andrewsunanda commited on
Commit
e384564
·
1 Parent(s): 565cebb

Update eda.py

Browse files
Files changed (1) hide show
  1. eda.py +35 -4
eda.py CHANGED
@@ -33,17 +33,48 @@ def run():
33
 
34
 
35
 
36
- # Define batch size and image size
 
 
 
 
 
 
 
 
 
 
 
 
37
  batch_size = 256
38
  img_size = (64, 64)
39
- # Define paths to the data folders
40
- dataset_path = 'andrewsunanda/fast_food_image_classification'
41
 
42
-
43
  # Define the paths to the train, validation, and test folders
44
  train_path = os.path.join(dataset_path, 'Train')
45
  valid_path = os.path.join(dataset_path, 'Valid')
46
  test_path = os.path.join(dataset_path, 'Test')
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47
  # Create data generators for training, validation, and testing
48
  train_datagen = ImageDataGenerator(
49
  rescale=1./255,
 
33
 
34
 
35
 
36
+ import os
37
+ import torch
38
+ import torchvision.transforms as transforms
39
+ from torch.utils.data import DataLoader
40
+ from datasets import load_dataset
41
+
42
+ # Define the path to the dataset
43
+ dataset_path = 'andrewsunanda/fast_food_image_classification'
44
+
45
+ # Load the dataset from Hugging Face
46
+ dataset = load_dataset(dataset_path)
47
+
48
+ # Define the batch size and image size
49
  batch_size = 256
50
  img_size = (64, 64)
 
 
51
 
 
52
  # Define the paths to the train, validation, and test folders
53
  train_path = os.path.join(dataset_path, 'Train')
54
  valid_path = os.path.join(dataset_path, 'Valid')
55
  test_path = os.path.join(dataset_path, 'Test')
56
+
57
+ # Define the transforms for the dataset
58
+ transform = transforms.Compose([
59
+ transforms.Resize(img_size),
60
+ transforms.ToTensor(),
61
+ ])
62
+
63
+ # Load the training dataset
64
+ train_dataset = dataset['train']
65
+ train_dataset = train_dataset.map(lambda x: {'image': transform(x['image']), 'label': x['label']})
66
+ train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
67
+
68
+ # Load the validation dataset
69
+ valid_dataset = dataset['validation']
70
+ valid_dataset = valid_dataset.map(lambda x: {'image': transform(x['image']), 'label': x['label']})
71
+ valid_loader = DataLoader(valid_dataset, batch_size=batch_size, shuffle=False)
72
+
73
+ # Load the testing dataset
74
+ test_dataset = dataset['test']
75
+ test_dataset = test_dataset.map(lambda x: {'image': transform(x['image']), 'label': x['label']})
76
+ test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
77
+
78
  # Create data generators for training, validation, and testing
79
  train_datagen = ImageDataGenerator(
80
  rescale=1./255,