Spaces:
Runtime error
Runtime error
File size: 4,510 Bytes
2392ba8 66b40bc 2392ba8 1e53020 d9be466 1e53020 66b40bc 47281be 66b40bc 1e53020 66b40bc 1e53020 2392ba8 1e53020 2392ba8 1e53020 d9be466 2392ba8 1e53020 2392ba8 1e53020 2392ba8 1e53020 2392ba8 1e53020 2392ba8 1e53020 2392ba8 1e53020 2392ba8 1e53020 2392ba8 1e53020 2392ba8 1e53020 2392ba8 1e53020 2392ba8 66b40bc 2392ba8 66b40bc 2392ba8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 |
import os
os.environ["OPENAI_API_TYPE"] = "azure" # configure API to Azure OpenAI
import streamlit as st
st.set_page_config(page_title="ReferenceBot", page_icon="📖", layout="wide")
# add all secrets into environmental variables
try:
for key, value in st.secrets.items():
# os.environ[key] = value
st.session_state[key] = value
except FileNotFoundError as e:
print(e)
print("./streamlit/secrets.toml not found. Assuming secrets are already available"
"as environmental variables...")
from knowledge_gpt.components.sidebar import sidebar
from knowledge_gpt.ui import (
wrap_doc_in_html,
is_query_valid,
is_file_valid,
display_file_read_error,
)
from knowledge_gpt.core.caching import bootstrap_caching
from knowledge_gpt.core.parsing import read_file
from knowledge_gpt.core.chunking import chunk_file
from knowledge_gpt.core.embedding import embed_files
from knowledge_gpt.core.qa import query_folder
from langchain.chat_models import AzureChatOpenAI
def main():
EMBEDDING = "openai"
VECTOR_STORE = "faiss"
MODEL_LIST = ["gpt-3.5-turbo", "gpt-4"]
# Uncomment to enable debug mode
# MODEL_LIST.insert(0, "debug")
st.header("📖ReferenceBot")
# Enable caching for expensive functions
bootstrap_caching()
sidebar()
openai_api_key = st.session_state.get("OPENAI_API_KEY")
if not openai_api_key:
st.warning(
"Enter your OpenAI API key in the sidebar. You can get a key at"
" https://platform.openai.com/account/api-keys."
)
uploaded_file = st.file_uploader(
"Upload a pdf, docx, or txt file",
type=["pdf", "docx", "txt"],
help="Scanned documents are not supported yet!",
)
model: str = st.selectbox("Model", options=MODEL_LIST) # type: ignore
with st.expander("Advanced Options"):
return_all_chunks = st.checkbox("Show all chunks retrieved from vector search")
show_full_doc = st.checkbox("Show parsed contents of the document")
if not uploaded_file:
st.stop()
try:
file = read_file(uploaded_file)
except Exception as e:
display_file_read_error(e, file_name=uploaded_file.name)
chunked_file = chunk_file(file, chunk_size=300, chunk_overlap=0)
if not is_file_valid(file):
st.stop()
with st.spinner("Indexing document... This may take a while⏳"):
folder_index = embed_files(
files=[chunked_file],
embedding=EMBEDDING if model != "debug" else "debug",
vector_store=VECTOR_STORE if model != "debug" else "debug",
deployment=st.secrets["ENGINE_EMBEDDING"],
model=st.secrets["ENGINE"],
openai_api_key=st.secrets["OPENAI_API_KEY"],
openai_api_base=st.secrets["OPENAI_API_BASE"],
openai_api_type="azure",
chunk_size = 1,
)
with st.form(key="qa_form"):
query = st.text_area("Ask a question about the document")
submit = st.form_submit_button("Submit")
if show_full_doc:
with st.expander("Document"):
# Hack to get around st.markdown rendering LaTeX
st.markdown(f"<p>{wrap_doc_in_html(file.docs)}</p>", unsafe_allow_html=True)
if submit:
if not is_query_valid(query):
st.stop()
# Output Columns
answer_col, sources_col = st.columns(2)
with st.spinner("Setting up AzureChatOpenAI bot..."):
llm = AzureChatOpenAI(
openai_api_base=st.secrets["OPENAI_API_BASE"],
openai_api_version=st.secrets["OPENAI_API_VERSION"],
deployment_name=st.secrets["ENGINE"],
openai_api_key=st.secrets["OPENAI_API_KEY"],
openai_api_type="azure",
temperature=0,
)
with st.spinner("Querying folder to get result..."):
result = query_folder(
folder_index=folder_index,
query=query,
return_all=return_all_chunks,
llm=llm,
)
with answer_col:
st.markdown("#### Answer")
st.markdown(result.answer)
with sources_col:
st.markdown("#### Sources")
for source in result.sources:
st.markdown(source.page_content)
st.markdown(source.metadata["source"])
st.markdown("---")
if __name__ == "__main__":
main()
|