Spaces:
Runtime error
Runtime error
File size: 18,475 Bytes
0f14897 4f254e5 0f14897 4f254e5 0f14897 4f254e5 0f14897 4f254e5 0f14897 4f254e5 0f14897 4f254e5 0f14897 4f254e5 0f14897 4f254e5 0f14897 4f254e5 0f14897 4f254e5 0f14897 4f254e5 0f14897 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 |
import re
from copy import deepcopy
import argparse
import torch
import torch.nn.functional as F
from transformers import (AutoModelForSeq2SeqLM, AutoTokenizer,
BartForConditionalGeneration, BartTokenizer,)
from src.bart_with_group_beam import BartForConditionalGeneration_GroupBeam
from src.utils import (construct_template, filter_words,
formalize_tA, post_process_template)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
ORION_HYPO_GENERATOR = 'chenxran/orion-hypothesis-generator'
ORION_INS_GENERATOR = 'chenxran/orion-instance-generator'
RELATIONS = [
"Causes",
"HasProperty",
"MadeUpOf",
"isAfter",
"isBefore",
"xReact",
"xWant",
"xReason",
"xAttr",
"Desires",
]
class BartInductor(object):
def __init__(
self,
group_beam=True,
continue_pretrain_instance_generator=True,
continue_pretrain_hypo_generator=True,
if_then=False
):
self.if_then = if_then
self.orion_instance_generator_path = 'facebook/bart-large' if not continue_pretrain_instance_generator else ORION_INS_GENERATOR
self.orion_hypothesis_generator_path = 'facebook/bart-large' if not continue_pretrain_hypo_generator else ORION_HYPO_GENERATOR
if group_beam:
self.orion_hypothesis_generator = BartForConditionalGeneration_GroupBeam.from_pretrained(self.orion_hypothesis_generator_path).to(device).eval().half()
else:
self.orion_hypothesis_generator = BartForConditionalGeneration.from_pretrained(self.orion_hypothesis_generator_path).to(device).eval().half()
self.orion_instance_generator = BartForConditionalGeneration.from_pretrained(self.orion_instance_generator_path).to(device).eval().half()
self.tokenizer = BartTokenizer.from_pretrained("facebook/bart-large")
self.word_length = 2
self.stop_sub_list = ['he', 'she', 'this', 'that', 'and', 'it', 'which', 'who', 'whose', 'there', 'they', '.', 'its', 'one',
'i', ',', 'the', 'nobody', 'his', 'her', 'also', 'only', 'currently', 'here', '()', 'what', 'where',
'why', 'a', 'some', '"', ')', '(', 'now', 'everyone', 'everybody', 'their', 'often', 'usually', 'you',
'-', '?', ';', 'in', 'on', 'each', 'both', 'him', 'typically', 'mostly', 'sometimes', 'normally',
'always', 'usually', 'still', 'today', 'was', 'were', 'but', 'although', 'current', 'all', 'have',
'has', 'later', 'with', 'most', 'nowadays', 'then', 'every', 'when', 'someone', 'anyone', 'somebody',
'anybody', 'any', 'being', 'get', 'getting', 'thus', 'under', 'even', 'for', 'can', 'rarely', 'never',
'may', 'generally', 'other', 'another', 'too', 'first', 'second', 'third', 'mainly', 'primarily',
'having', 'have', 'has']
self.stop_size = len(self.stop_sub_list)
for i in range(self.stop_size):
if self.stop_sub_list[i][0].isalpha():
temp = self.stop_sub_list[i][0].upper() + self.stop_sub_list[i][1:]
self.stop_sub_list.append(temp)
self.bad_words_ids = [self.tokenizer.encode(bad_word)[1:-1] for bad_word in ['also', ' also']]
stop_index = self.tokenizer(self.stop_sub_list, max_length=4, padding=True)
stop_index = torch.tensor(stop_index['input_ids'])[:, 1]
stop_weight = torch.zeros(1, self.tokenizer.vocab_size).to(device)
stop_weight[0, stop_index] -= 100
self.stop_weight = stop_weight[0, :]
def clean(self, text):
segments = text.split('<mask>')
if len(segments) == 3 and segments[2].startswith('.'):
return '<mask>'.join(segments[:2]) + '<mask>.'
