Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,449 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
import dash
|
4 |
+
from dash import dcc, html, dash_table, callback, Input, Output, State
|
5 |
+
import dash_bootstrap_components as dbc
|
6 |
+
import pandas as pd
|
7 |
+
from datetime import datetime
|
8 |
+
import numpy as np
|
9 |
+
import plotly.express as px
|
10 |
+
import plotly.graph_objects as go
|
11 |
+
from geopy.extra.rate_limiter import RateLimiter
|
12 |
+
from geopy.geocoders import Nominatim
|
13 |
+
from dash.exceptions import PreventUpdate
|
14 |
+
from vincenty import vincenty
|
15 |
+
import duckdb
|
16 |
+
import requests
|
17 |
+
import urllib
|
18 |
+
from dotenv import load_dotenv
|
19 |
+
import time
|
20 |
+
from functools import wraps
|
21 |
+
import glob
|
22 |
+
|
23 |
+
|
24 |
+
# Load environment variables
|
25 |
+
load_dotenv()
|
26 |
+
|
27 |
+
# Initialize the Dash app
|
28 |
+
app = dash.Dash(
|
29 |
+
__name__,
|
30 |
+
external_stylesheets=[dbc.themes.BOOTSTRAP],
|
31 |
+
suppress_callback_exceptions=True
|
32 |
+
)
|
33 |
+
app.title = "Hail Damage Analyzer"
|
34 |
+
server = app.server
|
35 |
+
|
36 |
+
# Cache functions
|
37 |
+
def simple_cache(expire_seconds=300):
|
38 |
+
def decorator(func):
|
39 |
+
cache = {}
|
40 |
+
@wraps(func)
|
41 |
+
def wrapper(*args, **kwargs):
|
42 |
+
key = (func.__name__, args, frozenset(kwargs.items()))
|
43 |
+
current_time = time.time()
|
44 |
+
if key in cache:
|
45 |
+
result, timestamp = cache[key]
|
46 |
+
if current_time - timestamp < expire_seconds:
|
47 |
+
return result
|
48 |
+
result = func(*args, **kwargs)
|
49 |
+
cache[key] = (result, current_time)
|
50 |
+
return result
|
51 |
+
return wrapper
|
52 |
+
return decorator
|
53 |
+
|
54 |
+
@simple_cache(expire_seconds=300)
|
55 |
+
def duck_sql(sql_code):
|
56 |
+
con = duckdb.connect()
|
57 |
+
con.execute("PRAGMA threads=2")
|
58 |
+
con.execute("PRAGMA enable_object_cache")
|
59 |
+
return con.execute(sql_code).df()
|
60 |
+
|
61 |
+
@simple_cache(expire_seconds=300)
|
62 |
+
def get_data(lat, lon, date_str):
|
63 |
+
data_dir = r"C:/Users/aammann/OneDrive - Great American Insurance Group/Documents/Python Scripts/hail_data"
|
64 |
+
parquet_files = glob.glob(f"{data_dir}/hail_*.parquet")
|
65 |
+
print("Parquet files found:", parquet_files)
|
66 |
+
if not parquet_files:
|
67 |
+
raise ValueError("No parquet files found in the specified directory")
|
68 |
+
|
69 |
+
file_paths = ", ".join([f"'{file}'" for file in parquet_files])
|
70 |
+
lat_min, lat_max = lat-1, lat+1
|
71 |
+
lon_min, lon_max = lon-1, lon+1
|
72 |
+
|
73 |
+
code = f"""
|
74 |
+
SELECT
|
75 |
+
"#ZTIME" as "Date_utc",
|
76 |
+
LON,
|
77 |
+
LAT,
|
78 |
+
MAXSIZE
|
79 |
+
FROM read_parquet([{file_paths}], hive_partitioning=1)
|
80 |
+
WHERE
|
81 |
+
LAT BETWEEN {lat_min} AND {lat_max}
|
82 |
+
AND LON BETWEEN {lon_min} AND {lon_max}
|
83 |
+
AND "#ZTIME" <= '{date_str}'
|
84 |
+
"""
|
85 |
+
return duck_sql(code)
|
86 |
+
|
87 |
+
def distance(x):
|
88 |
+
left_coords = (x[0], x[1]) # LAT, LON
|
89 |
