 |
+
ssim, ncc, mse, ms_ssim = sess.run([ssim_tf, ncc_tf, mse_tf, ms_ssim_tf],
|
| 350 |
+
{'fix_img:0': fixed_image[np.newaxis,
|
| 351 |
+
crop_min[0]: crop_max[0],
|
| 352 |
+
crop_min[1]: crop_max[1],
|
| 353 |
+
crop_min[2]: crop_max[2],
|
| 354 |
+
...],
|
| 355 |
+
'pred_img:0': pred_image[np.newaxis,
|
| 356 |
+
crop_min[0]: crop_max[0],
|
| 357 |
+
crop_min[1]: crop_max[1],
|
| 358 |
+
crop_min[2]: crop_max[2],
|
| 359 |
+
...]}) # to only compare the deformed region!
|
| 360 |
+
else:
|
| 361 |
+
|
| 362 |
+
ssim, ncc, mse, ms_ssim = sess.run([ssim_tf, ncc_tf, mse_tf, ms_ssim_tf],
|
| 363 |
+
{'fix_img:0': fixed_image[np.newaxis, ...],
|
| 364 |
+
'pred_img:0': pred_image[np.newaxis, ...]})
|
| 365 |
+
ssim = np.mean(ssim)
|
| 366 |
+
ms_ssim = ms_ssim[0]
|
| 367 |
+
|
| 368 |
+
if args.original_resolution:
|
| 369 |
+
save_nifti(pred_image, os.path.join(args.outputdir, 'pred_image.nii.gz'), header=moving_image_header)
|
| 370 |
+
else:
|
| 371 |
+
save_nifti(pred_image, os.path.join(args.outputdir, 'pred_image.nii.gz'))
|
| 372 |
+
save_nifti(fixed_image, os.path.join(args.outputdir, 'fixed_image.nii.gz'))
|
| 373 |
+
save_nifti(moving_image, os.path.join(args.outputdir, 'moving_image.nii.gz'))
|
| 374 |
+
|
| 375 |
+
if args.save_displacement_map or args.debug:
|
| 376 |
+
if args.original_resolution:
|
| 377 |
+
# Up sample the displacement map to the full res
|
| 378 |
+
LOGGER.info('Scaling displacement map...')
|
| 379 |
+
trf = np.eye(4)
|
| 380 |
+
np.fill_diagonal(trf, 1 / zoom_factors)
|
| 381 |
+
disp_map = resize_displacement_map(disp_map, None, trf, moving_image_header.get_zooms())
|
| 382 |
+
debug_save_image(disp_map, 'disp_map_1_upsampled', args.outputdir, args.debug)
|
| 383 |
+
disp_map = pad_displacement_map(disp_map, crop_min, crop_max, image_shape_or)
|
| 384 |
+
debug_save_image(np.squeeze(disp_map), 'disp_map_2_padded', args.outputdir, args.debug)
|
| 385 |
+
disp_map = gaussian_filter(disp_map, 5)
|
| 386 |
+
debug_save_image(np.squeeze(disp_map), 'disp_map_3_smoothed', args.outputdir, args.debug)
|
| 387 |
+
LOGGER.info('\t... done')
|
| 388 |
+
if args.debug:
|
| 389 |
+
np.savez_compressed(os.path.join(args.outputdir, 'displacement_map.npz'), disp_map)
|
| 390 |
+
else:
|
| 391 |
+
np.savez_compressed(os.path.join(os.path.join(args.outputdir, 'debug'), 'displacement_map.npz'), disp_map)
|
| 392 |
+
LOGGER.info('Predicted image and displacement map saved in: '.format(args.outputdir))
|
| 393 |
+
LOGGER.info(f'Displacement map prediction time: {time_disp_map_end - time_disp_map_start} s')
|
| 394 |
+
LOGGER.info(f'Predicted image time: {time_pred_img_end - time_pred_img_start} s')
|
