Spaces:
Running
Running
Commit
·
24d9d43
1
Parent(s):
3469da9
WIP
Browse files- app.py +26 -8
- requirements.txt +1 -0
app.py
CHANGED
@@ -1,23 +1,33 @@
|
|
1 |
import json
|
|
|
2 |
|
3 |
import gradio as gr
|
|
|
4 |
from transformers import pipeline, AutoTokenizer, AutoModelForTokenClassification
|
5 |
|
6 |
tokenizer = AutoTokenizer.from_pretrained("d4data/biomedical-ner-all")
|
7 |
model = AutoModelForTokenClassification.from_pretrained("d4data/biomedical-ner-all")
|
8 |
|
9 |
-
|
|
|
10 |
with open("examples.json", "r") as f:
|
11 |
example_json = json.load(f)
|
12 |
-
|
13 |
-
|
14 |
|
15 |
pipe = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="simple")
|
16 |
|
17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
def ner(text):
|
19 |
raw = pipe(text)
|
20 |
-
|
21 |
"text": text,
|
22 |
"entities": [
|
23 |
{
|
@@ -30,14 +40,22 @@ def ner(text):
|
|
30 |
for x in raw
|
31 |
],
|
32 |
}
|
33 |
-
|
|
|
|
|
|
|
34 |
|
35 |
|
36 |
interface = gr.Interface(
|
37 |
ner,
|
38 |
-
inputs=gr.Textbox(label="
|
39 |
-
outputs=[
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
41 |
)
|
42 |
|
43 |
interface.launch()
|
|
|
1 |
import json
|
2 |
+
from collections import defaultdict
|
3 |
|
4 |
import gradio as gr
|
5 |
+
import pandas as pd
|
6 |
from transformers import pipeline, AutoTokenizer, AutoModelForTokenClassification
|
7 |
|
8 |
tokenizer = AutoTokenizer.from_pretrained("d4data/biomedical-ner-all")
|
9 |
model = AutoModelForTokenClassification.from_pretrained("d4data/biomedical-ner-all")
|
10 |
|
11 |
+
|
12 |
+
EXAMPLE_MAP = {}
|
13 |
with open("examples.json", "r") as f:
|
14 |
example_json = json.load(f)
|
15 |
+
EXAMPLE_MAP = {x["text"]: x["label"] for x in example_json}
|
|
|
16 |
|
17 |
pipe = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="simple")
|
18 |
|
19 |
|
20 |
+
def group_by_entity(raw):
|
21 |
+
out = defaultdict(int)
|
22 |
+
for ent in raw:
|
23 |
+
out[ent["entity_group"]] += 1
|
24 |
+
out["total"] = sum(out.values())
|
25 |
+
return out
|
26 |
+
|
27 |
+
|
28 |
def ner(text):
|
29 |
raw = pipe(text)
|
30 |
+
ner_content = {
|
31 |
"text": text,
|
32 |
"entities": [
|
33 |
{
|
|
|
40 |
for x in raw
|
41 |
],
|
42 |
}
|
43 |
+
grouped = group_by_entity(raw)
|
44 |
+
df = pd.DataFrame({"Entity": grouped.keys(), "Count": grouped.values()})
|
45 |
+
label = EXAMPLE_MAP.get(text, None)
|
46 |
+
return (ner_content, grouped, label, df.hist())
|
47 |
|
48 |
|
49 |
interface = gr.Interface(
|
50 |
ner,
|
51 |
+
inputs=gr.Textbox(label="Note text", value=""),
|
52 |
+
outputs=[
|
53 |
+
gr.HighlightedText(label="NER", combine_adjacent=True),
|
54 |
+
gr.JSON(label="Entity Counts"),
|
55 |
+
gr.Label(label="Rating"),
|
56 |
+
"plot",
|
57 |
+
],
|
58 |
+
examples=list(EXAMPLE_MAP.keys()),
|
59 |
)
|
60 |
|
61 |
interface.launch()
|
requirements.txt
CHANGED
@@ -60,6 +60,7 @@ sniffio==1.3.0
|
|
60 |
starlette==0.20.4
|
61 |
tokenizers==0.12.1
|
62 |
tomli==2.0.1
|
|
|
63 |
tqdm==4.64.1
|
64 |
transformers==4.22.2
|
65 |
typing_extensions==4.4.0
|
|
|
60 |
starlette==0.20.4
|
61 |
tokenizers==0.12.1
|
62 |
tomli==2.0.1
|
63 |
+
torch==1.12.1
|
64 |
tqdm==4.64.1
|
65 |
transformers==4.22.2
|
66 |
typing_extensions==4.4.0
|