Spaces:
Running
Running
Commit
·
b8f5c23
1
Parent(s):
1d0e96d
Cleanup
Browse files
app.py
CHANGED
@@ -14,7 +14,11 @@ from chain import get_chain
|
|
14 |
|
15 |
STORE_DIR = "store"
|
16 |
YOUTUBE_EMBED_TEMPLATE = """
|
17 |
-
<iframe width="354"
|
|
|
|
|
|
|
|
|
18 |
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture" allowfullscreen>
|
19 |
</iframe>"""
|
20 |
|
@@ -80,8 +84,11 @@ def chat(inp, history, agent):
|
|
80 |
return history, history, source_html
|
81 |
|
82 |
|
83 |
-
|
84 |
-
|
|
|
|
|
|
|
85 |
gr.Markdown("<h3><center>ToKBot🤖 - Ask ToKCast Questions</center></h3>")
|
86 |
openai_api_key_textbox = gr.Textbox(
|
87 |
placeholder="Paste your OpenAI API key (sk-...)",
|
@@ -90,13 +97,8 @@ with block:
|
|
90 |
type="password",
|
91 |
)
|
92 |
|
|
|
93 |
chatbot = gr.Chatbot()
|
94 |
-
gr.Markdown("<h3>Excerpts</h3>")
|
95 |
-
sources = gr.HTML(
|
96 |
-
"""<div style="min-height:200px;display:flex;align-items:center;justify-content:center;">
|
97 |
-
<h3 style="text-align:center;color:#555;font-size:2rem;">No videos</h3>
|
98 |
-
</div>"""
|
99 |
-
)
|
100 |
with gr.Row():
|
101 |
message = gr.Textbox(
|
102 |
label="What's your question?",
|
@@ -107,24 +109,21 @@ with block:
|
|
107 |
|
108 |
gr.Examples(
|
109 |
examples=[
|
110 |
-
|
111 |
-
"How do memes differ from genes in
|
112 |
"What is the nature of knowledge and how does it grow?",
|
113 |
],
|
114 |
inputs=message,
|
115 |
)
|
116 |
|
117 |
gr.HTML(
|
118 |
-
"""A GPT-3/LangChain bot that answers questions about the TokCast podcast provides relevant video excerpts"""
|
119 |
)
|
120 |
|
121 |
gr.HTML(
|
122 |
"<center>Powered by <a href='https://github.com/hwchase17/langchain'>LangChain 🦜️🔗</a></center>"
|
123 |
)
|
124 |
|
125 |
-
state = gr.State()
|
126 |
-
agent_state = gr.State()
|
127 |
-
|
128 |
submit.click(
|
129 |
chat,
|
130 |
inputs=[message, state, agent_state],
|
@@ -142,4 +141,4 @@ with block:
|
|
142 |
outputs=[agent_state],
|
143 |
)
|
144 |
|
145 |
-
|
|
|
14 |
|
15 |
STORE_DIR = "store"
|
16 |
YOUTUBE_EMBED_TEMPLATE = """
|
17 |
+
<iframe width="354"
|
18 |
+
height="200"
|
19 |
+
src="{source}&cc_load_policy=1"
|
20 |
+
title="YouTube video player"
|
21 |
+
frameborder="0"
|
22 |
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture" allowfullscreen>
|
23 |
</iframe>"""
|
24 |
|
|
|
84 |
return history, history, source_html
|
85 |
|
86 |
|
87 |
+
with gr.Blocks(css=".gradio-container {background-color: lightgray}") as demo:
|
88 |
+
|
89 |
+
state = gr.State()
|
90 |
+
agent_state = gr.State()
|
91 |
+
|
92 |
gr.Markdown("<h3><center>ToKBot🤖 - Ask ToKCast Questions</center></h3>")
|
93 |
openai_api_key_textbox = gr.Textbox(
|
94 |
placeholder="Paste your OpenAI API key (sk-...)",
|
|
|
97 |
type="password",
|
98 |
)
|
99 |
|
100 |
+
sources = gr.HTML()
|
101 |
chatbot = gr.Chatbot()
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
with gr.Row():
|
103 |
message = gr.Textbox(
|
104 |
label="What's your question?",
|
|
|
109 |
|
110 |
gr.Examples(
|
111 |
examples=[
|
112 |
+
'What does "the beginning of infinity" refer to?',
|
113 |
+
"How do memes differ from genes in their replication?",
|
114 |
"What is the nature of knowledge and how does it grow?",
|
115 |
],
|
116 |
inputs=message,
|
117 |
)
|
118 |
|
119 |
gr.HTML(
|
120 |
+
"""<p>A GPT-3/LangChain bot that answers questions about the TokCast podcast provides relevant video excerpts</p>"""
|
121 |
)
|
122 |
|
123 |
gr.HTML(
|
124 |
"<center>Powered by <a href='https://github.com/hwchase17/langchain'>LangChain 🦜️🔗</a></center>"