| 395 |
+
|
| 396 |
+
LOGGER.info('Similarity metrics\n------------------')
|
| 397 |
+
LOGGER.info('SSIM: {:.03f}'.format(ssim))
|
| 398 |
+
LOGGER.info('NCC: {:.03f}'.format(ncc))
|
| 399 |
+
LOGGER.info('MSE: {:.03f}'.format(mse))
|
| 400 |
+
LOGGER.info('MS SSIM: {:.03f}'.format(ms_ssim))
|
| 401 |
+
|
| 402 |
+
# ssim, ncc, mse, ms_ssim = sess.run([ssim_tf, ncc_tf, mse_tf, ms_ssim_tf],
|
| 403 |
+
# {'fix_img:0': fixed_image[np.newaxis, ...], 'pred_img:0': p})
|
| 404 |
+
# ssim = np.mean(ssim)
|
| 405 |
+
# ms_ssim = ms_ssim[0]
|
| 406 |
+
# LOGGER.info('\nSimilarity metrics (ROI)\n------------------')
|
| 407 |
+
# LOGGER.info('SSIM: {:.03f}'.format(ssim))
|
| 408 |
+
# LOGGER.info('NCC: {:.03f}'.format(ncc))
|
| 409 |
+
# LOGGER.info('MSE: {:.03f}'.format(mse))
|
| 410 |
+
# LOGGER.info('MS SSIM: {:.03f}'.format(ms_ssim))
|
| 411 |
+
|
| 412 |
+
del registration_model
|
| 413 |
+
LOGGER.info('Done')
|
| 414 |
+
exit(0)
|
| 415 |
+
|
| 416 |
+
|
| 417 |
+
if __name__ == '__main__':
|
| 418 |
+
main()
|
DeepDeformationMapRegistration/networks.py
CHANGED
|
@@ -1,9 +1,9 @@
|
|
| 1 |
import os, sys
|
| 2 |
-
currentdir = os.path.dirname(os.path.realpath(__file__))
|
| 3 |
-
parentdir = os.path.dirname(currentdir)
|
| 4 |
-
sys.path.append(parentdir) # PYTHON > 3.3 does not allow relative referencing
|
| 5 |
-
|
| 6 |
-
PYCHARM_EXEC = os.getenv('PYCHARM_EXEC') == 'True'
|
| 7 |
|
| 8 |
import tensorflow as tf
|
| 9 |
import voxelmorph as vxm
|
|
|
|
| 1 |
import os, sys
|
| 2 |
+
# currentdir = os.path.dirname(os.path.realpath(__file__))
|
| 3 |
+
# parentdir = os.path.dirname(currentdir)
|
| 4 |
+
# sys.path.append(parentdir) # PYTHON > 3.3 does not allow relative referencing
|
| 5 |
+
#
|
| 6 |
+
# PYCHARM_EXEC = os.getenv('PYCHARM_EXEC') == 'True'
|
| 7 |
|
| 8 |
import tensorflow as tf
|
| 9 |
import voxelmorph as vxm
|
DeepDeformationMapRegistration/utils/constants.py
CHANGED
|
@@ -30,7 +30,7 @@ PRED_IMG_GT = 1
|
|
| 30 |
DISP_VECT_GT = 2
|
| 31 |
DISP_VECT_LOC_GT = 3
|
| 32 |
|
| 33 |
-
IMG_SIZE =
|
| 34 |
IMG_SHAPE = (IMG_SIZE, IMG_SIZE, IMG_SIZE, 1) # (IMG_SIZE, IMG_SIZE, 1)
|
| 35 |
DISP_MAP_SHAPE = (IMG_SIZE, IMG_SIZE, IMG_SIZE, 3)
|
| 36 |
BATCH_SHAPE = (None, IMG_SIZE, IMG_SIZE, IMG_SIZE, 2) # Expected batch shape by the network
|
|
@@ -196,8 +196,8 @@ DROPOUT = True
|
|
| 196 |
DROPOUT_RATE = 0.2
|
| 197 |
MAX_DATA_SIZE = (1000, 1000, 1)
|
| 198 |
PLATEAU_THR = 0.01 # A slope between +-PLATEAU_THR will be considered a plateau for the LR updating function
|
| 199 |
-
ENCODER_FILTERS = [
|
| 200 |
-
|
| 201 |
# SSIM
|
| 202 |
SSIM_FILTER_SIZE = 11 # Size of Gaussian filter
|
| 203 |
