Spaces:
Sleeping
Sleeping
File size: 6,166 Bytes
4f48282 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 |
#img_gen_modal.py
import modal
import random
import io
from config.config import prompts, models # Indirect import
import os
import gradio as gr
#MOVED FROM IMAGE IMPORT LIST
import torch
import sentencepiece
import torch
from huggingface_hub import login
from transformers import AutoTokenizer
import random
from datetime import datetime
from diffusers import FluxPipeline, FluxTransformer2DModel, GGUFQuantizationConfig, AutoPipelineForText2Image
from src.check_dependecies import check_dependencies
# MAIN GENERATE IMAGE FUNCTION
def generate_image(
prompt_alias,
team_color,
custom_prompt,
model_alias="FLUX.1-dev",
height=36,
width=64,
num_inference_steps=2,
guidance_scale=2.0,
seed=-1,
progress=gr.Progress(track_tqdm=True) # Add progress parameter
):
print("Hello from ctb_local!")
print("Running debug check...")
# Debug function to check installed packages
check_dependencies()
# Find the selected prompt and model
try:
prompt = next(p for p in prompts if p["alias"] == prompt_alias)["text"]
model_name = next(m for m in models if m["alias"] == model_alias)["name"]
except StopIteration:
return None, "ERROR: Invalid prompt or model selected."
# Determine the enemy color
enemy_color = "blue" if team_color.lower() == "red" else "red"
# Print the original prompt and dynamic values for debugging
print("Original Prompt:")
print(prompt)
print(f"Enemy Color: {enemy_color}")
print(f"Team Color: {team_color.lower()}")
prompt = prompt.format(team_color=team_color.lower(), enemy_color=enemy_color)
# Print the formatted prompt for debugging
print("\nFormatted Prompt:")
print(prompt)
# Append the custom prompt (if provided)
if custom_prompt and len(custom_prompt.strip()) > 0:
prompt += " " + custom_prompt.strip()
# Randomize the seed if needed
if seed == -1:
seed = random.randint(0, 1000000)
try:
print("Initializing HF TOKEN")
hf_token = os.environ["HF_TOKEN"]
print(hf_token)
print("HF TOKEN:")
login(token=hf_token)
print("model_name:")
print(model_name)
# Use absolute path with leading slash
model_path = f"models/{model_alias}"
print(f"Loading model from local path: {model_path}")
# Debug: Check if the directory exists and list its contents
if os.path.exists(model_path):
print("Directory exists. Contents:")
for item in os.listdir(model_path):
print(f" - {item}")
else:
# print(f"Directory does not exist: {local_path}")
print(f"Contents of {model_path}:")
# print(os.listdir("/data"))
# CHECK FOR TORCH USING CUDA
print("CHECK FOR TORCH USING CUDA")
print(f"CUDA available: {torch.cuda.is_available()}")
if torch.cuda.is_available():
print("inside if")
print(f"CUDA device count: {torch.cuda.device_count()}")
print(f"Current device: {torch.cuda.current_device()}")
print(f"Device name: {torch.cuda.get_device_name(torch.cuda.current_device())}")
######### INITIALIZING CPU PIPE ##########
print("-----LOADING QUANTA-----")
ckpt_path = (
"models/FLUX.1-dev-gguf/flux1-dev-Q2_K.gguf"
)
transformer = FluxTransformer2DModel.from_single_file(
ckpt_path,
quantization_config=GGUFQuantizationConfig(compute_dtype=torch.bfloat16),
torch_dtype=torch.bfloat16,
)
print("-----INITIALIZING PIPE-----")
pipe = FluxPipeline.from_pretrained(
model_path,
transformer = transformer,
torch_dtype=torch.bfloat16,
#torch_dtype=torch.float16,
#torch_dtype=torch.float32,
local_files_only=True,
)
if torch.cuda.is_available():
print("CUDA available")
print("using gpu")
pipe = pipe.to("cuda")
pipe_message = "CUDA"
else:
print("CUDA not available")
print("using cpu")
pipe = pipe.to("cpu")
pipe_message = "CPU"
#pipe.enable_model_cpu_offload() # Use official recommended method
print(f"-----{pipe_message} PIPE INITIALIZED-----")
print(f"Using device: {pipe.device}")
except Exception as e:
print(f"Detailed error: {str(e)}")
return None, f"ERROR: Failed to initialize PIPE2. Details: {e}"
try:
print("-----SENDING IMG GEN TO PIPE-----")
print("-----HOLD ON-----")
########## SENDING IMG GEN TO PIPE - WORKING CODE ##########
image = pipe(
prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
max_sequence_length=512,
# seed=seed
).images[0]
#############################################################
print("-----IMAGE GENERATED SUCCESSFULLY!-----")
print(image)
except Exception as e:
return f"ERROR: Failed to initialize InferenceClient. Details: {e}"
try:
print("-----SAVING-----")
print("-----DONE!-----")
print("-----CALL THE BANNERS!-----")
# Save the image with a timestamped filename
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
output_filename = f"/images/{timestamp}_{model_alias.replace(' ', '_').lower()}_{prompt_alias.replace(' ', '_').lower()}_{team_color.lower()}.png"
# Save the image using PIL's save method
image.save(output_filename)
print(f"File path: {output_filename}")
except Exception as e:
print(f"ERROR: Failed to save image. Details: {e}")
# Return the filename and success message
return image |