+
right_coords = (x[2], x[3]) # Lat_address, Lon_address
|
90 |
+
return vincenty(left_coords, right_coords, miles=True)
|
91 |
+
|
92 |
+
def geocode(address):
|
93 |
+
try:
|
94 |
+
try:
|
95 |
+
address2 = address.replace(' ', '+').replace(',', '%2C')
|
96 |
+
df = pd.read_json(
|
97 |
+
f'https://geocoding.geo.census.gov/geocoder/locations/onelineaddress?address={address2}&benchmark=2020&format=json')
|
98 |
+
results = df.iloc[0, 0]['results'].iloc[0]['coordinates']
|
99 |
+
return results['y'], results['x']
|
100 |
+
except:
|
101 |
+
geolocator = Nominatim(user_agent="HailDamageAnalyzer")
|
102 |
+
geocode = RateLimiter(geolocator.geocode, min_delay_seconds=1)
|
103 |
+
location = geolocator.geocode(address)
|
104 |
+
if location:
|
105 |
+
return location.latitude, location.longitude
|
106 |
+
raise Exception("Geocoding failed")
|
107 |
+
except:
|
108 |
+
try:
|
109 |
+
geocode_key = os.getenv("GEOCODE_KEY")
|
110 |
+
if not geocode_key:
|
111 |
+
raise Exception("Geocode API key not found")
|
112 |
+
address_encoded = urllib.parse.quote(address)
|
113 |
+
url = f'https://api.geocod.io/v1.7/geocode?q={address_encoded}&api_key={geocode_key}'
|
114 |
+
response = requests.get(url, verify=False)
|
115 |
+
response.raise_for_status()
|
116 |
+
json_response = response.json()
|
117 |
+
return json_response['results'][0]['location']['lat'], json_response['results'][0]['location']['lng']
|
118 |
+
except Exception as e:
|
119 |
+
print(f"Geocoding error: {str(e)}")
|
120 |
+
raise Exception("Could not geocode address. Please try again with a different address.")
|
121 |
+
|
122 |
+
# Layout
|
123 |
+
app.layout = html.Div([
|
124 |
+
dcc.Store(id="filtered-data-store"),
|
125 |
+
dcc.Download(id="download-dataframe-csv"),
|
126 |
+
dbc.Button("Download Data as CSV", id="btn-download-csv", color="secondary", className="mb-3"),
|
127 |
+
|
128 |
+
dbc.Container([
|
129 |
+
dbc.Row([
|
130 |
+
dbc.Col([
|
131 |
+
html.H1("Hail Damage Analyzer", className="text-center my-4"),
|
132 |
+
html.P("Analyze historical hail data", className="text-center text-muted"),
|
133 |
+
html.Hr()
|
134 |
+
], width=12)
|
135 |
+
]),
|
136 |
+
|
137 |
+
dbc.Row([
|
138 |
+
dbc.Col([
|
139 |
+
html.Div([
|
140 |
+
html.H5("Search Parameters", className="mb-3"),
|
141 |
+
dbc.Form([
|
142 |
+
dbc.Label("Address"),
|
143 |
+
dbc.Input(id="address-input", type="text", placeholder="Enter address", value="Dallas, TX", className="mb-3"),
|
144 |
+
dbc.Label("Maximum Date"),
|
145 |
+
dcc.DatePickerSingle(
|
146 |
+
id='date-picker',
|
147 |
+
min_date_allowed=datetime(2010, 1, 1),
|
148 |
+
max_date_allowed=datetime(2025, 7, 5),
|
149 |
+
date=datetime(2025, 7, 5),
|
150 |
+
className="mb-3 w-100"
|
151 |
+
),
|
152 |
+
dbc.Label("Show Data Within"),
|
153 |
+
dcc.Dropdown(
|
154 |
+
id='distance-dropdown',
|
155 |
+
options=[
|
156 |
+
{'label': 'All Distances', 'value': 'all'},
|
157 |
+
{'label': 'Within 1 Mile', 'value': '1'},
|
158 |
+
{'label': 'Within 3 Miles', 'value': '3'},
|
159 |
+
{'label': 'Within 5 Miles', 'value': '5'},
|
160 |
+
