Spaces:
Sleeping
Sleeping
Commit
·
19a011f
1
Parent(s):
b37b4db
Working prototype
Browse files
app.py
CHANGED
@@ -1,10 +1,64 @@
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
-
|
6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
-
demo = gr.Interface(
|
10 |
demo.launch()
|
|
|
1 |
+
import io
|
2 |
+
|
3 |
+
import torch
|
4 |
import gradio as gr
|
5 |
+
import matplotlib
|
6 |
+
import matplotlib.pyplot as plt
|
7 |
+
from PIL import Image
|
8 |
+
|
9 |
+
from transformers import AutoFeatureExtractor, AutoModelForObjectDetection
|
10 |
+
|
11 |
+
extractor = AutoFeatureExtractor.from_pretrained("hustvl/yolos-tiny")
|
12 |
+
model = AutoModelForObjectDetection.from_pretrained("hustvl/yolos-tiny")
|
13 |
+
|
14 |
+
matplotlib.pyplot.switch_backend('Agg')
|
15 |
+
|
16 |
+
COLORS = [
|
17 |
+
[0.000, 0.447, 0.741],
|
18 |
+
[0.850, 0.325, 0.098],
|
19 |
+
[0.929, 0.694, 0.125],
|
20 |
+
[0.494, 0.184, 0.556],
|
21 |
+
[0.466, 0.674, 0.188],
|
22 |
+
[0.301, 0.745, 0.933]
|
23 |
+
]
|
24 |
+
|
25 |
+
PRED_THRESHOLD = 0.90
|
26 |
+
|
27 |
+
def fig2img(fig):
|
28 |
+
buf = io.BytesIO()
|
29 |
+
fig.savefig(buf)
|
30 |
+
buf.seek(0)
|
31 |
+
img = Image.open(buf)
|
32 |
+
return img
|
33 |
|
34 |
+
def composite_predictions(img, processed_predictions):
|
35 |
+
keep = processed_predictions["labels"] == 1 # only interested in people
|
36 |
+
boxes = processed_predictions["boxes"][keep].tolist()
|
37 |
+
scores = processed_predictions["scores"][keep].tolist()
|
38 |
+
labels = processed_predictions["labels"][keep].tolist()
|
39 |
|
40 |
+
labels = [model.config.id2label[x] for x in labels]
|
41 |
+
|
42 |
+
plt.figure(figsize=(16, 10))
|
43 |
+
plt.imshow(img)
|
44 |
+
axis = plt.gca()
|
45 |
+
colors = COLORS * 100
|
46 |
+
for score, (xmin, ymin, xmax, ymax), label, color in zip(scores, boxes, labels, colors):
|
47 |
+
axis.add_patch(plt.Rectangle((xmin, ymin), xmax - xmin, ymax - ymin, fill=False, color=color, linewidth=3))
|
48 |
+
axis.text(xmin, ymin, f"{label}: {score:0.2f}", fontsize=15, bbox=dict(facecolor="yellow", alpha=0.5))
|
49 |
+
plt.axis("off")
|
50 |
+
img = fig2img(plt.gcf())
|
51 |
+
matplotlib.pyplot.close()
|
52 |
+
return img
|
53 |
|
54 |
+
def process(img):
|
55 |
+
inputs = extractor(images=img, return_tensors="pt")
|
56 |
+
outputs = model(**inputs)
|
57 |
+
img_size = torch.tensor([tuple(reversed(img.size))])
|
58 |
+
processed = extractor.post_process_object_detection(outputs, PRED_THRESHOLD, img_size)
|
59 |
+
|
60 |
+
# Composite image and prediction bounding boxes + labels prediction
|
61 |
+
return composite_predictions(img, processed[0])
|
62 |
|
63 |
+
demo = gr.Interface(fn=process, inputs=[gr.Image(source="webcam", streaming=True, type='pil')], outputs=["image"], live=True)
|
64 |
demo.launch()
|