andrewsunanda commited on
Commit
68ae833
·
1 Parent(s): feed263

Update prediction.py

Browse files
Files changed (1) hide show
  1. prediction.py +5 -27
prediction.py CHANGED
@@ -26,42 +26,20 @@ import torchvision.transforms as transforms
26
  from torch.utils.data import DataLoader
27
  from datasets import load_dataset
28
 
29
- # Define the path to the dataset
30
- dataset_path = 'andrewsunanda/fast_food_image_classification'
31
-
32
  # Load the dataset from Hugging Face
33
- dataset = load_dataset(dataset_path)
34
-
 
35
  # Define the batch size and image size
36
  batch_size = 256
37
  img_size = (64, 64)
38
-
39
  # Define the paths to the train, validation, and test folders
 
40
  train_path = os.path.join(dataset_path, 'Train')
41
  valid_path = os.path.join(dataset_path, 'Valid')
42
  test_path = os.path.join(dataset_path, 'Test')
43
 
44
- # Define the transforms for the dataset
45
- transform = transforms.Compose([
46
- transforms.Resize(img_size),
47
- transforms.ToTensor(),
48
- ])
49
-
50
- # Load the training dataset
51
- train_dataset = dataset['train']
52
- train_dataset = train_dataset.map(lambda x: {'image': transform(x['image']), 'label': x['label']})
53
- train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
54
-
55
- # Load the validation dataset
56
- valid_dataset = dataset['validation']
57
- valid_dataset = valid_dataset.map(lambda x: {'image': transform(x['image']), 'label': x['label']})
58
- valid_loader = DataLoader(valid_dataset, batch_size=batch_size, shuffle=False)
59
-
60
- # Load the testing dataset
61
- test_dataset = dataset['test']
62
- test_dataset = test_dataset.map(lambda x: {'image': transform(x['image']), 'label': x['label']})
63
- test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
64
-
65
  # Create data generators for training, validation, and testing
66
  train_datagen = ImageDataGenerator(
67
  rescale=1./255,
 
26
  from torch.utils.data import DataLoader
27
  from datasets import load_dataset
28
 
 
 
 
29
  # Load the dataset from Hugging Face
30
+ from datasets import load_dataset
31
+ dataset = load_dataset("andrewsunanda/fast_food_image_classification")
32
+
33
  # Define the batch size and image size
34
  batch_size = 256
35
  img_size = (64, 64)
36
+
37
  # Define the paths to the train, validation, and test folders
38
+ dataset_path = "andrewsunanda/fast_food_image_classification"
39
  train_path = os.path.join(dataset_path, 'Train')
40
  valid_path = os.path.join(dataset_path, 'Valid')
41
  test_path = os.path.join(dataset_path, 'Test')
42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43
  # Create data generators for training, validation, and testing
44
  train_datagen = ImageDataGenerator(
45
  rescale=1./255,