SSIM_FILTER_SIGMA = 1.5 # Width of Gaussian filter
|
|
@@ -205,7 +205,7 @@ SSIM_K1 = 0.01 # Def. 0.01
|
|
| 205 |
SSIM_K2 = 0.03 # Recommended values 0 < K2 < 0.4
|
| 206 |
MAX_VALUE = 1.0 # Maximum intensity values
|
| 207 |
|
| 208 |
-
#
|
| 209 |
EPS = 1e-8
|
| 210 |
EPS_tf = tf.constant(EPS, dtype=tf.float32)
|
| 211 |
LOG2 = tf.math.log(tf.constant(2, dtype=tf.float32))
|
|
@@ -523,3 +523,11 @@ GAMMA_AUGMENTATION = True
|
|
| 523 |
BRIGHTNESS_AUGMENTATION = False
|
| 524 |
NUM_CONTROL_PTS_AUG = 10
|
| 525 |
NUM_AUGMENTATIONS = 1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
DISP_VECT_GT = 2
|
| 31 |
DISP_VECT_LOC_GT = 3
|
| 32 |
|
| 33 |
+
IMG_SIZE = 128 # Assumed a square image
|
| 34 |
IMG_SHAPE = (IMG_SIZE, IMG_SIZE, IMG_SIZE, 1) # (IMG_SIZE, IMG_SIZE, 1)
|
| 35 |
DISP_MAP_SHAPE = (IMG_SIZE, IMG_SIZE, IMG_SIZE, 3)
|
| 36 |
BATCH_SHAPE = (None, IMG_SIZE, IMG_SIZE, IMG_SIZE, 2) # Expected batch shape by the network
|
|
|
|
| 196 |
DROPOUT_RATE = 0.2
|
| 197 |
MAX_DATA_SIZE = (1000, 1000, 1)
|
| 198 |
PLATEAU_THR = 0.01 # A slope between +-PLATEAU_THR will be considered a plateau for the LR updating function
|
| 199 |
+
ENCODER_FILTERS = [32, 64, 128, 256, 512, 1024]
|
| 200 |
+
DECODER_FILTERS = ENCODER_FILTERS[::-1] + [16, 16]
|
| 201 |
# SSIM
|
| 202 |
SSIM_FILTER_SIZE = 11 # Size of Gaussian filter
|
| 203 |
SSIM_FILTER_SIGMA = 1.5 # Width of Gaussian filter
|
|
|
|
| 205 |
SSIM_K2 = 0.03 # Recommended values 0 < K2 < 0.4
|
| 206 |
MAX_VALUE = 1.0 # Maximum intensity values
|
| 207 |
|
| 208 |
+
# Mathematics constants
|
| 209 |
EPS = 1e-8
|
| 210 |
EPS_tf = tf.constant(EPS, dtype=tf.float32)
|
| 211 |
LOG2 = tf.math.log(tf.constant(2, dtype=tf.float32))
|
|
|
|
| 523 |
BRIGHTNESS_AUGMENTATION = False
|
| 524 |
NUM_CONTROL_PTS_AUG = 10
|
| 525 |
NUM_AUGMENTATIONS = 1
|
| 526 |
+
|
| 527 |
+
ANATOMIES = {'L': 'liver', 'B': 'brain'}
|
| 528 |
+
MODEL_TYPES = {'BL-N': 'bl_ncc',
|
| 529 |
+
'BL-NS': 'bl_ncc_ssim',
|
| 530 |
+
'SG-ND': 'sg_ncc_dsc',
|
| 531 |
+
'SG-NSD': 'sg_ncc_ssim_dsc',
|
| 532 |
+
'UW-NSD': 'uw_ncc_ssim_dsc',
|
| 533 |
+
'UW-NSDH': 'uw_ncc_ssim_dsc_hd'}
|
DeepDeformationMapRegistration/utils/misc.py
CHANGED
|
@@ -167,7 +167,7 @@ def segmentation_cardinal_to_ohe(segmentation, labels_list: list = None):
|
|
| 167 |
return cpy
|
| 168 |
|
| 169 |
|
| 170 |
-
def resize_displacement_map(displacement_map: np.ndarray, dest_shape: [list, np.ndarray, tuple], scale_trf: np.ndarray=None):
|
| 171 |
if scale_trf is None:
|
| 172 |
scale_trf = scale_transformation(displacement_map.shape, dest_shape)
|
| 173 |
else:
|
|
@@ -175,11 +175,12 @@ def resize_displacement_map(displacement_map: np.ndarray, dest_shape: [list, np.
