File size: 4,681 Bytes
40db5de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import streamlit as st
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import plotly.express as px

st.set_page_config(page_title='Internet Service Provider Customer Churn Dataset Analysis', layout='wide', initial_sidebar_state='expanded')

def run():

    # Buat Title
    st.title('EDA on Customer Churn')

    # Buat Deskripsi
    st.subheader('Written by Franciscus Andrew Sunanda, FTDS-RMT-018')

    st.markdown('---')

    
    st.write('Dataset         : Internet Service Provider Customer Churn')

    st.write('Objective       : To create a model that can predict whether a customers will churn or not')

    st.write('Evaluation Metrics will be using Recall Score to minimize the False Negatives predicted by the model')
    

    st.markdown('---')

    st.write('## Dataset')
    data = pd.read_csv('churn.csv')
    
    st.dataframe(data)

    
    st.markdown('---')

    st.write('## Checking Balance / Imbalance')

    churn = data['churn_risk_score'].value_counts()

    fig = plt.figure()
    churn.plot(kind='pie',
        figsize=(10, 8),
        autopct='%1.1f%%', # untuk membuat persentase  
        labels=None,
        )

    plt.title('Churn/No Churn Numbers in this Dataset')
    plt.axis('equal') 
    plt.legend(labels=['No Churn', 'Churn'])
    st.pyplot(fig)

    st.write('Looks like in this dataset, for classification is already quite balanced between the two possible outcomes')

    st.markdown('---')

    st.write('## Complaints')

    complaint = data.groupby(['churn_risk_score', 'past_complaint']).size().reset_index(name='count')
    fig = plt.figure(figsize=(10,8))
    ax = sns.barplot(x='past_complaint', y='count', data=complaint, hue='churn_risk_score')
    plt.title('Churn Risk based on Past Complaint')
    for i in ax.containers:
        ax.bar_label(i,)  
    handles, labels = ax.get_legend_handles_labels()
    plt.legend(handles=handles, labels=['No Churn', 'Churn'], loc='upper right')
    st.pyplot(fig)

    status = data[data['past_complaint'] == 'Yes'].groupby(['churn_risk_score','complaint_status']).size().reset_index(name='count')
    fig = plt.figure(figsize=(10,8))
    ax = sns.barplot(x='complaint_status', y='count', data=status, hue='churn_risk_score')
    plt.title('Churn Risk based on Complaint Status')
    for i in ax.containers:
        ax.bar_label(i,)
    handles, labels = ax.get_legend_handles_labels()
    plt.legend(handles=handles, labels=['No Churn', 'Churn'], loc='upper right')
    st.pyplot(fig)

    st.markdown('---')

    st.write('## Feedback')

    feedback = data.groupby(['churn_risk_score', 'feedback']).size().reset_index(name='count')
    fig = plt.figure(figsize=(10,8))
    ax = sns.barplot(x='count', y='feedback', data=feedback, hue='churn_risk_score')
    plt.title('Churn Risk based on Feedback')
    for i in ax.containers:
        ax.bar_label(i,)  
    handles, labels = ax.get_legend_handles_labels()
    plt.legend(handles=handles, labels=['No Churn', 'Churn'], loc='lower right')
    st.pyplot(fig)

    st.markdown('---')

    st.write('## Membership')

    membership = data.groupby(['churn_risk_score', 'membership_category']).size().reset_index(name='count')
    fig = plt.figure(figsize=(10,8))
    ax = sns.barplot(x='count', y='membership_category', data=membership, hue='churn_risk_score')
    plt.title("Churn Risk based on user's membership")
    for i in ax.containers:
        ax.bar_label(i,)  
    handles, labels = ax.get_legend_handles_labels()
    plt.legend(handles=handles, labels=['No Churn', 'Churn'], loc='lower right')
    st.pyplot(fig)

    
    st.markdown('---')

    st.write('Internet Service used by Customers')

    service = data.groupby(['internet_option','churn_risk_score']).size().reset_index(name='count')
    fig = plt.figure(figsize=(12,8))
    ax = sns.barplot(x='count', y='internet_option', data=service, hue='churn_risk_score')
    plt.title("Churn Risk based on user's membership")
    for i in ax.containers:
        ax.bar_label(i,)  
    handles, labels = ax.get_legend_handles_labels()
    plt.legend(handles=handles, labels=['No Churn', 'Churn'], loc='lower right')
    st.pyplot(fig)

    service = data.groupby(['internet_option','feedback']).size().reset_index(name='count')
    fig = plt.figure(figsize=(30,8))
    ax = sns.barplot(x='internet_option', y='count', data=service, hue='feedback')
    plt.title("Churn Risk based on user's internet option")
    for i in ax.containers:
        ax.bar_label(i,)  
    handles, labels = ax.get_legend_handles_labels()
    plt.legend(handles=handles,loc='lower right')
    st.pyplot(fig)

    
if __name__ == '__main__':
    run()