Update my_app.aiconfig.json
Browse files- my_app.aiconfig.json +51 -3
my_app.aiconfig.json
CHANGED
|
@@ -11,11 +11,11 @@
|
|
| 11 |
"default_model": null,
|
| 12 |
"model_parsers": null
|
| 13 |
},
|
| 14 |
-
"description": "In this notebook, we compare the individual performance of HF hosted LLMs () on a few example questions from the GLUE benchmarks (https://gluebenchmark.com/tasks)
|
| 15 |
"prompts": [
|
| 16 |
{
|
| 17 |
"name": "mistral_7b_instruct_v0.1",
|
| 18 |
-
"input": "
|
| 19 |
"metadata": {
|
| 20 |
"model": {
|
| 21 |
"name": "Text Generation",
|
|
@@ -27,11 +27,18 @@
|
|
| 27 |
"parameters": {}
|
| 28 |
},
|
| 29 |
"outputs": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
]
|
| 31 |
},
|
| 32 |
{
|
| 33 |
"name": "google_flan_t5_sm",
|
| 34 |
-
"input": "
|
| 35 |
"metadata": {
|
| 36 |
"model": {
|
| 37 |
"name": "Conversational",
|
|
@@ -45,6 +52,28 @@
|
|
| 45 |
"parameters": {}
|
| 46 |
},
|
| 47 |
"outputs": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
]
|
| 49 |
},
|
| 50 |
{
|
|
@@ -61,6 +90,25 @@
|
|
| 61 |
"parameters": {}
|
| 62 |
},
|
| 63 |
"outputs": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
]
|
| 65 |
}
|
| 66 |
]
|
|
|
|
| 11 |
"default_model": null,
|
| 12 |
"model_parsers": null
|
| 13 |
},
|
| 14 |
+
"description": "**In this notebook, we compare the individual performance of HF hosted LLMs () on a few example questions from the GLUE benchmarks (https://gluebenchmark.com/tasks).**\n\n**Example questions taken from \"What is the GLUE Benchmark\" medium post - https://angelina-yang.medium.com/what-is-the-glue-benchmark-for-nlu-systems-61127b3cab3f**\n\n---\n\n| General Language Understanding Evaluation (GLUE) Tasks | Example Question |\n| ----------- | ----------- |\n| Corpus of Linguistic Acceptability (CoLA) | Is the sentence grammatical or ungrammatical? \"This building is than that one.\" |\n| Stanford Sentiment Treebank (SST) | Is the movie review positive, negative, or neutral? \"The movie is funny, smart, visually inventive, and most of all, alive.\" |\n| Winograd NLI (WNLI) | Sentence B replaces sentence A's ambiguous pronoun with one of the nouns - is this the correct noun? \"A) Lily spoke to Donna, breaking her concentration. B) Lily spoke to Donna, breaking Lily's concentration.\" |",
|
| 15 |
"prompts": [
|
| 16 |
{
|
| 17 |
"name": "mistral_7b_instruct_v0.1",
|
| 18 |
+
"input": "Is the movie review positive, negative, or neutral?\n\n\n\"The movie is funny, smart, visually inventive, and most of all, alive.\"",
|
| 19 |
"metadata": {
|
| 20 |
"model": {
|
| 21 |
"name": "Text Generation",
|
|
|
|
| 27 |
"parameters": {}
|
| 28 |
},
|
| 29 |
"outputs": [
|
| 30 |
+
{
|
| 31 |
+
"output_type": "execute_result",
|
| 32 |
+
"execution_count": 0,
|
| 33 |
+
"data": "\n\nThe movie review is positive.</s>",
|
| 34 |
+
"mime_type": null,
|
| 35 |
+
"metadata": {}
|
| 36 |
+
}
|
| 37 |
]
|
| 38 |
},
|
| 39 |
{
|
| 40 |
"name": "google_flan_t5_sm",
|
| 41 |
+
"input": "Is the movie review positive, negative, or neutral?\n\n\"The movie is funny, smart, visually inventive, and most of all, alive.\"",
|
| 42 |
"metadata": {
|
| 43 |
"model": {
|
| 44 |
"name": "Conversational",
|
|
|
|
| 52 |
"parameters": {}
|
| 53 |
},
|
| 54 |
"outputs": [
|
| 55 |
+
{
|
| 56 |
+
"output_type": "execute_result",
|
| 57 |
+
"execution_count": 0,
|
| 58 |
+
"data": "positive",
|
| 59 |
+
"mime_type": null,
|
| 60 |
+
"metadata": {
|
| 61 |
+
"raw_response": {
|
| 62 |
+
"generated_text": "positive",
|
| 63 |
+
"conversation": {
|
| 64 |
+
"generated_responses": [
|
| 65 |
+
"positive"
|
| 66 |
+
],
|
| 67 |
+
"past_user_inputs": [
|
| 68 |
+
"Is the movie review positive, negative, or neutral?\n\n\"The movie is funny, smart, visually inventive, and most of all, alive.\""
|
| 69 |
+
]
|
| 70 |
+
},
|
| 71 |
+
"warnings": [
|
| 72 |
+
"\nNo chat template is defined for this tokenizer - using a default chat template that implements the ChatML format (without BOS/EOS tokens!). If the default is not appropriate for your model, please set `tokenizer.chat_template` to an appropriate template. See https://huggingface.co/docs/transformers/main/chat_templating for more information.\n"
|
| 73 |
+
]
|
| 74 |
+
}
|
| 75 |
+
}
|
| 76 |
+
}
|
| 77 |
]
|
| 78 |
},
|
| 79 |
{
|
|
|
|
| 90 |
"parameters": {}
|
| 91 |
},
|
| 92 |
"outputs": [
|
| 93 |
+
{
|
| 94 |
+
"output_type": "execute_result",
|
| 95 |
+
"execution_count": 0,
|
| 96 |
+
"data": "The movie review is positive.",
|
| 97 |
+
"mime_type": null,
|
| 98 |
+
"metadata": {
|
| 99 |
+
"raw_response": {
|
| 100 |
+
"generated_text": "The movie review is positive.",
|
| 101 |
+
"conversation": {
|
| 102 |
+
"generated_responses": [
|
| 103 |
+
"The movie review is positive."
|
| 104 |
+
],
|
| 105 |
+
"past_user_inputs": [
|
| 106 |
+
"<|system|>\nYou are to answer the following question by the user</s>\n<|user|>\nIs the movie review positive, negative, or neutral?\n\n"The movie is funny, smart, visually inventive, and most of all, alive."</s>\n<|assistant|>"
|
| 107 |
+
]
|
| 108 |
+
}
|
| 109 |
+
}
|
| 110 |
+
}
|
| 111 |
+
}
|
| 112 |
]
|
| 113 |
}
|
| 114 |
]
|