File size: 6,166 Bytes
4f48282
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
#img_gen_modal.py
import modal
import random
import io
from config.config import prompts, models  # Indirect import
import os
import gradio as gr

#MOVED FROM IMAGE IMPORT LIST
import torch
import sentencepiece
import torch
from huggingface_hub import login
from transformers import AutoTokenizer
import random
from datetime import datetime
from diffusers import FluxPipeline, FluxTransformer2DModel, GGUFQuantizationConfig, AutoPipelineForText2Image
from src.check_dependecies import check_dependencies

# MAIN GENERATE IMAGE FUNCTION
def generate_image(
                prompt_alias, 
                team_color, 
                custom_prompt, 
                model_alias="FLUX.1-dev", 
                height=36, 
                width=64, 
                num_inference_steps=2, 
                guidance_scale=2.0, 
                seed=-1, 
                progress=gr.Progress(track_tqdm=True)  # Add progress parameter
            ):
    print("Hello from ctb_local!")

    print("Running debug check...")
    # Debug function to check installed packages
    check_dependencies()

    # Find the selected prompt and model
    try:
        prompt = next(p for p in prompts if p["alias"] == prompt_alias)["text"]
        model_name = next(m for m in models if m["alias"] == model_alias)["name"]
    except StopIteration:
        return None, "ERROR: Invalid prompt or model selected."

    # Determine the enemy color
    enemy_color = "blue" if team_color.lower() == "red" else "red"

    # Print the original prompt and dynamic values for debugging
    print("Original Prompt:")
    print(prompt)
    print(f"Enemy Color: {enemy_color}")
    print(f"Team Color: {team_color.lower()}")

    prompt = prompt.format(team_color=team_color.lower(), enemy_color=enemy_color)

    # Print the formatted prompt for debugging
    print("\nFormatted Prompt:")
    print(prompt)

    # Append the custom prompt (if provided)
    if custom_prompt and len(custom_prompt.strip()) > 0:
        prompt += " " + custom_prompt.strip()

    # Randomize the seed if needed
    if seed == -1:
        seed = random.randint(0, 1000000)

    try:
        print("Initializing HF TOKEN")
        hf_token = os.environ["HF_TOKEN"]
        print(hf_token)
        print("HF TOKEN:")
        login(token=hf_token)
        print("model_name:")
        print(model_name)
        
        # Use absolute path with leading slash
        model_path = f"models/{model_alias}"  
        print(f"Loading model from local path: {model_path}")
        
        # Debug: Check if the directory exists and list its contents
        if os.path.exists(model_path):
            print("Directory exists. Contents:")
            for item in os.listdir(model_path):
                print(f" - {item}")
        else:
            # print(f"Directory does not exist: {local_path}")
             print(f"Contents of {model_path}:")
            # print(os.listdir("/data"))
        # CHECK FOR TORCH USING CUDA
        print("CHECK FOR TORCH USING CUDA")
        print(f"CUDA available: {torch.cuda.is_available()}")
        if torch.cuda.is_available():
            print("inside if")
            print(f"CUDA device count: {torch.cuda.device_count()}")
            print(f"Current device: {torch.cuda.current_device()}")
            print(f"Device name: {torch.cuda.get_device_name(torch.cuda.current_device())}")
        
        ######### INITIALIZING CPU PIPE ##########
        print("-----LOADING QUANTA-----")
        ckpt_path = (
            "models/FLUX.1-dev-gguf/flux1-dev-Q2_K.gguf"
        )
        transformer = FluxTransformer2DModel.from_single_file(
            ckpt_path,
            quantization_config=GGUFQuantizationConfig(compute_dtype=torch.bfloat16),
            torch_dtype=torch.bfloat16,
        )
            
        print("-----INITIALIZING PIPE-----")
        pipe = FluxPipeline.from_pretrained(
            model_path,
            transformer = transformer,
            torch_dtype=torch.bfloat16,
            #torch_dtype=torch.float16,
            #torch_dtype=torch.float32,
            local_files_only=True,
        )
        if torch.cuda.is_available():
            print("CUDA available")
            print("using gpu")
            pipe = pipe.to("cuda")
            pipe_message = "CUDA"
        else:
            print("CUDA not available")
            print("using cpu")
            pipe = pipe.to("cpu")
            pipe_message = "CPU"
            #pipe.enable_model_cpu_offload()  # Use official recommended method  
        
        print(f"-----{pipe_message} PIPE INITIALIZED-----")
        print(f"Using device: {pipe.device}")
    except Exception as e:
        print(f"Detailed error: {str(e)}")
        return None, f"ERROR: Failed to initialize PIPE2. Details: {e}"
    try:
        print("-----SENDING IMG GEN TO PIPE-----")
        print("-----HOLD ON-----")   

        ########## SENDING IMG GEN TO PIPE - WORKING CODE ##########
        image = pipe(
            prompt,
            guidance_scale=guidance_scale,
            num_inference_steps=num_inference_steps,
            width=width,
            height=height,
            max_sequence_length=512,
            # seed=seed
        ).images[0]
        #############################################################

        print("-----IMAGE GENERATED SUCCESSFULLY!-----")
        print(image)  
            
    except Exception as e:
        return f"ERROR: Failed to initialize InferenceClient. Details: {e}"
    
    try:
        print("-----SAVING-----")
        print("-----DONE!-----")
        print("-----CALL THE BANNERS!-----")
        # Save the image with a timestamped filename
        timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
        output_filename = f"/images/{timestamp}_{model_alias.replace(' ', '_').lower()}_{prompt_alias.replace(' ', '_').lower()}_{team_color.lower()}.png"
        # Save the image using PIL's save method
        image.save(output_filename)
        print(f"File path: {output_filename}")
    except Exception as e:
        print(f"ERROR: Failed to save image. Details: {e}")
    # Return the filename and success message
    return image