File size: 4,328 Bytes
3a18ad0 d5063eb 4045f11 e264be8 dfee1e5 e264be8 d5063eb dfee1e5 3a18ad0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 |
import streamlit as st
import os
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import plotly.express as px
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.preprocessing import image
st.set_page_config(page_title='Fast Food Classification Dataset Analysis', layout='wide', initial_sidebar_state='expanded')
def run():
# Buat Title
st.title('EDA on Fast Food Classification')
# Buat Deskripsi
st.subheader('Written by Franciscus Andrew Sunanda, FTDS-RMT-018')
st.markdown('---')
st.write('Dataset : Fast Food Classification')
st.write('Objective : To create a model that can predict the type of a fast food based on image')
st.markdown('---')
# Define batch size and image size
batch_size = 256
img_size = (64, 64)
# Define paths to the data folders
script_dir = os.path.dirname(os.path.abspath(__file__))
train_path = os.path.join(script_dir, 'food', 'Train')
valid_path = os.path.join(script_dir, 'food', 'Valid')
test_path = os.path.join(script_dir, 'food', 'Test')
# Create data generators for training, validation, and testing
train_datagen = ImageDataGenerator(
rescale=1./255,
horizontal_flip=True
)
valid_datagen = ImageDataGenerator(
rescale=1./255
)
test_datagen = ImageDataGenerator(
rescale=1./255
)
train_generator = train_datagen.flow_from_directory(
train_path,
target_size=img_size,
batch_size=batch_size,
class_mode='categorical'
)
valid_generator = valid_datagen.flow_from_directory(
valid_path,
target_size=img_size,
batch_size=batch_size,
class_mode='categorical'
)
test_generator = test_datagen.flow_from_directory(
test_path,
target_size=img_size,
batch_size=batch_size,
class_mode='categorical'
)
st.write('## Showing Random Samples')
class_names = list(train_generator.class_indices.keys())
train_classes = pd.Series(train_generator.classes)
test_classes = pd.Series(test_generator.classes)
valid_classes = pd.Series(valid_generator.classes)
# Plot some samples from each class
fig, ax = plt.subplots(nrows=2, ncols=5, figsize=(10, 6), subplot_kw={'xticks': [], 'yticks': []})
for i, axi in enumerate(ax.flat):
img = plt.imread(f'{train_path}/{class_names[i]}/{os.listdir(train_path+"/"+class_names[i])[0]}')
axi.imshow(img)
axi.set_title(class_names[i])
plt.tight_layout()
st.pyplot(fig)
st.markdown('---')
st.write('## Balance Classification')
# Create a pandas dataframe to show the distribution of classes in train, test, and validation data
df = pd.concat([train_classes.value_counts(), test_classes.value_counts(), valid_classes.value_counts()], axis=1)
df.columns = ['Training Data', 'Test Data', 'Validation Data']
df.index = class_names
fig, ax = plt.subplots(figsize=(12, 6))
df.plot(kind='bar', stacked=False, ax=ax, width=0.8)
plt.xlabel('Class')
plt.ylabel('Data Distribution')
plt.title('Data Distribution for each class')
plt.xticks(rotation=45, ha='right')
st.pyplot(fig)
st.markdown('---')
st.write('## Mean Pixel Value')
# Plot the mean of pixel mean of each channel for each class (unstacked bar chart)
means = []
for i in range(len(class_names)):
class_name = class_names[i]
img_path = os.path.join(train_path, class_name, os.listdir(os.path.join(train_path, class_name))[0])
img = image.load_img(img_path, target_size=img_size)
img_array = image.img_to_array(img)
means.append(np.mean(img_array, axis=(0, 1)))
means_df = pd.DataFrame(means, columns=['Red', 'Green', 'Blue'])
means_df.index = class_names
fig, ax = plt.subplots(figsize=(12, 6))
means_df.plot(kind='bar', stacked=False, ax=ax, width=0.8)
plt.xlabel('Class')
plt.ylabel('Mean pixel value')
plt.title('Mean pixel value of each channel for each class')
plt.xticks(rotation=45, ha='right')
st.pyplot(fig)
st.markdown('---')
if __name__ == '__main__':
run() |