else:
return text
def generate(self, inputs, k=10, topk=10):
with torch.no_grad():
tB_probs = self.generate_rule(inputs, k)
ret = [t[0].replace('<ent0>','<mask>').replace('<ent1>','<mask>') for t in tB_probs]
new_ret = []
for temp in ret:
temp = self.clean(temp.strip())
if len(new_ret) < topk and temp not in new_ret:
new_ret.append(temp)
return new_ret
def explore_mask(self, tA, k, tokens, prob, required_token, probs):
if required_token == 0:
return [[tokens, prob, probs]]
if required_token <= self.word_length:
k = min(k, 2)
ret = []
generated_ids = self.tokenizer(tA, max_length=128, padding='longest', return_tensors='pt') # ["input_ids"].to(device)
for key in generated_ids.keys():
generated_ids[key] = generated_ids[key].to(device)
mask_index = torch.where(generated_ids["input_ids"][0] == self.tokenizer.mask_token_id)
generated_ret = self.orion_instance_generator(**generated_ids)
#logits = generated_ret.logits
logits = generated_ret[0]
softmax = F.softmax(logits, dim=-1)
mask_word = softmax[0, mask_index[0][0], :] + self.stop_weight
top_k = torch.topk(mask_word, k, dim=0)
for i in range(top_k[1].size(0)):
token_s = top_k[1][i]
prob_s = top_k[0][i].item()
token_this = self.tokenizer.decode([token_s]).strip()
if token_this[0].isalpha() == False or len(token_this) <= 2:
continue
index_s = tA.index(self.tokenizer.mask_token)
tAs = tA[:index_s] + token_this + tA[index_s + len(self.tokenizer.mask_token):]
tokens_this = [t for t in tokens]
tokens_this.append(token_this)
probs_new = deepcopy(probs)
probs_new.append(prob_s)
ret.extend(self.explore_mask(tAs, 1, tokens_this, prob_s * prob, required_token - 1,probs_new))
return ret
def extract_words_for_tA_bart(self, tA, k=6, print_it = False):
spans = [t.lower().strip() for t in tA[:-1].split('<mask>')]
generated_ids = self.tokenizer([tA], padding='longest', return_tensors='pt')['input_ids'].to(device)
generated_ret = self.orion_instance_generator.generate(generated_ids, num_beams=max(120, k),
#num_beam_groups=max(120, k),
max_length=generated_ids.size(1) + 15,
num_return_sequences=max(120, k), #min_length=generated_ids.size(1),
#diversity_penalty=2.0,
#length_penalty= 0.8,
#early_stopping=True, bad_words_ids=bad_words_ids, no_repeat_ngram_size=2,
output_scores=True,
return_dict_in_generate=True)
summary_ids = generated_ret['sequences']
probs = F.softmax(generated_ret['sequences_scores'])
txts = [self.tokenizer.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=True) for g in summary_ids]
ret = []
for i, txt in enumerate(txts):
if tA.endswith('.'):
if txt.endswith('.'):
txt = txt[:-1].strip()
txt += '.'