|
|
| 175 |
zoom_factors = scale_trf.diagonal()
|
| 176 |
# First scale the values, so we cut down the number of multiplications
|
| 177 |
dm_resized = np.copy(displacement_map)
|
| 178 |
-
dm_resized[..., 0] *= zoom_factors[0]
|
| 179 |
-
dm_resized[..., 1] *= zoom_factors[1]
|
| 180 |
-
dm_resized[..., 2] *= zoom_factors[2]
|
| 181 |
# Then rescale using zoom
|
| 182 |
dm_resized = zoom(dm_resized, zoom_factors)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 183 |
return dm_resized
|
| 184 |
|
| 185 |
|
|
|
|
| 167 |
return cpy
|
| 168 |
|
| 169 |
|
| 170 |
+
def resize_displacement_map(displacement_map: np.ndarray, dest_shape: [list, np.ndarray, tuple], scale_trf: np.ndarray = None, resolution_factors: [tuple, np.ndarray] = np.ones((3,))):
|
| 171 |
if scale_trf is None:
|
| 172 |
scale_trf = scale_transformation(displacement_map.shape, dest_shape)
|
| 173 |
else:
|
|
|
|
| 175 |
zoom_factors = scale_trf.diagonal()
|
| 176 |
# First scale the values, so we cut down the number of multiplications
|
| 177 |
dm_resized = np.copy(displacement_map)
|
|
|
|
|
|
|
|
|
|
| 178 |
# Then rescale using zoom
|
| 179 |
dm_resized = zoom(dm_resized, zoom_factors)
|
| 180 |
+
dm_resized *= np.asarray(resolution_factors)
|
| 181 |
+
# dm_resized[..., 0] *= resolution_factors[0]
|
| 182 |
+
# dm_resized[..., 1] *= resolution_factors[1]
|
| 183 |
+
# dm_resized[..., 2] *= resolution_factors[2]
|
| 184 |
return dm_resized
|
| 185 |
|
| 186 |
|
DeepDeformationMapRegistration/utils/model_utils.py
ADDED
|
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import requests
|
| 3 |
+
from datetime import datetime
|
| 4 |
+
from email.utils import parsedate_to_datetime, formatdate
|
| 5 |
+
from DeepDeformationMapRegistration.utils.constants import ANATOMIES, MODEL_TYPES, ENCODER_FILTERS, DECODER_FILTERS, IMG_SHAPE
|
| 6 |
+
import voxelmorph as vxm
|
| 7 |
+
from DeepDeformationMapRegistration.utils.logger import LOGGER
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
# taken from: https://lenon.dev/blog/downloading-and-caching-large-files-using-python/
|
| 11 |
+
def download(url, destination_file):
|
| 12 |
+
headers = {}
|
| 13 |
+
|
| 14 |
+
if os.path.exists(destination_file):
|
| 15 |
+
mtime = os.path.getmtime(destination_file)
|
| 16 |
+
headers["if-modified-since"] = formatdate(mtime, usegmt=True)
|
| 17 |
+
|
| 18 |
+
response = requests.get(url, headers=headers, stream=True)
|
| 19 |
+
response.raise_for_status()
|
| 20 |
+
|
| 21 |
+
if response.status_code == requests.codes.not_modified:
|
| 22 |
+
return
|
| 23 |
+
|
| 24 |
+
if response.status_code == requests.codes.ok:
|
| 25 |
+
with open(destination_file, "wb") as f:
|
| 26 |
+
for chunk in response.iter_content(chunk_size=1048576):
|
| 27 |
+
f.write(chunk)
|
| 28 |
+
|
| 29 |
+
last_modified = response.headers.get("last-modified")
|
| 30 |
+
if last_modified:
|
| 31 |
+
new_mtime = parsedate_to_datetime(last_modified).timestamp()
|
| 32 |
+
os.utime(destination_file, times=(datetime.now().timestamp(), new_mtime))
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
def get_models_path(anatomy: str, model_type: str, output_root_dir: str):
|
| 36 |
+
assert anatomy in ANATOMIES.keys(), 'Invalid anatomy'
|
| 37 |
+