{'label': 'Within 10 Miles', 'value': '10'}
|
161 |
+
],
|
162 |
+
value='all',
|
163 |
+
className="mb-4"
|
164 |
+
),
|
165 |
+
dbc.Button("Search", id="search-button", color="primary", className="w-100 mb-3")
|
166 |
+
]),
|
167 |
+
html.Div(id="summary-cards", className="mt-4")
|
168 |
+
], className="p-3 bg-light rounded-3")
|
169 |
+
], md=4),
|
170 |
+
|
171 |
+
dbc.Col([
|
172 |
+
dbc.Row([
|
173 |
+
dbc.Col([
|
174 |
+
dbc.Card([
|
175 |
+
dbc.CardHeader("Hail Data Overview"),
|
176 |
+
dbc.CardBody([
|
177 |
+
dcc.Loading(
|
178 |
+
id="loading-hail-data",
|
179 |
+
type="circle",
|
180 |
+
children=[
|
181 |
+
html.Div(id="hail-data-table"),
|
182 |
+
html.Div(id="map-container", className="mt-4")
|
183 |
+
]
|
184 |
+
)
|
185 |
+
])
|
186 |
+
])
|
187 |
+
])
|
188 |
+
]),
|
189 |
+
dbc.Row([
|
190 |
+
dbc.Col([
|
191 |
+
dbc.Card([
|
192 |
+
dbc.CardHeader("Hail Size Over Time"),
|
193 |
+
dbc.CardBody([
|
194 |
+
dcc.Loading(
|
195 |
+
id="loading-hail-chart",
|
196 |
+
type="circle",
|
197 |
+
children=[
|
198 |
+
dcc.Graph(id="hail-size-chart")
|
199 |
+
]
|
200 |
+
)
|
201 |
+
])
|
202 |
+
], className="mt-4")
|
203 |
+
])
|
204 |
+
])
|
205 |
+
], md=8)
|
206 |
+
]),
|
207 |
+
|
208 |
+
html.Div(id="intermediate-data", style={"display": "none"}),
|
209 |
+
dbc.Row([
|
210 |
+
dbc.Col([
|
211 |
+
html.Hr(),
|
212 |
+
html.P("© 2025 Hail Damage Analyzer", className="text-center text-muted small")
|
213 |
+
])
|
214 |
+
], className="mt-4")
|
215 |
+
], fluid=True)
|
216 |
+
])
|
217 |
+
|
218 |
+
# Main callback
|
219 |
+
@app.callback(
|
220 |
+
[Output("intermediate-data", "children"),
|
221 |
+
Output("summary-cards", "children"),
|
222 |
+
Output("hail-data-table", "children"),
|
223 |
+
Output("map-container", "children"),
|
224 |
+
Output("hail-size-chart", "figure"),
|
225 |
+
Output("filtered-data-store", "data")],
|
226 |
+
[Input("search-button", "n_clicks"),
|
227 |
+
Input("address-input", "n_submit")],
|
228 |
+
[State("address-input", "value"),
|
229 |
+
State("date-picker", "date"),
|
230 |
+
State("distance-dropdown", "value")]
|
231 |
+
)
|
232 |
+
def update_all(n_clicks, n_submit, address, date_str, distance_filter):
|
233 |
+
print("Update all callback triggered") # Debug
|
234 |
+
ctx = dash.callback_context
|
235 |
+
if not ctx.triggered:
|
236 |
+
raise PreventUpdate
|
237 |
+
|
238 |
+
try:
|
239 |
+
lat, lon = geocode(address)
|
240 |
+
date_obj = datetime.strptime(date_str.split('T')[0], '%Y-%m-%d')
|
241 |
+
date_formatted = date_obj.strftime('%Y%m%d')
|
242 |
+
df = get_data(lat, lon, date_formatted)
|
243 |
+
|
244 |
+
if df.empty:
|
245 |
+
error_alert = dbc.Alert("No hail data found for this location and date range.", color="warning")
|
246 |
+
return dash.no_update, error_alert, "", "", {}, []
|
247 |
+
|
248 |
+
df["Lat_address"] = lat
|
249 |
+
df["Lon_address"] = lon
|
250 |
+
df['Miles to Hail'] = [
|
251 |
+
distance(i) for i in df[['LAT', 'LON', 'Lat_address', 'Lon_address']].values
|
252 |
+
]
|
253 |
+
df['MAXSIZE'] = df['MAXSIZE'].round(2)
|
254 |
+
|
255 |
+
