|
import gradio as gr |
|
|
|
import os |
|
import openai |
|
from dataclasses import dataclass |
|
|
|
@dataclass |
|
class Args: |
|
frequency_penalty: float = 0 |
|
max_tokens: int = 32 |
|
n: int = 1 |
|
presence_penalty: float = 0 |
|
seed: int = 42 |
|
stop: str = None |
|
stream: bool = False |
|
temperature: float = 0.8 |
|
top_p: float = 0.95 |
|
|
|
def get_completion(client, model_id, messages, args): |
|
completion_args = { |
|
"model": model_id, |
|
"messages": messages, |
|
"frequency_penalty": args.frequency_penalty, |
|
"max_tokens": args.max_tokens, |
|
"n": args.n, |
|
"presence_penalty": args.presence_penalty, |
|
"seed": args.seed, |
|
"stop": args.stop, |
|
"stream": args.stream, |
|
"temperature": args.temperature, |
|
"top_p": args.top_p, |
|
} |
|
|
|
completion_args = { |
|
k: v for k, v in completion_args.items() if v is not None |
|
} |
|
|
|
try: |
|
response = client.chat.completions.create(**completion_args) |
|
return response |
|
except Exception as e: |
|
print(f"Error during API call: {e}") |
|
return None |
|
|
|
def chat_response(message, history, model): |
|
|
|
openai_api_key = "super-secret-token" |
|
os.environ['OPENAI_API_KEY'] = openai_api_key |
|
openai.api_key = openai_api_key |
|
openai.api_base = "https://turingtest--example-vllm-openai-compatible-serve.modal.run/v1" |
|
client = openai.OpenAI(api_key=openai_api_key, base_url=openai.api_base) |
|
|
|
|
|
messages = [{"role": "system", "content": "You are a helpful assistant."}] |
|
|
|
|
|
for user_msg, assistant_msg in history: |
|
messages.append({"role": "user", "content": user_msg}) |
|
if assistant_msg: |
|
messages.append({"role": "assistant", "content": assistant_msg}) |
|
|
|
messages.append({"role": "user", "content": message}) |
|
|
|
|
|
args = Args() |
|
|
|
|
|
model_id = "meta-llama/Meta-Llama-3.1-8B-Instruct" |
|
|
|
|
|
response = get_completion(client, model_id, messages, args) |
|
|
|
if response and response.choices: |
|
return response.choices[0].message.content |
|
else: |
|
return f"Error: Check whether modal is up and running." |
|
|
|
def create_chat_interface(model): |
|
return gr.ChatInterface( |
|
fn=lambda message, history: chat_response(message, history, model), |
|
chatbot=gr.Chatbot(height=400, layout='panel'), |
|
textbox=gr.Textbox(placeholder="Message", container=False, scale=7), |
|
title=f"Choice {model}", |
|
description="", |
|
theme="dark", |
|
|
|
|
|
retry_btn=None, |
|
undo_btn=None, |
|
clear_btn=None, |
|
) |
|
|
|
with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", neutral_hue="slate"), head= |
|
""" |
|
<style> |
|
body { |
|
font-family: 'Calibri', sans-serif; /* Choose your desired font */ |
|
} |
|
</style> |
|
""") as demo: |
|
gr.Markdown("## Turing Test Prompt Competition") |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
chat_a = create_chat_interface("A") |
|
with gr.Column(): |
|
chat_b = create_chat_interface("B") |
|
|
|
with gr.Row(): |
|
a_better = gr.Button("π A is better", scale=1) |
|
b_better = gr.Button("π B is better", scale=1) |
|
tie = gr.Button("π€ Tie", scale=1) |
|
both_bad = gr.Button("π Both are bad", scale=1) |
|
|
|
|
|
prompt_input = gr.Textbox(placeholder="Message for both...", container=False) |
|
send_btn = gr.Button("Send to Both", variant="primary") |
|
|
|
def send_prompt(prompt): |
|
|
|
return prompt, prompt, gr.update(value=""), gr.update(value="") |
|
|
|
|
|
send_btn.click( |
|
send_prompt, |
|
inputs=[prompt_input], |
|
outputs=[ |
|
chat_a.textbox, |
|
chat_b.textbox, |
|
prompt_input, |
|
prompt_input |
|
] |
|
) |
|
prompt_input.submit( |
|
send_prompt, |
|
inputs=[prompt_input], |
|
outputs=[ |
|
chat_a.textbox, |
|
chat_b.textbox, |
|
prompt_input, |
|
prompt_input |
|
] |
|
) |
|
if __name__ == "__main__": |
|
demo.launch(share=True) |