Spaces:
Runtime error
Runtime error
Update inductor.py
Browse files- inductor.py +0 -97
inductor.py
CHANGED
@@ -312,100 +312,3 @@ class BartInductor(object):
|
|
312 |
return ret
|
313 |
|
314 |
|
315 |
-
class CometInductor(object):
|
316 |
-
def __init__(self):
|
317 |
-
self.model = AutoModelForSeq2SeqLM.from_pretrained("adamlin/comet-atomic_2020_BART").to(device).eval().float() # .half()->float
|
318 |
-
self.tokenizer = AutoTokenizer.from_pretrained("adamlin/comet-atomic_2020_BART")
|
319 |
-
self.task = "summarization"
|
320 |
-
self.use_task_specific_params()
|
321 |
-
self.decoder_start_token_id = None
|
322 |
-
|
323 |
-
def drop_repeat(self, old_list):
|
324 |
-
new_list = []
|
325 |
-
for item in old_list:
|
326 |
-
if item not in new_list:
|
327 |
-
new_list.append(item)
|
328 |
-
|
329 |
-
return new_list
|
330 |
-
|
331 |
-
def chunks(self, lst, n):
|
332 |
-
"""Yield successive n-sized chunks from lst."""
|
333 |
-
for i in range(0, len(lst), n):
|
334 |
-
yield lst[i : i + n]
|
335 |
-
|
336 |
-
def use_task_specific_params(self):
|
337 |
-
"""Update config with summarization specific params."""
|
338 |
-
task_specific_params = self.model.config.task_specific_params
|
339 |
-
|
340 |
-
if task_specific_params is not None:
|
341 |
-
pars = task_specific_params.get(self.task, {})
|
342 |
-
self.model.config.update(pars)
|
343 |
-
|
344 |
-
def trim_batch(
|
345 |
-
self, input_ids, pad_token_id, attention_mask=None,
|
346 |
-
):
|
347 |
-
"""Remove columns that are populated exclusively by pad_token_id"""
|
348 |
-
keep_column_mask = input_ids.ne(pad_token_id).any(dim=0)
|
349 |
-
if attention_mask is None:
|
350 |
-
return input_ids[:, keep_column_mask]
|
351 |
-
else:
|
352 |
-
return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask])
|
353 |
-
|
354 |
-
def generate(self, inputs, k, topk):
|
355 |
-
outputs = []
|
356 |
-
words = ['PersonX', 'PersonY']
|
357 |
-
for i, _ in enumerate(re.findall("<mask>", inputs)):
|
358 |
-
index = inputs.index('<mask>')
|
359 |
-
inputs = inputs[:index] + words[i] + inputs[index + len('<mask>'):]
|
360 |
-
|
361 |
-
for relation in RELATIONS:
|
362 |
-
inputs = "{} {} [GEN]".format(inputs[:-1], relation)
|
363 |
-
gen = self.generate_(inputs, num_generate=10)
|
364 |
-
switch = 0
|
365 |
-
for output in gen[0]:
|
366 |
-
output = output.strip()
|
367 |
-
if re.search("PersonX|X", output) and re.search("PersonY|Y", output):
|
368 |
-
temp = re.sub("PersonX|X|PersonY|Y", "<mask>", output.strip())
|
369 |
-
if temp.endswith("."):
|
370 |
-
outputs.append(temp)
|
371 |
-
else:
|
372 |
-
outputs.append(temp + ".")
|
373 |
-
switch = 1
|
374 |
-
break
|
375 |
-
|
376 |
-
if switch == 0:
|
377 |
-
output = gen[0][0]
|
378 |
-
temp = re.sub("PersonX|X|PersonY|Y", "<mask>", output.strip())
|
379 |
-
if temp.endswith("."):
|
380 |
-
outputs.append(temp)
|
381 |
-
else:
|
382 |
-
outputs.append(temp + ".")
|
383 |
-
|
384 |
-
outputs = [output.replace('PersonX', '<mask>').replace('PersonY', '<mask>') for output in outputs]
|
385 |
-
return outputs
|
386 |
-
|
387 |
-
def generate_(
|
388 |
-
self,
|
389 |
-
queries,
|
390 |
-
decode_method="beam",
|
391 |
-
num_generate=5,
|
392 |
-
):
|
393 |
-
|
394 |
-
with torch.no_grad():
|
395 |
-
decs = []
|
396 |
-
batch = self.tokenizer(queries, return_tensors="pt", padding="longest")
|
397 |
-
input_ids, attention_mask = self.trim_batch(**batch, pad_token_id=self.tokenizer.pad_token_id)
|
398 |
-
|
399 |
-
summaries = self.model.generate(
|
400 |
-
input_ids=input_ids.to(device),
|
401 |
-
attention_mask=attention_mask.to(device),
|
402 |
-
decoder_start_token_id=self.decoder_start_token_id,
|
403 |
-
num_beams=num_generate,
|
404 |
-
num_return_sequences=num_generate,
|
405 |
-
)
|
406 |
-
|
407 |
-
dec = self.tokenizer.batch_decode(summaries, skip_special_tokens=True, clean_up_tokenization_spaces=False)
|
408 |
-
decs.append(dec)
|
409 |
-
|
410 |
-
return decs
|
411 |
-
|
|
|
312 |
return ret
|
313 |
|
314 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|