if distance_filter != 'all':
|
256 |
+
max_distance = float(distance_filter)
|
257 |
+
df = df[df['Miles to Hail'] <= max_distance]
|
258 |
+
|
259 |
+
max_size = df['MAXSIZE'].max()
|
260 |
+
last_date = df['Date_utc'].max()
|
261 |
+
total_events = len(df)
|
262 |
+
|
263 |
+
summary_cards = dbc.Row([
|
264 |
+
dbc.Col([
|
265 |
+
dbc.Card([
|
266 |
+
dbc.CardBody([
|
267 |
+
html.H6("Max Hail Size (in)", className="card-title"),
|
268 |
+
html.H3(f"{max_size:.1f}", className="text-center")
|
269 |
+
])
|
270 |
+
], className="text-center")
|
271 |
+
], md=4, className="mb-3"),
|
272 |
+
dbc.Col([
|
273 |
+
dbc.Card([
|
274 |
+
dbc.CardBody([
|
275 |
+
html.H6("Last Hail Event", className="card-title"),
|
276 |
+
html.H3(last_date, className="text-center")
|
277 |
+
])
|
278 |
+
], className="text-center")
|
279 |
+
], md=4, className="mb-3"),
|
280 |
+
dbc.Col([
|
281 |
+
dbc.Card([
|
282 |
+
dbc.CardBody([
|
283 |
+
html.H6("Total Events", className="card-title"),
|
284 |
+
html.H3(f"{total_events}", className="text-center")
|
285 |
+
])
|
286 |
+
], className="text-center")
|
287 |
+
], md=4, className="mb-3")
|
288 |
+
])
|
289 |
+
|
290 |
+
df_display = df[['Date_utc', 'MAXSIZE', 'Miles to Hail']].copy()
|
291 |
+
df_display['Miles to Hail'] = df_display['Miles to Hail'].round(2)
|
292 |
+
df_display = df_display.rename(columns={
|
293 |
+
'Date_utc': 'Date',
|
294 |
+
'MAXSIZE': 'Hail Size (in)',
|
295 |
+
'Miles to Hail': 'Distance (miles)'
|
296 |
+
})
|
297 |
+
|
298 |
+
data_table = dash_table.DataTable(
|
299 |
+
id='hail-data-table',
|
300 |
+
columns=[{"name": i, "id": i} for i in df_display.columns],
|
301 |
+
data=df_display.to_dict('records'),
|
302 |
+
page_size=10,
|
303 |
+
style_table={'overflowX': 'auto'},
|
304 |
+
style_cell={
|
305 |
+
'textAlign': 'left',
|
306 |
+
'padding': '8px',
|
307 |
+
'minWidth': '50px', 'width': '100px', 'maxWidth': '180px',
|
308 |
+
'whiteSpace': 'normal'
|
309 |
+
},
|
310 |
+
style_header={
|
311 |
+
'backgroundColor': 'rgb(230, 230, 230)',
|
312 |
+
'fontWeight': 'bold'
|
313 |
+
},
|
314 |
+
style_data_conditional=[
|
315 |
+
{
|
316 |
+
'if': {
|
317 |
+
'filter_query': '{Hail Size (in)} >= 2',
|
318 |
+
'column_id': 'Hail Size (in)'
|
319 |
+
},
|
320 |
+
'backgroundColor': '#ffcccc',
|
321 |
+
'fontWeight': 'bold'
|
322 |
+
}
|
323 |
+
]
|
324 |
+
)
|
325 |
+
|
326 |
+
map_fig = go.Figure()
|
327 |
+
for _, row in df.iterrows():
|
328 |
+
size = row['MAXSIZE']
|
329 |
+
map_fig.add_trace(
|
330 |
+
go.Scattermapbox(
|
331 |
+
lon=[row['LON']],
|
332 |
+
lat=[row['LAT']],
|
333 |
+
mode='markers',
|
334 |
+
marker=go.scattermapbox.Marker(
|
335 |
+
size=size * 3,
|
336 |
+
color='red',
|
337 |
+
opacity=0.7
|
338 |
+
),
|
339 |
+
text=f"Size: {size} in Date: {row['Date_utc']}",
|
340 |
+
hoverinfo='text',
|
341 |
+
showlegend=False
|
342 |
+
)
|
343 |
+
)
|
344 |
+
|
345 |
+
if not df.empty:
|
346 |
+
center_lat = df['Lat_address'].iloc[0]
|
347 |
+
center_lon = df['Lon_address'].iloc[0]
|
348 |
+
map_fig.add_trace(
|
349 |
+
go.Scattermapbox(
|
350 |
+
lon=[center_lon],
|
