import os, sys currentdir = os.path.dirname(os.path.realpath(__file__)) parentdir = os.path.dirname(currentdir) sys.path.append(parentdir) # PYTHON > 3.3 does not allow relative referencing PYCHARM_EXEC = os.getenv('PYCHARM_EXEC') == 'True' import tensorflow as tf import voxelmorph as vxm from voxelmorph.tf.modelio import LoadableModel, store_config_args class WeaklySupervised(LoadableModel): @store_config_args def __init__(self, inshape, all_labels: [list, tuple], nb_unet_features=None, int_steps=5, bidir=False, **kwargs): """ Parameters: inshape: Input shape. e.g. (192, 192, 192) all_labels: List of all labels included in training segmentations. hot_labels: List of labels to output as one-hot maps. nb_unet_features: Unet convolutional features. See VxmDense documentation for more information. int_steps: Number of flow integration steps. The warp is non-diffeomorphic when this value is 0. kwargs: Forwarded to the internal VxmDense model. """ fix_segm = tf.keras.Input((*inshape, len(all_labels)), name='fix_segmentations_input') mov_segm = tf.keras.Input((*inshape, len(all_labels)), name='mov_segmentations_input') mov_img = tf.keras.Input((*inshape, 1), name='mov_image_input') unet_input_model = tf.keras.Model(inputs=[mov_segm, fix_segm], outputs=[mov_segm, fix_segm]) vxm_model = vxm.networks.VxmDense(inshape=inshape, nb_unet_features=nb_unet_features, input_model=unet_input_model, int_steps=int_steps, bidir=bidir, **kwargs) pred_img = vxm.layers.SpatialTransformer(interp_method='linear', indexing='ij', name='pred_fix_img')( [mov_img, vxm_model.references.pos_flow]) inputs = [mov_segm, fix_segm, mov_img] # mov_img, mov_segm, fix_segm outputs = [pred_img] + vxm_model.outputs self.references = LoadableModel.ReferenceContainer() self.references.pred_segm = vxm_model.outputs[0] self.references.pred_img = pred_img self.references.pos_flow = vxm_model.references.pos_flow super().__init__(inputs=inputs, outputs=outputs) def get_registration_model(self): return tf.keras.Model(self.inputs, self.references.pos_flow) def register(self, mov_img, mov_segm, fix_segm): return self.get_registration_model().predict([mov_segm, fix_segm, mov_img]) def apply_transform(self, mov_img, mov_segm, fix_segm, interp_method='linear'): warp_model = self.get_registration_model() img_input = tf.keras.Input(shape=mov_img.shape[1:], name='input_img') pred_img = vxm.layers.SpatialTransformer(interp_method=interp_method)([img_input, warp_model.output]) return tf.keras.Model(warp_model.inputs, pred_img).predict([mov_segm, fix_segm, mov_img])