assert model_type in MODEL_TYPES.keys(), 'Invalid model type'
|
| 38 |
+
anatomy = ANATOMIES[anatomy]
|
| 39 |
+
model_type = MODEL_TYPES[model_type]
|
| 40 |
+
url = 'https://github.com/jpdefrutos/DDMR/releases/download/trained_models_v0/' + anatomy + '_' + model_type + '.h5'
|
| 41 |
+
file_path = os.path.join(output_root_dir, 'models', anatomy, model_type + '.h5')
|
| 42 |
+
if not os.path.exists(file_path):
|
| 43 |
+
LOGGER.info(f'Model not found. Downloading from {url}... ')
|
| 44 |
+
os.makedirs(os.path.split(file_path)[0], exist_ok=True)
|
| 45 |
+
download(url, file_path)
|
| 46 |
+
LOGGER.info(f'... downloaded model. Stored in {file_path}')
|
| 47 |
+
else:
|
| 48 |
+
LOGGER.info(f'Found model: {file_path}')
|
| 49 |
+
return file_path
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
def load_model(weights_file_path: str, trainable: bool = False, return_registration_model: bool=True):
|
| 53 |
+
assert os.path.exists(weights_file_path), f'File {weights_file_path} not found'
|
| 54 |
+
assert weights_file_path.endswith('h5'), 'Invalid file extension. Expected .h5'
|
| 55 |
+
|
| 56 |
+
ret_val = vxm.networks.VxmDense(inshape=IMG_SHAPE[:-1],
|
| 57 |
+
nb_unet_features=[ENCODER_FILTERS, DECODER_FILTERS],
|
| 58 |
+
int_steps=0)
|
| 59 |
+
ret_val.load_weights(weights_file_path, by_name=True)
|
| 60 |
+
ret_val.trainable = trainable
|
| 61 |
+
|
| 62 |
+
if return_registration_model:
|
| 63 |
+
ret_val = (ret_val, ret_val.get_registration_model())
|
| 64 |
+
|
| 65 |
+
return ret_val
|
setup.py
ADDED
|
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from setuptools import find_packages, setup
|
| 2 |
+
import os
|
| 3 |
+
|
| 4 |
+
# with open("README.md", "r", encoding="utf-8") as f:
|
| 5 |
+
# long_description = f.read()
|
| 6 |
+
|
| 7 |
+
with open("requirements.txt", "r") as f:
|
| 8 |
+
reqs = [line.strip('\n') for line in f.readlines()]
|
| 9 |
+
|
| 10 |
+
setup(
|
| 11 |
+
name='DeepDeformationMapRegistration',
|
| 12 |
+
py_modules=['DeepDeformationMapRegistration'],
|
| 13 |
+
packages=find_packages(include=['DeepDeformationMapRegistration', 'DeepDeformationMapRegistration.*'],
|
| 14 |
+
exclude=['test_images', 'test_images.*']),
|
| 15 |
+
version='1.0',
|
| 16 |
+
description='Deep-registration training toolkit',
|
| 17 |
+
# long_description=long_description,
|
| 18 |
+
author='Javier Pérez de Frutos',
|
| 19 |
+
classifiers=[
|
| 20 |
+
'Programming language :: Python :: 3',
|
| 21 |
+
'License :: OSI Approveed :: MIT License',
|
| 22 |
+
'Operating System :: OS Independent'
|
| 23 |
+
],
|
| 24 |
+
python_requires='>=3.6',
|
| 25 |
+
install_requires=[
|
| 26 |
+
'fastrlock>=0.3', # required by cupy-cuda110
|
| 27 |
+
'testresources', # required by launchpadlib
|
| 28 |
+
'scipy',
|
| 29 |
+
'scikit-image',
|
| 30 |
+
'simpleITK',
|
| 31 |
+
'voxelmorph==0.1',
|
| 32 |
+
'pystrum==0.1',
|
| 33 |
+
'tensorflow-gpu==1.14.0',
|
| 34 |
+
'tensorflow-addons',
|
| 35 |
+
'tensorflow-datasets',
|
| 36 |
+
'tensorflow-metadata',
|
| 37 |
+
'tensorboard==1.14.0',
|
| 38 |
+
'nibabel==3.2.1',
|
| 39 |
+
'numpy==1.18.5',
|
| 40 |
+
'h5py==2.10'
|
| 41 |
+
],
|
| 42 |
+
entry_points={
|
| 43 |
+
'console_scripts': ['ddmr=DeepDeformationMapRegistration.main:main']
|
| 44 |
+
}
|
| 45 |
+
)
|