351 |
+
lat=[center_lat],
|
352 |
+
mode='markers',
|
353 |
+
marker=go.scattermapbox.Marker(
|
354 |
+
size=14,
|
355 |
+
color='blue',
|
356 |
+
symbol='star'
|
357 |
+
),
|
358 |
+
text=f"Your Location: {address}",
|
359 |
+
hoverinfo='text',
|
360 |
+
showlegend=False
|
361 |
+
)
|
362 |
+
)
|
363 |
+
|
364 |
+
map_fig.update_layout(
|
365 |
+
mapbox_style="open-street-map",
|
366 |
+
mapbox=dict(
|
367 |
+
center=dict(lat=center_lat, lon=center_lon),
|
368 |
+
zoom=10
|
369 |
+
),
|
370 |
+
margin={"r":0, "t":0, "l":0, "b":0},
|
371 |
+
height=400
|
372 |
+
)
|
373 |
+
|
374 |
+
df_chart = df.copy()
|
375 |
+
df_chart['Date'] = pd.to_datetime(df_chart['Date_utc'])
|
376 |
+
df_chart = df_chart.sort_values('Date')
|
377 |
+
|
378 |
+
chart_fig = px.scatter(
|
379 |
+
df_chart,
|
380 |
+
x='Date',
|
381 |
+
y='MAXSIZE',
|
382 |
+
color='Miles to Hail',
|
383 |
+
size='MAXSIZE',
|
384 |
+
hover_data=['Miles to Hail'],
|
385 |
+
title='Hail Size Over Time',
|
386 |
+
labels={
|
387 |
+
'MAXSIZE': 'Hail Size (in)',
|
388 |
+
'Miles to Hail': 'Distance (miles)'
|
389 |
+
}
|
390 |
+
)
|
391 |
+
|
392 |
+
chart_fig.update_traces(
|
393 |
+
marker=dict(
|
394 |
+
line=dict(width=1, color='DarkSlateGrey'),
|
395 |
+
opacity=0.7
|
396 |
+
),
|
397 |
+
selector=dict(mode='markers')
|
398 |
+
)
|
399 |
+
|
400 |
+
chart_fig.update_layout(
|
401 |
+
xaxis_title='Date',
|
402 |
+
yaxis_title='Hail Size (in)',
|
403 |
+
plot_bgcolor='rgba(0,0,0,0.02)',
|
404 |
+
paper_bgcolor='white',
|
405 |
+
hovermode='closest'
|
406 |
+
)
|
407 |
+
|
408 |
+
intermediate_data = df.to_json(date_format='iso', orient='split')
|
409 |
+
map_figure = dcc.Graph(figure=map_fig)
|
410 |
+
chart_figure = chart_fig
|
411 |
+
store_data = df.to_dict('records')
|
412 |
+
print("Store data populated:", store_data[:2])
|
413 |
+
|
414 |
+
return (
|
415 |
+
intermediate_data,
|
416 |
+
summary_cards,
|
417 |
+
data_table,
|
418 |
+
map_figure,
|
419 |
+
chart_figure,
|
420 |
+
store_data
|
421 |
+
)
|
422 |
+
|
423 |
+
except Exception as e:
|
424 |
+
error_alert = dbc.Alert(f"Error: {str(e)}", color="danger")
|
425 |
+
return dash.no_update, error_alert, "", "", {}, []
|
426 |
+
|
427 |
+
from dash import callback_context
|
428 |
+
|
429 |
+
@callback(
|
430 |
+
Output("download-dataframe-csv", "data"),
|
431 |
+
[Input("btn-download-csv", "n_clicks")],
|
432 |
+
[State("filtered-data-store", "data")],
|
433 |
+
prevent_initial_call=True
|
434 |
+
)
|
435 |
+
def download_csv(n_clicks, data):
|
436 |
+
if not n_clicks or not data:
|
437 |
+
return dash.no_update
|
438 |
+
|
439 |
+
df = pd.DataFrame(data)
|
440 |
+
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
441 |
+
filename = f"hail_data_export_{timestamp}.csv"
|
442 |
+
csv_string = df.to_csv(index=False, encoding='utf-8')
|
443 |
+
return dict(content=csv_string, filename=filename)
|
444 |
+
|
445 |
+
|
446 |
+
if __name__ == '__main__':
|
447 |
+
print("🚀 Dash app is running! Open this link in your browser:")
|
448 |
+
print("👉 http://127.0.0.1:8050/")
|
449 |
+
app.run(debug=True, port=8050)
|