|
125 |
)
|
126 |
|
|
|
|
|
|
|
127 |
submit.click(
|
128 |
chat,
|
129 |
inputs=[message, state, agent_state],
|
|
|
141 |
outputs=[agent_state],
|
142 |
)
|
143 |
|
144 |
+
demo.launch()
|
chain.py
CHANGED
@@ -6,9 +6,8 @@ from langchain.chains.base import Chain
|
|
6 |
from langchain.chains.combine_documents.base import BaseCombineDocumentsChain
|
7 |
from langchain.chains.question_answering import load_qa_chain
|
8 |
from langchain.prompts import FewShotPromptTemplate
|
9 |
-
|
10 |
-
# from langchain.prompts.example_selector import SemanticSimilarityExampleSelector
|
11 |
from langchain.vectorstores import FAISS
|
|
|
12 |
from pydantic import BaseModel
|
13 |
|
14 |
|
@@ -33,20 +32,18 @@ class CustomChain(Chain, BaseModel):
|
|
33 |
new_question = self.key_word_extractor.run(
|
34 |
question=question, chat_history=chat_history_str
|
35 |
)
|
36 |
-
|
37 |
else:
|
38 |
new_question = question
|
39 |
-
docs = self.vstore.similarity_search(new_question, k=
|
40 |
new_inputs = inputs.copy()
|
41 |
new_inputs["question"] = new_question
|
42 |
new_inputs["chat_history"] = chat_history_str
|
43 |
answer, _ = self.chain.combine_docs(docs, **new_inputs)
|
44 |
-
sources =
|
45 |
if "SOURCES:" in answer:
|
46 |
answer, sources = answer.split("SOURCES:")
|
47 |
-
|
48 |
-
answer
|
49 |
-
return {"answer": answer, "sources": sources}
|
50 |
|
51 |
|
52 |
def get_chain(vectorstore: FAISS) -> Chain:
|
@@ -68,10 +65,6 @@ def get_chain(vectorstore: FAISS) -> Chain:
|
|
68 |
{chat_history}
|
69 |
Follow Up Input: {question}
|
70 |
Standalone question:"""
|
71 |
-
# example_selector = SemanticSimilarityExampleSelector(
|
72 |
-
# vectorstore=vectorstore,
|
73 |
-
# k=4,
|
74 |
-
# )
|
75 |
|
76 |
examples = [
|
77 |
{
|
@@ -121,13 +114,9 @@ ANSWER:"""
|
|
121 |
chain_type="stuff",
|
122 |
prompt=PROMPT,
|
123 |
document_prompt=EXAMPLE_PROMPT,
|
124 |
-
verbose=True,
|
125 |
)
|
126 |
return CustomChain(
|
127 |
-
chain=doc_chain,
|
128 |
-
vstore=vectorstore,
|
129 |
-
key_word_extractor=key_word_extractor,
|
130 |
-
verbose=True,
|
131 |
)
|
132 |
|
133 |
|
|
|
6 |
from langchain.chains.combine_documents.base import BaseCombineDocumentsChain
|
7 |
from langchain.chains.question_answering import load_qa_chain
|
8 |
from langchain.prompts import FewShotPromptTemplate
|
|
|
|
|
9 |
from langchain.vectorstores import FAISS
|
10 |
+
|
11 |
from pydantic import BaseModel
|
12 |
|
13 |
|
|
|
32 |
new_question = self.key_word_extractor.run(
|
33 |
question=question, chat_history=chat_history_str
|
34 |
)
|
|
|
35 |
else:
|
36 |
new_question = question
|
37 |
+
docs = self.vstore.similarity_search(new_question, k=4)
|
38 |
new_inputs = inputs.copy()
|
39 |
new_inputs["question"] = new_question
|
40 |
new_inputs["chat_history"] = chat_history_str
|
41 |
answer, _ = self.chain.combine_docs(docs, **new_inputs)
|
42 |
+
sources = []
|
43 |
if "SOURCES:" in answer:
|
44 |
answer, sources = answer.split("SOURCES:")
|
45 |
+
sources = sources.split(", ")
|
46 |
+
return {"answer": answer.strip(), "sources": sources}
|
|
|
47 |
|
48 |
|
49 |
def get_chain(vectorstore: FAISS) -> Chain:
|
|
|
65 |
{chat_history}
|
66 |
Follow Up Input: {question}
|
67 |
Standalone question:"""
|
|
|
|
|
|
|
|
|
68 |
|
69 |
examples = [
|
70 |
{
|
|
|
114 |
chain_type="stuff",
|
115 |
prompt=PROMPT,
|
116 |
document_prompt=EXAMPLE_PROMPT,
|
|
|
117 |
)
|
118 |
return CustomChain(
|
119 |
+
chain=doc_chain, vstore=vectorstore, key_word_extractor=key_word_extractor
|
|
|
|
|
|
|
120 |
)
|
121 |
|
122 |
|