word_imcomplete = False
prob = probs[i].item()
words_i = []
start_index = 0
for j in range(len(spans)-1):
span1 = spans[j]
span2 = spans[j+1]
if (span1 in txt.lower()[start_index:]) and (span2 in txt.lower()[start_index:]):
index1 = txt.lower().index(span1,start_index)+len(span1)
if span2 == '':
if txt[-1] == '.':
index2 = len(txt) -1
else:
index2 = len(txt)
else:
index2 = txt.lower().index(span2, start_index)
words_i.append(txt[index1:index2].strip())
start_index = index2
#if words_i[-1] == '':
# word_imcomplete = True
else:
word_imcomplete = True
if word_imcomplete:
# if print_it:
# print(txt + '\t' + tA + '\t' + '×')
continue
ret.append([words_i, prob])
return sorted(ret, key=lambda x: x[1], reverse=True)[:k]
def extract_words_for_tA(self, tA, k=6):
word_mask_str = ' '.join([self.tokenizer.mask_token] * self.word_length)
tA = tA.replace('<mask>', word_mask_str)
mask_count = tA.count(self.tokenizer.mask_token)
mask_probs = self.explore_mask(tA, k*20, [], 1.0, mask_count, [])
ret = []
visited_mask_txt = {}
for mask, prob, probs in mask_probs:
mask_txt = ' '.join(mask).lower()
if mask_txt in visited_mask_txt:
continue
visited_mask_txt[mask_txt] = 1
words = []
probs_words = []
for i in range(0,mask_count, self.word_length):
words.append(' '.join(mask[i: i + self.word_length]))
prob_word = 1.0
for j in range(i, i + self.word_length):
prob_word *= probs[j]
probs_words.append(prob_word)
ret.append([words, prob, probs_words])
return sorted(ret, key=lambda x: x[1], reverse=True)[:k]
def extract_templateBs_batch(self, words_prob, tA, k, print_it = False):
words_prob_sorted = []
for (words, probA, *_) in words_prob:
tokenized_word = self.tokenizer(words[0])
words_prob_sorted.append([words,probA,len(tokenized_word['input_ids'])])
words_prob_sorted.sort(key=lambda x:x[2])
batch_size = 8
templates = []
index_words = {}
ret = {}
num_beams = k
for enum, (words, probA, *_) in enumerate(words_prob_sorted):
template = construct_template(words, tA, self.if_then)
templates.extend(template)
for t in template:
index_words[len(index_words)] = '\t'.join(words)
# index_words[len(templates)-1] = '\t'.join(words)
if (len(templates) == batch_size) or enum==len(words_prob_sorted)-1 or (words_prob_sorted[enum+1][2]!=words_prob_sorted[enum][2]):
generated_ids = self.tokenizer(templates, padding="longest", return_tensors='pt')['input_ids'].to(device)
generated_ret = self.orion_hypothesis_generator.generate(generated_ids, num_beams=num_beams,
num_beam_groups=num_beams,
max_length=28, #template_length+5,
num_return_sequences=num_beams, min_length=3,
diversity_penalty=1.0,
early_stopping=True,
#length_penalty = 0.1,
bad_words_ids=self.bad_words_ids,
#no_repeat_ngram_size=2,
output_scores=True,
return_dict_in_generate=True, decoder_ori_input_ids = generated_ids,
top_p=0.95,
)
summary_ids = generated_ret['sequences'].reshape((len(templates),num_beams,-1))
probs = F.softmax(generated_ret['sequences_scores'].reshape((len(templates),num_beams)),dim=1)
for ii in range(summary_ids.size(0)):
txts = [self.tokenizer.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=True) for g in
summary_ids[ii]]
ii_template = []
words_ii = index_words[ii].split('\t')
for i, txt in enumerate(txts):
prob = probs[ii][i].item() * probA
txt = txt.lower()
txt = post_process_template(txt)
words_ii_matched = [word.lower() for word in words_ii] #extract_similar_words(txt, words_ii)
if words_ii_matched is None:
prob = 0.0
else:
for j, word in enumerate(words_ii_matched):
if word not in txt:
prob = 0.0
else:
txt = txt.replace(word, '<ent{}>'.format(j), 1)
if txt.count(' ')+1<=3:
continue
ii_template.append([txt, prob])
# if print_it:
# print(index_words[ii]+'\t'+str(convert_for_print(ii_template)))
for template, prob in ii_template:
if template not in ret:
ret[template] = 0.0
ret[template] += prob
templates.clear()
index_words.clear()
return ret
def generate_rule(self, tA, k=10, print_it = False):
tA=formalize_tA(tA)
if 'bart' in str(self.orion_instance_generator.__class__).lower():
words_prob = self.extract_words_for_tA_bart(tA, k,print_it=print_it)
words_prob = filter_words(words_prob)[:k]
# if print_it:
# print(convert_for_print(words_prob))
else:
words_prob = self.extract_words_for_tA(tA, k)
words_prob = filter_words(words_prob)[:k]
tB_prob = self.extract_templateBs_batch(words_prob, tA, k,print_it=print_it)
ret = []
for k1 in tB_prob:
ret.append([k1, tB_prob[k1]])
ret = sorted(ret, key=lambda x: x[1], reverse=True)[:k]
if self.if_then:
for i, temp in enumerate(ret):
sentence = temp[0]
if "then" in sentence:
sentence = sentence.split("then")[-1]
else:
sentence = sentence.replace("if", "")
ret[i][0] = sentence
return ret
class CometInductor(object):
def __init__(self):
self.model = AutoModelForSeq2SeqLM.from_pretrained("adamlin/comet-atomic_2020_BART").to(device).eval() # .half()
self.tokenizer = AutoTokenizer.from_pretrained("adamlin/comet-atomic_2020_BART")
self.task = "summarization"
self.use_task_specific_params()
self.decoder_start_token_id = None
def drop_repeat(self, old_list):
new_list = []
for item in old_list:
if item not in new_list:
new_list.append(item)
return new_list
def chunks(self, lst, n):
"""Yield successive n-sized chunks from lst."""
for i in range(0, len(lst), n):
yield lst[i : i + n]
def use_task_specific_params(self):
"""Update config with summarization specific params."""
task_specific_params = self.model.config.task_specific_params
if task_specific_params is not None:
pars = task_specific_params.get(self.task, {})
self.model.config.update(pars)
def trim_batch(
self, input_ids, pad_token_id, attention_mask=None,
):
"""Remove columns that are populated exclusively by pad_token_id"""
keep_column_mask = input_ids.ne(pad_token_id).any(dim=0)
if attention_mask is None:
return input_ids[:, keep_column_mask]
else:
return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask])
def generate(self, inputs, k, topk):
outputs = []
words = ['PersonX', 'PersonY']
for i, _ in enumerate(re.findall("<mask>", inputs)):
index = inputs.index('<mask>')
inputs = inputs[:index] + words[i] + inputs[index + len('<mask>'):]
for relation in RELATIONS:
inputs = "{} {} [GEN]".format(inputs[:-1], relation)
gen = self.generate_(inputs, num_generate=10)
switch = 0
for output in gen[0]:
output = output.strip()
if re.search("PersonX|X", output) and re.search("PersonY|Y", output):
temp = re.sub("PersonX|X|PersonY|Y", "<mask>", output.strip())
if temp.endswith("."):
outputs.append(temp)
else:
outputs.append(temp + ".")
switch = 1
break
if switch == 0:
output = gen[0][0]
temp = re.sub("PersonX|X|PersonY|Y", "<mask>", output.strip())
if temp.endswith("."):
outputs.append(temp)
else:
outputs.append(temp + ".")
outputs = [output.replace('PersonX', '<mask>').replace('PersonY', '<mask>') for output in outputs]
return outputs
def generate_(
self,
queries,
decode_method="beam",
num_generate=5,
):
with torch.no_grad():
decs = []
batch = self.tokenizer(queries, return_tensors="pt", padding="longest")
input_ids, attention_mask = self.trim_batch(**batch, pad_token_id=self.tokenizer.pad_token_id)
summaries = self.model.generate(
input_ids=input_ids.to(device),
attention_mask=attention_mask.to(device),
decoder_start_token_id=self.decoder_start_token_id,
num_beams=num_generate,
num_return_sequences=num_generate,
)
dec = self.tokenizer.batch_decode(summaries, skip_special_tokens=True, clean_up_tokenization_spaces=False)
decs.append(dec)
return decs
|