File size: 5,572 Bytes
3a18ad0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4045f11
 
 
 
 
a255901
4045f11
 
 
 
 
 
 
dfee1e5
 
4045f11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dfee1e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a18ad0
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import streamlit as st
import os
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import plotly.express as px
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.preprocessing import image

st.set_page_config(page_title='Fast Food Classification Dataset Analysis', layout='wide', initial_sidebar_state='expanded')

def run():

    # Buat Title
    st.title('EDA on Fast Food Classification')

    # Buat Deskripsi
    st.subheader('Written by Franciscus Andrew Sunanda, FTDS-RMT-018')

    st.markdown('---')

    
    st.write('Dataset         : Fast Food Classification')

    st.write('Objective       : To create a model that can predict the type of a fast food based on image')
    

    st.markdown('---')
    import os
    import torch
    import torchvision.transforms as transforms
    from torch.utils.data import DataLoader
    from datasets import load_dataset
    
    # Define the path to the dataset
    dataset_path = 'andrewsunanda/fast_food_image_classification'
    
    # Load the dataset from Hugging Face
    dataset = load_dataset(dataset_path)
    
    # Define the batch size and image size
    batch_size = 256
    img_size = (64, 64)
    
    # Define the paths to the train, validation, and test folders
    train_path = os.path.join(dataset_path, 'Train')
    valid_path = os.path.join(dataset_path, 'Valid')
    test_path = os.path.join(dataset_path, 'Test')
    
    # Define the transforms for the dataset
    transform = transforms.Compose([
        transforms.Resize(img_size),
        transforms.ToTensor(),
    ])
    
    # Load the training dataset
    train_dataset = dataset['train']
    train_dataset = train_dataset.map(lambda x: {'image': transform(x['image']), 'label': x['label']})
    train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
    
    # Load the validation dataset
    valid_dataset = dataset['validation']
    valid_dataset = valid_dataset.map(lambda x: {'image': transform(x['image']), 'label': x['label']})
    valid_loader = DataLoader(valid_dataset, batch_size=batch_size, shuffle=False)
    
    # Load the testing dataset
    test_dataset = dataset['test']
    test_dataset = test_dataset.map(lambda x: {'image': transform(x['image']), 'label': x['label']})
    test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
    # Create data generators for training, validation, and testing
    train_datagen = ImageDataGenerator(
        rescale=1./255, 
        horizontal_flip=True
    )

    valid_datagen = ImageDataGenerator(
        rescale=1./255
    )
    test_datagen = ImageDataGenerator(
        rescale=1./255
    )

    train_generator = train_datagen.flow_from_directory(
    train_path, 
    target_size=img_size, 
    batch_size=batch_size, 
    class_mode='categorical'
    )

    valid_generator = valid_datagen.flow_from_directory(
        valid_path, 
        target_size=img_size, 
        batch_size=batch_size, 
        class_mode='categorical'
    )

    test_generator = test_datagen.flow_from_directory(
        test_path,                                                 
        target_size=img_size, 
        batch_size=batch_size, 
        class_mode='categorical'
    )

    st.write('## Showing Random Samples')
    class_names = list(train_generator.class_indices.keys())
    train_classes = pd.Series(train_generator.classes)
    test_classes = pd.Series(test_generator.classes)
    valid_classes = pd.Series(valid_generator.classes)
    # Plot some samples from each class
    fig, ax = plt.subplots(nrows=2, ncols=5, figsize=(10, 6), subplot_kw={'xticks': [], 'yticks': []})
    for i, axi in enumerate(ax.flat):
        img = plt.imread(f'{train_path}/{class_names[i]}/{os.listdir(train_path+"/"+class_names[i])[0]}')
        axi.imshow(img)
        axi.set_title(class_names[i])
    plt.tight_layout()
    st.pyplot(fig)


    st.markdown('---')

    st.write('## Balance Classification')

   # Create a pandas dataframe to show the distribution of classes in train, test, and validation data
    df = pd.concat([train_classes.value_counts(), test_classes.value_counts(), valid_classes.value_counts()], axis=1)
    df.columns = ['Training Data', 'Test Data', 'Validation Data']
    df.index = class_names

    fig, ax = plt.subplots(figsize=(12, 6))
    df.plot(kind='bar', stacked=False, ax=ax, width=0.8)
    plt.xlabel('Class')
    plt.ylabel('Data Distribution')
    plt.title('Data Distribution for each class')
    plt.xticks(rotation=45, ha='right')
    st.pyplot(fig)


    st.markdown('---')

    st.write('## Mean Pixel Value')

    # Plot the mean of pixel mean of each channel for each class (unstacked bar chart)
    means = []
    for i in range(len(class_names)):
        class_name = class_names[i]
        img_path = os.path.join(train_path, class_name, os.listdir(os.path.join(train_path, class_name))[0])
        img = image.load_img(img_path, target_size=img_size)
        img_array = image.img_to_array(img)
        means.append(np.mean(img_array, axis=(0, 1)))
    means_df = pd.DataFrame(means, columns=['Red', 'Green', 'Blue'])
    means_df.index = class_names
    fig, ax = plt.subplots(figsize=(12, 6))
    means_df.plot(kind='bar', stacked=False, ax=ax, width=0.8)
    plt.xlabel('Class')
    plt.ylabel('Mean pixel value')
    plt.title('Mean pixel value of each channel for each class')
    plt.xticks(rotation=45, ha='right')
    st.pyplot(fig)

    st.markdown('---')

    

    
if __name__ == '__main__':
    run()